WO2016002547A1 - Substrate treatment device - Google Patents

Substrate treatment device Download PDF

Info

Publication number
WO2016002547A1
WO2016002547A1 PCT/JP2015/067807 JP2015067807W WO2016002547A1 WO 2016002547 A1 WO2016002547 A1 WO 2016002547A1 JP 2015067807 W JP2015067807 W JP 2015067807W WO 2016002547 A1 WO2016002547 A1 WO 2016002547A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
processing apparatus
gas
shielding plate
substrate processing
Prior art date
Application number
PCT/JP2015/067807
Other languages
French (fr)
Japanese (ja)
Inventor
貴士 松本
建次郎 小泉
Original Assignee
東京エレクトロン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東京エレクトロン株式会社 filed Critical 東京エレクトロン株式会社
Publication of WO2016002547A1 publication Critical patent/WO2016002547A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/46Generating plasma using applied electromagnetic fields, e.g. high frequency or microwave energy
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/05Preparation or purification of carbon not covered by groups C01B32/15, C01B32/20, C01B32/25, C01B32/30

Definitions

  • the present invention relates to a substrate processing apparatus capable of obtaining a thin film in which generation of defects is suppressed after reduction of oxide film by plasma.
  • graphene has attracted attention as a material that replaces ITO constituting transparent conductive films.
  • Graphene is a film composed of a large number of carbon atoms bonded to each other, and has a thickness of several nanometers corresponding to several carbon atoms.
  • Graphene is usually obtained by forming a graphene oxide film on a substrate by immersion in a suspension and reducing the entire graphene oxide film (see, for example, Patent Document 1).
  • Graphene is composed of only carbon atoms and is particularly excellent in conductivity, but has a thickness of several nanometers. Therefore, in recent years, application to damascene wiring in semiconductor devices has been studied.
  • the reduction of the graphene oxide film is performed by heating the substrate on which the graphene oxide film is formed in an environment where a reducing gas is present to nearly 1000 ° C.
  • via holes and trenches are heated by high temperature heating. It is preferable to avoid heating at a high temperature as much as possible because the shape may collapse and the various films may be altered.
  • the graphene oxide film is sputtered by charged particles. Therefore, graphene obtained by reducing the graphene oxide film using plasma is damaged by sputtering of charged particles, and as a result, the graphene may contain defects.
  • An object of the present invention is to provide a substrate processing apparatus capable of obtaining a thin film in which generation of defects is suppressed after reduction by plasma.
  • a substrate on which a film to be reduced is formed is accommodated, and a processing container that generates a plasma of a reducing gas therein is disposed between the plasma and the substrate.
  • a substrate processing apparatus including the shielding plate is provided.
  • the shielding plate is disposed between the plasma and the substrate, it is possible to suppress damage to the thin film in which the film to be reduced is reduced. As a result, a thin film in which generation of defects is suppressed can be obtained.
  • FIG. 2 is a plan view of the slot plate in FIG. 1. It is a bottom view of the shower plate in FIG. It is a top view of the shielding board in FIG. It is a top view of the 1st modification of the shielding board in FIG. It is a top view of the 2nd modification of the shielding board in FIG. It is a top view of the 3rd modification of the shielding board in FIG. It is an expanded sectional view of the groove
  • FIG. 1 is a cross-sectional view schematically showing a configuration of a substrate processing apparatus according to the present embodiment.
  • the substrate processing apparatus generates plasma from a reducing gas and reduces a graphene oxide film formed on the substrate to form graphene (thin film).
  • a substrate processing apparatus 10 includes a processing container 11 that is a substantially cylindrical container extending along a direction in which an axis Z extends in the drawing (hereinafter referred to as “axis Z direction”).
  • the interior of the processing container 11 is divided with respect to the upper and lower sides by a shower plate 31 to be described later.
  • the upper part of the partitioned processing container 11 forms a processing space PS1
  • the lower part of the partitioned processing container 11 forms a processing space PS2.
  • plasma processing is performed on a substrate S made of, for example, Si (silicon), SiO 2 (silica), a compound semiconductor, glass, or plastic as a substrate.
  • Gas lines 12 and 13 are disposed on the upper side wall of the processing vessel 11, and the gas line 12 reaches the side wall of the processing vessel 11 from the outside of the processing vessel 11 and is connected to the gas line 13 in the side wall.
  • the gas line 13 is formed of a ring-shaped flow path formed in the side wall, and is disposed so as to surround the processing space PS1. Further, the gas line 13 has a plurality of injection ports 14 communicating with the processing space PS1.
  • the gas line 12 is connected to the gas source 18 via the valve 15, the mass flow controller 16 and the valve 17 outside the processing container 11.
  • the gas source 18 supplies an inert gas, for example, Ar (argon) gas, which is a plasma excitation gas, from the respective injection ports 14 into the processing space PS1 through the gas lines 12 and 13.
  • Ar argon
  • An antenna 19 that supplies microwaves to the processing space PS1 is provided on the upper portion of the processing container 11, and a dielectric window 20 is interposed between the antenna 19 and the processing space PS1.
  • the dielectric window 20 has a substantially disk shape and is made of, for example, quartz or alumina, and seals the processing spaces PS1 and PS2.
  • the antenna 19 includes a slot plate 21, a dielectric plate 22, and a cooling jacket 23 that are sequentially stacked from below.
  • the antenna 19 only needs to have a configuration capable of forming surface wave plasma.
  • the antenna 19 may be a radial line slot antenna, but the configuration of the antenna 19 is not limited thereto.
  • the dielectric plate 22 has a substantially disk shape and shortens the wavelength of the microwave transmitted from the coaxial waveguide 24 described later.
  • the dielectric plate 22 is made of, for example, quartz or alumina.
  • the slot plate 21 is a substantially disc-shaped metal plate in which a plurality of slot pairs 21a are formed, and the plurality of slot pairs 21a are arranged so as to form a plurality of concentric circles.
  • Each of the slot pair 21a includes two slot holes 21b and 21c, and the slot hole 21b and the slot hole 21c are orthogonal to each other.
  • the coaxial waveguide 24, the microwave generator 25, the tuner 26, the waveguide 27, and the mode converter 28 are disposed above the antenna 19.
  • the microwave generator 25 includes the tuner 26, The device is connected to the antenna 19 through the waveguide 27, the mode converter 28, and the coaxial waveguide 24. These devices cooperate to generate a microwave of 2.45 GHz, for example, generated by the microwave generator 25. Transmit to the antenna 19.
  • the coaxial waveguide 24 extends in the axis Z direction and has an outer conductor 24a and an inner conductor 24b.
  • the outer conductor 24 a is made of a substantially cylindrical conductor, and the lower end is connected to the cooling jacket 23 of the antenna 19.
  • the inner conductor 24 b is a cylindrical conductor arranged so as to be accommodated in the outer conductor 24 a, and the lower end is connected to the slot plate 21 of the antenna 19.
  • the substrate processing apparatus 10 further includes a mounting table 29 disposed in the processing space PS2, and the mounting table 29 mounts the substrate S thereon.
  • the mounting table 29 is supported by a support shaft 30 that protrudes upward along the axis Z direction from the bottom of the processing container 11, and an adsorption mechanism for the substrate S and a temperature adjustment mechanism for the substrate S (both not shown).
  • the substrate processing apparatus 10 also includes a shower plate 31 disposed between the antenna 19 and the mounting table 29 in the processing container 11.
  • the shower plate 31 is made of a lattice-shaped member having a large number of rectangular openings 31a, and a gas line 32 (see FIG. 1) is formed therein.
  • a large number of injection ports 33 are opened on the lower surface of the shower plate 31 so as to face the mounting table 29, and each injection port 33 communicates with the processing space PS 2 and the gas line 32.
  • the shower plate 31 may be made of a metal member such as aluminum or stainless steel, or may be made of a dielectric member such as quartz or alumina. In particular, in the case of a metal member, the surface of the metal member is coated with a film such as alumina or yttria.
  • the shape of the shower plate 31 may be a ring shape or a nozzle shape.
  • gas lines 34 a and 34 b are disposed in the middle portion of the side wall of the processing container 11, and the gas lines 34 a and 34 b reach the side wall of the processing container 11 from the outside of the processing container 11, respectively.
  • the gas line 34a is connected to the gas source 38a via the valve 35a, the mass flow controller 36a, and the valve 37a outside the processing container 11, and the gas line 34b is connected to the valve 35b, the mass flow controller outside the processing container 11. It is connected to the gas source 38b through 36b and a valve 37b.
  • the gas source 38a supplies a reducing gas, for example, H 2 (hydrogen) gas into the processing space PS2 from each injection port 33 through the gas lines 34a, 32, and the gas source 38b has a reducing gas, for example, C. 2 H 4 (ethylene) gas is supplied from the respective injection ports 33 into the processing space PS2 through the gas lines 34b and 32.
  • a reducing gas for example, H 2 (hydrogen) gas
  • C. 2 H 4 (ethylene) gas is supplied from the respective injection ports 33 into the processing space PS2 through the gas lines 34b and 32.
  • a pressure gauge 39 for measuring the pressure in the processing spaces PS1 and PS2 is disposed on the side wall of the processing container 11, and an exhaust pipe 40 is disposed on the bottom of the processing container 11.
  • a pressure regulator 41 and a decompression pump 42 are connected to the exhaust pipe 40.
  • the flow rates of various gases supplied from the gas line 13 and the shower plate 31 are adjusted based on the pressure value measured by the pressure gauge 39, and the flow rate adjustment and pressure regulator 41 of various gases are further adjusted.
  • the pressures of the processing spaces PS1 and PS2 are adjusted by adjusting the operation of the decompression pump 42.
  • the substrate processing apparatus 10 includes a shielding plate 43 disposed between the shower plate 31 and the mounting table 29 in the processing space PS2.
  • the shielding plate 43 is made of a disk-shaped dielectric member, for example, a ceramic member, and the diameter of the shielding plate 43 is, for example, mounted on the mounting table 29 from the shower plate 31 side.
  • the shield plate 43 is set to a value that can cover the entire substrate S and is smaller than the diameter of the inner wall of the processing container 11.
  • the shielding plate 43 is grounded by a grounding means (not shown), and is prevented from being charged up by plasma charged particles, which will be described later.
  • each of the shower plate 31, the shielding plate 43, and the mounting table 29 is disposed substantially perpendicular to the axis Z direction and extends toward the inner wall of the processing container 11.
  • the diameter of the shielding plate 43 is smaller than the diameter of the inner wall of the processing container 11, a gap G is formed between the outer edge of the shielding plate 43 and the inner wall of the substrate processing apparatus 10.
  • the substrate processing apparatus 10 is connected to a controller 44, and the controller 44 controls the operation of each component of the substrate processing apparatus 10 according to a program corresponding to a recipe that defines processing contents.
