WO2015194200A1 - Image pickup device - Google Patents

Image pickup device Download PDF

Info

Publication number
WO2015194200A1
WO2015194200A1 PCT/JP2015/051051 JP2015051051W WO2015194200A1 WO 2015194200 A1 WO2015194200 A1 WO 2015194200A1 JP 2015051051 W JP2015051051 W JP 2015051051W WO 2015194200 A1 WO2015194200 A1 WO 2015194200A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
light
ultraviolet
light guide
guide member
Prior art date
Application number
PCT/JP2015/051051
Other languages
French (fr)
Japanese (ja)
Inventor
耕太 入江
隼人 土橋
佐々木 洋
Original Assignee
クラリオン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by クラリオン株式会社 filed Critical クラリオン株式会社
Publication of WO2015194200A1 publication Critical patent/WO2015194200A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B15/00Special procedures for taking photographs; Apparatus therefor
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B17/00Details of cameras or camera bodies; Accessories therefor
    • G03B17/02Bodies
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B17/00Details of cameras or camera bodies; Accessories therefor
    • G03B17/02Bodies
    • G03B17/08Waterproof bodies or housings

Definitions

  • the present invention relates to an imaging apparatus.
  • a camera is installed in the vehicle, and white lines and road markings on the road are recognized from images captured by the camera, and obstacles behind the vehicle are detected by the camera.
  • Devices that assist driving when parking are known. Cameras used in such devices are often mounted outside the vehicle, and dirt such as water droplets and mud adheres to the camera lens. Depending on the degree of water droplets and dirt adhering to the lens, the white line on the road cannot be clearly recognized from the image taken by the camera, or the obstacle behind the vehicle cannot be detected by the camera. It may not be possible to satisfy functions for improving convenience and safety.
  • a method is disclosed in which a hydrophilic filter containing a photocatalytic substance is provided on the front surface of the lens, and the surface of the hydrophilic filter is irradiated with ultraviolet rays to wash the organic substances adhering to the surface with ultraviolet rays (for example, patents). Reference 1).
  • the present invention has been made to achieve the above object, and an object of the present invention is to provide an imaging apparatus capable of suppressing a reduction in the self-cleaning effect by the photocatalyst.
  • an imaging apparatus is housed in a lens having a photocatalytic film formed on a surface thereof, an imaging element that captures an image by the lens, and a housing that holds the lens.
  • a first light emitter that emits irradiated ultraviolet light
  • a light guide unit that guides the ultraviolet light emitted by the first light emitter to the back side of the lens.
  • the imaging device has the above-described configuration, wherein the lens includes a first lens having the photocatalyst film formed on a surface thereof, and one or a plurality of first lenses disposed behind the first lens in the optical axis direction.
  • the light guide unit is configured to combine the two lenses with the ultraviolet light emitted from the first light emitter without passing through the second lens. It is characterized by being led to the back side.
  • the light guide unit reflects the ultraviolet light, and a first light guide member that guides the ultraviolet light emitted from the first light emitter to the lens. And at least one of a reflecting member that irradiates the back side of the lens.
  • the second light emitter that is housed in a housing that holds the lens and emits infrared light irradiated on the lens, and the second light emitter emits light.
  • the light guide unit includes a first light guide member that guides the ultraviolet light emitted from the first light emitter to the lens, and the first guide.
  • a reflecting member that reflects the ultraviolet light guided by the optical member and irradiates the back side of the lens, and the reflecting member irradiates the ultraviolet light to a central portion of the lens. The mounting angle is adjusted.
  • the imaging apparatus of the present invention is characterized in that, in the above configuration, the photocatalytic film is formed at a central portion of the lens.
  • the image pickup apparatus is characterized in that, in the above-described configuration, the image pickup device includes a filter provided on the lens side surface of the image pickup element so as not to transmit or attenuate the ultraviolet light emitted from the first light emitter. To do.
  • the imaging apparatus of the present invention has a first electronic board on which the imaging element is mounted, A second electronic board on which the first light emitter and the second light emitter are mounted is provided.
  • the image pickup apparatus is characterized in that, in the above-described configuration, the image pickup device includes an electronic substrate on which the image pickup element, the first light emitter, and the second light emitter are mounted.
  • the imaging device of the present invention includes the first light guide member included in the light guide unit that guides the ultraviolet light emitted from the first light emitter to the lens in the configuration described above, and the lens.
  • the first light guide member and the second light guide member are integrally formed as optical components.
  • the imaging apparatus of the present invention includes the first light guide member included in the light guide unit that guides the ultraviolet light emitted from the first light emitter to the lens in the configuration described above.
  • a plurality of the first light-emitting elements so that the ultraviolet light is irradiated to the lens from the up-down direction or the left-right direction of the lens.
  • a body and the first light guide member are arranged.
  • the imaging device of the present invention is housed in a housing that holds the lens, and includes a plurality of second light emitters that emit infrared light that is applied to the lens, and the second light emitters.
  • a plurality of the second light emitters and the second light guide member are arranged so that the light is irradiated.
  • the imaging apparatus has the first light emitter and the first light guide member that irradiate the ultraviolet rays from above the lens with respect to the lens, and the lower direction of the lens.
  • the first light emitter and the first light guide member for irradiating the ultraviolet light, the second light emitter and the second light guide member for irradiating the infrared light from above the lens, and the lens The first light emitter that has the second light emitter and the second light guide member that irradiate the infrared light from below, and that irradiates the lens with ultraviolet light from above the lens.
  • an arrangement of the second light emitter for irradiating the infrared ray, the first light emitter for irradiating the ultraviolet ray from below the lens, and the second light emitter for irradiating the infrared ray. Are arranged symmetrically And wherein the are.
  • FIG. 1 is a cross-sectional view illustrating a first configuration of the imaging apparatus.
  • FIG. 2 is a diagram showing a coating region of the first lens coated with a photocatalyst.
  • FIG. 3 is a plan view of the first electronic substrate.
  • 4 (A) to 4 (C) are diagrams showing the arrangement of ultraviolet LEDs and infrared LEDs.
  • FIG. 5 is a plan view of the camera housing as viewed from the optical axis direction of the first lens.
  • 6A is a diagram showing the light receiving sensitivity of the image sensor
  • FIG. 6B is a diagram showing the intensity distribution of light emitted from the ultraviolet LED and the infrared LED.
  • FIG. 7 is a diagram illustrating an example of mounting the imaging device on a vehicle.
  • FIG. 1 is a cross-sectional view illustrating a first configuration of the imaging apparatus.
  • FIG. 2 is a diagram showing a coating region of the first lens coated with a photocatalyst.
  • FIG. 8 is a diagram illustrating another configuration of the imaging apparatus.
  • FIG. 9 is a diagram illustrating another configuration of the imaging apparatus.
  • FIG. 10 is a configuration diagram showing the configuration of the processing apparatus.
  • FIG. 11 is a diagram illustrating the relationship between the light emission timing of the ultraviolet LED and the exposure timing of the image sensor.
  • 12A and 12B are diagrams illustrating examples of images taken by the imaging device when raindrops are attached to the first lens
  • FIG. 12C is a diagram illustrating FIG. It is a figure which shows the difference image of the image shown to A), and the image shown to FIG.
  • FIG. 13 is a diagram showing a luminance histogram of the difference image shown in FIG.
  • FIG. 14A and 14B are diagrams illustrating examples of images taken by the imaging device when mud is attached to the first lens
  • FIG. 14C is a diagram illustrating FIG. It is a figure which shows the difference image of the image shown to A), and the image shown to FIG.
  • FIG. 15 is a flowchart showing a first processing procedure of the control device that controls turning on and off of the ultraviolet LED.
  • FIG. 16 is a flowchart showing a second processing procedure of the control device that controls turning on and off of the ultraviolet LED.
  • FIG. 17 is a flowchart showing details of the attached matter determination processing.
  • FIG. 18 is a flowchart showing a third processing procedure of the control device that controls turning on and off of the ultraviolet LED.
  • FIG. 19 is a configuration diagram illustrating another configuration of the processing apparatus.
  • FIG. 1 is a cross-sectional view of the imaging device 1A cut along the optical axis direction of a lens included in the imaging device 1A.
  • the imaging device 1A includes three lenses, a first lens 3A, a lens 4A as the second lens 4, and a lens 4B.
  • the first lens 3A, the lens 4A, and the lens 4B are held in the casing by the camera casing 2.
  • An inorganic material is used for the camera housing 2. Glass is used for the first lens 3A, the lens 4A, and the lens 4B.
  • the outer surface (front surface) of the first lens 3A that is, the surface opposite to the lens 4A and the lens 4B is coated with a photocatalyst such as titanium oxide.
  • a photocatalyst such as titanium oxide.
  • FIG. 2 shows a region (referred to as a coating region 31) of the first lens 3A coated with the photocatalyst.
  • the coating region 31 is formed in a circular portion having a predetermined diameter from the central portion of the first lens 3A, that is, the center of the first lens 3A. It is only necessary that an oxidation effect and a hydrophilic effect be obtained in a photographing part of an image that is actually used in a processing device (described later) that performs processing such as lane recognition and vehicle detection using image data photographed by the imaging device 1A. For this reason, only the central portion of the first lens 3A is coated with the photocatalyst.
  • the imaging apparatus 1A has the first electronic substrate 10 mounted thereon.
  • the first electronic substrate 10 will be described with reference to FIG.
  • FIG. 3 shows a plan view of the first electronic substrate 10.
  • An imaging element 11 such as a CCD (Charge Coupled Device) that captures an image by the first lens 3A, the lens 4A, and the lens 4B is mounted at the center of the first electronic substrate 10.
  • An ultraviolet cut filter 12 is mounted on the upper surface of the image sensor 11, that is, on the first lens 3 ⁇ / b> A side. When ultraviolet light emitted from an ultraviolet LED 21 described later is received by the image sensor 11, an image captured by the image sensor 11 may be affected.
  • the ultraviolet cut filter 12 is provided on the upper surface of the imaging element 11 to reduce the influence of the ultraviolet light emitted by the ultraviolet LED 21 on the image.
  • the ultraviolet cut filter 12 is a filter that does not transmit or attenuate the ultraviolet light emitted by the ultraviolet LED 21.
  • holes 13 and 14 are formed on both upper and lower sides of the first electronic substrate 10 with the image pickup element interposed therebetween.
  • a first light guide member 23A and a second light guide member 24A described later are formed in the holes 13 and 14, respectively. Are inserted respectively.
  • the imaging apparatus 1A has a second electronic substrate 20 mounted thereon.
  • the second electronic substrate 20 will be described with reference to FIGS. 4 (A) to 4 (C).
  • 4A to 4C are plan views of the second electronic substrate 20.
  • FIG. An ultraviolet LED 21 and an infrared LED 22 are mounted on the second electronic substrate 20.
  • the ultraviolet LED 21 is housed in the camera housing 2 that holds the lenses (3A, 4A, 4B).
  • the first lens 3A coated with a photocatalyst (photocatalyst film) has an oxidative decomposition effect and a hydrophilic effect by irradiating the first lens 3A with ultraviolet light emitted from the ultraviolet LED 21.
  • the infrared LED 22 is used to detect dirt on the first lens 3A.
  • the ultraviolet LED 21 and the infrared LED 22 are provided in the camera housing 2 of the imaging apparatus 1A (see FIG. 1). By providing the ultraviolet LED 21 and the infrared LED 22 in the camera housing 2, it is possible to prevent the ultraviolet LED 21 and the infrared LED 22 from becoming dirty with mud or the like. For this reason, it is possible to prevent a reduction in the cleaning action of the first lens 3A due to the contamination of the ultraviolet LED 21.
  • FIG. 4A two ultraviolet LEDs 21 are mounted on the side edge on the upper side 27 of the second electronic board 20, and two infrared LEDs 22 are placed on the side edge on the lower side 28 of the second electronic board 20.
  • the upper side 27 of the second electronic substrate 20 is a side that is on the upper side when the imaging device 1A is mounted on the vehicle
  • the lower side 28 of the second electronic substrate 20 is a side that is on the lower side when mounted on the vehicle. It is.
  • the first lens 3A by irradiating the first lens 3A with ultraviolet light from a plurality of positions and directions, a hydrophilic effect can be generated in the entire first lens 3A, and the deposits are located at any position of the first lens 3A. Even if it is attached, the attached matter can be reliably detected.
  • the arrangement of the ultraviolet LED 21 and the infrared LED 22 is not limited to that shown in FIG.
  • the ultraviolet LED 21 is mounted on one of the left and right sides of the second electronic substrate 20, and the infrared LED 22 is mounted on the other side of the left and right sides.
  • the ultraviolet LED 21 and one infrared LED 22 are arranged on the edge portion on the upper side 27 side of the second electronic substrate 20 one by one, and on the lower side 28 side of the second electronic substrate 20.
  • One ultraviolet LED 21 and one infrared LED 22 may also be arranged at the edge.
  • the ultraviolet LED 21 and the infrared LED 22 provided on the upper side 27 side and the ultraviolet LED 21 and the infrared LED 22 provided on the lower side 28 side are arranged symmetrically. That is, the ultraviolet LED 21 is disposed on the right side and the infrared LED 22 is disposed on the left side on the upper side 27 side, and the ultraviolet LED 21 is disposed on the left side and the infrared LED 22 is disposed on the right side on the lower side 28 side.
  • positioning By setting it as such an arrangement
  • FIGS 4A to 4C show an example in which two ultraviolet LEDs 21 and two infrared LEDs 22 are provided, but the number of ultraviolet LEDs 21 and infrared LEDs 22 mounted on the second electronic substrate 20 is shown. Is not limited to two. Further, the number of the ultraviolet LEDs 21 and the infrared LEDs 22 mounted on the second electronic substrate 20 may not be the same.
  • the imaging device 1 includes a first light guide 8 and a second light guide 9.
  • the first light guide 8 includes a first light guide member 23 ⁇ / b> A and a first reflection member 25.
  • the second light guide unit 9 includes a second light guide member 24 ⁇ / b> A and a second reflection member 26.
  • the first light guide member 23A guides the ultraviolet light emitted from the ultraviolet LED 21 to the first lens 3A.
  • the second light guide member 24A guides the infrared light emitted from the infrared LED 22 to the first lens 3A.
  • One end of the first light guide member 23A is in contact with the second electronic substrate 20, and the other end is formed integrally with the first lens 3A (see FIG. 1).
  • One end portion of the first light guide member 23A in contact with the second electronic substrate 20 surrounds the ultraviolet LED 21 (see FIGS. 4A to 4C).
  • one end of the second light guide member 24A is in contact with the second electronic substrate 20, and the other end is formed integrally with the first lens 3A (see FIG. 1).
  • One end portion of the second light guide member 24A in contact with the second electronic substrate 20 surrounds the infrared LED 22 (see FIGS. 4A to 4C).
  • the first light guide member 23A, the second light guide member 24A, and the first lens 3A are integrally configured as one optical component.
  • the ultraviolet light emitted by the ultraviolet LED 21 is guided through the first light guide member 23A and guided to the first lens 3A (dotted arrow L1 shown in FIG. 1).
  • the infrared light emitted by the infrared LED 22 is guided in the second light guide member 24A and guided to the first lens 3A (dotted arrow L2 shown in FIG. 1).
  • the first light guide member 23A is a first reflecting member, which will be described later, so that the ultraviolet light emitted by the ultraviolet LED 21 is not irradiated to the second lens 4 (lens 4A, lens 4B) other than the first lens 3A.
  • the second light guide member 24A uses infrared light to be described later so that infrared light emitted from the infrared LED 22 is not irradiated to the second lens 4 (lens 4A and lens 4B) other than the first lens 3A. 2 Lead to the reflecting member 26.
  • the first light guide member 23A, the second light guide member 24A, and the first lens 3A are integrally configured, the reduction in the amount of ultraviolet light emitted from the ultraviolet LED 21 is suppressed, and the efficiency is reduced with less power.
  • the entire first lens 3A can be irradiated with ultraviolet light.
  • the first light guide member 23A and the second light guide member 24A to guide the ultraviolet light and infrared light to the first lens 3A, the heat generated by the ultraviolet LED 21 and the infrared LED 22 is applied to the imaging element 11. It can be difficult to communicate.
  • the arrangement position of the first light guide member 23A also depends on the arrangement of the ultraviolet LED 21. Be changed.
  • the first light guide member 23A also surrounds the ultraviolet LED 21 so as to surround the second electronic substrate. 20 is provided at the edge of the left side.
  • the second light guide member 24A also surrounds the infrared LED 22 with the second electrons. It is provided at the edge of the right side of the substrate 20.
  • the first light guide member 23A for example, a member having a low attenuation factor of ultraviolet light, for example, ultraviolet transmissive glass can be used.
  • the ultraviolet transmissive glass for example, an ultraviolet transmissive glass in which contamination of impurities such as iron oxide is suppressed to 0.01% or less can be used.
  • the imaging apparatus 1A including a plurality of lenses the first lens 3A, the lens 4A, and the lens 4B
  • the ultraviolet light emitted from the first light guide member 23A reaches the first lens 3A until the first light is emitted.
  • Two lenses 4 (lens 4A, lens 4B) are attenuated. For this reason, sufficient ultraviolet light may not be irradiated to the first lens 3A.
  • the first light guide member 23A is provided, and the ultraviolet light emitted from the ultraviolet LED 21 is guided to the first lens 3A by the first light guide member 23A.
  • FIG. 5 shows a plan view of the camera housing 2 viewed from the optical axis direction of the first lens 3A.
  • a part of the first light guide member 23A overlaps a part of the first lens 3A, and a part of the second light guide member 24A is also the first.
  • the first light guide member 23A and the second light guide member 24A are arranged so as to overlap a part of the lens 3A. With such an arrangement, it is possible to irradiate the first lens 3A from the inside of the first lens 3A with the ultraviolet light emitted by the ultraviolet LED 21 and guided by the first light guide member 23A.
  • the first lens 3A is effective due to the effect of the photocatalyst.
  • the surface can be cleaned.
  • the infrared light emitted from the infrared LED 22 and guided by the second light guide member 24A can be applied to the first lens 3A from the inside of the first lens 3A.
  • first reflecting member 25 that reflects the ultraviolet light emitted from the ultraviolet LED 21 to the central portion on the back surface side of the first lens 3A (see FIG. 1).
  • a back surface is a surface on the opposite side to the surface of the 1st lens 3A which coated the photocatalyst.
  • the first reflecting member 25 emits light by the ultraviolet LED 21 and the central portion of the first lens 3A is irradiated with the ultraviolet light guided by the first light guiding member 23A. The mounting position has been adjusted.
  • the ultraviolet light emitted from the ultraviolet LED 21 is irradiated to the peripheral portion of the first lens 3A, for example, the camera casing 2, the resin portion of the body of the imaging device 1, or the coating, it may cause deterioration of these organic materials. There is sex.
  • the first reflecting member 25 is provided in the first light guide member 23A so that the ultraviolet light is not irradiated to the peripheral portion of the first lens 3A.
  • the lens is greatly curved, so that there are cases where the first lens 3A cannot be accurately irradiated with ultraviolet light.
  • the second light guide member 24A is provided with a second reflection member 26 that reflects the infrared light emitted from the infrared LED 22 to the central portion of the first lens 3A (see FIG. 1).
  • the second reflecting member 26 emits light by the infrared LED 22, and the infrared light guided by the second light guiding member 24A is applied to the central portion of the first lens 3A. The mounting position in the second light guide member 24A is adjusted.
  • first light guide member 23 ⁇ / b> A and the first reflection member 25 are provided as the first light guide unit 8 in FIG. 1, the structure may include only one of them.
  • second light guide member 24 ⁇ / b> A and the second reflection member 26 are provided as the second light guide unit 9, a configuration including only one of them may be used.
  • 23 A of 1st light guide members are provided in order to guide the ultraviolet light which ultraviolet-ray LED21 light-emits to the back surface side of 1st lens 3A, without allowing the 2nd lens 4 (lens 4A, lens 4B) to pass through.
  • the second light guide member 24A is provided to guide the infrared light emitted from the infrared LED 22 to the back surface side of the first lens 3A without passing through the second lens 4 (lens 4A, lens 4B). It has been.
  • the imaging device 1 includes the first lens 3A and does not include the second lens 4 (lens 4A, lens 4B)
  • the first light guide unit 8 includes the first reflecting member 25, and the first The light guide member 23A may not be provided.
  • the second light guide unit 26 may include the second reflection member 26 and may not include the second light guide member 24A.
  • the first light guide unit 8 includes the first light guide member 23A and the first reflection member 25. There may be no configuration.
  • the second light guide unit 9 may include the second light guide member 24 ⁇ / b> A and not the second reflection member 26.
  • FIG. 6 (A) shows the light receiving sensitivity of the image sensor 11
  • FIG. 6 (B) shows the intensity distribution of light emitted from the ultraviolet LED 21 and the infrared LED 22.
  • FIG. As the image sensor 11, an element having high light receiving sensitivity in the visible region and the infrared region is used. Further, the light receiving sensitivity of the image sensor 11 is preferably as low as possible in the ultraviolet region. This is for avoiding the influence of the ultraviolet light emitted by the ultraviolet LED 21 when taking an image. By using an image sensor 11 having a low light receiving sensitivity in the ultraviolet region, and mounting an ultraviolet cut filter 12 on the upper surface of the image sensor 11, the influence of the ultraviolet light emitted by the ultraviolet LED 21 on the image is greatly reduced. be able to.
