WO2015199225A1 - Genetic modification method for poultry primordial germ cells, genetically-modified poultry primordial germ cells, method for producing genetically-modified poultry, and poultry eggs - Google Patents

Genetic modification method for poultry primordial germ cells, genetically-modified poultry primordial germ cells, method for producing genetically-modified poultry, and poultry eggs Download PDF

Info

Publication number
WO2015199225A1
WO2015199225A1 PCT/JP2015/068523 JP2015068523W WO2015199225A1 WO 2015199225 A1 WO2015199225 A1 WO 2015199225A1 JP 2015068523 W JP2015068523 W JP 2015068523W WO 2015199225 A1 WO2015199225 A1 WO 2015199225A1
Authority
WO
WIPO (PCT)
Prior art keywords
gene
primordial germ
poultry
germ cells
seq
Prior art date
Application number
PCT/JP2015/068523
Other languages
French (fr)
Japanese (ja)
Inventor
勲 大石
京子 吉井
貴寛 田上
裕 鏡味
大地 宮原
Original Assignee
国立研究開発法人産業技術総合研究所
国立研究開発法人農業・食品産業技術総合研究機構
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立研究開発法人産業技術総合研究所, 国立研究開発法人農業・食品産業技術総合研究機構 filed Critical 国立研究開発法人産業技術総合研究所
Priority to JP2016529678A priority Critical patent/JP6644276B2/en
Publication of WO2015199225A1 publication Critical patent/WO2015199225A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K67/00Rearing or breeding animals, not otherwise provided for; New or modified breeds of animals
    • A01K67/027New or modified breeds of vertebrates
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/10Cells modified by introduction of foreign genetic material

Definitions

  • the present invention relates to a genetic modification method for poultry primordial germ cells, a genetically modified poultry primordial germ cell, a method for producing genetically modified poultry, and poultry eggs.
  • Genome editing techniques and the like that have been made in early embryos and cultured cells in recent years have not been applied to poultry primordial germ cell lines.
  • Genome editing is desired to be applied to poultry in order to enable gene knockout that does not leave foreign genes in the chromosome and knock-in that inserts foreign genes into the target site, but technical reports that enable this have been made. Absent.
  • high-efficiency gene knockout and knock-in are required, but even in general mammalian cultured cells, the efficiency of gene modification by genome editing varies widely, and even mammals It is unpredictable how efficiency should be achieved in a cultured primordial germ cell line that is significantly different in nature from the cultured cells.
  • Non-Patent Document 2 fails to establish a female primordial germ cell line
  • Non-Patent Document 3 reports that the maintenance of a female primordial germ cell line becomes impossible after about 100 days of culture. For this reason, no genetic manipulation using a female primordial germ cell line has been reported so far.
  • Non-Patent Document 4 for chicken gene knockout, there is only one report by homologous recombination using male primordial germ cells. However, since the method involves inserting a foreign gene by homologous recombination, When gene knockout is carried out using, chicken itself and chicken eggs become recombinant products, so there are high barriers for use as food, and gene knockout techniques by methods other than homologous recombination are required.
  • Non-Patent Document 4 it is technically possible to knock in a foreign gene to a target locus using the homologous recombination technique described in Non-Patent Document 4, but the method of Non-Patent Document 4 provides 28% homologous recombination.
  • the number of clones is limited to about 10 clones per 10 7 cells, the possibility of not only homologous recombination but also random gene transfer is undeniable, and reproduction It is noted that the ability to differentiate into lineage is remarkably poor, and on average, only one out of 900 progeny homologous recombination individuals can be obtained.
  • a gene knock-in chicken can be established more easily. For example, if the recombination introduction efficiency can be improved by 3 times or more (28% is about 84% or more), the efficiency of obtaining the progeny of recombination will be improved by 3 times or more, and it is expected that more than 1 recombination individual will be obtained for 300 progeny However, if the clone establishment efficiency is improved by a factor of about 100, it is considered that about 1 clone of knock-in primordial germ cells can be obtained per 10 5 cells.
  • the main purpose of the present invention is to provide efficient poultry genetic modification technology.
  • the present invention provides the following methods for genetic modification of poultry primordial germ cells, methods for producing genetically modified poultry, methods for subculturing female primordial germ cells, and knock-in poultry eggs.
  • Item 1. A method for gene modification of poultry primordial germ cells, which comprises modifying genes of poultry primordial germ cells by genome editing.
  • Item 2. Item 2. The genetic modification method according to Item 1, wherein the poultry primordial germ cells are female primordial germ cells.
  • Item 3. Item 3.
  • the gene modification method according to Item 1 or 2 wherein the gene is an egg protein gene.
  • Item 4. Item 4.
  • Item 5. Item 5.
  • Item 6. The gene modification method according to any one of Items 1 to 5, wherein the gene modification is gene knock-in, knock-out or partial deletion.
  • Item 7. Any one of Items 1 to 6, wherein the gene is modified by knock-in, a drug resistance gene is incorporated into the poultry primordial germ cell, and the primordial germ cell genetically modified based on the drug resistance gene is selected.
  • Item 8. Item 1- characterized in that the gene is modified by knockout or partial deletion, a drug resistance gene is introduced into the poultry primordial germ cell, and the primordial germ cell genetically modified based on the drug resistance gene is selected. 7.
  • Item 9. Item 9.
  • Item 10 The gene modification method according to Item 7 or 8, wherein the drug resistance gene is a puromycin resistance gene (Puro r ) or a zeocin resistance gene (Zeo r ).
  • Item 10. The gene modification method according to any one of Items 1 to 9, wherein genome editing is performed using a plasmid vector or a virus vector.
  • Item 11. The gene modification method according to Item 10, wherein a plasmid vector or a virus vector is introduced into an early poultry embryo, the genome of the endogenous primordial germ cell is edited, and the endogenous poultry primordial germ cell is genetically modified.
  • Item 12. Item 11. A poultry primordial germ cell obtained by the genetic modification method according to any one of Items 1 to 10 and genetically modified by genome editing.
  • Item 13 The poultry primordial germ cell of Item 12, which is a female primordial germ cell.
  • Item 14 A step of obtaining a genetically modified chimera individual by transplanting a genetically modified poultry primordial germ cell obtained by the method of any one of Items 1 to 10 to a blastoderm, blood or gonad region of an early poultry embryo, A method for producing genetically modified poultry, comprising the step of mating an individual with a wild type individual, a genetically modified individual or a genetically modified chimeric individual.
  • a genetic modification comprising the step of maturing a chimeric individual comprising an endogenous poultry primordial germ cell genetically modified by the method according to Item 11 and mating with a wild type individual, a genetically modified individual, or another genetically modified chimeric individual Poultry production method.
  • Item 16. The method according to Item 14 or 15, wherein the genetically modified poultry genotype is a mutant homo (-/-).
  • Item 17. The method according to any one of Items 14 to 16, wherein the genetic modification is a knockout of at least one in ovo protein gene selected from the group consisting of ovalbumin, ovomucoid, ovomucin, ovotransferrin, and ovoinhibitor.
  • Item 21. The knock-in poultry egg according to Item 20, wherein the foreign gene is a gene encoding a human-derived protein.
  • Item 22. The knockin according to Item 20 or 21, wherein the foreign gene is selected from the group consisting of an antibody or fragment thereof, enzyme, hormone, growth factor, cytokine, interferon, collagen, extracellular matrix molecule, vaccine, agonistic protein, and antagonistic protein. Poultry eggs.
  • Item 23 A method for subculturing female primordial germ cells, wherein the medium is exchanged at normal pressure or under low gravitational acceleration.
  • genetic modification of poultry primordial germ cells can be performed efficiently by genome editing.
  • Puro r for knockout mutation introduced into the target sequence with greater than 90% efficiency by the like Zeo r are possible, one system in 1 ⁇ 5x10 5 cells with a recombinant transfer efficiency 80-90% higher for the knock Clones can be established with the above efficiency.
  • allergens such as ovomucoid and ovalbumin
  • the gene can be knocked out to produce eggs that do not contain allergens.
  • an egg containing a large amount of a useful gene product can be produced by knocking in a foreign gene that is useful for a protein gene in the egg such as an ovomucoid or ovalbumin gene.
  • Poultry eggs obtained by applying genome editing technology to in ovo protein genes of poultry primordial germ cells remove genes with high allergenicity from egg white by making genes such as ovomucoid and ovalbumin homozygous. be able to.
  • a poultry egg having an expression product of a foreign gene in the egg can be obtained by knocking in the foreign gene under the control of the fallopian tube promoter.
  • the genetically modified poultry primordial germ cells obtained by the present invention are hatched after transplantation into a recipient embryo to obtain a chimeric individual (G0), and the gene is modified according to conventional methods such as mating if necessary Finished poultry can be obtained.
  • Primordial germ cells that have been genetically modified by genome editing not only have high genetic modification efficiency, but also when a chimeric individual is obtained after transplantation into a recipient embryo and crossed to obtain a progeny, the progeny is 1.
  • a genetically modified individual can be obtained with a high probability of 1 in 7 to 2.3 birds (knock-out and partial defect) and 1 in 3.5 to 3.8 birds (knock-in).
  • a chimeric individual is not a progeny, and the next generation of the chimeric individual is a “progeny”.
  • progeny are genetically modified individuals (recombinant individuals) derived from transplanted primordial germ cells (donors), wild-type individuals (non-recombinant individuals) derived from transplanted primordial germ cells (donor), and wild derived from endogenous primordial germ cells
  • progenies are genetically modified individuals (recombinant individuals) derived from transplanted primordial germ cells (donors), wild-type individuals (non-recombinant individuals) derived from transplanted primordial germ cells (donor), and wild derived from endogenous primordial germ cells
  • type individuals the present invention is characterized by a very high proportion of genetically modified individuals.
  • primordial germ cells genetically modified by genome editing have a high probability of differentiation into the germ line, so that genetically modified individuals were obtained with high probability. Is.
  • conventional female primordial germ cells are weak in proliferating ability that can be killed by culturing for about 100 days, and it is considered that the genetically modified female primordial germ cells are also very weakly differentiated into the germline.
  • Genetically modified female chimeric individuals could be obtained for the first time in the present invention using genome editing. Since the gene modification technology of the present invention enables highly efficient gene knockout, anti-disease against highly pathogenic avian influenza, etc. caused by virus receptor protein or sugar chain modification or deletion by destroying the target gene Development of sex poultry and changes or deletions of anti-hormone hormones, such as meat poultry that do not suppress food intake and grow in a short period of time, or low-growth pet poultry due to mutations or deletions of growth hormone genes It can also lead to efficient development.
  • foreign gene-derived protein By knocking in a foreign gene under an oviduct promoter such as ovomucoid or ovalbumin, foreign gene-derived protein can be highly expressed in the egg without being affected by silencing due to positional effects, which can lead to inexpensive protein production. . In addition, it is strongly expected that foreign gene-derived proteins can be expressed more efficiently than the conventional egg bioreactor technology.
  • female genetically modified G0 chimeras can be established by long-term culture and genetic modification of female primordial germ cell lines, and homozygous genetically modified individuals can be established in a short period of time by mating with male genetically modified G0 chimeras. Can do. Thereby, the establishment period of homo knockout poultry and knock-in poultry can be significantly shortened. Furthermore, by allowing mating of genetically modified G0 chickens (chimeric individuals), various combinations of genetically modified chickens (F1 and later) can be established as progenies significantly faster than before.
  • Target sequence of chicken ovalbumin gene (2 sites, target sequences of OVATg1 and OVATg3). Uppercase letters indicate sgRNA recognition sites, adjacent underlined parts indicate PAM sequences Target sequence of chicken ovomucoid gene (4 sites, target sequences of OVMTg2, OVMTg3, OVMTg5, OVMTg6) Uppercase letters indicate sgRNA recognition sites and adjacent underlined parts indicate PAM sequences.
  • OVMTg5 contains intron region (hatched area is intron / exon boundary)
  • Example of ovalbumin gene disruption by CRISPR Uppercase (underlined) is sgRNA recognition site, adjacent box shows PAM sequence Deletion of mutated sequence is-(hyphen), mutation is capitalized ⁇ ⁇ OVATg1 Met starts translation Indicates the site.
  • Example of disruption of ovomucoid gene by CRISPR Uppercase (underlined) indicates sgRNA recognition site, adjacent box indicates PAM sequence ⁇ ⁇ In the OVMTg5 sequence, the intron / exon boundary is indicated by / (slash) Mutation deletion part is-( Hyphens), mutations are capitalized Top: An example of a chicken in which the ovomucoid gene has been disrupted. The ovomucoid gene in the chick germ-derived chick (black) in the photograph is a single allele and lacks 5 bases in the Tg2 region of Fig. 2. The result of having analyzed the base sequence from the sense side and the antisense side of the region of the chicken genome is shown.
  • Primer 1 (P1) to Primer 8 (P8) correspond to the following sequences: P1: SEQ ID NO: 27, P2: SEQ ID NO: 29, P3: SEQ ID NO: 28, P4: SEQ ID NO: 26, P5: SEQ ID NO: 30, P6: Sequence No.
  • Primer 1 (P1) to Primer 8 (P8) correspond to the following sequences: P1: SEQ ID NO: 27, P2: SEQ ID NO: 29, P3: SEQ ID NO: 41, P4: SEQ ID NO: 40, P5: SEQ ID NO: 30, P6: Sequence No.
  • the semen genome and knock-in cell (PCIFNKI # 4) genome of four chimeric chickens (411-414), one negative control chicken (416, NC) are represented by SEQ ID NOs: 30 and 31 (3'UTR), SEQ ID NO: 27 Amplified with primers of 40 (5'OVAp_out-IFN), SEQ ID NOS: 27 and 36 (5'OVAp_out-OVA (ATG). Bands appearing at the expected size are indicated by *. Positive controls at 411 and 412 A knock-in signal of the same relative intensity is observed. A chicken in which the human interferon ⁇ gene is knocked in at the ovalbumin gene locus. Photographs of progeny chickens (female) 411 and 412 in FIG.
  • WT negative control
  • KI knock-in progeny
  • KI PGC positive control
  • SEQ ID NOs: 30 and 31 knock-in 3 ′ region
  • SEQ ID NOs: 27 and 40 knock-in 5 ′ region
  • SEQ ID NOs: 27 and 36 endogenous ovalbumin
  • Introducing Group 2 and Introducing Group 3 are considered to have higher knock-in efficiency than Introducing Group 3, and the introducing method of Introducing Group 3 is more preferable.
  • Primer 1 (P1) to Primer 8 (P8) correspond to the following sequences: P1: SEQ ID NO: 27, P2: SEQ ID NO: 29, P3: SEQ ID NO: 44, P4: SEQ ID NO: 43, P5: SEQ ID NO: 30, P6: Sequence No.
  • Progeny derived from female primordial germ cells cultured by this method (arrows) and progeny derived from recipients of the same parent (back, 3 black feathers) Stable gene transfer into female primordial germ cells and establishment in the gonad (ovary) after early chicken embryo blood transplantation
  • Uppercase (underlined) is sgRNA recognition site, adjacent box shows PAM sequence ⁇ ⁇ Deletion of mutated sequence is-(hyphen), mutation is capitalized OVATg3 of ovalbumin Gene and OVMTg2 region of ovomucoid Demonstration of knock-in by exogenous gene (EGFP donor construct) knock-in to the ovalbumin locus in female primordial germ cells and genomic PCR.
  • Primer 1 (P1) to Primer 8 (P8) correspond to the following sequences: P1: SEQ ID NO: 27, P2: SEQ ID NO: 29, P3: SEQ ID NO: 28, P4: SEQ ID NO: 26, P5: SEQ ID NO: 30, P6: Sequence No. 32, P7: SEQ ID NO: 33, P8: SEQ ID NO: 31 Nested As a result of PCR, an amplification product of the expected size is recognized only in the genome derived from knock-in primordial germ cells (PGCs) (photo, arrow) Human interferon ⁇ gene knock-in to the ovalbumin locus in female primordial germ cells and demonstration of knock-in by genomic PCR.
  • PPCs knock-in primordial germ cells
  • Primer 1 (P1) to Primer 8 (P8) correspond to the following sequences: P1: SEQ ID NO: 27, P2: SEQ ID NO: 29, P3: SEQ ID NO: 41, P4: SEQ ID NO: 40, P5: SEQ ID NO: 30, P6: Sequence No. 32, P7: SEQ ID NO: 33, P8: SEQ ID NO: 31 Nested As a result of PCR, an amplification product of the expected size is recognized only in the genome derived from knock-in primordial germ cells (PGCs) (photo, arrow)
  • the genes of primordial germ cells in poultry are modified by genome editing.
  • Genome editing is a technology that uses a double-strand DNA break and its repair error to modify the gene.
  • a nuclease that can cleave the target double-strand DNA and a DNA recognition component that binds or is complexed with the nuclease. Can be used.
  • Examples of genome editing include ZFN (zinc finger nuclease), TALEN, and CRISPR.
  • ZFN zinc finger nuclease
  • TALEN zinc finger motif
  • CRISPR CRISPR.
  • FFN nuclease
  • DNA recognition component Zinc finger motif
  • FokI nanoclease
  • TAL effector DNA recognition component
  • Cas9 nuclease
  • guide Cas9 and guide are used in CRISPR.
  • RNA gRNA, DNA recognition component
  • the nuclease used for genome editing only needs to have nuclease activity, and in addition to the nuclease, DNA polymerase, recombinase, and the like can also be
  • poultry examples include chickens, quails, turkeys, ducks, geese, long-tailed birds, chabos, pigeons, ostriches, pheasants, and guinea fowls, and preferably chickens and quails.
  • the primordial germ cell may be male or female.
  • genetic modification of female primordial germ cells has been considered difficult because cell culture can only be achieved for about 100 days.
  • medium replacement is preferably performed under normal pressure or low gravity acceleration, preferably by centrifugation.
  • female primordial germ cells were successfully cultured for a period exceeding 280 days.
  • Such long-term culture enabled production of adult female poultry (female genetically modified chimeric individuals) into which genetically modified primordial germ cells had been transplanted.
  • male primordial germ cells have high proliferation ability even when centrifugation is performed at the time of medium exchange.
  • female primordial germ cells hardly proliferate when subjected to centrifugation every time the medium is changed. Although it is substantially difficult to obtain an individual, the ability to grow can be maintained by suppressing the centrifugal operation at the time of medium exchange, and a chimeric individual can be obtained.
  • Poultry primordial germ cells such as chickens are floating cells and are cultured in the presence of feeder cells such as BRL cells and STO cells.
  • feeder cells such as BRL cells and STO cells.
  • primordial germ cells are transferred to the centrifuge tube together with the medium every few days, and the cells are precipitated by centrifugation at 300 g for about 5 minutes and resuspended in the medium. It is common to seed cells afterwards.
  • male primordial germ cells can be passaged for a long time, but passage of female primordial germ cells is difficult (FIG. 11B). It is noted that the female primordial germ cells were established but became impossible to maintain beyond 109 days and 77 days, respectively. When maintenance is impossible, most of the female primordial germ cells have died.
  • female primordial germ cells can be cultured over 280 days by appropriately performing a gentler medium recovery method.
  • a milder recovery method means that the gravitational acceleration applied to female primordial germ cells at the time of passage is less than 300 g, preferably 270 g or less, more preferably 200 g or less, more preferably 100 g or less, particularly preferably 50 g or less, most preferably The culture is performed under a low gravitational acceleration of 1 g (normal pressure).
  • the term “appropriately” indicates at least once a month, preferably at least once a week, and more preferably at least twice a month.
  • a gravitational acceleration exceeding 300 g may be added to the female primordial germ cells.
  • Female primordial germ cells are sensitive to the acceleration of gravity acceleration, and the acceleration of gravity acceleration is performed within a range where the proliferation ability can be maintained. For example, in the example, if the load of the gravitational acceleration (300 g) due to the centrifugal operation at the time of medium replacement is up to once a week, the proliferation ability of female primordial germ cells can be maintained. A person skilled in the art can refer to this and determine the load of gravity acceleration that can maintain the growth ability and the frequency thereof.
  • Genes modified by genome editing include ovalbumin, ovomucoid, ovomucin, ovotransferrin, ovoinhibitor, ovoglobulin, lysozyme and other in ovo proteins, especially egg white protein, pigment cell stimulating hormone, leptin, cocaine-amphetamine regulated transcript It encodes growth-inhibiting proteins such as growth hormones and their receptors, membrane proteins recognized by avian infectious viruses, and glycosylases that synthesize sugar chains (eg, sialyltransferases) Genes to be used. The function of these genes can be reduced or deleted by genome editing of the genes.
  • Gene function is lost by knockout by genome editing, or is reduced or lost by partial deletion.
  • the gene function may be lost due to frame shift (knockout). If no frame shift occurs, some amino acids are deleted (partial) Deletion), the function may be reduced or lost. Deletions and substitutions can also cause stop codons (knockout).
  • various secretory proteins and peptides are considered, and an antibody (monoclonal antibody) or a fragment thereof (for example, scFv, Fab, Fab ′, F (ab ′) 2 , Fv, single chain antibody, scFv, dsFv, etc.), enzyme, hormone, growth factor, cytokine, interferon, collagen, extracellular matrix molecule, functional polypeptide such as vaccine, agonistic protein, antagonistic protein, etc. It is done.
  • the protein encoded by the exogenous gene is derived from a mammal, preferably a human, in the case of a physiologically active protein that can be a drug to be administered to humans.
  • proteins that can be used industrially such as protein A and the protein that constitutes the silk thread, proteins derived from any organism including microorganisms (bacteria, yeast, etc.), plants and animals, or artificial proteins Examples include exogenous genes encoding.
  • fluorescent proteins are expressed only in specific cells and tissues. Experimental chicken embryos and individual chickens can be created.
  • Genomic editing includes zinc finger, TALEN, CRISPR, etc., TALEN and CRISPR are preferred, and CRISPR is more preferred. Genome editing methods have been developed one after another, and the present invention is not limited to these. Any genome editing method developed in the future can be used in the present invention.
  • Drug resistance genes include neomycin resistance gene (Neo r ), hygromycin resistance gene (Hyg r ), puromycin resistance gene (Puro r ), blasticidin resistance gene (blast r ), zeocin resistance gene (Zeo r ), etc.
  • Neomycin resistance gene (Neo r ) or puromycin resistance gene (Puro r ) is preferable.
  • the above drug resistance genes are introduced into primordial germ cells at the time of gene introduction when genome editing is performed, and selected based on drug resistance genes It is preferable to do. Introduction of drug resistance gene and drug selection may be stable or transient, and transient is desirable in the case of knockout or partial deletion.
  • Drug resistance genes such as those described above can be mentioned, puromycin resistance gene (Puro r) or zeocin resistance gene (Zeo r) are preferred.
  • the drug resistance gene may be in the form independent of the zinc finger, TALEN, or CRISPR plasmid, or may be incorporated into the plasmid, and the drug resistance gene is preferably incorporated into the plasmid for genome editing.
  • genetically modified poultry can be produced from genetically modified poultry primordial germ cells obtained by the genetic modification method of the present invention according to a conventional method. The specific procedure is shown below.
  • the genetically modified primordial germ cells are transplanted into the blastoderm, blood or gonad region of the recipient early embryo.
  • several hundred to several thousand cells are transplanted by microinjection into the blood stream at a time before and after the start of blood circulation for about 2 to 3 days after incubation.
  • the recipient's endogenous primordial germ cells may be inactivated in advance by a drug or ionizing radiation, or the number may be reduced before transplantation.
  • Incubation of the transplanted embryo is continued according to a conventional method, and the transplanted individual is hatched.
  • the transplanting and hatching operations may be system culture that includes eggshell changes, or may be a window opening method that does not change eggshells.
  • the hatched individual can be sexually matured as a living body (chimeric individual) by normal breeding.
  • a poultry having a genetic modification derived from a transplanted cell can be produced as a progeny.
  • the genome-edited primordial germ cells obtained in the present invention have a high proliferation ability and become a large number of highly fertilized sperm or eggs in a chimeric individual.
  • a homozygous genetically modified poultry can be obtained by mating female chimeric poultry transplanted with genetically modified female primordial germ cells and male chimeric poultry transplanted with male primordial germ cells.
  • genetically modified poultry will be produced by artificial insemination and microinsemination using this. can do.
  • FIG. 2 FIG. 4A, FIG. 4B, and FIG. 13, the PAM sequence of OVTg2 is “agg”, but there are two types of sequences corresponding to OVMg2 of chicken ovalbumin in the NCBI database, and the sequence of OVTg2 is TTTCCCAACGCTACAGACA (T or a) gg.
  • the present invention encompasses all such polymorphisms.
  • genome editing is performed by infecting various embryos with a viral vector or injecting a plasmid vector as a liposome complex into early embryo blood without going through primordial germ cell culture.
  • endogenous primordial germ cells may be genetically manipulated to establish chimeric individuals and recombinant progeny.
  • Primordial germ cells obtained by genome editing have high gene modification efficiency and have a sufficiently high reproductive ability to obtain a recombination progeny or gene modification progeny of poultry, which is also useful in this embodiment.
  • genetic modification of (endogenous) primordial germ cells is possible without culturing primordial germ cells.
  • virus vectors used for gene manipulation by genome editing include retrovirus vectors, adenovirus vectors, adeno-associated virus vectors, and lentivirus vectors. These viral vectors can be used for genome editing of cultured primordial germ cells or endogenous primordial germ cells.
  • a viral vector that expresses a nuclease or sgRNA that recognizes and cleaves any target sequence using a genome editing viral vector sold by each company.
  • a genome editing viral vector sold by each company.
  • genome editing plasmids and donor constructs that do not use or are combined with viral vectors are made to be permeable to cell membranes such as liposome complexes, and primordial germ cells such as blastoderm, blood and gonad areas of early poultry embryos It is possible to perform genome editing in primordial germ cells and administer gene-modified individuals and gene-modified products to progenies.
  • Example 1 Genome editing using chick male primordial germ cells (1-1) Gene construction for ovalbumin (OVA) and ovomucoid (OVM) knockout Targeting ovalbumin and ovomucoid gene using chick male primordial germ cell line The gene was disrupted by the CRISPR method. As shown in FIG. 1 (ovalbumin) and FIG. 2 (ovomucoid), destruction of target sites at 2 sites (OVATg1, OVATg3) and 4 sites (OVMTg2, OVMTg3, OVMTg5, OVMTg6) was attempted.
  • OVA ovalbumin
  • OVM ovomucoid
  • a CRISPR plasmid was constructed by targeting the target sequences (two locations) of the ovalbumin gene shown in FIG.
  • oligo DNAs represented by SEQ ID NO: 6 and SEQ ID NO: 7 were synthesized using SEQ ID NO: 5 (OVATg3) as a target, and the 5 ′ end was phosphorylated using T4 Polynucleotide Kinase, and then the mixture of both was heated to 98 ° C. It annealed by heating and cooling slowly to room temperature.
  • This DNA fragment was inserted into the BbsI cleavage site of the plasmid px330-Puro r inserting the puromycin resistance gene unit into the NotI site SEQ ID NO: 8 of the plasmid px330 (AddGENE, USA) (px330-Puro r -OVATg3) .
  • a plasmid was constructed in which the puromycin resistance gene unit of px330-Puro r -OVATg3 was replaced with the zeocin resistance gene unit of SEQ ID NO: 124 (px330-Zeo r -OVATg3). Furthermore, a plasmid was constructed in which the puromycin resistance gene unit of px330-Puro r -OVATg3 was replaced with the neomycin resistance gene unit represented by SEQ ID NO: 4 (px330-Neo r -OVATg3).
  • oligo DNAs shown in SEQ ID NO: 2 and SEQ ID NO: 3 were synthesized, phosphorylated and annealed targeting SEQ ID NO: 1 (OVATg1), and the neomycin resistance gene unit shown in SEQ ID NO: 4 was inserted into the NotI site of plasmid px330.
  • the inserted plasmid px330-Neo r was inserted into the BbsI cleavage site (px330-Neo r -OVATg1).
  • a CRISPR plasmid was constructed by targeting the target sequence (four locations) of the ovomucoid gene shown in FIG.
  • Oligo DNAs represented by SEQ ID NO: 10 and SEQ ID NO: 11 were synthesized targeting SEQ ID NO: 9 (OVMTg2), phosphorylated, annealed, and inserted into the BbsI cleavage site of plasmid px330-Puro r (px330-Puro r ⁇ OVMTg2).
  • plasmids were constructed in which the puromycin resistance gene unit of px330-Puro r -OVMTg2 was replaced with the zeocin resistance gene unit of SEQ ID NO: 124 and the neomycin resistance gene unit represented by SEQ ID NO: 4 (px330-Zeo r -OVMTg2 and px330-Neo r -OVMTg2).
  • SEQ ID NO: 12 (OVMTg3) as a target
  • SEQ ID NO: 13 and SEQ ID NO: 14 SEQ ID NO: 15 (OVMTg5) as a target
  • SEQ ID NO: 16 and SEQ ID NO: 17 and SEQ ID NO: 18 (OVMTg6) as a target
  • SEQ ID NO: 19 and SEQ ID NO: The oligo DNAs indicated by No.
  • Lipofectamine 2000 and plasmid were mixed in 80 ⁇ l OPTI-MEM, mixed with the male primordial germ cell line and allowed to stand at room temperature for about 5 minutes, and then 500 ⁇ l of medium containing no antibiotics was added, and the mixture was incubated at 37 ° C. And allowed to stand for about 1 to 4 hours, and then seeded on feeder cells. Between 2 and 4 days after gene transfer, puromycin (InvivoGen, USA) was added at a final concentration of 1 ⁇ g / ml, and this was washed and removed, followed by culturing for 1 to 2 weeks. After the culture, the cells were collected and the genomic DNA was extracted.
  • puromycin InvivoGen, USA
  • FIG. 3 shows examples of gene mutations observed in the region containing OVATg3.
  • a partial region was amplified, subcloned into a TA vector, and the genomic base sequence of the region containing SEQ ID NO: 9 (OVMTg2) was analyzed. In 21 clones (91%) out of 23 clones analyzed, deletion of the gene was observed in the region containing SEQ ID NO: 9 (OVMTg2) of the ovomucoid gene. On the other hand, although no drug selection was performed as a control group, 0 genes (0%) were found in 24 clones.
  • FIG. 4A shows an example of gene mutation observed in the region containing OVMTg2.
  • the ovomucoid protein has three domains (domain 1 to domain 3) that are considered to have strong allergenicity.
  • domain 1 to domain 3 The purpose px330-Neo r -OVMTg3 lacking domains 1 and later, leaving the domain 1, domain 2 and later px330-Neo in lacking purposes r -OVMTg5, by px330-Neo r -OVMTg6 respective to the method described above
  • neomycin was selected in the same manner as described above, and the genomic nucleotide sequence was analyzed. As shown in FIG.
  • gene deletion, substitution, and insertion occurred in the region containing the target site of the allergen gene ovomucoid as shown in FIG. 4A, and mutations including frameshift and termination during translation were confirmed.
  • gene editing technology using primordial germ cells enables gene knockout caused by mutations in various target sites.
  • a partial region of the ovomucoid gene is amplified by PCR using the oligo DNA primers shown in SEQ ID NO: 23 and SEQ ID NO: 24, subcloned into a TA vector, and SEQ ID NO: 9 (OVMTg2)
  • the genomic base sequence of the region containing was analyzed.
  • Crossing chimera chickens # 372 and # 376 with high frequency mutations both 10 of the 11 subcloned clones with ovomucoid gene mutations
  • wild-type females with lateral Plymouth Rock Beverly Rock We found 11 ovumcoid mutant chickens (chicks) out of 19 out of 19 progenies and 14 out of 14, respectively.
  • FIG. 4B An example of ovomucoid gene mutation is shown in the upper part of FIG. 4B.
  • a deletion of 5 bases that causes mutation is observed from directly under the signal peptide of the ovomucoid protein, and one allele has a frameshift mutation of the ovomucoid gene.
  • examples of typical mutations (gene deletions) observed mainly in the target region of the ovomucoid genome are shown in the lower part of FIG. 4B.
  • Example 2 Gene knock-in to ovalbumin gene locus Gene knock-in by genome editing was performed using primordial germ cells derived from male chicken.
  • a donor construct shown in SEQ ID NO: 25 (EGFP donor construct) was prepared for the purpose of inserting a foreign gene (EGFP) at the translation start point of the ovalbumin gene.
  • This EGFP donor construct is composed of about 2.8 kb at the 5 ′ side of the ovalbumin translation start point, EGFP gene, drug resistance gene unit (PGK-Puro r ), and about 3.0 kb at the 3 ′ side of the ovalbumin translation start point.
  • This donor construct was inserted into a plasmid pBlue ScriptII (SK +) (Stratagene, currently Agilent Technologies, USA) to obtain a pBS-EGFP donor.
  • pBlue ScriptII SK +
  • 0.8 ⁇ g of px330-Neo r -OVATg1 and 0.8 ⁇ g of pBS-EGFP donor were simultaneously introduced into 1 ⁇ 10 5 to 5 ⁇ 10 5 primordial germ cell lines using Lipofectamine 2000. After 3 days, puromycin was added at a final concentration of 1 ⁇ g / ml. The medium was appropriately changed, and cells proliferating in the presence of puromycin at a final concentration of 1 ⁇ g / ml were collected to prepare genomic DNA.
  • Genomic PCR confirmed that the donor construct was knocked into the ovalbumin locus.
  • PCR using primers for the foreign gene of the donor construct and the 5 ′ region of ovalbumin not included in the donor construct was performed as follows. PCR was performed using an antisense primer for EGFP shown in SEQ ID NO: 26 and a sense primer for a region about 3.0 kb on the 5 ′ side of the ovalbumin translation start point shown in SEQ ID NO: 27. PCR was performed using the antisense primer for EGFP shown and the sense primer for the region about 2.85 kb 5 ′ from the ovalbumin translation start point shown in SEQ ID NO: 29 and not included in the donor construct (nested PCR). As shown in FIG.
  • the 3 ′ region was confirmed by genomic PCR using primers for the foreign gene of the donor construct and the 3 ′ region of ovalbumin not included in the donor construct.
  • PCR was performed using a sense primer for the drug resistance gene unit shown in No. 32 and a sense primer for a region not included in the donor construct at about 3 kb 3 ′ of the ovalbumin translation start point shown in SEQ ID No. 33 (nested) PCR). As shown in FIG.
  • the PCR product of OVA5 ′ can be amplified using any of the ovalbumin gene not knocked in, the randomly inserted donor construct, and the knocked-in donor construct as a template.
  • PCR products of OVA use only the ovalbumin gene that has not been knocked in as a template, and amplification using a randomly inserted donor construct or a knocked-in donor construct as a template hardly occurs because of the long amplification region.
  • GAPDH was used as an internal standard for genomic quantity.
  • FIG. 6 shows a graph of quantitative PCR results corrected by the internal standard.
  • the OVA 5 'PCR product is not significantly different in the drug selected cell population genome and the control primordial germ cell genome, whereas the OVA (ATG) PCR product is one-tenth of the control in the drug selected cell population genome. It is as follows. The fact that there is no significant difference in the PCR product of OVA5 ′ indicates that random insertion other than the knock-in of the donor construct is below the detection limit. On the other hand, the fact that the OVA (ATG) PCR product was one-tenth or less of the control in the drug-selected cell group genome indicates that the donor construct was knocked in in 90% or more of the ovalbumin gene in this genome. Show. That is, it is determined that 90% or more of the ovalbumin gene is replaced by the knock-in construct in the primordial germ cell group selected by the drug.
  • Example 3 Human interferon gene knock-in (1) Knock-in to primordial germ cell establishment and establishment of knock-in chimera chicken Donor construct (IFN ⁇ ) in which human interferon ⁇ gene shown in SEQ ID NO: 39 is introduced instead of EGFP in the EGFP donor construct of Example 2 above Donor construct) was prepared.
  • This donor construct is composed of about 2.8 kb 5 ′ from the ovalbumin translation start point, human interferon ⁇ gene, drug resistance gene unit (PGK-Puro r ), and about 3.0 kb 3 ′ from the ovalbumin translation start point.
  • This donor construct was inserted into the plasmid pBlue ScriptII (SK +) to obtain a pBS-IFN ⁇ donor.
  • PCR was performed using the genome of the selected cells as a template.
  • the primer of SEQ ID NO: 27 and the antisense primer for interferon ⁇ shown in SEQ ID NO: 40 are applied to the amplified product.
  • PCR was performed using (nested PCR).
  • Primordial germ cells containing cells into which this IFN ⁇ donor construct was knocked in were transplanted into recipient embryos by the same method as in (1-3) and then hatched to obtain four male chimeric chickens (# 411 to # 414) . Semen was collected from these, and genomic DNA was collected, and then the primers of SEQ ID NO: 30 and SEQ ID NO: 31 (amplified on the 3 ′ side of interferon knocked into the ovalbumin gene), the primers of SEQ ID NO: 27 and SEQ ID NO: 40 (ovobo) PCR was performed using the primers of SEQ ID NO: 27 and SEQ ID NO: 36 (amplified ovalbumin that was not knocked in), respectively (amplification of the interferon knocked into the albumin gene) (FIG.
  • Chimera chickens # 411 and # 412 were crossed with female wild-type chickens (lateral primus rock species) to obtain 28 progeny and 19 progeny, respectively.
  • the primers of SEQ ID NO: 30 and SEQ ID NO: 31 amplifying the 3 ′ side of interferon knocked into the ovalbumin gene
  • SEQ ID NO: 27 and PCR was performed using primer No. 40 (amplification of 5 ′ side of interferon knocked into ovalbumin gene) and primer of SEQ ID No. 27 and SEQ ID No. 36 (amplification of ovalbumin not knocked in).
  • FIG. 7C shows the PCR product electrophoresis images of the progeny from # 411 (female) and the progeny from # 412 (female), respectively. Based on this, it is determined that an interferon donor vector is knocked in at the ovalbumin locus in these progeny female chickens.
  • IFN beta-Neo donor constructs to replace the drug resistance units of interferon ⁇ donor construct described above PGK-Puro r from SV40Pe-Neo r (SEQ ID NO: 125).
  • This donor construct is composed of about 2.8 kb on the 5 ′ side of the ovalbumin translation start point, human interferon ⁇ gene, drug resistance gene unit (SV40Pe-Neo r ), and about 3.0 kb on the 3 ′ side of the ovalbumin translation start point.
  • This donor construct was inserted into the plasmid pBlue ScriptII (SK +) to obtain a pBS-IFN ⁇ -Neo donor.
  • a plasmid px330-Puro r -OVATg1 was constructed in which the neomycin resistance unit of px330-Neo r -OVATg1 was replaced with the puromycin resistance unit of SEQ ID NO: 8.
  • a plasmid for CRISPR was constructed by targeting the target sequence OVATg2 (SEQ ID NO: 126) of ovalbumin partially overlapping with OVATg1.
  • Oligo DNAs respectively represented by SEQ ID NO: 127 and SEQ ID NO: 128 were synthesized, phosphorylated in the same manner as in Example 1-1, annealed, the DNA fragment was inserted into the BbsI cleavage site of px330, and SEQ ID NO: at the NotI site. 8 plasmid px330-Puro r -OVATg2 inserting the puromycin resistance units were constructed.
  • 0.8 ⁇ g of px330-Neo r -OVATg1 and pBS-IFN ⁇ donor (by using Lipofectamine 2000 as in Example 2- (1) ( 0.8 [mu] g to have a puromycin resistance gene units) (0.8 [mu] g to introduce group 1) or px330-Puro r -OVATg1, the pBS-IFN beta-Neo donor 0.8 [mu] g (transfection group 2) or px330-Puro r -OVATg2 0.8 ⁇ g and 0.8 ⁇ g of pBS-IFN ⁇ -Neo donor (introduction group 3) were introduced at the same time, and (introduction group 1) was administered puromycin at a final concentration of 1 ⁇ g / ml after 3 days after introduction as in Example 3- (1).
  • introduction group 2 and (introduction group 3) were cultured in the presence of puromycin at a final concentration of 1 ⁇ g / ml for 2 to 4 days after gene introduction, as in Example (1-2-1). After washing, neomycin with a final concentration of 0.5 mg / ml was added and cultured. When the number of cells in each introduction group was measured 24 days after introduction, 2 ⁇ 10 4 in introduction group 1 and 1 ⁇ 10 5 drug-resistant cells were observed in introduction groups 2 and 3.
  • the primers of SEQ ID NO: 30 and SEQ ID NO: 31 were prepared in the same manner as in Example 3- (1). Amplification), using the primers of SEQ ID NO: 27 and SEQ ID NO: 40 (amplify the 3 ′ side of the interferon knocked into the ovalbumin gene), and the primers of SEQ ID NO: 27 and SEQ ID NO: 36 (amplify the non-knocked ovalbumin) PCR was then performed (FIG. 8B).
  • Example 4 Human antibody gene knock-in A donor construct (immunoglobulin donor construct) in which the human immunoglobulin gene shown in SEQ ID NO: 42 was introduced instead of EGFP in the EGFP donor construct of Example 2 above was prepared.
  • This donor construct is about 2.8 kb downstream of the ovalbumin translation start point, egg white lysozyme signal peptide, human immunoglobulin heavy chain, furin protein cleavage target sequence, 2A self-processing peptide, egg white lysozyme signal peptide, human immunoglobulin It arranged connecting a gene encoding the light chain gene, respectively, a drug resistance gene unit (PGK-Puro r), and a 3 'side about 3.0kb ovalbumin translation initiation.
  • This donor construct is transcribed and translated to express an antibody protein composed of immunoglobulin heavy and light chains.
  • An immunoglobulin donor construct was inserted into the plasmid pBlue ScriptII (SK +) to obtain a pBS- IgG (Hc + Lc) donor.
  • PCR was performed using the selected cell genome as a template.
  • the 5 ′ side was subjected to PCR using the primer of SEQ ID NO: 27 and the antisense primer for the egg white lysozyme signal peptide shown in SEQ ID NO: 43, and then the primer for SEQ ID NO: 29 and the egg white lysozyme signal peptide shown in SEQ ID NO: 44 to the amplified product.
  • PCR was performed using antisense primers (nested PCR).
  • the 3 ′ side is the primer shown in SEQ ID NO: 32 and SEQ ID NO: 33 for the amplified product after PCR using the primers shown in SEQ ID NO: 30 and SEQ ID NO: 31 as in the case of knocking in the EGFP donor and pBS-IFN ⁇ donor.
  • knocking-in to the ovalbumin gene in primordial germ cells was observed even when an immunoglobulin donor was used.
  • Example 5 Human collagen gene knock-in A donor construct (collagen donor construct) was prepared by introducing the human type I collagen gene shown in SEQ ID NO: 45 instead of EGFP in the EGFP donor construct of Example 2 above.
  • This donor construct is about 2.8 kb downstream of the ovalbumin translation start point, egg white lysozyme signal peptide, human type I collagen ⁇ 1 chain (COLLAGEN1A1), furin protein cleavage target sequence, 2A self-processing peptide, egg white lysozyme signal peptide , arranged by connecting genes each encoding a human type I collagen ⁇ 2 chain (COLLAGEN1A2) gene, a drug resistance gene unit (PGK-Puro r), it consists of three 'side about 3.0kb ovalbumin translation initiation Yes.
  • This donor construct is transcribed and translated to express type I collagen protein consisting of human type I collagen ⁇ 1 and ⁇ 2 chains.
  • a collagen donor construct was inserted into the plasmid pBlue ScriptII (SK +) to obtain a pBS-COL1 (A1 + A2) donor.
  • the amplified product of SEQ ID NO: 29 PCR was performed using the primer and an antisense primer for the egg white lysozyme signal peptide shown in SEQ ID NO: 44 (nested PCR).
  • Example 6 Cultivation of female primordial germ cells Isolation and culture of primordial germ cells from embryonic blood of highline Maria chick 2-3 days were performed according to Non-patent Document 3. Gender was determined by PCR using the primers shown in SEQ ID NO: 46 and SEQ ID NO: 47 for the CHD (chromo-helicase-DNA binding protein) gene and using the collected chicken embryo cell-derived genome as a template.
  • CHD chromo-helicase-DNA binding protein
  • primordial germ cells in the medium were dispersed and collected using a pipette, and seeded on feeder cells (BRL cells). Prior to cell collection, a part of the upper layer of the medium (usually about 50 to 75%) was gently removed using an aspirator or pipette, and the medium was changed by adding a new medium.
  • Primordial germ cells are suspension cells, but most cells accumulate in the lower part of the culture dish in culture under 1 g (normal pressure), so this method leaves most of the primordial germ cells and maintains the cells. However, it is possible to change most of the medium.
  • FIG. 11 shows female primordial germ cell images on the 100th day and the 230th day after the start of the culture, and it is possible to perform the culture while maintaining the spherical and floating characteristics.
  • the cultured cells are female primordial germ cells.
  • the CHD gene was amplified by PCR using the primers shown in SEQ ID NO: 46 and SEQ ID NO: 47 using the cultured cell-derived genome on day 100 of culture as a template. Confirmed.
  • CHD on the sex chromosome is amplified using the primers shown in SEQ ID NO: 46 and SEQ ID NO: 47, two products of about 400 bp and 600 bp are produced in the female genome and one product of 600 bp in the male genome.
  • the female karyotype was confirmed using a genome derived from female primordial germ cells (PGCs) as a template.
  • PPCs primordial germ cells
  • Female primordial germ cells cultured for about 3 months by this method were seeded at 1 ⁇ 10 3 per well in a 24-well plate. For comparison, about 4 months have passed with female primordial germ cells after 40 days from the start of culture with centrifugation at 300 g for 5 minutes at the time of passage (frequency once or twice a week), which is the conventional method. Male primordial germ cells were seeded in the same manner, and the number of cells was counted over time. As shown in FIG. 11B, a significant increase in the number of female primordial germ cells is not recognized by the conventional method after 8 days from the start of the culture, but an approximately 4-fold increase is observed by culturing female primordial germ cells by this method.
  • Example 7 Establishment of cultured female primordial germ cell-derived chicken progeny After culturing female primordial germ cells for 172 days by the method described in Example 6, 2000 cells were obtained in the same manner as in Example (1-3). Transplantation was performed by microinjection into the blood of 2.5 day embryos (recipient embryos). Prior to transplantation, 6 Gy of gamma irradiation was performed. This individual (female chimera chick) was hatched, and after sexual maturation, it was crossed with a wild type Magnolia Rock species wild type. The transplanted cell-derived progeny can be distinguished from the black-haired recipient-derived progeny by the white hair of the Highline Maria species (dominant inheritance). As shown in FIG. It was shown that long-term culture with the ability to differentiate gametocytes of female primordial germ cells is possible.
  • Example 8 Genetic manipulation of female primordial germ cells Furthermore, it was verified whether or not long-term culture was possible by this culture method, so that stable introduction of foreign genes into female primordial germ cells was possible.
  • the sequence consisting of the EGFP, neomycin resistance gene unit represented by SEQ ID NO: 48 was inserted into the EcoRI-EcoRV site downstream of the EF1 ⁇ promoter of the vector pB530A-2 (System Bioscience, USA) having a transposon-specific terminal inverted sequence (pB530- EGFP-Neo r ).
  • pB530-EGFP-Neo r and PiggyBac po-transposase expression vector pB200PA-1 System Bioscience, System Bioscience, using Lipofectamine 2000 on 1 ⁇ 10 5 to 5 ⁇ 10 5 female primordial germ cell lines.
  • US 0.8 ⁇ g of gene was simultaneously introduced. From 3 days after gene introduction, neomycin was added at a final concentration of 0.5 mg / ml and cultured. The primordial germ cells proliferating in the presence of neomycin emitted green fluorescence as shown in FIG. 12B, indicating that the foreign gene was stably introduced into the female primordial germ cells and expressed.
  • the female primordial germ cells emitting green fluorescence established by the above method were transplanted by microinjection into chick embryo blood 2.5 days after incubation. The number of transplanted cells per individual was 2000-5000. After the transplantation, the incubation of the embryo was continued, and the embryos on day 17 (14 days after transplantation) were analyzed.
  • the transplanted primordial germ cells and their progeny cells that emit green fluorescence accumulated in the ovarian tissue as shown in the photograph of FIG. 12B, and were mainly localized in the cortical layer on the ventral side. Such localization is consistent with the endogenous primordial germ cells, and the female primordial germ cells have not lost their primordial germ cell characteristics through a series of culture, gene transfer, and drug selection operations. Is shown.
  • Example 9 Female primordial germ cell ovalbumin, ovomucoid knockout If a female primordial germ cell can be knocked out by genome editing, a female chimeric individual (G0) transplanted with the knockout female primordial germ cell can be established, and the knockout male primordial germ cell By crossing with a male chimeric individual (G0) transplanted with a homozygous knockout individual can be established in a progeny (F1 generation). This means that a knockout individual can be established one generation earlier than the conventional technology, and there are many advantages such as greatly reducing the time and cost of research. Therefore, we attempted knockout of the allergen gene using female primordial germ cells.
  • a partial region of the ovalbumin gene was amplified by PCR using the oligo DNA primers shown in SEQ ID NO: 21 and SEQ ID NO: 22, subcloned into a TA vector, The genomic base sequence of the region containing No. 5 (OVATg3) was analyzed. As a result, in 11 clones out of 12 clones (92%), deletion or substitution of bases was observed in the region containing SEQ ID NO: 5 (OVATg3) of the ovalbumin gene. A typical deletion is shown in FIG.
  • Example (1-3) Procedures described in Example (1-3) for female primordial germ cells in which px330-Puro r -OVMTg2 is introduced into female primordial germ cells, drug selection, culture, and most of the ovomucoid gene is defective And transplanted into the blood of white leghorn 2.5 day embryo (recipient embryo) by microinjection.
  • the same ionizing radiation irradiation, window opening, cell transplantation, and hatching operation as in Example (1-3) were performed, and 7 female chimeric chicks (G0) could be obtained.
  • Example 10 Gene knock-in to ovalbumin locus of female primordial germ cells Using female primordial germ cells, we examined whether gene knock-in was possible by genome editing like male primordial germ cells. As described above, 1 ⁇ 10 5 to 5 ⁇ 10 5 female primordial germ cell lines were transfected with 0.8 ⁇ g of px330-Neo r -OVATg1 and 0.8 ⁇ g of pBS-EGFP donor simultaneously using Lipofectamine 2000, From 3 days after introduction, puromycin was added at a final concentration of 1 ⁇ g / ml. The medium was appropriately changed, and cells proliferating in the presence of puromycin at a final concentration of 1 ⁇ g / ml were collected.
  • Nested PCR was performed to confirm knock-in of the EGFP donor construct to the ovalbumin locus ( Figure 14). Gene knock-in by genome editing is also possible in female primordial germ cells. Further, as a result of quantitative PCR similar to the test for male primordial germ cell knock-in efficiency performed in Examples 2- (2), 3- (1), 4 and 5, about 80% or more of the ovalbumin gene was found. It was judged that it was replaced by the EGFP donor construct.
  • Example 11 Human Primordial Germ Cell Human Interferon Gene Knock-In Using female primordial germ cells, gene knock-in of IFN ⁇ donor construct was performed by genome editing in the same manner as male primordial germ cells performed in Example 3- (1). In the same manner as in Example 3- (1), knocking in female chick primordial germ cells and selecting with puromycin, performing Nested PCR using the selected cell genome as a template, the ovalbumin gene of the IFN ⁇ donor construct Knock-in to the locus was confirmed ( Figure 15).