  • the substrate S on which the graphene oxide film 45 (reduced film) is formed is placed on the placement table 29 so that the graphene oxide film 45 faces the shielding plate 43, and then the coaxial waveguide 24.
  • the microwaves transmitted from the electromagnetic wave are propagated in the dielectric plate 22 and applied to the dielectric window 20 from each pair of slots 21a of the slot plate 21, and are further transmitted through the dielectric window 20 and introduced into the processing space PS1.
  • the introduced microwave cannot enter the existing plasma distribution, and becomes a surface wave on the surface of the plasma distribution, thereby processing the plasma.
  • An inert gas, for example, Ar gas, supplied to the space PS1 is excited to generate plasma (surface wave plasma) immediately below the dielectric window 20.
  • Ar gas is supplied from each injection port 14 of the gas line 13 to the processing space PS 1 at, for example, 400 sccm to 2000 sccm, and H 2 gas is supplied from each injection port 33 of the shower plate 31, for example, from 100 sccm to
  • C 2 H 4 gas is supplied to the processing space PS2 at, for example, 6 sccm to 120 sccm, and the pressure of the processing spaces PS1 and PS2 is set to, for example, 0.1 Torr by the pressure regulator 41 or the like. Adjust to ⁇ 10 Torr.
  • the surface wave plasma of Ar gas generated immediately below the dielectric window 20 passes through each rectangular opening 31a of the shower plate 31 from the processing space PS1 and diffuses into the processing space PS2.
  • Surface wave plasma of the Ar gas diffused into the processing space PS2 collide with H 2 gas and C 2 H 4 gas supplied from the injection port 33, these by dissociating the H 2 gas and C 2 H 4 gas Plasma is generated from the gas.
  • the surface wave plasma generated using the excitation by the microwave as the surface wave has a relatively high electron temperature immediately below the dielectric window 20, the electron temperature decreases as it diffuses and directly above the substrate S. Then, for example, it has a relatively low electron temperature of 1.5 eV or less. Therefore, excessive dissociation of H 2 gas or C 2 H 4 gas and occurrence of damage in the substrate S can be suppressed.
  • no bias voltage is applied to the substrate S. Therefore, the charged particles of plasma are not accelerated toward the substrate S, and it is possible to suppress the plasma damage accompanying the sputtering of the charged particles from being applied to the substrate S.
  • the shielding plate 43 is disposed between the shower plate 31 and the mounting table 29, as a result, the shielding plate 43 is disposed between the plasma and the graphene oxide film 45 of the substrate S.
  • the shielding plate 43 covers the entire substrate S. Cations in the plasma of the inert gas (Ar gas) and the reducing gas (H 2 gas, C 2 H 4 gas) drawn into the substrate are blocked by the shielding plate 43, and the graphene oxide film 45 of the substrate S is sputtered by the cations. Can be suppressed.
  • radicals of the reducing gas in the generated plasma are electrically neutral, they are not drawn linearly toward the substrate S by the bias potential of the substrate S and move freely. Therefore, radicals pass through the gap G between the outer edge of the shielding plate 43 and the inner wall of the processing container 11 and enter the space BS between the shielding plate 43 and the substrate S to reach the graphene oxide film 45 of the substrate S.
  • the graphene oxide film 45 is reduced to generate graphene.
  • the shielding plate 43 is disposed between the plasma and the substrate S, the cations in the plasma of the reducing gas drawn linearly into the substrate S are shielded by the shielding plate 43, The graphene oxide film 45 is not sputtered by cations. Accordingly, the graphene generated by reducing the graphene oxide film 45 is not damaged by the cation, and as a result, it is possible to obtain graphene in which generation of defects is suppressed.
  • the reducing gas supplied to the processing space PS2 includes C 2 H 4 gas that is a hydrocarbon gas.
  • the graphene oxide film 45 is reduced and the generated graphene is defective.
  • the carbon atom derived from the C 2 H 4 gas can repair the defect of graphene, so that high-quality graphene can be obtained, and the resistance value of the obtained graphene can be set to, for example, ITO. Can be reduced to the same degree.
  • the excitation by the microwave as the surface wave is used when generating the plasma, it is possible to generate a high-density plasma although the electron temperature is low. Accordingly, the amount of radicals reaching the graphene oxide film 45 can be increased, and thus the reduction in the efficiency of the reduction treatment of the graphene oxide film 45 accompanying the reduction in plasma electron temperature can be prevented.
  • the reduction process using plasma can eliminate the need to heat the substrate S at a high temperature, and the above reduction process can be performed only by heating the temperature of the substrate S to room temperature to about 650 ° C. Processing time can be shortened to several minutes.
  • a gap G is formed between the outer edge of the shielding plate 43 and the inner wall of the processing container 11, and radicals that do not move linearly pass through the gap G to the graphene oxide film 45 of the substrate S. Therefore, the graphene oxide film 45 can be reduced without directly exposing the substrate S to plasma. Further, since the size of the gap G is 10 mm to 20 mm, preferably 10 mm to 15 mm, a sufficient amount of radicals can pass through to reach the graphene oxide film 45 and the processing spaces PS1 and PS2 It is possible to prevent the exhaust conductance from decreasing.
  • the shielding plate 43 is made of a ceramic member, abnormal discharge does not occur between the plasma in the processing space PS2 and the shielding plate 43, thereby preventing damage due to abnormal discharge of graphene. can do.
  • the substrate processing apparatus 10 is used to obtain the graphene by reducing the graphene oxide film 45.
  • the substrate processing apparatus 10 reduces the oxide film other than the graphene oxide film 45 to obtain a thin film. It can also be used in some cases.
  • H 2 gas or C 2 H 4 gas is used as the reducing gas, but the reducing gas is not limited to these, and NH 3 (ammonia) gas, H 4 N 2 (hydrazine) gas, Other hydrocarbon gases such as CH 4 (methane) gas or C 2 H 2 (acetylene) gas may be used.
  • the shielding plate 43 is composed of a simple disk-like member having no through hole.
  • FIG. 5A is a plan view of a first modification of the shielding plate in FIG. 1
  • FIG. 5B is a second modification of the shielding plate in FIG. 1
  • FIG. 5C is a third modification of the shielding plate in FIG. It is a modification.
  • the shielding plate 46 has a plurality of grooves 47 arranged in a double concentric manner at a position away from the center by a predetermined distance in the radial direction.
  • the shielding plate 48 has a plurality of grooves 49 arranged in a cross shape at the center.
  • the grooves 47 and 49 penetrate the shielding plates 46 and 48 in the thickness direction to communicate the processing space PS2 with the space BS between the shielding plate 43 and the substrate S, so that the grooves 47 and 49 are treated in addition to the gap G. It functions as a reducing gas radical introduction path from the space PS2 to the space BS. As a result, the efficiency of the reduction treatment of the graphene oxide film 45 can be further improved.
  • the diameter of the shielding plate 43 may be enlarged to close the gap G.
  • a plurality of grooves 50 penetrating the shielding plate 43 in the thickness direction are arranged concentrically in the vicinity of the outer edge of the shielding plate 43, and reducing gas radicals are introduced from the processing space PS ⁇ b> 2 into the space BS through the grooves 50.
  • the shielding plates 46 and 48 in plan view
  • the opening ratio of the grooves 47 and 49 is preferably kept to 50% or less.
  • the aperture ratio is preferably 10% or more.
  • each of the grooves 47 and 49 is not a linear structure as shown in FIG. 6A, but a labyrinth structure as shown in FIG. 49 can be suppressed. Note that the labyrinth structure is not limited to the structure shown in FIG.
  • the shielding plate 43 is made of a dielectric member, but the shielding plate 43 may be made of a conductive member.
  • the surface of the shielding plate 43 is subjected to an insulating process such as formation of an insulating film.
  • no bias voltage is applied to the shielding plate 43, and the shielding plate 43 is grounded.
  • a high frequency power source 51 may be connected to the shielding plate 43 and a high frequency voltage may be applied as shown in FIG.
  • the cations in the plasma can be attracted to the shielding plate 43 by the applied voltage, so that the cations can be reliably suppressed from reaching the graphene oxide film 45 of the substrate S.
  • the high-frequency voltage may be applied continuously or a pulse may be applied.
  • a DC power source may be connected to the shielding plate 43 instead of the high frequency power source 51, and a DC voltage may be applied to the shielding plate 43.
  • the reducing gas is supplied from the shower plate 31 to the processing space PS2.
  • the supply form of the reducing gas is not limited to this.
  • a gas supply ring 52 may be provided between the antenna 19 and the mounting table 29, and the reducing gas may be supplied from the gas supply ring 52.
  • a gas buffer chamber 53 is provided on the antenna 19, and the gas buffer chamber 53 and the processing space PS 1 are connected by a plurality of gas introduction paths 54 to introduce a reducing gas into the gas buffer chamber 53.
  • the reducing gas may be supplied to the processing space PS1 via each gas introduction path 54.
  • Example 1 in the substrate processing apparatus 10, the shielding plate 46 is disposed instead of the shielding plate 43, the aperture ratio of the groove 47 in the plan view of the shielding plate 46 is set to 23.7%, and the antenna 19
  • the output value of the microwave is set to 2750 W
  • the pressure in the processing container 11 is set to 1 Torr
  • Ar gas is supplied from each injection port 14 into the processing space PS1
  • H 2 gas is supplied from each injection port 33 at 1109 sccm. supplies to the processing space PS2
  • the C 2 H 4 gas is supplied to the processing space PS2 at 30 sccm
  • the substrate is heated S to 400 ° C. by the heater installed in the mounting table 29 (not shown)
  • graphene oxide substrate S The film 45 was reduced to generate graphene.
  • the sheet resistance of the generated graphene was measured and shown in the graph of FIG.
  • Example 1 and Example 2 since the sputtering by the cations on the graphene film 45 is weakened, the consumption of the graphene film 45 is suppressed, and the graphene film 45 is repaired by the carbon atoms derived from the C 2 H 4 gas. Therefore, the reduction treatment of the graphene oxide film 45 can be performed over a relatively long time of 600 seconds. On the other hand, in the comparative example, since the graphene film 45 is exposed to the entire surface due to sputtering by cations and consumed, the reduction treatment of the graphene oxide film 45 was performed for 30 seconds, which is a relatively short time.
  • the output value of the microwave from the antenna 19 is set to 2750 W, and the pressure in the processing container 11 is set to 1 Torr.
  • the Ar gas is supplied from each injection port 14 into the processing space PS1 at 450 sccm, the reducing gas is supplied from each injection port 33 into the processing space PS1, and the substrate S is heated by a heater (not shown) built in the mounting table 29.
  • the graphene oxide film 45 of the substrate S was reduced to produce graphene.
  • H 2 gas is supplied to the processing space PS2 at 1109 sccm and C 2 H 4 gas is supplied to the processing space PS2 at 30 sccm as an example, and H 2 gas is supplied to the processing space PS2 at 1109 sccm.
  • the graphene sheet produced was supplied as a comparative example 1 when N 2 gas was supplied to the processing space PS2 at 240 sccm, and as a comparative example 2 when only H 2 gas was supplied at 1109 sccm to the processing space PS2. The resistance was measured and shown in the graph of FIG.
  • a reducing gas suitable for the reduction treatment of the graphene oxide film 45 is a mixed gas of H 2 gas and C 2 H 4 gas.