  • FIG. 7 is a diagram illustrating an example of mounting the imaging device 1A on the vehicle 7.
  • the imaging device 1 ⁇ / b> A is mounted behind the vehicle 7, and the mounting position is adjusted so that an area including the road surface behind the vehicle 7 is photographed.
  • FIG. 8 is a diagram showing another configuration of the imaging apparatus 1A.
  • the first lens 3A, the first light guide member 23A, and the second light guide member 24A are integrally configured as one optical component.
  • FIG. 8 shows a configuration of the imaging device 1B in which the first light guide member 23B, the second light guide member 24B, and the first lens 3B are formed separately. 8 shows only the first lens 3B as a lens, the lens may have only one configuration of the first lens 3B. As shown in FIG. One lens 3A, a lens 4A, and a lens 4B may be provided.
  • FIG. 9 is a diagram showing another configuration of the imaging apparatus 1A.
  • the ultraviolet LED 21 and the infrared LED 22 are mounted on the same electronic substrate 30 as the electronic substrate on which the imaging element 11 is mounted.
  • 1A includes an ultraviolet LED 21 and an infrared LED 22 provided on a second electronic substrate 20 different from the first electronic substrate 10 provided with the imaging element 11. For this reason, the influence on the image pick-up element 11 by the heat
  • the mounting of the ultraviolet LED 21 and the infrared LED 22 on the electronic substrate 30 is facilitated.
  • the accuracy of the detection of the deposit by the image taken by the image pickup device 11 and the irradiation of the ultraviolet light to the detected deposit is detected. Can be increased.
  • the processing device 100 is a device that controls the imaging device 1 to perform image processing on image data captured by the imaging device 1.
  • the image pickup apparatus to be controlled by the processing apparatus 100 may be any of the image pickup apparatuses 1A to 1C, and will be referred to as the image pickup apparatus 1 below.
  • the first lens 3A and the first lens 3B do not need to be distinguished from each other, and are referred to as the first lens 3.
  • the processing device 100 includes an A / D (Analog-to-digital converter) conversion circuit 101, a memory 102, an image arithmetic device 103, a control device 104, an image sensor control circuit 105, and an LED control circuit 106. ing.
  • a / D Analog-to-digital converter
  • the A / D conversion circuit 101 performs A / D conversion on the image signal captured by the image sensor 11 when the infrared LED 22 is turned on and off, and converts the image signal into digital image data, which is transferred to the memory 102.
  • the memory 102 stores the digital image data transferred from the A / D conversion circuit 101.
  • the image calculation device 103 performs image calculation processing on the image data stored in the memory 102, and generates a difference image between the image when the light is turned on and the image when the light is turned off.
  • the control device 104 analyzes the adhesion state of the deposit based on the luminance information obtained from the difference image. When there are deposits on the first lens 3, there are a plurality of regions having a predetermined luminance or higher. Therefore, the control device 104 calculates the number of pixels and the barycentric coordinates for each region, thereby the number and size of the deposits. Identify the position of the deposit. Further, the control device 104 calculates the luminance information in the difference image and the area and shape information of a region having a predetermined luminance or higher, and based on the calculation result, determines the type of adhering matter (water droplets, cloudiness, other dirt). Identify.
  • the peripheral device 150 is a device that supports driving during parking based on an image output from the processing device 100, or a device that recognizes white lines and road markings and assists safety during driving. Transmits the analysis result to the peripheral device 150.
  • the image sensor control circuit 105 controls the exposure timing of the image sensor 11, and the LED control circuit 106 controls lighting and extinguishing of the ultraviolet LED 21 and the infrared LED 22.
  • the processing device 100 shown in FIG. 10 is connected to an ECU (Electronic Control Unit) mounted on the vehicle 7 via an in-vehicle communication bus such as a CAN (Controller Area Network), and can acquire information from the ECU. It is configured.
  • ECU Electronic Control Unit
  • FIG. 11 is a diagram showing the relationship between the light emission timing of the ultraviolet LED 21 and the exposure timing of the image sensor 11.
  • the light emission timing of the ultraviolet LED 21 is controlled by the LED control circuit 106, and the exposure timing of the image sensor 11 is controlled by the image sensor control circuit 105.
  • the ultraviolet LED 21 is turned on in synchronization with the exposure timing of the image sensor 11 and is repeatedly turned on and off while the image sensor 11 is in the exposure state.
  • the lighting time of the ultraviolet LED 21 may be the same as or slightly longer than the image capturing time of the imaging device 11 (for example, 16.6 ms in the case of NTSC standard). Thereby, the image when the ultraviolet LED 21 is turned on and the image when the ultraviolet LED 21 is turned off are exposed and photographed by the image sensor 11.
  • FIG. 12A shows an image photographed by the image sensor 11 with the infrared LED 22 turned off in a state where raindrops are attached to the first lens 3.
  • FIG. 12B shows an image photographed by the image sensor 11 with the infrared LED 22 turned on in a state where raindrops are attached to the first lens 3.
  • FIG. 12C illustrates a difference image between the image illustrated in FIG. 12A and the image illustrated in FIG. Note that the difference image shown in FIG. 12C is generated by the image arithmetic device 103 shown in FIG.
  • FIG. 13 is a luminance histogram showing the luminance distribution of the difference image shown in FIG. As shown in FIG. 13, the brightness of the difference image tends to be biased toward higher brightness. In addition, when raindrops adhere to the first lens 3, the contour portion of the raindrops is photographed particularly brightly.
  • the control device 104 calculates the luminance information in the difference image and the area and shape information of a region having a predetermined luminance or higher, and determines that the deposit is a raindrop based on the calculation result.
  • FIG. 14A shows an image photographed by the image sensor 11 with the infrared LED 22 turned off in a state where dirt such as mud adheres to the first lens 3.
  • FIG. 14B shows an image photographed by the image sensor 11 with the infrared LED 22 turned on in a state where dirt such as mud adheres to the first lens 3.
  • FIG. 14C shows a difference image between the image shown in FIG. 14A and the image shown in FIG.
  • the infrared light of the infrared LED 22 is reflected by dirt such as mud and is imaged by the imaging device 11, so the difference between the image when the infrared LED 22 is turned on and the image when the infrared LED 22 is turned off In the image, a portion where dirt such as mud is attached becomes bright.
  • the brightness of the bright portions is the same overall when dirt such as mud is present.
  • the control device 104 determines that the adhering matter is not raindrops but dirt such as mud.
  • infrared light emitted from the infrared LED 22 is transmitted to another vehicle (for example, a vehicle following the vehicle on which the imaging device 1 is mounted). There is no dazzling discomfort to the driver of the car.
  • the processing apparatus 100 determines whether or not sunlight is applied to the first lens 3 based on the image captured by the imaging apparatus 1, and the sunlight is applied to the first lens 3. While being irradiated, the ultraviolet LED 21 is turned off.
  • the processing device 100 compares the average luminance of the image data of the imaging device 1 with a threshold value, and if the average luminance is equal to or higher than the threshold value, the first lens 3 is exposed to ultraviolet rays of sunlight. It is determined that Further, when the average luminance is smaller than the threshold value, the processing apparatus 100 determines that the first lens 3 is not exposed to ultraviolet rays of sunlight. The processing device 100 turns off the ultraviolet LED 21 when determining that sunlight is hitting the first lens 3, and turns on the ultraviolet LED 21 when determining that sunlight is not hitting the first lens 3.
  • the first lens 3 is irradiated with sunlight can also be determined based on information from an illuminance sensor or the like mounted on the vehicle 7. Further, based on the illuminance sensor mounted on the vehicle 7 and the image captured by the imaging device 1, it may be determined whether the ultraviolet LED 21 is turned on or off.
  • the first processing procedure of the control device 104 will be described with reference to the flowchart shown in FIG.
  • This processing procedure is a procedure for controlling turning on and off of the ultraviolet LED 21 based on the average luminance of the image data photographed by the imaging device 1.
  • the control device 104 controls the LED control circuit 106 to turn off the ultraviolet LED 21 and the infrared LED 22, and controls the image sensor control circuit 105 to take an image with the image sensor 11 (step S1).
  • Image data captured by the image sensor 11 is A / D converted by the A / D conversion circuit 101 and stored in the memory 102. Note that the following description will be given assuming that the ultraviolet LED 21 is in the extinguished state at the end of step S1.
  • the control device 104 reads the image data from the memory 102 and calculates the average luminance of the read image data. Then, the control device 104 compares the calculated average brightness of the image data with a threshold value (step S2). When determining that the average luminance of the image data is lower than the threshold value (step S2 / NO), the control device 104 causes the LED control circuit 106 to turn on the ultraviolet LED 21 (step S3), and proceeds to the processing of step S4. To do. When determining that the average brightness of the image data is equal to or higher than the threshold value (step S2 / YES), the control device 104 proceeds to the process of step S4 without turning on the ultraviolet LED 21 in the off state.
  • step S4 the control device 104 determines whether or not a signal notifying that the IG switch is turned off has been received from the ECU of the vehicle 7 (step S4).
  • control device 104 receives the signal transmitted from the ECU and determines that the IG switch has been turned off (step S4 / YES), it terminates this process. Further, when determining that the IG switch is not turned off (step S4 / NO), the control device 104 determines whether or not a predetermined time has elapsed since the last image was captured in step S1 (step S5).
  • step S4 determines whether or not a signal indicating that the IG switch is turned off has been received from the ECU. If it is determined that a predetermined time has elapsed since the last image was taken (step S5 / YES), the control device 104 repeats the processing from step S1.
  • the processing procedure of the control device 104 in this case will be described as a second processing procedure with reference to the flowchart shown in FIG. Note that the processing in steps S11 and S12 shown in FIG. 16 is the same as the flow in FIG.
  • control device 104 determines that the average brightness of the image data is lower than the threshold value (step S12 / NO), it determines whether or not an adhering substance such as mud is adhering to the first lens 3. Processing is performed (step S13). Details of the adhering matter determination process will be described later with reference to the flowchart shown in FIG.
  • control device 104 determines whether or not a signal notifying that the IG switch is turned off has been received from the ECU (step S16). Moreover, when it determines with the control apparatus 104 having adhered to the 1st lens 3 (step S14 / YES), the LED control circuit 106 makes the ultraviolet LED21 light (step S15). Thereafter, control device 104 proceeds to step S16, and determines whether or not a signal notifying that the IG switch is turned off has been received from the ECU (step S16). The subsequent processing is the same as S4 and S5 in FIG.
  • the control device 104 controls the LED control circuit 106 to cause the infrared LED 22 to emit light (step S ⁇ b> 21), and guides the infrared light emitted from the infrared LED 22 to the first lens 3.
  • the control device 104 starts exposure of the image sensor 11 by controlling the image sensor control circuit 105 in a state where the infrared LED 22 is turned on (step S22).
  • the control device 104 exposes the image sensor 11 for the video capturing time of the image sensor 11 and ends the exposure of the image sensor 11 (step S23).
  • control device 104 stops the light emission of the infrared LED 22 (step S24), transfers image data (hereinafter referred to as an image (A)) captured by the image sensor 11 to the memory 102, and stores it in the memory 102. (Step S25).
  • control device 104 starts the exposure of the image sensor 11 by controlling the image sensor control circuit 105 with the infrared LED 22 turned off (step S26).
  • control device 104 exposes the image sensor 11 for the video capturing time of the image sensor 11, and ends the exposure of the image sensor 11 (step S27).
  • control device 104 transfers image data captured by the image sensor 11 (hereinafter referred to as image data (B)) to the memory 102 and stores it in the memory 102 (step S28).
  • image data (B) image data captured by the image sensor 11
  • the image calculation device 103 calculates a difference image (from the image data (A) and the image data (B) stored in the memory 102. C) is calculated (step S29).
  • the image arithmetic device 103 calculates image data obtained by binarizing the calculated difference image (C) (hereinafter referred to as image data (D)) (step S30).
  • the control device 104 calculates the area, shape, and the like of a region in a predetermined luminance range based on the binarized image data (D) (step S31).
  • the control device 104 determines the degree of attached matter attached to the first lens 3, and determines whether the attached amount of the attached matter is an obstacle to acquiring an image with the image sensor 11 (step S32). .
  • the control device 104 notifies the peripheral device 150 when it determines that the amount of adhered matter becomes an obstacle (step S33).
  • step S42 is the same as the processing of S1 and S2 shown in FIG.
  • step S43 determines whether the window wiper is on.
  • the control device 104 determines whether or not a signal notifying that the window wiper is on is input from the ECU of the vehicle 7 and determines whether or not the window wiper is on (step S43). .
  • step S43 / YES determines that the window wiper is on
  • the control device 104 controls the LED control circuit 106 to turn on the ultraviolet LED 21 (step S46). If the control device 104 determines that the window wiper is not on (step S43 / NO), the control device 104 performs an adhering matter determination process (step S44).
  • the details of the adhering matter determination process have been described with reference to FIG. Also, the processing after the adhering matter determination processing is the same as the flow shown in FIG.
  • FIG. 19 shows another form of the processing apparatus 100.
  • a processing apparatus 100 shown in FIG. 10 includes an imaging apparatus 1 having a first lens 3, an imaging element 11, an ultraviolet LED 21, an infrared LED 22, and the like, an A / D conversion circuit 101, a memory 102, an image calculation apparatus 103, a control apparatus 104, and the like. And an arithmetic unit having an integrated configuration.
  • the processing device 200 having another configuration illustrated in FIG. 19 includes an imaging unit 210 including an imaging device 1, an A / D conversion circuit 211, a video encoder 212, a control device 213, an imaging element control circuit 214, an LED control circuit 215, and the like. Is configured.
  • the imaging device 1 includes a first lens 3, an imaging device 11, an ultraviolet LED 21, an infrared LED 22, and the like. Further, the video decoder 231, the memory 232, the image arithmetic device 233, the control device 234, etc. constitute the arithmetic unit 230. Further, the processing device 200 is configured such that the imaging unit 210 and the calculation unit 230 are divided into separate units and connected via signal lines.
  • the imaging apparatus 1 of the present embodiment is provided in the camera housing 2 so that the ultraviolet LED 21 is not soiled with mud or the like. For this reason, it is possible to prevent the ultraviolet LED 21 itself from being soiled and prevent the ultraviolet LED 21 from deteriorating the cleaning action of the first lens 3. In addition, when dirt such as mud with low permeability adheres to the first lens 3, it is difficult to reach the surface of the first lens 3 even if ultraviolet rays are irradiated from the outside of the first lens 3. The photocatalytic effect may not be obtained. In this embodiment, since the ultraviolet LED 21 is provided in the camera housing 2, the first lens 3 can be irradiated with ultraviolet light from the inside of the first lens 3, and a sufficient photocatalytic effect can be obtained. .
  • the imaging device 1 including a plurality of lenses
  • a first light guide member 23 is provided as the first light guide unit 8, and the ultraviolet light emitted from the ultraviolet LED 21 is guided to the first lens 3.
  • the 1st light reflection part 25 which reflects ultraviolet light and irradiates the back surface side of the 1st lens 3A as the 1st light guide part 8 was provided.
  • the lens is greatly curved, and therefore the ultraviolet light is accurately irradiated to the first lens 3A (for example, the central portion of the first lens 3A). It may not be possible. Even in such a case, in the present embodiment, the central portion of the first lens 3 ⁇ / b> A can be irradiated with ultraviolet light by the first reflecting member 25. Therefore, the first lens 3A can exert a hydrophilic effect.
  • the imaging apparatus 1 of the present embodiment includes an infrared LED 22 that emits infrared light.
  • the processing device 100 stains the first lens 3 based on a difference image between an image captured by the imaging device 1 with the infrared LED 22 turned on and an image captured by the imaging device 1 with the infrared LED 22 turned off.
  • the condition is determined, and the turning on and off of the ultraviolet LED 21 is controlled. Accordingly, since the ultraviolet LED 21 can be turned on according to the degree of contamination of the first lens 3, deterioration of the peripheral members of the first lens 3 due to the ultraviolet ray can be prevented, and power consumption due to the lighting of the ultraviolet LED 21 can be reduced. . Moreover, durability of the ultraviolet LED 21 can be improved.
  • the first reflection member 25 is provided in the imaging device 1 so that the central portion of the first lens 3 is irradiated with ultraviolet light, deterioration of peripheral members of the first lens 3 due to the ultraviolet light can be prevented. .
  • an ultraviolet cut filter 12 that does not transmit or attenuate ultraviolet light on the surface of the image sensor 11 on the first lens 3 side, the influence of the ultraviolet light on an image photographed by the image sensor 11 is reduced. can do.
  • first lens 3 the first light guide member 23, and the second light guide member 24 are integrally configured as optical components, a decrease in the amount of ultraviolet light emitted from the ultraviolet LED 21 is suppressed, and the power is reduced.
  • the entire first lens 3 can be efficiently irradiated with ultraviolet light.
  • the first light guide member 8 and the first reflection member 25 are provided as the first light guide portion 8
  • the second light guide member 24 and the first reflection member 26 are provided as the second light guide portion 9. Accordingly, the coating region 31 at the center of the first lens 3A can be intensively irradiated with the ultraviolet light emitted by the ultraviolet LED 21 and the infrared light emitted by the infrared LED 22. For this reason, it is possible to improve the visibility of the coating region 31 by reliably detecting the minimum necessary deposit on the first lens 3 and irradiating ultraviolet rays with a small amount of light and electric power.
  • the imaging device 1A shown in FIG. 1, the imaging device 1B shown in FIG. 8, and the imaging device 1C shown in FIG. 9 are provided with the infrared LED 22, but the infrared LED 22 may not be mounted.
  • the contamination of the first lens 3 can also be detected using the ultraviolet LED 21.
  • the method of detecting contamination of the first lens 3 using the ultraviolet LED 21 is the same as that of the infrared LED 22.
  • the degree of contamination of the first lens 3 is determined based on a difference image between an image taken with the ultraviolet LED 21 turned on and an image taken with the ultraviolet LED 21 turned off. Control off.
  • the ultraviolet LED 21 to detect the contamination of the first lens 3, it is not necessary to provide the infrared LED 22, and the component cost can be reduced.
  • the size of the camera housing 2 of the imaging device 1 can be reduced.
  • FIG. 1 shows a configuration in which the second lens 4 is provided with two lenses, a lens 4A and a lens 4B.
  • the number of the second lens 4 may be one or more.
  • a lens may be provided.
  • FIG. 10 is a schematic diagram showing the functional configuration of the processing device 100 classified according to main processing contents in order to facilitate understanding of the present invention.
  • FIG. 19 is a schematic diagram showing the functional configuration of the processing apparatus 200 classified according to main processing contents.
  • the configurations of the processing apparatuses 100 and 200 can be classified into more components depending on the processing content. Moreover, it can also classify
  • the processing of each component of the processing devices 100 and 200 may be executed by one hardware or may be executed by a plurality of hardware. Further, the processing of each component of the processing devices 100 and 200 may be realized by a single program or may be realized by a plurality of programs.
  • the processing of the control device 104 shown in FIG. 10 and the control device 213 shown in FIG. 19 can be executed by a predetermined program stored in a storage device (not shown).
  • the predetermined program is downloaded from a network to a storage device via a communication device (not shown), for example, and then loaded onto a RAM (not shown) included in the control devices 104 and 213. It may be executed by a CPU (not shown) provided. Alternatively, it may be loaded directly from a network onto a RAM via a communication device and executed by a CPU.
  • the processing devices 100 and 200 may include an I / F device (not shown), and may be loaded from a storage medium connected to the I / F device to a storage device or a RAM.
  • processing units of the flowcharts shown in FIGS. 15 to 18 are divided according to the main processing contents in order to make the processing of the control device 100 easy to understand.
  • the present invention is not limited by the method of dividing the processing unit and the name.
  • the processing of the control device 100 can be divided into more processing units according to the processing content. Moreover, it can also divide
  • Imaging device 2 Camera housing (housing) 3 First lens (lens, first lens) 4 Second lens (second lens) 7 vehicle 8 1st light guide part (light guide part) 9 Second light guide (light guide) 10 First electronic substrate (first electronic substrate) 11 Image sensor 12 UV cut filter (filter) 20 Second electronic substrate (second electronic substrate) 21 UV LED (first light emitter) 22 Infrared LED (second light emitter) 23A to 23C First light guide member (first light guide member) 24A to 24C Second light guide member (second light guide member) 25 First reflective member (reflective member) 26 Second reflecting member 30 Electronic substrate 31 Coating region 100 Processing device 104 Control device (control unit)