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Biomedical Technology (AREA)
  • Biotechnology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Organic Chemistry (AREA)
  • Wood Science & Technology (AREA)
  • Chemical & Material Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Environmental Sciences (AREA)
  • Cell Biology (AREA)
  • Biophysics (AREA)
  • Molecular Biology (AREA)
  • Plant Pathology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Animal Husbandry (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Physics & Mathematics (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Meat, Egg Or Seafood Products (AREA)

Abstract

The present invention provides a genetic modification method for poultry primordial germ cells, characterized by modifying a gene of the poultry primordial germ cell by genome editing.

Description

家禽始原生殖細胞の遺伝子改変方法、遺伝子改変された家禽始原生殖細胞、遺伝子改変家禽の生産方法及び家禽卵Genetic modification method of poultry primordial germ cells, genetically modified poultry primordial germ cells, production method of genetically modified poultry, and poultry eggs
 本発明は、家禽始原生殖細胞の遺伝子改変方法、遺伝子改変された家禽始原生殖細胞、遺伝子改変家禽の生産方法及び家禽卵に関する。 The present invention relates to a genetic modification method for poultry primordial germ cells, a genetically modified poultry primordial germ cell, a method for producing genetically modified poultry, and poultry eggs.
 鳥類は他の生物とは異なり、卵子が巨大な卵黄を有するため胚への顕微操作が極めて困難であり、受精直後の数回程度の細胞分裂を経た初期胚を用いた家禽遺伝子操作は例外的な研究を除き殆どなされていない。また、クローン個体作製技術も報告がない。このため、他の家畜や動物で行われている遺伝子操作技術を家禽に適用することは実現困難である。一方、家禽においては、将来精子や卵子に分化する始原生殖細胞を株化し、遺伝子改変を行う試みがなされている。特殊なことに家禽だけが配偶子分化能を保持した始原生殖細胞の株化に成功しており、ヒトやマウス、家畜を始めとする様々な哺乳動物では達成されていない。一方、家禽始原生殖細胞株は遺伝子導入や外来遺伝子発現が極めて困難であったり、培地に用いる血清が異なると樹立できないなど樹立効率が著しく不安定で低かったり、雌始原生殖細胞株が樹立出来なかったり、樹立できても長期間培養を維持できない等、他の培養細胞株と大きく異なった性質を数多く有している(非特許文献1-3)。このため、他の生物の培養細胞株で得られた知見や技術を家禽始原生殖細胞株に適用することは難しく、始原生殖細胞株に適した方法を開発しなければならない。実際、最初の家禽始原生殖細胞遺伝子改変が行われてから現在までになされた始原生殖細胞培養や遺伝子操作の報告もごくわずかに限られている。また、近年初期胚や培養細胞などでなされているゲノム編集技術なども家禽始原生殖細胞株には適用されていない。ゲノム編集は外来遺伝子を染色体に残さない遺伝子ノックアウトや、外来遺伝子を標的部位に挿入するノックインを可能にするため、家禽への適用が望まれるが、これを可能にする技術的な報告はなされていない。特に遺伝子改変家禽個体を作製するためには、高効率の遺伝子ノックアウトやノックインが必要であるが、一般的な哺乳類の培養細胞であってもゲノム編集による遺伝子改変の効率はばらつきが大きく、まして哺乳類の培養細胞と大きく性質の異る家禽始原生殖細胞株ではどのように効率化を達成すべきかも予見出来ない。 Unlike other organisms, birds have huge egg yolks, so it is extremely difficult to perform microscopic manipulation on embryos, and poultry genetic manipulation using early embryos that have undergone several cell divisions immediately after fertilization is exceptional. It has hardly been done except for research. In addition, there is no report on a clone individual production technique. For this reason, it is difficult to realize the genetic manipulation technique used in other livestock and animals for poultry. On the other hand, in poultry, attempts have been made to genetically modify primordial germ cells that will differentiate into sperm and eggs in the future. Specially, only poultry has succeeded in establishing primordial germ cells that retain gametogenic potential, which has not been achieved in various mammals including humans, mice, and livestock. On the other hand, poultry primordial germ cell lines are extremely difficult to introduce and express foreign genes, or cannot be established if the serum used in the medium is different. Even if it can be established, it has many properties that are greatly different from other cultured cell lines, such as being unable to maintain culture for a long period of time (Non-Patent Documents 1-3). For this reason, it is difficult to apply the knowledge and techniques obtained from cultured cell lines of other organisms to poultry primordial germ cell lines, and a method suitable for primordial germ cell lines must be developed. In fact, only a few reports of primordial germ cell culture and genetic manipulation have been made since the first poultry primordial germ cell genetic modification. In addition, genome editing techniques and the like that have been made in early embryos and cultured cells in recent years have not been applied to poultry primordial germ cell lines. Genome editing is desired to be applied to poultry in order to enable gene knockout that does not leave foreign genes in the chromosome and knock-in that inserts foreign genes into the target site, but technical reports that enable this have been made. Absent. In particular, in order to produce genetically modified poultry individuals, high-efficiency gene knockout and knock-in are required, but even in general mammalian cultured cells, the efficiency of gene modification by genome editing varies widely, and even mammals It is unpredictable how efficiency should be achieved in a cultured primordial germ cell line that is significantly different in nature from the cultured cells.
 さらに、家禽の雄始原生殖細胞株が長期間培養可能なのに対し、雌始原生殖細胞株は樹立や培養が著しく困難とされてきた。例えば非特許文献2では雌始原生殖細胞株の樹立に失敗しているし、非特許文献3では、100日程度の培養後、雌始原生殖細胞株の維持が不能になるなどの報告がある。このため、雌始原生殖細胞株を用いた遺伝子操作はこれまで報告がなされていない。 Furthermore, while male primordial germ cell lines of poultry can be cultured for a long time, establishment and culture of female primordial germ cell lines have been extremely difficult. For example, Non-Patent Document 2 fails to establish a female primordial germ cell line, and Non-Patent Document 3 reports that the maintenance of a female primordial germ cell line becomes impossible after about 100 days of culture. For this reason, no genetic manipulation using a female primordial germ cell line has been reported so far.
 多くの問題点や改善すべき課題は残るものの、始原生殖細胞株を用いることで家禽の遺伝子改変が可能になってきたが、雄始原生殖細胞株のみ遺伝子改変可能という現状は、遺伝子改変個体を作製する上で効率上の大きな問題がある。現在の始原生殖細胞株を用いた遺伝子改変個体の作製は、雄始原生殖細胞を遺伝子改変し、レシピエント胚に移植後これを孵化させ、雄のキメラ個体(G0)を半年程度の飼育により性成熟後、これを野生型の雌と交配し、この後代(F1)にヘテロ型の組換え個体を得るものである。さらにホモ型を得ようとする場合、ヘテロ型の雌雄F1個体を性成熟させ、ヘテロ型の組換え後代同士を交配する必要があり、多大な時間と労力が必要であった。 Although many problems and issues to be solved remain, it has become possible to genetically modify poultry by using primordial germ cell lines. There is a big efficiency problem in manufacturing. The creation of genetically modified individuals using the current primordial germ cell line is achieved by genetically modifying male primordial germ cells, transplanting them into recipient embryos, then hatching them, and raising male chimeric individuals (G0) for about half a year. After maturation, this is mated with a wild-type female to obtain a heterozygous recombinant individual in this progeny (F1). In order to obtain a homozygote, it was necessary to sexually mature heterozygous male and female F1 individuals and to breed heterozygous progeny progenies, which required a great deal of time and labor.
 ニワトリの遺伝子ノックアウトについては非特許文献4にあるように、雄始原生殖細胞を用いた相同組換えによる報告が1例のみあるが、相同組換えによる外来遺伝子を挿入する方法であるため、当該技術を用いて遺伝子ノックアウトを行った場合、ニワトリ自体や鶏卵が組換え産物となるため、食品として活用する場合の障壁が高く、相同組換え以外の方法による遺伝子ノックアウト技術が求められる。 As described in Non-Patent Document 4, for chicken gene knockout, there is only one report by homologous recombination using male primordial germ cells. However, since the method involves inserting a foreign gene by homologous recombination, When gene knockout is carried out using, chicken itself and chicken eggs become recombinant products, so there are high barriers for use as food, and gene knockout techniques by methods other than homologous recombination are required.
 また、非特許文献4にある相同組換え技術を活用して標的とする遺伝子座に外来遺伝子をノックインすることは技術的に可能であるが、非特許文献4の方法では相同組換えが28%程度の細胞で認められ、クローン樹立は107細胞に1クローン程度と限定的なこと、相同組換えだけでなく、ランダムな遺伝子導入が多く生じている可能性が否定出来ないこと、さらには生殖系列への分化能が著しく悪く、平均して後代900羽に1羽しか相同組換え個体が得られないことが記されている。これら欠点を克服し、より効率よく標的とする遺伝子座に外来遺伝子をノックインする技術が開発されれば、遺伝子ノックインニワトリをより簡便に樹立することが可能となる。例えば組換え導入効率を3倍以上(28%を84%程度以上)改善できれば組換え後代を得る効率も3倍以上改善し、後代300羽に1羽以上の組換え個体が得られると予想されるし、クローン樹立効率を100倍程度改善すれば105細胞に1クローン程度のノックイン始原生殖細胞を得られると考えられる。 In addition, it is technically possible to knock in a foreign gene to a target locus using the homologous recombination technique described in Non-Patent Document 4, but the method of Non-Patent Document 4 provides 28% homologous recombination. The number of clones is limited to about 10 clones per 10 7 cells, the possibility of not only homologous recombination but also random gene transfer is undeniable, and reproduction It is noted that the ability to differentiate into lineage is remarkably poor, and on average, only one out of 900 progeny homologous recombination individuals can be obtained. If a technique for overcoming these drawbacks and knocking in a foreign gene to a targeted locus more efficiently is developed, a gene knock-in chicken can be established more easily. For example, if the recombination introduction efficiency can be improved by 3 times or more (28% is about 84% or more), the efficiency of obtaining the progeny of recombination will be improved by 3 times or more, and it is expected that more than 1 recombination individual will be obtained for 300 progeny However, if the clone establishment efficiency is improved by a factor of about 100, it is considered that about 1 clone of knock-in primordial germ cells can be obtained per 10 5 cells.
 本発明は、効率的な家禽の遺伝子改変技術を提供することを主な目的とする。 The main purpose of the present invention is to provide efficient poultry genetic modification technology.
 本発明は、以下の家禽始原生殖細胞の遺伝子改変方法、遺伝子改変された家禽の生産方法、雌始原生殖細胞の継代培養方法及びノックイン家禽卵を提供するものである。
項1. 家禽始原生殖細胞の遺伝子をゲノム編集により改変することを特徴とする、家禽始原生殖細胞の遺伝子改変方法。
項2. 前記家禽始原生殖細胞が雌始原生殖細胞である、項1に記載の遺伝子改変方法。
項3. 前記遺伝子が卵内タンパク質遺伝子である、項1又は2に記載の遺伝子改変方法。
項4. TALEN又はCRISPRを用いたゲノム編集により遺伝子が改変される、項1~3のいずれか1項に記載の遺伝子改変方法。
項5. CRISPRを用いたゲノム編集により遺伝子が改変される、項4に記載の遺伝子改変方法。
項6. 遺伝子の改変が遺伝子のノックイン、ノックアウトまたは部分欠失である、項1~5のいずれか1項に記載の遺伝子改変方法。
項7. 前記遺伝子をノックインにより改変し、前記家禽始原生殖細胞に薬剤耐性遺伝子を組み込み、前記薬剤耐性遺伝子に基づき遺伝子改変された始原生殖細胞を選別することを特徴とする、項1~6のいずれか1項に記載の遺伝子改変方法。
項8. 前記遺伝子をノックアウト又は部分欠失により改変し、前記家禽始原生殖細胞に薬剤耐性遺伝子を導入し、前記薬剤耐性遺伝子に基づき遺伝子改変された始原生殖細胞を選別することを特徴とする、項1~6のいずれか1項に記載の遺伝子改変方法。
項9. 薬剤耐性遺伝子がピューロマイシン耐性遺伝子(Puror)又はゼオシン耐性遺伝子(Zeor)である、項7又は8に記載の遺伝子改変方法。
項10. ゲノム編集をプラスミドベクター又はウイルスベクターを用いて行う、項1~9のいずれか1項に記載の遺伝子改変方法。
項11. プラスミドベクター又はウイルスベクターを家禽初期胚に導入して内在性の始原生殖細胞のゲノム編集を行い内在性の家禽始原生殖細胞の遺伝子改変を行う、項10に記載の遺伝子改変方法。
項12. 項1~10のいずれかに記載の遺伝子改変方法により得られた、ゲノム編集により遺伝子改変された家禽始原生殖細胞。
項13. 雌始原生殖細胞である、項12に記載の家禽始原生殖細胞。
項14. 項1~10のいずれかの方法により得られた遺伝子改変された家禽始原生殖細胞を家禽初期胚の胚盤葉、血液中もしくは生殖巣領域に移植して遺伝子改変キメラ個体を得る工程、このキメラ個体を性成熟して野生型個体、遺伝子改変個体或いは遺伝子改変キメラ個体と交配する工程を含む、遺伝子改変家禽の生産方法。
項15. 項11に記載の方法により遺伝子改変された内在性の家禽始原生殖細胞を含むキメラ個体を性成熟して野生型個体、遺伝子改変個体或いは他の遺伝子改変キメラ個体と交配する工程を含む、遺伝子改変家禽の生産方法。
項16. 遺伝子改変された家禽のジェノタイプが変異型ホモ(-/-)である、項14又は15に記載の方法。
項17. 遺伝子改変がオボアルブミン、オボムコイド、オボムチン、オボトランスフェリン、オボインヒビターからなる群から選ばれる少なくとも1種の卵内タンパク質遺伝子のノックアウトである、項14~16のいずれか1項に記載の方法。
項18. 遺伝子改変が卵内タンパク質遺伝子における外来遺伝子のヘテロ又はホモのノックインであり、雌の遺伝子改変家禽の卵が外来遺伝子の発現産物を含む項14~16のいずれか1項に記載の方法。
項19. 項17に記載の方法により生産された雌の遺伝子改変家禽から得られる、オボアルブミン、オボムコイド、オボムチン、オボトランスフェリン、オボインヒビター、オボグロブリン、リゾチームからなる群から選ばれる少なくとも1種の卵内アレルゲンタンパク質が低減又は消失されたノックアウト家禽卵。
項20. 項18に記載の方法により生産された雌の遺伝子改変家禽から得られる、外来遺伝子の発現産物を含むノックイン家禽卵。
項21. 外来遺伝子がヒト由来のタンパク質をコードする遺伝子である、項20に記載のノックイン家禽卵。
項22. 外来遺伝子が抗体又はその断片、酵素、ホルモン、成長因子、サイトカイン、インターフェロン、コラーゲン、細胞外マトリクス分子、ワクチン、アゴニスト性タンパク質、アンタゴニスト性タンパク質からなる群から選ばれる、項20又は21に記載のノックイン家禽卵。
項23. 雌始原生殖細胞の継代培養方法であって、培地の交換を常圧下もしくは低重力加速度下に行うことを特徴とする、雌始原生殖細胞の継代培養方法。
The present invention provides the following methods for genetic modification of poultry primordial germ cells, methods for producing genetically modified poultry, methods for subculturing female primordial germ cells, and knock-in poultry eggs.
Item 1. A method for gene modification of poultry primordial germ cells, which comprises modifying genes of poultry primordial germ cells by genome editing.
Item 2. Item 2. The genetic modification method according to Item 1, wherein the poultry primordial germ cells are female primordial germ cells.
Item 3. Item 3. The gene modification method according to Item 1 or 2, wherein the gene is an egg protein gene.
Item 4. Item 4. The gene modification method according to any one of Items 1 to 3, wherein the gene is modified by genome editing using TALEN or CRISPR.
Item 5. Item 5. The gene modification method according to Item 4, wherein the gene is modified by genome editing using CRISPR.
Item 6. Item 6. The gene modification method according to any one of Items 1 to 5, wherein the gene modification is gene knock-in, knock-out or partial deletion.
Item 7. Any one of Items 1 to 6, wherein the gene is modified by knock-in, a drug resistance gene is incorporated into the poultry primordial germ cell, and the primordial germ cell genetically modified based on the drug resistance gene is selected. The gene modification method according to Item.
Item 8. Item 1- characterized in that the gene is modified by knockout or partial deletion, a drug resistance gene is introduced into the poultry primordial germ cell, and the primordial germ cell genetically modified based on the drug resistance gene is selected. 7. The gene modification method according to any one of 6 above.
Item 9. Item 9. The gene modification method according to Item 7 or 8, wherein the drug resistance gene is a puromycin resistance gene (Puro r ) or a zeocin resistance gene (Zeo r ).
Item 10. Item 10. The gene modification method according to any one of Items 1 to 9, wherein genome editing is performed using a plasmid vector or a virus vector.
Item 11. Item 11. The gene modification method according to Item 10, wherein a plasmid vector or a virus vector is introduced into an early poultry embryo, the genome of the endogenous primordial germ cell is edited, and the endogenous poultry primordial germ cell is genetically modified.
Item 12. Item 11. A poultry primordial germ cell obtained by the genetic modification method according to any one of Items 1 to 10 and genetically modified by genome editing.
Item 13. Item 13. The poultry primordial germ cell of Item 12, which is a female primordial germ cell.
Item 14. A step of obtaining a genetically modified chimera individual by transplanting a genetically modified poultry primordial germ cell obtained by the method of any one of Items 1 to 10 to a blastoderm, blood or gonad region of an early poultry embryo, A method for producing genetically modified poultry, comprising the step of mating an individual with a wild type individual, a genetically modified individual or a genetically modified chimeric individual.
Item 15. A genetic modification comprising the step of maturing a chimeric individual comprising an endogenous poultry primordial germ cell genetically modified by the method according to Item 11 and mating with a wild type individual, a genetically modified individual, or another genetically modified chimeric individual Poultry production method.
Item 16. Item 16. The method according to Item 14 or 15, wherein the genetically modified poultry genotype is a mutant homo (-/-).
Item 17. Item 17. The method according to any one of Items 14 to 16, wherein the genetic modification is a knockout of at least one in ovo protein gene selected from the group consisting of ovalbumin, ovomucoid, ovomucin, ovotransferrin, and ovoinhibitor.
Item 18. Item 17. The method according to any one of Items 14 to 16, wherein the genetic modification is a heterogeneous or homozygous knock-in of a foreign gene in an egg protein gene, and the female genetically modified poultry egg contains an expression product of the foreign gene.
Item 19. Item 18. At least one in-vitro allergen protein selected from the group consisting of ovalbumin, ovomucoid, ovomucin, ovotransferrin, ovoinhibitor, ovoglobulin, and lysozyme, obtained from female genetically modified poultry produced by the method according to Item 17. Knockout poultry eggs that have been reduced or eliminated.
Item 20. Item 19. A knock-in poultry egg containing an expression product of a foreign gene obtained from a female genetically modified poultry produced by the method according to Item 18.
Item 21. Item 21. The knock-in poultry egg according to Item 20, wherein the foreign gene is a gene encoding a human-derived protein.
Item 22. Item 22. The knockin according to Item 20 or 21, wherein the foreign gene is selected from the group consisting of an antibody or fragment thereof, enzyme, hormone, growth factor, cytokine, interferon, collagen, extracellular matrix molecule, vaccine, agonistic protein, and antagonistic protein. Poultry eggs.
Item 23. A method for subculturing female primordial germ cells, wherein the medium is exchanged at normal pressure or under low gravitational acceleration.
 本発明によれば、ゲノム編集により効率よく家禽始原生殖細胞の遺伝子改変を行うことができる。ノックアウトについてはPuror、Zeorなどを用いることにより90%以上の効率で標的配列に変異導入が可能であり、ノックインについては組換え導入効率80~90%以上で1~5x105細胞に1系統以上の効率でクローンを樹立可能である。遺伝子は、オボムコイドやオボアルブミンなどアレルゲンの場合にはノックアウトすることでアレルゲンを含まない卵を生産できる。また、オボムコイド又はオボアルブミン遺伝子など卵内タンパク質遺伝子に有用な外来遺伝子をノックインすることで、有用な遺伝子産物を多量に含む卵を産生できる。 According to the present invention, genetic modification of poultry primordial germ cells can be performed efficiently by genome editing. Puro r for knockout mutation introduced into the target sequence with greater than 90% efficiency by the like Zeo r are possible, one system in 1 ~ 5x10 5 cells with a recombinant transfer efficiency 80-90% higher for the knock Clones can be established with the above efficiency. In the case of allergens such as ovomucoid and ovalbumin, the gene can be knocked out to produce eggs that do not contain allergens. In addition, an egg containing a large amount of a useful gene product can be produced by knocking in a foreign gene that is useful for a protein gene in the egg such as an ovomucoid or ovalbumin gene.
 ゲノム編集技術を家禽始原生殖細胞の卵内タンパク質遺伝子に適用して得られた家禽卵は、オボムコイドやオボアルブミンなどの遺伝子をホモ欠損型にすることにより、アレルゲン性の高いタンパク質を卵白より除去することができる。また、卵管プロモーターの制御下に外来遺伝子をノックインすることで卵内に外来遺伝子の発現産物を有する家禽卵を得ることができる。 Poultry eggs obtained by applying genome editing technology to in ovo protein genes of poultry primordial germ cells remove genes with high allergenicity from egg white by making genes such as ovomucoid and ovalbumin homozygous. be able to. Moreover, a poultry egg having an expression product of a foreign gene in the egg can be obtained by knocking in the foreign gene under the control of the fallopian tube promoter.
 本発明により得られる遺伝子改変された家禽始原生殖細胞は、レシピエント胚に移植後これを孵化させ、キメラ個体(G0)を得、必要に応じてこれを交配させるなどの常法に従い遺伝子が改変された家禽を得ることができる。ゲノム編集により遺伝子改変された始原生殖細胞は、遺伝子改変の効率が高いだけでなく、レシピエント胚に移植後キメラ個体を得て、これを交配させ後代を得た場合、平均して後代1.7~2.3羽に1羽(ノックアウトおよび部分欠損)、3.5~3.8羽に1羽(ノックイン)の高い確率で遺伝子改変個体が得られる。なお、キメラ個体は後代ではなく、キメラ個体の次の代が「後代」である。後代の中には移植始原生殖細胞(ドナー)由来の遺伝子改変個体(組換え個体)と移植始原生殖細胞(ドナー)由来の野生型個体(非組換え個体)および内在性始原生殖細胞由来の野生型個体が存在するが、本発明では遺伝子改変個体の割合が非常に高いことが特徴である。始原生殖細胞のゲノム編集の効率が非常に高いことに加え、ゲノム編集により遺伝子改変された始原生殖細胞は、生殖系列への分化能が非常に高いために高い確率で遺伝子改変個体が得られたものである。また、従来の雌始原生殖細胞は100日程度の培養で死滅するような増殖能力の弱いものであり、遺伝子改変した雌始原生殖細胞の生殖系列への分化能も非常に弱いと考えられる。遺伝子改変された雌のキメラ個体はゲノム編集を用いた本発明で初めて得ることができた。本発明の遺伝子改変技術は、高効率な遺伝子のノックアウトが可能であるので、標的遺伝子を破壊することにより、ウイルス受容体タンパク質や糖鎖改変、欠失による高病原性トリインフルエンザ等への抗病性家禽の開発や摂食抑制ホルモンの改変、欠失により摂食抑制が働かず、短期間で肥大する肉用家禽、あるいは成長ホルモン系遺伝子の変異、欠失による低成長の愛玩用家禽等の効率よい開発にもつながり得る。 The genetically modified poultry primordial germ cells obtained by the present invention are hatched after transplantation into a recipient embryo to obtain a chimeric individual (G0), and the gene is modified according to conventional methods such as mating if necessary Finished poultry can be obtained. Primordial germ cells that have been genetically modified by genome editing not only have high genetic modification efficiency, but also when a chimeric individual is obtained after transplantation into a recipient embryo and crossed to obtain a progeny, the progeny is 1. A genetically modified individual can be obtained with a high probability of 1 in 7 to 2.3 birds (knock-out and partial defect) and 1 in 3.5 to 3.8 birds (knock-in). A chimeric individual is not a progeny, and the next generation of the chimeric individual is a “progeny”. Among the progenies are genetically modified individuals (recombinant individuals) derived from transplanted primordial germ cells (donors), wild-type individuals (non-recombinant individuals) derived from transplanted primordial germ cells (donor), and wild derived from endogenous primordial germ cells Although there are type individuals, the present invention is characterized by a very high proportion of genetically modified individuals. In addition to the extremely high efficiency of genome editing of primordial germ cells, primordial germ cells genetically modified by genome editing have a high probability of differentiation into the germ line, so that genetically modified individuals were obtained with high probability. Is. In addition, conventional female primordial germ cells are weak in proliferating ability that can be killed by culturing for about 100 days, and it is considered that the genetically modified female primordial germ cells are also very weakly differentiated into the germline. Genetically modified female chimeric individuals could be obtained for the first time in the present invention using genome editing. Since the gene modification technology of the present invention enables highly efficient gene knockout, anti-disease against highly pathogenic avian influenza, etc. caused by virus receptor protein or sugar chain modification or deletion by destroying the target gene Development of sex poultry and changes or deletions of anti-hormone hormones, such as meat poultry that do not suppress food intake and grow in a short period of time, or low-growth pet poultry due to mutations or deletions of growth hormone genes It can also lead to efficient development.
 オボムコイドやオボアルブミンなどの卵管プロモーター下に外来遺伝子をノックインすることにより、位置効果によるサイレンシングなどの影響を受けずに卵内に外来遺伝子由来タンパク質を高発現させ、安価なタンパク質生産につながりうる。また、従来行われてきた鶏卵バイオリアクター技術よりも効率良く外来遺伝子由来タンパク質を発現可能と強く期待される。 By knocking in a foreign gene under an oviduct promoter such as ovomucoid or ovalbumin, foreign gene-derived protein can be highly expressed in the egg without being affected by silencing due to positional effects, which can lead to inexpensive protein production. . In addition, it is strongly expected that foreign gene-derived proteins can be expressed more efficiently than the conventional egg bioreactor technology.
 さらに、雌始原生殖細胞株を長期培養し、遺伝子改変することで雌の遺伝子改変G0キメラを樹立可能で、雄の遺伝子改変G0キメラと交配することで短期間にホモ型の遺伝子改変個体を樹立し得る。これにより、ホモ型のノックアウト家禽やノックイン家禽の樹立期間を大幅に短縮することが出来る。更に、遺伝子改変G0ニワトリ(キメラ個体)同士の交配を可能にすることで、従来より大幅に早く、様々な組み合わせの遺伝子改変ニワトリ(F1以降)を後代に樹立し得る。また、家禽はWZ型の性染色体を有するため、従来不可能であった雌にしか存在しないW染色体上遺伝子のノックアウトやW染色体上へのノックインを可能にし、伴性型の表現型を人為的に付与することを可能にする。 Furthermore, female genetically modified G0 chimeras can be established by long-term culture and genetic modification of female primordial germ cell lines, and homozygous genetically modified individuals can be established in a short period of time by mating with male genetically modified G0 chimeras. Can do. Thereby, the establishment period of homo knockout poultry and knock-in poultry can be significantly shortened. Furthermore, by allowing mating of genetically modified G0 chickens (chimeric individuals), various combinations of genetically modified chickens (F1 and later) can be established as progenies significantly faster than before. In addition, because poultry have a WZ-type sex chromosome, it is possible to knock out genes on the W chromosome and knock in on the W chromosome, which was not possible only in females, and artificially phenotyped the sexual type It is possible to grant to.