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Inorganic Chemistry (AREA)
  • Electromagnetism (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Plasma Technology (AREA)

Abstract

Provided is a substrate treatment device whereby a thin film can be obtained including no defects after plasma reduction of an oxide film. A substrate treatment device 10 is provided with an antenna 19, and a treatment container 11 for accommodating a substrate S on which a graphene oxide film 45 is formed and generating a plasma of a reducing gas including a hydrocarbon gas in a treatment space PS2 inside the treatment container 11, a disc-shaped shielding plate 43 being disposed between the plasma and the substrate S in the treatment space PS2.

Description

基板処理装置Substrate processing equipment
 本発明は、酸化膜のプラズマによる還元後に欠陥の発生が抑制された薄膜を得ることができる基板処理装置に関する。 The present invention relates to a substrate processing apparatus capable of obtaining a thin film in which generation of defects is suppressed after reduction of oxide film by plasma.
 従来から透明導電膜を構成するITOに取って代わる材料としてグラフェンが注目されている。グラフェンは互いに結合した多数の炭素原子からなる膜であり、その厚さは炭素原子数個分に相当する数nmである。グラフェンは、通常、懸濁液への浸漬によって基板上に酸化グラフェン膜を成膜し、該酸化グラフェン膜を全体的に還元することによって得られる(例えば、特許文献1参照。)。グラフェンは炭素原子のみからなり、導電性に特に優れている一方、厚さが数nmであるため、近年、半導体デバイスにおけるダマシン構造の配線等への適用が検討されている。 Conventionally, graphene has attracted attention as a material that replaces ITO constituting transparent conductive films. Graphene is a film composed of a large number of carbon atoms bonded to each other, and has a thickness of several nanometers corresponding to several carbon atoms. Graphene is usually obtained by forming a graphene oxide film on a substrate by immersion in a suspension and reducing the entire graphene oxide film (see, for example, Patent Document 1). Graphene is composed of only carbon atoms and is particularly excellent in conductivity, but has a thickness of several nanometers. Therefore, in recent years, application to damascene wiring in semiconductor devices has been studied.
 酸化グラフェン膜の還元は、還元ガスが存在する環境下において酸化グラフェン膜が成膜された基板を1000℃近くまで加熱することによって行われるが、半導体デバイスの製造過程では高温加熱によってビアホールやトレンチの形状が崩れ、また各種膜が変質するおそれがあるため、できるだけ高温加熱を避けるのが好ましい。 The reduction of the graphene oxide film is performed by heating the substrate on which the graphene oxide film is formed in an environment where a reducing gas is present to nearly 1000 ° C. In the manufacturing process of a semiconductor device, via holes and trenches are heated by high temperature heating. It is preferable to avoid heating at a high temperature as much as possible because the shape may collapse and the various films may be altered.
 そこで、近年、エネルギーの高いプラズマを利用して酸化グラフェン膜を還元することが検討されている。 Therefore, in recent years, it has been studied to reduce the graphene oxide film using high energy plasma.
特開2012−31024号公報JP2012-31024
 しかしながら、プラズマには荷電粒子、例えば、陽イオンが含まれるため、酸化グラフェン膜は荷電粒子によってスパッタリングされる。したがって、プラズマを利用して酸化グラフェン膜を還元することによって得られるグラフェンは、荷電粒子のスパッタリングによって損傷し、結果としてグラフェンが欠陥を内包するおそれがある。 However, since the plasma contains charged particles, for example, cations, the graphene oxide film is sputtered by charged particles. Therefore, graphene obtained by reducing the graphene oxide film using plasma is damaged by sputtering of charged particles, and as a result, the graphene may contain defects.
 本発明の課題は、プラズマによる還元後に欠陥の発生が抑制された薄膜を得ることができる基板処理装置を提供することにある。 An object of the present invention is to provide a substrate processing apparatus capable of obtaining a thin film in which generation of defects is suppressed after reduction by plasma.
 上記課題を解決するために、本発明によれば、被還元膜が形成された基板を収容するとともに、内部において還元ガスのプラズマを生じさせる処理容器と、前記プラズマ及び前記基板の間に配された遮蔽板とを備える基板処理装置が提供される。 In order to solve the above-described problems, according to the present invention, a substrate on which a film to be reduced is formed is accommodated, and a processing container that generates a plasma of a reducing gas therein is disposed between the plasma and the substrate. A substrate processing apparatus including the shielding plate is provided.
 本発明の基板処理装置によれば、プラズマ及び基板の間に遮蔽板が配されるので、被還元膜が還元された薄膜の損傷を抑制することができる。その結果、欠陥の発生が抑制された薄膜を得ることができる。 According to the substrate processing apparatus of the present invention, since the shielding plate is disposed between the plasma and the substrate, it is possible to suppress damage to the thin film in which the film to be reduced is reduced. As a result, a thin film in which generation of defects is suppressed can be obtained.
本発明の実施の形態に係る基板処理装置の構成を概略的に示す断面図である。It is sectional drawing which shows schematically the structure of the substrate processing apparatus which concerns on embodiment of this invention. 図1におけるスロット板の平面図である。FIG. 2 is a plan view of the slot plate in FIG. 1. 図1におけるシャワープレートの底面図である。It is a bottom view of the shower plate in FIG. 図1における遮蔽板の平面図である。It is a top view of the shielding board in FIG. 図1における遮蔽板の第1の変形例の平面図である。It is a top view of the 1st modification of the shielding board in FIG. 図1における遮蔽板の第2の変形例の平面図である。It is a top view of the 2nd modification of the shielding board in FIG. 図1における遮蔽板の第3の変形例の平面図である。It is a top view of the 3rd modification of the shielding board in FIG. 遮蔽板における直線構造の溝の拡大断面図である。It is an expanded sectional view of the groove | channel of the linear structure in a shielding board. 遮蔽板におけるラビリンス構造の溝の拡大断面図である。It is an expanded sectional view of the groove | channel of the labyrinth structure in a shielding board. 図1の基板処理装置の第1の変形例の構成を概略的に示す断面図である。It is sectional drawing which shows schematically the structure of the 1st modification of the substrate processing apparatus of FIG. 図1の基板処理装置の第2の変形例の構成を概略的に示す断面図である。It is sectional drawing which shows schematically the structure of the 2nd modification of the substrate processing apparatus of FIG. 図1の基板処理装置の第3の変形例の構成を概略的に示す断面図である。It is sectional drawing which shows schematically the structure of the 3rd modification of the substrate processing apparatus of FIG. 遮蔽板の開口率を変化させた場合に生成されるグラフェンのシート抵抗を示すグラフである。It is a graph which shows the sheet resistance of the graphene produced when changing the aperture ratio of a shielding board. 還元ガスを変更した場合に生成されるグラフェンのシート抵抗を示すグラフである。It is a graph which shows the sheet resistance of graphene generated when reducing gas is changed.
 以下、本発明の実施の形態について図面を参照しながら説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
 図1は、本実施の形態に係る基板処理装置の構成を概略的に示す断面図である。本基板処理装置は還元ガスからプラズマを生成して基板に形成された酸化グラフェン膜を還元してグラフェン(薄膜)を形成する。 FIG. 1 is a cross-sectional view schematically showing a configuration of a substrate processing apparatus according to the present embodiment. The substrate processing apparatus generates plasma from a reducing gas and reduces a graphene oxide film formed on the substrate to form graphene (thin film).
 図1において、基板処理装置10は、図中において軸線Zが延伸する方向(以下、「軸線Z方向」という。)に沿って延在する略円筒状の容器である処理容器11を備える。処理容器11の内部は後述するシャワープレート31によって上下に関して区切られ、区切られた処理容器11の内部の上部は処理空間PS1をなし、区切られた処理容器11の内部の下部は処理空間PS2をなす。処理容器11の内部では基板としての、例えば、Si(シリコン)、SiO(シリカ)、化合物半導体、ガラスやプラスチックからなる基板Sにプラズマ処理が施される。 In FIG. 1, a substrate processing apparatus 10 includes a processing container 11 that is a substantially cylindrical container extending along a direction in which an axis Z extends in the drawing (hereinafter referred to as “axis Z direction”). The interior of the processing container 11 is divided with respect to the upper and lower sides by a shower plate 31 to be described later. The upper part of the partitioned processing container 11 forms a processing space PS1, and the lower part of the partitioned processing container 11 forms a processing space PS2. . Inside the processing container 11, plasma processing is performed on a substrate S made of, for example, Si (silicon), SiO 2 (silica), a compound semiconductor, glass, or plastic as a substrate.
 処理容器11の側壁上部にはガスライン12、13が配設され、ガスライン12は処理容器11の外部から処理容器11の側壁に到達し、該側壁内においてガスライン13へ接続される。ガスライン13は側壁内に形成されたリング状の流路からなり、処理空間PS1を囲むように配置されている。また、ガスライン13は処理空間PS1と連通する複数の噴射口14を有する。ガスライン12は、処理容器11の外部において、バルブ15、マスフローコントローラ16及びバルブ17を介してガス源18に接続される。ガス源18は、プラズマ励起用のガスである不活性ガス、例えば、Ar(アルゴン)ガスを、ガスライン12、13を介して各噴射口14から処理空間PS1内に供給する。 Gas lines 12 and 13 are disposed on the upper side wall of the processing vessel 11, and the gas line 12 reaches the side wall of the processing vessel 11 from the outside of the processing vessel 11 and is connected to the gas line 13 in the side wall. The gas line 13 is formed of a ring-shaped flow path formed in the side wall, and is disposed so as to surround the processing space PS1. Further, the gas line 13 has a plurality of injection ports 14 communicating with the processing space PS1. The gas line 12 is connected to the gas source 18 via the valve 15, the mass flow controller 16 and the valve 17 outside the processing container 11. The gas source 18 supplies an inert gas, for example, Ar (argon) gas, which is a plasma excitation gas, from the respective injection ports 14 into the processing space PS1 through the gas lines 12 and 13.
 処理容器11の上部には処理空間PS1にマイクロ波を供給するアンテナ19が設けられ、該アンテナ19及び処理空間PS1の間には誘電体窓20が介在する。該誘電体窓20は、略円板状を呈し、例えば、石英やアルミナからなり、処理空間PS1、PS2を封止する。アンテナ19は、下方から順に積層されたスロット板21、誘電体板22及び冷却ジャケット23からなる。なお、アンテナ19は表面波プラズマを形成可能な構成を有すればよく、例えば、ラジアルラインスロットアンテナからなってもよいが、アンテナ19の構成はこれに限られない。 An antenna 19 that supplies microwaves to the processing space PS1 is provided on the upper portion of the processing container 11, and a dielectric window 20 is interposed between the antenna 19 and the processing space PS1. The dielectric window 20 has a substantially disk shape and is made of, for example, quartz or alumina, and seals the processing spaces PS1 and PS2. The antenna 19 includes a slot plate 21, a dielectric plate 22, and a cooling jacket 23 that are sequentially stacked from below. The antenna 19 only needs to have a configuration capable of forming surface wave plasma. For example, the antenna 19 may be a radial line slot antenna, but the configuration of the antenna 19 is not limited thereto.
 誘電体板22は略円板状を呈し、後述する同軸導波管24から伝達されたマイクロ波の波長を短縮する。なお、誘電体板22は、例えば、石英やアルミナからなる。 The dielectric plate 22 has a substantially disk shape and shortens the wavelength of the microwave transmitted from the coaxial waveguide 24 described later. The dielectric plate 22 is made of, for example, quartz or alumina.
 スロット板21は、図2に示すように、複数のスロット対21aが形成された略円板状の金属板であり、複数のスロット対21aは複数の同心円を形成するように配列される。スロット対21aの各々は2つのスロット穴21b、21cからなり、スロット穴21b及びスロット穴21cは互いに直交する。 As shown in FIG. 2, the slot plate 21 is a substantially disc-shaped metal plate in which a plurality of slot pairs 21a are formed, and the plurality of slot pairs 21a are arranged so as to form a plurality of concentric circles. Each of the slot pair 21a includes two slot holes 21b and 21c, and the slot hole 21b and the slot hole 21c are orthogonal to each other.