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Optics & Photonics (AREA)
  • Studio Devices (AREA)
  • Camera Bodies And Camera Details Or Accessories (AREA)
  • Structure And Mechanism Of Cameras (AREA)
  • Catalysts (AREA)

Abstract

Provided is an image pickup device wherein deterioration of self-cleaning effects is suppressed, said self-cleaning effects being obtained by means of a photocatalyst. An image pickup device (1) is provided with: a first lens (3A) having a photocatalyst film formed on the front surface; an image pickup element (11) that picks up an image formed by means of the first lens (3A); an ultraviolet LED (21), which is housed in a camera housing (2) that holds the first lens (3A), and which emits ultraviolet light with which the first lens (3A) is to be irradiated; and a first light guide unit (8) that guides the ultraviolet light to the rear surface side of the first lens (3A), said ultraviolet light having been emitted from the ultraviolet LED (21).

Description

撮像装置Imaging device
 本発明は、撮像装置に関する。 The present invention relates to an imaging apparatus.
 自動車における利便性や安全性を向上させる技術として、車両にカメラを搭載し、カメラで撮像された画像から道路上の白線や道路標示を認識したり、車両後方の障害物をカメラで検知して、駐車時の運転を支援したりする装置が知られている。この様な装置に用いられるカメラは車外に取り付けられる場合が多く、カメラのレンズ上に水滴や泥等の汚れが付着する。レンズに付着した水滴や汚れの度合によっては、カメラで撮像された画像から道路上の白線等を明瞭に認識することができなかったり、車両後方の障害物をカメラで検知できなくて、前述した利便性や安全性を向上するための機能を満たすことができなくなることがある。そこで、レンズの前面に、光触媒物質を含む親水フィルタを設けて、この親水フィルタの表面に紫外線を照射して、表面に付着した有機物質を紫外線により洗浄する方法が開示されている(例えば、特許文献1参照)。 As a technology to improve convenience and safety in automobiles, a camera is installed in the vehicle, and white lines and road markings on the road are recognized from images captured by the camera, and obstacles behind the vehicle are detected by the camera. Devices that assist driving when parking are known. Cameras used in such devices are often mounted outside the vehicle, and dirt such as water droplets and mud adheres to the camera lens. Depending on the degree of water droplets and dirt adhering to the lens, the white line on the road cannot be clearly recognized from the image taken by the camera, or the obstacle behind the vehicle cannot be detected by the camera. It may not be possible to satisfy functions for improving convenience and safety. Therefore, a method is disclosed in which a hydrophilic filter containing a photocatalytic substance is provided on the front surface of the lens, and the surface of the hydrophilic filter is irradiated with ultraviolet rays to wash the organic substances adhering to the surface with ultraviolet rays (for example, patents). Reference 1).
特開2006-91249号公報JP 2006-91249 A
 しかしながら、紫外線を照射する照射部分自体が汚れてしまった場合、光触媒による自己洗浄作用が低下してしまうという問題がある。また、レンズの前面に設けたフィルタの表面に透過性の低い泥等の汚れが付着した場合、紫外線がレンズに到達せず、光触媒による自己洗浄効果が十分に得られないという問題がある。 However, there is a problem in that the self-cleaning action by the photocatalyst is reduced when the irradiated portion itself irradiated with ultraviolet light is contaminated. Further, when dirt such as mud with low permeability adheres to the surface of the filter provided on the front surface of the lens, there is a problem that ultraviolet rays do not reach the lens and the self-cleaning effect by the photocatalyst cannot be obtained sufficiently.
 本発明は上記目的を達成するためになされたものであり、光触媒による自己洗浄効果の低下を抑制することができる撮像装置を提供することを目的とする。 The present invention has been made to achieve the above object, and an object of the present invention is to provide an imaging apparatus capable of suppressing a reduction in the self-cleaning effect by the photocatalyst.
 上記目的を達成するために、本発明の撮像装置は、光触媒膜を表面に形成したレンズと、前記レンズによる像を撮像する撮像素子と、前記レンズを保持する筐体内に収納され、前記レンズに照射される紫外光を発光する第1の発光体と、前記第1の発光体により発光された前記紫外光を、前記レンズの裏面側に導光する導光部とを備えることを特徴とする。 In order to achieve the above object, an imaging apparatus according to the present invention is housed in a lens having a photocatalytic film formed on a surface thereof, an imaging element that captures an image by the lens, and a housing that holds the lens. A first light emitter that emits irradiated ultraviolet light, and a light guide unit that guides the ultraviolet light emitted by the first light emitter to the back side of the lens. .
 本発明の撮像装置は、上記構成において、前記レンズは、前記光触媒膜を表面に形成した第1のレンズと、前記第1のレンズよりも光軸方向の後方に配置された1又は複数の第2のレンズとを組み合わせたレンズ群であって、前記導光部は、前記第1の発光体が発光する前記紫外光を、前記第2のレンズを通過させずに、前記第1のレンズの裏面に導くことを特徴とする。 The imaging device according to the present invention has the above-described configuration, wherein the lens includes a first lens having the photocatalyst film formed on a surface thereof, and one or a plurality of first lenses disposed behind the first lens in the optical axis direction. The light guide unit is configured to combine the two lenses with the ultraviolet light emitted from the first light emitter without passing through the second lens. It is characterized by being led to the back side.
 本発明の撮像装置は、上記構成において、前記導光部は、前記第1の発光体により発光された前記紫外光を前記レンズに導光させる第1の導光部材と、前記紫外光を反射させて前記レンズの前記裏面側に照射させる反射部材との少なくとも一方を有することを特徴とする。 In the imaging device according to the aspect of the invention, in the configuration described above, the light guide unit reflects the ultraviolet light, and a first light guide member that guides the ultraviolet light emitted from the first light emitter to the lens. And at least one of a reflecting member that irradiates the back side of the lens.
 本発明の撮像装置は、上記構成において、前記レンズを保持する筐体内に収納され、前記レンズに照射される赤外光を発光する第2の発光体と、前記第2の発光体の発光した前記赤外光を前記レンズに導光させる、前記導光部に含まれる第2の導光部材と、前記第2の発光体の点灯と消灯とを制御する制御部とを備え、前記制御部は、前記第2の発光体を点灯させた状態で、前記撮像素子により撮像された画像と、前記第2の発光体を消灯させた状態で、前記撮像素子により撮像された画像との差分画像を生成し、生成した前記差分画像に基づいて前記レンズの汚れ具合を判定して、前記第1の発光体の点灯と消灯とを制御することを特徴とする。 In the imaging apparatus of the present invention, in the above-described configuration, the second light emitter that is housed in a housing that holds the lens and emits infrared light irradiated on the lens, and the second light emitter emits light. A second light guide member included in the light guide unit that guides the infrared light to the lens; and a control unit that controls lighting and extinction of the second light emitter. Is a difference image between an image picked up by the image pickup device with the second light emitter turned on and an image picked up by the image pickup device with the second light emitter turned off. And determining whether the lens is soiled based on the generated difference image, and controlling turning on and off of the first light emitter.
 本発明の撮像装置は、上記構成において、前記導光部は、前記第1の発光体により発光された前記紫外光を前記レンズに導光させる第1の導光部材と、前記第1の導光部材により導光された前記紫外光を反射させて前記レンズの前記裏面側に照射させる反射部材とを有し、前記反射部材は、前記レンズの中央部分に前記紫外光が照射されるように取り付け角度が調整されていることを特徴とする。 In the imaging device according to the aspect of the invention, in the configuration described above, the light guide unit includes a first light guide member that guides the ultraviolet light emitted from the first light emitter to the lens, and the first guide. A reflecting member that reflects the ultraviolet light guided by the optical member and irradiates the back side of the lens, and the reflecting member irradiates the ultraviolet light to a central portion of the lens. The mounting angle is adjusted.
 本発明の撮像装置は、上記構成において、前記光触媒膜は、前記レンズの中央部分に形成されていることを特徴とする。 The imaging apparatus of the present invention is characterized in that, in the above configuration, the photocatalytic film is formed at a central portion of the lens.
 本発明の撮像装置は、上記構成において、前記撮像素子の前記レンズ側の面に設けられた、前記第1の発光体の発光する前記紫外光を透過させない又は減衰させるフィルタを備えることを特徴とする。 The image pickup apparatus according to the present invention is characterized in that, in the above-described configuration, the image pickup device includes a filter provided on the lens side surface of the image pickup element so as not to transmit or attenuate the ultraviolet light emitted from the first light emitter. To do.
 本発明の撮像装置は、上記構成において、前記撮像素子を搭載した第1の電子基板と、
 前記第1の発光体と前記第2の発光体とを搭載した第2の電子基板とを備えることを特徴とする。
In the above-described configuration, the imaging apparatus of the present invention has a first electronic board on which the imaging element is mounted,
A second electronic board on which the first light emitter and the second light emitter are mounted is provided.
 本発明の撮像装置は、上記構成において、前記撮像素子と、前記第1の発光体と、前記第2の発光体とを搭載した電子基板を備えることを特徴とする。 The image pickup apparatus according to the present invention is characterized in that, in the above-described configuration, the image pickup device includes an electronic substrate on which the image pickup element, the first light emitter, and the second light emitter are mounted.
 本発明の撮像装置は、上記構成において、前記第1の発光体の発光した前記紫外光を前記レンズに導光させる、前記導光部に含まれる第1の導光部材を備え、前記レンズと前記第1の導光部材と前記第2の導光部材とを光学部品として一体的に構成したことを特徴とする。 The imaging device of the present invention includes the first light guide member included in the light guide unit that guides the ultraviolet light emitted from the first light emitter to the lens in the configuration described above, and the lens. The first light guide member and the second light guide member are integrally formed as optical components.
 本発明の撮像装置は、上記構成において、前記第1の発光体の発光した前記紫外光を前記レンズに導光させる、前記導光部に含まれる第1の導光部材を備え、前記第1の発光体と、前記第1の導光部材とを複数有し、前記レンズに対して、前記レンズの上下方向又は左右方向から前記紫外光が照射されるように、複数の前記第1の発光体及び前記第1の導光部材が配置されていることを特徴とする。 The imaging apparatus of the present invention includes the first light guide member included in the light guide unit that guides the ultraviolet light emitted from the first light emitter to the lens in the configuration described above. A plurality of the first light-emitting elements so that the ultraviolet light is irradiated to the lens from the up-down direction or the left-right direction of the lens. A body and the first light guide member are arranged.
 本発明の撮像装置は、上記構成において、前記レンズを保持する筐体内に収納され、前記レンズに照射される赤外光を発光する複数の第2の発光体と、前記第2の発光体の発光した赤外光を前記レンズに導光させる、前記導光部に含まれる複数の第2の導光部材とを有し、前記レンズに対して、前記レンズの上下方向又は左右方向から紫外光が照射されるように、複数の前記第2の発光体及び前記第2の導光部材が配置されていることを特徴とする。 In the above-described configuration, the imaging device of the present invention is housed in a housing that holds the lens, and includes a plurality of second light emitters that emit infrared light that is applied to the lens, and the second light emitters. A plurality of second light guide members included in the light guide unit for guiding emitted infrared light to the lens, and ultraviolet light from the vertical direction or the horizontal direction of the lens with respect to the lens. A plurality of the second light emitters and the second light guide member are arranged so that the light is irradiated.
 本発明の撮像装置は、上記構成において、前記レンズに対して、前記レンズの上方向から前記紫外線を照射する前記第1の発光体及び前記第1の導光部材と、前記レンズの下方向から前記紫外線を照射する前記第1の発光体及び前記第1の導光部材と、前記レンズの上方向から前記赤外線を照射する前記第2の発光体及び前記第2の導光部材と、前記レンズの下方向から前記赤外線を照射する前記第2の発光体及び前記第2の導光部材とを有し、前記レンズに対して、前記レンズの上方向から紫外線を照射する前記第1の発光体及び前記赤外線を照射する第2の発光体の配置と、前記レンズに対して、前記レンズの下方向から前記紫外線を照射する前記第1の発光体及び前記赤外線を照射する前記第2の発光体の配置とが左右対称に配置されていることを特徴とする。 In the above-described configuration, the imaging apparatus according to the present invention has the first light emitter and the first light guide member that irradiate the ultraviolet rays from above the lens with respect to the lens, and the lower direction of the lens. The first light emitter and the first light guide member for irradiating the ultraviolet light, the second light emitter and the second light guide member for irradiating the infrared light from above the lens, and the lens The first light emitter that has the second light emitter and the second light guide member that irradiate the infrared light from below, and that irradiates the lens with ultraviolet light from above the lens. And an arrangement of the second light emitter for irradiating the infrared ray, the first light emitter for irradiating the ultraviolet ray from below the lens, and the second light emitter for irradiating the infrared ray. Are arranged symmetrically And wherein the are.
 本発明によれば、光触媒による自己洗浄効果の低下を抑制することができるという効果を奏する。 According to the present invention, it is possible to suppress the reduction of the self-cleaning effect by the photocatalyst.
図1は、撮像装置の第1の構成を示す断面図である。FIG. 1 is a cross-sectional view illustrating a first configuration of the imaging apparatus. 図2は、光触媒をコーティングした第1レンズのコーティング領域を示す図である。FIG. 2 is a diagram showing a coating region of the first lens coated with a photocatalyst. 図3は、第1電子基板の平面図である。FIG. 3 is a plan view of the first electronic substrate. 図4(A)~図4(C)は、紫外線LED及び赤外線LEDの配置を示す図である。4 (A) to 4 (C) are diagrams showing the arrangement of ultraviolet LEDs and infrared LEDs. 図5は、カメラ筐体を、第1レンズの光軸方向から見た平面図である。FIG. 5 is a plan view of the camera housing as viewed from the optical axis direction of the first lens. 図6(A)は、撮像素子の受光感度を示す図、図6(B)は、紫外線LEDと赤外線LEDとの発光する光の強度分布を示す図である。6A is a diagram showing the light receiving sensitivity of the image sensor, and FIG. 6B is a diagram showing the intensity distribution of light emitted from the ultraviolet LED and the infrared LED. 図7は、撮像装置の車両への搭載例を示す図である。FIG. 7 is a diagram illustrating an example of mounting the imaging device on a vehicle. 図8は、撮像装置の他の構成を示す図である。FIG. 8 is a diagram illustrating another configuration of the imaging apparatus. 図9は、撮像装置の他の構成を示す図である。FIG. 9 is a diagram illustrating another configuration of the imaging apparatus. 図10は、処理装置の構成を示す構成図である。FIG. 10 is a configuration diagram showing the configuration of the processing apparatus. 図11は、紫外線LEDの発光タイミングと、撮像素子の露光タイミングとの関係を示す図である。FIG. 11 is a diagram illustrating the relationship between the light emission timing of the ultraviolet LED and the exposure timing of the image sensor. 図12(A)及び図12(B)は、第1レンズに雨滴が付着している場合に撮像装置により撮影される画像の例を示す図であり、図12(C)は、図12(A)に示す画像と図12(B)に示す画像との差分画像を示す図である。12A and 12B are diagrams illustrating examples of images taken by the imaging device when raindrops are attached to the first lens, and FIG. 12C is a diagram illustrating FIG. It is a figure which shows the difference image of the image shown to A), and the image shown to FIG. 図13は、図12(C)に示す差分画像の輝度ヒストグラムを示す図である。FIG. 13 is a diagram showing a luminance histogram of the difference image shown in FIG. 図14(A)及び図14(B)は、第1レンズに泥が付着している場合に撮像装置により撮影される画像の例を示す図であり、図14(C)は、図14(A)に示す画像と図14(B)に示す画像との差分画像を示す図である。14A and 14B are diagrams illustrating examples of images taken by the imaging device when mud is attached to the first lens, and FIG. 14C is a diagram illustrating FIG. It is a figure which shows the difference image of the image shown to A), and the image shown to FIG. 図15は、紫外線LEDの点灯と消灯とを制御する制御装置の第1の処理手順を示すフローチャートである。FIG. 15 is a flowchart showing a first processing procedure of the control device that controls turning on and off of the ultraviolet LED. 図16は、紫外線LEDの点灯と消灯とを制御する制御装置の第2の処理手順を示すフローチャートである。FIG. 16 is a flowchart showing a second processing procedure of the control device that controls turning on and off of the ultraviolet LED. 図17は、付着物判定処理の詳細を示すフローチャートである。FIG. 17 is a flowchart showing details of the attached matter determination processing. 図18は、紫外線LEDの点灯と消灯とを制御する制御装置の第3の処理手順を示すフローチャートである。FIG. 18 is a flowchart showing a third processing procedure of the control device that controls turning on and off of the ultraviolet LED. 図19は、処理装置の他の構成を示す構成図である。FIG. 19 is a configuration diagram illustrating another configuration of the processing apparatus.
 以下、添付図面を参照しながら実施形態について説明する。
 まず、図1を参照しながら本実施形態の撮像装置1Aの構成について説明する。図1には、撮像装置1Aを、撮像装置1Aの備えるレンズの光軸方向で切断した断面図を示す。撮像装置1Aは、第1レンズ3Aと、第2レンズ4としてのレンズ4A及びレンズ4Bとの3枚のレンズを備えている。これらの第1レンズ3A、レンズ4A、レンズ4Bは、カメラ筐体2によって筐体内に保持されている。カメラ筐体2には、無機材料が用いられている。第1レンズ3A、レンズ4A、レンズ4Bには、ガラスが用いられている。第1レンズ3Aの外側の面(表面)、すなわち、レンズ4A、レンズ4Bとは反対側の面は、酸化チタン等の光触媒によってコーティングされている。光触媒によりコーティングされた第1レンズ3Aに紫外線が照射されることで、第1レンズ3Aの表面に付着する有機物の酸化分解効果と、親水効果とが得られ、自己洗浄機能が発揮される。第2レンズ4としてのレンズ4A及びレンズ4Bは、第1レンズ3よりも光軸方向の後方、すなわち、撮像素子11側に設けられている。
Hereinafter, embodiments will be described with reference to the accompanying drawings.
First, the configuration of the imaging apparatus 1A of the present embodiment will be described with reference to FIG. FIG. 1 is a cross-sectional view of the imaging device 1A cut along the optical axis direction of a lens included in the imaging device 1A. The imaging device 1A includes three lenses, a first lens 3A, a lens 4A as the second lens 4, and a lens 4B. The first lens 3A, the lens 4A, and the lens 4B are held in the casing by the camera casing 2. An inorganic material is used for the camera housing 2. Glass is used for the first lens 3A, the lens 4A, and the lens 4B. The outer surface (front surface) of the first lens 3A, that is, the surface opposite to the lens 4A and the lens 4B is coated with a photocatalyst such as titanium oxide. By irradiating the first lens 3A coated with the photocatalyst with ultraviolet rays, an oxidative decomposition effect of the organic matter adhering to the surface of the first lens 3A and a hydrophilic effect are obtained, and a self-cleaning function is exhibited. The lens 4A and the lens 4B as the second lens 4 are provided behind the first lens 3 in the optical axis direction, that is, on the imaging element 11 side.
 図2に、光触媒をコーティングした第1レンズ3Aの領域(コーティング領域31という)を示す。コーティング領域31は、第1レンズ3Aの中央部分、すなわち、第1レンズ3Aの中心から所定の直径を持つ円形領域に形成されている。撮像装置1Aで撮影された画像データを用いてレーン認識、車両検知等の処理を行う処理装置(後述する)において実際に使用される画像の撮影部分に酸化効果、親水効果が得られればよい。このため、第1レンズ3Aの中央部分だけが光触媒によりコーティングされている。 FIG. 2 shows a region (referred to as a coating region 31) of the first lens 3A coated with the photocatalyst. The coating region 31 is formed in a circular portion having a predetermined diameter from the central portion of the first lens 3A, that is, the center of the first lens 3A. It is only necessary that an oxidation effect and a hydrophilic effect be obtained in a photographing part of an image that is actually used in a processing device (described later) that performs processing such as lane recognition and vehicle detection using image data photographed by the imaging device 1A. For this reason, only the central portion of the first lens 3A is coated with the photocatalyst.
 撮像装置1Aは、第1電子基板10を搭載している。図3を参照しながら第1電子基板10について説明する。図3に、第1電子基板10の平面図を示す。第1電子基板10の中央部には、第1レンズ3A、レンズ4A及びレンズ4Bによる像を撮像するCCD(Charge Coupled Device)等の撮像素子11が実装されている。撮像素子11の上面、すなわち、第1レンズ3A側には、紫外線カットフィルタ12が装着されている。後述する紫外線LED21の発光する紫外光が撮像素子11で受光されると、撮像素子11で撮影される画像に影響が出る場合がある。このため、撮像素子11の上面に紫外線カットフィルタ12を設けて、紫外線LED21の発光する紫外光の画像への影響を低減している。紫外線カットフィルタ12は、紫外線LED21の発光する紫外光を透過させない又は減衰させるフィルタである。
 また、撮像素子を挟んだ第1電子基板10の上下両側には、孔13、14が形成されており、この孔13、14に後述する第1導光部材23Aと第2導光部材24Aとがそれぞれ挿通される。
The imaging apparatus 1A has the first electronic substrate 10 mounted thereon. The first electronic substrate 10 will be described with reference to FIG. FIG. 3 shows a plan view of the first electronic substrate 10. An imaging element 11 such as a CCD (Charge Coupled Device) that captures an image by the first lens 3A, the lens 4A, and the lens 4B is mounted at the center of the first electronic substrate 10. An ultraviolet cut filter 12 is mounted on the upper surface of the image sensor 11, that is, on the first lens 3 </ b> A side. When ultraviolet light emitted from an ultraviolet LED 21 described later is received by the image sensor 11, an image captured by the image sensor 11 may be affected. For this reason, the ultraviolet cut filter 12 is provided on the upper surface of the imaging element 11 to reduce the influence of the ultraviolet light emitted by the ultraviolet LED 21 on the image. The ultraviolet cut filter 12 is a filter that does not transmit or attenuate the ultraviolet light emitted by the ultraviolet LED 21.
In addition, holes 13 and 14 are formed on both upper and lower sides of the first electronic substrate 10 with the image pickup element interposed therebetween. A first light guide member 23A and a second light guide member 24A described later are formed in the holes 13 and 14, respectively. Are inserted respectively.
 撮像装置1Aは、第2電子基板20を搭載している。図4(A)~図4(C)を参照しながら第2電子基板20について説明する。図4(A)~図4(C)に、第2電子基板20の平面図を示す。第2電子基板20上には、紫外線LED21と、赤外線LED22とが搭載されている。紫外線LED21は、レンズ(3A、4A、4B)を保持するカメラ筐体2内に収納されている。紫外線LED21の発光する紫外光が、第1レンズ3Aに照射されることで光触媒(光触媒膜)によりコーティングされた第1レンズ3Aに、酸化分解効果、親水効果が働く。赤外線LED22は、第1レンズ3Aの汚れを検知するために使用される。詳細については後述するが、赤外線LED22の点灯時と消灯時とに撮影された画像の輝度差に基づいて、第1レンズ3Aの表面に付着した付着物が雨滴であるのか、泥等の汚れであるのかを判別することができる。
 また、紫外線LED21と、赤外線LED22とは、撮像装置1Aのカメラ筐体2内に設けられている(図1参照)。紫外線LED21と赤外線LED22とを、カメラ筐体2内に設けることで、紫外線LED21や赤外線LED22が泥等で汚れるのを防止することができる。このため、紫外線LED21の汚れによる第1レンズ3Aの洗浄作用の低下を防止することができる。