ニワトリオボアルブミン遺伝子の標的配列(2ヶ所, OVATg1とOVATg3の標的配列)。大文字がsgRNA認識部位、隣接する下線部がPAM配列を示すTarget sequence of chicken ovalbumin gene (2 sites, target sequences of OVATg1 and OVATg3). Uppercase letters indicate sgRNA recognition sites, adjacent underlined parts indicate PAM sequences ニワトリオボムコイド遺伝子の標的配列(4ヶ所, OVMTg2, OVMTg3, OVMTg5, OVMTg6の標的配列)大文字がsgRNA認識部位、隣接する下線部がPAM配列を示す。OVMTg5はイントロン領域を含む(斜線がイントロン/エキソンの境界)Target sequence of chicken ovomucoid gene (4 sites, target sequences of OVMTg2, OVMTg3, OVMTg5, OVMTg6) Uppercase letters indicate sgRNA recognition sites and adjacent underlined parts indicate PAM sequences. OVMTg5 contains intron region (hatched area is intron / exon boundary) CRISPRによるオボアルブミン遺伝子破壊例 大文字(下線)がsgRNA認識部位、隣接する囲い部分がPAM配列を示す 変異した配列の欠失部は-(ハイフン)、変異部は大文字で表記 OVATg1のMetは翻訳開始部位を示す。Example of ovalbumin gene disruption by CRISPR Uppercase (underlined) is sgRNA recognition site, adjacent box shows PAM sequence Deletion of mutated sequence is-(hyphen), mutation is capitalized 大 文字 OVATg1 Met starts translation Indicates the site. CRISPRによるオボムコイド遺伝子破壊例 大文字(下線)がsgRNA認識部位、隣接する囲い部分がPAM配列を示す OVMTg5配列ではイントロン/エキソンの境界部を/(スラッシュ)で表記 変異した配列の欠失部は-(ハイフン)、変異部は大文字で表記Example of disruption of ovomucoid gene by CRISPR Uppercase (underlined) indicates sgRNA recognition site, adjacent box indicates PAM sequence で は In the OVMTg5 sequence, the intron / exon boundary is indicated by / (slash) Mutation deletion part is-( Hyphens), mutations are capitalized 上段:オボムコイド遺伝子が破壊されたニワトリの例。写真の移植始原生殖細胞由来ニワトリ(黒)のオボムコイド遺伝子は片アレルで図2のTg2領域の5塩基が欠損している。ニワトリゲノムの当該領域をセンス側、アンチセンス側それぞれから塩基配列を解析した結果を示す。下段:ニワトリ個体に認められたオボムコイド遺伝子の変異例(F1ニワトリ)。1から31塩基の欠損が認められた。Top: An example of a chicken in which the ovomucoid gene has been disrupted. The ovomucoid gene in the chick germ-derived chick (black) in the photograph is a single allele and lacks 5 bases in the Tg2 region of Fig. 2. The result of having analyzed the base sequence from the sense side and the antisense side of the region of the chicken genome is shown. Bottom: Ovomucoid gene mutation (F1 chicken) found in chicken individuals. A deletion of 1 to 31 bases was observed. オボアルブミン遺伝子座への外来遺伝子(EGFPドナーコンストラクト)ノックインとゲノムPCRによるノックインの証明。プライマー1(P1)~プライマー8(P8)は以下の配列に対応 P1:配列番号27、P2:配列番号29、P3:配列番号28、P4:配列番号26、P5:配列番号30、P6:配列番号32、 P7:配列番号33、P8:配列番号31 Nested PCRの結果、ノックイン始原生殖細胞(PGCs)由来ゲノムにのみ想定サイズの増幅産物を認める(写真、矢印)Demonstration of knock-in by exogenous gene (EGFP donor construct) knock-in to the ovalbumin locus and genomic PCR. Primer 1 (P1) to Primer 8 (P8) correspond to the following sequences: P1: SEQ ID NO: 27, P2: SEQ ID NO: 29, P3: SEQ ID NO: 28, P4: SEQ ID NO: 26, P5: SEQ ID NO: 30, P6: Sequence No. 32, P7: SEQ ID NO: 33, P8: SEQ ID NO: 31 Nested As a result of PCR, an amplification product of the expected size is recognized only in the genome derived from knock-in primordial germ cells (PGCs) (photo, arrow) オボアルブミン遺伝子座への外来遺伝子ノックインとゲノム定量PCRによるノックイン効率の検定 プライマー1(P1)~プライマー3(P3)は以下の配列に対応。 P1:配列番号34、P2:配列番号35、P3:配列番号36 OVA(ATG)定量の結果、ノックイン始原生殖細胞(PGCs)では90%以上のオボアルブミン遺伝子座にドナーコンストラクトがノックインされている。また、OVA5’の結果、ランダムな挿入は殆ど無いと考えられるExamination of knock-in efficiency by foreign gene knock-in to the ovalbumin gene locus and genome quantitative PCR Primer 1 (P1) to Primer 3 (P3) correspond to the following sequences. P1: SEQ ID NO: 34, P2: SEQ ID NO: 35, P3: SEQ ID NO: 36 As a result of OVA (ATG) quantification, the donor construct was knocked in at 90% or more of ovalbumin loci in knockin primordial germ cells (PGCs). Also, as a result of OVA5 ', there is almost no random insertion オボアルブミン遺伝子座へのヒトインターフェロンβ遺伝子ノックインとゲノムPCRによるノックインの証明。プライマー1(P1)~プライマー8(P8)は以下の配列に対応P1:配列番号27、P2:配列番号29、P3:配列番号41、P4:配列番号40、P5:配列番号30、P6:配列番号32、 P7:配列番号33、P8:配列番号31 Nested PCRの結果、ノックイン始原生殖細胞(PGCs)由来ゲノムにのみ想定サイズの増幅産物を認める(写真、矢印)Demonstration of knock-in by human interferon β gene knock-in to the ovalbumin locus and genomic PCR. Primer 1 (P1) to Primer 8 (P8) correspond to the following sequences: P1: SEQ ID NO: 27, P2: SEQ ID NO: 29, P3: SEQ ID NO: 41, P4: SEQ ID NO: 40, P5: SEQ ID NO: 30, P6: Sequence No. 32, P7: SEQ ID NO: 33, P8: SEQ ID NO: 31 Nested As a result of PCR, an amplification product of the expected size is recognized only in the genome derived from knock-in primordial germ cells (PGCs) (photo, arrow) キメラニワトリ精子におけるオボアルブミン遺伝子座へのヒトインターフェロンβ遺伝子ノックインの証明。4羽のキメラニワトリ(411~414)、1羽のネガティブコントロールニワトリ(416、NC)の精液ゲノム及びノックイン細胞(PCIFNKI#4)ゲノムを配列番号30と31(3’UTR)、配列番号27と40(5’OVAp_out-IFN)、配列番号27と36(5’OVAp_out-OVA(ATG)のプライマーを用いて増幅した。予期されるサイズに出現したバンドを*で示す。411,412においてポジティブコントロールと同程度の相対強度のノックインシグナルを認める。Demonstration of human interferon beta gene knock-in to the ovalbumin locus in chimeric chicken sperm. The semen genome and knock-in cell (PCIFNKI # 4) genome of four chimeric chickens (411-414), one negative control chicken (416, NC) are represented by SEQ ID NOs: 30 and 31 (3'UTR), SEQ ID NO: 27 Amplified with primers of 40 (5'OVAp_out-IFN), SEQ ID NOS: 27 and 36 (5'OVAp_out-OVA (ATG). Bands appearing at the expected size are indicated by *. Positive controls at 411 and 412 A knock-in signal of the same relative intensity is observed. オボアルブミン遺伝子座にヒトインターフェロンβ遺伝子がノックインされたニワトリ。図7Bの411と412の後代ニワトリ(雌)の写真および、後代血液由来ゲノムをPCR解析し、オボアルブミン遺伝子座にIFNドナーコンストラクトがノックインされたことを示す。野生型(WT:ネガティブコントロール(NC))ニワトリの羽軸(Shaft)由来ゲノム、ノックイン後代(KI)ニワトリの羽軸(Shaft)由来ゲノム及びノックイン細胞(KI PGC:ポジティブコントロール(PC))由来ゲノムを配列番号30と31(ノックイン3’領域)、配列番号27と40(ノックイン5’領域)、配列番号27と36(内在性オボアルブミン)のプライマーを用いて増幅した。予期されるサイズに出現したバンドを*で示す。411,412後代においてポジティブコントロールと同パターンのシグナルを認め、後代ニワトリのオボアルブミン遺伝子座にIFNドナーコンストラクトがノックインされたと判断できる。A chicken in which the human interferon β gene is knocked in at the ovalbumin gene locus. Photographs of progeny chickens (female) 411 and 412 in FIG. 7B and PCR analysis of the progeny blood-derived genome show that the IFN donor construct was knocked in at the ovalbumin locus. Wild-type (WT: negative control (NC)) chicken wing shaft (Shaft) -derived genome, knock-in progeny (KI) chicken wing shaft (Shaft) -derived genome and knock-in cell (KI PGC: positive control (PC))-derived genome Were amplified using primers of SEQ ID NOs: 30 and 31 (knock-in 3 ′ region), SEQ ID NOs: 27 and 40 (knock-in 5 ′ region), and SEQ ID NOs: 27 and 36 (endogenous ovalbumin). Bands that appear in the expected size are marked with *. In the 411, 412 progeny, a signal of the same pattern as the positive control was observed, and it can be determined that the IFN donor construct was knocked in at the ovalbumin locus of the progeny chicken. ニワトリオボアルブミン遺伝子の標的配列(2ヶ所, OVATg1とOVATg2の標的配列)。大文字がsgRNA認識部位、隣接する下線部がPAM配列を示す。Target sequence of chicken ovalbumin gene (2 sites, target sequences of OVATg1 and OVATg2). The capital letter indicates the sgRNA recognition site, and the adjacent underline indicates the PAM sequence. ニワトリ始原生殖細胞オボアルブミン遺伝子座への遺伝子ノックインの効率化。導入群1と導入群2ではノックインの効率は変わっておらず、細胞数は導入群2の方が多いことから、導入群2の導入法がより好ましい。導入群2と導入群3では導入群3の方がノックイン効率が高いと考えられ、導入群3の導入法がより好ましい。Efficiency of gene knock-in to the chicken primordial germ cell ovalbumin locus. Since the efficiency of knock-in is not changed between introduction group 1 and introduction group 2, and the number of cells is larger in introduction group 2, the introduction method of introduction group 2 is more preferable. Introducing Group 2 and Introducing Group 3 are considered to have higher knock-in efficiency than Introducing Group 3, and the introducing method of Introducing Group 3 is more preferable. オボアルブミン遺伝子座へのヒト免疫グロブリン遺伝子ノックインとゲノムPCRによるノックインの証明。プライマー1(P1)~プライマー8(P8)は以下の配列に対応 P1:配列番号27、P2:配列番号29、P3:配列番号44、P4:配列番号43、P5:配列番号30、P6:配列番号32、 P7:配列番号33、P8:配列番号31 Nested PCRの結果、ノックイン始原生殖細胞(PGCs)由来ゲノムにのみ想定サイズの増幅産物を認める(写真、矢印)。Human immunoglobulin gene knock-in to the ovalbumin locus and demonstration of knock-in by genomic PCR. Primer 1 (P1) to Primer 8 (P8) correspond to the following sequences: P1: SEQ ID NO: 27, P2: SEQ ID NO: 29, P3: SEQ ID NO: 44, P4: SEQ ID NO: 43, P5: SEQ ID NO: 30, P6: Sequence No. 32, 32 P7: SEQ ID NO: 33, P8: SEQ ID NO: 31 Nested As a result of PCR, an amplified product of the expected size is recognized only in the genome derived from knock-in primordial germ cells (PGCs) (photograph, arrow). オボアルブミン遺伝子座へのヒトコラーゲン遺伝子ノックインとゲノムPCRによるノックインの証明。プライマー1(P1)~プライマー8(P8)は以下の配列に対応 P1:配列番号27、P2:配列番号29、P3:配列番号44、P4:配列番号43、P5:配列番号30、P6:配列番号32、 P7:配列番号33、P8:配列番号31 Nested PCRの結果、ノックイン始原生殖細胞(PGCs)由来ゲノムにのみ想定サイズの増幅産物を認める(写真、矢印)。Human collagen gene knock-in to the ovalbumin locus and demonstration of knock-in by genomic PCR. Primer 1 (P1) to Primer 8 (P8) correspond to the following sequences: P1: SEQ ID NO: 27, P2: SEQ ID NO: 29, P3: SEQ ID NO: 44, P4: SEQ ID NO: 43, P5: SEQ ID NO: 30, P6: Sequence No. 32, 32 P7: SEQ ID NO: 33, P8: SEQ ID NO: 31 Nested As a result of PCR, an amplified product of the expected size is recognized only in the genome derived from knock-in primordial germ cells (PGCs) (photograph, arrow). 雌始原生殖細胞(PGCs)の長期培養とゲノムPCRによる細胞の雌雄判定。CHD(chromo-helicase-DNA binding protein)遺伝子増幅により雌雄判別が可能で、培養始原生殖細胞が雌の核型であることが示された。Sexual determination of cells by long-term culture of female primordial germ cells (PGCs) and genomic PCR. Sexual differentiation was possible by CHD (chromo-helicase-DNAasebinding protein) gene amplification, indicating that the cultured primordial germ cells were female karyotypes. 雄始原生殖細胞(培養約4ヶ月)、本法による雌始原生殖細胞(培養約3ヶ月)、常法による雌始原生殖細胞(継代時遠心操作あり、培養約40日)の細胞数増加の比較。培養8日後にそれぞれ12.2倍、4.0倍、0.9倍の細胞数を認めた。Increase in the number of male primordial germ cells (about 4 months in culture), female primordial germ cells by this method (about 3 months in culture), and female primordial germ cells by conventional methods (with centrifugation at passage, about 40 days in culture) Comparison. After 8 days of culture, the cell numbers were 12.2 times, 4.0 times, and 0.9 times, respectively. 本法により培養した雌始原生殖細胞由来の後代(矢印)と同親由来のレシピエント由来の後代(後方、黒色羽毛の3羽)Progeny derived from female primordial germ cells cultured by this method (arrows) and progeny derived from recipients of the same parent (back, 3 black feathers) 雌始原生殖細胞への安定遺伝子導入とニワトリ初期胚血液移植後の生殖巣(卵巣)への定着Stable gene transfer into female primordial germ cells and establishment in the gonad (ovary) after early chicken embryo blood transplantation 雌始原生殖細胞におけるアレルゲン遺伝子破壊例 大文字(下線)がsgRNA認識部位、隣接する囲い部分がPAM配列を示す 変異した配列の欠失部は-(ハイフン)、変異部は大文字で表記 オボアルブミンのOVATg3領域とオボムコイドのOVMTg2領域を標的としてそれぞれ遺伝子破壊Example of allergen gene disruption in female primordial germ cell Uppercase (underlined) is sgRNA recognition site, adjacent box shows PAM sequence 欠 失 Deletion of mutated sequence is-(hyphen), mutation is capitalized OVATg3 of ovalbumin Gene and OVMTg2 region of ovomucoid 雌始原生殖細胞のオボアルブミン遺伝子座への外来遺伝子(EGFPドナーコンストラクト)ノックインとゲノムPCRによるノックインの証明。プライマー1(P1)~プライマー8(P8)は以下の配列に対応 P1:配列番号27、P2:配列番号29、P3:配列番号28、P4:配列番号26、P5:配列番号30、P6:配列番号32、 P7:配列番号33、P8:配列番号31 Nested PCRの結果、ノックイン始原生殖細胞(PGCs)由来ゲノムにのみ想定サイズの増幅産物を認める(写真、矢印)Demonstration of knock-in by exogenous gene (EGFP donor construct) knock-in to the ovalbumin locus in female primordial germ cells and genomic PCR. Primer 1 (P1) to Primer 8 (P8) correspond to the following sequences: P1: SEQ ID NO: 27, P2: SEQ ID NO: 29, P3: SEQ ID NO: 28, P4: SEQ ID NO: 26, P5: SEQ ID NO: 30, P6: Sequence No. 32, P7: SEQ ID NO: 33, P8: SEQ ID NO: 31 Nested As a result of PCR, an amplification product of the expected size is recognized only in the genome derived from knock-in primordial germ cells (PGCs) (photo, arrow) 雌始原生殖細胞のオボアルブミン遺伝子座へのヒトインターフェロンβ遺伝子ノックインとゲノムPCRによるノックインの証明。プライマー1(P1)~プライマー8(P8)は以下の配列に対応 P1:配列番号27、P2:配列番号29、P3:配列番号41、P4:配列番号40、P5:配列番号30、P6:配列番号32、 P7:配列番号33、P8:配列番号31 Nested PCRの結果、ノックイン始原生殖細胞(PGCs)由来ゲノムにのみ想定サイズの増幅産物を認める(写真、矢印)Human interferon β gene knock-in to the ovalbumin locus in female primordial germ cells and demonstration of knock-in by genomic PCR. Primer 1 (P1) to Primer 8 (P8) correspond to the following sequences: P1: SEQ ID NO: 27, P2: SEQ ID NO: 29, P3: SEQ ID NO: 41, P4: SEQ ID NO: 40, P5: SEQ ID NO: 30, P6: Sequence No. 32, P7: SEQ ID NO: 33, P8: SEQ ID NO: 31 Nested As a result of PCR, an amplification product of the expected size is recognized only in the genome derived from knock-in primordial germ cells (PGCs) (photo, arrow)
 本発明では、家禽の始原生殖細胞の遺伝子をゲノム編集により改変する。 In the present invention, the genes of primordial germ cells in poultry are modified by genome editing.
 ゲノム編集は、2本鎖DNAの切断とその修復のエラーを利用して遺伝子改変を行う技術であり、標的の2本鎖DNAを切断できるヌクレアーゼ、前記ヌクレアーゼと結合もしくは複合化したDNA認識成分を使用することができる。ゲノム編集としては、ZFN(zinc finger nuclease)、TALEN、CRISPRが挙げられる。例えば、ZFNでは、FokI(ヌクレアーゼ)とジンクフィンガーモチーフ(DNA認識成分)が用いられ、TALENでは、FokI(ヌクレアーゼ)とTALエフェクター(DNA認識成分)が用いられ、CRISPRでは、Cas9(ヌクレアーゼ)とguide RNA(gRNA, DNA認識成分)が用いられる。ゲノム編集に用いられるヌクレアーゼは、ヌクレアーゼ活性を有していればよく、ヌクレアーゼ以外にDNAポリメラーゼ、リコンビナーゼなどを用いることもできる。 Genome editing is a technology that uses a double-strand DNA break and its repair error to modify the gene. A nuclease that can cleave the target double-strand DNA and a DNA recognition component that binds or is complexed with the nuclease. Can be used. Examples of genome editing include ZFN (zinc finger nuclease), TALEN, and CRISPR. For example, FFN (nuclease) and zinc finger motif (DNA recognition component) are used in ZFN, FokI (nuclease) and TAL effector (DNA recognition component) are used in TALEN, and Cas9 (nuclease) and guide are used in CRISPR. RNA (gRNA, DNA recognition component) is used. The nuclease used for genome editing only needs to have nuclease activity, and in addition to the nuclease, DNA polymerase, recombinase, and the like can also be used.
 家禽としては、ニワトリ、ウズラ、シチメンチョウ、アヒル、ガチョウ、オナガドリ、チャボ、ハト、ダチョウ、キジ、ホロホロチョウなどが挙げられ、好ましくはニワトリ、ウズラなどが挙げられる。 Examples of poultry include chickens, quails, turkeys, ducks, geese, long-tailed birds, chabos, pigeons, ostriches, pheasants, and guinea fowls, and preferably chickens and quails.
 始原生殖細胞は雄と雌のいずれでもよい。従来、雌の始原生殖細胞の遺伝子改変は細胞培養が100日程度しか実現できていないため難しいとされていたが、本発明では、培地の交換を常圧下もしくは低重力加速度下において、好ましくは遠心分離を行わずに上清を分離して培養することで、280日を超える期間の雌の始原生殖細胞の培養に成功した。
このような長期間の培養が可能になったことから遺伝子改変始原生殖細胞を移植した雌の家禽成体(雌の遺伝子改変キメラ個体)の生産が可能になった。図11Bに示すように、雄始原生殖細胞は、培地の交換時に遠心操作を加えても増殖能力が高いが、雌始原生殖細胞は培地交換のたびに遠心操作を行うとほとんど増殖せず、キメラ個体を得ることは実質的に困難であるが、培地交換時の遠心操作を抑制することで増殖能力を維持でき、キメラ個体を得ることができる。
The primordial germ cell may be male or female. Conventionally, genetic modification of female primordial germ cells has been considered difficult because cell culture can only be achieved for about 100 days. In the present invention, medium replacement is preferably performed under normal pressure or low gravity acceleration, preferably by centrifugation. By separating and culturing the supernatant without separation, female primordial germ cells were successfully cultured for a period exceeding 280 days.
Such long-term culture enabled production of adult female poultry (female genetically modified chimeric individuals) into which genetically modified primordial germ cells had been transplanted. As shown in FIG. 11B, male primordial germ cells have high proliferation ability even when centrifugation is performed at the time of medium exchange. However, female primordial germ cells hardly proliferate when subjected to centrifugation every time the medium is changed. Although it is substantially difficult to obtain an individual, the ability to grow can be maintained by suppressing the centrifugal operation at the time of medium exchange, and a chimeric individual can be obtained.
 ニワトリなどの家禽始原生殖細胞は浮遊性の細胞であり、BRL細胞やSTO細胞などのフィーダー細胞存在下で培養される。継代に際しては例えば非特許文献3に記されているように、数日おきに始原生殖細胞を培地ごと遠心チューブに移し、300g, 5分程度の遠心により細胞を沈殿させ、培地に再懸濁後細胞を播種するのが一般的である。この方法を用いることで雄始原生殖細胞は長期の継代が可能であるが、雌始原生殖細胞の継代は困難であり(図11B)、例えば非特許文献3によれば、独立した2系統の雌始原生殖細胞が樹立されたがそれぞれ109日、77日を超えて維持することが不可能となったと記されている。維持が不可能になるとは、雌始原生殖細胞の大部分が死滅した状態である。雌始原生殖細胞を長期間維持する方法として、より穏やかな培地の回収法を適宜行うことにより、280日を超えて雌始原生殖細胞を培養可能なことを見出した。より穏やかな回収法とはすなわち、継代時に雌始原生殖細胞に加える重力加速度を300g未満、好ましくは270g以下、より好ましくは200g以下、さらに好ましくは100g以下、特に好ましくは50g以下、最も好ましくは1g(常圧)の低重力加速度下で培養を行うことである。また、適宜とは1ヶ月に1回以上、好ましくは一週間に1回以上、より好ましくは2回以上を示しており、これを行う限りにおいて、場合によっては例外的に雄始原生殖細胞と同様に300gを超える重力加速度を雌始原生殖細胞に加えても良い。雌始原生殖細胞は重力加速度の負荷に感受性であり、重力加速度の負荷は増殖能力を維持可能な範囲で行う。例えば、実施例では、培地交換時の遠心操作による重力加速度(300g)の負荷は、1週間に1回までであれば雌始原生殖細胞による増殖能力は維持できる。当業者はこのことを参考にして、増殖能力が維持可能な重力加速度の負荷とその頻度を決定できる。 Poultry primordial germ cells such as chickens are floating cells and are cultured in the presence of feeder cells such as BRL cells and STO cells. When subcultured, for example, as described in Non-Patent Document 3, primordial germ cells are transferred to the centrifuge tube together with the medium every few days, and the cells are precipitated by centrifugation at 300 g for about 5 minutes and resuspended in the medium. It is common to seed cells afterwards. By using this method, male primordial germ cells can be passaged for a long time, but passage of female primordial germ cells is difficult (FIG. 11B). It is noted that the female primordial germ cells were established but became impossible to maintain beyond 109 days and 77 days, respectively. When maintenance is impossible, most of the female primordial germ cells have died. As a method for maintaining female primordial germ cells for a long period of time, it has been found that female primordial germ cells can be cultured over 280 days by appropriately performing a gentler medium recovery method. A milder recovery method means that the gravitational acceleration applied to female primordial germ cells at the time of passage is less than 300 g, preferably 270 g or less, more preferably 200 g or less, more preferably 100 g or less, particularly preferably 50 g or less, most preferably The culture is performed under a low gravitational acceleration of 1 g (normal pressure). In addition, the term “appropriately” indicates at least once a month, preferably at least once a week, and more preferably at least twice a month. In addition, a gravitational acceleration exceeding 300 g may be added to the female primordial germ cells. Female primordial germ cells are sensitive to the acceleration of gravity acceleration, and the acceleration of gravity acceleration is performed within a range where the proliferation ability can be maintained. For example, in the example, if the load of the gravitational acceleration (300 g) due to the centrifugal operation at the time of medium replacement is up to once a week, the proliferation ability of female primordial germ cells can be maintained. A person skilled in the art can refer to this and determine the load of gravity acceleration that can maintain the growth ability and the frequency thereof.
 ゲノム編集により改変される遺伝子としては、オボアルブミン、オボムコイド、オボムチン、オボトランスフェリン、オボインヒビター、オボグロブリン、リゾチームなどの卵内タンパク質、特に卵白タンパク質、色素細胞刺激ホルモン、レプチン、コカイン-アンフェタミン調節転写産物などの摂食抑制性タンパク質、成長ホルモンやその受容体などの成長促進性タンパク質、鳥類感染性ウイルスが認識する膜タンパク質や糖鎖を合成する糖付加酵素(例えばシアル酸転移酵素群)などをコードする遺伝子が挙げられる。これらの遺伝子の機能は遺伝子のゲノム編集により低下又は欠失され得る。 Genes modified by genome editing include ovalbumin, ovomucoid, ovomucin, ovotransferrin, ovoinhibitor, ovoglobulin, lysozyme and other in ovo proteins, especially egg white protein, pigment cell stimulating hormone, leptin, cocaine-amphetamine regulated transcript It encodes growth-inhibiting proteins such as growth hormones and their receptors, membrane proteins recognized by avian infectious viruses, and glycosylases that synthesize sugar chains (eg, sialyltransferases) Genes to be used. The function of these genes can be reduced or deleted by genome editing of the genes.
 ゲノム編集により遺伝子機能はノックアウトにより消失するか、部分欠失により低下又は消失する。ゲノム編集により、遺伝子の少なくとも1つの塩基が欠失もしくは挿入する場合、フレームシフトにより遺伝子機能は消失する場合があり(ノックアウト)、フレームシフトが起こらない場合には一部のアミノ酸が欠失(部分欠失)して機能が低下又は消失し得る。また、欠失や置換によって終止コドンが生じることもある(ノックアウト)。 Gene function is lost by knockout by genome editing, or is reduced or lost by partial deletion. When editing at least one base of a gene is deleted or inserted by genome editing, the gene function may be lost due to frame shift (knockout). If no frame shift occurs, some amino acids are deleted (partial) Deletion), the function may be reduced or lost. Deletions and substitutions can also cause stop codons (knockout).
 ゲノム編集により外因性遺伝子をノックインする場合、外因性遺伝子がオボアルブミン、オボムコイド、オボインヒビター、オボグロブリン、リゾチーム、オボムチン、オボトランスフェリンなどの卵内タンパク質遺伝子座にノックインされると、卵内タンパク質の代わりに外因性遺伝子の発現産物を含む卵が得られるので好ましい。このような外因性遺伝子の発現産物であるタンパク質としては、様々な分泌性のタンパク質やペプチドが考えられ、抗体(モノクローナル抗体)又はその断片(例えばscFv、Fab、Fab'、F(ab')2、Fv、一本鎖抗体、scFv、dsFvなど)、酵素、ホルモン、成長因子、サイトカイン、インターフェロン、コラーゲン、細胞外マトリクス分子、ワクチンなどの機能性ポリペプチド、アゴニスト性タンパク質、アンタゴニスト性タンパク質などが挙げられる。外因性遺伝子がコードするタンパク質は、ヒトに投与する医薬になり得る生理活性タンパク質の場合、哺乳動物由来、好ましくはヒト由来である。また、プロテインAや蜘蛛の糸を構成するタンパク質などの工業的に使用可能なタンパク質の場合、微生物(細菌、酵母など)、植物、動物を含む任意の生物由来のタンパク質、あるいは人工的なタンパク質をコードする外因性遺伝子が挙げられる。 When knocking in an exogenous gene by genome editing, if the exogenous gene is knocked in to an in ovo protein locus such as ovalbumin, ovomucoid, ovo inhibitor, ovoglobulin, lysozyme, ovomucin, ovotransferrin, etc. Is preferable because an egg containing an exogenous gene expression product is obtained. As a protein that is an expression product of such an exogenous gene, various secretory proteins and peptides are considered, and an antibody (monoclonal antibody) or a fragment thereof (for example, scFv, Fab, Fab ′, F (ab ′) 2 , Fv, single chain antibody, scFv, dsFv, etc.), enzyme, hormone, growth factor, cytokine, interferon, collagen, extracellular matrix molecule, functional polypeptide such as vaccine, agonistic protein, antagonistic protein, etc. It is done. The protein encoded by the exogenous gene is derived from a mammal, preferably a human, in the case of a physiologically active protein that can be a drug to be administered to humans. In addition, in the case of proteins that can be used industrially, such as protein A and the protein that constitutes the silk thread, proteins derived from any organism including microorganisms (bacteria, yeast, etc.), plants and animals, or artificial proteins Examples include exogenous genes encoding.
 また、ゲノム編集により蛍光分子等の遺伝子を細胞特異的プロモーター、組織特異的プロモーターの制御下にノックインすることで、特定の細胞や組織だけで蛍光タンパク質が発現するため、発生機構の解明に有用な実験用ニワトリ胚やニワトリ個体を作成できる。 In addition, by editing genes such as fluorescent molecules under the control of cell-specific promoters and tissue-specific promoters by genome editing, fluorescent proteins are expressed only in specific cells and tissues. Experimental chicken embryos and individual chickens can be created.