 図1に戻り、アンテナ19の上方には、同軸導波管24、マイクロ波発生器25、チューナ26、導波管27及びモード変換器28が配置され、マイクロ波発生器25は、チューナ26、導波管27、モード変換器28及び同軸導波管24を介してアンテナ19へ接続され、これらの機器は協働してマイクロ波発生器25が発生する、例えば、2.45GHzのマイクロ波をアンテナ19へ伝達する。 Returning to FIG. 1, the coaxial waveguide 24, the microwave generator 25, the tuner 26, the waveguide 27, and the mode converter 28 are disposed above the antenna 19. The microwave generator 25 includes the tuner 26, The device is connected to the antenna 19 through the waveguide 27, the mode converter 28, and the coaxial waveguide 24. These devices cooperate to generate a microwave of 2.45 GHz, for example, generated by the microwave generator 25. Transmit to the antenna 19.
 同軸導波管24は軸線Z方向に延在し、外側導体24a及び内側導体24bを有する。外側導体24aは略円筒状の導体からなり、下端がアンテナ19の冷却ジャケット23に接続されている。また、内側導体24bは、外側導体24aに収容されるように配置された円柱状の導体からなり、下端がアンテナ19のスロット板21に接続されている。 The coaxial waveguide 24 extends in the axis Z direction and has an outer conductor 24a and an inner conductor 24b. The outer conductor 24 a is made of a substantially cylindrical conductor, and the lower end is connected to the cooling jacket 23 of the antenna 19. The inner conductor 24 b is a cylindrical conductor arranged so as to be accommodated in the outer conductor 24 a, and the lower end is connected to the slot plate 21 of the antenna 19.
 基板処理装置10は、処理空間PS2内に配置された載置台29をさらに備え、該載置台29は基板Sを載置する。また、載置台29は、処理容器11の底部から軸線Z方向に沿って上方へ突出する支持軸30によって支持され、内部に基板Sの吸着機構や基板Sの温度調整機構(いずれも図示しない)を有する。 The substrate processing apparatus 10 further includes a mounting table 29 disposed in the processing space PS2, and the mounting table 29 mounts the substrate S thereon. The mounting table 29 is supported by a support shaft 30 that protrudes upward along the axis Z direction from the bottom of the processing container 11, and an adsorption mechanism for the substrate S and a temperature adjustment mechanism for the substrate S (both not shown). Have
 また、基板処理装置10は、処理容器11内においてアンテナ19及び載置台29の間に配されたシャワープレート31を備える。シャワープレート31は、図3の底面図に示すように、多数の矩形開口部31aを有する格子状の部材からなり、内部にガスライン32(図1参照)が形成される。シャワープレート31の下面には多数の噴射口33が載置台29に対向するように開口し、各噴射口33は処理空間PS2及びガスライン32を連通する。シャワープレート31はアルミニウムやステンレス等の金属部材からなってもよく、石英やアルミナ等の誘電体部材からなってもよい。特に金属部材からなる場合、当該金属部材の表面にはアルミナ、イットリア等の被膜がコーティングされる。また、シャワープレート31の形状は、リング状であってもよく、ノズル状であってもよい。 The substrate processing apparatus 10 also includes a shower plate 31 disposed between the antenna 19 and the mounting table 29 in the processing container 11. As shown in the bottom view of FIG. 3, the shower plate 31 is made of a lattice-shaped member having a large number of rectangular openings 31a, and a gas line 32 (see FIG. 1) is formed therein. A large number of injection ports 33 are opened on the lower surface of the shower plate 31 so as to face the mounting table 29, and each injection port 33 communicates with the processing space PS 2 and the gas line 32. The shower plate 31 may be made of a metal member such as aluminum or stainless steel, or may be made of a dielectric member such as quartz or alumina. In particular, in the case of a metal member, the surface of the metal member is coated with a film such as alumina or yttria. Moreover, the shape of the shower plate 31 may be a ring shape or a nozzle shape.
 図1に戻り、処理容器11の側壁中部にはガスライン34a、34bが配設され、ガスライン34a、34bはそれぞれ処理容器11の外部から処理容器11の側壁に到達し、該側壁内においてガスライン32へ接続される。ガスライン34aは、処理容器11の外部において、バルブ35a、マスフローコントローラ36a及びバルブ37aを介してガス源38aに接続されるとともに、ガスライン34bは、処理容器11の外部において、バルブ35b、マスフローコントローラ36b及びバルブ37bを介してガス源38bに接続される。 Returning to FIG. 1, gas lines 34 a and 34 b are disposed in the middle portion of the side wall of the processing container 11, and the gas lines 34 a and 34 b reach the side wall of the processing container 11 from the outside of the processing container 11, respectively. Connected to line 32. The gas line 34a is connected to the gas source 38a via the valve 35a, the mass flow controller 36a, and the valve 37a outside the processing container 11, and the gas line 34b is connected to the valve 35b, the mass flow controller outside the processing container 11. It is connected to the gas source 38b through 36b and a valve 37b.
 ガス源38aは、還元ガス、例えば、H(水素)ガスを、ガスライン34a、32を介して各噴射口33から処理空間PS2内に供給し、ガス源38bは、還元ガス、例えば、C(エチレン)ガスを、ガスライン34b、32を介して各噴射口33から処理空間PS2内に供給する。 The gas source 38a supplies a reducing gas, for example, H 2 (hydrogen) gas into the processing space PS2 from each injection port 33 through the gas lines 34a, 32, and the gas source 38b has a reducing gas, for example, C. 2 H 4 (ethylene) gas is supplied from the respective injection ports 33 into the processing space PS2 through the gas lines 34b and 32.
 処理容器11の側壁には処理空間PS1、PS2の圧力を測定する圧力計39が配置され、処理容器11の底部には排気管40が配置される。排気管40には圧力調整器41及び減圧ポンプ42が接続されている。基板処理装置10では、圧力計39によって計測された圧力値に基づいて、ガスライン13やシャワープレート31から供給される各種ガスの流量が調整され、さらに各種ガスの流量の調整及び圧力調整器41や減圧ポンプ42の作動調整によって処理空間PS1、PS2の圧力が調整される。 A pressure gauge 39 for measuring the pressure in the processing spaces PS1 and PS2 is disposed on the side wall of the processing container 11, and an exhaust pipe 40 is disposed on the bottom of the processing container 11. A pressure regulator 41 and a decompression pump 42 are connected to the exhaust pipe 40. In the substrate processing apparatus 10, the flow rates of various gases supplied from the gas line 13 and the shower plate 31 are adjusted based on the pressure value measured by the pressure gauge 39, and the flow rate adjustment and pressure regulator 41 of various gases are further adjusted. In addition, the pressures of the processing spaces PS1 and PS2 are adjusted by adjusting the operation of the decompression pump 42.
 基板処理装置10は、処理空間PS2内においてシャワープレート31及び載置台29の間に配された遮蔽板43を備える。遮蔽板43は、図4の平面図に示すように、円板状の誘電性部材、例えば、セラミック部材からなり、遮蔽板43の直径は、例えば、シャワープレート31側から載置台29に載置された基板Sを眺めたとき、当該遮蔽板43が基板Sを全て覆い隠すことが可能な値であり、且つ処理容器11の内壁の直径よりも小さい値に設定される。また、本実施の形態では、遮蔽板43は不図示の接地手段によって接地され、後述するプラズマの荷電粒子によってチャージアップされるのを防止する。 The substrate processing apparatus 10 includes a shielding plate 43 disposed between the shower plate 31 and the mounting table 29 in the processing space PS2. As shown in the plan view of FIG. 4, the shielding plate 43 is made of a disk-shaped dielectric member, for example, a ceramic member, and the diameter of the shielding plate 43 is, for example, mounted on the mounting table 29 from the shower plate 31 side. When the substrate S is viewed, the shield plate 43 is set to a value that can cover the entire substrate S and is smaller than the diameter of the inner wall of the processing container 11. In the present embodiment, the shielding plate 43 is grounded by a grounding means (not shown), and is prevented from being charged up by plasma charged particles, which will be described later.
 図1に戻り、基板処理装置10では、シャワープレート31、遮蔽板43及び載置台29の各々は軸線Z方向に対して略垂直に配されて処理容器11の内壁へ向けて延在するが、特に、遮蔽板43の直径は処理容器11の内壁の直径よりも小さいので、遮蔽板43の外縁及び基板処理装置10の内壁の間には隙間Gが形成される。 Returning to FIG. 1, in the substrate processing apparatus 10, each of the shower plate 31, the shielding plate 43, and the mounting table 29 is disposed substantially perpendicular to the axis Z direction and extends toward the inner wall of the processing container 11. In particular, since the diameter of the shielding plate 43 is smaller than the diameter of the inner wall of the processing container 11, a gap G is formed between the outer edge of the shielding plate 43 and the inner wall of the substrate processing apparatus 10.
 また、基板処理装置10はコントローラ44に接続され、該コントローラ44は処理内容を規定するレシピに応じたプログラムに従って基板処理装置10の各構成要素の動作を制御する。 Further, the substrate processing apparatus 10 is connected to a controller 44, and the controller 44 controls the operation of each component of the substrate processing apparatus 10 according to a program corresponding to a recipe that defines processing contents.
 基板処理装置10では、酸化グラフェン膜45(被還元膜)が形成された基板Sを、酸化グラフェン膜45が遮蔽板43と対向するように載置台29へ載置した後、同軸導波管24から伝達されたマイクロ波を、誘電体板22において伝播してスロット板21の各スロット対21aから誘電体窓20へ付与し、さらに、誘電体窓20を透過させて処理空間PS1へ導入する。このとき、密度が所定値以上のプラズマ分布が処理空間PS1に存在していると、導入されたマイクロ波は存在しているプラズマ分布に入り込めず、当該プラズマ分布の表面において表面波となり、処理空間PS1へ供給された不活性ガス、例えば、Arガスを励起して誘電体窓20の直下でプラズマ(表面波プラズマ)を生成する。 In the substrate processing apparatus 10, the substrate S on which the graphene oxide film 45 (reduced film) is formed is placed on the placement table 29 so that the graphene oxide film 45 faces the shielding plate 43, and then the coaxial waveguide 24. The microwaves transmitted from the electromagnetic wave are propagated in the dielectric plate 22 and applied to the dielectric window 20 from each pair of slots 21a of the slot plate 21, and are further transmitted through the dielectric window 20 and introduced into the processing space PS1. At this time, if a plasma distribution having a density equal to or higher than a predetermined value exists in the processing space PS1, the introduced microwave cannot enter the existing plasma distribution, and becomes a surface wave on the surface of the plasma distribution, thereby processing the plasma. An inert gas, for example, Ar gas, supplied to the space PS1 is excited to generate plasma (surface wave plasma) immediately below the dielectric window 20.
 基板処理装置10では、ガスライン13の各噴射口14からArガスを、例えば、400sccm~2000sccmで処理空間PS1へ供給し、シャワープレート31の各噴射口33からHガスを、例えば、100sccm~2000sccmで処理空間PS2へ供給するとともに、Cガスを、例えば、6sccm~120sccmで処理空間PS2に供給し、圧力調整器41等によって処理空間PS1、PS2の圧力を、例えば、0.1Torr~10Torrへ調整する。 In the substrate processing apparatus 10, Ar gas is supplied from each injection port 14 of the gas line 13 to the processing space PS 1 at, for example, 400 sccm to 2000 sccm, and H 2 gas is supplied from each injection port 33 of the shower plate 31, for example, from 100 sccm to In addition to supplying the processing space PS2 at 2000 sccm, C 2 H 4 gas is supplied to the processing space PS2 at, for example, 6 sccm to 120 sccm, and the pressure of the processing spaces PS1 and PS2 is set to, for example, 0.1 Torr by the pressure regulator 41 or the like. Adjust to ~ 10 Torr.
 このとき、誘電体窓20の直下にて生成されたArガスの表面波プラズマは、処理空間PS1からシャワープレート31の各矩形開口部31aを通過して処理空間PS2へ拡散する。処理空間PS2へ拡散したArガスの表面波プラズマは、各噴射口33から供給されたHガスやCガスと衝突し、HガスやCガスを解離させてこれらのガスからプラズマを生じさせる。 At this time, the surface wave plasma of Ar gas generated immediately below the dielectric window 20 passes through each rectangular opening 31a of the shower plate 31 from the processing space PS1 and diffuses into the processing space PS2. Surface wave plasma of the Ar gas diffused into the processing space PS2 collide with H 2 gas and C 2 H 4 gas supplied from the injection port 33, these by dissociating the H 2 gas and C 2 H 4 gas Plasma is generated from the gas.