The imaging apparatus 1A has a second electronic substrate 20 mounted thereon. The second electronic substrate 20 will be described with reference to FIGS. 4 (A) to 4 (C). 4A to 4C are plan views of the second electronic substrate 20. FIG. An ultraviolet LED 21 and an infrared LED 22 are mounted on the second electronic substrate 20. The ultraviolet LED 21 is housed in the camera housing 2 that holds the lenses (3A, 4A, 4B). The first lens 3A coated with a photocatalyst (photocatalyst film) has an oxidative decomposition effect and a hydrophilic effect by irradiating the first lens 3A with ultraviolet light emitted from the ultraviolet LED 21. The infrared LED 22 is used to detect dirt on the first lens 3A. Although details will be described later, based on the luminance difference between the images taken when the infrared LED 22 is turned on and off, whether or not the adhering matter adhering to the surface of the first lens 3A is raindrops or dirt such as mud. It is possible to determine whether it exists.
Further, the ultraviolet LED 21 and the infrared LED 22 are provided in the camera housing 2 of the imaging apparatus 1A (see FIG. 1). By providing the ultraviolet LED 21 and the infrared LED 22 in the camera housing 2, it is possible to prevent the ultraviolet LED 21 and the infrared LED 22 from becoming dirty with mud or the like. For this reason, it is possible to prevent a reduction in the cleaning action of the first lens 3A due to the contamination of the ultraviolet LED 21.
 図4(A)には、紫外線LED21を、第2電子基板20の上辺27側の辺縁部に2つ搭載し、赤外線LED22を、第2電子基板20の下辺28側の辺縁部に2つ搭載した例を示す。第2電子基板20の上辺27は、撮像装置1Aが車両に搭載された際に上側になる辺であり、第2電子基板20の下辺28は、車両に搭載された際に下側になる辺である。第1レンズ3Aに対して上方又は下方、又は上方又は下方の両方から紫外光を照射することで、第1レンズ3Aの左右両端の視界を確保することができる。また、第1レンズ3Aに対して複数の位置、方向から紫外光を照射することで、第1レンズ3Aの全体に親水効果を発生させることができ、第1レンズ3Aのどの位置に付着物が付着していても、付着物を確実に検出することができる。 In FIG. 4A, two ultraviolet LEDs 21 are mounted on the side edge on the upper side 27 of the second electronic board 20, and two infrared LEDs 22 are placed on the side edge on the lower side 28 of the second electronic board 20. An example is shown. The upper side 27 of the second electronic substrate 20 is a side that is on the upper side when the imaging device 1A is mounted on the vehicle, and the lower side 28 of the second electronic substrate 20 is a side that is on the lower side when mounted on the vehicle. It is. By irradiating the first lens 3 </ b> A with ultraviolet light from above or below, or from above or below, it is possible to ensure the visibility of the left and right ends of the first lens 3 </ b> A. Further, by irradiating the first lens 3A with ultraviolet light from a plurality of positions and directions, a hydrophilic effect can be generated in the entire first lens 3A, and the deposits are located at any position of the first lens 3A. Even if it is attached, the attached matter can be reliably detected.
 紫外線LED21と赤外線LED22との配置は、図4(A)に示すものに限定されるものではない。例えば、図4(B)に示すように第2電子基板20の左右辺のいずれか一方の辺縁部に紫外線LED21を搭載し、左右辺の他方の辺縁部に赤外線LED22を搭載するものであってもよい。また、図4(C)に示すように、第2電子基板20の上辺27側の辺縁部に、紫外線LED21と赤外線LED22とを1つずつ配置し、第2電子基板20の下辺28側の辺縁部にも、紫外線LED21と赤外線LED22とを1つずつ配置してもよい。なお、図4(C)に示す構成の場合、上辺27側に設けた紫外線LED21及び赤外線LED22と、下辺28側に設けた紫外線LED21及び赤外線LED22とが左右対称に配置されている。すなわち、上辺27側には、紫外線LED21を右側、赤外線LED22を左側に配置し、下辺28側には、紫外線LED21を左側、赤外線LED22を右側に配置している。このような配置とすることで、第1レンズ3Aに照射される赤外光及び紫外光の偏りを低減することができる。また、図4(A)~(C)には、紫外線LED21と赤外線LED22とをそれぞれ2個ずつ設けた例を示したが、第2電子基板20に搭載される紫外線LED21と赤外線LED22との数は、2個に限定されるものではない。また、第2電子基板20に搭載される紫外線LED21と赤外線LED22との数は同数でなくてもよい。 The arrangement of the ultraviolet LED 21 and the infrared LED 22 is not limited to that shown in FIG. For example, as shown in FIG. 4B, the ultraviolet LED 21 is mounted on one of the left and right sides of the second electronic substrate 20, and the infrared LED 22 is mounted on the other side of the left and right sides. There may be. Also, as shown in FIG. 4C, one ultraviolet LED 21 and one infrared LED 22 are arranged on the edge portion on the upper side 27 side of the second electronic substrate 20 one by one, and on the lower side 28 side of the second electronic substrate 20. One ultraviolet LED 21 and one infrared LED 22 may also be arranged at the edge. 4C, the ultraviolet LED 21 and the infrared LED 22 provided on the upper side 27 side and the ultraviolet LED 21 and the infrared LED 22 provided on the lower side 28 side are arranged symmetrically. That is, the ultraviolet LED 21 is disposed on the right side and the infrared LED 22 is disposed on the left side on the upper side 27 side, and the ultraviolet LED 21 is disposed on the left side and the infrared LED 22 is disposed on the right side on the lower side 28 side. By setting it as such an arrangement | positioning, the bias | inclination of the infrared light and ultraviolet light irradiated to 3 A of 1st lenses can be reduced. 4A to 4C show an example in which two ultraviolet LEDs 21 and two infrared LEDs 22 are provided, but the number of ultraviolet LEDs 21 and infrared LEDs 22 mounted on the second electronic substrate 20 is shown. Is not limited to two. Further, the number of the ultraviolet LEDs 21 and the infrared LEDs 22 mounted on the second electronic substrate 20 may not be the same.
 撮像装置1は、第1導光部8及び第2導光部9を有している。第1導光部8は、第1導光部材23Aと、第1反射部材25とを備えている。第2導光部9は、第2導光部材24Aと、第2反射部材26とを備えている。 The imaging device 1 includes a first light guide 8 and a second light guide 9. The first light guide 8 includes a first light guide member 23 </ b> A and a first reflection member 25. The second light guide unit 9 includes a second light guide member 24 </ b> A and a second reflection member 26.
 第1導光部材23Aは、紫外線LED21の発光する紫外光を第1レンズ3Aに導光する。同様に、第2導光部材24Aは、赤外線LED22の発光する赤外光を第1レンズ3Aに導光する。第1導光部材23Aは、一方の端部が第2電子基板20に当接し、他方の端部は第1レンズ3Aと一体的に形成されている(図1参照)。第2電子基板20に接する第1導光部材23Aの一方の端部は、紫外線LED21の周囲を取り囲んでいる(図4(A)~図4(C)参照)。同様に、第2導光部材24Aも一方の端部が第2電子基板20に当接し、他方の端部は第1レンズ3Aと一体的に形成されている(図1参照)。第2電子基板20に接する第2導光部材24Aの一方の端部は、赤外線LED22の周囲を取り囲んでいる(図4(A)~図4(C)参照)。 The first light guide member 23A guides the ultraviolet light emitted from the ultraviolet LED 21 to the first lens 3A. Similarly, the second light guide member 24A guides the infrared light emitted from the infrared LED 22 to the first lens 3A. One end of the first light guide member 23A is in contact with the second electronic substrate 20, and the other end is formed integrally with the first lens 3A (see FIG. 1). One end portion of the first light guide member 23A in contact with the second electronic substrate 20 surrounds the ultraviolet LED 21 (see FIGS. 4A to 4C). Similarly, one end of the second light guide member 24A is in contact with the second electronic substrate 20, and the other end is formed integrally with the first lens 3A (see FIG. 1). One end portion of the second light guide member 24A in contact with the second electronic substrate 20 surrounds the infrared LED 22 (see FIGS. 4A to 4C).
 第1導光部材23A、第2導光部材24A及び第1レンズ3Aは、1つの光学部品として一体的に構成されている。紫外線LED21により発光された紫外光は、第1導光部材23A内を導光されて、第1レンズ3Aに導かれる(図1に示す点線矢印L1)。同様に、赤外線LED22により発光された赤外光は、第2導光部材24A内を導光されて、第1レンズ3Aに導かれる(図1に示す点線矢印L2)。すなわち、第1導光部材23Aは、紫外線LED21の発光する紫外光が第1レンズ3A以外の第2レンズ4(レンズ4A、レンズ4B)に照射されないように、紫外光を後述する第1反射部材25に導く。同様に、第2導光部材24Aは、赤外線LED22の発光する赤外光が第1レンズ3A以外の第2レンズ4(レンズ4A及びレンズ4B)に照射されないように、赤外光を後述する第2反射部材26に導く。このとき、第1導光部材23A、第2導光部材24A及び第1レンズ3Aが一体的に構成されていることで、紫外線LED21の発光する紫外光の光量の減少を抑え、少ない電力で効率的に第1レンズ3Aの全体に紫外光を照射することができる。
 また、第1導光部材23A、第2導光部材24Aを設けて紫外光、赤外光を第1レンズ3Aに導光することにより、紫外線LED21、赤外線LED22の発生する熱が撮像素子11に伝わりにくくすることができる。
The first light guide member 23A, the second light guide member 24A, and the first lens 3A are integrally configured as one optical component. The ultraviolet light emitted by the ultraviolet LED 21 is guided through the first light guide member 23A and guided to the first lens 3A (dotted arrow L1 shown in FIG. 1). Similarly, the infrared light emitted by the infrared LED 22 is guided in the second light guide member 24A and guided to the first lens 3A (dotted arrow L2 shown in FIG. 1). That is, the first light guide member 23A is a first reflecting member, which will be described later, so that the ultraviolet light emitted by the ultraviolet LED 21 is not irradiated to the second lens 4 (lens 4A, lens 4B) other than the first lens 3A. To 25. Similarly, the second light guide member 24A uses infrared light to be described later so that infrared light emitted from the infrared LED 22 is not irradiated to the second lens 4 (lens 4A and lens 4B) other than the first lens 3A. 2 Lead to the reflecting member 26. At this time, since the first light guide member 23A, the second light guide member 24A, and the first lens 3A are integrally configured, the reduction in the amount of ultraviolet light emitted from the ultraviolet LED 21 is suppressed, and the efficiency is reduced with less power. In particular, the entire first lens 3A can be irradiated with ultraviolet light.
Further, by providing the first light guide member 23A and the second light guide member 24A to guide the ultraviolet light and infrared light to the first lens 3A, the heat generated by the ultraviolet LED 21 and the infrared LED 22 is applied to the imaging element 11. It can be difficult to communicate.
 また、第1導光部材23Aは、紫外線LED21の発光する紫外光を第1レンズ3Aに導光させるための部材であるため、紫外線LED21の配置に応じて第1導光部材23Aの配置位置も変更される。例えば、図4(B)に示す第2電子基板20の左辺の辺縁部に紫外線LED21を搭載した構成の場合、第1導光部材23Aも、紫外線LED21の周囲を囲むように第2電子基板20の左辺の辺縁部に設けられる。同様に、図4(B)に示す第2電子基板20の右辺の辺縁部に赤外線LED22を搭載した構成の場合、第2導光部材24Aも、赤外線LED22の周囲を囲むように第2電子基板20の右辺の辺縁部に設けられる。 Moreover, since the first light guide member 23A is a member for guiding the ultraviolet light emitted from the ultraviolet LED 21 to the first lens 3A, the arrangement position of the first light guide member 23A also depends on the arrangement of the ultraviolet LED 21. Be changed. For example, in the case where the ultraviolet LED 21 is mounted on the left edge of the second electronic substrate 20 shown in FIG. 4B, the first light guide member 23A also surrounds the ultraviolet LED 21 so as to surround the second electronic substrate. 20 is provided at the edge of the left side. Similarly, in the case where the infrared LED 22 is mounted on the right edge of the second electronic substrate 20 shown in FIG. 4B, the second light guide member 24A also surrounds the infrared LED 22 with the second electrons. It is provided at the edge of the right side of the substrate 20.
 第1導光部材23Aには、例えば、紫外光の減衰率が低い部材、例えば、紫外線透過ガラスを用いることができる。紫外線透過ガラスには、例えば、酸化鉄などの不純物の混入を0.01%以下に抑えた紫外線透過ガラスを用いることができる。複数枚のレンズ(第1レンズ3A、レンズ4A、レンズ4B)を備えた撮像装置1Aの場合、第1導光部材23Aの発光する紫外光が第1レンズ3Aに到達するまでの間に、第2レンズ4(レンズ4A、レンズ4B)で減衰される。このため、第1レンズ3Aに十分な紫外光が照射されない場合がある。これは、紫外光のガラスの透過率が悪く、複数枚のレンズ(レンズ4A、レンズ4B)を透過することができないことに起因する。そこで、本実施形態では、第1導光部材23Aを設けて、紫外線LED21の発光する紫外光を第1導光部材23Aによって第1レンズ3Aに導光させる構成をとっている。 For the first light guide member 23A, for example, a member having a low attenuation factor of ultraviolet light, for example, ultraviolet transmissive glass can be used. As the ultraviolet transmissive glass, for example, an ultraviolet transmissive glass in which contamination of impurities such as iron oxide is suppressed to 0.01% or less can be used. In the case of the imaging apparatus 1A including a plurality of lenses (the first lens 3A, the lens 4A, and the lens 4B), the ultraviolet light emitted from the first light guide member 23A reaches the first lens 3A until the first light is emitted. Two lenses 4 (lens 4A, lens 4B) are attenuated. For this reason, sufficient ultraviolet light may not be irradiated to the first lens 3A. This is due to the fact that the transmittance of the ultraviolet light glass is poor and it is not possible to transmit a plurality of lenses (lens 4A, lens 4B). Therefore, in the present embodiment, the first light guide member 23A is provided, and the ultraviolet light emitted from the ultraviolet LED 21 is guided to the first lens 3A by the first light guide member 23A.
 図5に、カメラ筐体2を、第1レンズ3Aの光軸方向から見た平面図を示す。カメラ筐体2を第1レンズ3Aの光軸方向から見た場合、第1導光部材23Aの一部が第1レンズ3Aの一部に重なり、第2導光部材24Aの一部も第1レンズ3Aの一部に重なるように、第1導光部材23A及び第2導光部材24Aが配置されている。このような配置とすることで、紫外線LED21で発光され、第1導光部材23Aにより導光された紫外光を第1レンズ3Aの内側から第1レンズ3Aに照射させることができる。このため、第1レンズ3Aに紫外光を安定して照射することができ、第1レンズ3Aの表面に透過性の低い汚れ(泥など)が付着しても、光触媒の効果により第1レンズ3Aの表面を洗浄することができる。赤外光についても同様に、赤外線LED22で発光され、第2導光部材24Aにより導光された赤外光を第1レンズ3Aの内側から第1レンズ3Aに照射させることができる。 FIG. 5 shows a plan view of the camera housing 2 viewed from the optical axis direction of the first lens 3A. When the camera housing 2 is viewed from the optical axis direction of the first lens 3A, a part of the first light guide member 23A overlaps a part of the first lens 3A, and a part of the second light guide member 24A is also the first. The first light guide member 23A and the second light guide member 24A are arranged so as to overlap a part of the lens 3A. With such an arrangement, it is possible to irradiate the first lens 3A from the inside of the first lens 3A with the ultraviolet light emitted by the ultraviolet LED 21 and guided by the first light guide member 23A. For this reason, it is possible to stably irradiate the first lens 3A with ultraviolet light, and even if dirt (such as mud) with low permeability adheres to the surface of the first lens 3A, the first lens 3A is effective due to the effect of the photocatalyst. The surface can be cleaned. Similarly, the infrared light emitted from the infrared LED 22 and guided by the second light guide member 24A can be applied to the first lens 3A from the inside of the first lens 3A.
 また、第1導光部材23A内には、紫外線LED21の発光する紫外光を第1レンズ3Aの裏面側の中央部に反射させる第1反射部材25が設けられている(図1参照)。なお、裏面とは、光触媒をコーティングした第1レンズ3Aの表面とは反対側の面である。第1反射部材25は、紫外線LED21によって発光され、第1導光部材23Aによって導光された紫外光が第1レンズ3Aの中央部分に照射されるように、第1導光部材23A内での取り付け位置が調整されている。紫外線LED21の発光する紫外光が、第1レンズ3Aの周辺部分、例えばカメラ筐体2や、撮像装置1のボディの樹脂部、塗装等に照射されると、これらの有機材料の劣化を引き起こす可能性がある。このような問題が生じないようにするため、第1導光部材23A内に第1反射部材25を設けて、紫外光が第1レンズ3Aの周辺部分に照射されないようにしている。また、第1レンズ3Aに、広角(魚眼)レンズ等を用いた場合、レンズが大きく湾曲しているため、紫外光を的確に第1レンズ3Aに照射することができない場合がある。このような場合でも、第1反射部材25を設けて第1反射部材25の取り付け角度を調整することで、紫外光を第1レンズ3Aの中央部分に照射させることができる。
 同様に、第2導光部材24A内には、赤外線LED22の発光する赤外光を第1レンズ3Aの中央部に反射させる第2反射部材26が設けられている(図1参照)。第2反射部材26も、第1反射部材25と同様に、赤外線LED22によって発光され、第2導光部材24Aによって導光された赤外光が第1レンズ3Aの中央部分に照射されるように、第2導光部材24A内での取り付け位置が調整されている。
Further, in the first light guide member 23A, there is provided a first reflecting member 25 that reflects the ultraviolet light emitted from the ultraviolet LED 21 to the central portion on the back surface side of the first lens 3A (see FIG. 1). In addition, a back surface is a surface on the opposite side to the surface of the 1st lens 3A which coated the photocatalyst. The first reflecting member 25 emits light by the ultraviolet LED 21 and the central portion of the first lens 3A is irradiated with the ultraviolet light guided by the first light guiding member 23A. The mounting position has been adjusted. When the ultraviolet light emitted from the ultraviolet LED 21 is irradiated to the peripheral portion of the first lens 3A, for example, the camera casing 2, the resin portion of the body of the imaging device 1, or the coating, it may cause deterioration of these organic materials. There is sex. In order to prevent such a problem from occurring, the first reflecting member 25 is provided in the first light guide member 23A so that the ultraviolet light is not irradiated to the peripheral portion of the first lens 3A. Further, when a wide-angle (fisheye) lens or the like is used for the first lens 3A, the lens is greatly curved, so that there are cases where the first lens 3A cannot be accurately irradiated with ultraviolet light. Even in such a case, by providing the first reflecting member 25 and adjusting the mounting angle of the first reflecting member 25, it is possible to irradiate the central portion of the first lens 3A with ultraviolet light.
Similarly, the second light guide member 24A is provided with a second reflection member 26 that reflects the infrared light emitted from the infrared LED 22 to the central portion of the first lens 3A (see FIG. 1). Similarly to the first reflecting member 25, the second reflecting member 26 emits light by the infrared LED 22, and the infrared light guided by the second light guiding member 24A is applied to the central portion of the first lens 3A. The mounting position in the second light guide member 24A is adjusted.
 図1には、第1導光部8として第1導光部材23Aと第1反射部材25とが設けられているが、いずれか一方だけを備える構成であってもよい。同様に、第2導光部9として第2導光部材24Aと第2反射部材26とが設けられているが、いずか一方だけを備える構成であってもよい。
 第1導光部材23Aは、紫外線LED21の発光する紫外光を、第2レンズ4(レンズ4A、レンズ4B)を通過させることなく、第1レンズ3Aの裏面側に導くために設けられている。同様に、第2導光部材24Aは、赤外線LED22の発光する赤外光を、第2レンズ4(レンズ4A、レンズ4B)を通過させることなく、第1レンズ3Aの裏面側に導くために設けられている。撮像装置1が第1レンズ3Aを備え、第2レンズ4(レンズ4A、レンズ4B)を備えていない構成である場合には、第1導光部8として第1反射部材25を備え、第1導光部材23Aを備えていない構成であってもよい。同様に、第2導光部26として第2反射部材26を備え、第2導光部材24Aを備えていない構成であってもよい。
 また、第1レンズ3Aに、広角(魚眼)レンズ等の大きく湾曲したレンズを用いていない場合、第1導光部8として第1導光部材23Aを備え、第1反射部材25を備えていない構成であってよい。同様に、第2導光部9として、第2導光部材24Aを備え、第2反射部材26を備えていない構成であってもよい。
Although the first light guide member 23 </ b> A and the first reflection member 25 are provided as the first light guide unit 8 in FIG. 1, the structure may include only one of them. Similarly, although the second light guide member 24 </ b> A and the second reflection member 26 are provided as the second light guide unit 9, a configuration including only one of them may be used.
23 A of 1st light guide members are provided in order to guide the ultraviolet light which ultraviolet-ray LED21 light-emits to the back surface side of 1st lens 3A, without allowing the 2nd lens 4 (lens 4A, lens 4B) to pass through. Similarly, the second light guide member 24A is provided to guide the infrared light emitted from the infrared LED 22 to the back surface side of the first lens 3A without passing through the second lens 4 (lens 4A, lens 4B). It has been. When the imaging device 1 includes the first lens 3A and does not include the second lens 4 (lens 4A, lens 4B), the first light guide unit 8 includes the first reflecting member 25, and the first The light guide member 23A may not be provided. Similarly, the second light guide unit 26 may include the second reflection member 26 and may not include the second light guide member 24A.
When the first lens 3A does not use a large curved lens such as a wide-angle (fisheye) lens, the first light guide unit 8 includes the first light guide member 23A and the first reflection member 25. There may be no configuration. Similarly, the second light guide unit 9 may include the second light guide member 24 </ b> A and not the second reflection member 26.
 図6(A)に、撮像素子11の受光感度を示し、図6(B)に、紫外線LED21と赤外線LED22との発光する光の強度分布を示す。撮像素子11には、可視領域と、赤外線領域とにおいて高い受光感度を有する素子が用いられている。また、撮像素子11の受光感度は、紫外線領域においては低いほどよい。これは、画像の撮影の際に、紫外線LED21の発光する紫外光の影響を受けないようにするためである。撮像素子11として紫外線領域の受光感度が低いものを使用し、さらに撮像素子11の上面に紫外線カットフィルタ12を装着することで、紫外線LED21の発光する紫外光の画像への影響を大幅に低減することができる。 FIG. 6 (A) shows the light receiving sensitivity of the image sensor 11, and FIG. 6 (B) shows the intensity distribution of light emitted from the ultraviolet LED 21 and the infrared LED 22. FIG. As the image sensor 11, an element having high light receiving sensitivity in the visible region and the infrared region is used. Further, the light receiving sensitivity of the image sensor 11 is preferably as low as possible in the ultraviolet region. This is for avoiding the influence of the ultraviolet light emitted by the ultraviolet LED 21 when taking an image. By using an image sensor 11 having a low light receiving sensitivity in the ultraviolet region, and mounting an ultraviolet cut filter 12 on the upper surface of the image sensor 11, the influence of the ultraviolet light emitted by the ultraviolet LED 21 on the image is greatly reduced. be able to.
 図7は、撮像装置1Aの車両7への搭載例を示す図である。例えば、撮像装置1Aは、車両7の後方に搭載され、車両7の後方の路面を含む領域が撮影されるように搭載位置が調整されている。 FIG. 7 is a diagram illustrating an example of mounting the imaging device 1A on the vehicle 7. For example, the imaging device 1 </ b> A is mounted behind the vehicle 7, and the mounting position is adjusted so that an area including the road surface behind the vehicle 7 is photographed.