 ゲノム編集としては、ジンクフィンガー、TALEN、CRISPRなどが挙げられ、TALEN、CRISPRが好ましく、CRISPRがより好ましい。ゲノム編集の方法は次々に開発されてきており、これらに限定されず、今後開発されるゲノム編集方法は全て本発明で使用可能である。 Genomic editing includes zinc finger, TALEN, CRISPR, etc., TALEN and CRISPR are preferred, and CRISPR is more preferred. Genome editing methods have been developed one after another, and the present invention is not limited to these. Any genome editing method developed in the future can be used in the present invention.
 ゲノム編集によりノックインを行う場合、薬剤耐性遺伝子を有用な外因性遺伝子とともにゲノムに安定的に組み込み、それによりノックインされた始原生殖細胞を選別するのが好ましい。薬剤耐性遺伝子としては、ネオマイシン耐性遺伝子(Neor)、ハイグロマイシン耐性遺伝子(Hygr)、ピューロマイシン耐性遺伝子(Puror)、ブラストサイジン耐性遺伝子(blastr)、ゼオシン耐性遺伝子(Zeor)などが挙げられ、ネオマイシン耐性遺伝子(Neor)あるいはピューロマイシン耐性遺伝子(Puror)が好ましい。 When knock-in is performed by genome editing, it is preferable to stably integrate a drug resistance gene together with a useful exogenous gene into the genome, thereby selecting a primordial germ cell knocked-in. Drug resistance genes include neomycin resistance gene (Neo r ), hygromycin resistance gene (Hyg r ), puromycin resistance gene (Puro r ), blasticidin resistance gene (blast r ), zeocin resistance gene (Zeo r ), etc. Neomycin resistance gene (Neo r ) or puromycin resistance gene (Puro r ) is preferable.
 ゲノム編集を行い遺伝子機能をノックアウトにより消失するか、部分欠失により低下又は消失させる場合、上記薬剤耐性遺伝子をゲノム編集を行う際の遺伝子導入時に始原生殖細胞に導入し、薬剤耐性遺伝子に基づき選別することが好ましい。薬剤耐性遺伝子の導入と薬剤選択は安定的でも一過的でも良く、ノックアウトや部分欠失の場合一過的が望ましい。薬剤耐性遺伝子は上記のものなどが挙げられ、ピューロマイシン耐性遺伝子(Puror)あるいはゼオシン耐性遺伝子(Zeor)が好ましい。薬剤耐性遺伝子はジンクフィンガー、TALEN、CRISPRプラスミドと独立した形でも、プラスミドに組み込まれる形でも良く、薬剤耐性遺伝子がゲノム編集の為のプラスミドに組み込まれる形が好ましい。 When genome editing is performed and gene function is lost by knockout, or is reduced or eliminated by partial deletion, the above drug resistance genes are introduced into primordial germ cells at the time of gene introduction when genome editing is performed, and selected based on drug resistance genes It is preferable to do. Introduction of drug resistance gene and drug selection may be stable or transient, and transient is desirable in the case of knockout or partial deletion. Drug resistance genes such as those described above can be mentioned, puromycin resistance gene (Puro r) or zeocin resistance gene (Zeo r) are preferred. The drug resistance gene may be in the form independent of the zinc finger, TALEN, or CRISPR plasmid, or may be incorporated into the plasmid, and the drug resistance gene is preferably incorporated into the plasmid for genome editing.
 1つの実施形態において、本発明の遺伝子改変方法により得られた、遺伝子改変された家禽始原生殖細胞から常法に従い遺伝子改変された家禽を生産することができる。具体的な手順を以下に示す。 In one embodiment, genetically modified poultry can be produced from genetically modified poultry primordial germ cells obtained by the genetic modification method of the present invention according to a conventional method. The specific procedure is shown below.
 遺伝子改変された始原生殖細胞をレシピエント初期胚の胚盤葉、血液中もしくは生殖巣領域に移植する。好ましくは孵卵後2~3日程度、血流循環開始前後の時期の血流中に数百から数千個程度の細胞を顕微注射により移植する。また、移植前にレシピエントの内在性の始原生殖細胞を薬剤や電離放射線により予め不活化させたり、数を減らしても良い。移植胚を常法に従って孵卵操作を継続し、移植個体を孵化させる。移植、孵化操作は卵殻の変更を含むシステム培養であっても、卵殻の変更を行わない窓開け法でも良い。孵化した個体は通常の飼育により生体(キメラ個体)として性成熟させることが出来る。これを野生型もしくは遺伝子改変個体あるいは遺伝子改変キメラ個体と交配することにより移植細胞由来の遺伝子改変の生じた家禽を後代として生産できる。本発明で得られるゲノム編集された始原生殖細胞は増殖能力が高く、キメラ個体において数多くの受精能力の高い精子或いは卵子になる。この際、効率を上げるために、配偶子のゲノムに含まれる遺伝子改変の頻度を調査し、移植細胞の寄与率を評価した上で交配試験を行ったり、後代の羽毛色による判定を行ったりしてもよい。遺伝子改変された雌始原生殖細胞を移植した雌キメラ家禽と雄始原生殖細胞を移植した雄キメラ家禽交配させることで、ホモ型の遺伝子改変家禽を得ることができる。また、家禽個体内に限らず、将来in vitroで始原生殖細胞を生殖細胞に分化させる等の技術が開発された場合には、これを用いた人工受精や顕微授精により遺伝子改変された家禽を生産することができる。
図2、図4A、図4B、図13において、OVMTg2のPAM配列は「agg」であるが、ニワトリのオボアルブミンのOVMTg2に対応する配列はNCBIのデータベースで2種類あり、OVMTg2の配列は、TTTCCCAACGCTACAGACA(t or a)ggと表記し得る。本発明は、このような多型を全て包含する。
The genetically modified primordial germ cells are transplanted into the blastoderm, blood or gonad region of the recipient early embryo. Preferably, several hundred to several thousand cells are transplanted by microinjection into the blood stream at a time before and after the start of blood circulation for about 2 to 3 days after incubation. In addition, the recipient's endogenous primordial germ cells may be inactivated in advance by a drug or ionizing radiation, or the number may be reduced before transplantation. Incubation of the transplanted embryo is continued according to a conventional method, and the transplanted individual is hatched. The transplanting and hatching operations may be system culture that includes eggshell changes, or may be a window opening method that does not change eggshells. The hatched individual can be sexually matured as a living body (chimeric individual) by normal breeding. By breeding this with a wild-type or genetically modified individual or a genetically modified chimeric individual, a poultry having a genetic modification derived from a transplanted cell can be produced as a progeny. The genome-edited primordial germ cells obtained in the present invention have a high proliferation ability and become a large number of highly fertilized sperm or eggs in a chimeric individual. At this time, in order to increase efficiency, we investigated the frequency of genetic modification contained in the gamete genome, evaluated the contribution rate of transplanted cells, performed a mating test, and performed a determination based on the progeny feather color. May be. A homozygous genetically modified poultry can be obtained by mating female chimeric poultry transplanted with genetically modified female primordial germ cells and male chimeric poultry transplanted with male primordial germ cells. In addition, not only within poultry individuals, but if technologies such as in vitro differentiation of primordial germ cells into germ cells are developed in the future, genetically modified poultry will be produced by artificial insemination and microinsemination using this. can do.
In FIG. 2, FIG. 4A, FIG. 4B, and FIG. 13, the PAM sequence of OVTg2 is “agg”, but there are two types of sequences corresponding to OVMg2 of chicken ovalbumin in the NCBI database, and the sequence of OVTg2 is TTTCCCAACGCTACAGACA (T or a) gg. The present invention encompasses all such polymorphisms.
 本発明の他の実施形態において、ゲノム編集は始原生殖細胞の培養を経由せずに、初期胚に各種ウイルスベクターを感染させて或いはプラスミドベクターをリポソーム複合体として初期胚血液中に注入することで、内在性の始原生殖細胞を遺伝子操作し、キメラ個体及び組換え後代を樹立してもよい。ゲノム編集により得られる始原生殖細胞は遺伝子改変効率が高く、かつ、家禽の組み換え後代や遺伝子改変後代を得るのに十分高い生殖能力を有しており、この実施形態においても有用である。本実施形態においては、始原生殖細胞の培養操作を伴うことなく(内在性の)始原生殖細胞の遺伝子改変が可能である。 In another embodiment of the present invention, genome editing is performed by infecting various embryos with a viral vector or injecting a plasmid vector as a liposome complex into early embryo blood without going through primordial germ cell culture. Alternatively, endogenous primordial germ cells may be genetically manipulated to establish chimeric individuals and recombinant progeny. Primordial germ cells obtained by genome editing have high gene modification efficiency and have a sufficiently high reproductive ability to obtain a recombination progeny or gene modification progeny of poultry, which is also useful in this embodiment. In this embodiment, genetic modification of (endogenous) primordial germ cells is possible without culturing primordial germ cells.
 ゲノム編集による遺伝子操作に用いるウイルスベクターとしては、レトロウイルスベクター、アデノウイルスベクター、アデノ随伴ウイルスベクター、レンチウイルスベクターなどが挙げられる。これらのウイルスベクターは、培養始原生殖細胞あるいは内在性の始原生殖細胞のゲノム編集のいずれにも使用できる。 Examples of virus vectors used for gene manipulation by genome editing include retrovirus vectors, adenovirus vectors, adeno-associated virus vectors, and lentivirus vectors. These viral vectors can be used for genome editing of cultured primordial germ cells or endogenous primordial germ cells.
 例えば、内在性の始原生殖細胞をゲノム編集を用いて改変するには、各社から販売されているゲノム編集用ウイルスベクターを用いて任意の標的配列を認識、切断するヌクレアーゼやsgRNAを発現するウイルスベクターを構築し、パッケージングにより感染可能な形態とし、家禽初期胚の胚盤葉、血液や生殖巣領域等始原生殖細胞の存在する場所に投与することで始原生殖細胞におけるゲノム編集を行い、後代に遺伝子改変個体や遺伝子改変産物を得ることが可能である。市販のゲノム編集用ウイルスベクターは国内外の多くの会社が販売しているが、例えばアデノ随伴ベクターを用いたTakara社の「AAVpro(登録商標) CRISPR/Cas9 Helper Free System (AAV2)」やレンチウイルスベクターを用いたSystem Biosciences, LLCの「Lentiviral CRISPR/ Cas9 System」などが挙げられる。遺伝子改変がノックインの場合、ゲノム編集に必要なウイルスベクターとノックインされる遺伝子を含むウイルスベクター、プラスミド等を併用することができる。 For example, to modify endogenous primordial germ cells using genome editing, a viral vector that expresses a nuclease or sgRNA that recognizes and cleaves any target sequence using a genome editing viral vector sold by each company. , And make the form infectable by packaging, and administer genomes in primordial germ cells by administering to the place where primordial germ cells exist such as blastoderm, blood and gonad area of early poultry embryos. It is possible to obtain genetically modified individuals and genetically modified products. Commercially available viral vectors for genome editing are sold by many companies in Japan and overseas.For example, Takara's `` AAVpro (registered trademark) CRISPR / Cas9 Helper Free System (AAV2) '' and lentivirus using adeno-associated vectors Examples include "Lentiviral CRISPR / Cas9 System" by System Biosciences, LLC. When the genetic modification is knock-in, a viral vector necessary for genome editing and a viral vector, plasmid or the like containing the knocked-in gene can be used in combination.
 また、ウイルスベクターを使わない、あるいは併用する形態のゲノム編集用プラスミドやドナーコンストラクトをリポソーム複合体など細胞膜を透過可能な形態にし、家禽初期胚の胚盤葉、血液や生殖巣領域等始原生殖細胞の存在する場所に投与することで始原生殖細胞におけるゲノム編集を行い、後代に遺伝子改変個体や遺伝子改変産物を得ることが可能である。 In addition, genome editing plasmids and donor constructs that do not use or are combined with viral vectors are made to be permeable to cell membranes such as liposome complexes, and primordial germ cells such as blastoderm, blood and gonad areas of early poultry embryos It is possible to perform genome editing in primordial germ cells and administer gene-modified individuals and gene-modified products to progenies.
 以下、本発明を実施例に基づきより詳細に説明する。 Hereinafter, the present invention will be described in more detail based on examples.
実施例1
(1)ニワトリ雄始原生殖細胞を用いたゲノム編集
(1-1)オボアルブミン(OVA)、オボムコイド(OVM)ノックアウトのための遺伝子構築
 ニワトリ雄始原生殖細胞株を用い、オボアルブミンならびにオボムコイド遺伝子を標的としてCRISPR法により遺伝子破壊を行った。図1(オボアルブミン)、図2(オボムコイド)に示すようにそれぞれ2箇所(OVATg1、OVATg3)、4箇所(OVMTg2、OVMTg3、OVMTg5、OVMTg6)の標的部位の破壊を試みた。
Example 1
(1) Genome editing using chick male primordial germ cells (1-1) Gene construction for ovalbumin (OVA) and ovomucoid (OVM) knockout Targeting ovalbumin and ovomucoid gene using chick male primordial germ cell line The gene was disrupted by the CRISPR method. As shown in FIG. 1 (ovalbumin) and FIG. 2 (ovomucoid), destruction of target sites at 2 sites (OVATg1, OVATg3) and 4 sites (OVMTg2, OVMTg3, OVMTg5, OVMTg6) was attempted.
 図1に示すオボアルブミン遺伝子の標的配列(2箇所)を標的とし、CRISPR用プラスミドを構築した。 A CRISPR plasmid was constructed by targeting the target sequences (two locations) of the ovalbumin gene shown in FIG.
 まず、配列番号5(OVATg3)を標的として配列番号6,配列番号7で示されるオリゴDNAを合成し、T4 Polynucleotide Kinaseを用いて5’末端をリン酸化した後、両者の混合液を98℃まで加熱し、室温までゆるやかに冷却することでアニールした。このDNA断片をプラスミドpx330(AddGENE,米国)のNotI部位に配列番号8のピューロマイシン耐性遺伝子ユニットを挿入したプラスミドpx330-Puror のBbsI切断部位に挿入した(px330-Puror-OVATg3)。また、px330-Puror-OVATg3のピューロマイシン耐性遺伝子ユニットを配列番号124のゼオシン耐性遺伝子ユニットに置き換えたプラスミドを構築した(px330-Zeor-OVATg3)。さらに、px330- Puror-OVATg3のピューロマイシン耐性遺伝子ユニットを配列番号4で示すネオマイシン耐性遺伝子ユニットに置き換えたプラスミドを構築した(px330-Neor-OVATg3)。加えて、配列番号1(OVATg1)を標的として配列番号2,配列番号3で示されるオリゴDNAを合成、リン酸化、アニールし、プラスミドpx330のNotI部位に配列番号4で示すネオマイシン耐性遺伝子ユニットを挿入したプラスミドpx330-NeorのBbsI切断部位に挿入した(px330-Neor-OVATg1)。 First, oligo DNAs represented by SEQ ID NO: 6 and SEQ ID NO: 7 were synthesized using SEQ ID NO: 5 (OVATg3) as a target, and the 5 ′ end was phosphorylated using T4 Polynucleotide Kinase, and then the mixture of both was heated to 98 ° C. It annealed by heating and cooling slowly to room temperature. This DNA fragment was inserted into the BbsI cleavage site of the plasmid px330-Puro r inserting the puromycin resistance gene unit into the NotI site SEQ ID NO: 8 of the plasmid px330 (AddGENE, USA) (px330-Puro r -OVATg3) . In addition, a plasmid was constructed in which the puromycin resistance gene unit of px330-Puro r -OVATg3 was replaced with the zeocin resistance gene unit of SEQ ID NO: 124 (px330-Zeo r -OVATg3). Furthermore, a plasmid was constructed in which the puromycin resistance gene unit of px330-Puro r -OVATg3 was replaced with the neomycin resistance gene unit represented by SEQ ID NO: 4 (px330-Neo r -OVATg3). In addition, oligo DNAs shown in SEQ ID NO: 2 and SEQ ID NO: 3 were synthesized, phosphorylated and annealed targeting SEQ ID NO: 1 (OVATg1), and the neomycin resistance gene unit shown in SEQ ID NO: 4 was inserted into the NotI site of plasmid px330. The inserted plasmid px330-Neo r was inserted into the BbsI cleavage site (px330-Neo r -OVATg1).
 図2に示すオボムコイド遺伝子の標的配列(4箇所)を標的とし、CRISPR用プラスミドを構築した。配列番号9(OVMTg2)を標的として配列番号10と配列番号11で示されるオリゴDNAを合成し、リン酸化後、アニールし、プラスミドpx330-PurorのBbsI切断部位に挿入した(px330-Puror-OVMTg2)。さらにpx330-Puror-OVMTg2のピューロマイシン耐性遺伝子ユニットを配列番号124のゼオシン耐性遺伝子ユニットならびに配列番号4で示すネオマイシン耐性遺伝子ユニットに置き換えたプラスミドを構築した(px330-Zeor-OVMTg2ならびにpx330-Neor-OVMTg2)。さらに、配列番号12(OVMTg3)を標的として配列番号13と配列番号14、配列番号15(OVMTg5)を標的として配列番号16と配列番号17、配列番号18(OVMTg6)を標的として配列番号19と配列番号20でそれぞれ示されるオリゴDNAを合成し、リン酸化後、アニールし、それぞれのDNA断片をプラスミドpx330-NeorのBbsI切断部位に挿入した(px330-Neor-OVMTg3, px330-Neor-OVMTg5, px330-Neor-OVMTg6)。 A CRISPR plasmid was constructed by targeting the target sequence (four locations) of the ovomucoid gene shown in FIG. Oligo DNAs represented by SEQ ID NO: 10 and SEQ ID NO: 11 were synthesized targeting SEQ ID NO: 9 (OVMTg2), phosphorylated, annealed, and inserted into the BbsI cleavage site of plasmid px330-Puro r (px330-Puro r − OVMTg2). Further, plasmids were constructed in which the puromycin resistance gene unit of px330-Puro r -OVMTg2 was replaced with the zeocin resistance gene unit of SEQ ID NO: 124 and the neomycin resistance gene unit represented by SEQ ID NO: 4 (px330-Zeo r -OVMTg2 and px330-Neo r -OVMTg2). Furthermore, SEQ ID NO: 12 (OVMTg3) as a target, SEQ ID NO: 13 and SEQ ID NO: 14, SEQ ID NO: 15 (OVMTg5) as a target, SEQ ID NO: 16 and SEQ ID NO: 17, and SEQ ID NO: 18 (OVMTg6) as a target, SEQ ID NO: 19 and SEQ ID NO: The oligo DNAs indicated by No. 20 were synthesized, phosphorylated, annealed, and each DNA fragment was inserted into the BbsI cleavage site of the plasmid px330-Neo r (px330-Neo r -OVMTg3, px330-Neo r -OVMTg5 px330-Neo r -OVMTg6).
(1-2)オボアルブミン、オボムコイド遺伝子ノックアウト
(1-2-1)一過的薬剤選択による変異導入の効率化
 横斑プリマスロック雄胚血液中より採取し、株化したニワトリ雄始原生殖細胞(非特許文献3)に上述の遺伝子(プラスミド)を一過的に導入した。1×105~5×105個の雄始原生殖細胞株をPBSで洗浄し、OPTI-MEMに懸濁後、3μlのリポフェクタミン2000(Life Technologies, 米国)を用いて1.6μgのpx330-Puror-OVATg3を遺伝子導入した。具体的には、リポフェクタミン2000とプラスミドを80μl OPTI-MEM中で混合し、雄始原生殖細胞株と混合後室温で5分程度静置し、その後抗生物質を含まない培地を500μl添加し、37℃で1~4時間程度静置した上でフィーダー細胞上に播種した。遺伝子導入後2~4日の間、ピューロマイシン(InvivoGen,米国)を終濃度1μg/mlで添加し、これを洗浄除去した後に1~2週間の培養を行った。培養後に細胞を回収し、ゲノムDNAを抽出後、配列番号21,配列番号22で示されるオリゴDNAプライマーを用いたPCR法によりオボアルブミン遺伝子の一部領域を増幅し、TAベクター(pGEM-T Easy, Promega, 米国)にサブクローンし、配列番号5(OVATg3)を含む領域のゲノム塩基配列を解析した。解析した12クローン中12クローン全て(100%)においてオボアルブミン遺伝子の配列番号5(OVATg3)を含む領域で遺伝子の欠失が認められた。一方、対照群として薬剤選択を行わなかったものの遺伝子欠損は45クローン中3個のクローン(6.7%)にとどまった。これら変異の多くは翻訳時のフレームシフトを含んでいた。また、px330-Zeor-OVATg3を同様に遺伝子導入し、遺伝子導入後2~4日の間、終濃度50μg/mlのゼオシン(InvivoGen,米国)存在下で培養し、洗浄後、1~2週間の培養を行った細胞を用いて同様の遺伝子解析を行った結果、解析した12クローン中11クローン(92%)において遺伝子の欠失が認められた。OVATg3を含む領域に認められた遺伝子変異の例を図3に示す。
(1-2) Ovalbumin and ovomucoid gene knockout (1-2-1) Efficiency of mutation introduction by transient drug selection Chicken male primordial germ cells collected from the blood of the lateral primus rock male embryo and established ( The above gene (plasmid) was transiently introduced into Non-Patent Document 3). 1 × 10 5 to 5 × 10 5 male primordial germ cell lines were washed with PBS, suspended in OPTI-MEM, and 1.6 μg px330-Puro r using 3 μl Lipofectamine 2000 (Life Technologies, USA) -OVATg3 was introduced. Specifically, Lipofectamine 2000 and plasmid were mixed in 80 μl OPTI-MEM, mixed with the male primordial germ cell line and allowed to stand at room temperature for about 5 minutes, and then 500 μl of medium containing no antibiotics was added, and the mixture was incubated at 37 ° C. And allowed to stand for about 1 to 4 hours, and then seeded on feeder cells. Between 2 and 4 days after gene transfer, puromycin (InvivoGen, USA) was added at a final concentration of 1 μg / ml, and this was washed and removed, followed by culturing for 1 to 2 weeks. After the culture, the cells were collected and the genomic DNA was extracted. Then, a partial region of the ovalbumin gene was amplified by PCR using the oligo DNA primers represented by SEQ ID NO: 21 and SEQ ID NO: 22, and the TA vector (pGEM-T Easy , Promega, USA), and the genomic nucleotide sequence of the region containing SEQ ID NO: 5 (OVATg3) was analyzed. In all 12 clones analyzed (100%), deletion of the gene was observed in the region containing the ovalbumin gene SEQ ID NO: 5 (OVATg3). On the other hand, although no drug selection was performed as a control group, gene deletion was limited to 3 out of 45 clones (6.7%). Many of these mutations included frame shifts during translation. Further, similarly Transgenic px330-Zeo r -OVATg3, between 2-4 days after the gene introduction, final concentration 50 [mu] g / ml Zeocin (InvivoGen, USA) were cultured in the presence, after washing, 1-2 weeks As a result of conducting the same gene analysis using the cells cultured in the above-described manner, 11 clones (92%) out of 12 analyzed clones showed gene deletion. FIG. 3 shows examples of gene mutations observed in the region containing OVATg3.
 次に、オボムコイド遺伝子を標的とした同様の解析を行った。上述と同様に1×105~5×105個の雄始原生殖細胞株にリポフェクタミン2000を用いてpx330-Puror-OVMTg2を1.6μg遺伝子導入し、導入後2~4日の間、ピューロマイシンを終濃度1μg/mlで添加した。ピューロマイシンを洗浄除去した後に1~2週間の培養を行ない、細胞を回収し、ゲノムDNAを抽出後、配列番号23,配列番号24で示されるオリゴDNAプライマーを用いたPCR法によりオボムコイド遺伝子の一部領域を増幅し、TAベクターにサブクローンし、配列番号9(OVMTg2)を含む領域のゲノム塩基配列を解析した。解析した23クローン中21クローン(91%)においてオボムコイド遺伝子の配列番号9(OVMTg2)を含む領域で遺伝子の欠失が認められた。一方、対照群として薬剤選択を行わなかったものの遺伝子欠損は24クローン中0個(0%)であった。また、px330-Zeor-OVMTg2を同様に遺伝子導入し、導入後2~4日の間終濃度50μg/mlのゼオシン存在下で培養し、洗浄後1~2週間培養した細胞においては解析した11クローン中10クローン(91%)において変異を認めた。OVMTg2を含む領域に認められた遺伝子変異の例を図4Aに示す。これらのことは家禽始原生殖細胞の遺伝子をゲノム編集する上で、薬剤耐性遺伝子導入と薬剤による一過的選択が変異の効率を顕著に上昇しうること、特にピューロマイシン耐性遺伝子とピューロマイシンによる薬剤選択もしくはゼオシン耐性遺伝子とゼオシンによる薬剤選択で高い変異効率が得られることを示している。 Next, the same analysis was performed targeting the ovomucoid gene. The px330-Puro r -OVMTg2 using Lipofectamine 2000 to 1 × 10 5 ~ 5 × 10 5 cells of the male primordial germ cell line similar to the above 1.6μg gene transfer between 2-4 days after introduction, puromycin Was added at a final concentration of 1 μg / ml. After puromycin has been removed by washing, culture is performed for 1 to 2 weeks, cells are collected, genomic DNA is extracted, and one of the ovomucoid genes is obtained by PCR using oligo DNA primers represented by SEQ ID NO: 23 and SEQ ID NO: 24. A partial region was amplified, subcloned into a TA vector, and the genomic base sequence of the region containing SEQ ID NO: 9 (OVMTg2) was analyzed. In 21 clones (91%) out of 23 clones analyzed, deletion of the gene was observed in the region containing SEQ ID NO: 9 (OVMTg2) of the ovomucoid gene. On the other hand, although no drug selection was performed as a control group, 0 genes (0%) were found in 24 clones. Further, similarly Transgenic px330-Zeo r -OVMTg2, cultured in the zeocin presence Matsui concentration 50 [mu] g / ml of 2-4 days after the introduction, in 1-2 weeks of culture cells were washed and analyzed 11 Mutations were found in 10 clones (91%). FIG. 4A shows an example of gene mutation observed in the region containing OVMTg2. These facts indicate that in gene editing of poultry primordial germ cell genes, introduction of drug resistance genes and transient selection by drugs can significantly increase the efficiency of mutations, especially drugs by puromycin resistance genes and puromycin. It shows that high mutation efficiency can be obtained by selection or drug selection with zeocin resistance gene and zeocin.
(1-2-2)オボアルブミン、オボムコイドの様々な領域に対する変異導入
 オボアルブミン遺伝子の翻訳開始点を含む領域を標的としたpx330-Neor-OVATg1を上述の方法によりニワトリ始原生殖細胞に遺伝子導入後、導入後2~4日の間ネオマイシン(G418二硫酸塩、ナカライテスク、日本)終濃度0.5mg/mlで選択し、1-2-1と同様の手法で標的領域を含むゲノム塩基配列を解析した。図3に示すように開始コドンの欠失、置換を含む変異を確認した。
(1-2-2) Mutation introduction into various regions of ovalbumin and ovomucoid Introducing px330-Neo r -OVATg1 targeting the region including the translation start point of the ovalbumin gene into chicken primordial germ cells using the method described above Then, select neomycin (G418 disulfate, Nacalai Tesque, Japan) at a final concentration of 0.5 mg / ml for 2-4 days after introduction, and use the same method as 1-2-1 to determine the genomic base sequence containing the target region. Analyzed. As shown in FIG. 3, mutations including deletion and substitution of the start codon were confirmed.
 また、オボムコイド遺伝子の様々な領域を標的として変異の導入を行った。オボムコイドタンパク質には強いアレルゲン性を持つと考えられるドメインが3箇所(ドメイン1~ドメイン3)存在する。ドメイン1以降を欠失する目的でpx330-Neor-OVMTg3を、ドメイン1を残し、ドメイン2以降を欠失する目的でpx330-Neor-OVMTg5, px330-Neor-OVMTg6をそれぞれ上述の方法によりニワトリ始原生殖細胞に遺伝子導入後、上述と同様にネオマイシン選択し、ゲノム塩基配列を解析した。図4Aに示すようにいずれの遺伝子導入によってもアレルゲン遺伝子であるオボムコイドの標的部位を含む領域で遺伝子の欠損や置換、挿入が起こり、翻訳時のフレームシフトや終結を含む変異を確認した。このように始原生殖細胞を用いたゲノム編集技術により、様々な標的部位の変異に起因する遺伝子ノックアウトが可能である。 In addition, mutations were introduced targeting various regions of the ovomucoid gene. The ovomucoid protein has three domains (domain 1 to domain 3) that are considered to have strong allergenicity. The purpose px330-Neo r -OVMTg3 lacking domains 1 and later, leaving the domain 1, domain 2 and later px330-Neo in lacking purposes r -OVMTg5, by px330-Neo r -OVMTg6 respective to the method described above After gene introduction into chicken primordial germ cells, neomycin was selected in the same manner as described above, and the genomic nucleotide sequence was analyzed. As shown in FIG. 4A, gene deletion, substitution, and insertion occurred in the region containing the target site of the allergen gene ovomucoid as shown in FIG. 4A, and mutations including frameshift and termination during translation were confirmed. As described above, gene editing technology using primordial germ cells enables gene knockout caused by mutations in various target sites.
 (1-3)ゲノム編集ニワトリの樹立
 (1-2-1)に記載した要領で横斑プリマスロック種始原生殖細胞にpx330-Puror-OVMTg2を遺伝子導入し、薬剤選択した細胞を培養し、白色レグホン種2.5日胚(レシピエント胚)の血液中に顕微注射により移植を行った。移植に先立ち、レシピエント胚内在性の始原生殖細胞数を減少させる目的で孵卵操作前の受精卵に電離放射線を5Gyまたは6Gy照射した。電離放射線照射はガンマセル40(カナダ原子力公社)を用いたガンマ線照射により行った。
(1-3) Establishment of genome editing chickens px330-Puro r -OVMTg2 to Barred Plymouth Rock species primordial germ cells in the manner described in (1-2-1) was introduced gene, culturing the drug selected cells, Transplantation was performed by microinjection into the blood of a white Leghorn 2.5 day embryo (recipient embryo). Prior to transplantation, fertilized eggs before incubation were irradiated with 5 Gy or 6 Gy for the purpose of reducing the number of primordial germ cells in the recipient embryo. The ionizing radiation was performed by gamma irradiation using a gamma cell 40 (Canadian Atomic Energy Corporation).