 ところで、表面波としてのマイクロ波による励起を用いて生成された表面波プラズマは、誘電体窓20の直下では比較的高い電子温度を持つものの、拡散するにしたがって電子温度が下がり、基板Sの直上では、例えば、1.5eV以下の比較的低い電子温度を持つ。したがって、HガスやCガスの過剰解離や基板Sにおける損傷発生を抑制することができる。 By the way, although the surface wave plasma generated using the excitation by the microwave as the surface wave has a relatively high electron temperature immediately below the dielectric window 20, the electron temperature decreases as it diffuses and directly above the substrate S. Then, for example, it has a relatively low electron temperature of 1.5 eV or less. Therefore, excessive dissociation of H 2 gas or C 2 H 4 gas and occurrence of damage in the substrate S can be suppressed.
 なお、本実施の形態では、基板Sにバイアス電圧を印加していない。したがって、プラズマの荷電粒子は基板Sへ向けて加速されず、荷電粒子のスパッタリングに伴うプラズマダメージが基板Sへ与えられるのを抑制することができる。 In the present embodiment, no bias voltage is applied to the substrate S. Therefore, the charged particles of plasma are not accelerated toward the substrate S, and it is possible to suppress the plasma damage accompanying the sputtering of the charged particles from being applied to the substrate S.
 ところで、本実施の形態では、遮蔽板43がシャワープレート31及び載置台29の間に配されるため、結果として、遮蔽板43はプラズマ及び基板Sの酸化グラフェン膜45の間に配され、シャワープレート31側から載置台29に載置された基板Sを眺めたとき、すなわち、プラズマ側から基板Sを眺めたとき、遮蔽板43が基板Sを全て覆い隠すので、基板Sへ向けて直線的に引き込まれる不活性ガス(Arガス)および還元ガス(Hガス、Cガス)のプラズマ中の陽イオンが遮蔽板43によって遮られ、基板Sの酸化グラフェン膜45の陽イオンによるスパッタリングを抑制することができる。 By the way, in this embodiment, since the shielding plate 43 is disposed between the shower plate 31 and the mounting table 29, as a result, the shielding plate 43 is disposed between the plasma and the graphene oxide film 45 of the substrate S. When the substrate S placed on the placement table 29 is viewed from the plate 31 side, that is, when the substrate S is viewed from the plasma side, the shielding plate 43 covers the entire substrate S. Cations in the plasma of the inert gas (Ar gas) and the reducing gas (H 2 gas, C 2 H 4 gas) drawn into the substrate are blocked by the shielding plate 43, and the graphene oxide film 45 of the substrate S is sputtered by the cations. Can be suppressed.
 一方、生成されたプラズマ中の還元ガスのラジカルは、電気的に中性であるため、基板Sのバイアス電位によって基板Sへ向けて直線的に引き込まれることが無く、自由に移動する。したがって、ラジカルは遮蔽板43の外縁及び処理容器11の内壁の間の隙間Gを通過して遮蔽板43及び基板Sの間の空間BSに回り込み、基板Sの酸化グラフェン膜45へ到達し、該酸化グラフェン膜45を還元してグラフェンを生成する。 On the other hand, since the radicals of the reducing gas in the generated plasma are electrically neutral, they are not drawn linearly toward the substrate S by the bias potential of the substrate S and move freely. Therefore, radicals pass through the gap G between the outer edge of the shielding plate 43 and the inner wall of the processing container 11 and enter the space BS between the shielding plate 43 and the substrate S to reach the graphene oxide film 45 of the substrate S. The graphene oxide film 45 is reduced to generate graphene.
 上述した基板処理装置10によれば、プラズマ及び基板Sの間に遮蔽板43が配されるので、基板Sへ直線的に引き込まれる還元ガスのプラズマ中の陽イオンが遮蔽板43によって遮られ、酸化グラフェン膜45は陽イオンによってスパッタリングされることがない。これにより、酸化グラフェン膜45が還元されて生成されたグラフェンが陽イオンによって損傷することがなく、その結果、欠陥の発生が抑制されたグラフェンを得ることができる。 According to the substrate processing apparatus 10 described above, since the shielding plate 43 is disposed between the plasma and the substrate S, the cations in the plasma of the reducing gas drawn linearly into the substrate S are shielded by the shielding plate 43, The graphene oxide film 45 is not sputtered by cations. Accordingly, the graphene generated by reducing the graphene oxide film 45 is not damaged by the cation, and as a result, it is possible to obtain graphene in which generation of defects is suppressed.
 また、上述した基板処理装置10では、処理空間PS2へ供給される還元ガスは炭化水素ガスであるCガスを含むので、例え、酸化グラフェン膜45が還元されて生成されたグラフェンに欠陥が生じても、Cガス由来の炭素原子により、グラフェンの欠陥を補修することができ、もって、高品質のグラフェンを得ることができ、得られたグラフェンの抵抗値を、例えば、ITOと同じ程度まで低下させることができる。 Further, in the substrate processing apparatus 10 described above, the reducing gas supplied to the processing space PS2 includes C 2 H 4 gas that is a hydrocarbon gas. For example, the graphene oxide film 45 is reduced and the generated graphene is defective. Even if the above occurs, the carbon atom derived from the C 2 H 4 gas can repair the defect of graphene, so that high-quality graphene can be obtained, and the resistance value of the obtained graphene can be set to, for example, ITO. Can be reduced to the same degree.
 本実施の形態によれば、プラズマの生成の際に表面波としてのマイクロ波による励起を利用するため、電子温度は低いものの、高密度であるプラズマを生成することができる。これにより、酸化グラフェン膜45へ到達するラジカルの量を増加させることができ、もって、プラズマの低電子温度化に伴う酸化グラフェン膜45の還元処理の効率の低下を防止することができる。また、プラズマを用いた還元処理により、基板Sを高温加熱する必要を無くすことができ、基板Sの温度を室温~約650℃に加熱するだけで上記還元処理を実行することができるとともに、還元処理の時間を数分程度に短縮することができる。 According to the present embodiment, since the excitation by the microwave as the surface wave is used when generating the plasma, it is possible to generate a high-density plasma although the electron temperature is low. Accordingly, the amount of radicals reaching the graphene oxide film 45 can be increased, and thus the reduction in the efficiency of the reduction treatment of the graphene oxide film 45 accompanying the reduction in plasma electron temperature can be prevented. In addition, the reduction process using plasma can eliminate the need to heat the substrate S at a high temperature, and the above reduction process can be performed only by heating the temperature of the substrate S to room temperature to about 650 ° C. Processing time can be shortened to several minutes.
 上述した基板処理装置10では、遮蔽板43の外縁及び処理容器11の内壁の間には隙間Gが形成され、直線的に移動しないラジカルが隙間Gを通過して基板Sの酸化グラフェン膜45に到達するので、基板Sをプラズマに直接晒さなくても酸化グラフェン膜45を還元することができる。また、隙間Gの大きさは、10mm~20mm、好ましくは、10mm~15mmであるため、十分な量のラジカルを通過させて酸化グラフェン膜45へ到達させることができるとともに、処理空間PS1、PS2の排気コンダクタンスが低下するのを防止することができる。 In the substrate processing apparatus 10 described above, a gap G is formed between the outer edge of the shielding plate 43 and the inner wall of the processing container 11, and radicals that do not move linearly pass through the gap G to the graphene oxide film 45 of the substrate S. Therefore, the graphene oxide film 45 can be reduced without directly exposing the substrate S to plasma. Further, since the size of the gap G is 10 mm to 20 mm, preferably 10 mm to 15 mm, a sufficient amount of radicals can pass through to reach the graphene oxide film 45 and the processing spaces PS1 and PS2 It is possible to prevent the exhaust conductance from decreasing.
 また、上述した基板処理装置10では、遮蔽板43がセラミック部材からなるので、処理空間PS2のプラズマ及び遮蔽板43の間に異常放電が生じることがなく、もって、グラフェンの異常放電による損傷を防止することができる。 In the substrate processing apparatus 10 described above, since the shielding plate 43 is made of a ceramic member, abnormal discharge does not occur between the plasma in the processing space PS2 and the shielding plate 43, thereby preventing damage due to abnormal discharge of graphene. can do.
 以上、本発明について、上記実施の形態を用いて説明したが、本発明は上記実施の形態に限定されるものではない。 As mentioned above, although this invention was demonstrated using the said embodiment, this invention is not limited to the said embodiment.
 上述した実施の形態では、酸化グラフェン膜45を還元してグラフェンを得るために基板処理装置10が用いられたが、基板処理装置10は酸化グラフェン膜45以外の酸化膜を還元して薄膜を得る場合にも用いることができる。 In the embodiment described above, the substrate processing apparatus 10 is used to obtain the graphene by reducing the graphene oxide film 45. However, the substrate processing apparatus 10 reduces the oxide film other than the graphene oxide film 45 to obtain a thin film. It can also be used in some cases.
 また、上述した実施の形態では、還元ガスとしてHガスやCガスを用いたが、還元ガスはこれらに限られず、NH(アンモニア)ガス、H(ヒドラジン)ガスや他の炭化水素ガス、例えば、CH(メタン)ガスやC(アセチレン)ガスを用いてもよい。 In the above-described embodiment, H 2 gas or C 2 H 4 gas is used as the reducing gas, but the reducing gas is not limited to these, and NH 3 (ammonia) gas, H 4 N 2 (hydrazine) gas, Other hydrocarbon gases such as CH 4 (methane) gas or C 2 H 2 (acetylene) gas may be used.
 上述した実施の形態では、遮蔽板43は貫通孔を有さない単なる円板状部材から構成されたが、遮蔽板43及び基板Sの間の空間BSへ流入する還元ガスのラジカルを増加させるために、遮蔽板を貫通する複数の溝を有してもよい。 In the above-described embodiment, the shielding plate 43 is composed of a simple disk-like member having no through hole. However, in order to increase the radicals of the reducing gas flowing into the space BS between the shielding plate 43 and the substrate S. Moreover, you may have a some groove | channel which penetrates a shielding board.
 図5Aは、図1における遮蔽板の第1の変形例の平面図であり、図5Bは図1における遮蔽板の第2の変形例であり、図5Cは図1における遮蔽板の第3の変形例である。 5A is a plan view of a first modification of the shielding plate in FIG. 1, FIG. 5B is a second modification of the shielding plate in FIG. 1, and FIG. 5C is a third modification of the shielding plate in FIG. It is a modification.
 図5Aにおいて、遮蔽板46は中心から半径方向に所定の距離ほど離れた位置において二重の同心円状に配置される複数の溝47を有する。また、図5Bにおいて、遮蔽板48は中心において十文字状に配置される複数の溝49を有する。溝47、49はそれぞれ遮蔽板46、48を厚み方向に貫通して処理空間PS2と遮蔽板43及び基板Sの間の空間BSとを連通させるため、隙間Gに加えて溝47、49が処理空間PS2から空間BSへの還元ガスのラジカルの導入経路として機能する。その結果、酸化グラフェン膜45の還元処理の効率をより向上することができる。 5A, the shielding plate 46 has a plurality of grooves 47 arranged in a double concentric manner at a position away from the center by a predetermined distance in the radial direction. 5B, the shielding plate 48 has a plurality of grooves 49 arranged in a cross shape at the center. The grooves 47 and 49 penetrate the shielding plates 46 and 48 in the thickness direction to communicate the processing space PS2 with the space BS between the shielding plate 43 and the substrate S, so that the grooves 47 and 49 are treated in addition to the gap G. It functions as a reducing gas radical introduction path from the space PS2 to the space BS. As a result, the efficiency of the reduction treatment of the graphene oxide film 45 can be further improved.
 また、図5Cに示すように、遮蔽板43の直径を拡大して隙間Gを塞いでもよい。この場合、遮蔽板43の外縁付近に遮蔽板43を厚み方向に貫通する複数の溝50を同心円状に配置し、各溝50によって処理空間PS2から空間BSへ還元ガスのラジカルを導入する。 Further, as shown in FIG. 5C, the diameter of the shielding plate 43 may be enlarged to close the gap G. In this case, a plurality of grooves 50 penetrating the shielding plate 43 in the thickness direction are arranged concentrically in the vicinity of the outer edge of the shielding plate 43, and reducing gas radicals are introduced from the processing space PS <b> 2 into the space BS through the grooves 50.