 図8は、撮像装置1Aの他の構成を示す図である。図1に示す撮像装置1Aは、第1レンズ3Aと、第1導光部材23Aと、第2導光部材24Aとを1つの光学部品として一体的に構成していた。図8には、第1導光部材23B、第2導光部材24B及び第1レンズ3Bをそれぞれ別体で形成した撮像装置1Bの構成を示す。なお、図8に示す撮像装置1Bには、レンズとして第1レンズ3Bのみを示すが、レンズは、第1レンズ3Bの一枚だけの構成であってもよいし、図1に示すように第1レンズ3A、レンズ4A、レンズ4Bの3枚のレンズを備えるものであってもよい。 FIG. 8 is a diagram showing another configuration of the imaging apparatus 1A. In the imaging apparatus 1A shown in FIG. 1, the first lens 3A, the first light guide member 23A, and the second light guide member 24A are integrally configured as one optical component. FIG. 8 shows a configuration of the imaging device 1B in which the first light guide member 23B, the second light guide member 24B, and the first lens 3B are formed separately. 8 shows only the first lens 3B as a lens, the lens may have only one configuration of the first lens 3B. As shown in FIG. One lens 3A, a lens 4A, and a lens 4B may be provided.
 図9は、撮像装置1Aの他の構成を示す図である。図9に示す撮像装置1Cは、紫外線LED21及び赤外線LED22を、撮像素子11を搭載した電子基板と同一の電子基板30に搭載した。図1に示す撮像装置1Aは、紫外線LED21及び赤外線LED22を、撮像素子11を設けた第1電子基板10とは異なる第2電子基板20に設けている。このため、紫外線LED21や赤外線LED22から発生した熱による撮像素子11への影響を低減することができる。図9に示す撮像装置1Cの構成では、電子基板の数を削減して、撮像装置1Cの装置構成を小型化することができる。また、紫外線LED21及び赤外線LED22の電子基板30への実装が容易になる。また、紫外線LED21及び赤外線LED22を、撮像素子11と同じ電子基板30に搭載することで、撮像素子11により撮影された画像による付着物の検出、及び検出した付着物への紫外光の照射の精度を高めることができる。 FIG. 9 is a diagram showing another configuration of the imaging apparatus 1A. In the imaging apparatus 1 </ b> C illustrated in FIG. 9, the ultraviolet LED 21 and the infrared LED 22 are mounted on the same electronic substrate 30 as the electronic substrate on which the imaging element 11 is mounted. 1A includes an ultraviolet LED 21 and an infrared LED 22 provided on a second electronic substrate 20 different from the first electronic substrate 10 provided with the imaging element 11. For this reason, the influence on the image pick-up element 11 by the heat | fever generate | occur | produced from ultraviolet LED21 or infrared LED22 can be reduced. In the configuration of the imaging apparatus 1C illustrated in FIG. 9, the number of electronic substrates can be reduced, and the apparatus configuration of the imaging apparatus 1C can be reduced. Further, the mounting of the ultraviolet LED 21 and the infrared LED 22 on the electronic substrate 30 is facilitated. In addition, by mounting the ultraviolet LED 21 and the infrared LED 22 on the same electronic substrate 30 as the image pickup device 11, the accuracy of the detection of the deposit by the image taken by the image pickup device 11 and the irradiation of the ultraviolet light to the detected deposit is detected. Can be increased.
 次に、図10を参照しながら処理装置100の構成について説明する。処理装置100は、撮像装置1を制御して、撮像装置1によって撮像された画像データを画像処理する装置である。なお、処理装置100が制御する対象となる撮像装置は、撮像装置1A~1Cのいずれであってもよいため、以下では、撮像装置1と表記する。また、第1レンズ3A、第1レンズ3Bを特に区別する必要がないため、第1レンズ3と表記する。
 処理装置100は、A/D(Analog-to-digital converter)変換回路101と、メモリ102と、画像演算装置103と、制御装置104と、撮像素子制御回路105と、LED制御回路106とを備えている。
Next, the configuration of the processing apparatus 100 will be described with reference to FIG. The processing device 100 is a device that controls the imaging device 1 to perform image processing on image data captured by the imaging device 1. Note that the image pickup apparatus to be controlled by the processing apparatus 100 may be any of the image pickup apparatuses 1A to 1C, and will be referred to as the image pickup apparatus 1 below. In addition, the first lens 3A and the first lens 3B do not need to be distinguished from each other, and are referred to as the first lens 3.
The processing device 100 includes an A / D (Analog-to-digital converter) conversion circuit 101, a memory 102, an image arithmetic device 103, a control device 104, an image sensor control circuit 105, and an LED control circuit 106. ing.
 A/D変換回路101は、撮像素子11で撮影された、赤外線LED22の点灯時及び消灯時の画像信号をA/D変換してデジタル画像データとし、メモリ102へ転送する。メモリ102は、A/D変換回路101から転送されたデジタル画像データを記憶する。画像演算装置103は、メモリ102の記憶する画像データを画像演算処理し、点灯時の画像と消灯時の画像との差分画像を生成する。 The A / D conversion circuit 101 performs A / D conversion on the image signal captured by the image sensor 11 when the infrared LED 22 is turned on and off, and converts the image signal into digital image data, which is transferred to the memory 102. The memory 102 stores the digital image data transferred from the A / D conversion circuit 101. The image calculation device 103 performs image calculation processing on the image data stored in the memory 102, and generates a difference image between the image when the light is turned on and the image when the light is turned off.
 制御装置104は、差分画像から得られる輝度情報に基づいて付着物の付着状態の解析を行う。第1レンズ3に付着物が存在する場合には、所定輝度以上の領域が複数存在するので、制御装置104は、この領域毎の画素数や重心座標を算出することで、付着物の数や大きさ、付着物の位置を特定する。さらに、制御装置104は、差分画像における輝度情報と所定の輝度以上をもつ領域の面積や形状情報を算出し、この算出結果をもとに付着物の種別(水滴、曇り、その他の汚れ)を特定する。周辺装置150は、処理装置100の出力する画像に基づいて駐車時の運転を支援する装置、或いは白線や道路標示を認識して運転時の安全性を補助するための装置であり、制御装置104は、解析結果を周辺装置150に送信する。 The control device 104 analyzes the adhesion state of the deposit based on the luminance information obtained from the difference image. When there are deposits on the first lens 3, there are a plurality of regions having a predetermined luminance or higher. Therefore, the control device 104 calculates the number of pixels and the barycentric coordinates for each region, thereby the number and size of the deposits. Identify the position of the deposit. Further, the control device 104 calculates the luminance information in the difference image and the area and shape information of a region having a predetermined luminance or higher, and based on the calculation result, determines the type of adhering matter (water droplets, cloudiness, other dirt). Identify. The peripheral device 150 is a device that supports driving during parking based on an image output from the processing device 100, or a device that recognizes white lines and road markings and assists safety during driving. Transmits the analysis result to the peripheral device 150.
 撮像素子制御回路105は、撮像素子11の露光タイミングを制御し、LED制御回路106は、紫外線LED21及び赤外線LED22の点灯及び消灯を制御する。
 なお、図10に示す処理装置100は、車両7に搭載されたECU(Electronic Control Unit)と、CAN(Controller Area Network)等の車載通信バスで接続されており、ECUからの情報を取得可能に構成されている。
The image sensor control circuit 105 controls the exposure timing of the image sensor 11, and the LED control circuit 106 controls lighting and extinguishing of the ultraviolet LED 21 and the infrared LED 22.
The processing device 100 shown in FIG. 10 is connected to an ECU (Electronic Control Unit) mounted on the vehicle 7 via an in-vehicle communication bus such as a CAN (Controller Area Network), and can acquire information from the ECU. It is configured.
 図11は、紫外線LED21の発光タイミングと、撮像素子11の露光タイミングとの関係を示す図である。紫外線LED21の発光タイミングは、LED制御回路106によって制御され、撮像素子11の露光タイミングは、撮像素子制御回路105によって制御される。紫外線LED21は、撮像素子11の露光タイミングに同期して点灯され、撮像素子11が露光状態にある期間中、点灯と消灯とを繰り返す。紫外線LED21の点灯時間は、撮像素子11の映像取り込み時間(例えばNTSCの規格であれば16.6ms)と同じ、あるいはそれよりやや長ければよい。これにより、紫外線LED21の点灯時における画像と消灯時における画像とが撮像素子11で露光されて撮影される。 FIG. 11 is a diagram showing the relationship between the light emission timing of the ultraviolet LED 21 and the exposure timing of the image sensor 11. The light emission timing of the ultraviolet LED 21 is controlled by the LED control circuit 106, and the exposure timing of the image sensor 11 is controlled by the image sensor control circuit 105. The ultraviolet LED 21 is turned on in synchronization with the exposure timing of the image sensor 11 and is repeatedly turned on and off while the image sensor 11 is in the exposure state. The lighting time of the ultraviolet LED 21 may be the same as or slightly longer than the image capturing time of the imaging device 11 (for example, 16.6 ms in the case of NTSC standard). Thereby, the image when the ultraviolet LED 21 is turned on and the image when the ultraviolet LED 21 is turned off are exposed and photographed by the image sensor 11.
 次に、第1レンズ3に付着する付着物の判定方法について、図12~図14を参照しながら説明する。
 図12(A)は、第1レンズ3に雨滴が付着している状態において、赤外線LED22を消灯させた状態で撮像素子11によって撮影された画像を示す。また、図12(B)は、第1レンズ3に雨滴が付着している状態において、赤外線LED22を点灯させた状態で撮像素子11によって撮影された画像を示す。また、図12(C)は、図12(A)に示す画像と、図12(B)に示す画像との差分画像を示す。なお、図12(C)に示す差分画像は、図10に示す画像演算装置103により生成される。赤外線LED22を点灯させた状態で撮像素子11により撮影を行うと、赤外光が雨滴によって反射されて撮像素子11により撮影される。赤外線LED22の光が雨滴によって反射されて撮像素子11で撮像されるので、赤外線LED22の点灯時の画像と赤外線LED22の消灯時の画像との差分画像は、雨滴が付着している部分が明るく撮影される。
 図13は、図12(C)に示す差分画像の輝度の分布を表した輝度ヒストグラムである。図13に示すように差分画像の輝度は、輝度が高い方に分布が偏る傾向にある。
 また、第1レンズ3に雨滴が付着した場合、雨滴の輪郭部分が特に明るく撮影される。制御装置104は、差分画像における輝度情報と、所定の輝度以上をもつ領域の面積や形状情報とを算出し、この算出結果をもとに付着物が雨滴であると判定する。
Next, a method for determining the adhered matter that adheres to the first lens 3 will be described with reference to FIGS.
FIG. 12A shows an image photographed by the image sensor 11 with the infrared LED 22 turned off in a state where raindrops are attached to the first lens 3. FIG. 12B shows an image photographed by the image sensor 11 with the infrared LED 22 turned on in a state where raindrops are attached to the first lens 3. FIG. 12C illustrates a difference image between the image illustrated in FIG. 12A and the image illustrated in FIG. Note that the difference image shown in FIG. 12C is generated by the image arithmetic device 103 shown in FIG. When photographing is performed by the image sensor 11 with the infrared LED 22 turned on, infrared light is reflected by raindrops and photographed by the image sensor 11. Since the light from the infrared LED 22 is reflected by the raindrops and picked up by the image pickup device 11, the difference image between the image when the infrared LED22 is turned on and the image when the infrared LED22 is turned off is taken brightly at the portion where the raindrop is attached. Is done.
FIG. 13 is a luminance histogram showing the luminance distribution of the difference image shown in FIG. As shown in FIG. 13, the brightness of the difference image tends to be biased toward higher brightness.
In addition, when raindrops adhere to the first lens 3, the contour portion of the raindrops is photographed particularly brightly. The control device 104 calculates the luminance information in the difference image and the area and shape information of a region having a predetermined luminance or higher, and determines that the deposit is a raindrop based on the calculation result.
 図14(A)は、第1レンズ3に泥等の汚れが付着している状態において、赤外線LED22を消灯させた状態で撮像素子11によって撮影された画像を示す。図14(B)は、第1レンズ3に泥等の汚れが付着している状態において、赤外線LED22を点灯させた状態で撮像素子11によって撮影された画像を示す。また、図14(C)は、図14(A)に示す画像と、図14(B)に示す画像との差分画像を示す。雨滴の場合と同様に、赤外線LED22の赤外光が、泥等の汚れによって反射されて撮像素子11で撮像されるので、赤外線LED22の点灯時の画像と赤外線LED22の消灯時の画像との差分画像は、泥等の汚れが付着している部分が明るくなる。また、雨滴の場合とは異なり、泥等の汚れの場合、明るくなっている部分の明るさが全体的に同じ明るさとなる。制御装置104は、明るくなっている部分の明るさが全体的に同じ明るさである場合、付着物は雨滴ではなく、泥等の汚れであると判定する。
 なお、第1レンズ3に付着した雨滴や泥等の検出に赤外光を使用することで、赤外線LED22の発光する赤外光が、他の車両(例えば、撮像装置1を搭載した車両の後続車のドライバに、まぶしい等の不快感を与えることがない。
FIG. 14A shows an image photographed by the image sensor 11 with the infrared LED 22 turned off in a state where dirt such as mud adheres to the first lens 3. FIG. 14B shows an image photographed by the image sensor 11 with the infrared LED 22 turned on in a state where dirt such as mud adheres to the first lens 3. FIG. 14C shows a difference image between the image shown in FIG. 14A and the image shown in FIG. As in the case of raindrops, the infrared light of the infrared LED 22 is reflected by dirt such as mud and is imaged by the imaging device 11, so the difference between the image when the infrared LED 22 is turned on and the image when the infrared LED 22 is turned off In the image, a portion where dirt such as mud is attached becomes bright. In addition, unlike the case of raindrops, the brightness of the bright portions is the same overall when dirt such as mud is present. When the brightness of the brightened portion is the same overall brightness, the control device 104 determines that the adhering matter is not raindrops but dirt such as mud.
In addition, by using infrared light to detect raindrops, mud, and the like attached to the first lens 3, infrared light emitted from the infrared LED 22 is transmitted to another vehicle (for example, a vehicle following the vehicle on which the imaging device 1 is mounted). There is no dazzling discomfort to the driver of the car.
 紫外線LED21を常時点灯させた場合、紫外光の照射を受ける部分(例えばカメラ筐体2や、撮像装置1のボディの樹脂部、塗装等)の劣化が早まり、消費電力が増大し、紫外線LED21の寿命が短くなるといった問題が生じる。このため、本実施形態の処理装置100は、撮像装置1によって撮影された画像に基づいて太陽光が第1レンズ3に照射されているか否かを判定して、太陽光が第1レンズ3に照射されている間は、紫外線LED21を消灯させる。具体的には、処理装置100は、撮像装置1の画像データの平均輝度としきい値とを比較して、平均輝度がしきい値以上であれば、第1レンズ3に太陽光の紫外線が当たっていると判定する。また、処理装置100は、平均輝度がしきい値よりも小さい場合、第1レンズ3に太陽光の紫外線が当たっていないと判定する。処理装置100は、太陽光が第1レンズ3に当たっていると判定する場合には、紫外線LED21を消灯させ、太陽光が第1レンズ3に当たっていないと判定する場合には、紫外線LED21を点灯させる。これにより、太陽光の照射量が減少する曇り、雨天時や、トンネル内を走行する場合、夜間走行の場合でも第1レンズ3に塗布された光触媒に親水効果を発揮させることができる。
 なお、太陽光が第1レンズ3に照射されているか否かの判断は、車両7に搭載された照度センサ等の情報により判断することもできる。また、車両7に搭載された照度センサと、撮像装置1の撮影する画像とに基づいて、紫外線LED21の点灯、消灯を判断してもよい。
When the ultraviolet LED 21 is always turned on, deterioration of a portion (for example, the camera housing 2 or the resin portion of the body of the imaging device 1 or painting) that is irradiated with ultraviolet light is accelerated, power consumption increases, and the ultraviolet LED 21 There arises a problem that the life is shortened. For this reason, the processing apparatus 100 according to the present embodiment determines whether or not sunlight is applied to the first lens 3 based on the image captured by the imaging apparatus 1, and the sunlight is applied to the first lens 3. While being irradiated, the ultraviolet LED 21 is turned off. Specifically, the processing device 100 compares the average luminance of the image data of the imaging device 1 with a threshold value, and if the average luminance is equal to or higher than the threshold value, the first lens 3 is exposed to ultraviolet rays of sunlight. It is determined that Further, when the average luminance is smaller than the threshold value, the processing apparatus 100 determines that the first lens 3 is not exposed to ultraviolet rays of sunlight. The processing device 100 turns off the ultraviolet LED 21 when determining that sunlight is hitting the first lens 3, and turns on the ultraviolet LED 21 when determining that sunlight is not hitting the first lens 3. As a result, it is possible to exert a hydrophilic effect on the photocatalyst applied to the first lens 3 even when traveling in a cloudy or rainy weather where the amount of sunlight is reduced, traveling in a tunnel, or traveling at night.
Note that whether the first lens 3 is irradiated with sunlight can also be determined based on information from an illuminance sensor or the like mounted on the vehicle 7. Further, based on the illuminance sensor mounted on the vehicle 7 and the image captured by the imaging device 1, it may be determined whether the ultraviolet LED 21 is turned on or off.
 図15に示すフローチャートを参照しながら、制御装置104の第1の処理手順を説明する。この処理手順は、撮像装置1によって撮影された画像データの平均輝度に基づいて、紫外線LED21の点灯と消灯とを制御する手順である。
 制御装置104は、まず、LED制御回路106を制御して紫外線LED21及び赤外線LED22を消灯させ、撮像素子制御回路105を制御して撮像素子11により画像を撮影させる(ステップS1)。撮像素子11で撮影された画像データは、A/D変換回路101でA/D変換され、メモリ102に保存される。なお、ステップS1の終了時点では、紫外線LED21は消灯状態にあるものとして以下の説明を行う。
The first processing procedure of the control device 104 will be described with reference to the flowchart shown in FIG. This processing procedure is a procedure for controlling turning on and off of the ultraviolet LED 21 based on the average luminance of the image data photographed by the imaging device 1.
First, the control device 104 controls the LED control circuit 106 to turn off the ultraviolet LED 21 and the infrared LED 22, and controls the image sensor control circuit 105 to take an image with the image sensor 11 (step S1). Image data captured by the image sensor 11 is A / D converted by the A / D conversion circuit 101 and stored in the memory 102. Note that the following description will be given assuming that the ultraviolet LED 21 is in the extinguished state at the end of step S1.
 次に、制御装置104は、メモリ102から画像データを読み出して、読み出した画像データの平均輝度を算出する。そして、制御装置104は、算出した画像データの平均輝度と、しきい値とを比較する(ステップS2)。制御装置104は、画像データの平均輝度がしきい値よりも低いと判定する場合(ステップS2/NO)、LED制御回路106に紫外線LED21を点灯させて(ステップS3)、ステップS4の処理に移行する。また、制御装置104は、画像データの平均輝度がしきい値以上であると判定する場合(ステップS2/YES)、消灯状態にある紫外線LED21を点灯させることなく、ステップS4の処理に移行する。 Next, the control device 104 reads the image data from the memory 102 and calculates the average luminance of the read image data. Then, the control device 104 compares the calculated average brightness of the image data with a threshold value (step S2). When determining that the average luminance of the image data is lower than the threshold value (step S2 / NO), the control device 104 causes the LED control circuit 106 to turn on the ultraviolet LED 21 (step S3), and proceeds to the processing of step S4. To do. When determining that the average brightness of the image data is equal to or higher than the threshold value (step S2 / YES), the control device 104 proceeds to the process of step S4 without turning on the ultraviolet LED 21 in the off state.
 ステップS4では、制御装置104は、車両7のECUからIGスイッチのオフを通知する信号を受信したか否かを判定する(ステップS4)。制御装置104は、ECUから送信された信号を受信して、IGスイッチがオフされたと判定すると(ステップS4/YES)、この処理を終了させる。また、制御装置104は、IGスイッチがオフされていないと判定すると(ステップS4/NO)、ステップS1の前回の画像の撮影から所定時間を経過したか否かを判定する(ステップS5)。所定時間を経過していない場合、制御装置104は、ステップS4の判定に戻りIGスイッチがオフされた旨の信号をECUから受信したか否かを判定する。また、前回の画像の撮影から所定時間を経過したと判定すると(ステップS5/YES)、制御装置104は、ステップS1からの処理を繰り返す。 In step S4, the control device 104 determines whether or not a signal notifying that the IG switch is turned off has been received from the ECU of the vehicle 7 (step S4). When control device 104 receives the signal transmitted from the ECU and determines that the IG switch has been turned off (step S4 / YES), it terminates this process. Further, when determining that the IG switch is not turned off (step S4 / NO), the control device 104 determines whether or not a predetermined time has elapsed since the last image was captured in step S1 (step S5). If the predetermined time has not elapsed, the control device 104 returns to the determination in step S4 and determines whether or not a signal indicating that the IG switch is turned off has been received from the ECU. If it is determined that a predetermined time has elapsed since the last image was taken (step S5 / YES), the control device 104 repeats the processing from step S1.
 図15に示すフローでは、画像データの平均輝度がしきい値以上であるか否かを判定して、紫外線LED21の点灯制御を行っていた。しかし、紫外線LED21の点灯時間をさらに短縮させるためには、画像データの平均輝度がしきい値よりも低く、付着物が第1レンズ3に付着していると判定される場合に、紫外線LED21を点灯させるようにしてもよい。この場合の制御装置104の処理手順を第2の処理手順として、図16に示すフローチャートを参照しながら説明する。なお、図16に示すステップS11、S12の処理は、図15のフローと同一であるため、説明を省略する。 In the flow shown in FIG. 15, it is determined whether or not the average luminance of the image data is equal to or higher than a threshold value, and the lighting control of the ultraviolet LED 21 is performed. However, in order to further shorten the lighting time of the ultraviolet LED 21, when it is determined that the average luminance of the image data is lower than the threshold value and the attached matter is attached to the first lens 3, the ultraviolet LED 21 is changed. You may make it light. The processing procedure of the control device 104 in this case will be described as a second processing procedure with reference to the flowchart shown in FIG. Note that the processing in steps S11 and S12 shown in FIG. 16 is the same as the flow in FIG.
 制御装置104は、画像データの平均輝度がしきい値よりも低いと判定すると(ステップS12/NO)、第1レンズ3に泥等の付着物が付着しているか否かを判定する付着物判定処理を行う(ステップS13)。付着物判定処理の詳細については、図17に示すフローチャートを参照しながら後述する。 When the control device 104 determines that the average brightness of the image data is lower than the threshold value (step S12 / NO), it determines whether or not an adhering substance such as mud is adhering to the first lens 3. Processing is performed (step S13). Details of the adhering matter determination process will be described later with reference to the flowchart shown in FIG.
 制御装置104は、付着物が第1レンズ3に付着していないと判定する場合(ステップS14/NO)、IGスイッチのオフを通知する信号をECUから受信したか否かを判定する(ステップS16)。また、制御装置104は、付着物が第1レンズ3に付着していると判定する場合(ステップS14/YES)、LED制御回路106に紫外線LED21を点灯させる(ステップS15)。その後、制御装置104は、ステップS16に移行して、IGスイッチのオフを通知する信号をECUから受信したか否かを判定する(ステップS16)。以後の処理は、図15のS4及びS5と同一であるため、説明を省略する。 When determining that the attached matter is not attached to the first lens 3 (step S14 / NO), the control device 104 determines whether or not a signal notifying that the IG switch is turned off has been received from the ECU (step S16). ). Moreover, when it determines with the control apparatus 104 having adhered to the 1st lens 3 (step S14 / YES), the LED control circuit 106 makes the ultraviolet LED21 light (step S15). Thereafter, control device 104 proceeds to step S16, and determines whether or not a signal notifying that the IG switch is turned off has been received from the ECU (step S16). The subsequent processing is the same as S4 and S5 in FIG.