 孵卵2.5日後、卵の突端側に直径2cm程度の窓を開けて胚を露呈し、ハンバーガーハミルトンステージ13から15までのレシピエント胚血液中に約1000~5000個の薬剤選択済み細胞(1~2μlのPBSに懸濁)を微小ガラス針を用いて移植した。窓をセロハンテープで密閉後、温度38.5℃、湿度60~80%で培養し孵化させた(キメラヒヨコ(G0))。8羽の雄キメラヒヨコを性成熟させ、精液を採取した。精液よりゲノムDNAを抽出後、配列番号23,配列番号24で示されるオリゴDNAプライマーを用いたPCR法によりオボムコイド遺伝子の一部領域を増幅し、TAベクターにサブクローンし、配列番号9(OVMTg2)を含む領域のゲノム塩基配列を解析した。高頻度に変異の見られたキメラニワトリ#372,#376(いずれもサブクローンした11クローン中10クローンにオボムコイド遺伝子の変異が見られた)を野生型の横斑プリマスロック種雌と交配させ、それぞれの後代19羽中に11羽、14羽中に6羽のオボムコイド変異ニワトリ(ヒヨコ)を見出した。オボムコイド遺伝子変異の一例を図4B上段に示す。この個体ではオボムコイドタンパク質のシグナルペプチド直下部より変異を起こす5塩基の欠損が認められ、片アレルにオボムコイド遺伝子のフレームシフト変異を有している。また、オボムコイドゲノムの標的領域を中心に認められる代表的な変異(遺伝子欠損)の例を図4B下段に示した。ここに代表されるようなオボムコイドタンパク質のシグナルペプチド直下部よりフレームシフト変異を生じるオボアルブミンヘテロノックアウトの雌雄個体を複数得ており、これら個体を性成熟後交配することでオボムコイドのホモノックアウトニワトリ作出が可能である。 After 2.5 days of incubation, open a window about 2cm in diameter on the tip of the egg to expose the embryo, and about 1000-5000 drug-selected cells (1-2 μl) in the recipient embryo blood from Hamburger Hamilton stages 13-15 (Suspended in PBS) was transplanted using a fine glass needle. After sealing the window with cellophane tape, it was incubated and incubated at a temperature of 38.5 ° C and a humidity of 60-80% (chimeric chick (G0)). Eight male chimeric chicks were sexually matured and semen collected. After genomic DNA is extracted from semen, a partial region of the ovomucoid gene is amplified by PCR using the oligo DNA primers shown in SEQ ID NO: 23 and SEQ ID NO: 24, subcloned into a TA vector, and SEQ ID NO: 9 (OVMTg2) The genomic base sequence of the region containing was analyzed. Crossing chimera chickens # 372 and # 376 with high frequency mutations (both 10 of the 11 subcloned clones with ovomucoid gene mutations) with wild-type females with lateral Plymouth Rock Plymouth Rock, We found 11 ovumcoid mutant chickens (chicks) out of 19 out of 19 progenies and 14 out of 14, respectively. An example of ovomucoid gene mutation is shown in the upper part of FIG. 4B. In this individual, a deletion of 5 bases that causes mutation is observed from directly under the signal peptide of the ovomucoid protein, and one allele has a frameshift mutation of the ovomucoid gene. In addition, examples of typical mutations (gene deletions) observed mainly in the target region of the ovomucoid genome are shown in the lower part of FIG. 4B. We obtained several male and female individuals of ovalbumin hetero knockout that produce frameshift mutations directly below the signal peptide of the ovomucoid protein represented here, and crossing these individuals after sexual maturation can produce homo knockout chickens of ovomucoid. Is possible.
 実施例2
(1)オボアルブミン遺伝子座への遺伝子ノックイン
 雄ニワトリ由来始原生殖細胞を用いてゲノム編集による遺伝子ノックインを行った。オボアルブミン遺伝子の翻訳開始点に外来遺伝子(EGFP)を挿入することを目的とし、配列番号25に示されるドナーコンストラクト(EGFPドナーコンストラクト)を作製した。このEGFPドナーコンストラクトはオボアルブミン翻訳開始点の5’側約2.8kb、EGFP遺伝子、薬剤耐性遺伝子ユニット(PGK-Puror)、オボアルブミン翻訳開始点の3’側約3.0kbから構成される。このドナーコンストラクトをプラスミドpBlue ScriptII(SK+)(Stratagene,米国 現Agilent technologies)に挿入しpBS-EGFPドナーとした。 実施例1と同様に1×105~5×105個の始原生殖細胞株にリポフェクタミン2000を用いてpx330-Neor-OVATg1を0.8μg、pBS-EGFPドナーを0.8μg同時に遺伝子導入し、導入後3日以降、ピューロマイシンを終濃度1μg/mlで添加した。適宜培地交換を行い、終濃度1μg/mlのピューロマイシン存在下で増殖する細胞を回収し、ゲノムDNAを調製した。
Example 2
(1) Gene knock-in to ovalbumin gene locus Gene knock-in by genome editing was performed using primordial germ cells derived from male chicken. A donor construct shown in SEQ ID NO: 25 (EGFP donor construct) was prepared for the purpose of inserting a foreign gene (EGFP) at the translation start point of the ovalbumin gene. This EGFP donor construct is composed of about 2.8 kb at the 5 ′ side of the ovalbumin translation start point, EGFP gene, drug resistance gene unit (PGK-Puro r ), and about 3.0 kb at the 3 ′ side of the ovalbumin translation start point. This donor construct was inserted into a plasmid pBlue ScriptII (SK +) (Stratagene, currently Agilent Technologies, USA) to obtain a pBS-EGFP donor. Similarly to Example 1, 0.8 μg of px330-Neo r -OVATg1 and 0.8 μg of pBS-EGFP donor were simultaneously introduced into 1 × 10 5 to 5 × 10 5 primordial germ cell lines using Lipofectamine 2000. After 3 days, puromycin was added at a final concentration of 1 μg / ml. The medium was appropriately changed, and cells proliferating in the presence of puromycin at a final concentration of 1 μg / ml were collected to prepare genomic DNA.
 ドナーコンストラクトがオボアルブミン遺伝子座にノックインされていることをゲノムPCRにより確認した。5’領域についてドナーコンストラクトの外来遺伝子とドナーコンストラクトに含まれないオボアルブミンの5’領域に対するプライマーを用いたPCRを以下のように行った。配列番号26に示すEGFPに対するアンチセンスプライマーと配列番号27に示すオボアルブミン翻訳開始点の5’側約3.0kbの領域に対するセンスプライマーを用いてPCRを行い、さらに増幅産物に対して配列番号28に示すEGFPに対するアンチセンスプライマーと配列番号29に示すオボアルブミン翻訳開始点の5’側約2.85kbでドナーコンストラクトには含まれない領域に対するセンスプライマーを用いてPCRを行った(nested PCR)。図5に示すようにpx330-Neor-OVATg1と共にドナーコンストラクトを導入し、薬剤選択した始原生殖細胞(ノックインPGCs)由来ゲノムを鋳型とした場合、ドナーコンストラクトが挿入された際に期待される約2.9kの位置に増幅産物が認められるのに対し、対照の遺伝子導入を行っていない始原生殖細胞由来ゲノム(対照PGCs)を鋳型とした場合、増幅産物は認められない。 Genomic PCR confirmed that the donor construct was knocked into the ovalbumin locus. For the 5 ′ region, PCR using primers for the foreign gene of the donor construct and the 5 ′ region of ovalbumin not included in the donor construct was performed as follows. PCR was performed using an antisense primer for EGFP shown in SEQ ID NO: 26 and a sense primer for a region about 3.0 kb on the 5 ′ side of the ovalbumin translation start point shown in SEQ ID NO: 27. PCR was performed using the antisense primer for EGFP shown and the sense primer for the region about 2.85 kb 5 ′ from the ovalbumin translation start point shown in SEQ ID NO: 29 and not included in the donor construct (nested PCR). As shown in FIG. 5, when a donor construct is introduced together with px330-Neo r -OVATg1, and a drug-selected primordial germ cell (knock-in PGCs) -derived genome is used as a template, about 2.9 expected when the donor construct is inserted. An amplification product is observed at the position k, whereas when a primordial germ cell-derived genome (control PGCs) not subjected to control gene transfer is used as a template, no amplification product is observed.
 同様に、3’領域についてについてドナーコンストラクトの外来遺伝子とドナーコンストラクトに含まれないオボアルブミンの3’領域に対するプライマーを用いたゲノムPCRにより確認した。配列番号30に示す薬剤耐性遺伝子ユニットに対するセンスプライマーと配列番号31に示すオボアルブミン翻訳開始点の3’側約3.4kbの領域に対するアンチセンスプライマーを用いてPCRを行い、さらに増幅産物に対して配列番号32に示す薬剤耐性遺伝子ユニットに対するセンスプライマーと配列番号33に示すオボアルブミン翻訳開始点の3’側約3.2kbでドナーコンストラクトには含まれない領域に対するセンスプライマーを用いてPCRを行った(nested PCR)。図5に示すようにpx330-Neor-OVATg1と共にドナーコンストラクトを導入し、薬剤選択した始原生殖細胞(ノックインPGCs)由来ゲノムを鋳型とした場合、ドナーコンストラクトが挿入された際に期待される約3.4kの位置に増幅産物が認められるのに対し、対照の遺伝子導入を行っていない始原生殖細胞(対照PGCs)由来ゲノムを鋳型とした場合、増幅産物は認められない。以上のことから、薬剤選択された細胞集団の中に外来遺伝子部分を含むドナーコンストラクトがオボアルブミン遺伝子座にノックインされた細胞が存在すると考えられる。 Similarly, the 3 ′ region was confirmed by genomic PCR using primers for the foreign gene of the donor construct and the 3 ′ region of ovalbumin not included in the donor construct. Perform PCR using the sense primer for the drug resistance gene unit shown in SEQ ID NO: 30 and the antisense primer for the region about 3.4 kb on the 3 ′ side of the ovalbumin translation start point shown in SEQ ID NO: 31, and then sequence the amplified product. PCR was performed using a sense primer for the drug resistance gene unit shown in No. 32 and a sense primer for a region not included in the donor construct at about 3 kb 3 ′ of the ovalbumin translation start point shown in SEQ ID No. 33 (nested) PCR). As shown in FIG. 5, when a donor construct is introduced together with px330-Neo r -OVATg1, and a drug-selected primordial germ cell (knock-in PGCs) -derived genome is used as a template, about 3.4 expected when the donor construct is inserted. An amplification product is observed at the position k, whereas when a primordial germ cell (control PGCs) -derived genome that has not been subjected to control gene transfer is used as a template, no amplification product is observed. From the above, it is considered that there are cells in which a donor construct containing a foreign gene part is knocked in at the ovalbumin gene locus in the cell population selected by the drug.
(2)ノックイン効率の検定
 次に、薬剤選択された細胞群にどの程度の割合でドナーコンストラクトがオボアルブミン遺伝子座にノックインされた細胞が存在するか検定した。薬剤選択された細胞群と遺伝子導入を行なっていない始原生殖細胞(対照PGCs)よりゲノムDNAをそれぞれ調製した。これを鋳型として配列番号34と配列番号35で示されるプライマーによる定量PCR(OVA5’)、配列番号34と配列番号36で示されるプライマーによる定量PCR(OVA(ATG))、配列番号37と配列番号38で示されるプライマーによる定量PCR(GAPDH(グリセルアルデヒド-3-リン酸デヒドロゲナーゼ))を行った。反応はTHUNDERBIRD qPCR Mix(東洋紡、日本)を使用し7300 Real Time PCR system (Applied Biosystems、米国)により解析した。図6に模式的に示すようにOVA5’のPCR産物はノックインされていないオボアルブミン遺伝子、ランダムに挿入されたドナーコンストラクト、ノックインされたドナーコンストラクトのいずれをも鋳型として増幅されうる。一方、OVA(ATG)のPCR産物はノックインされていないオボアルブミン遺伝子のみを鋳型とし、ランダムに挿入されたドナーコンストラクト、ノックインされたドナーコンストラクトを鋳型とした増幅は長い増幅領域のため、殆ど起こらない。GAPDHはゲノム量の内部標準として用いた。内部標準による補正を行った定量PCRの結果をグラフ化したものを図6に示す。OVA5’のPCR産物が薬剤選択された細胞群ゲノムと対照の始原生殖細胞ゲノムにおいて有意差が無いのに対し、OVA(ATG)のPCR産物は薬剤選択された細胞群ゲノムにおいて対照の十分の一以下となっている。OVA5’のPCR産物に有意差が無いことは、ドナーコンストラクトのノックイン以外のランダムな挿入が検出限界以下であることを示している。一方、OVA(ATG)のPCR産物が薬剤選択された細胞群ゲノムにおいて対照の十分の一以下となったことは、このゲノムのオボアルブミン遺伝子の9割以上でドナーコンストラクトがノックインされていることを示している。すなわち、薬剤選択された始原生殖細胞群において90%以上のオボアルブミン遺伝子がノックインコンストラクトによって置き換えられていると判断される。
(2) Assay of knock-in efficiency Next, it was assayed to what extent the cells in which the donor construct was knocked into the ovalbumin gene locus were present in the drug-selected cell group. Genomic DNAs were prepared from drug-selected cell groups and primordial germ cells (control PGCs) that had not been transfected. Using this as a template, quantitative PCR (OVA5 ') with primers shown in SEQ ID NO: 34 and SEQ ID NO: 35, quantitative PCR (OVA (ATG)) with primers shown in SEQ ID NO: 34 and SEQ ID NO: 36, SEQ ID NO: 37 and SEQ ID NO: Quantitative PCR (GAPDH (glyceraldehyde-3-phosphate dehydrogenase)) with the primer shown in 38 was performed. The reaction was analyzed by 7300 Real Time PCR system (Applied Biosystems, USA) using THUNDERBIRD qPCR Mix (Toyobo, Japan). As schematically shown in FIG. 6, the PCR product of OVA5 ′ can be amplified using any of the ovalbumin gene not knocked in, the randomly inserted donor construct, and the knocked-in donor construct as a template. On the other hand, PCR products of OVA (ATG) use only the ovalbumin gene that has not been knocked in as a template, and amplification using a randomly inserted donor construct or a knocked-in donor construct as a template hardly occurs because of the long amplification region. . GAPDH was used as an internal standard for genomic quantity. FIG. 6 shows a graph of quantitative PCR results corrected by the internal standard. The OVA 5 'PCR product is not significantly different in the drug selected cell population genome and the control primordial germ cell genome, whereas the OVA (ATG) PCR product is one-tenth of the control in the drug selected cell population genome. It is as follows. The fact that there is no significant difference in the PCR product of OVA5 ′ indicates that random insertion other than the knock-in of the donor construct is below the detection limit. On the other hand, the fact that the OVA (ATG) PCR product was one-tenth or less of the control in the drug-selected cell group genome indicates that the donor construct was knocked in in 90% or more of the ovalbumin gene in this genome. Show. That is, it is determined that 90% or more of the ovalbumin gene is replaced by the knock-in construct in the primordial germ cell group selected by the drug.
実施例3
ヒトインターフェロン遺伝子ノックイン
(1)始原生殖細胞樹立へのノックインとノックインキメラニワトリの樹立
 上記実施例2のEGFPドナーコンストラクトのEGFPの代わりに配列番号39に示されるヒトインターフェロンβ遺伝子を導入したドナーコンストラクト(IFNβドナーコンストラクト)を作製した。このドナーコンストラクトはオボアルブミン翻訳開始点の5’側約2.8kb、ヒトインターフェロンβ遺伝子、薬剤耐性遺伝子ユニット(PGK-Puror)、オボアルブミン翻訳開始点の3’側約3.0kbから構成される。このドナーコンストラクトをプラスミドpBlue ScriptII(SK+)に挿入しpBS-IFNβドナーとした。 上記pBS-EGFPドナーと同様の手法により雄ニワトリ始原生殖細胞にノックイン後ピューロマイシンで選択し、選択された細胞のゲノムを鋳型としてPCRを行なった。5’側は配列番号27のプライマーと配列番号40に示されるインターフェロンβに対するアンチセンスプライマーによるPCRの後、増幅産物に対して配列番号29のプライマーと配列番号41に示すインターフェロンβに対するアンチセンスプライマーを用いてPCRを行った(nested PCR)。3’側は上記EGFPドナーのノックイン時と同様に配列番号30と配列番号31に示すプライマーを用いたPCRの後、増幅産物に対して配列番号32と配列番号33に示すプライマーを用いてnested PCRを行った。図7Aに示すように、EGFPドナーと同様IFNβドナーを用いた場合でも始原生殖細胞のオボアルブミン遺伝子へのノックインが認められた。また、ノックイン効率の検定を実施例2-(2)と同様の定量PCRによって行った結果、85%以上のオボアルブミン遺伝子がIFNβドナーコンストラクトによって置き換えられていると判断される。
Example 3
Human interferon gene knock-in (1) Knock-in to primordial germ cell establishment and establishment of knock-in chimera chicken Donor construct (IFNβ) in which human interferon β gene shown in SEQ ID NO: 39 is introduced instead of EGFP in the EGFP donor construct of Example 2 above Donor construct) was prepared. This donor construct is composed of about 2.8 kb 5 ′ from the ovalbumin translation start point, human interferon β gene, drug resistance gene unit (PGK-Puro r ), and about 3.0 kb 3 ′ from the ovalbumin translation start point. This donor construct was inserted into the plasmid pBlue ScriptII (SK +) to obtain a pBS-IFNβ donor. By knocking in male chick primordial germ cells and selecting with puromycin in the same manner as the above pBS-EGFP donor, PCR was performed using the genome of the selected cells as a template. On the 5 ′ side, after PCR with the primer of SEQ ID NO: 27 and the antisense primer for interferon β shown in SEQ ID NO: 40, the primer of SEQ ID NO: 29 and the antisense primer for interferon β shown in SEQ ID NO: 41 are applied to the amplified product. PCR was performed using (nested PCR). On the 3 ′ side, after PCR using the primers shown in SEQ ID NO: 30 and SEQ ID NO: 31 in the same manner as when knocking in the EGFP donor, nested PCR was performed using the primers shown in SEQ ID NO: 32 and SEQ ID NO: 33 on the amplified product. Went. As shown in FIG. 7A, knock-in to the ovalbumin gene in primordial germ cells was observed even when an IFNβ donor was used in the same manner as the EGFP donor. Further, the knock-in efficiency test was carried out by quantitative PCR as in Example 2- (2). As a result, it was determined that 85% or more of the ovalbumin gene was replaced by the IFNβ donor construct.
 このIFNβドナーコンストラクトがノックインされた細胞を含む始原生殖細胞を、(1-3)と同じ手法によりレシピエント胚に移植後孵化させ、4羽の雄キメラニワトリを得た(#411~#414)。これらより精液を採取し、ゲノムDNAを採取後、配列番号30と配列番号31のプライマー(オボアルブミン遺伝子にノックインされたインターフェロンの3’側を増幅)、配列番号27と配列番号40のプライマー(オボアルブミン遺伝子にノックインされたインターフェロンの5’側を増幅)、配列番号27と配列番号36のプライマー(ノックインされていないオボアルブミンを増幅)を用いてそれぞれPCRを行った(図7B)。キメラニワトリ#411と#412においてオボアルブミン遺伝子座へのインターフェロンノックインを明瞭に示すシグナルが3’側、5’側で共に認められ、特に#411は移植した親株と遜色のないシグナル強度で認められることから、精子中に親株と同程度インターフェロンがノックインされた細胞が存在すると考えられる。  Primordial germ cells containing cells into which this IFNβ donor construct was knocked in were transplanted into recipient embryos by the same method as in (1-3) and then hatched to obtain four male chimeric chickens (# 411 to # 414) . Semen was collected from these, and genomic DNA was collected, and then the primers of SEQ ID NO: 30 and SEQ ID NO: 31 (amplified on the 3 ′ side of interferon knocked into the ovalbumin gene), the primers of SEQ ID NO: 27 and SEQ ID NO: 40 (ovobo) PCR was performed using the primers of SEQ ID NO: 27 and SEQ ID NO: 36 (amplified ovalbumin that was not knocked in), respectively (amplification of the interferon knocked into the albumin gene) (FIG. 7B). In chimera chickens # 411 and # 412, signals clearly showing interferon knock-in to the ovalbumin locus are observed on both the 3 ′ side and the 5 ′ side, and in particular, # 411 is observed with a signal intensity comparable to the transplanted parent strain. Therefore, it is considered that cells in which interferon is knocked in to the same degree as the parent strain exist in the sperm. *
 キメラニワトリ#411と#412を雌野生型ニワトリ(横斑プリマスロック種)と交配し、それぞれ28羽の後代、19羽の後代を得た。この後代より羽軸を採取し、ゲノムDNAを採取後、上述と同様に配列番号30と配列番号31のプライマー(オボアルブミン遺伝子にノックインされたインターフェロンの3’側を増幅)、配列番号27と配列番号40のプライマー(オボアルブミン遺伝子にノックインされたインターフェロンの5’側を増幅)、配列番号27と配列番号36のプライマー(ノックインされていないオボアルブミンを増幅)を用いてそれぞれPCRを行った。また、野生型の羽軸由来のゲノム(ネガティブコントロール(NC))、および移植したインターフェロンドナーベクターノックイン始原生殖細胞由来のゲノム(ポジティブコントロール(PC))を用いて同じPCRを行った。#411由来後代28羽のうち8羽と#412由来後代19羽のうち5羽において、それぞれポジティブコントロールと同様のオボアルブミン遺伝子座へのインターフェロンノックインを明瞭に示すシグナルが3’側、5’側で共に認められた。#411由来後代(雌)と#412由来後代(雌)のPCR産物電気泳動像を図7Cにそれぞれ示す。このことより、これらの後代雌ニワトリではオボアルブミン遺伝子座にインターフェロンドナーベクターがノックインされていると判断される。 Chimera chickens # 411 and # 412 were crossed with female wild-type chickens (lateral primus rock species) to obtain 28 progeny and 19 progeny, respectively. After collecting the wing shaft from this progeny, collecting genomic DNA, the primers of SEQ ID NO: 30 and SEQ ID NO: 31 (amplifying the 3 ′ side of interferon knocked into the ovalbumin gene), SEQ ID NO: 27 and PCR was performed using primer No. 40 (amplification of 5 ′ side of interferon knocked into ovalbumin gene) and primer of SEQ ID No. 27 and SEQ ID No. 36 (amplification of ovalbumin not knocked in). In addition, the same PCR was performed using a wild-type wing shaft-derived genome (negative control (NC)) and a transplanted interferon donor vector knock-in primordial germ cell-derived genome (positive control (PC)). In 8 out of 28 progenies derived from # 411 and 5 out of 19 out of # 412 progeny, the signals clearly showing interferon knock-in to the ovalbumin locus similar to the positive control are respectively 3 'and 5' Both were recognized. FIG. 7C shows the PCR product electrophoresis images of the progeny from # 411 (female) and the progeny from # 412 (female), respectively. Based on this, it is determined that an interferon donor vector is knocked in at the ovalbumin locus in these progeny female chickens.
(2)ノックイン効率の改善
 遺伝子ノックインの効率改善について検討を行った。まず、上述のインターフェロンβドナーコンストラクトの薬剤耐性ユニットをPGK-PurorからSV40Pe-Neor(配列番号125 )に置換したIFNβ-Neoドナーコンストラクトを作製した。このドナーコンストラクトはオボアルブミン翻訳開始点の5’側約2.8kb、ヒトインターフェロンβ遺伝子、薬剤耐性遺伝子ユニット(SV40Pe-Neor)、オボアルブミン翻訳開始点の3’側約3.0kbから構成される。このドナーコンストラクトをプラスミドpBlue ScriptII(SK+)に挿入しpBS-IFNβ-Neoドナーとした。次に、px330-Neor-OVATg1のネオマイシン耐性ユニットを配列番号8のピューロマイシン耐性ユニットに置き換えたプラスミドpx330-Puror-OVATg1を構築した。また、図8Aに示すようにOVATg1と一部重なるオボアルブミンの標的配列OVATg2(配列番号126)を標的とし、CRISPR用プラスミドを構築した。配列番号127と配列番号128でそれぞれ示されるオリゴDNAを合成し、実施例1-1と同様にリン酸化後、アニールし、DNA断片をpx330のBbsI切断部位に挿入するとともに、NotI部位に配列番号8のピューロマイシン耐性ユニットを挿入したプラスミドpx330-Puror-OVATg2を構築した。約5×105個の始原生殖細胞株を調製し、3分割した後に、実施例2-(1)と同様にリポフェクタミン2000を用いてpx330-Neor-OVATg1を0.8μg、pBS-IFNβドナー(ピューロマイシン耐性遺伝子ユニットを持つ)を0.8μg(導入群1)もしくはpx330-Puror-OVATg1を0.8μg、pBS-IFNβ-Neoドナーを0.8μg(導入群2)もしくはpx330-Puror-OVATg2を0.8μg、pBS-IFNβ-Neoドナーを0.8μg(導入群3)それぞれ同時に遺伝子導入し、(導入群1)は実施例3-(1)同様導入後3日以降、ピューロマイシンを終濃度1μg/mlで添加した。一方、(導入群2)と(導入群3)は実施例(1-2-1)と同様に遺伝子導入後2~4日の間、終濃度1μg/mlのピューロマイシン存在下で培養し、洗浄後、終濃度0.5 mg/mlのネオマイシンを添加し培養を行った。導入後24日後に各導入群の細胞数をそれぞれ計測した所、導入群1の2×104に対し、導入群2と3では1×105の薬剤耐性細胞が認められた。また、それぞれの群より細胞を回収し、ゲノムDNAを調製後、実施例3-(1)と同様に配列番号30と配列番号31のプライマー(オボアルブミン遺伝子にノックインされたインターフェロンの3’側を増幅)、配列番号27と配列番号40のプライマー(オボアルブミン遺伝子にノックインされたインターフェロンの3’側を増幅)、配列番号27と配列番号36のプライマー(ノックインされていないオボアルブミンを増幅)を用いてそれぞれPCRを行った(図8B)。導入群1と2との間でPCRシグナル強度比の大きな違いを認めないことから、導入群2のピューロマイシンで短期間選択後、ネオマイシン選択する方法のほうが迅速に目的細胞を調製可能と考えられる。また、導入群3は導入群2と比較してノックインされていないオボアルブミンが殆ど認められないことから、より効率の良いノックインが起こっていると考えられる。以上より、OVATg2配列を標的とし、CRISPRコンストラクトにピューロマイシン耐性遺伝子をドナーコンストラクトにネオマイシン耐性遺伝子をそれぞれ挿入し、始原生殖細胞に導入後一過的にピューロマイシンで選択し、その後ネオマイシンで選択を行うことで迅速かつ高効率に外来遺伝子のオボアルブミン遺伝子座へのノックインが可能になると考えられる。
(2) Improvement of knock-in efficiency We investigated the improvement of gene knock-in efficiency. First, was prepared IFN beta-Neo donor constructs to replace the drug resistance units of interferon β donor construct described above PGK-Puro r from SV40Pe-Neo r (SEQ ID NO: 125). This donor construct is composed of about 2.8 kb on the 5 ′ side of the ovalbumin translation start point, human interferon β gene, drug resistance gene unit (SV40Pe-Neo r ), and about 3.0 kb on the 3 ′ side of the ovalbumin translation start point. This donor construct was inserted into the plasmid pBlue ScriptII (SK +) to obtain a pBS-IFNβ-Neo donor. Next, a plasmid px330-Puro r -OVATg1 was constructed in which the neomycin resistance unit of px330-Neo r -OVATg1 was replaced with the puromycin resistance unit of SEQ ID NO: 8. As shown in FIG. 8A, a plasmid for CRISPR was constructed by targeting the target sequence OVATg2 (SEQ ID NO: 126) of ovalbumin partially overlapping with OVATg1. Oligo DNAs respectively represented by SEQ ID NO: 127 and SEQ ID NO: 128 were synthesized, phosphorylated in the same manner as in Example 1-1, annealed, the DNA fragment was inserted into the BbsI cleavage site of px330, and SEQ ID NO: at the NotI site. 8 plasmid px330-Puro r -OVATg2 inserting the puromycin resistance units were constructed. After preparing about 5 × 10 5 primordial germ cell lines and dividing into 3 parts, 0.8 μg of px330-Neo r -OVATg1 and pBS-IFNβ donor (by using Lipofectamine 2000 as in Example 2- (1) ( 0.8 [mu] g to have a puromycin resistance gene units) (0.8 [mu] g to introduce group 1) or px330-Puro r -OVATg1, the pBS-IFN beta-Neo donor 0.8 [mu] g (transfection group 2) or px330-Puro r -OVATg2 0.8 μg and 0.8 μg of pBS-IFNβ-Neo donor (introduction group 3) were introduced at the same time, and (introduction group 1) was administered puromycin at a final concentration of 1 μg / ml after 3 days after introduction as in Example 3- (1). Added at. On the other hand, (introduction group 2) and (introduction group 3) were cultured in the presence of puromycin at a final concentration of 1 μg / ml for 2 to 4 days after gene introduction, as in Example (1-2-1). After washing, neomycin with a final concentration of 0.5 mg / ml was added and cultured. When the number of cells in each introduction group was measured 24 days after introduction, 2 × 10 4 in introduction group 1 and 1 × 10 5 drug-resistant cells were observed in introduction groups 2 and 3. In addition, after collecting cells from each group and preparing genomic DNA, the primers of SEQ ID NO: 30 and SEQ ID NO: 31 (on the 3 ′ side of the interferon knocked into the ovalbumin gene) were prepared in the same manner as in Example 3- (1). Amplification), using the primers of SEQ ID NO: 27 and SEQ ID NO: 40 (amplify the 3 ′ side of the interferon knocked into the ovalbumin gene), and the primers of SEQ ID NO: 27 and SEQ ID NO: 36 (amplify the non-knocked ovalbumin) PCR was then performed (FIG. 8B). Since there is no significant difference in the ratio of PCR signal intensity between introduction groups 1 and 2, it is considered that the target cells can be prepared more quickly by selecting neomycin after short-term selection with puromycin from introduction group 2. . Introduced group 3 has almost no ovalbumin not knocked in compared to introduced group 2, and therefore, more efficient knock-in is considered to have occurred. Based on the above, targeting the OVATg2 sequence, inserting the puromycin resistance gene into the CRISPR construct, inserting the neomycin resistance gene into the donor construct, introducing into the primordial germ cell, selecting with puromycin, and then selecting with neomycin Therefore, it is considered that knock-in of foreign genes to the ovalbumin locus can be performed quickly and efficiently.