 なお、処理空間PS2からプラズマ中の陽イオンが溝47、49を通過して空間BSへ多量に流入して酸化グラフェン膜45を損傷させるのを防止するため、遮蔽板46、48の平面視における溝47、49の開口率は50%以下に留めるのが好ましい。一方で、処理空間PS1、PS2の排気コンダクタンスを考慮すると開口率は10%以上であることが好ましい。特に、プラズマは処理空間PS2の中心部において濃度が高くなるため、図5Aの遮蔽板46のように、中心を避けて溝47を設けることにより、多量の陽イオンが空間BSに流入するのを防止することができる。 In order to prevent the cations in the plasma from the processing space PS2 from passing through the grooves 47 and 49 and flowing into the space BS in a large amount to damage the graphene oxide film 45, the shielding plates 46 and 48 in plan view The opening ratio of the grooves 47 and 49 is preferably kept to 50% or less. On the other hand, when considering the exhaust conductance of the processing spaces PS1 and PS2, the aperture ratio is preferably 10% or more. In particular, since the plasma has a high concentration in the central portion of the processing space PS2, it is possible to prevent a large amount of cations from flowing into the space BS by providing the groove 47 avoiding the center as in the shielding plate 46 in FIG. 5A. Can be prevented.
 また、各溝47、49の断面構造を図6Aに示すような直線構造ではなく、図6Bに示すようなラビリンス構造にすることにより、直線的に移動するプラズマ中の陽イオンが各溝47、49を通過するのを抑制することができる。なお、ラビリンス構造は図6Bに示す構造に限られず、処理空間PS2から空間BSが直視できないような構造であればよい。 Further, the cross-sectional structure of each of the grooves 47 and 49 is not a linear structure as shown in FIG. 6A, but a labyrinth structure as shown in FIG. 49 can be suppressed. Note that the labyrinth structure is not limited to the structure shown in FIG.
 上述した実施の形態では、遮蔽板43は誘電性部材によって構成されたが、遮蔽板43を導電性部材によって構成してもよい。この場合、処理空間PS2のプラズマとの間で異常放電が発生するのを防止するため、遮蔽板43の表面には絶縁被膜の形成等、絶縁処理が施される。また、この場合、遮蔽板43にバイアス電圧が印加されず、遮蔽板43は接地されている。これにより、遮蔽板43と基板Sとの間に電界が分布することが無いため、遮蔽板43の電位に起因する電界によって意図せずに荷電粒子が基板Sへ向けて加速されることがなく、グラフェンの荷電粒子によるプラズマダメージを抑制することができる。さらに、遮蔽板43を導電性部材によって構成する場合、図7に示すように、該遮蔽板43へ高周波電源51を接続し、高周波電圧を印加してもよい。これにより、プラズマ中の陽イオンを印加電圧によって遮蔽板43に引きつけることができ、もって、陽イオンが基板Sの酸化グラフェン膜45へ到達するのを確実に抑制することができる。なお、高周波電圧は連続印加してもよく、若しくは、パルス印加してもよい。また、遮蔽板43へ高周波電源51の代わりに直流電源を接続し、遮蔽板43へ直流電圧を印加してもよい。 In the embodiment described above, the shielding plate 43 is made of a dielectric member, but the shielding plate 43 may be made of a conductive member. In this case, in order to prevent the occurrence of abnormal discharge with the plasma in the processing space PS2, the surface of the shielding plate 43 is subjected to an insulating process such as formation of an insulating film. In this case, no bias voltage is applied to the shielding plate 43, and the shielding plate 43 is grounded. Thereby, since the electric field is not distributed between the shielding plate 43 and the substrate S, the charged particles are not accelerated toward the substrate S unintentionally by the electric field caused by the potential of the shielding plate 43. Plasma damage due to charged particles of graphene can be suppressed. Further, when the shielding plate 43 is formed of a conductive member, a high frequency power source 51 may be connected to the shielding plate 43 and a high frequency voltage may be applied as shown in FIG. Thereby, the cations in the plasma can be attracted to the shielding plate 43 by the applied voltage, so that the cations can be reliably suppressed from reaching the graphene oxide film 45 of the substrate S. Note that the high-frequency voltage may be applied continuously or a pulse may be applied. Further, a DC power source may be connected to the shielding plate 43 instead of the high frequency power source 51, and a DC voltage may be applied to the shielding plate 43.
 また、上述した実施の形態では、還元ガスがシャワープレート31から処理空間PS2へ供給されたが、還元ガスの供給形態はこれに限られず、例えば、図8Aに示すように、シャワープレート31の代わりにアンテナ19及び載置台29の間にガス供給リング52を設け、該ガス供給リング52から還元ガスを供給してもよい。また、図8Bに示すように、アンテナ19上にガスバッファ室53を設け、該ガスバッファ室53及び処理空間PS1を複数のガス導入路54によって連通し、ガスバッファ室53へ還元ガスを導入することにより、各ガス導入路54を介して処理空間PS1へ還元ガスを供給してもよい。 In the above-described embodiment, the reducing gas is supplied from the shower plate 31 to the processing space PS2. However, the supply form of the reducing gas is not limited to this. For example, as shown in FIG. A gas supply ring 52 may be provided between the antenna 19 and the mounting table 29, and the reducing gas may be supplied from the gas supply ring 52. Further, as shown in FIG. 8B, a gas buffer chamber 53 is provided on the antenna 19, and the gas buffer chamber 53 and the processing space PS 1 are connected by a plurality of gas introduction paths 54 to introduce a reducing gas into the gas buffer chamber 53. Thus, the reducing gas may be supplied to the processing space PS1 via each gas introduction path 54.
 次に本発明の実施例について説明する。 Next, examples of the present invention will be described.
 まず、実施例1として、基板処理装置10において遮蔽板43の代わりに遮蔽板46を配置し、遮蔽板46の平面視における溝47の開口率を23.7%に設定し、アンテナ19からのマイクロ波の出力値を2750Wに設定し、処理容器11内の圧力を1Torrに設定し、各噴射口14からArガスを処理空間PS1内に供給し、各噴射口33からHガスを1109sccmで処理空間PS2へ供給するとともに、Cガスを30sccmで処理空間PS2へ供給し、載置台29に内蔵されたヒータ(図示しない)によって基板Sを400℃まで加熱し、基板Sの酸化グラフェン膜45を還元してグラフェンを生成した。このとき、生成されたグラフェンのシート抵抗を測定して図9のグラフに示した。 First, as Example 1, in the substrate processing apparatus 10, the shielding plate 46 is disposed instead of the shielding plate 43, the aperture ratio of the groove 47 in the plan view of the shielding plate 46 is set to 23.7%, and the antenna 19 The output value of the microwave is set to 2750 W, the pressure in the processing container 11 is set to 1 Torr, Ar gas is supplied from each injection port 14 into the processing space PS1, and H 2 gas is supplied from each injection port 33 at 1109 sccm. supplies to the processing space PS2, the C 2 H 4 gas is supplied to the processing space PS2 at 30 sccm, the substrate is heated S to 400 ° C. by the heater installed in the mounting table 29 (not shown), graphene oxide substrate S The film 45 was reduced to generate graphene. At this time, the sheet resistance of the generated graphene was measured and shown in the graph of FIG.
 次に、開口率を44.2%に設定した以外は実施例1と同じ条件でグラフェンを生成し、生成されたグラフェンのシート抵抗を測定し、実施例2として図9のグラフに示した。 Next, graphene was generated under the same conditions as in Example 1 except that the aperture ratio was set to 44.2%, and the sheet resistance of the generated graphene was measured. The graph of FIG.
 次に、遮蔽板46を除去してシャワープレート31及び載置台29を直接対向させた以外は実施例1と同じ条件でグラフェンを生成し、生成されたグラフェンのシート抵抗を測定し、比較例として図9のグラフに示した。 Next, except that the shielding plate 46 is removed and the shower plate 31 and the mounting table 29 are directly opposed to each other, graphene is generated under the same conditions as in Example 1, the sheet resistance of the generated graphene is measured, and as a comparative example This is shown in the graph of FIG.
 図9のグラフより、開口率が低いほどシート抵抗が低いことが分かった。グラフェンの欠陥が少ないほど、シート抵抗は低くなることから、遮蔽板46の平面視における溝47の開口率が低いほど酸化グラフェン膜45の陽イオンによるスパッタリングが弱くなり、欠陥の発生が抑制されたグラフェンを得ることができることが確認された。 From the graph of FIG. 9, it was found that the lower the aperture ratio, the lower the sheet resistance. The smaller the graphene defect, the lower the sheet resistance. Therefore, the lower the aperture ratio of the groove 47 in plan view of the shielding plate 46, the weaker the sputtering by the cations of the graphene oxide film 45, and the generation of defects was suppressed. It was confirmed that graphene can be obtained.
 なお、実施例1及び実施例2では、グラフェン膜45に対する陽イオンによるスパッタリングが弱くなるため、グラフェン膜45の消耗が抑制され、寧ろCガス由来の炭素原子によってグラフェン膜45が修復されるため、酸化グラフェン膜45の還元処理は比較的長時間である600秒に亘って行うことができた。一方、比較例では、グラフェン膜45は陽イオンによるスパッタリングへ全面において晒されて消耗するため、酸化グラフェン膜45の還元処理は比較的短時間である30秒だけ行った。 In Example 1 and Example 2, since the sputtering by the cations on the graphene film 45 is weakened, the consumption of the graphene film 45 is suppressed, and the graphene film 45 is repaired by the carbon atoms derived from the C 2 H 4 gas. Therefore, the reduction treatment of the graphene oxide film 45 can be performed over a relatively long time of 600 seconds. On the other hand, in the comparative example, since the graphene film 45 is exposed to the entire surface due to sputtering by cations and consumed, the reduction treatment of the graphene oxide film 45 was performed for 30 seconds, which is a relatively short time.
 また、酸化グラフェン膜45の還元処理に好適な還元ガスを見出すべく、基板処理装置10において、アンテナ19からのマイクロ波の出力値を2750Wに設定し、処理容器11内の圧力を1Torrに設定し、各噴射口14からArガスを450sccmで処理空間PS1内に供給し、各噴射口33から還元ガスを処理空間PS1内に供給し、載置台29に内蔵されたヒータ(図示しない)によって基板Sを400℃まで加熱し、基板Sの酸化グラフェン膜45を還元してグラフェンを生成した。 Further, in order to find a reducing gas suitable for the reduction treatment of the graphene oxide film 45, in the substrate processing apparatus 10, the output value of the microwave from the antenna 19 is set to 2750 W, and the pressure in the processing container 11 is set to 1 Torr. The Ar gas is supplied from each injection port 14 into the processing space PS1 at 450 sccm, the reducing gas is supplied from each injection port 33 into the processing space PS1, and the substrate S is heated by a heater (not shown) built in the mounting table 29. The graphene oxide film 45 of the substrate S was reduced to produce graphene.
 ここで、還元ガスとして、Hガスを1109sccmで処理空間PS2へ供給するとともに、Cガスを30sccmで処理空間PS2へ供給した場合を実施例とし、Hガスを1109sccmで処理空間PS2へ供給するとともに、Nガスを240sccmで処理空間PS2へ供給した場合を比較例1とし、Hガスのみを1109sccmで処理空間PS2へ供給した場合を比較例2とし、生成されたグラフェンのシート抵抗を測定して図10のグラフに示した。 Here, as a reducing gas, H 2 gas is supplied to the processing space PS2 at 1109 sccm and C 2 H 4 gas is supplied to the processing space PS2 at 30 sccm as an example, and H 2 gas is supplied to the processing space PS2 at 1109 sccm. The graphene sheet produced was supplied as a comparative example 1 when N 2 gas was supplied to the processing space PS2 at 240 sccm, and as a comparative example 2 when only H 2 gas was supplied at 1109 sccm to the processing space PS2. The resistance was measured and shown in the graph of FIG.
 図10のグラフより、実施例のシート抵抗が最も低く、グラフェンの欠陥の発生が最も抑制されることが確認できた。したがって、酸化グラフェン膜45の還元処理に好適な還元ガスはHガス及びCガスの混合ガスであることが分かった。 From the graph of FIG. 10, it was confirmed that the sheet resistance of the example was the lowest and the generation of graphene defects was most suppressed. Therefore, it was found that a reducing gas suitable for the reduction treatment of the graphene oxide film 45 is a mixed gas of H 2 gas and C 2 H 4 gas.
 本出願は、2014年7月2日に出願された日本出願第2014−136614号に基づく優先権を主張するものであり、当該日本出願に記載された全内容を本出願に援用する。 This application claims priority based on Japanese Application No. 2014-136614 filed on July 2, 2014, the entire contents of which are incorporated in this application.
G 隙間
S 基板
PS1、PS2 処理空間
11 処理容器
19 アンテナ
29 載置台
31 シャワープレート
43、46、48 遮蔽板
47、49、50 溝
51 高周波電源
G Gap S Substrate PS1, PS2 Processing space 11 Processing container 19 Antenna 29 Mounting table 31 Shower plates 43, 46, 48 Shield plates 47, 49, 50 Groove 51 High frequency power supply