 次に、図17に示すフローチャートを参照しながら付着物判定処理の詳細について説明する。
 まず、制御装置104は、LED制御回路106を制御して赤外線LED22を発光させ(ステップS21)、赤外線LED22の発光する赤外光を第1レンズ3に導光する。次に、制御装置104は、赤外線LED22を点灯させた状態で、撮像素子制御回路105を制御して撮像素子11の露光を開始する(ステップS22)。次に、制御装置104は、撮像素子11の映像取り込み時間だけ撮像素子11を露光させて、撮像素子11の露光を終了させる(ステップS23)。そして、制御装置104は、赤外線LED22の発光を停止させて(ステップS24)、撮像素子11で撮影された画像データ(以下、画像(A)という)をメモリ102に転送させてメモリ102に保存させる(ステップS25)。
Next, details of the deposit determination process will be described with reference to the flowchart shown in FIG.
First, the control device 104 controls the LED control circuit 106 to cause the infrared LED 22 to emit light (step S <b> 21), and guides the infrared light emitted from the infrared LED 22 to the first lens 3. Next, the control device 104 starts exposure of the image sensor 11 by controlling the image sensor control circuit 105 in a state where the infrared LED 22 is turned on (step S22). Next, the control device 104 exposes the image sensor 11 for the video capturing time of the image sensor 11 and ends the exposure of the image sensor 11 (step S23). Then, the control device 104 stops the light emission of the infrared LED 22 (step S24), transfers image data (hereinafter referred to as an image (A)) captured by the image sensor 11 to the memory 102, and stores it in the memory 102. (Step S25).
 次に、制御装置104は、赤外線LED22を消灯させた状態で、撮像素子制御回路105を制御して撮像素子11の露光を開始する(ステップS26)。次に、制御装置104は、撮像素子11の映像取り込み時間だけ撮像素子11を露光させて、撮像素子11の露光を終了する(ステップS27)。そして、制御装置104は、撮像素子11で撮影された画像データ(以下、画像データ(B)という)をメモリ102に転送させてメモリ102に保存させる(ステップS28)。 Next, the control device 104 starts the exposure of the image sensor 11 by controlling the image sensor control circuit 105 with the infrared LED 22 turned off (step S26). Next, the control device 104 exposes the image sensor 11 for the video capturing time of the image sensor 11, and ends the exposure of the image sensor 11 (step S27). Then, the control device 104 transfers image data captured by the image sensor 11 (hereinafter referred to as image data (B)) to the memory 102 and stores it in the memory 102 (step S28).
 画像データ(A)と画像データ(B)とがメモリ102に保存されると、画像演算装置103は、メモリ102に記憶されている画像データ(A)と画像データ(B)とから差分画像(C)を算出する(ステップS29)。画像演算装置103は、算出した差分画像(C)を二値化処理した画像データ(以下、画像データ(D)という)を算出する(ステップS30)。次に、制御装置104は、二値化処理した画像データ(D)に基づき所定の輝度範囲にある領域の面積、形状等を演算する(ステップS31)。制御装置104は、第1レンズ3に付着している付着物の程度を判定し、付着物の付着量が撮像素子11で画像を取得するのに障害となるかどうかを判断する(ステップS32)。制御装置104は、付着物の付着量が障害となると判断した場合には周辺装置150に報知する(ステップS33)。 When the image data (A) and the image data (B) are stored in the memory 102, the image calculation device 103 calculates a difference image (from the image data (A) and the image data (B) stored in the memory 102. C) is calculated (step S29). The image arithmetic device 103 calculates image data obtained by binarizing the calculated difference image (C) (hereinafter referred to as image data (D)) (step S30). Next, the control device 104 calculates the area, shape, and the like of a region in a predetermined luminance range based on the binarized image data (D) (step S31). The control device 104 determines the degree of attached matter attached to the first lens 3, and determines whether the attached amount of the attached matter is an obstacle to acquiring an image with the image sensor 11 (step S32). . The control device 104 notifies the peripheral device 150 when it determines that the amount of adhered matter becomes an obstacle (step S33).
 次に、図18に示すフローチャートを参照しながら制御装置104の第3の処理手順を説明する。この第3の処理手順では、太陽光が第1レンズ3に照射されておらず、付着物が第1レンズ3に付着していると判定された場合、又はウィンドウワイパーがオンになっていると判定された場合に、紫外線LED21を点灯させる処理手順である。ウィンドウワイパーがオンになっている場合に、雨が降っていると判定できるため、紫外線LED21を点灯させることで、第1レンズ3Aに、親水効果を働かせることができる。なお、ステップS42までの処理は、図18に示すS1、S2の処理と同一であるため、説明を省略する。 Next, a third processing procedure of the control device 104 will be described with reference to the flowchart shown in FIG. In the third processing procedure, when it is determined that sunlight is not irradiated on the first lens 3 and the attached matter is attached to the first lens 3, or when the window wiper is turned on. This is a processing procedure for turning on the ultraviolet LED 21 when it is determined. Since it can be determined that it is raining when the window wiper is turned on, the hydrophilic effect can be exerted on the first lens 3A by turning on the ultraviolet LED 21. The processing up to step S42 is the same as the processing of S1 and S2 shown in FIG.
 制御装置104は、画像データの平均輝度がしきい値よりも低いと判定すると(ステップS42/NO)、ウィンドウワイパーがオンになっているか否かを判定する(ステップS43)。制御装置104は、車両7のECUから、ウィンドウワイパーがオンであることを通知する信号を入力したか否かを判定して、ウィンドウワイパーがオンになっているか否かを判定する(ステップS43)。制御装置104は、ウィンドウワイパーがオンであると判定すると(ステップS43/YES)、LED制御回路106を制御して紫外線LED21を点灯させる(ステップS46)。また、制御装置104は、ウィンドウワイパーがオンではないと判定すると(ステップS43/NO)、付着物判定処理を行う(ステップS44)。付着物判定処理の詳細については、図17にて説明したため説明を省略する。また、付着物判定処理以降の処理についても、図16に示すフローと同一であるため、説明を省略する。 When the control device 104 determines that the average brightness of the image data is lower than the threshold value (step S42 / NO), the control device 104 determines whether the window wiper is on (step S43). The control device 104 determines whether or not a signal notifying that the window wiper is on is input from the ECU of the vehicle 7 and determines whether or not the window wiper is on (step S43). . When determining that the window wiper is on (step S43 / YES), the control device 104 controls the LED control circuit 106 to turn on the ultraviolet LED 21 (step S46). If the control device 104 determines that the window wiper is not on (step S43 / NO), the control device 104 performs an adhering matter determination process (step S44). The details of the adhering matter determination process have been described with reference to FIG. Also, the processing after the adhering matter determination processing is the same as the flow shown in FIG.
 図19は、処理装置100の他の形態を示している。図10に示す処理装置100は、第1レンズ3、撮像素子11、紫外線LED21、赤外線LED22等を有する撮像装置1と、A/D変換回路101、メモリ102、画像演算装置103、制御装置104等を有する演算部とを一体の構成としている。しかし、図19に示す他の構成の処理装置200は、撮像装置1と、A/D変換回路211、ビデオエンコーダ212、制御装置213、撮像素子制御回路214、LED制御回路215等で撮像部210を構成している。撮像装置1は、第1レンズ3、撮像素子11、紫外線LED21、赤外線LED22等を備えている。また、ビデオデコーダ231、メモリ232、画像演算装置233、制御装置234等で演算部230を構成している。また、処理装置200は、撮像部210と演算部230とを別々のユニットに分けて信号線を介して接続する構成としている。 FIG. 19 shows another form of the processing apparatus 100. A processing apparatus 100 shown in FIG. 10 includes an imaging apparatus 1 having a first lens 3, an imaging element 11, an ultraviolet LED 21, an infrared LED 22, and the like, an A / D conversion circuit 101, a memory 102, an image calculation apparatus 103, a control apparatus 104, and the like. And an arithmetic unit having an integrated configuration. However, the processing device 200 having another configuration illustrated in FIG. 19 includes an imaging unit 210 including an imaging device 1, an A / D conversion circuit 211, a video encoder 212, a control device 213, an imaging element control circuit 214, an LED control circuit 215, and the like. Is configured. The imaging device 1 includes a first lens 3, an imaging device 11, an ultraviolet LED 21, an infrared LED 22, and the like. Further, the video decoder 231, the memory 232, the image arithmetic device 233, the control device 234, etc. constitute the arithmetic unit 230. Further, the processing device 200 is configured such that the imaging unit 210 and the calculation unit 230 are divided into separate units and connected via signal lines.
 以上説明したように本実施形態の撮像装置1は、カメラ筐体2内に設けて、紫外線LED21が泥等で汚れないようにした。このため、紫外線LED21自体の汚れを防止して、紫外線LED21による第1レンズ3の洗浄作用の低下を防止することができる。
 また、透過性の低い泥等の汚れが第1レンズ3に付着した場合、第1レンズ3の外側から紫外線を照射しても、第1レンズ3の表面には紫外光が届きにくいため、十分な光触媒効果が得られない場合がある。本実施形態は、紫外線LED21をカメラ筐体2内に設けた構成としたため、第1レンズ3の内側から紫外光を第1レンズ3に照射することができ、十分な光触媒効果を得ることができる。
As described above, the imaging apparatus 1 of the present embodiment is provided in the camera housing 2 so that the ultraviolet LED 21 is not soiled with mud or the like. For this reason, it is possible to prevent the ultraviolet LED 21 itself from being soiled and prevent the ultraviolet LED 21 from deteriorating the cleaning action of the first lens 3.
In addition, when dirt such as mud with low permeability adheres to the first lens 3, it is difficult to reach the surface of the first lens 3 even if ultraviolet rays are irradiated from the outside of the first lens 3. The photocatalytic effect may not be obtained. In this embodiment, since the ultraviolet LED 21 is provided in the camera housing 2, the first lens 3 can be irradiated with ultraviolet light from the inside of the first lens 3, and a sufficient photocatalytic effect can be obtained. .
 また、複数枚のレンズを備えた撮像装置1の場合、紫外線はガラスの透過率が低いため、紫外線LED21の発光した紫外光が複数枚のレンズを透過せず、一番外側の外気に触れる第1レンズ3まで紫外線が届かない場合がある。このため、本実施形態は、第1導光部8として、第1導光部材23を設けて、紫外線LED21の発光した紫外光を第1レンズ3に導光するように構成した。このため、一番外側に配置された第1レンズ3に確実に紫外光を照射することができ、親水効果を第1レンズ3に与えることができる。
 また、第1導光部8として、紫外光を反射させて第1レンズ3Aの裏面側に照射させる第1反射部材25を設けた。第1レンズ3Aに、広角(魚眼)レンズ等を用いた場合、レンズが大きく湾曲しているため、紫外光を的確に第1レンズ3A(例えば、第1レンズ3Aの中央部分)に照射することができない場合がある。このような場合でも、本実施形態は第1反射部材25により紫外光を第1レンズ3Aの中央部分に照射させることができる。従って、第1レンズ3Aに親水効果を発揮させることができる。
In addition, in the case of the imaging device 1 including a plurality of lenses, since ultraviolet rays have low glass transmittance, the ultraviolet light emitted from the ultraviolet LED 21 does not pass through the plurality of lenses, and the outermost outside air is touched. There is a case where ultraviolet rays do not reach one lens 3. For this reason, in the present embodiment, a first light guide member 23 is provided as the first light guide unit 8, and the ultraviolet light emitted from the ultraviolet LED 21 is guided to the first lens 3. For this reason, it is possible to reliably irradiate the first lens 3 disposed on the outermost side with ultraviolet light, and to impart a hydrophilic effect to the first lens 3.
Moreover, the 1st light reflection part 25 which reflects ultraviolet light and irradiates the back surface side of the 1st lens 3A as the 1st light guide part 8 was provided. When a wide-angle (fisheye) lens or the like is used for the first lens 3A, the lens is greatly curved, and therefore the ultraviolet light is accurately irradiated to the first lens 3A (for example, the central portion of the first lens 3A). It may not be possible. Even in such a case, in the present embodiment, the central portion of the first lens 3 </ b> A can be irradiated with ultraviolet light by the first reflecting member 25. Therefore, the first lens 3A can exert a hydrophilic effect.
 また、本実施形態の撮像装置1は、赤外光を発光する赤外線LED22を備える。処理装置100は、赤外線LED22が点灯した状態で撮像装置1により撮影された画像と、赤外線LED22を消灯させた状態で撮像装置1により撮影された画像との差分画像により、第1レンズ3の汚れ具合を判定して、紫外線LED21の点灯と消灯とを制御している。従って、第1レンズ3の汚れ具合に応じて紫外線LED21を点灯させることができるので、紫外線による第1レンズ3の周辺部材の劣化を防止し、紫外線LED21の点灯による消費電力を削減することができる。また、紫外線LED21の耐久性を向上させることができる。 Further, the imaging apparatus 1 of the present embodiment includes an infrared LED 22 that emits infrared light. The processing device 100 stains the first lens 3 based on a difference image between an image captured by the imaging device 1 with the infrared LED 22 turned on and an image captured by the imaging device 1 with the infrared LED 22 turned off. The condition is determined, and the turning on and off of the ultraviolet LED 21 is controlled. Accordingly, since the ultraviolet LED 21 can be turned on according to the degree of contamination of the first lens 3, deterioration of the peripheral members of the first lens 3 due to the ultraviolet ray can be prevented, and power consumption due to the lighting of the ultraviolet LED 21 can be reduced. . Moreover, durability of the ultraviolet LED 21 can be improved.
 また、撮像装置1に第1反射部材25を設けて、第1レンズ3の中心部に紫外光が照射されるようにしたため、紫外線による第1レンズ3の周辺部材の劣化を防止することができる。 In addition, since the first reflection member 25 is provided in the imaging device 1 so that the central portion of the first lens 3 is irradiated with ultraviolet light, deterioration of peripheral members of the first lens 3 due to the ultraviolet light can be prevented. .
 また、撮像素子11の第1レンズ3側の面に、紫外光を透過させない、又は減衰させる紫外線カットフィルタ12を設けたことにより、撮像素子11により撮影される画像への紫外光の影響を低減することができる。 Further, by providing an ultraviolet cut filter 12 that does not transmit or attenuate ultraviolet light on the surface of the image sensor 11 on the first lens 3 side, the influence of the ultraviolet light on an image photographed by the image sensor 11 is reduced. can do.
 また、第1レンズ3と第1導光部材23と第2導光部材24とを光学部品として一体的に構成したことにより、紫外線LED21の発光する紫外光の光量の減少を抑え、少ない電力で効率的に第1レンズ3の全体に紫外光を照射することができる。 In addition, since the first lens 3, the first light guide member 23, and the second light guide member 24 are integrally configured as optical components, a decrease in the amount of ultraviolet light emitted from the ultraviolet LED 21 is suppressed, and the power is reduced. The entire first lens 3 can be efficiently irradiated with ultraviolet light.
 また、第1導光部8として、第1導光部材23及び第1反射部材25を設け、第2導光部9として、第2導光部材24及び第1反射部材26を設けた。従って、第1レンズ3Aの中央部のコーティング領域31に、紫外線LED21の発光する紫外光及び赤外線LED22の発光する赤外光を集中的に照射させることができる。このため、少ない光量及び電力で、必要最低限な第1レンズ3の付着物を確実に検知し、紫外線を照射することでコーティング領域31の視認性を向上させることができる。 Further, the first light guide member 8 and the first reflection member 25 are provided as the first light guide portion 8, and the second light guide member 24 and the first reflection member 26 are provided as the second light guide portion 9. Accordingly, the coating region 31 at the center of the first lens 3A can be intensively irradiated with the ultraviolet light emitted by the ultraviolet LED 21 and the infrared light emitted by the infrared LED 22. For this reason, it is possible to improve the visibility of the coating region 31 by reliably detecting the minimum necessary deposit on the first lens 3 and irradiating ultraviolet rays with a small amount of light and electric power.
 上述した実施形態は、本発明の好適な実施の形態である。但し、これに限定されるものではなく、本発明の要旨を逸脱しない範囲内において種々の変形実施が可能である。例えば、図1に示す撮像装置1A、図8に示す撮像装置1B、図9に示す撮像装置1Cには、赤外線LED22を設けていたが、赤外線LED22が搭載されていない構成であってもよい。赤外線LED22を有していない構成の場合、紫外線LED21を用いて第1レンズ3の汚れを検出することもできる。紫外線LED21を用いた第1レンズ3の汚れ検知の方法は、赤外線LED22の場合と同様である。すなわち、紫外線LED21が点灯した状態で撮影された画像と、紫外線LED21を消灯させた状態で撮影された画像との差分画像により、第1レンズ3の汚れ具合を判定して、紫外線LED21の点灯と消灯とを制御する。第1レンズ3の汚れ検知に紫外線LED21を使用することで、赤外線LED22を設ける必要がなくなり、部品コストを低減することができる。また、撮像装置1のカメラ筐体2のサイズを小型化することができる。また、図1には、第2レンズ4として、レンズ4Aとレンズ4Bとの2つのレンズを設けた構成を示したが、第2レンズ4は、1つであってもよいし、さらに多くのレンズを設けてもよい。 The embodiment described above is a preferred embodiment of the present invention. However, the present invention is not limited to this, and various modifications can be made without departing from the scope of the present invention. For example, the imaging device 1A shown in FIG. 1, the imaging device 1B shown in FIG. 8, and the imaging device 1C shown in FIG. 9 are provided with the infrared LED 22, but the infrared LED 22 may not be mounted. In the case of a configuration that does not include the infrared LED 22, the contamination of the first lens 3 can also be detected using the ultraviolet LED 21. The method of detecting contamination of the first lens 3 using the ultraviolet LED 21 is the same as that of the infrared LED 22. That is, the degree of contamination of the first lens 3 is determined based on a difference image between an image taken with the ultraviolet LED 21 turned on and an image taken with the ultraviolet LED 21 turned off. Control off. By using the ultraviolet LED 21 to detect the contamination of the first lens 3, it is not necessary to provide the infrared LED 22, and the component cost can be reduced. In addition, the size of the camera housing 2 of the imaging device 1 can be reduced. Further, FIG. 1 shows a configuration in which the second lens 4 is provided with two lenses, a lens 4A and a lens 4B. However, the number of the second lens 4 may be one or more. A lens may be provided.
 図10は、本発明の理解を容易にするために、処理装置100の機能構成を主な処理内容に応じて分類して示した概略図である。同様に、図19は、処理装置200の機能構成を主な処理内容に応じて分類して示した概略図である。しかし、処理装置100及び200の構成は、処理内容に応じて、さらに多くの構成要素に分類することもできる。また、処理装置100及び処理装置200の1つの構成が、さらに多くの処理を実行するように分類することもできる。また、処理装置100及び200の各構成の処理は、1つのハードウェアで実行されてもよいし、複数のハードウェアで実行されてもよい。また、処理装置100及び200の各構成の処理は、1つのプログラムで実現されてもよいし、複数のプログラムで実現されてもよい。 FIG. 10 is a schematic diagram showing the functional configuration of the processing device 100 classified according to main processing contents in order to facilitate understanding of the present invention. Similarly, FIG. 19 is a schematic diagram showing the functional configuration of the processing apparatus 200 classified according to main processing contents. However, the configurations of the processing apparatuses 100 and 200 can be classified into more components depending on the processing content. Moreover, it can also classify | categorize so that one structure of the processing apparatus 100 and the processing apparatus 200 may perform much more processes. Further, the processing of each component of the processing devices 100 and 200 may be executed by one hardware or may be executed by a plurality of hardware. Further, the processing of each component of the processing devices 100 and 200 may be realized by a single program or may be realized by a plurality of programs.
 また、図10に示す制御装置104、及び図19に示す制御装置213の処理を記憶装置(不図示)に記憶された所定のプログラムにより実行することもできる。
 所定のプログラムは、例えば、通信装置(不図示)を介してネットワークから、記憶装置にダウンロードされ、それから制御装置104及び213の備えるRAM(不図示)上にロードされて、制御装置104及び213の備えるCPU(不図示)により実行されるようにしてもよい。また、通信装置を介してネットワークから、RAM上に直接ロードされ、CPUにより実行されるようにしてもよい。また、例えば、処理装置100及び200がI/F装置(不図示)を備え、I/F装置に接続された記憶媒体から、記憶装置あるいはRAMにロードされるようにしてもよい。
Further, the processing of the control device 104 shown in FIG. 10 and the control device 213 shown in FIG. 19 can be executed by a predetermined program stored in a storage device (not shown).
The predetermined program is downloaded from a network to a storage device via a communication device (not shown), for example, and then loaded onto a RAM (not shown) included in the control devices 104 and 213. It may be executed by a CPU (not shown) provided. Alternatively, it may be loaded directly from a network onto a RAM via a communication device and executed by a CPU. Further, for example, the processing devices 100 and 200 may include an I / F device (not shown), and may be loaded from a storage medium connected to the I / F device to a storage device or a RAM.
 また、図15~図18に示すフローチャートの処理単位は、制御装置100の処理を理解容易にするために、主な処理内容に応じて分割したものである。しかし、処理単位の分割の仕方や名称によって、本発明が制限されることはない。制御装置100の処理は、処理内容に応じて、さらに多くの処理単位に分割することもできる。また、1つの処理単位がさらに多くの処理を含むように分割することもできる。また、上記のフローチャートの処理順序も、図示した例に限られるものではない。 Further, the processing units of the flowcharts shown in FIGS. 15 to 18 are divided according to the main processing contents in order to make the processing of the control device 100 easy to understand. However, the present invention is not limited by the method of dividing the processing unit and the name. The processing of the control device 100 can be divided into more processing units according to the processing content. Moreover, it can also divide | segment so that one process unit may contain many processes. Further, the processing order of the above flowchart is not limited to the illustrated example.
 1   撮像装置
 2   カメラ筐体(筐体)
 3   第1レンズ(レンズ、第1のレンズ)
 4   第2レンズ(第2のレンズ)
 7   車両
 8   第1導光部(導光部)
 9   第2導光部(導光部)
 10  第1電子基板(第1の電子基板)
 11  撮像素子
 12  紫外線カットフィルタ(フィルタ)
 20  第2電子基板(第2の電子基板)
 21  紫外線LED(第1の発光体)
 22  赤外線LED(第2の発光体)
 23A~23C 第1導光部材(第1の導光部材)
 24A~24C 第2導光部材(第2の導光部材)
 25  第1反射部材(反射部材)
 26  第2反射部材
 30  電子基板
 31  コーティング領域
 100 処理装置
 104 制御装置(制御部)
1 Imaging device 2 Camera housing (housing)
3 First lens (lens, first lens)
4 Second lens (second lens)
7 vehicle 8 1st light guide part (light guide part)
9 Second light guide (light guide)
10 First electronic substrate (first electronic substrate)
11 Image sensor 12 UV cut filter (filter)
20 Second electronic substrate (second electronic substrate)
21 UV LED (first light emitter)
22 Infrared LED (second light emitter)
23A to 23C First light guide member (first light guide member)
24A to 24C Second light guide member (second light guide member)
25 First reflective member (reflective member)
26 Second reflecting member 30 Electronic substrate 31 Coating region 100 Processing device 104 Control device (control unit)