実施例4
ヒト抗体遺伝子ノックイン
 上記実施例2のEGFPドナーコンストラクトのEGFPの代わりに配列番号42に示されるヒト免疫グロブリン遺伝子を導入したドナーコンストラクト(免疫グロブリンドナーコンストラクト)を作製した。このドナーコンストラクトはオボアルブミン翻訳開始点の5’側約2.8kbの下流に卵白リゾチームシグナルペプチド、ヒト免疫グロブリン重鎖、furinタンパク質切断標的配列、2A自己プロセッシング性ペプチド、卵白リゾチームシグナルペプチド、ヒト免疫グロブリン軽鎖遺伝子をそれぞれコードする遺伝子を連結して配置し、薬剤耐性遺伝子ユニット(PGK-Puror)、オボアルブミン翻訳開始点の3’側約3.0kbから構成されている。このドナーコンストラクトが転写、翻訳されることで免疫グロブリンの重鎖と軽鎖からなる抗体タンパク質を発現する。
Example 4
Human antibody gene knock-in A donor construct (immunoglobulin donor construct) in which the human immunoglobulin gene shown in SEQ ID NO: 42 was introduced instead of EGFP in the EGFP donor construct of Example 2 above was prepared. This donor construct is about 2.8 kb downstream of the ovalbumin translation start point, egg white lysozyme signal peptide, human immunoglobulin heavy chain, furin protein cleavage target sequence, 2A self-processing peptide, egg white lysozyme signal peptide, human immunoglobulin It arranged connecting a gene encoding the light chain gene, respectively, a drug resistance gene unit (PGK-Puro r), and a 3 'side about 3.0kb ovalbumin translation initiation. This donor construct is transcribed and translated to express an antibody protein composed of immunoglobulin heavy and light chains.
 プラスミドpBlue ScriptII(SK+)に免疫グロブリンドナーコンストラクトを挿入しpBS- IgG(Hc+Lc)ドナーとした。上記pBS-EGFPドナーやpBS-IFNβドナーと同様の手法により雄ニワトリ始原生殖細胞にノックイン後ピューロマイシンで選択し、選択された細胞のゲノムを鋳型としてPCRを行なった。5’側は配列番号27のプライマーと配列番号43に示される卵白リゾチームシグナルペプチドに対するアンチセンスプライマーによるPCRの後、増幅産物に対して配列番号29のプライマーと配列番号44に示す卵白リゾチームシグナルペプチドに対するアンチセンスプライマーを用いてPCRを行った(nested PCR)。3’側は上記EGFPドナーやpBS-IFNβドナーのノックイン時と同様に配列番号30と配列番号31に示すプライマーを用いたPCRの後、増幅産物に対して配列番号32と配列番号33に示すプライマーを用いてnested PCRを行った。図9に示すように、免疫グロブリンドナーを用いた場合でも始原生殖細胞のオボアルブミン遺伝子へのノックインが認められた。また、実施例2-(2)と同様の定量PCRによって行った結果、90%以上のオボアルブミン遺伝子が免疫グロブリンドナーコンストラクトによって置き換えられていると判断される。 An immunoglobulin donor construct was inserted into the plasmid pBlue ScriptII (SK +) to obtain a pBS- IgG (Hc + Lc) donor. By knocking in male chick primordial germ cells and selecting with puromycin in the same manner as the above pBS-EGFP donor and pBS-IFNβ donor, PCR was performed using the selected cell genome as a template. The 5 ′ side was subjected to PCR using the primer of SEQ ID NO: 27 and the antisense primer for the egg white lysozyme signal peptide shown in SEQ ID NO: 43, and then the primer for SEQ ID NO: 29 and the egg white lysozyme signal peptide shown in SEQ ID NO: 44 to the amplified product. PCR was performed using antisense primers (nested PCR). The 3 ′ side is the primer shown in SEQ ID NO: 32 and SEQ ID NO: 33 for the amplified product after PCR using the primers shown in SEQ ID NO: 30 and SEQ ID NO: 31 as in the case of knocking in the EGFP donor and pBS-IFNβ donor. Was used for nested PCR. As shown in FIG. 9, knocking-in to the ovalbumin gene in primordial germ cells was observed even when an immunoglobulin donor was used. Further, as a result of quantitative PCR similar to Example 2- (2), it is determined that 90% or more of the ovalbumin gene has been replaced by the immunoglobulin donor construct.
実施例5
ヒトコラーゲン遺伝子ノックイン
 上記実施例2のEGFPドナーコンストラクトのEGFPの代わりに配列番号45に示されるヒトI型コラーゲン遺伝子を導入したドナーコンストラクト(コラーゲンドナーコンストラクト)を作製した。このドナーコンストラクトはオボアルブミン翻訳開始点の5’側約2.8kbの下流に卵白リゾチームシグナルペプチド、ヒトI型コラーゲンα1鎖(COLLAGEN1A1)、furinタンパク質切断標的配列、2A自己プロセッシング性ペプチド、卵白リゾチームシグナルペプチド、ヒトI型コラーゲンα2鎖(COLLAGEN1A2)遺伝子をそれぞれコードする遺伝子を連結して配置し、薬剤耐性遺伝子ユニット(PGK-Puror)、オボアルブミン翻訳開始点の3’側約3.0kbから構成されている。このドナーコンストラクトが転写、翻訳されることでヒトI型コラーゲンα1鎖とα2鎖からなるI型コラーゲンタンパク質を発現する。
Example 5
Human collagen gene knock-in A donor construct (collagen donor construct) was prepared by introducing the human type I collagen gene shown in SEQ ID NO: 45 instead of EGFP in the EGFP donor construct of Example 2 above. This donor construct is about 2.8 kb downstream of the ovalbumin translation start point, egg white lysozyme signal peptide, human type I collagen α1 chain (COLLAGEN1A1), furin protein cleavage target sequence, 2A self-processing peptide, egg white lysozyme signal peptide , arranged by connecting genes each encoding a human type I collagen α2 chain (COLLAGEN1A2) gene, a drug resistance gene unit (PGK-Puro r), it consists of three 'side about 3.0kb ovalbumin translation initiation Yes. This donor construct is transcribed and translated to express type I collagen protein consisting of human type I collagen α1 and α2 chains.
 プラスミドpBlue ScriptII(SK+)にコラーゲンドナーコンストラクトを挿入しpBS-COL1(A1+A2)ドナーとした。 上記pBS-EGFPドナーやpBS-IFNβドナー、pBS-IgG(Hc+Lc)ドナーと同様の手法によりpBS-COL1(A1+A2)ドナーを雄ニワトリ始原生殖細胞にノックイン後ピューロマイシンで選択し、選択された細胞のゲノムを鋳型としてPCRを行なった。5’側はpBS-IgG(Hc+Lc)ドナーと同様、配列番号27のプライマーと配列番号43に示される卵白リゾチームシグナルペプチドに対するアンチセンスプライマーによるPCRの後、増幅産物に対して配列番号29のプライマーと配列番号44に示す卵白リゾチームシグナルペプチドに対するアンチセンスプライマーを用いてPCRを行った(nested PCR)。3’側は上記EGFPドナーやpBS-IFNβドナー、pBS-IgG(Hc+Lc)ドナーのノックイン時と同様に配列番号30と配列番号31に示すプライマーを用いたPCRの後、増幅産物に対して配列番号32と配列番号33に示すプライマーを用いてnested PCRを行った。図10に示すように、コラーゲンドナーを用いた場合でも始原生殖細胞のオボアルブミン遺伝子へのノックインが認められた。また、実施例2-(2)と同様の定量PCRによって行った結果、90%以上のオボアルブミン遺伝子がコラーゲンドナーコンストラクトによって置き換えられていると判断される。 A collagen donor construct was inserted into the plasmid pBlue ScriptII (SK +) to obtain a pBS-COL1 (A1 + A2) donor. Select pBS-COL1 (A1 + A2) donor with puromycin after knock-in to male chicken primordial germ cells by the same method as the above pBS-EGFP donor, pBS-IFNβ donor, pBS-IgG (Hc + Lc) donor PCR was performed using the genome of the prepared cells as a template. On the 5 ′ side, as with the pBS-IgG (Hc + Lc) donor, after PCR with the primer of SEQ ID NO: 27 and the antisense primer for the egg white lysozyme signal peptide shown in SEQ ID NO: 43, the amplified product of SEQ ID NO: 29 PCR was performed using the primer and an antisense primer for the egg white lysozyme signal peptide shown in SEQ ID NO: 44 (nested PCR). 3 'side is the same as when knocking in the above EGFP donor, pBS-IFNβ donor, pBS-IgG (Hc + Lc) donor and after PCR using the primers shown in SEQ ID NO: 30 and SEQ ID NO: 31, Nested PCR was performed using the primers shown in SEQ ID NO: 32 and SEQ ID NO: 33. As shown in FIG. 10, knock-in to the ovalbumin gene in primordial germ cells was observed even when a collagen donor was used. Further, as a result of quantitative PCR similar to Example 2- (2), it was determined that 90% or more of the ovalbumin gene was replaced by the collagen donor construct.
実施例6
雌始原生殖細胞の培養
 ハイラインマリア種ニワトリ2~3日胚血液中からの始原生殖細胞の単離と培養は非特許文献3に準拠して行った。性別の判定はCHD(chromo-helicase-DNA binding protein)遺伝子に対する配列番号46と配列番号47で示されるプライマーを用い、採血したニワトリ胚細胞由来ゲノムを鋳型としたPCRにより決定した。
Example 6
Cultivation of female primordial germ cells Isolation and culture of primordial germ cells from embryonic blood of highline Maria chick 2-3 days were performed according to Non-patent Document 3. Gender was determined by PCR using the primers shown in SEQ ID NO: 46 and SEQ ID NO: 47 for the CHD (chromo-helicase-DNA binding protein) gene and using the collected chicken embryo cell-derived genome as a template.
 継代に際しては、ピペットを用いて培地中の始原生殖細胞を分散、回収し、フィーダー細胞(BRL細胞)上に播種した。細胞の回収に先立って、培地の上層を一部(通常50~75%程度)アスピレーターもしくはピペットを用いて穏やかに除去し、新たな培地を添加することで培地交換とした。始原生殖細胞は浮遊性の細胞であるが、1g(常圧)下の培養で大部分の細胞は培養皿の下部に集積するので、この方法で始原生殖細胞の大部分を残して細胞を維持しつつ培地の大部分を交換することが可能である。また、培地交換時に細胞を極力喪失したくない場合や完全に培地を交換したい時(選択薬剤の除去や遺伝子導入時の血清成分の除去)は、始原生殖細胞を培地ごと回収し、非特許文献3と同様に300g、5分程度の遠心を行ったが、通常は1週間に1回以上は遠心を伴わない継代を行うこととした。このような継代を行うことにより、長期間にわたり雌始原生殖細胞を培養することが出来た。図11は培養開始後100日目と230日目の雌始原生殖細胞像を示しており、球状で浮遊性の特徴を維持した培養が可能である。また、培養している細胞が雌始原生殖細胞であることは、培養100日目の培養細胞由来ゲノムを鋳型に配列番号46と配列番号47で示されるプライマーを用いたPCRによりCHD遺伝子を増幅して確認した。性染色体上にあるCHDは配列番号46と配列番号47で示されるプライマーを用いて増幅すると雌ゲノムで約400bpと600bpの2つの産物を、雄ゲノムで600bpの一つの増幅産物を生ずる。図11に示すように雌始原生殖細胞(PGCs)由来のゲノムを鋳型とすることで雌の核型が確認された。次に本法による効果を検証する目的で、雌始原生殖細胞の細胞増殖について検討を行った。本法により約3ヶ月培養した雌始原生殖細胞を24ウェルプレートに1ウェルあたり1×103ずつ播種した。また、比較として従来法である継代時(一週間に1-2回の頻度)に300g、5分の遠心操作を加えた培養開始より40日経過した雌始原生殖細胞と約4ヶ月経過した雄始原生殖細胞を同様に播種し、細胞数を経時的に計測した。図11Bに示すように、培養開始より8日後に従来法では有意な雌始原生殖細胞数の増加を認めないが、本法による雌始原生殖細胞の培養により約4倍の増加を認める。雄始原生殖細胞と比較すると増加速度は遅いものの、本法を用いることにより雌始原生殖細胞の安定的な増殖を可能にした。雌始原生殖細胞のレシピエント胚への移植と移植細胞由来後代の樹立や、雌始原生殖細胞を用いた遺伝子操作(安定的な遺伝子導入やゲノム編集によるノックイン、ノックアウトなど)には安定的な細胞数の増加が必要不可欠であり、本法による雌始原生殖細胞の安定的な培養、細胞増殖技術により、これらが初めて可能になると考えられた。 During passage, primordial germ cells in the medium were dispersed and collected using a pipette, and seeded on feeder cells (BRL cells). Prior to cell collection, a part of the upper layer of the medium (usually about 50 to 75%) was gently removed using an aspirator or pipette, and the medium was changed by adding a new medium. Primordial germ cells are suspension cells, but most cells accumulate in the lower part of the culture dish in culture under 1 g (normal pressure), so this method leaves most of the primordial germ cells and maintains the cells. However, it is possible to change most of the medium. In addition, if you do not want to lose cells as much as possible when replacing the medium, or if you want to completely replace the medium (removal of selective drugs or serum components during gene transfer), collect primordial germ cells together with the medium. Centrifugation was carried out at 300 g for about 5 minutes in the same manner as in 3. However, it was usually decided to perform passage without centrifugation at least once a week. By performing such passage, female primordial germ cells could be cultured for a long period of time. FIG. 11 shows female primordial germ cell images on the 100th day and the 230th day after the start of the culture, and it is possible to perform the culture while maintaining the spherical and floating characteristics. The cultured cells are female primordial germ cells. The CHD gene was amplified by PCR using the primers shown in SEQ ID NO: 46 and SEQ ID NO: 47 using the cultured cell-derived genome on day 100 of culture as a template. Confirmed. When CHD on the sex chromosome is amplified using the primers shown in SEQ ID NO: 46 and SEQ ID NO: 47, two products of about 400 bp and 600 bp are produced in the female genome and one product of 600 bp in the male genome. As shown in FIG. 11, the female karyotype was confirmed using a genome derived from female primordial germ cells (PGCs) as a template. Next, for the purpose of verifying the effects of this method, cell proliferation of female primordial germ cells was examined. Female primordial germ cells cultured for about 3 months by this method were seeded at 1 × 10 3 per well in a 24-well plate. For comparison, about 4 months have passed with female primordial germ cells after 40 days from the start of culture with centrifugation at 300 g for 5 minutes at the time of passage (frequency once or twice a week), which is the conventional method. Male primordial germ cells were seeded in the same manner, and the number of cells was counted over time. As shown in FIG. 11B, a significant increase in the number of female primordial germ cells is not recognized by the conventional method after 8 days from the start of the culture, but an approximately 4-fold increase is observed by culturing female primordial germ cells by this method. Although the rate of increase was slower than that of male primordial germ cells, this method allowed stable growth of female primordial germ cells. Stable cells for transplantation of female primordial germ cells into recipient embryos, establishment of progeny derived from transplanted cells, and gene manipulation using female primordial germ cells (stable gene transfer, knock-in, knock-out by genome editing, etc.) The increase in the number is indispensable, and stable cell culture and cell growth technology of female primordial germ cells by this method are considered to be possible for the first time.
 実施例7
 培養した雌始原生殖細胞由来ニワトリ後代の樹立
 実施例6に記載の方法により雌始原生殖細胞を172日培養した後に、2000個を実施例(1-3)と同様の方法で横斑プリマスロック種2.5日胚(レシピエント胚)の血液中に顕微注射により移植を行った。移植に先立ち、6Gyのガンマ線照射を行った。この個体(雌キメラヒヨコ)を孵化させ、性成熟後、横斑プリマスロック種野生型と交配した。移植細胞由来後代はハイラインマリア種の白色毛(優勢遺伝)により、黒色毛のレシピエント由来後代と区別がつくが、図12Aに示すようにドナー細胞由来の個体が得られ、上記培養法により雌始原生殖細胞の配偶子分化能を保持した長期培養が可能なことが示された。
Example 7
Establishment of cultured female primordial germ cell-derived chicken progeny After culturing female primordial germ cells for 172 days by the method described in Example 6, 2000 cells were obtained in the same manner as in Example (1-3). Transplantation was performed by microinjection into the blood of 2.5 day embryos (recipient embryos). Prior to transplantation, 6 Gy of gamma irradiation was performed. This individual (female chimera chick) was hatched, and after sexual maturation, it was crossed with a wild type Plymouth Rock species wild type. The transplanted cell-derived progeny can be distinguished from the black-haired recipient-derived progeny by the white hair of the Highline Maria species (dominant inheritance). As shown in FIG. It was shown that long-term culture with the ability to differentiate gametocytes of female primordial germ cells is possible.
 実施例8
雌始原生殖細胞の遺伝子操作
 更に、本培養法で長期培養を可能にしたことで、雌始原生殖細胞に安定的な外来遺伝子導入ができるか否かを検証した。配列番号48で示されるEGFP、ネオマイシン耐性遺伝子ユニットから成る配列をトランスポゾン特異性末端逆位配列を有するベクターpB530A-2(System Bioscience, 米国)のEF1αプロモーター下流のEcoRI-EcoRV部位に挿入した(pB530-EGFP-Neor)。上述と同様、1×105~5×105個の雌始原生殖細胞株にリポフェクタミン2000を用いて0.8μgのpB530-EGFP-NeorとPiggyBacポトランスポザーゼ発現ベクターであるpB200PA-1(System Bioscience, 米国) 0.8μgを同時に遺伝子導入した。遺伝子導入後3日以降、ネオマイシンを終濃度0.5mg/mlで添加し、培養を行った。ネオマイシン存在下で増殖する始原生殖細胞は図12Bに示すように緑色蛍光を発し、雌始原生殖細胞に安定的に外来遺伝子が導入され、発現することが示された。
Example 8
Genetic manipulation of female primordial germ cells Furthermore, it was verified whether or not long-term culture was possible by this culture method, so that stable introduction of foreign genes into female primordial germ cells was possible. The sequence consisting of the EGFP, neomycin resistance gene unit represented by SEQ ID NO: 48 was inserted into the EcoRI-EcoRV site downstream of the EF1α promoter of the vector pB530A-2 (System Bioscience, USA) having a transposon-specific terminal inverted sequence (pB530- EGFP-Neo r ). As described above, 0.8 μg of pB530-EGFP-Neo r and PiggyBac po-transposase expression vector pB200PA-1 (System Bioscience, System Bioscience, using Lipofectamine 2000 on 1 × 10 5 to 5 × 10 5 female primordial germ cell lines. (US) 0.8 μg of gene was simultaneously introduced. From 3 days after gene introduction, neomycin was added at a final concentration of 0.5 mg / ml and cultured. The primordial germ cells proliferating in the presence of neomycin emitted green fluorescence as shown in FIG. 12B, indicating that the foreign gene was stably introduced into the female primordial germ cells and expressed.
 更に、外来遺伝子が安定導入された雌始原生殖細胞の細胞特性を解析した。上記方法で樹立された緑色蛍光を発する雌始原生殖細胞を孵卵後2.5日のニワトリ胚血液中に顕微注射により移植した。個体あたりの移植細胞数は2000~5000個とした。移植後、胚の孵卵操作を継続し、17日胚(移植14日後)の胚を解析した。緑色蛍光を発する移植始原生殖細胞ならびにその子孫細胞は図12Bの写真のように卵巣組織に集積し、特に腹側の皮質層に大部分が局在した。このような局在は、内在性の始原生殖細胞と一致しており、一連の培養操作、遺伝子導入操作、薬剤選択操作を経ても雌始原生殖細胞が始原生殖細胞としての特性を失っていないことを示している。 Furthermore, cell characteristics of female primordial germ cells into which foreign genes were stably introduced were analyzed. The female primordial germ cells emitting green fluorescence established by the above method were transplanted by microinjection into chick embryo blood 2.5 days after incubation. The number of transplanted cells per individual was 2000-5000. After the transplantation, the incubation of the embryo was continued, and the embryos on day 17 (14 days after transplantation) were analyzed. The transplanted primordial germ cells and their progeny cells that emit green fluorescence accumulated in the ovarian tissue as shown in the photograph of FIG. 12B, and were mainly localized in the cortical layer on the ventral side. Such localization is consistent with the endogenous primordial germ cells, and the female primordial germ cells have not lost their primordial germ cell characteristics through a series of culture, gene transfer, and drug selection operations. Is shown.
実施例9
雌始原生殖細胞のオボアルブミン、オボムコイドノックアウト
 雌始原生殖細胞でゲノム編集操作によるノックアウトが可能となれば、ノックアウト雌始原生殖細胞を移植した雌キメラ個体(G0)を樹立可能となり、ノックアウト雄始原生殖細胞を移植した雄キメラ個体(G0)と交配することで後代(F1世代)にホモノックアウト個体を樹立可能になる。このことは従来の技術より1世代早くノックアウト個体が樹立可能なことを意味しており、研究にかかる期間や費用を大幅に低減できるなど利点が多い。そこで、雌始原生殖細胞を用いてアレルゲン遺伝子のノックアウトを試みた。
Example 9
Female primordial germ cell ovalbumin, ovomucoid knockout If a female primordial germ cell can be knocked out by genome editing, a female chimeric individual (G0) transplanted with the knockout female primordial germ cell can be established, and the knockout male primordial germ cell By crossing with a male chimeric individual (G0) transplanted with a homozygous knockout individual can be established in a progeny (F1 generation). This means that a knockout individual can be established one generation earlier than the conventional technology, and there are many advantages such as greatly reducing the time and cost of research. Therefore, we attempted knockout of the allergen gene using female primordial germ cells.
 実施例6に記載の方法で調製した雌始原生殖細胞1×105~5×105個を用いて、上記で雄始原生殖細胞に行ったものと同一の条件でオボアルブミン遺伝子のノックアウトを試みた。1.6μgのpx330-Puror-OVATg3をリポフェクタミン2000を用いて遺伝子導入し、遺伝子導入後2~4日の間終濃度1μg/mlのピューロマイシン存在下で培養し、洗浄後、1~2週間の培養を行った細胞からゲノムDNAを抽出後、配列番号21,配列番号22で示されるオリゴDNAプライマーを用いたPCR法によりオボアルブミン遺伝子の一部領域を増幅し、TAベクターにサブクローンし、配列番号5(OVATg3)を含む領域のゲノム塩基配列を解析した。その結果、12クローン中11クローン(92%)においてオボアルブミン遺伝子の配列番号5(OVATg3)を含む領域で塩基の欠失や置換が認められた。代表的な欠失を図13に示す。 Using 1 × 10 5 to 5 × 10 5 female primordial germ cells prepared by the method described in Example 6, an attempt was made to knock out the ovalbumin gene under the same conditions as described above for male primordial germ cells It was. 1.6 μg of px330-Puro r -OVATg3 was transfected with Lipofectamine 2000, cultured for 2-4 days in the presence of puromycin at a final concentration of 1 μg / ml for 2 to 4 days after gene transfer, and washed for 1-2 weeks. After extracting genomic DNA from cultured cells, a partial region of the ovalbumin gene was amplified by PCR using the oligo DNA primers shown in SEQ ID NO: 21 and SEQ ID NO: 22, subcloned into a TA vector, The genomic base sequence of the region containing No. 5 (OVATg3) was analyzed. As a result, in 11 clones out of 12 clones (92%), deletion or substitution of bases was observed in the region containing SEQ ID NO: 5 (OVATg3) of the ovalbumin gene. A typical deletion is shown in FIG.
 また同様に、雌始原生殖細胞を用いてオボムコイド遺伝子のノックアウトをpx330-Puror-OVMTg2を遺伝子導入、薬剤選択、培養し、ゲノムDNAを抽出後、配列番号23,配列番号24で示されるオリゴDNAプライマーを用いたPCR法によりオボムコイド遺伝子の一部領域を増幅し、TAベクターにサブクローンし、配列番号9(OVMTg2)を含む領域のゲノム塩基配列を解析した。解析した12クローン中11クローン(92%)においてオボムコイド遺伝子の配列番号9(OVMTg2)を含む領域で塩基の欠失が認められた。代表的な欠失を図13に示す。雌始原生殖細胞にpx330-Puror-OVMTg2を遺伝子導入、薬剤選択、培養し、オボムコイド遺伝子に欠損が入ったものが大部分である雌始原生殖細胞を実施例(1-3)で記載した要領で白色レグホン種2.5日胚(レシピエント胚)の血液中に顕微注射により移植した。実施例(1-3)と同様の電離放射線照射、窓開け、細胞移植、孵化操作を行い、雌キメラヒヨコ(G0)を7羽得ることができた。以上のことから、雌始原生殖細胞を用いることでゲノム編集による遺伝子のノックアウトが可能であり、これを雌胚に移植することで卵巣に遺伝子ノックアウトされた雌始原生殖細胞が集積するキメラニワトリを樹立可能である。 Similarly, female primordial germ cells Transgenic knockout px330-Puro r -OVMTg2 ovomucoid gene using, drug selection, and cultured, after extracting genomic DNA, SEQ ID NO: 23, oligo DNA shown by SEQ ID NO: 24 A partial region of the ovomucoid gene was amplified by PCR using primers, subcloned into a TA vector, and the genomic base sequence of the region containing SEQ ID NO: 9 (OVMTg2) was analyzed. Of the 12 clones analyzed, 11 clones (92%) showed a base deletion in the region containing the ovomucoid gene SEQ ID NO: 9 (OVMTg2). A typical deletion is shown in FIG. Procedures described in Example (1-3) for female primordial germ cells in which px330-Puro r -OVMTg2 is introduced into female primordial germ cells, drug selection, culture, and most of the ovomucoid gene is defective And transplanted into the blood of white leghorn 2.5 day embryo (recipient embryo) by microinjection. The same ionizing radiation irradiation, window opening, cell transplantation, and hatching operation as in Example (1-3) were performed, and 7 female chimeric chicks (G0) could be obtained. Based on the above, it is possible to knock out genes by genome editing by using female primordial germ cells, and establish chimeric chimeras in which female primordial germ cells accumulated in the ovaries accumulate by transplanting them into female embryos. Is possible.
実施例10
雌始原生殖細胞のオボアルブミン遺伝子座への遺伝子ノックイン
 雌始原生殖細胞を用いて、雄始原生殖細胞のようなゲノム編集による遺伝子ノックインの可否を検討した。上述と同様に、1×105~5×105個の雌始原生殖細胞株にリポフェクタミン2000を用いてpx330-Neor-OVATg1を0.8μg、pBS-EGFPドナーを0.8μg、同時に遺伝子導入し、導入後3日以降、ピューロマイシンを終濃度1μg/mlで添加した。適宜培地交換を行い、終濃度1μg/mlのピューロマイシン存在下で増殖する細胞を回収し、ゲノムDNAを調製後、Nested PCRを行い、EGFPドナーコンストラクトのオボアルブミン遺伝子座へのノックインを確認した(図14)。雌始原生殖細胞においてもゲノム編集による遺伝子ノックインは可能である。また、実施例2-(2)、3-(1)、4、5で行った雄始原生殖細胞のノックイン効率の検定と同様の定量PCRを行った結果、約80%以上のオボアルブミン遺伝子がEGFPドナーコンストラクトによって置き換えられていると判断された。
Example 10
Gene knock-in to ovalbumin locus of female primordial germ cells Using female primordial germ cells, we examined whether gene knock-in was possible by genome editing like male primordial germ cells. As described above, 1 × 10 5 to 5 × 10 5 female primordial germ cell lines were transfected with 0.8 μg of px330-Neo r -OVATg1 and 0.8 μg of pBS-EGFP donor simultaneously using Lipofectamine 2000, From 3 days after introduction, puromycin was added at a final concentration of 1 μg / ml. The medium was appropriately changed, and cells proliferating in the presence of puromycin at a final concentration of 1 μg / ml were collected. After preparing genomic DNA, Nested PCR was performed to confirm knock-in of the EGFP donor construct to the ovalbumin locus ( Figure 14). Gene knock-in by genome editing is also possible in female primordial germ cells. Further, as a result of quantitative PCR similar to the test for male primordial germ cell knock-in efficiency performed in Examples 2- (2), 3- (1), 4 and 5, about 80% or more of the ovalbumin gene was found. It was judged that it was replaced by the EGFP donor construct.
実施例11
雌始原生殖細胞のヒトインターフェロン遺伝子ノックイン
 雌始原生殖細胞を用いて、実施例3-(1)で行った雄始原生殖細胞と同様にゲノム編集によりIFNβドナーコンストラクトの遺伝子ノックインを行った。実施例3-(1)と同様の手法により雌ニワトリ始原生殖細胞に遺伝子ノックイン後ピューロマイシンで選択し、選択された細胞のゲノムを鋳型としてPCRをNested PCRを行い、IFNβドナーコンストラクトのオボアルブミン遺伝子座へのノックインを確認した(図15)。
Example 11
Human Primordial Germ Cell Human Interferon Gene Knock-In Using female primordial germ cells, gene knock-in of IFNβ donor construct was performed by genome editing in the same manner as male primordial germ cells performed in Example 3- (1). In the same manner as in Example 3- (1), knocking in female chick primordial germ cells and selecting with puromycin, performing Nested PCR using the selected cell genome as a template, the ovalbumin gene of the IFNβ donor construct Knock-in to the locus was confirmed (Figure 15).