Claims (12)

  1.  被還元膜が形成された基板を収容するとともに、内部において還元ガスのプラズマを生じさせる処理容器を備える基板処理装置であって、
     前記プラズマ及び前記基板の間に配された遮蔽板を備えることを特徴とする基板処理装置。
    A substrate processing apparatus comprising a processing container for containing a substrate on which a film to be reduced is formed and generating plasma of a reducing gas inside,
    A substrate processing apparatus comprising a shielding plate disposed between the plasma and the substrate.
  2.  前記被還元膜は酸化グラフェン膜であることを特徴とする請求項1記載の基板処理装置。 2. The substrate processing apparatus according to claim 1, wherein the film to be reduced is a graphene oxide film.
  3.  前記還元ガスは炭化水素ガスを含むことを特徴とする請求項2記載の基板処理装置。 3. The substrate processing apparatus according to claim 2, wherein the reducing gas includes a hydrocarbon gas.
  4.  前記処理容器の内部を指向するラジアルラインスロットアンテナをさらに備える請求項1乃至3のいずれか1項に記載の基板処理装置。 4. The substrate processing apparatus according to claim 1, further comprising a radial line slot antenna directed toward the inside of the processing container.
  5.  前記プラズマ側から前記基板を眺めたとき、前記遮蔽板は前記基板を覆い隠すことを特徴とする請求項1乃至4のいずれか1項に記載の基板処理装置。 The substrate processing apparatus according to claim 1, wherein when the substrate is viewed from the plasma side, the shielding plate covers the substrate.
  6.  前記遮蔽板は厚み方向に貫通する複数の溝を有することを特徴とする請求項1乃至5のいずれか1項に記載の基板処理装置。 The substrate processing apparatus according to claim 1, wherein the shielding plate has a plurality of grooves penetrating in the thickness direction.
  7.  前記遮蔽板の外縁及び前記処理容器の内壁の間には隙間が形成されることを特徴とする請求項1乃至6のいずれか1項に記載の基板処理装置。 The substrate processing apparatus according to any one of claims 1 to 6, wherein a gap is formed between an outer edge of the shielding plate and an inner wall of the processing container.
  8.  前記隙間は10mm~20mmであることを特徴とする請求項7記載の基板処理装置。 8. The substrate processing apparatus according to claim 7, wherein the gap is 10 mm to 20 mm.
  9.  前記隙間は10mm~15mmであることを特徴とする請求項8記載の基板処理装置。 The substrate processing apparatus according to claim 8, wherein the gap is 10 mm to 15 mm.
  10.  前記遮蔽板は表面が絶縁処理された導電性部材からなり、前記導電性部材には電圧が印加されることを特徴とする請求項1乃至9のいずれか1項に記載の基板処理装置。 10. The substrate processing apparatus according to claim 1, wherein the shielding plate is made of a conductive member whose surface is insulated, and a voltage is applied to the conductive member.
  11.  前記電圧は連続印加又はパルス印加されることを特徴とする請求項10記載の基板処理装置。 The substrate processing apparatus according to claim 10, wherein the voltage is continuously applied or pulsed.
  12.  前記遮蔽板は誘電性部材からなることを特徴とする請求項1乃至9のいずれか1項に記載の基板処理装置。 10. The substrate processing apparatus according to claim 1, wherein the shielding plate is made of a dielectric member.
PCT/JP2015/067807 2014-07-02 2015-06-15 Substrate treatment device WO2016002547A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014136614 2014-07-02
JP2014-136614 2014-07-02