Claims (13)

  1.  光触媒膜を表面に形成したレンズと、
     前記レンズによる像を撮像する撮像素子と、
     前記レンズを保持する筐体内に収納され、前記レンズに照射される紫外光を発光する第1の発光体と、
     前記第1の発光体により発光された前記紫外光を、前記レンズの裏面側に導光する導光部と、
     を備えることを特徴とする撮像装置。
    A lens with a photocatalytic film formed on the surface;
    An image sensor for capturing an image by the lens;
    A first light-emitting body that is housed in a housing that holds the lens and emits ultraviolet light applied to the lens;
    A light guide portion for guiding the ultraviolet light emitted by the first light emitter to the back side of the lens;
    An imaging apparatus comprising:
  2.  前記レンズは、前記光触媒膜を表面に形成した第1のレンズと、前記第1のレンズよりも光軸方向の後方に配置された1又は複数の第2のレンズとを組み合わせたレンズ群であって、
     前記導光部は、前記第1の発光体が発光する前記紫外光を、前記第2のレンズを通過させずに、前記第1のレンズの裏面に導くことを特徴とする請求項1記載の撮像装置。
    The lens is a lens group in which the first lens having the photocatalyst film formed on the surface thereof and one or a plurality of second lenses arranged behind the first lens in the optical axis direction. And
    The said light guide part guide | induces the said ultraviolet light which the said 1st light-emitting body light-emits to the back surface of the said 1st lens, without letting the 2nd lens pass. Imaging device.
  3.  前記導光部は、前記第1の発光体により発光された前記紫外光を前記レンズに導光させる第1の導光部材と、前記紫外光を反射させて前記レンズの前記裏面側に照射させる反射部材との少なくとも一方を有することを特徴とする請求項1記載の撮像装置。 The light guide portion reflects the ultraviolet light emitted from the first light emitter to the lens, and reflects the ultraviolet light to irradiate the back surface side of the lens. The imaging apparatus according to claim 1, comprising at least one of a reflecting member.
  4.  前記レンズを保持する筐体内に収納され、前記レンズに照射される赤外光を発光する第2の発光体と、
     前記第2の発光体の発光した前記赤外光を前記レンズに導光させる、前記導光部に含まれる第2の導光部材と、
     前記第2の発光体の点灯と消灯とを制御する制御部とを備え、
     前記制御部は、前記第2の発光体を点灯させた状態で、前記撮像素子により撮像された画像と、前記第2の発光体を消灯させた状態で、前記撮像素子により撮像された画像との差分画像を生成し、生成した前記差分画像に基づいて前記レンズの汚れ具合を判定して、前記第1の発光体の点灯と消灯とを制御することを特徴とする請求項1記載の撮像装置。
    A second light emitter that is housed in a housing that holds the lens and emits infrared light applied to the lens;
    A second light guide member included in the light guide unit for guiding the infrared light emitted from the second light emitter to the lens;
    A control unit for controlling turning on and off of the second light emitter,
    The control unit includes an image captured by the image sensor with the second light emitter turned on, and an image captured by the image sensor with the second light emitter turned off. 2. The imaging according to claim 1, wherein the difference image is generated, the degree of contamination of the lens is determined based on the generated difference image, and turning on and off of the first light emitter is controlled. apparatus.
  5.  前記導光部は、前記第1の発光体により発光された前記紫外光を前記レンズに導光させる第1の導光部材と、前記第1の導光部材により導光された前記紫外光を反射させて前記レンズの前記裏面側に照射させる反射部材とを有し、
     前記反射部材は、前記レンズの中央部分に前記紫外光が照射されるように取り付け角度が調整されていることを特徴とする請求項1記載の撮像装置。
    The light guide unit includes a first light guide member that guides the ultraviolet light emitted from the first light emitter to the lens, and the ultraviolet light guided by the first light guide member. A reflecting member that reflects and irradiates the back side of the lens;
    The imaging apparatus according to claim 1, wherein an angle of attachment of the reflecting member is adjusted such that a center portion of the lens is irradiated with the ultraviolet light.
  6.  前記光触媒膜は、前記レンズの中央部分に形成されていることを特徴とする請求項5記載の撮像装置。 6. The imaging apparatus according to claim 5, wherein the photocatalytic film is formed at a central portion of the lens.
  7.  前記撮像素子の前記レンズ側の面に設けられた、前記第1の発光体の発光する前記紫外光を透過させない又は減衰させるフィルタを備えることを特徴とする請求項1から6のいずれか一項に記載の撮像装置。 7. The filter according to claim 1, further comprising a filter that is provided on a surface of the imaging element on the lens side so as not to transmit or attenuate the ultraviolet light emitted from the first light emitter. 8. The imaging device described in 1.
  8.  前記撮像素子を搭載した第1の電子基板と、
     前記第1の発光体と前記第2の発光体とを搭載した第2の電子基板とを備えることを特徴とする請求項4記載の撮像装置。
    A first electronic board on which the image sensor is mounted;
    The imaging apparatus according to claim 4, further comprising a second electronic substrate on which the first light emitter and the second light emitter are mounted.
  9.  前記撮像素子と、前記第1の発光体と、前記第2の発光体とを搭載した電子基板を備えることを特徴とする請求項4記載の撮像装置。 The image pickup apparatus according to claim 4, further comprising an electronic substrate on which the image pickup element, the first light emitter, and the second light emitter are mounted.
  10.  前記第1の発光体の発光した前記紫外光を前記レンズに導光させる、前記導光部に含まれる第1の導光部材を備え、
     前記レンズと前記第1の導光部材と前記第2の導光部材とを光学部品として一体的に構成したことを特徴とする請求項4記載の撮像装置。
    A first light guide member included in the light guide unit for guiding the ultraviolet light emitted from the first light emitter to the lens;
    The imaging apparatus according to claim 4, wherein the lens, the first light guide member, and the second light guide member are integrally formed as optical components.
  11.  前記第1の発光体の発光した前記紫外光を前記レンズに導光させる、前記導光部に含まれる第1の導光部材を備え、
     前記第1の発光体と、前記第1の導光部材とを複数有し、
     前記レンズに対して、前記レンズの上下方向又は左右方向から前記紫外光が照射されるように、複数の前記第1の発光体及び前記第1の導光部材が配置されていることを特徴とする請求項1記載の撮像装置。
    A first light guide member included in the light guide unit for guiding the ultraviolet light emitted from the first light emitter to the lens;
    A plurality of the first light emitters and the first light guide member;
    A plurality of the first light emitters and the first light guide members are arranged so that the ultraviolet light is irradiated to the lens from the vertical direction or the horizontal direction of the lens. The imaging apparatus according to claim 1.
  12.  前記レンズを保持する筐体内に収納され、前記レンズに照射される赤外光を発光する複数の第2の発光体と、
     前記第2の発光体の発光した赤外光を前記レンズに導光させる、前記導光部に含まれる複数の第2の導光部材とを有し、
     前記レンズに対して、前記レンズの上下方向又は左右方向から紫外光が照射されるように、複数の前記第2の発光体及び前記第2の導光部材が配置されていることを特徴とする請求項11記載の撮像装置。
    A plurality of second light emitters that are housed in a housing that holds the lens and emit infrared light irradiated to the lens;
    A plurality of second light guide members included in the light guide section, which guides the infrared light emitted from the second light emitter to the lens;
    A plurality of the second light emitters and the second light guide members are arranged so that the lens is irradiated with ultraviolet light from the vertical direction or the horizontal direction of the lens. The imaging device according to claim 11.
  13.  前記レンズに対して、前記レンズの上方向から前記紫外線を照射する前記第1の発光体及び前記第1の導光部材と、前記レンズの下方向から前記紫外線を照射する前記第1の発光体及び前記第1の導光部材と、前記レンズの上方向から前記赤外線を照射する前記第2の発光体及び前記第2の導光部材と、前記レンズの下方向から前記赤外線を照射する前記第2の発光体及び前記第2の導光部材とを有し、
     前記レンズに対して、前記レンズの上方向から紫外線を照射する前記第1の発光体及び前記赤外線を照射する第2の発光体の配置と、前記レンズに対して、前記レンズの下方向から前記紫外線を照射する前記第1の発光体及び前記赤外線を照射する前記第2の発光体の配置とが左右対称に配置されていることを特徴とする請求項12記載の撮像装置。
    The first light emitter and the first light guide member for irradiating the ultraviolet light from above the lens, and the first light emitter for irradiating the ultraviolet light from below the lens. And the first light guide member, the second light emitter and the second light guide member that irradiate the infrared light from above the lens, and the first light that irradiates the infrared light from below the lens. Two light emitters and the second light guide member,
    An arrangement of the first illuminant that irradiates ultraviolet rays from above the lens and a second illuminant that irradiates infrared rays to the lens, and the lens from below the lens. 13. The imaging apparatus according to claim 12, wherein the first light emitter that emits ultraviolet light and the second light emitter that emits infrared light are arranged symmetrically.
PCT/JP2015/051051 2014-06-18 2015-01-16 Image pickup device WO2015194200A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-125616 2014-06-18
JP2014125616A JP2016004208A (en) 2014-06-18 2014-06-18 Imaging apparatus