Claims (23)

  1. 家禽始原生殖細胞の遺伝子をゲノム編集により改変することを特徴とする、家禽始原生殖細胞の遺伝子改変方法。 A method for gene modification of poultry primordial germ cells, which comprises modifying genes of poultry primordial germ cells by genome editing.
  2. 前記家禽始原生殖細胞が雌始原生殖細胞である、請求項1に記載の遺伝子改変方法。 The genetic modification method according to claim 1, wherein the poultry primordial germ cells are female primordial germ cells.
  3. 前記遺伝子が卵内タンパク質遺伝子である、請求項1又は2に記載の遺伝子改変方法。 The gene modification method according to claim 1 or 2, wherein the gene is an egg protein gene.
  4. TALEN又はCRISPRを用いたゲノム編集により遺伝子が改変される、請求項1~3のいずれか1項に記載の遺伝子改変方法。 The gene modification method according to any one of claims 1 to 3, wherein the gene is modified by genome editing using TALEN or CRISPR.
  5. CRISPRを用いたゲノム編集により遺伝子が改変される、請求項4に記載の遺伝子改変方法。 The gene modification method according to claim 4, wherein the gene is modified by genome editing using CRISPR.
  6. 遺伝子の改変が遺伝子のノックイン、ノックアウトまたは部分欠失である、請求項1~5のいずれか1項に記載の遺伝子改変方法。 The gene modification method according to any one of claims 1 to 5, wherein the gene modification is a knock-in, knock-out or partial deletion of the gene.
  7. 前記遺伝子をノックインにより改変し、前記家禽始原生殖細胞に薬剤耐性遺伝子を組み込み、前記薬剤耐性遺伝子に基づき遺伝子改変された始原生殖細胞を選別することを特徴とする、請求項1~6のいずれか1項に記載の遺伝子改変方法。 7. The gene according to claim 1, wherein the gene is modified by knock-in, a drug resistance gene is incorporated into the poultry primordial germ cell, and a primordial germ cell genetically modified based on the drug resistance gene is selected. 2. The gene modification method according to item 1.
  8. 前記遺伝子をノックアウト又は部分欠失により改変し、前記家禽始原生殖細胞に薬剤耐性遺伝子を導入し、前記薬剤耐性遺伝子に基づき遺伝子改変された始原生殖細胞を選別することを特徴とする、請求項1~6のいずれか1項に記載の遺伝子改変方法。 The gene is modified by knockout or partial deletion, a drug resistance gene is introduced into the poultry primordial germ cell, and the primordial germ cell genetically modified based on the drug resistance gene is selected. 7. The gene modification method according to any one of 1 to 6.
  9. 薬剤耐性遺伝子がピューロマイシン耐性遺伝子(Puror)又はゼオシン耐性遺伝子(Zeor)である、請求項7又は8に記載の遺伝子改変方法。 Drug resistance gene is the puromycin resistance gene (Puro r) or zeocin resistance gene (Zeo r), genetically modified method according to claim 7 or 8.
  10. ゲノム編集をプラスミドベクター又はウイルスベクターを用いて行う、請求項1~9のいずれか1項に記載の遺伝子改変方法。 The gene modification method according to any one of claims 1 to 9, wherein genome editing is performed using a plasmid vector or a viral vector.
  11. プラスミドベクター又はウイルスベクターを家禽初期胚に導入して内在性の始原生殖細胞のゲノム編集を行い内在性の家禽始原生殖細胞の遺伝子改変を行う、請求項10に記載の遺伝子改変方法。 The gene modification method according to claim 10, wherein a plasmid vector or a virus vector is introduced into an early poultry embryo, genome editing of the endogenous primordial germ cell is performed, and the endogenous poultry primordial germ cell is genetically modified.
  12. 請求項1~10のいずれかに記載の遺伝子改変方法により得られた、ゲノム編集により遺伝子改変された家禽始原生殖細胞。 A poultry primordial germ cell obtained by the genetic modification method according to any one of claims 1 to 10 and genetically modified by genome editing.
  13. 雌始原生殖細胞である、請求項12に記載の家禽始原生殖細胞。 13. A poultry primordial germ cell according to claim 12, which is a female primordial germ cell.
  14. 請求項1~10のいずれかの方法により得られた遺伝子改変された家禽始原生殖細胞を家禽初期胚の胚盤葉、血液中もしくは生殖巣領域に移植して遺伝子改変キメラ個体を得る工程、このキメラ個体を性成熟して野生型個体、遺伝子改変個体或いは遺伝子改変キメラ個体と交配する工程を含む、遺伝子改変家禽の生産方法。 A step of transplanting genetically modified poultry primordial germ cells obtained by the method of any one of claims 1 to 10 to a blastoderm, blood or gonad region of an early poultry embryo to obtain a genetically modified chimeric individual, A method for producing a genetically modified poultry, comprising the step of maturing a chimeric individual with a wild type individual, a genetically modified individual or a genetically modified chimeric individual.
  15. 請求項11に記載の方法により遺伝子改変された内在性の家禽始原生殖細胞を含むキメラ個体を性成熟して野生型個体、遺伝子改変個体或いは他の遺伝子改変キメラ個体と交配する工程を含む、遺伝子改変家禽の生産方法。 A gene comprising the step of maturing a chimeric individual containing endogenous poultry primordial germ cells genetically modified by the method according to claim 11 and mating with a wild type individual, a genetically modified individual or another genetically modified chimeric individual Modified poultry production method.
  16. 遺伝子改変された家禽のジェノタイプが変異型ホモ(-/-)である、請求項14又は15に記載の方法。 The method according to claim 14 or 15, wherein the genotype of the genetically modified poultry is a mutant homo (-/-).
  17. 遺伝子改変がオボアルブミン、オボムコイド、オボムチン、オボトランスフェリン、オボインヒビターからなる群から選ばれる少なくとも1種の卵内タンパク質遺伝子のノックアウトである、請求項14~16のいずれか1項に記載の方法。 The method according to any one of claims 14 to 16, wherein the genetic modification is a knockout of at least one in ovo protein gene selected from the group consisting of ovalbumin, ovomucoid, ovomucin, ovotransferrin and ovoinhibitor.
  18. 遺伝子改変が卵内タンパク質遺伝子における外来遺伝子のヘテロ又はホモのノックインであり、雌の遺伝子改変家禽の卵が外来遺伝子の発現産物を含む請求項14~16のいずれか1項に記載の方法。 The method according to any one of claims 14 to 16, wherein the genetic modification is a heterogeneous or homozygous knock-in of a foreign gene in an in ovo protein gene, and the female genetically modified poultry egg contains an expression product of the foreign gene.
  19. 請求項17に記載の方法により生産された雌の遺伝子改変家禽から得られる、オボアルブミン、オボムコイド、オボムチン、オボトランスフェリン、オボインヒビター、オボグロブリン、リゾチームからなる群から選ばれる少なくとも1種の卵内アレルゲンタンパク質が低減又は消失されたノックアウト家禽卵。 18. At least one in-vitro allergen selected from the group consisting of ovalbumin, ovomucoid, ovomucin, ovotransferrin, ovoinhibitor, ovoglobulin, and lysozyme, obtained from female genetically modified poultry produced by the method of claim 17. Knockout poultry eggs with reduced or eliminated protein.
  20. 請求項18に記載の方法により生産された雌の遺伝子改変家禽から得られる、外来遺伝子の発現産物を含むノックイン家禽卵。 A knock-in poultry egg containing an exogenous gene expression product obtained from a female genetically modified poultry produced by the method of claim 18.
  21. 外来遺伝子がヒト由来のタンパク質をコードする遺伝子である、請求項20に記載のノックイン家禽卵。 The knock-in poultry egg according to claim 20, wherein the foreign gene is a gene encoding a human-derived protein.
  22. 外来遺伝子が抗体又はその断片、酵素、ホルモン、成長因子、サイトカイン、インターフェロン、コラーゲン、細胞外マトリクス分子、ワクチン、アゴニスト性タンパク質、アンタゴニスト性タンパク質からなる群から選ばれる、請求項20又は21に記載のノックイン家禽卵。 The foreign gene is selected from the group consisting of an antibody or a fragment thereof, an enzyme, a hormone, a growth factor, a cytokine, an interferon, a collagen, an extracellular matrix molecule, a vaccine, an agonistic protein, and an antagonistic protein. Knock-in poultry eggs.
  23. 雌始原生殖細胞の継代培養方法であって、培地の交換を常圧下もしくは低重力加速度下に行うことを特徴とする、雌始原生殖細胞の継代培養方法。
     