Publications (1)

Publication Number Publication Date
WO2016002547A1 true WO2016002547A1 (en) 2016-01-07

Family

ID=55019092

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/067807 WO2016002547A1 (en) 2014-07-02 2015-06-15 Substrate treatment device

Country Status (1)

Country Link
WO (1) WO2016002547A1 (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11284500B2 (en) 2018-05-10 2022-03-22 Applied Materials, Inc. Method of controlling ion energy distribution using a pulse generator
US11462389B2 (en) 2020-07-31 2022-10-04 Applied Materials, Inc. Pulsed-voltage hardware assembly for use in a plasma processing system
US11476090B1 (en) 2021-08-24 2022-10-18 Applied Materials, Inc. Voltage pulse time-domain multiplexing
US11476145B2 (en) 2018-11-20 2022-10-18 Applied Materials, Inc. Automatic ESC bias compensation when using pulsed DC bias
US11495470B1 (en) 2021-04-16 2022-11-08 Applied Materials, Inc. Method of enhancing etching selectivity using a pulsed plasma
US11508554B2 (en) 2019-01-24 2022-11-22 Applied Materials, Inc. High voltage filter assembly
US11569066B2 (en) 2021-06-23 2023-01-31 Applied Materials, Inc. Pulsed voltage source for plasma processing applications
US11694876B2 (en) 2021-12-08 2023-07-04 Applied Materials, Inc. Apparatus and method for delivering a plurality of waveform signals during plasma processing
US11699572B2 (en) 2019-01-22 2023-07-11 Applied Materials, Inc. Feedback loop for controlling a pulsed voltage waveform
US11791138B2 (en) 2021-05-12 2023-10-17 Applied Materials, Inc. Automatic electrostatic chuck bias compensation during plasma processing
US11798790B2 (en) 2020-11-16 2023-10-24 Applied Materials, Inc. Apparatus and methods for controlling ion energy distribution
US11810760B2 (en) 2021-06-16 2023-11-07 Applied Materials, Inc. Apparatus and method of ion current compensation
US11901157B2 (en) 2020-11-16 2024-02-13 Applied Materials, Inc. Apparatus and methods for controlling ion energy distribution
US11948780B2 (en) 2021-05-12 2024-04-02 Applied Materials, Inc. Automatic electrostatic chuck bias compensation during plasma processing
US11967483B2 (en) 2021-06-02 2024-04-23 Applied Materials, Inc. Plasma excitation with ion energy control
US11972924B2 (en) 2022-06-08 2024-04-30 Applied Materials, Inc. Pulsed voltage source for plasma processing applications
US11984306B2 (en) 2021-06-09 2024-05-14 Applied Materials, Inc. Plasma chamber and chamber component cleaning methods

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006086449A (en) * 2004-09-17 2006-03-30 Tokyo Electron Ltd Plasma processing apparatus and plasma processing method
JP2013084552A (en) * 2011-09-29 2013-05-09 Tokyo Electron Ltd Radical selection apparatus and substrate processing apparatus

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006086449A (en) * 2004-09-17 2006-03-30 Tokyo Electron Ltd Plasma processing apparatus and plasma processing method
JP2013084552A (en) * 2011-09-29 2013-05-09 Tokyo Electron Ltd Radical selection apparatus and substrate processing apparatus

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
IKUYA WATANABE: "Sanka Graphene (GO) Hakuhen no C2H2/Ar Plasma Shori ni yoru Tei Teikoka", DAI 73 KAI EXTENDED ABSTRACTS; THE JAPAN SOCIETY OF APPLIED PHYSICS, 27 August 2012 (2012-08-27) *

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11284500B2 (en) 2018-05-10 2022-03-22 Applied Materials, Inc. Method of controlling ion energy distribution using a pulse generator
US11476145B2 (en) 2018-11-20 2022-10-18 Applied Materials, Inc. Automatic ESC bias compensation when using pulsed DC bias
US11699572B2 (en) 2019-01-22 2023-07-11 Applied Materials, Inc. Feedback loop for controlling a pulsed voltage waveform
US11508554B2 (en) 2019-01-24 2022-11-22 Applied Materials, Inc. High voltage filter assembly
US11776789B2 (en) 2020-07-31 2023-10-03 Applied Materials, Inc. Plasma processing assembly using pulsed-voltage and radio-frequency power
US11462389B2 (en) 2020-07-31 2022-10-04 Applied Materials, Inc. Pulsed-voltage hardware assembly for use in a plasma processing system
US11462388B2 (en) 2020-07-31 2022-10-04 Applied Materials, Inc. Plasma processing assembly using pulsed-voltage and radio-frequency power
US11848176B2 (en) 2020-07-31 2023-12-19 Applied Materials, Inc. Plasma processing using pulsed-voltage and radio-frequency power
US11901157B2 (en) 2020-11-16 2024-02-13 Applied Materials, Inc. Apparatus and methods for controlling ion energy distribution
US11798790B2 (en) 2020-11-16 2023-10-24 Applied Materials, Inc. Apparatus and methods for controlling ion energy distribution
US11495470B1 (en) 2021-04-16 2022-11-08 Applied Materials, Inc. Method of enhancing etching selectivity using a pulsed plasma
US11791138B2 (en) 2021-05-12 2023-10-17 Applied Materials, Inc. Automatic electrostatic chuck bias compensation during plasma processing
US11948780B2 (en) 2021-05-12 2024-04-02 Applied Materials, Inc. Automatic electrostatic chuck bias compensation during plasma processing
US11967483B2 (en) 2021-06-02 2024-04-23 Applied Materials, Inc. Plasma excitation with ion energy control
US11984306B2 (en) 2021-06-09 2024-05-14 Applied Materials, Inc. Plasma chamber and chamber component cleaning methods
US11810760B2 (en) 2021-06-16 2023-11-07 Applied Materials, Inc. Apparatus and method of ion current compensation
US11569066B2 (en) 2021-06-23 2023-01-31 Applied Materials, Inc. Pulsed voltage source for plasma processing applications
US11887813B2 (en) 2021-06-23 2024-01-30 Applied Materials, Inc. Pulsed voltage source for plasma processing
US11476090B1 (en) 2021-08-24 2022-10-18 Applied Materials, Inc. Voltage pulse time-domain multiplexing
US11694876B2 (en) 2021-12-08 2023-07-04 Applied Materials, Inc. Apparatus and method for delivering a plurality of waveform signals during plasma processing
US11972924B2 (en) 2022-06-08 2024-04-30 Applied Materials, Inc. Pulsed voltage source for plasma processing applications

Similar Documents

Publication Publication Date Title
WO2016002547A1 (en) Substrate treatment device
JP6338462B2 (en) Plasma processing equipment
JP6404111B2 (en) Plasma processing equipment
KR101256120B1 (en) Plasma processing apparatus and plasma processing method
KR101124924B1 (en) Plasma processing apparatus, plasma processing method and storage medium
KR101317018B1 (en) Plasma treatment apparatus
US10017853B2 (en) Processing method of silicon nitride film and forming method of silicon nitride film
KR100960424B1 (en) Microwave plasma processing device
JP2006310794A (en) Plasma processing apparatus and method therefor
US20070221130A1 (en) Substrate Processing Apparatus
JP2007042951A (en) Plasma processing device
JP2013140959A (en) Top plate for plasma processing apparatus and plasma processing apparatus
JP5723397B2 (en) Plasma processing equipment
JP2013254723A (en) Plasma processing apparatus
US20100240225A1 (en) Microwave plasma processing apparatus, microwave plasma processing method, and microwave-transmissive plate
JP5438260B2 (en) Plasma processing equipment
JP5522887B2 (en) Plasma processing equipment
JP5860392B2 (en) Plasma nitriding method and plasma nitriding apparatus
JP2007273637A (en) Microwave plasma treatment apparatus and its manufacturing method, and plasma treatment method
JP5479013B2 (en) Plasma processing apparatus and slow wave plate used therefor
KR101464867B1 (en) Semiconductor device manufacturing method, substrate processing apparatus, and recording medium
WO2013191108A1 (en) Plasma processing apparatus and plasma processing method
WO2011013633A1 (en) Planar antenna member and plasma processing device equipped with same
JP2006253312A (en) Plasma processing apparatus
JP5728565B2 (en) Plasma processing apparatus and slow wave plate used therefor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15815664

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15815664

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP