WO2015198629A1 - Autonomous mobile device - Google Patents

Autonomous mobile device Download PDF

Info

Publication number
WO2015198629A1
WO2015198629A1 PCT/JP2015/054669 JP2015054669W WO2015198629A1 WO 2015198629 A1 WO2015198629 A1 WO 2015198629A1 JP 2015054669 W JP2015054669 W JP 2015054669W WO 2015198629 A1 WO2015198629 A1 WO 2015198629A1
Authority
WO
WIPO (PCT)
Prior art keywords
autonomous mobile
bumper
mobile robot
mobile device
action
Prior art date
Application number
PCT/JP2015/054669
Other languages
French (fr)
Japanese (ja)
Inventor
融 空閑
小川 勝
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Publication of WO2015198629A1 publication Critical patent/WO2015198629A1/en

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0227Control of position or course in two dimensions specially adapted to land vehicles using mechanical sensing means, e.g. for sensing treated area
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01DHARVESTING; MOWING
    • A01D34/00Mowers; Mowing apparatus of harvesters
    • A01D34/01Mowers; Mowing apparatus of harvesters characterised by features relating to the type of cutting apparatus
    • A01D34/412Mowers; Mowing apparatus of harvesters characterised by features relating to the type of cutting apparatus having rotating cutters
    • A01D34/63Mowers; Mowing apparatus of harvesters characterised by features relating to the type of cutting apparatus having rotating cutters having cutters rotating about a vertical axis
    • A01D34/64Mowers; Mowing apparatus of harvesters characterised by features relating to the type of cutting apparatus having rotating cutters having cutters rotating about a vertical axis mounted on a vehicle, e.g. a tractor, or drawn by an animal or a vehicle
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots

Definitions

  • the present invention relates to an autonomous mobile device, and more particularly, to an autonomous mobile device having an auxiliary traction mode that reduces a burden when an operator pulls the autonomous mobile device.
  • Patent Document 1 discloses a technique for controlling the propulsion direction of the self-propulsion device by pulling or loosening a line attached to the self-propulsion device.
  • FIG. 11 is a top view (a) showing the configuration of the self-propulsion device 500 of Patent Document 1 and a view (b) showing the retractable line guidance system 600.
  • the self-propelling device 500 includes a main body 504, wheels 506, 508, 510, 512, and a motor 520, and an operator 502 operates a line 524 extended from a housing 526 of the main body 504 with a handle 532.
  • the self-propelling device 500 includes a line guide system 600 having a reel 604 that winds the line 524 and a tension mechanism 610.
  • the line guidance system 600 includes a line extension monitoring device 618, an angle monitoring device 622, and a vertical angle monitoring device 624, and monitors the extension length, angle, and displacement of the line 524 fed out from the arm 612, and maintains the selected value.
  • the self-propulsion device 500 is promoted as described above.
  • Japanese Patent Publication Japanese Patent Laid-Open No. 2011-170853 (published on September 1, 2011)”
  • the self-propulsion device 500 of Patent Document 1 needs to newly add a configuration for monitoring the extension length, angle, and displacement of the line 524 of the line guidance system 600, and has a problem of increasing costs.
  • This invention is made in view of the said subject, The objective is to add the function which assists a worker's traction with respect to an autonomous mobile apparatus at low cost, and to reduce a worker's physical burden. is there.
  • An autonomous mobile device of the present invention includes a main body base, a moving mechanism provided at a lower portion of the main body base, a bumper that covers at least a front edge of the main body base, and a bumper that is displaceably connected to the main body base.
  • An autonomous mobile device including a displacement detection unit that detects a displacement of the actuator includes an action unit that acts on the bumper to be displaced, and has an auxiliary traction mode that changes a movement state in an action direction of the action unit. .
  • the action part is detachably installed on the bumper, and when the action part is attached, it shifts to the auxiliary traction mode.
  • the action part is accommodated in a bumper so that it can be deployed, and when the action part is deployed, it shifts to an auxiliary traction mode.
  • the action unit includes a safety device that executes the auxiliary traction mode only while detecting the operation signal.
  • the auxiliary traction mode is characterized in that the speed is changed so as to reduce the displacement of the bumper by the action portion.
  • the action part is a string-like member that pulls the bumper.
  • the string-like member of the action part is characterized by having elasticity.
  • the action portion is a handle member that propels the bumper from the rear.
  • the auxiliary traction mode is characterized in that the work area is set by acquiring position information during movement.
  • a function of assisting the operator to pull the autonomous mobile device can be added at low cost, and the physical burden on the worker can be reduced.
  • FIG. 1 shows a schematic configuration of an autonomous mobile device (hereinafter referred to as an autonomous mobile robot) according to a first embodiment of the present invention, where (a) is a side view and (b) is a top view.
  • an autonomous mobile robot main constituent mechanisms / parts visible from the outside are indicated by solid lines, and main constituent mechanisms / parts included inside are indicated by broken lines.
  • the autonomous mobile robot 110 includes a main body base 10, a front wheel 12, a rear wheel 13, a front wheel drive mechanism 14, a rear wheel drive mechanism 15, a control means 16, a bumper 20, and a displacement transmission means 30 that constitute a moving mechanism. Including.
  • the autonomous mobile robot 110 can control the front wheel drive mechanism 14 for driving the front wheels 12 or the rear wheel drive mechanism 15 for driving the rear wheels 13 by the control means 16 to perform autonomous traveling such as forward movement, reverse movement, and turning. It has become. It is also possible to run either the front wheel 12 or the rear wheel 13 as one drive wheel, and in that case, it is not necessary to provide both the front wheel drive mechanism 14 and the rear wheel drive mechanism 15.
  • a lawn mowing cutter 17 is provided at the bottom of the main body base 10.
  • the lawn mowing cutter 17 rotates when the power of the cutter driving motor 18 is transmitted through the rotating shaft.
  • the main body base 10 of the autonomous mobile robot 110 is provided with various mechanisms and components as described above.
  • the bumper 20 is mainly formed of a resin or the like so as to have a substantially outer shape of the autonomous mobile robot 110, and is installed so as to be relatively displaceable in the XY direction with respect to the main body base 10 via the displacement transmission means 30. ing.
  • the bumper 20 touches an obstacle such as an object or a person during autonomous movement, the bumper 20 detects the contact by displacing with respect to the main body base 10, and the autonomous mobile robot 110 is controlled via the control means 16. It functions as an york-garde mechanism that ensures safety at the time of contact, such as stopping and retreating.
  • two displacement transmission means 30 are provided on the front side of the main body base 10 (30a, 30b) and two are provided on the rear side of the main body base 10 ( 30c, 30d), a total of four are provided.
  • the displacement transmission means 30 changes in size and mounting height depending on whether it is installed on the front side or the rear side of the autonomous mobile robot 110, but the basic configuration and function are the same. is there.
  • the displacement transmission means 30 is installed in the front side and back side of the autonomous mobile robot 110, it is not restricted to this, Only the front side or only the back side may be sufficient. Alternatively, a configuration in which three in total, one at the front center and two at the left and right at the rear, may be installed.
  • the autonomous mobile robot 110 can attach the action part 40 to the bumper 20 via the attachment part 22.
  • the action part 40 is, for example, a string-like member such as elastic rubber.
  • the attachment portion 22 is a pull-out hook, and can be pulled out by hand from the state of being housed in the bumper 20, and is brought into a housed state when pushed in from the state of being pulled out.
  • the base of the attachment portion 22 is provided with a drawer detection portion 23 that detects whether or not the attachment portion 22 has been pulled out.
  • the drawer detection unit 23 is a general micro switch.
  • the autonomous mobile robot 110 of the present invention has a first movement mode in which it moves autonomously by a work such as lawn mowing, and a second mode in which it is pulled by an operator, a bicycle, a car, etc. There are several movement modes.
  • the autonomous mobile robot 110 moves autonomously while driving the lawn mowing cutter 17 and performs work such as lawn mowing.
  • the autonomous mobile robot 110 detects the state of the attachment portion 22 with the drawer detection portion 23 and switches the movement mode. Specifically, the autonomous mobile robot 110 enters the first movement mode when the attachment portion 22 is in the retracted state, and enters the second movement mode when the attachment portion 22 is pulled out and the action portion 40 is attached. Are switched as follows.
  • the action unit 40 is used when an operator, a bicycle, a car, or the like pulls the autonomous mobile robot 110 when the autonomous mobile robot 110 is switched to the second movement mode.
  • the action part 40 can be comprised with the member which can be pulled or pushed forward by an operator, a bicycle, a motor vehicle, etc. besides the string-like member mentioned above.
  • the autonomous mobile robot 110 stops the lawn mowing cutter 17.
  • FIGS. 2 and 3 are schematic schematic diagrams showing an interlocking state between the bumper 20 and the displacement transmitting means 30.
  • FIG. 2 and 3 one of the displacement transmission means 30 a, 30 b, 30 c, and 30 d is described as a representative of the displacement transmission means 30.
  • the interlocking between the bumper 20 and the displacement transmission means 30 will be described in detail with reference to FIGS.
  • FIG. 2 is a side view of the connecting portion between the bumper 20 and the displacement transmission means 30.
  • FIG. 2A shows a standard state before the bumper 20 is displaced
  • FIG. 2B shows the bumper 20 displaced backward.
  • (C) shows a state in which the bumper 20 is displaced forward.
  • FIG. 3 is a top view showing the operation of the displacement transmitting means 30 corresponding to the displacement of the bumper 20, respectively.
  • the bumper 20 has a protrusion 24 on the inner side in order to engage with the displacement transmission means 30.
  • the protrusion 24 is arranged so as to be positioned at the center of the displacement transmitting means 30 and directly above when the bumper 20 is in the standard state (a).
  • the displacement transmission means 30 has a stick portion 32 for engaging with the protrusion 24 of the bumper 20.
  • the stick part 32 is connected to the protrusion part 24 by the connecting member 25 and receives the upper part of the stick part 32 via the rotation shaft 33 in order to receive the displacement of the protrusion part 24 based on the displacement of the bumper 20.
  • the displacement is transmitted as a displacement in the opposite direction below the rotating shaft 33.
  • the rotating shaft 33 is, for example, a spherical joint, and the joint base is fixed to the main body base 10.
  • the rotating shaft 33 can be inclined in all the front, rear, left and right directions.
  • the connecting member 25 is fixed to the protrusion 24 of the bumper 20 in advance, approaches the stick portion 32 side, and the stick portion 32 is fitted into the connecting member 25, so that the bumper 20 and the displacement transmitting means are connected. 30 are connected.
  • the connecting member 25 is preferably composed of an elastic member such as synthetic rubber so that the stick portion 32 can be smoothly inserted.
  • At least one of the four displacement transmission means 30a to 30d includes a displacement detection structure (displacement detection unit) described later.
  • the displacement detection structure includes a magnet 34 provided at the lower portion of the stick portion 32 and Hall elements 35a to 35d arranged in four directions with respect to the lower portion of the stick portion 32. ing.
  • the magnet 34 below the stick portion 32 is in a neutral state at the center of the hall elements 35a to 35d, so that the displacement of the bumper 20 is not detected by the hall elements 35a to 35d. .
  • the magnet 34 at the lower part of the stick portion 32 is brought close to the hall element 35b disposed in front of the main body base 10 (on the right side in the drawing), and the output of the hall element 35b changes. By doing so, it is detected that the bumper 20 is displaced rearward.
  • the bumper 20 when the bumper 20 is relatively displaced to the left rear side (the left rear side in the drawing) of the main body base 10, as shown in FIG.
  • the outputs of the hall element 35b and the hall element 35d change in the vicinity of the hall element 35b and the hall element 35d arranged on the right front side, it is detected that the bumper 20 is displaced to the left rear.
  • the bumper 20 when the bumper 20 is relatively displaced to the right rear or right front of the main body base 10, the displacement and direction of the bumper 20 are detected by changing the outputs of the corresponding hall elements 35a to 35d as described above. can do.
  • the outputs of these Hall elements 35a to 35d are transmitted to the control means 16, and the autonomous mobile robot 110 can recognize the displacement of the bumper 20.
  • the Hall element 35 can be replaced with a non-contact type switch such as a photo interrupter or an electrical contact type switch.
  • the magnet 34 and the Hall elements 35a to 35d constituting the displacement detection structure may be mounted on only one of the displacement transmission means 30a to 30d. It is also possible to mount it on.
  • the Hall elements 35a of the plurality of displacement transmitting means 30a to 30d are integrated by OR operation and determined as one detection state. The remaining Hall elements 35b to 35d are similarly processed.
  • FIG. 4 shows an embodiment in which the autonomous mobile robot 110 of the present invention is applied to a lawn mowing robot.
  • the auxiliary traction operation that is the second movement mode in the autonomous mobile robot 110 of the present invention will be described.
  • a first lawn mowing area 201a is set in the front yard and a second lawn mowing area 201b is set in the back yard across the building 204 in the site 200.
  • These lawn mowing areas 201 are areas in which turf is planted, and are work areas in which the autonomous mobile robot 110 performs lawn mowing while moving autonomously by applying the first movement mode.
  • the autonomous mobile robot 110 can recognize the lawn mowing area 201 as a work area.
  • the autonomous mobile robot can detect the magnetic field and the lawn mowing area.
  • region 201 may be another method.
  • the autonomous mobile robot 110 In the first movement mode, the autonomous mobile robot 110 is configured not to travel and drive the cutter in a place where the wire current cannot be detected. On the other hand, in the second movement mode, the autonomous mobile robot 110 is configured to be able to travel by auxiliary traction even in a place where the wire current cannot be detected.
  • a first lawn mowing area 201a is set by laying a first wire 203a from a first charging station 202a installed in a front yard.
  • a current flows from the first charging station 202a to the first wire 203a, and the autonomous mobile robot 110 detects the magnetic field, thereby recognizing where the first lawn mowing region 201a is located (region information). To do.
  • the second charging station 202b and the second wire 203b are laid to recognize the second lawn mowing area 201b.
  • the conventional lawn mowing robot recognizes the first lawn mowing area 201a and the second lawn mowing area 201b by the above method and mows the lawn while moving autonomously.
  • the lawn mowing robot is moved outside the work area recognition, such as the passage 205 leading from the front yard to the back yard, the worker W has moved by carrying the lawn mowing robot.
  • the lawn mowing robot is heavy, a great amount of labor is required for the operator W to carry it.
  • a safe and appropriate route such as an auxiliary traction of the operator W can be provided even in a place such as the passage 205 where the lawn is not planted, while the driving mechanism of the autonomous mobile robot 110 provides the driving force for movement. Is moved to the next lawn mowing area 201.
  • the autonomous mobile robot 110 when the lawn mowing work in the first lawn mowing area 201a is completed and it is desired to move to the next second lawn mowing area 201b, the operator W moves to the autonomous mobile robot 110.
  • the attachment part 22 is pulled out and the action part 40 is attached to switch the operation mode of the autonomous mobile robot 110 to the auxiliary traction operation, that is, the second movement mode.
  • the worker W assists and pulls the autonomous mobile robot 110 by the action unit 40, so that the autonomous mobile robot 110 tracks the worker W by following the assistant tow while using its own driving force. Accordingly, when the worker W moves along the predetermined route of the passage 205 while auxiliary towing the autonomous mobile robot 110, the autonomous mobile robot 110 moves autonomously by tracking the trajectory of the worker W substantially. .
  • the worker W does not need the labor to carry by using the driving force of the autonomous mobile robot 110, and the autonomous mobile robot 110 operates despite the autonomous mobile robot 110 being operated outside the work area recognition. However, the worker W can be tracked without deviating from the route without permission.
  • the auxiliary traction does not mean that the worker W is towed while the autonomous mobile robot 110 is stopped and is heavy, but is an operation using the driving force of the autonomous mobile robot 110. W has almost no physical burden, and is used for the purpose of towing with the assistance of auxiliary speed adjustment and direction change.
  • FIG. 5 is a top view showing a state where the worker W is auxiliary towing the autonomous mobile robot 110 by the action unit 40.
  • a tracking method for the worker W when the autonomous mobile robot 110 is operated in an auxiliary traction operation (second movement mode) will be described with reference to FIG.
  • a figure indicated by a dotted line indicates a standard state
  • a solid line 20 ′ and a solid line 22 ′ indicate the displacement state of the bumper 20 and the mounting portion 22.
  • the autonomous mobile robot 110 When the worker W switches the operation mode of the autonomous mobile robot 110 to the auxiliary traction operation (second movement mode), the autonomous mobile robot 110 temporarily stops traveling. When the operator W assists and pulls the action unit 40 in the second movement mode, the autonomous mobile robot 110 starts operating at a predetermined operation speed.
  • the predetermined operation speed is set to be approximately the same as the walking speed of a general pedestrian, for example.
  • the operation speed may decrease with respect to the set speed due to the shape of the ground, the wet condition, the inclination / undulation condition, and obstacles such as stone rollers.
  • the bumper 20 of the autonomous mobile robot 110 is pulled by the auxiliary traction of the operator W as shown in FIG. ( ⁇ DX) occurs.
  • the protrusion 24 of the bumper 20 is similarly displaced in the right side of the drawing.
  • the magnet 34 provided at the lower portion of the stick portion 32 is arranged behind the main body base 10 (on the left side in the drawing). It is detected that the bumper 20 is displaced forward by changing the output of the Hall element 35a in the vicinity of the Hall element 35a.
  • the autonomous mobile robot 110 recognizes that the operation is delayed backward relative to the worker W, and issues a speed increase command from the control means 16 to the front wheel drive mechanism 14 or the rear wheel drive mechanism 15.
  • the command to increase the speed depends on the delay situation, but continues until the bumper is displaced due to the increased speed. Specifically, the increase in speed is stopped when the magnet 34 of the displacement transmitting means 30 does not overlap any of the Hall elements 35 and the displacement transmitting means 30 is in the standard state. If the speed increase is not sufficient with one command and the bumper 20 seems to be displaced again, the control means 16 transmits the speed increase command again.
  • the speed since it is not safe for the speed to continue to increase, it is programmed to gradually decelerate after increasing to a preset speed in the second movement mode. As a result of the deceleration, the Hall element 35a is turned on again when the action part 40 is pulled forward, and the control means 16 sends a command to increase the speed again.
  • the autonomous mobile robot 110 can track the trajectory of the worker W while keeping the distance from the worker W constant under the auxiliary traction operation, that is, the second movement mode. Since the action part 40 is a string-like member such as elastic rubber, the displacement of the speed fluctuation transmitted to the operator W's hand is mitigated, and the operator W can perform towing without feeling a burden.
  • FIG. 6 is a top view showing a state where the worker W is auxiliary towing the autonomous mobile robot 110 by the action unit 40.
  • a figure indicated by a dotted line indicates a standard state
  • a solid line 20 ′ and a solid line 22 ′ indicate the displacement state of the bumper 20 and the mounting portion 22.
  • the axis C1 of the movement direction of the action unit 40 to which the worker W is auxiliary and the axis C2 of the movement direction of the autonomous mobile robot 110 are shown. This represents a case where the action unit 40 is in an auxiliary pulling state of the autonomous mobile robot 110 obliquely from the worker W.
  • the bumper 20 of the autonomous mobile robot 110 is pulled by the action unit 40 by the auxiliary traction of the operator, so that the traveling direction (the X direction on the paper surface) A relative displacement occurs in the Y direction perpendicular to the traveling direction. That is, the displacement has both components of ⁇ DX and ⁇ DY.
  • the stick portion 32 tilts around the rotation axis, and the magnet 34 moves in a direction having components in the ⁇ X direction and the ⁇ Y direction as shown in FIG. And it will be in the state detected by overlapping with both of the Hall elements 35d.
  • the control means 16 recognizes that the bumper 20 is displaced to the front left side of the autonomous mobile robot 110 (upper right direction in the drawing) by obtaining both ON signals obtained from the Hall element 35a and the Hall element 35d. That is, it is recognized that the operation of the autonomous mobile robot 110 is delayed relative to the worker W in the right rear direction with respect to the traveling direction. Based on this recognition, the control means 16 issues the following trajectory correction command to the right drive wheel 13a and the left drive wheel 13b.
  • FIGS. 7A and 7B show an embodiment of the trajectory correction of the autonomous mobile robot 110 for the state described above. Based on the recognition that the control means 16 of the autonomous mobile robot 110 is behind in the right rear direction relative to the worker W, first, as shown in FIG. Command to drive the left drive wheel 13b slightly later.
  • the autonomous mobile robot 110 When the autonomous mobile robot 110 turns the rudder to the front left side, as shown in FIG. 7B, the direction in which the worker W can be seen from the autonomous mobile robot 110 changes from the left front to the front. When the displacement direction is the front, the autonomous mobile robot 110 drives the left and right drive wheels evenly. If it progresses in this state, the autonomous mobile robot 110 will eventually reach the left rear of the worker W. As a result, the autonomous mobile robot 110 is now pulled right forward. As described above, the autonomous mobile robot 110 swings left and right behind the worker W, but the amplitude gradually converges because it receives friction from the ground.
  • the displacement ( ⁇ DY) is relatively higher than the main body base 10 on the upper side of the drawing.
  • the magnet 34 moves in the -Y direction and overlaps with the Hall element 35d to be electrically detected.
  • the control means 16 of the autonomous mobile robot 110 issues a command for moving the right driving wheel 13a forward and moving the left driving wheel 13b backward. As a result, the autonomous mobile robot 110 turns to the left.
  • the bumper 20 of the autonomous mobile robot 110 is pulled in an obliquely rearward direction, for example, an obliquely backward leftward direction by the auxiliary traction of the worker W, it is relatively displaced ( ⁇ DX and ⁇ DY) are generated, and the magnet 34 moves in the + X and ⁇ Y directions and overlaps with the Hall element 35b and the Hall element 35d to be electrically detected.
  • the control means 16 of the autonomous mobile robot 110 issues a command for causing the right drive wheel 13a to move backward slowly and the left drive wheel 13b to move backward quickly. As a result, the autonomous mobile robot 110 turns to the left while moving backward.
  • the magnet 16 is also displaced in the + Y direction on the right side, and the Hall element 35c detects an overlap. To do.
  • the vehicle moves while turning in the pulled direction with respect to the diagonally forward, lateral, and diagonally backward directions as viewed from the autonomous mobile robot 110.
  • no driving force is generated in the rear direction. This is because the action part 40 and the attachment part 22 are configured to move with respect to the forward direction of the vehicle body, and traction to the rear is not suitable for use.
  • the action unit 40 is a stretchable rubber string-like member.
  • the action unit 40 may be constituted by a band, a metal or resin chain, a rod-shaped member, or the like.
  • the speed is gradually reduced after increasing to a preset speed, but instead of speed control, the motor is simply rotated at a constant output at a lower speed than the expected walking speed. May be. Further, the motor may be in a brake state when stopped in the automatic mode, and the brake may be released when the action portion is pulled in the auxiliary traction mode.
  • FIG. 8 shows an example of the autonomous mobile robot 120 according to the second embodiment of the present invention.
  • FIG. 8 shows an application in a scene in which the autonomous mobile robot 120 is operated in the auxiliary traction mode (second operation mode) and a map of its own work area is created.
  • a lawnmower robot composed of the autonomous mobile robot 120 is applied to a sports facility such as a golf course.
  • the autonomous mobile robot 120 is used in the initial stage of work when setting a work area for actually cutting grass shown by a one-dot chain line in the predetermined area 230.
  • the predetermined area 230 where the work is performed there are a tree stand 240, a pond 241 and the like, and this area is set in the autonomous mobile robot 120 so that there is no lawn and no mowing work is performed (this area is not entered). There is a need. In other words, it is necessary to set (Teaching) the autonomous mobile robot 120 so as to work the work area 231 indicated by the one-dot chain line to be worked.
  • the autonomous mobile robot 120 is connected from the tail of the guide car 220 by the action part 42, and auxiliary traction is performed from the guide car 220 through the action part 42. At this time, the autonomous mobile robot 120 is equipped with the GPS 61 and stores the position coordinate data measured by the GPS 61 in the storage means 62 during auxiliary traction.
  • auxiliary traction mode (second operation mode) by such auxiliary traction is used at the time of setting (Teaching) the work area (lawn mowing area). It's okay to operate.
  • the technique of the present invention is applied, and the work area (mowing area) can be set (Teaching) again.
  • the autonomous mobile robot 120 autonomously carries out work such as lawn mowing based on the work area 231 stored in the storage means 62 when it next operates and works in the autonomous movement mode (first operation mode). Can do.
  • the technology of the present invention lays wires and the like as compared with conventional products in which an autonomous mobile robot senses a magnetic field and judges the work area by laying a wire etc. on the outer periphery of the work area and flowing current. Work / expense is unnecessary. In addition, it is not necessary to incorporate a special sensor for determining whether the area is the lawn area.
  • the area setting of the autonomous mobile robot 120 is not limited to the currently available GPS, but can also be applied to future high-accuracy GPS, in which case the area setting accuracy and lawn mowing accuracy can be further improved. it can. Moreover, although the said embodiment was applied in facilities, such as a golf course, it is not restricted to this, You may apply to use in the garden of an individual's home.
  • FIG. 9 shows an autonomous mobile robot 130 according to the third embodiment of the present invention.
  • the autonomous mobile robot 130 when the autonomous mobile robot 130 is operated in the auxiliary traction mode (second operation mode), the operator W moves from behind the autonomous mobile robot 130, contrary to the first and second embodiments.
  • the utilization form pushed forward through the action part 44 is shown.
  • the action unit 44 is a lever that is installed so as to be deployable, and is connected to the protrusion 24 on the rear side of the bumper 20 of the autonomous mobile robot 130 via a rotating shaft 51 for storage.
  • the axial direction of the rotating shaft 51 is the left-right direction of the vehicle body, and the action portion 44 is housed in the upper portion of the vehicle body as shown in FIG.
  • the action part 44 is deployed to the rear of the vehicle body as shown in FIG.
  • a handle 52 is installed on the action part 44 so that the operator W can easily operate it.
  • the protrusion 24 incorporates a deployment detection switch (not shown) in order to detect the deployed state of the action portion 44.
  • the unfolding detection switch is turned on when the action part 44 is completely stored, and turned off when it is caused even a little.
  • the rotation shaft 51 firmly connects the bumper 20 and the action portion 44 in directions other than the axis. When a force in the front and rear direction and the left and right direction of the action portion is applied, the bumper 20 Displaces left and right.
  • the magnet 34 and the hall elements 35a to 35d constituting the displacement detection structure are built in either one or both of the front-side displacement transmission means 30a and 30b.
  • the rear displacement transmitting means 30c, 30d may be displaced in the direction opposite to the traveling direction by the operating force of the operator W, and thus is not suitable for mounting a displacement detection structure. For example, when the operator W tries to advance the vehicle body to the left, the operator W pushes it forward while turning the handle counterclockwise.
  • the autonomous mobile robot 130 enters the autonomous movement mode (first operation mode) when the deployment detection switch is ON, and shifts to the auxiliary traction mode (second operation mode) when the deployment detection switch is OFF. .
  • the autonomous mobile robot 130 travels at a speed almost equal to that of the worker W while using the driving force generated from its own drive mechanism.
  • the control means 16 via the displacement transmission means 30. Issues a command to the drive wheels to increase speed.
  • the axis C1 of the movement direction of the action unit 44 propelled by the worker W and the axis C2 of the movement direction of the autonomous mobile robot 130 are shifted, and the autonomous mobile robot 130 7A and 7B, the driving force is driven alternately or stepwise to change the bumper 20 so that the displacement of the bumper 20 is eliminated, as described in FIGS. You just have to fix it.
  • FIG. 10 shows an autonomous mobile robot 140 according to Embodiment 4 of the present invention.
  • the autonomous mobile robot 140 according to the fourth embodiment is an example used when an AGV (Automated Guided Vehicle) is carried out of the track.
  • FIG. 10A is a side view of the autonomous mobile robot 140 (AGV) according to the fourth embodiment, and FIG. 10B is a perspective view.
  • AGV Automated Guided Vehicle
  • the autonomous mobile robot 140 includes a main body base 11 and a bumper 21.
  • the bumper 21 has a ring shape covering the entire circumference of the side surface, and is attached to the front side portion and the rear side portion of the main body base 11 via displacement transmitting means 31a, 31b, 31c, 31d.
  • the bumper 21 includes an action portion 46 formed of a U-shaped handle member, and both ends of the action portion 46 are connected to the bumper 21.
  • the action unit 46 includes a deadman switch 72 that functions as a safety device in the center of the handle 71.
  • the main body base 11 is grounded by a drive wheel 77, a front universal wheel 78, and a rear universal wheel 79.
  • the main body base 11 has a guide sensor 74 for detecting a magnetic tape track on the road surface at the lower part of the vehicle body.
  • the main body base 11 has a mark sensor 75 for detecting a stop position installed on the road surface at the lower part of the vehicle body. If the mark sensor 75 detects a stop mark on the road surface while the autonomous mobile robot 140 is traveling in the autonomous movement mode, the traveling of the autonomous movement is stopped.
  • the main body base 11 includes an LRF 73 for detecting an obstacle, detects an object or a person in front of the vehicle body, and measures a distance.
  • the autonomous mobile robot 140 limits the speed when a measurement object is seen within a predetermined distance, decelerates within a deceleration distance, and stops within a stop distance.
  • the auxiliary traction mode is set, and the speed restriction is released while the deadman switch 72 is grasped. While the autonomous mobile robot 140 is autonomously traveling on the track, even if the deadman switch 72 is gripped, the operation does not change and the speed limit is applied.
  • the autonomous mobile robot 140 runs along a predetermined course along the magnetic tape track and stops at a predetermined stop point. Because the unloading place is crowded with workers who take out the load, the stop point is a little (several meters) next to the unloading place for safety.
  • the worker W easily pulls the autonomous mobile robot 140 from the stop point to the unloading place by pulling in the auxiliary traction mode while pressing the deadman switch 72 of the action unit 46. It can be moved to the unloading place.
  • the worker W unloads the load from the platform of the autonomous mobile robot 140 at the unloading place. After that, the auxiliary traction mode is used again to move to a predetermined stop point.
  • the autonomous mobile robot 140 returns to the autonomous movement mode, starts the automatic course travel, and goes to the next stop point.

Landscapes

  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental Sciences (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Abstract

The purpose of the present invention is to add at low cost a haul-assisting function for a worker to an autonomous mobile device, thereby reducing the burden on the worker. Provided is an autonomous mobile device which has a main body base (10), a moving mechanism which is disposed on the lower part of the main body base, a bumper (20), and a displacement detection unit which connects the bumper to the main body base in a displaceable manner and detects displacement of the bumper, wherein the autonomous mobile device is equipped with an operation part (40) for acting on and displacing the bumper and has an assisted-hauling mode for changing the moving state of the autonomous mobile device in accordance with an action direction of the operation part.

Description

自律移動装置Autonomous mobile device
 本発明は自律移動装置に関し、特に作業者が自律移動装置を牽引するときの負担を軽減する補助牽引モードを有する自律移動装置に関する。 The present invention relates to an autonomous mobile device, and more particularly, to an autonomous mobile device having an auxiliary traction mode that reduces a burden when an operator pulls the autonomous mobile device.
 芝刈り機や洗浄機などの自律移動を行う自律移動装置は自重が重いため、作業者が牽引する場合には肉体的な負担が大きかった。これに対して、特許文献1には、自己推進装置に取り付けたラインを作業者が引いたり緩めたりすることで、自己推進装置の推進方向を制御する技術が開示されている。 Autonomous mobile devices that perform autonomous movement, such as lawnmowers and washing machines, are heavy, so that the physical burden is heavy when an operator pulls. On the other hand, Patent Document 1 discloses a technique for controlling the propulsion direction of the self-propulsion device by pulling or loosening a line attached to the self-propulsion device.
 図11は、特許文献1の自己推進装置500の構成を示した上面図(a)と、格納式ライン案内システム600を示す図(b)である。自己推進装置500は、本体504と、車輪506、508、510、512、及びモーター520を有し、本体504の筐体526から伸長されるライン524を作業者502がハンドル532で操作する。 FIG. 11 is a top view (a) showing the configuration of the self-propulsion device 500 of Patent Document 1 and a view (b) showing the retractable line guidance system 600. The self-propelling device 500 includes a main body 504, wheels 506, 508, 510, 512, and a motor 520, and an operator 502 operates a line 524 extended from a housing 526 of the main body 504 with a handle 532.
 自己推進装置500は、ライン524を巻回するリール604とテンション・メカニズム610を有するライン案内システム600を備えている。ライン案内システム600は、ライン伸長監視デバイス618、角度監視デバイス622、垂直角度監視デバイス624を有しており、アーム612から繰り出されるライン524の伸長長、角度、変位を監視し、選択値に維持するように自己推進装置500を推進する。 The self-propelling device 500 includes a line guide system 600 having a reel 604 that winds the line 524 and a tension mechanism 610. The line guidance system 600 includes a line extension monitoring device 618, an angle monitoring device 622, and a vertical angle monitoring device 624, and monitors the extension length, angle, and displacement of the line 524 fed out from the arm 612, and maintains the selected value. The self-propulsion device 500 is promoted as described above.
日本国公開特許公報「特開2011-170853号公報(2011年9月1日公開)」Japanese Patent Publication “Japanese Patent Laid-Open No. 2011-170853 (published on September 1, 2011)”
 しかしながら、特許文献1の自己推進装置500は、ライン案内システム600のライン524の伸長長、角度、変位を監視するための構成を新たに追加する必要があり、コストを増加させる問題があった。 However, the self-propulsion device 500 of Patent Document 1 needs to newly add a configuration for monitoring the extension length, angle, and displacement of the line 524 of the line guidance system 600, and has a problem of increasing costs.
 本発明は、上記課題に鑑みなされたものであり、その目的は、自律移動装置に対して作業者の牽引を補助する機能を低コストで追加し、作業者の肉体的負担を軽減することにある。 This invention is made in view of the said subject, The objective is to add the function which assists a worker's traction with respect to an autonomous mobile apparatus at low cost, and to reduce a worker's physical burden. is there.
 本発明の自律移動装置は、本体ベースおよび該本体ベースの下部に設けられた移動機構と、本体ベースの少なくとも前縁部を覆うバンパーと、本体ベースに対してバンパーを変位可能に連結し、バンパーの変位を検知する変位検知部とを備えた自律移動装置において、バンパーに作用して変位させる作用部を備え、作用部の作用方向に移動状態を変更する補助牽引モードを有することを特徴とする。 An autonomous mobile device of the present invention includes a main body base, a moving mechanism provided at a lower portion of the main body base, a bumper that covers at least a front edge of the main body base, and a bumper that is displaceably connected to the main body base. An autonomous mobile device including a displacement detection unit that detects a displacement of the actuator includes an action unit that acts on the bumper to be displaced, and has an auxiliary traction mode that changes a movement state in an action direction of the action unit. .
 また、作用部は、バンパーに取り外し可能に設置されるものであり、作用部が取り付けられたときに補助牽引モードに移行することを特徴とする。 Also, the action part is detachably installed on the bumper, and when the action part is attached, it shifts to the auxiliary traction mode.
 また、作用部は、バンパーに展開可能に収納されるものであり、作用部が展開されたときに補助牽引モードに移行することを特徴とする。 Also, the action part is accommodated in a bumper so that it can be deployed, and when the action part is deployed, it shifts to an auxiliary traction mode.
 また、作用部は、操作信号を検知している間だけ補助牽引モードを実行させる安全装置を備えることを特徴とする。
 また、補助牽引モードは、作用部によるバンパーの変位を減少させるように速度を変更することを特徴とする。
Further, the action unit includes a safety device that executes the auxiliary traction mode only while detecting the operation signal.
Further, the auxiliary traction mode is characterized in that the speed is changed so as to reduce the displacement of the bumper by the action portion.
 また、作用部は、バンパーを牽引する紐状部材であることを特徴とする。
 また、作用部の紐状部材は、伸縮性を有することを特徴とする。
 また、作用部は、バンパーを後方から推進するハンドル部材であることを特徴とする。
Moreover, the action part is a string-like member that pulls the bumper.
Moreover, the string-like member of the action part is characterized by having elasticity.
Further, the action portion is a handle member that propels the bumper from the rear.
 また、補助牽引モードは、移動時の位置情報を取得して作業領域を設定することを特徴とする。 Also, the auxiliary traction mode is characterized in that the work area is set by acquiring position information during movement.
 本発明の自律移動装置によれば、自律移動装置に対して作業者の牽引を補助する機能を低コストで追加し、作業者の肉体的負担を軽減することができる。 According to the autonomous mobile device of the present invention, a function of assisting the operator to pull the autonomous mobile device can be added at low cost, and the physical burden on the worker can be reduced.
本発明の実施形態に係る自律移動装置の側面図(a)と上面図(b)である。It is the side view (a) and top view (b) of the autonomous mobile device which concern on embodiment of this invention. 自律移動装置の変位伝達手段の側面図である。It is a side view of the displacement transmission means of an autonomous mobile device. 自律移動装置の変位伝達手段の上面図である。It is a top view of the displacement transmission means of an autonomous mobile device. 自律移動装置を芝刈り機に用いる場合の説明図である。It is explanatory drawing in the case of using an autonomous mobile device for a lawn mower. 自律移動装置を直進方向に牽引する場合の説明図である。It is explanatory drawing in the case of pulling an autonomous mobile device in the straight ahead direction. 自律移動装置を直進方向斜めに牽引する場合の説明図である。It is explanatory drawing in the case of pulling the autonomous mobile device diagonally in the straight direction. 自律移動装置を直進方向斜めに牽引する場合の制御方法の説明図である。It is explanatory drawing of the control method in the case of pulling the autonomous mobile device diagonally in the straight direction. 実施形態2に係る自律移動装置の側面図である。It is a side view of the autonomous mobile device which concerns on Embodiment 2. 実施形態3に係る自律移動装置の説明図である。It is explanatory drawing of the autonomous mobile apparatus which concerns on Embodiment 3. FIG. 実施形態4に係る自律移動装置の側面図と斜視図である。It is the side view and perspective view of the autonomous mobile device which concern on Embodiment 4. 従来技術の自己推進装置およびライン案内システムの模式図である。It is a schematic diagram of the self-propulsion apparatus and line guidance system of a prior art.
 〔実施形態1〕
 図1は、本発明の第1の実施形態に係る自律移動装置(以降、自律移動ロボットと称す)の概略構成を示し、(a)は側面図、(b)は上面図である。図1(a)、(b)では、外部から見える主な構成機構・部品類を実線で示し、内部に含まれる主な構成機構・部品類を破線で示す。
Embodiment 1
FIG. 1 shows a schematic configuration of an autonomous mobile device (hereinafter referred to as an autonomous mobile robot) according to a first embodiment of the present invention, where (a) is a side view and (b) is a top view. In FIGS. 1A and 1B, main constituent mechanisms / parts visible from the outside are indicated by solid lines, and main constituent mechanisms / parts included inside are indicated by broken lines.
 自律移動ロボット110は、本体ベース10と、移動機構を構成する前輪12、後輪13、前輪駆動機構14、後輪駆動機構15と、制御手段16と、バンパー20と、変位伝達手段30とを含む。 The autonomous mobile robot 110 includes a main body base 10, a front wheel 12, a rear wheel 13, a front wheel drive mechanism 14, a rear wheel drive mechanism 15, a control means 16, a bumper 20, and a displacement transmission means 30 that constitute a moving mechanism. Including.
 自律移動ロボット110は、制御手段16により、前輪12を駆動する前輪駆動機構14、または、後輪13を駆動する後輪駆動機構15を制御して、前進、後進、旋回等の自律走行が可能となっている。なお、前輪12または後輪13のどちらかを一方を駆動輪として走行させることも可能であり、その場合は前輪駆動機構14と後輪駆動機構15の両方を設ける必要はない。 The autonomous mobile robot 110 can control the front wheel drive mechanism 14 for driving the front wheels 12 or the rear wheel drive mechanism 15 for driving the rear wheels 13 by the control means 16 to perform autonomous traveling such as forward movement, reverse movement, and turning. It has become. It is also possible to run either the front wheel 12 or the rear wheel 13 as one drive wheel, and in that case, it is not necessary to provide both the front wheel drive mechanism 14 and the rear wheel drive mechanism 15.
 また、本実施形態の自律移動ロボット110は、自動芝刈り機として適用される場合、本体ベース10の底部に芝刈り用のカッター17が備えられる。芝刈り用のカッター17は、回転軸を介してカッター駆動モーター18の動力が伝達されることにより回転する。 In addition, when the autonomous mobile robot 110 of the present embodiment is applied as an automatic lawn mower, a lawn mowing cutter 17 is provided at the bottom of the main body base 10. The lawn mowing cutter 17 rotates when the power of the cutter driving motor 18 is transmitted through the rotating shaft.
 自律移動ロボット110の本体ベース10には、上記のように各種機構並びに構成パーツ類が設置される。バンパー20は、自律移動ロボット110の概ね外形形状となるように樹脂等で主に形成され、本体ベース10に対して変位伝達手段30を介して相対的にX-Y方向に変位可能に設置されている。 The main body base 10 of the autonomous mobile robot 110 is provided with various mechanisms and components as described above. The bumper 20 is mainly formed of a resin or the like so as to have a substantially outer shape of the autonomous mobile robot 110, and is installed so as to be relatively displaceable in the XY direction with respect to the main body base 10 via the displacement transmission means 30. ing.
 バンパー20は、第1の機能として、自律移動時に物や人等の障害物に接触すると、本体ベース10に対して変位することで接触を検知し、制御手段16を介して自律移動ロボット110を停止、後退させる等、接触時の安全性を確保する前衛機構として機能する。 As a first function, when the bumper 20 touches an obstacle such as an object or a person during autonomous movement, the bumper 20 detects the contact by displacing with respect to the main body base 10, and the autonomous mobile robot 110 is controlled via the control means 16. It functions as an avant-garde mechanism that ensures safety at the time of contact, such as stopping and retreating.
 図1(b)に示すように、本実施形態の自律移動ロボット110では、変位伝達手段30が本体ベース10の前方側に2個(30a、30b)、本体ベース10の後方側に2個(30c、30d)、合計4個が設けられている。変位伝達手段30は、自律移動ロボット110の前方側もしくは後方側のどちらに設置されるかによって、変位伝達手段30の大きさや取付高さが変更されるが、基本的な構成・機能は同じである。 As shown in FIG. 1B, in the autonomous mobile robot 110 of the present embodiment, two displacement transmission means 30 are provided on the front side of the main body base 10 (30a, 30b) and two are provided on the rear side of the main body base 10 ( 30c, 30d), a total of four are provided. The displacement transmission means 30 changes in size and mounting height depending on whether it is installed on the front side or the rear side of the autonomous mobile robot 110, but the basic configuration and function are the same. is there.
 なお、変位伝達手段30は、自律移動ロボット110の前方側と後方側に設置されているが、この限りでなく、前方側のみもしくは、後方側のみでもよい。あるいは、前方中央に1個と、後方の左右に2個の合計3個が設置される構成でもよい。 In addition, although the displacement transmission means 30 is installed in the front side and back side of the autonomous mobile robot 110, it is not restricted to this, Only the front side or only the back side may be sufficient. Alternatively, a configuration in which three in total, one at the front center and two at the left and right at the rear, may be installed.
 自律移動ロボット110は、バンパー20に取付部22を介して、作用部40を取り付けられるようになっている。作用部40は、例えば、伸縮性のあるゴム等の紐状部材である。取付部22は、引き出し式のフックであり、バンパー20内に収納した状態から手で引き出すことができ、引き出し状態から押し込むと収納状態になる。取付部22の基部には取付部22が引き出されたか否かを検知する引き出し検知部23が備わっている。引き出し検知部23は一般的なマイクロスイッチである。 The autonomous mobile robot 110 can attach the action part 40 to the bumper 20 via the attachment part 22. The action part 40 is, for example, a string-like member such as elastic rubber. The attachment portion 22 is a pull-out hook, and can be pulled out by hand from the state of being housed in the bumper 20, and is brought into a housed state when pushed in from the state of being pulled out. The base of the attachment portion 22 is provided with a drawer detection portion 23 that detects whether or not the attachment portion 22 has been pulled out. The drawer detection unit 23 is a general micro switch.
 本発明の自律移動ロボット110は、芝刈り等の作業で自律移動する第1の移動モードと、作業者や自転車、自動車等で牽引、若しくは、推し進められることで、補助牽引されて移動する第2の移動モードを有する。 The autonomous mobile robot 110 of the present invention has a first movement mode in which it moves autonomously by a work such as lawn mowing, and a second mode in which it is pulled by an operator, a bicycle, a car, etc. There are several movement modes.
 自律移動ロボット110は、第1の移動モードにおいては、芝刈り用のカッター17を駆動しつつ自律移動して、芝刈り等の作業を行う。 In the first movement mode, the autonomous mobile robot 110 moves autonomously while driving the lawn mowing cutter 17 and performs work such as lawn mowing.
 自律移動ロボット110は、取付部22の状態を引き出し検知部23で検出して、上記移動モードの切り替えを行う。具体的には、自律移動ロボット110は、取付部22が収納状態のときには第1の移動モードとなり、取付部22が引き出され作用部40が取り付けられる状態のときに、第2の移動モードとなるように切り替えられる。 The autonomous mobile robot 110 detects the state of the attachment portion 22 with the drawer detection portion 23 and switches the movement mode. Specifically, the autonomous mobile robot 110 enters the first movement mode when the attachment portion 22 is in the retracted state, and enters the second movement mode when the attachment portion 22 is pulled out and the action portion 40 is attached. Are switched as follows.
 作用部40は、自律移動ロボット110が第2の移動モードに切り替えられたときに、作業者や自転車、自動車等が自律移動ロボット110を牽引動作する際に使用される。このため、作用部40は、上述した紐状部材の他にも、作業者や自転車、自動車等による牽引、あるいは推し進めが可能な部材で構成することができる。自律移動ロボット110が第2の移動モードに切り替えられると、自律移動ロボット110は芝刈り用のカッター17を停止させる。 The action unit 40 is used when an operator, a bicycle, a car, or the like pulls the autonomous mobile robot 110 when the autonomous mobile robot 110 is switched to the second movement mode. For this reason, the action part 40 can be comprised with the member which can be pulled or pushed forward by an operator, a bicycle, a motor vehicle, etc. besides the string-like member mentioned above. When the autonomous mobile robot 110 is switched to the second movement mode, the autonomous mobile robot 110 stops the lawn mowing cutter 17.