    A method for subculturing female primordial germ cells, wherein the medium is exchanged at normal pressure or under low gravitational acceleration.
PCT/JP2015/068523 2014-06-27 2015-06-26 Genetic modification method for poultry primordial germ cells, genetically-modified poultry primordial germ cells, method for producing genetically-modified poultry, and poultry eggs WO2015199225A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016529678A JP6644276B2 (en) 2014-06-27 2015-06-26 Method of genetically modifying poultry primordial germ cells, method of producing genetically modified poultry primordial germ cells, method of producing genetically modified poultry, and poultry egg

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-132007 2014-06-27
JP2014132007 2014-06-27

Publications (1)

Publication Number Publication Date
WO2015199225A1 true WO2015199225A1 (en) 2015-12-30

Family

ID=54938302

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/068523 WO2015199225A1 (en) 2014-06-27 2015-06-26 Genetic modification method for poultry primordial germ cells, genetically-modified poultry primordial germ cells, method for producing genetically-modified poultry, and poultry eggs

Country Status (2)

Country Link
JP (1) JP6644276B2 (en)
WO (1) WO2015199225A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017033625A1 (en) * 2015-08-27 2017-03-02 国立大学法人広島大学 Birds, method for producing birds, and bird eggs
WO2017111144A1 (en) * 2015-12-25 2017-06-29 国立研究開発法人産業技術総合研究所 Genetically-modified poultry egg
WO2020020973A3 (en) * 2018-07-24 2020-03-12 Tronico Method for determining a specific characteristic of an embryo in an unhatched egg
JP2020080747A (en) * 2018-11-27 2020-06-04 国立研究開発法人農業・食品産業技術総合研究機構 Production method of genetically modified bird, and genetically modified bird
JP2020536580A (en) * 2017-09-19 2020-12-17 ザ ステート オブ イスラエル, ミニストリー オブ アグリカルチャー アンド ルーラル ディヴェロプメント, アグリカルチュラル リサーチ オーガニゼーション (エーアールオー) (ボルカニ センター) Genome-edited bird
CN113913468A (en) * 2020-07-10 2022-01-11 北京大学 Gene editing method of spider

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100502889B1 (en) * 2003-04-21 2005-07-20 한미약품(주) Method for Enhancing Germline Transmission Efficiency of Avian Primordial Germ Cells

Non-Patent Citations (10)

* Cited by examiner, † Cited by third party
Title
HIROSHI SHINMOTO: "3. Kihonteki na Jikken Sosa 1) Dobutsu Saibo Baiyo no Kiso Gijutsu", HEISEI 21 NENDO NORIN SUISANSHO HOJO JIGYO (SHOKUNO RENKEI SOKUSHIN JIGYO) SHOKUHIN KINOSEI HYOKA MANUAL-SHU, DAI I SHU, pages 49 - 56 *
MALI P. ET AL.: "RNA-Guided Human Genome Engineering via Cas9", SCIENCE, vol. 339, no. 6121, 15 February 2013 (2013-02-15), pages 819 - 823, XP055248658, ISSN: 0036-8075 *
PARK T. S. ET AL.: "Germ Cell , Stem Cell , and Genomic Modification in Birds", J STEM CELL RES THER., vol. 4, no. Issue 5, pages 1 - 6, XP055248662 *
PARK T. S. ET AL.: "Targeted gene knockout in chickens mediated by TALENs", PROC NATL ACAD SCI U S A., vol. 111, no. 35, 19 August 2014 (2014-08-19), pages 12716 - 12721, XP055248659, ISSN: 0027-8424 *
SIGMA-ALDRICH JAPAN, 1.33 FUYUSEI SAIBO NO KEIDAI, SIGMA® SAIBO BAIYO GUIDE 2013 (PROTOCOL-SHU + SEIHIN SHOKAI, pages 14 - 15 *
SONG Y. ET AL.: "Characteristics of Long-Term Cultures of Avian Primordial Germ Cells and Gonocytes", BIOL REPROD., vol. 90, no. 1, pages 1 - 8 *
TAKASHI YAMAMOTO ET AL.: "Genome Henshu o Riyo shita Baiyo Saibo ya Dobutsu ni Okeru Hyoteki Idenshi no Kaihen", JAPANESE JOURNAL OF CIRCULATION RESEARCH, vol. 36, no. 4, 27 December 2013 (2013-12-27), pages 123 - 128 *
TOKUKO MUKOYAMA: "Shokumotsu Allergen no Shurui", JAPANESE JOURNAL OF PEDIATRICS, vol. 53, 2000, pages 47 - 54 *
VAN DE LAVOIR M-C. ET AL.: "Germline transmission of genetically modified primordial germ cells", NATURE, vol. 441, pages 766 - 769, XP009093457, ISSN: 0028-0836 *
WEI C. ET AL.: "TALEN or Cas9 - Rapid, Efficient and Specific Choices for Genome Modifications", J GENET GENOMICS ., vol. 40, no. 6, 20 June 2013 (2013-06-20), pages 281 - 289, XP055071686, ISSN: 1673-8527 *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017033625A1 (en) * 2015-08-27 2017-03-02 国立大学法人広島大学 Birds, method for producing birds, and bird eggs
WO2017111144A1 (en) * 2015-12-25 2017-06-29 国立研究開発法人産業技術総合研究所 Genetically-modified poultry egg
US10858669B2 (en) 2015-12-25 2020-12-08 National Institute Of Advanced Industrial Science And Technology Genetically modified chicken egg with an exogenous sequence knocked into the ovalbumin gene
JP2020536580A (en) * 2017-09-19 2020-12-17 ザ ステート オブ イスラエル, ミニストリー オブ アグリカルチャー アンド ルーラル ディヴェロプメント, アグリカルチュラル リサーチ オーガニゼーション (エーアールオー) (ボルカニ センター) Genome-edited bird
WO2020020973A3 (en) * 2018-07-24 2020-03-12 Tronico Method for determining a specific characteristic of an embryo in an unhatched egg
JP2020080747A (en) * 2018-11-27 2020-06-04 国立研究開発法人農業・食品産業技術総合研究機構 Production method of genetically modified bird, and genetically modified bird
JP7325795B2 (en) 2018-11-27 2023-08-15 国立研究開発法人農業・食品産業技術総合研究機構 Method for producing genetically modified bird and genetically modified bird
CN113913468A (en) * 2020-07-10 2022-01-11 北京大学 Gene editing method of spider
CN113913468B (en) * 2020-07-10 2023-09-29 北京大学 Gene editing method for spider

Also Published As

Publication number Publication date
JP6644276B2 (en) 2020-02-12
JPWO2015199225A1 (en) 2017-04-27

Similar Documents

Publication Publication Date Title
JP6644276B2 (en) Method of genetically modifying poultry primordial germ cells, method of producing genetically modified poultry primordial germ cells, method of producing genetically modified poultry, and poultry egg
JP6004290B2 (en) Transgenic chickens with inactivated endogenous loci
JP2014064584A (en) Tissue specific expression of exogenous protein in transgenic chicken
JP6923232B2 (en) Genetically modified poultry eggs
US20170223938A1 (en) Transgenic chickens with an inactivated endogenous gene locus
JP2019502400A (en) Compositions and methods for preparing chimeric embryonic auxiliary organs
CA3007066A1 (en) Methods for gender determination of avian embryos in unhatched eggs and means thereof
AU2012258786B2 (en) Transgenic chicken comprising an inactivated immunoglobulin gene
WO2018132936A1 (en) Genetical alternation and disease modelling using cre-dependent cas9 expressing mammals
JP2021166551A (en) Birds and bird eggs
US20240052304A1 (en) Sterile avian embryos, production and uses thereof
JP2019505218A (en) Manipulation of the humanized kidney by gene complementation
US10717991B2 (en) Transgenic pig which simultaneously expresses HO-1 gene and TNFR1-Fc gene, and comprises knocked-out GGTA1 gene, and use thereof
Bartsch et al. Resources for genome editing in livestock: Cas9-expressing chickens and pigs
WO2023176982A1 (en) Mhc gene group humanized animal
WO2024003907A1 (en) Totally sterile population of avian embryos, production and uses thereof
WO2003106651A2 (en) Spermatogonial cell line

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15810990

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016529678

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15810990

Country of ref document: EP

Kind code of ref document: A1