 図2及び図3は、バンパー20と変位伝達手段30との連動状態を示す概略模式図である。図2及び図3では、変位伝達手段30a、30b、30c、30dの1つを変位伝達手段30の代表として記載している。図2及び図3を用いて、バンパー20と変位伝達手段30の連動について詳細に説明する。 2 and 3 are schematic schematic diagrams showing an interlocking state between the bumper 20 and the displacement transmitting means 30. FIG. 2 and 3, one of the displacement transmission means 30 a, 30 b, 30 c, and 30 d is described as a representative of the displacement transmission means 30. The interlocking between the bumper 20 and the displacement transmission means 30 will be described in detail with reference to FIGS.
 図2は、バンパー20と変位伝達手段30の接続部を側方から見た図であり、(a)はバンパー20が変位する前の標準状態を示し、(b)はバンパー20が後方に変位した状態を示し、(c)はバンパー20が前方に変位した状態を示している。また、図3は、それぞれバンパー20の変位に対応する変位伝達手段30の動作を示す上面図である。 FIG. 2 is a side view of the connecting portion between the bumper 20 and the displacement transmission means 30. FIG. 2A shows a standard state before the bumper 20 is displaced, and FIG. 2B shows the bumper 20 displaced backward. (C) shows a state in which the bumper 20 is displaced forward. FIG. 3 is a top view showing the operation of the displacement transmitting means 30 corresponding to the displacement of the bumper 20, respectively.
 バンパー20は、変位伝達手段30と係合するため、内部側に突起部24を有する。突起部24は、バンパー20の標準状態(a)のとき、変位伝達手段30の中心でかつ真上に位置するよう配置されている。 The bumper 20 has a protrusion 24 on the inner side in order to engage with the displacement transmission means 30. The protrusion 24 is arranged so as to be positioned at the center of the displacement transmitting means 30 and directly above when the bumper 20 is in the standard state (a).
 変位伝達手段30は、バンパー20の突起部24と係合するためのスティック部32を有している。スティック部32は、バンパー20の変位に基づく突起部24の変位の伝達を受けるために、連結部材25によって突起部24と連結されると共に、回転軸33を介してスティック部32の上部が受けた変位を回転軸33よりも下部に反対方向の変位として伝える。回転軸33は例えば球形ジョイントなどであり、ジョイント基部は本体ベース10に固定されている。回転軸33は前後左右すべての方向への傾斜することが可能である。 The displacement transmission means 30 has a stick portion 32 for engaging with the protrusion 24 of the bumper 20. The stick part 32 is connected to the protrusion part 24 by the connecting member 25 and receives the upper part of the stick part 32 via the rotation shaft 33 in order to receive the displacement of the protrusion part 24 based on the displacement of the bumper 20. The displacement is transmitted as a displacement in the opposite direction below the rotating shaft 33. The rotating shaft 33 is, for example, a spherical joint, and the joint base is fixed to the main body base 10. The rotating shaft 33 can be inclined in all the front, rear, left and right directions.
 本実施例では、連結部材25は、予めバンパー20の突起部24に固着されており、スティック部32側に接近し、スティック部32が連結部材25にはめ込まれることで、バンパー20と変位伝達手段30が連結される。連結部材25は、スティック部32がスムースに挿入されるように、合成ゴム等の弾性部材で構成されるのが好ましい。 In this embodiment, the connecting member 25 is fixed to the protrusion 24 of the bumper 20 in advance, approaches the stick portion 32 side, and the stick portion 32 is fitted into the connecting member 25, so that the bumper 20 and the displacement transmitting means are connected. 30 are connected. The connecting member 25 is preferably composed of an elastic member such as synthetic rubber so that the stick portion 32 can be smoothly inserted.
 本実施形態の自律移動ロボット110では、4つの変位伝達手段30a~30dの少なくとも1つは、後述する変位検知構造(変位検知部)を備えている。変位検知構造は、図2及び図3に示すように、スティック部32の下部に設けられた磁石34と、スティック部32の下部に対して4方向に配置されたホール素子35a~35dで構成されている。 In the autonomous mobile robot 110 of the present embodiment, at least one of the four displacement transmission means 30a to 30d includes a displacement detection structure (displacement detection unit) described later. As shown in FIGS. 2 and 3, the displacement detection structure includes a magnet 34 provided at the lower portion of the stick portion 32 and Hall elements 35a to 35d arranged in four directions with respect to the lower portion of the stick portion 32. ing.
 バンパー20が標準状態にあるとき、スティック部32の下部にある磁石34は、ホール素子35a~35dの中央で中立状態となり、ホール素子35a~35dにバンパー20の変位が検出されないようになっている。 When the bumper 20 is in the standard state, the magnet 34 below the stick portion 32 is in a neutral state at the center of the hall elements 35a to 35d, so that the displacement of the bumper 20 is not detected by the hall elements 35a to 35d. .
 図2(b)のように、バンパー20が本体ベース10の後方(紙面左側)に相対的に変位すると、バンパー20の突起部24に連結部材25で連結されたスティック部32の上部が、回転軸33を中心にバンパー20の変位方向に沿うように回転する。 As shown in FIG. 2B, when the bumper 20 is relatively displaced rearward (left side of the paper), the upper portion of the stick portion 32 connected to the protrusion 24 of the bumper 20 by the connecting member 25 rotates. It rotates so as to follow the displacement direction of the bumper 20 around the shaft 33.
 これによって、図3(b)のように、スティック部32の下部にある磁石34が、本体ベース10の前方(紙面右側)に配置されたホール素子35bに近接してホール素子35bの出力が変化することで、バンパー20が後方に変位したことを検知する。 As a result, as shown in FIG. 3B, the magnet 34 at the lower part of the stick portion 32 is brought close to the hall element 35b disposed in front of the main body base 10 (on the right side in the drawing), and the output of the hall element 35b changes. By doing so, it is detected that the bumper 20 is displaced rearward.
 また、図2(c)のように、バンパー20が本体ベース10の前方(紙面右側)に相対的に変位すると、図3(c)のように、スティック部32の下部にある磁石34が、本体ベース10の後方(紙面左側)に配置されたホール素子35aに近接してホール素子35aの出力が変化することで、バンパー20が前方に変位したことを検知する。 2C, when the bumper 20 is relatively displaced to the front of the main body base 10 (on the right side in the drawing), as shown in FIG. It is detected that the bumper 20 is displaced forward by changing the output of the Hall element 35a in the vicinity of the Hall element 35a arranged behind the main body base 10 (left side of the drawing).
 また、バンパー20が本体ベース10の左後方(紙面左奥側)に相対的に変位すると、図3(d)のように、スティック部32の下部に設けられた磁石34が、本体ベース10の右前方側に配置されたホール素子35bとホール素子35dに近接して、ホール素子35bとホール素子35dの出力が変化することで、バンパー20が左後方に変位したことを検知する。 Further, when the bumper 20 is relatively displaced to the left rear side (the left rear side in the drawing) of the main body base 10, as shown in FIG. When the outputs of the hall element 35b and the hall element 35d change in the vicinity of the hall element 35b and the hall element 35d arranged on the right front side, it is detected that the bumper 20 is displaced to the left rear.
 また、バンパー20が本体ベース10の左前方(紙面右奥側)に相対的に変位すると、図3(e)のように、スティック部32の下部に設けられた磁石34が、本体ベース10の右後方側に配置されたホール素子35aとホール素子35dに近接して、ホール素子35aとホール素子35dの出力が変化することで、バンパー20が左前方に変位したことを検知する。 Further, when the bumper 20 is relatively displaced to the left front of the main body base 10 (the right rear side in the drawing), as shown in FIG. When the outputs of the Hall element 35a and the Hall element 35d change in the vicinity of the Hall element 35a and the Hall element 35d arranged on the right rear side, it is detected that the bumper 20 is displaced to the left front.
 さらに、バンパー20が本体ベース10の右後方や右前方に相対的に変位した場合も、上記と同様に、対応するホール素子35a~35dの出力が変化することでバンパー20の変位と方向を検知することができる。 Further, when the bumper 20 is relatively displaced to the right rear or right front of the main body base 10, the displacement and direction of the bumper 20 are detected by changing the outputs of the corresponding hall elements 35a to 35d as described above. can do.
 これらのホール素子35a~35dの出力は、制御手段16に送信され、自律移動ロボット110がバンパー20の変位を認識することができる。ホール素子35は、ホトインタラプタ等の非接点方式や、または電気的接点方式のスイッチに置き換えることも可能である。 The outputs of these Hall elements 35a to 35d are transmitted to the control means 16, and the autonomous mobile robot 110 can recognize the displacement of the bumper 20. The Hall element 35 can be replaced with a non-contact type switch such as a photo interrupter or an electrical contact type switch.
 上記の変位伝達手段30の構成のうち、変位検知構造を構成する磁石34とホール素子35a~35dとは、変位伝達手段30a~30dのいずれか1つにだけ搭載してあればよいが、複数に搭載することも可能である。複数に搭載する構成においては後述する補助牽引動作では複数の変位伝達手段30a~30dのホール素子35aをOR演算で統合して1つの検出状態として判定する。残りのホール素子35b~dについても同様に処理する。 Of the configurations of the displacement transmission means 30, the magnet 34 and the Hall elements 35a to 35d constituting the displacement detection structure may be mounted on only one of the displacement transmission means 30a to 30d. It is also possible to mount it on. In the case of a plurality of mounting configurations, in the auxiliary traction operation described later, the Hall elements 35a of the plurality of displacement transmitting means 30a to 30d are integrated by OR operation and determined as one detection state. The remaining Hall elements 35b to 35d are similarly processed.
 図4は、本発明の自律移動ロボット110を芝刈りロボットに適用した実施例を示している。本発明の自律移動ロボット110における第2の移動モードである補助牽引動作について説明する。 FIG. 4 shows an embodiment in which the autonomous mobile robot 110 of the present invention is applied to a lawn mowing robot. The auxiliary traction operation that is the second movement mode in the autonomous mobile robot 110 of the present invention will be described.
 ここでは、敷地200内の建物204を挟んで、表庭に第1芝刈り領域201aが、裏庭に第2芝刈り領域201bが設定されている。これらの芝刈り領域201は、芝が植えられた領域であり、自律移動ロボット110が第1の移動モードを適用して自律移動しながら芝刈りを行う作業領域である。 Here, a first lawn mowing area 201a is set in the front yard and a second lawn mowing area 201b is set in the back yard across the building 204 in the site 200. These lawn mowing areas 201 are areas in which turf is planted, and are work areas in which the autonomous mobile robot 110 performs lawn mowing while moving autonomously by applying the first movement mode.
 自律移動ロボット110に、芝刈り領域201を作業領域として認識させる方法はいくつかの手法があり、領域外周にワイヤを敷設し電流を流すことで、自律移動ロボットにその磁界を検知させ芝刈り領域201の内外を認識させる方法や、芝生を認識する各種センサを自律移動ロボットに搭載して芝刈り領域201の内外を認識させる方法などがある。本実施形態では、ワイヤを敷設する構成について記載するが、本発明の効果を得るには芝刈り領域201の認識方法は他の方法であっても構わない。 There are several methods for causing the autonomous mobile robot 110 to recognize the lawn mowing area 201 as a work area. By laying a wire around the area and passing an electric current, the autonomous mobile robot can detect the magnetic field and the lawn mowing area. There are a method for recognizing the inside / outside of 201 and a method for recognizing the inside / outside of the lawn mowing area 201 by mounting various sensors for recognizing the lawn on an autonomous mobile robot. In this embodiment, although the structure which lays a wire is described, in order to acquire the effect of this invention, the recognition method of the lawn mowing area | region 201 may be another method.
 自律移動ロボット110は、第1の移動モードにおいては、ワイヤ電流を検知できない場所では走行およびカッターを駆動しないように構成されている。一方第2の移動モードにおいては、自律移動ロボット110は、ワイヤ電流を検知できない場所であっても補助牽引により走行可能に構成されている。 In the first movement mode, the autonomous mobile robot 110 is configured not to travel and drive the cutter in a place where the wire current cannot be detected. On the other hand, in the second movement mode, the autonomous mobile robot 110 is configured to be able to travel by auxiliary traction even in a place where the wire current cannot be detected.
 本実施形態では、表庭に設置された第1充電ステーション202aから第1ワイヤ203aが敷設され第1芝刈り領域201aを設定している。第1ワイヤ203aには第1充電ステーション202aから電流が流され、自律移動ロボット110がその磁界を検知することにより、第1芝刈り領域201aの内外のどちらに位置するか(領域情報)を認識する。裏庭にある第2芝刈り領域201bについても同様であり、第2充電ステーション202bと第2ワイヤ203bが敷設され第2芝刈り領域201bが認識される。 In the present embodiment, a first lawn mowing area 201a is set by laying a first wire 203a from a first charging station 202a installed in a front yard. A current flows from the first charging station 202a to the first wire 203a, and the autonomous mobile robot 110 detects the magnetic field, thereby recognizing where the first lawn mowing region 201a is located (region information). To do. The same applies to the second lawn mowing area 201b in the backyard. The second charging station 202b and the second wire 203b are laid to recognize the second lawn mowing area 201b.
 従来の芝刈りロボットは、上記方法により第1芝刈り領域201aと第2芝刈り領域201bを認識して自律移動しながら芝を刈る。しかし、表庭から裏庭へ通じる通路205等、芝刈りロボットを作業領域認識外で移動させる場合は、作業者Wが芝刈りロボットを持ち運んで移動していた。このとき、芝刈りロボットは重量があるため、作業者Wが持ち運ぶには多大な労力が必要であった。 The conventional lawn mowing robot recognizes the first lawn mowing area 201a and the second lawn mowing area 201b by the above method and mows the lawn while moving autonomously. However, when the lawn mowing robot is moved outside the work area recognition, such as the passage 205 leading from the front yard to the back yard, the worker W has moved by carrying the lawn mowing robot. At this time, since the lawn mowing robot is heavy, a great amount of labor is required for the operator W to carry it.
 本発明では、芝生を植えてない通路205のような場所も、自律移動ロボット110の駆動機構で移動の駆動力を提供しながら、加えて作業者Wの補助的牽引等で安全で適切なルートを走行させ、次の芝刈り領域201に移動させるものである。 In the present invention, a safe and appropriate route such as an auxiliary traction of the operator W can be provided even in a place such as the passage 205 where the lawn is not planted, while the driving mechanism of the autonomous mobile robot 110 provides the driving force for movement. Is moved to the next lawn mowing area 201.
 本実施形態の自律移動ロボット110では、第1芝刈り領域201a内での芝刈り作業が完了して次の第2芝刈り領域201bに移動させたい場合には、作業者Wが自律移動ロボット110の取付部22を引き出して作用部40を取り付けて、自律移動ロボット110の運行モードを補助牽引動作すなわち第2の移動モードに切り替える。作業者Wは、作用部40によって自律移動ロボット110を補助的に牽引することで、自律移動ロボット110は自身の駆動力を利用しながら、作業者Wの補助的牽引に追従して追尾する。したがって、作業者Wが通路205の所定のルートに沿って自律移動ロボット110を補助的牽引しながら移動することで、自律移動ロボット110は作業者Wの歩いた軌跡を概ね追尾して自律移動する。 In the autonomous mobile robot 110 according to the present embodiment, when the lawn mowing work in the first lawn mowing area 201a is completed and it is desired to move to the next second lawn mowing area 201b, the operator W moves to the autonomous mobile robot 110. The attachment part 22 is pulled out and the action part 40 is attached to switch the operation mode of the autonomous mobile robot 110 to the auxiliary traction operation, that is, the second movement mode. The worker W assists and pulls the autonomous mobile robot 110 by the action unit 40, so that the autonomous mobile robot 110 tracks the worker W by following the assistant tow while using its own driving force. Accordingly, when the worker W moves along the predetermined route of the passage 205 while auxiliary towing the autonomous mobile robot 110, the autonomous mobile robot 110 moves autonomously by tracking the trajectory of the worker W substantially. .
 また、作業者Wは、自律移動ロボット110の駆動力を利用することで持ち運ぶ労力が不要であり、かつ自律移動ロボット110を作業領域認識外で運行させているにもかかわらず、自律移動ロボット110が勝手にルートを逸脱することなく、作業者Wに追尾させることができる。 In addition, the worker W does not need the labor to carry by using the driving force of the autonomous mobile robot 110, and the autonomous mobile robot 110 operates despite the autonomous mobile robot 110 being operated outside the work area recognition. However, the worker W can be tracked without deviating from the route without permission.
 ここで補助的牽引とは、自律移動ロボット110が停止して重量が掛った状態で作業者Wが牽引する意味ではなく、自律移動ロボット110の駆動力を利用しながらの運行であり、作業者Wには肉体的負担は殆どなく、補助的に必要な速度調整、方向変換のアシストを得て牽引する意味で用いている。 Here, the auxiliary traction does not mean that the worker W is towed while the autonomous mobile robot 110 is stopped and is heavy, but is an operation using the driving force of the autonomous mobile robot 110. W has almost no physical burden, and is used for the purpose of towing with the assistance of auxiliary speed adjustment and direction change.
 図5は、作業者Wが自律移動ロボット110を作用部40によって補助的牽引している状態を示す上面図である。図5を用いて、自律移動ロボット110が補助牽引動作(第2の移動モード)で運行される際の作業者Wへの追尾方法について説明する。図5中、点線で示した図形は標準状態を示しており、実線20’と実線22’はバンパー20と取付部22の変位状態を示す。 FIG. 5 is a top view showing a state where the worker W is auxiliary towing the autonomous mobile robot 110 by the action unit 40. A tracking method for the worker W when the autonomous mobile robot 110 is operated in an auxiliary traction operation (second movement mode) will be described with reference to FIG. In FIG. 5, a figure indicated by a dotted line indicates a standard state, and a solid line 20 ′ and a solid line 22 ′ indicate the displacement state of the bumper 20 and the mounting portion 22.
 作業者Wが自律移動ロボット110の運行モードを補助牽引動作(第2の移動モード)に切り替えると、自律移動ロボット110は一旦走行を停止する。第2の移動モードにおいて作業者Wが作用部40を補助牽引すると、自律移動ロボット110は所定の運行速度で動作を開始する。所定の運行速度は、例えば、一般的な歩行者の歩行速度と同程度に設定されている。 When the worker W switches the operation mode of the autonomous mobile robot 110 to the auxiliary traction operation (second movement mode), the autonomous mobile robot 110 temporarily stops traveling. When the operator W assists and pulls the action unit 40 in the second movement mode, the autonomous mobile robot 110 starts operating at a predetermined operation speed. The predetermined operation speed is set to be approximately the same as the walking speed of a general pedestrian, for example.
 運行途上では、地面の形状、湿質状態、傾斜・起伏状態、石ころ等の障害物状況等で、運行速度が設定速度に対し低下することがある。あるいは、作業者が歩行速度を速めるケースもある。このような場合は、図5のように、自律移動ロボット110のバンパー20が作業者Wの補助的牽引により引っ張られることで、本体ベース10に対し、走行方向(紙面右側)に相対的に変位(△DX)が生じる。 During operation, the operation speed may decrease with respect to the set speed due to the shape of the ground, the wet condition, the inclination / undulation condition, and obstacles such as stone rollers. Alternatively, there are cases where the worker increases the walking speed. In such a case, the bumper 20 of the autonomous mobile robot 110 is pulled by the auxiliary traction of the operator W as shown in FIG. (ΔDX) occurs.
 上記変位△DXに伴い、バンパー20の突起部24も同様に紙面右側の方向に変位する。これにより、図2(c)及び図3(c)で説明したように、変位伝達手段30では、スティック部32の下部に設けられた磁石34が、本体ベース10の後方(紙面左側)に配置されたホール素子35aに近接してホール素子35aの出力が変化することで、バンパー20が前方に変位したことが検知される。 In accordance with the displacement ΔDX, the protrusion 24 of the bumper 20 is similarly displaced in the right side of the drawing. As a result, as described with reference to FIGS. 2C and 3C, in the displacement transmission means 30, the magnet 34 provided at the lower portion of the stick portion 32 is arranged behind the main body base 10 (on the left side in the drawing). It is detected that the bumper 20 is displaced forward by changing the output of the Hall element 35a in the vicinity of the Hall element 35a.
 この結果、自律移動ロボット110は、運行が作業者Wに対し相対的に後方に遅れていると認識し、制御手段16から前輪駆動機構14または後輪駆動機構15に速度増加の命令を出す。 As a result, the autonomous mobile robot 110 recognizes that the operation is delayed backward relative to the worker W, and issues a speed increase command from the control means 16 to the front wheel drive mechanism 14 or the rear wheel drive mechanism 15.
 速度増加の命令は、遅れの状況により異なるが、速度増加によりバンパーの変位が無くなるまで続けられる。具体的には、変位伝達手段30の磁石34がホール素子35のいずれにも重ならず、変位伝達手段30が標準状態となることにより速度増加を停止する。1回の命令で速度増加が十分でなく、再びバンパー20が変位するようであれば、制御手段16は速度増加の命令を再び発信する。 The command to increase the speed depends on the delay situation, but continues until the bumper is displaced due to the increased speed. Specifically, the increase in speed is stopped when the magnet 34 of the displacement transmitting means 30 does not overlap any of the Hall elements 35 and the displacement transmitting means 30 is in the standard state. If the speed increase is not sufficient with one command and the bumper 20 seems to be displaced again, the control means 16 transmits the speed increase command again.
 一方、速度が増加し続けるのは安全でないため、第2の移動モードにおいて予め設定してある速度まで増加したあとは、徐々に減速するようプログラムされている。減速した結果、再度、作用部40が前に引かれた時点でホール素子35aがONになり、制御手段16は再び速度増加の命令を発信する。 On the other hand, since it is not safe for the speed to continue to increase, it is programmed to gradually decelerate after increasing to a preset speed in the second movement mode. As a result of the deceleration, the Hall element 35a is turned on again when the action part 40 is pulled forward, and the control means 16 sends a command to increase the speed again.
 このような制御により、自律移動ロボット110は、補助牽引動作すなわち第2の移動モード下で、作業者Wとの距離を一定に保ちながら作業者Wの軌跡を追尾することができる。作用部40は伸縮性のあるゴム等の紐状部材であるため、上記速度変動が作業者Wの手に伝わる変位は緩和され、作業者Wは負担を感じずに牽引を行うことができる。 By such control, the autonomous mobile robot 110 can track the trajectory of the worker W while keeping the distance from the worker W constant under the auxiliary traction operation, that is, the second movement mode. Since the action part 40 is a string-like member such as elastic rubber, the displacement of the speed fluctuation transmitted to the operator W's hand is mitigated, and the operator W can perform towing without feeling a burden.
 図6、図7にて、自律移動ロボット110が補助牽引動作すなわち第2の移動モードで運行する際の作業者Wへのその他の追尾方法について説明する。 6 and 7, another tracking method for the worker W when the autonomous mobile robot 110 operates in the auxiliary traction operation, that is, in the second movement mode will be described.
 図6は、自律移動ロボット110を作業者Wが作用部40によって補助的牽引している状態を示す上面図である。図6中で、点線で示した図形は標準状態を示しており、実線20’、実線22’はバンパー20と取付部22の変位状態を示す。 FIG. 6 is a top view showing a state where the worker W is auxiliary towing the autonomous mobile robot 110 by the action unit 40. In FIG. 6, a figure indicated by a dotted line indicates a standard state, and a solid line 20 ′ and a solid line 22 ′ indicate the displacement state of the bumper 20 and the mounting portion 22.
 ここでは、作業者Wが自律移動ロボット110の第2の移動モードで運行中に、作業者Wが補助的牽引する作用部40の移動方向の軸線C1と自律移動ロボット110の移動方向の軸線C2がずれ、作用部40が作業者Wから斜めに自律移動ロボット110を補助的牽引する状態になった場合を表している。 Here, while the worker W is operating in the second movement mode of the autonomous mobile robot 110, the axis C1 of the movement direction of the action unit 40 to which the worker W is auxiliary and the axis C2 of the movement direction of the autonomous mobile robot 110 are shown. This represents a case where the action unit 40 is in an auxiliary pulling state of the autonomous mobile robot 110 obliquely from the worker W.
 このような場合は、図6のように、自律移動ロボット110のバンパー20が作業者の補助的牽引による作用部40に引っ張られることで、本体ベース10に対し、走行方向(紙面X方向)及び、走行方向と垂直なY方向に相対的に変位が生じる。即ち△DX、△DYの成分を共に有する変位となる。 In such a case, as shown in FIG. 6, the bumper 20 of the autonomous mobile robot 110 is pulled by the action unit 40 by the auxiliary traction of the operator, so that the traveling direction (the X direction on the paper surface) A relative displacement occurs in the Y direction perpendicular to the traveling direction. That is, the displacement has both components of ΔDX and ΔDY.
 上記変位に応じて、回転軸を中心にスティック部32が傾斜し、図3(e)に示すように磁石34は、-X方向、-Y方向の成分を持つ方向に移動し、ホール素子35a及びホール素子35dの両方と重なり電気的に検出される状態となる。 In response to the displacement, the stick portion 32 tilts around the rotation axis, and the magnet 34 moves in a direction having components in the −X direction and the −Y direction as shown in FIG. And it will be in the state detected by overlapping with both of the Hall elements 35d.
 この時、制御手段16は、ホール素子35a及びホール素子35dから得た双方のON信号を得ることで、バンパー20が自律移動ロボット110の前方左側(紙面右上方向)に変位したことを認識する。すなわち、自律移動ロボット110の運行が作業者Wに対し相対的に進行方向に対し右後方向に遅れていると認識する。この認識により、制御手段16は、右駆動輪13a、左駆動輪13bに以下に示す軌道修正の命令を出す。 At this time, the control means 16 recognizes that the bumper 20 is displaced to the front left side of the autonomous mobile robot 110 (upper right direction in the drawing) by obtaining both ON signals obtained from the Hall element 35a and the Hall element 35d. That is, it is recognized that the operation of the autonomous mobile robot 110 is delayed relative to the worker W in the right rear direction with respect to the traveling direction. Based on this recognition, the control means 16 issues the following trajectory correction command to the right drive wheel 13a and the left drive wheel 13b.
 図7(a)、(b)は、に上述した状態に対する自律移動ロボット110の軌道修正の実施例を示す。自律移動ロボット110の制御手段16は、自身が作業者Wに対し相対的に右後方向に遅れていると言う認識に基づき、先ず、図7(a)に示すように右駆動輪13aを主力に左駆動輪13bをやや遅く駆動する命令を出す。 FIGS. 7A and 7B show an embodiment of the trajectory correction of the autonomous mobile robot 110 for the state described above. Based on the recognition that the control means 16 of the autonomous mobile robot 110 is behind in the right rear direction relative to the worker W, first, as shown in FIG. Command to drive the left drive wheel 13b slightly later.
 自律移動ロボット110が前方左側に舵を切りだすと、図7(b)に示すように、自律移動ロボット110から作業者Wが見える方向が、左前方から正面へと変化する。変位方向が正面になると、自律移動ロボット110は左右の駆動輪を均等に駆動する。この状態で進行すると、やがて自律移動ロボット110は作業者Wの左後方へ到達する。これにより今度は自律移動ロボット110が右前方に引かれる状態になる。このように、自律移動ロボット110は作業者Wの後方で左右に搖動することになるが、地面の摩擦を受けているので、その振幅は徐々に収束する。 When the autonomous mobile robot 110 turns the rudder to the front left side, as shown in FIG. 7B, the direction in which the worker W can be seen from the autonomous mobile robot 110 changes from the left front to the front. When the displacement direction is the front, the autonomous mobile robot 110 drives the left and right drive wheels evenly. If it progresses in this state, the autonomous mobile robot 110 will eventually reach the left rear of the worker W. As a result, the autonomous mobile robot 110 is now pulled right forward. As described above, the autonomous mobile robot 110 swings left and right behind the worker W, but the amplitude gradually converges because it receives friction from the ground.
 このようにすることで、自律移動ロボットを補助牽引モード(第2の動作モード)で運行する際に、作業者Wの後を精度よく追尾できる。 In this way, when the autonomous mobile robot is operated in the auxiliary traction mode (second operation mode), the back of the worker W can be accurately tracked.
 次に、自律移動ロボット110のバンパー20が作業者Wの補助的牽引により横方向、例えば左方向に引っ張られた場合は、本体ベース10に対し、紙面上側に相対的に変位(△DY)が生じ、磁石34は-Y方向に移動して、ホール素子35dと重なり電気的に検出される状態となる。これに対して自律移動ロボット110の制御手段16は、右駆動輪13aを前進させ、左駆動輪13bを後退させる命令を出す。これにより自律移動ロボット110は左側に旋回する。 Next, when the bumper 20 of the autonomous mobile robot 110 is pulled in the lateral direction, for example, the left direction by the auxiliary traction of the operator W, the displacement (ΔDY) is relatively higher than the main body base 10 on the upper side of the drawing. As a result, the magnet 34 moves in the -Y direction and overlaps with the Hall element 35d to be electrically detected. On the other hand, the control means 16 of the autonomous mobile robot 110 issues a command for moving the right driving wheel 13a forward and moving the left driving wheel 13b backward. As a result, the autonomous mobile robot 110 turns to the left.
 次に、自律移動ロボット110のバンパー20が作業者Wの補助的牽引により斜め後ろ方向、例えば左斜め後ろ方向に引っ張られた場合は、本体ベース10に対し、紙面上側に相対的に変位(△DXと△DY)が生じ、磁石34は+Xおよび-Y方向に移動して、ホール素子35bおよびホール素子35dと重なり電気的に検出される状態となる。これに対して自律移動ロボット110の制御手段16は、右駆動輪13aを遅く後退させ、左駆動輪13bを速く後退させる命令を出す。これにより自律移動ロボット110は後退しつつ左側に旋回する。 Next, when the bumper 20 of the autonomous mobile robot 110 is pulled in an obliquely rearward direction, for example, an obliquely backward leftward direction by the auxiliary traction of the worker W, it is relatively displaced (Δ DX and ΔDY) are generated, and the magnet 34 moves in the + X and −Y directions and overlaps with the Hall element 35b and the Hall element 35d to be electrically detected. On the other hand, the control means 16 of the autonomous mobile robot 110 issues a command for causing the right drive wheel 13a to move backward slowly and the left drive wheel 13b to move backward quickly. As a result, the autonomous mobile robot 110 turns to the left while moving backward.
 次に、自律移動ロボット110のバンパー20が作業者Wの補助的牽引により後ろ方向に引っ張られた場合は、本体ベース10に対し、紙面上側に相対的に変位(△DX)が生じ、磁石34は+X方向に移動して、ホール素子35bと重なり電気的に検出される状態となる。これに対して自律移動ロボット110の制御手段16は、牽引駆動力を発生しない。 Next, when the bumper 20 of the autonomous mobile robot 110 is pulled backward by the auxiliary traction of the operator W, a displacement (ΔDX) occurs relative to the main body base 10 on the upper side of the drawing, and the magnet 34 Moves in the + X direction and overlaps with the Hall element 35b to be electrically detected. On the other hand, the control means 16 of the autonomous mobile robot 110 does not generate traction driving force.
 上記は左側に引かれた場合について説明したが、右側についても、磁石が+Y方向に変位し、ホール素子35cが重なりを検出するので、制御手段16は上記と左右逆の速度を発生させて対応する。 Although the above has been described for the case of being pulled to the left side, the magnet 16 is also displaced in the + Y direction on the right side, and the Hall element 35c detects an overlap. To do.
 以上により、作業者Wが一定の方向に進みながら補助的牽引をすると、自律移動ロボット110から見て斜め前、横、斜め後ろの方向に対しては、引かれた方向に旋回しつつ進行し、徐々に車体を進行方向に一致させる。なお後ろ方向については駆動力を発生しない。これは通常車体の前方向に対して移動するように作用部40および取付部22が構成されており、後ろへの牽引は使用に適さないためである。 As described above, when the worker W performs auxiliary traction while moving in a certain direction, the vehicle moves while turning in the pulled direction with respect to the diagonally forward, lateral, and diagonally backward directions as viewed from the autonomous mobile robot 110. , Gradually match the body with the direction of travel. Note that no driving force is generated in the rear direction. This is because the action part 40 and the attachment part 22 are configured to move with respect to the forward direction of the vehicle body, and traction to the rear is not suitable for use.
 なお、実施形態1の自律移動ロボット110では、作用部40を伸縮性のあるゴム製の紐状部材としたが、帯状や、金属や樹脂性の鎖、棒型部材等で構成してもよい。また、第2の移動モードにおいて、予め設定してある速度まで増加した後は徐々に減速させるとしたが、速度制御でなく、予想歩行速度よりもより低速で単に一定出力でモーターを回すようにしてもよい。また、自動モードで停止時はモーターをブレーキ状態としておき、補助牽引モードで作用部を引いた時はブレーキを解除するようにしてもよい。 In the autonomous mobile robot 110 according to the first embodiment, the action unit 40 is a stretchable rubber string-like member. However, the action unit 40 may be constituted by a band, a metal or resin chain, a rod-shaped member, or the like. . In the second movement mode, the speed is gradually reduced after increasing to a preset speed, but instead of speed control, the motor is simply rotated at a constant output at a lower speed than the expected walking speed. May be. Further, the motor may be in a brake state when stopped in the automatic mode, and the brake may be released when the action portion is pulled in the auxiliary traction mode.
 〔実施形態2〕
 図8は、本発明の実施形態2に係る自律移動ロボット120の実施例を示す。図8は、自律移動ロボット120を補助牽引モード(第2の動作モード)で運行し、自身の作業領域のマップを作成するシーンでの適用である。例えば、自律移動ロボット120からなる芝刈りロボットをゴルフ場等のスポーツ施設等で適用する場合である。
[Embodiment 2]
FIG. 8 shows an example of the autonomous mobile robot 120 according to the second embodiment of the present invention. FIG. 8 shows an application in a scene in which the autonomous mobile robot 120 is operated in the auxiliary traction mode (second operation mode) and a map of its own work area is created. For example, a lawnmower robot composed of the autonomous mobile robot 120 is applied to a sports facility such as a golf course.
 実施形態2に係る自律移動ロボット120は、作業の初期段階で、所定領域230内において、一点鎖線で示した実際に芝を刈る作業領域を設定する場合に利用される。 The autonomous mobile robot 120 according to the second embodiment is used in the initial stage of work when setting a work area for actually cutting grass shown by a one-dot chain line in the predetermined area 230.
 作業が行われる所定領域230内では、木立240や池241等があり、この領域は芝生がなく芝刈りの作業はしない(この領域には立ち入らない)旨、自律移動ロボット120に設定しておく必要がある。換言すれば、作業をすべき一点鎖線で示した作業領域231を作業するように自律移動ロボット120に設定(Teaching)する必要がある。 In the predetermined area 230 where the work is performed, there are a tree stand 240, a pond 241 and the like, and this area is set in the autonomous mobile robot 120 so that there is no lawn and no mowing work is performed (this area is not entered). There is a need. In other words, it is necessary to set (Teaching) the autonomous mobile robot 120 so as to work the work area 231 indicated by the one-dot chain line to be worked.
 自律移動ロボット120は、誘導車220の後尾から作用部42により連結されており、誘導車220から作用部42を介して補助的牽引が行われる。このとき、自律移動ロボット120は、GPS61を搭載しており、補助的牽引中に、当該GPS61で計測した位置座標データを記憶手段62に記憶する。 The autonomous mobile robot 120 is connected from the tail of the guide car 220 by the action part 42, and auxiliary traction is performed from the guide car 220 through the action part 42. At this time, the autonomous mobile robot 120 is equipped with the GPS 61 and stores the position coordinate data measured by the GPS 61 in the storage means 62 during auxiliary traction.
 このような補助的牽引による補助牽引モード(第2の動作モード)の運行は、作業領域(芝刈り領域)の設定(Teaching)時に利用されるものであり、ある領域においては初期の1回のみの運行で良い。領域内でロケーションの変更があった際には当該発明の技術が適用され再度作業領域(芝刈り領域)の設定(Teaching)を行うことができる。 The operation of the auxiliary traction mode (second operation mode) by such auxiliary traction is used at the time of setting (Teaching) the work area (lawn mowing area). It's okay to operate. When the location is changed in the area, the technique of the present invention is applied, and the work area (mowing area) can be set (Teaching) again.
 自律移動ロボット120は、自身が次に自律移動モード(第1の動作モード)で運行・作業する際に、記憶手段62に記憶した作業領域231に基づき芝刈り等の作業を自律で実施することができる。 The autonomous mobile robot 120 autonomously carries out work such as lawn mowing based on the work area 231 stored in the storage means 62 when it next operates and works in the autonomous movement mode (first operation mode). Can do.
 また、当該発明の技術により、作業領域の外周にワイヤ等を敷設し電流を流すことで自律移動ロボットが磁界をセンシングして作業領域を判断するような従来製品と比較して、ワイヤ等の敷設作業・費用が不要になる。また、芝生領域であるかないかを判断するような特殊なセンサの組込みも不要となる。 In addition, the technology of the present invention lays wires and the like as compared with conventional products in which an autonomous mobile robot senses a magnetic field and judges the work area by laying a wire etc. on the outer periphery of the work area and flowing current. Work / expense is unnecessary. In addition, it is not necessary to incorporate a special sensor for determining whether the area is the lawn area.
 自律移動ロボット120の領域設定は、現在利用可能になっているGPSに限るものではなく、将来の高精度GPSにも適用でき、その際は、領域設定精度、芝刈り精度をさらに向上することができる。また、上記実施形態は、ゴルフ場等の施設での適用であったがこれに限るものではなく、個人の自宅の庭等での使用に適用しても構わない。 The area setting of the autonomous mobile robot 120 is not limited to the currently available GPS, but can also be applied to future high-accuracy GPS, in which case the area setting accuracy and lawn mowing accuracy can be further improved. it can. Moreover, although the said embodiment was applied in facilities, such as a golf course, it is not restricted to this, You may apply to use in the garden of an individual's home.
 〔実施形態3〕
 図9は、本発明の実施形態3に係る自律移動ロボット130を示す。本実施の形態は、自律移動ロボット130の補助牽引モード(第2の動作モード)での運行時において、実施形態1や実施形態2とは逆に、作業者Wが自律移動ロボット130の後方から作用部44を介して押し進める利用形態を示している。
[Embodiment 3]
FIG. 9 shows an autonomous mobile robot 130 according to the third embodiment of the present invention. In the present embodiment, when the autonomous mobile robot 130 is operated in the auxiliary traction mode (second operation mode), the operator W moves from behind the autonomous mobile robot 130, contrary to the first and second embodiments. The utilization form pushed forward through the action part 44 is shown.
 作用部44は、展開可能に設置されたレバーであり、自律移動ロボット130のバンパー20の後方の突起部24に、収納用の回転軸51を介して接続されている。回転軸51の軸方向は車体左右方向であり、内蔵するねじりばねにより、無負荷時には図9(a)のように作用部44を車体上部に収納した状態になる。作用部44は作業者が手で掴んで引き出すことにより、図9(b)のように車体後方に展開される。 The action unit 44 is a lever that is installed so as to be deployable, and is connected to the protrusion 24 on the rear side of the bumper 20 of the autonomous mobile robot 130 via a rotating shaft 51 for storage. The axial direction of the rotating shaft 51 is the left-right direction of the vehicle body, and the action portion 44 is housed in the upper portion of the vehicle body as shown in FIG. The action part 44 is deployed to the rear of the vehicle body as shown in FIG.
 作用部44には作業者Wが操作しやすいようにハンドル52が設置されている。突起部24には作用部44の展開状態を検知するため、図示しない展開検知スイッチが内蔵されている。展開検知スイッチは、作用部44が完全に収納されているときにONとなり、少しでも引き起こされているときはOFFとなる。回転軸51は、軸以外の方向についてはバンパー20と作用部44とを強固に接続しており、作用部前後および左右方向の力を加えると、バンパー20が、本体ベース10に対して前後および左右に変位する。 A handle 52 is installed on the action part 44 so that the operator W can easily operate it. The protrusion 24 incorporates a deployment detection switch (not shown) in order to detect the deployed state of the action portion 44. The unfolding detection switch is turned on when the action part 44 is completely stored, and turned off when it is caused even a little. The rotation shaft 51 firmly connects the bumper 20 and the action portion 44 in directions other than the axis. When a force in the front and rear direction and the left and right direction of the action portion is applied, the bumper 20 Displaces left and right.
 本実施例では変位伝達手段30a~30dのうち、変位検知構造を構成する磁石34とホール素子35a~35dとを内蔵するのは、前側の変位伝達手段30a、30bのいずれか一方または両方とする。後ろ側の変位伝達手段30c、30dは、作業者Wの操作力によって進行方向と逆側に変位する場合があるので、変位検知構造の搭載に適さない。例えば作業者Wが車体を左前に進めようとするとハンドルを反時計回りに回しつつ前に押すことになる。このとき車体上では回転軸51を略回転中心として反時計のトルクを受けるので、車体前側は左に押されるが、車体後ろ側は右に押される場合があり、車体後ろの変位伝達手段30a、30bは操作力とは逆側に変位する。 In the present embodiment, among the displacement transmission means 30a to 30d, the magnet 34 and the hall elements 35a to 35d constituting the displacement detection structure are built in either one or both of the front-side displacement transmission means 30a and 30b. . The rear displacement transmitting means 30c, 30d may be displaced in the direction opposite to the traveling direction by the operating force of the operator W, and thus is not suitable for mounting a displacement detection structure. For example, when the operator W tries to advance the vehicle body to the left, the operator W pushes it forward while turning the handle counterclockwise. At this time, since the counterclockwise torque is received on the vehicle body with the rotation shaft 51 as the approximate rotation center, the front side of the vehicle body may be pushed to the left, but the rear side of the vehicle body may be pushed to the right. 30b is displaced to the opposite side to the operating force.
 自律移動ロボット130は、展開検知スイッチがONのときは自律移動モード(第1の動作モード)になり、展開検知スイッチがOFFにったときは補助牽引モード(第2の動作モード)に移行する。 The autonomous mobile robot 130 enters the autonomous movement mode (first operation mode) when the deployment detection switch is ON, and shifts to the auxiliary traction mode (second operation mode) when the deployment detection switch is OFF. .
 作業者Wが作用部44を引き起こして自律移動ロボット130を押し進めると、自律移動ロボット130は作業者Wとほぼ同等な速度で自身の駆動機構から生ずる駆動力を利用しながら走行する。 When the worker W causes the action unit 44 to push the autonomous mobile robot 130 forward, the autonomous mobile robot 130 travels at a speed almost equal to that of the worker W while using the driving force generated from its own drive mechanism.
 例えば、バンパー20が作用部44によって前方に変位する場合は、作業者Wの速度に対し自律移動ロボット130の速度が相対的に遅い状況であるので、変位伝達手段30を介して、制御手段16は駆動輪に速度増加の命令を出す。 For example, when the bumper 20 is displaced forward by the action portion 44, the speed of the autonomous mobile robot 130 is relatively slow with respect to the speed of the worker W, and therefore, the control means 16 via the displacement transmission means 30. Issues a command to the drive wheels to increase speed.
 なお、自律移動ロボット130の第2の移動モードで運行中に、作業者Wが推進する作用部44の移動方向の軸線C1と自律移動ロボット130の移動方向の軸線C2がずれ、自律移動ロボット130を斜めに推進する状態になった場合には、図7(a)、(b)で説明したように、駆動力を交互あるいは段階的に変化駆動させ、バンパー20の変位が解消するように軌道修正すればよい。 During operation in the second movement mode of the autonomous mobile robot 130, the axis C1 of the movement direction of the action unit 44 propelled by the worker W and the axis C2 of the movement direction of the autonomous mobile robot 130 are shifted, and the autonomous mobile robot 130 7A and 7B, the driving force is driven alternately or stepwise to change the bumper 20 so that the displacement of the bumper 20 is eliminated, as described in FIGS. You just have to fix it.
 〔実施形態4〕
 図10は、本発明の実施形態4に係る自律移動ロボット140を示す。実施形態4に係る自律移動ロボット140は、AGV(Automated Guided Vehicle)を軌道外に運ぶ際に用いられる実施例である。図10(a)は実施形態4に係る自律移動ロボット140(AGV)の側面図であり、図10(b)は斜視図である。
[Embodiment 4]
FIG. 10 shows an autonomous mobile robot 140 according to Embodiment 4 of the present invention. The autonomous mobile robot 140 according to the fourth embodiment is an example used when an AGV (Automated Guided Vehicle) is carried out of the track. FIG. 10A is a side view of the autonomous mobile robot 140 (AGV) according to the fourth embodiment, and FIG. 10B is a perspective view.
 自律移動ロボット140は、本体ベース11とバンパー21を備えている。バンパー21は、側面全周をカバーするリング形状であり、本体ベース11の前辺部及び後辺部に変位伝達手段31a、31b、31c、31dを介して取り付けられている。バンパー21は、コの字型のハンドル部材で構成される作用部46を備え、作用部46の両端がバンパー21に接続されている。作用部46は、取手71の中央に安全装置として機能するデッドマンスイッチ72を備えている。 The autonomous mobile robot 140 includes a main body base 11 and a bumper 21. The bumper 21 has a ring shape covering the entire circumference of the side surface, and is attached to the front side portion and the rear side portion of the main body base 11 via displacement transmitting means 31a, 31b, 31c, 31d. The bumper 21 includes an action portion 46 formed of a U-shaped handle member, and both ends of the action portion 46 are connected to the bumper 21. The action unit 46 includes a deadman switch 72 that functions as a safety device in the center of the handle 71.
 本体ベース11は、駆動輪77、前側自在輪78、後側自在輪79にて接地している。本体ベース11は、路面の磁気テープ軌道を検出するガイドセンサ74を車体下部に持つ。自律移動ロボット140が自律移動モードのときは、磁気テープ軌道に沿って所定のコース上を前進走行する。また、本体ベース11は、路面に設置された停止位置を検知するマークセンサ75を車体下部に持つ。自律移動ロボット140が自律移動モードで走行中にマークセンサ75が路面の停止マークを検知すると、自律移動の走行を停止する。 The main body base 11 is grounded by a drive wheel 77, a front universal wheel 78, and a rear universal wheel 79. The main body base 11 has a guide sensor 74 for detecting a magnetic tape track on the road surface at the lower part of the vehicle body. When the autonomous mobile robot 140 is in the autonomous movement mode, it travels forward on a predetermined course along the magnetic tape track. The main body base 11 has a mark sensor 75 for detecting a stop position installed on the road surface at the lower part of the vehicle body. If the mark sensor 75 detects a stop mark on the road surface while the autonomous mobile robot 140 is traveling in the autonomous movement mode, the traveling of the autonomous movement is stopped.
 また、本体ベース11は、障害物検出用にLRF73を備え、車体前方の物体や人を検出し、距離を測定する。自律移動ロボット140は、自律移動モードでは、所定距離内に測定物が見えると速度を制限し、減速距離以内では減速し、停止距離以内では停止する。自律移動ロボット140が停止している間に作業者Wがデッドマンスイッチ72を握ると、補助牽引モードとなり、デッドマンスイッチ72を握っている間は、上記速度制限を解除する。自律移動ロボット140が軌道上自律走行している間はデッドマンスイッチ72を握っても動作は変化せず、速度制限を適用する。 Also, the main body base 11 includes an LRF 73 for detecting an obstacle, detects an object or a person in front of the vehicle body, and measures a distance. In the autonomous movement mode, the autonomous mobile robot 140 limits the speed when a measurement object is seen within a predetermined distance, decelerates within a deceleration distance, and stops within a stop distance. When the worker W grasps the deadman switch 72 while the autonomous mobile robot 140 is stopped, the auxiliary traction mode is set, and the speed restriction is released while the deadman switch 72 is grasped. While the autonomous mobile robot 140 is autonomously traveling on the track, even if the deadman switch 72 is gripped, the operation does not change and the speed limit is applied.
 自律移動ロボット140(AGV)は、磁気テープ軌道に沿って所定コースを走り、所定の停止地点で停止する。荷降ろし場所は荷物を取り出す作業者がいて混み合うため、安全のため停止地点は荷降ろし場所の少し(数m)横になっている。 The autonomous mobile robot 140 (AGV) runs along a predetermined course along the magnetic tape track and stops at a predetermined stop point. Because the unloading place is crowded with workers who take out the load, the stop point is a little (several meters) next to the unloading place for safety.
 本実施形態の自律移動ロボット140では、停止地点から荷降ろし場所までは、作業者Wが作用部46のデッドマンスイッチ72を押しながら補助牽引モードにして牽引することにより、自律移動ロボット140を楽に移動させて荷降ろし場所まで移動することができる。 In the autonomous mobile robot 140 of this embodiment, the worker W easily pulls the autonomous mobile robot 140 from the stop point to the unloading place by pulling in the auxiliary traction mode while pressing the deadman switch 72 of the action unit 46. It can be moved to the unloading place.
 作業者Wは荷降ろし場所で自律移動ロボット140の荷台から荷物を下ろす。その後再度補助牽引モードを使って所定停止地点まで移動する。作業者Wがデッドマンスイッチ72を離してスタートボタンを押すと、自律移動ロボット140は自律移動モードに復帰し、自動コース走行を開始して次の停止地点に向かう。 The worker W unloads the load from the platform of the autonomous mobile robot 140 at the unloading place. After that, the auxiliary traction mode is used again to move to a predetermined stop point. When the worker W releases the deadman switch 72 and presses the start button, the autonomous mobile robot 140 returns to the autonomous movement mode, starts the automatic course travel, and goes to the next stop point.
 以上、本発明の自律移動装置について各実施形態を用いて説明したが、本発明は上述した各実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。 As mentioned above, although the autonomous mobile device of the present invention was explained using each embodiment, the present invention is not limited to each embodiment mentioned above, and various changes are possible in the range indicated in the claims, Embodiments obtained by appropriately combining technical means disclosed in different embodiments are also included in the technical scope of the present invention.
 W 作業者
 10、11 本体ベース
 12 前輪
 13 後輪
 16 制御手段
 17 カッター
 20、21 バンパー
 22 取付部
 23 引き出し検知部
 24 突起部
 25 連結部材
 30、31 変位伝達手段
 32 スティック部
 33 回転軸
 34 磁石
 35 ホール素子
 40、42、44、46 作用部
 110、120、130、140 自律移動ロボット
W Worker 10, 11 Main body base 12 Front wheel 13 Rear wheel 16 Control means 17 Cutter 20, 21 Bumper 22 Mounting part 23 Drawer detection part 24 Projection part 25 Connecting member 30, 31 Displacement transmission means 32 Stick part 33 Rotating shaft 34 Magnet 35 Hall element 40, 42, 44, 46 Action part 110, 120, 130, 140 Autonomous mobile robot

Claims (9)

  1.  本体ベースおよび該本体ベースの下部に設けられた移動機構と、
     前記本体ベースの少なくとも前縁部を覆うバンパーと、
     前記本体ベースに対して前記バンパーを変位可能に連結し、前記バンパーの変位を検知する変位検知部と
    を備えた自律移動装置において、
     前記バンパーに作用して変位させる作用部を備え、前記作用部の作用方向に移動状態を変更する補助牽引モードを有することを特徴とする自律移動装置。
    A main body base and a moving mechanism provided at a lower portion of the main body base;
    A bumper covering at least the front edge of the main body base;
    In the autonomous mobile device comprising a displacement detection unit that couples the bumper to the main body base in a displaceable manner and detects the displacement of the bumper.
    An autonomous mobile device comprising: an action part that acts on the bumper to be displaced, and has an auxiliary traction mode that changes a movement state in an action direction of the action part.
  2.  前記作用部は、前記バンパーに取り外し可能に設置されるものであり、前記作用部が取り付けられたときに前記補助牽引モードに移行することを特徴とする請求項1に記載の自律移動装置。 2. The autonomous mobile device according to claim 1, wherein the action part is detachably installed on the bumper, and shifts to the auxiliary traction mode when the action part is attached.
  3.  前記作用部は、前記バンパーに展開可能に収納されるものであり、前記作用部が展開されたときに前記補助牽引モードに移行することを特徴とする請求項1に記載の自律移動装置。 2. The autonomous mobile device according to claim 1, wherein the action portion is accommodated in the bumper so as to be deployable, and shifts to the auxiliary traction mode when the action portion is deployed.
  4.  前記作用部は、操作信号を検知している間だけ前記補助牽引モードを実行させる安全装置を備えることを特徴とする請求項1に記載の自律移動装置。 The autonomous mobile device according to claim 1, wherein the action unit includes a safety device that executes the auxiliary traction mode only while detecting an operation signal.
  5.  前記補助牽引モードは、前記作用部による前記バンパーの変位を減少させるように速度を変更することを特徴とする請求項1に記載の自律移動装置。 2. The autonomous mobile device according to claim 1, wherein the auxiliary traction mode changes a speed so as to reduce a displacement of the bumper by the action unit.
  6.  前記作用部は、前記バンパーを牽引する紐状部材であることを特徴とする請求項1記載の自律移動装置。 2. The autonomous mobile device according to claim 1, wherein the action portion is a string-like member that pulls the bumper.
  7.  前記作用部の紐状部材は、伸縮性を有することを特徴とする請求項6に記載の自律移動装置。 The autonomous mobile device according to claim 6, wherein the string-like member of the action portion has elasticity.
  8.  前記作用部は、前記バンパーを後方から推進するハンドル部材であることを特徴とする請求項1記載の自律移動装置。 2. The autonomous mobile device according to claim 1, wherein the action portion is a handle member that propels the bumper from the rear.
  9.  前記補助牽引モードは、移動時の位置情報を取得して作業領域を設定することを特徴とする請求項1記載の自律移動装置。 The autonomous mobile device according to claim 1, wherein the auxiliary traction mode acquires position information at the time of movement and sets a work area.
PCT/JP2015/054669 2014-06-25 2015-02-19 Autonomous mobile device WO2015198629A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014130047A JP5792361B1 (en) 2014-06-25 2014-06-25 Autonomous mobile device
JP2014-130047 2014-06-25

Publications (1)

Publication Number Publication Date
WO2015198629A1 true WO2015198629A1 (en) 2015-12-30

Family

ID=54346188

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/054669 WO2015198629A1 (en) 2014-06-25 2015-02-19 Autonomous mobile device

Country Status (2)

Country Link
JP (1) JP5792361B1 (en)
WO (1) WO2015198629A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018014963A (en) * 2016-07-29 2018-02-01 日立工機株式会社 Self-propelled work machine
JP2018190363A (en) * 2017-05-11 2018-11-29 ボット3, インコーポレイテッドBot3, INC. Portable mobile robot and operation method thereof
WO2021060254A1 (en) * 2019-09-27 2021-04-01 株式会社やまびこ Autonomous robot work machine

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111201497A (en) * 2017-07-10 2020-05-26 旅伴机器人股份有限公司 Autonomous robot system
US11334082B2 (en) 2018-08-08 2022-05-17 The Toro Company Autonomous machine navigation and training using vision system
EP4167043A4 (en) * 2020-06-15 2024-02-21 Doog Inc Autonomous movement device, autonomous movement method, and program

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0366504U (en) * 1989-10-25 1991-06-27
JPH0556726U (en) * 1991-12-27 1993-07-27 北芝電機株式会社 Electric cart
JPH08207850A (en) * 1995-02-03 1996-08-13 Nikon Corp Follow-up type controller
JPH08282498A (en) * 1995-04-14 1996-10-29 Matsushita Electric Works Ltd Dolly with power assist
JPH09150740A (en) * 1995-11-28 1997-06-10 Kubota Corp Motor-driven handcart
JP2005339181A (en) * 2004-05-26 2005-12-08 Matsushita Electric Works Ltd Autonomous traveling vehicle
JP2006290319A (en) * 2005-04-12 2006-10-26 Kiyoshi Shimizu Electric-assisted hand-pushed truck
JP2007052527A (en) * 2005-08-16 2007-03-01 Matsushita Electric Ind Co Ltd Robot
WO2009050986A1 (en) * 2007-10-17 2009-04-23 Kabushiki Kaisha Yaskawa Denki Mobile body

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0366504U (en) * 1989-10-25 1991-06-27
JPH0556726U (en) * 1991-12-27 1993-07-27 北芝電機株式会社 Electric cart
JPH08207850A (en) * 1995-02-03 1996-08-13 Nikon Corp Follow-up type controller
JPH08282498A (en) * 1995-04-14 1996-10-29 Matsushita Electric Works Ltd Dolly with power assist
JPH09150740A (en) * 1995-11-28 1997-06-10 Kubota Corp Motor-driven handcart
JP2005339181A (en) * 2004-05-26 2005-12-08 Matsushita Electric Works Ltd Autonomous traveling vehicle
JP2006290319A (en) * 2005-04-12 2006-10-26 Kiyoshi Shimizu Electric-assisted hand-pushed truck
JP2007052527A (en) * 2005-08-16 2007-03-01 Matsushita Electric Ind Co Ltd Robot
WO2009050986A1 (en) * 2007-10-17 2009-04-23 Kabushiki Kaisha Yaskawa Denki Mobile body

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018014963A (en) * 2016-07-29 2018-02-01 日立工機株式会社 Self-propelled work machine
JP2018190363A (en) * 2017-05-11 2018-11-29 ボット3, インコーポレイテッドBot3, INC. Portable mobile robot and operation method thereof
WO2021060254A1 (en) * 2019-09-27 2021-04-01 株式会社やまびこ Autonomous robot work machine
JP2021052615A (en) * 2019-09-27 2021-04-08 株式会社やまびこ Automatic traveling robot work machine
CN114521104A (en) * 2019-09-27 2022-05-20 株式会社山彦 Automatic mobile robot working machine
JP7309559B2 (en) 2019-09-27 2023-07-18 株式会社やまびこ Self-propelled robot working machine
CN114521104B (en) * 2019-09-27 2024-01-30 株式会社山彦 Automatic mobile robot working machine

Also Published As

Publication number Publication date
JP5792361B1 (en) 2015-10-07
JP2016009356A (en) 2016-01-18

Similar Documents

Publication Publication Date Title
JP5792361B1 (en) Autonomous mobile device
CN107402573B (en) Automatic working system, automatic moving equipment and control method thereof
US8234010B2 (en) Tethered robot positioning
CN111771510B (en) Method, system, robot and computer readable medium for mowing a plurality of areas
EP2360084B1 (en) Retractable line guidance for self-propelled machines
US10962980B2 (en) System and methods for reverse braking during automated hitch alignment
US11180146B2 (en) Brake control technique to stop a vehicle for assisting automatic trailer hitching
WO2017056334A1 (en) Object following movement system
US11753076B2 (en) Automated hitching system with subject trailer selection from multiple identified trailers
EP3658710B1 (en) Line marking device and method for marking a line
EP3800978B1 (en) Systems and methods for operating a robotic machine in an autonomous mode and a manual mode
US11491833B2 (en) System and methods for vehicle alignment control
US20200247197A1 (en) System and methods for vehicle alignment control
US11479297B2 (en) Overshoot protection in hitch assist operation
US11192552B2 (en) Vehicle motion control for trailer alignment
CN111506055A (en) Walking robot, steering control method and control system thereof, and walking robot working system
US5988936A (en) Slip form control system for tight radius turns
US11582903B1 (en) Vision based guidance system and method for lawn mowing devices
JP7001551B2 (en) Work vehicle
US11844304B2 (en) Autonomous travel work machine
EP4082331A1 (en) Garden care vehicle, water supply station and system comprising a garden care vehicle and a water supply station
US11214105B2 (en) Saturated steering detection and operation for guided vehicle operation
JPS595318A (en) Automatic driving method of service car
JPH04259013A (en) Steering controller for automatic traveling working vehicle
JP2554133Y2 (en) Emergency stop device for autonomous vehicles

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15811132

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15811132

Country of ref document: EP

Kind code of ref document: A1