Publications (1)

Publication Number Publication Date
WO2015194200A1 true WO2015194200A1 (en) 2015-12-23

Family

ID=54935201

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/051051 WO2015194200A1 (en) 2014-06-18 2015-01-16 Image pickup device

Country Status (2)

Country Link
JP (1) JP2016004208A (en)
WO (1) WO2015194200A1 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017110562A1 (en) * 2015-12-24 2017-06-29 京セラ株式会社 Imaging device and vehicle
US20170285222A1 (en) * 2016-04-01 2017-10-05 H.P.B Optoelectronic Co., Ltd Image capturing system
US20180031740A1 (en) * 2016-07-28 2018-02-01 GM Global Technology Operations LLC Self-cleaning optic apparatuses and automobiles with self-cleaning optic apparatuses
CN108848297A (en) * 2018-09-19 2018-11-20 深圳市安思科电子科技有限公司 A kind of dehumidification type camera based on block chain technology
CN108976873A (en) * 2017-05-31 2018-12-11 通用汽车环球科技运作有限责任公司 One kind is added lustre to automatically cleaning membranous system and forming method thereof
US10754067B2 (en) 2017-05-18 2020-08-25 GM Global Technology Operations LLC Textured self-cleaning film system and method of forming same
US11059035B2 (en) 2017-05-18 2021-07-13 GM Global Technology Operations LLC Self-cleaning film system and method of forming same
US11179711B2 (en) 2017-05-18 2021-11-23 GM Global Technology Operations LLC Self-cleaning film system and method of forming same
EP3933872A4 (en) * 2019-02-28 2022-11-09 OMRON Corporation Photoelectric sensor and method for manufacturing same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003290664A (en) * 2002-01-31 2003-10-14 Toshiba Lighting & Technology Corp Photocatalyst device, deodorizing device and refrigerator
JP2006091249A (en) * 2004-09-22 2006-04-06 Murakami Corp Camera
JP2009265473A (en) * 2008-04-28 2009-11-12 Konica Minolta Opto Inc Lens, imaging lens and imaging apparatus
JP2011049793A (en) * 2009-08-26 2011-03-10 Panasonic Electric Works Co Ltd Imaging apparatus
JP2012220534A (en) * 2011-04-04 2012-11-12 Nikon Corp Imaging device

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002230563A (en) * 2001-02-05 2002-08-16 Nissan Motor Co Ltd Method for detecting reflection onto vehicle camera and image processor
JP2012129976A (en) * 2010-11-25 2012-07-05 Kyocera Corp Imaging module and imaging apparatus

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003290664A (en) * 2002-01-31 2003-10-14 Toshiba Lighting & Technology Corp Photocatalyst device, deodorizing device and refrigerator
JP2006091249A (en) * 2004-09-22 2006-04-06 Murakami Corp Camera
JP2009265473A (en) * 2008-04-28 2009-11-12 Konica Minolta Opto Inc Lens, imaging lens and imaging apparatus
JP2011049793A (en) * 2009-08-26 2011-03-10 Panasonic Electric Works Co Ltd Imaging apparatus
JP2012220534A (en) * 2011-04-04 2012-11-12 Nikon Corp Imaging device

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3396451A4 (en) * 2015-12-24 2019-07-17 Kyocera Corporation Imaging device and vehicle
JPWO2017110562A1 (en) * 2015-12-24 2018-08-09 京セラ株式会社 Imaging apparatus and vehicle
WO2017110562A1 (en) * 2015-12-24 2017-06-29 京セラ株式会社 Imaging device and vehicle
US10882496B2 (en) 2015-12-24 2021-01-05 Kyocera Corporation Imaging apparatus and vehicle
CN108474997A (en) * 2015-12-24 2018-08-31 京瓷株式会社 Filming apparatus and vehicle
US20170285222A1 (en) * 2016-04-01 2017-10-05 H.P.B Optoelectronic Co., Ltd Image capturing system
CN107662543A (en) * 2016-07-28 2018-02-06 通用汽车环球科技运作有限责任公司 Automatically cleaning optical device and the automobile with automatically cleaning optical device
US20180031740A1 (en) * 2016-07-28 2018-02-01 GM Global Technology Operations LLC Self-cleaning optic apparatuses and automobiles with self-cleaning optic apparatuses
US10754067B2 (en) 2017-05-18 2020-08-25 GM Global Technology Operations LLC Textured self-cleaning film system and method of forming same
US11059035B2 (en) 2017-05-18 2021-07-13 GM Global Technology Operations LLC Self-cleaning film system and method of forming same
US11067721B2 (en) 2017-05-18 2021-07-20 GM Global Technology Operations LLC Textured self-cleaning film system and method of forming same
US11179711B2 (en) 2017-05-18 2021-11-23 GM Global Technology Operations LLC Self-cleaning film system and method of forming same
CN108976873A (en) * 2017-05-31 2018-12-11 通用汽车环球科技运作有限责任公司 One kind is added lustre to automatically cleaning membranous system and forming method thereof
US11448872B2 (en) 2017-05-31 2022-09-20 GM Global Technology Operations LLC Light-enhanced self-cleaning film system and method of forming same
CN108848297A (en) * 2018-09-19 2018-11-20 深圳市安思科电子科技有限公司 A kind of dehumidification type camera based on block chain technology
EP3933872A4 (en) * 2019-02-28 2022-11-09 OMRON Corporation Photoelectric sensor and method for manufacturing same
US11920951B2 (en) 2019-02-28 2024-03-05 Omron Corporation Photoelectric sensor and method for manufacturing same

Also Published As

Publication number Publication date
JP2016004208A (en) 2016-01-12

Similar Documents

Publication Publication Date Title
WO2015194200A1 (en) Image pickup device
JP5561333B2 (en) Image processing apparatus, imaging method, program, and vehicle
JP4668838B2 (en) Raindrop detection device and wiper control device
JP5441462B2 (en) Vehicle imaging device
JP6468482B2 (en) IMAGING DEVICE, OBJECT DETECTION DEVICE, AND MOBILE DEVICE CONTROL SYSTEM
US9726604B2 (en) Adhering detection apparatus, adhering substance detection method, storage medium, and device control system for controlling vehicle-mounted devices
JP5999483B2 (en) Adhering matter detection device and in-vehicle device control device
JP5819400B2 (en) Method and apparatus for assisting driver in driving vehicle by detecting visibility restriction due to weather
JP2013113781A (en) Attachment detection device and attachment detection method
JP2015136095A (en) Object detection device, mobile equipment control system having the same, and object detection program
JP2005195566A (en) Image processing system
JP2009173260A (en) Optical module for assistance system
US20160341848A1 (en) Object detection apparatus, object removement control system, object detection method, and storage medium storing object detection program
JP2008064630A (en) Vehicle imager with deposit sensing function
JP2010210374A (en) Imaging device for vehicles
JP6555569B2 (en) Image processing apparatus, mobile device control system, and image processing program
JP6246932B2 (en) Lighting to detect raindrops on the window glass using a camera
JP6098575B2 (en) Imaging unit, image processing apparatus, and vehicle
JP2016146583A (en) Imaging device, mobile apparatus control system and program
JP2010208451A (en) Imaging apparatus for vehicle
JP2017003531A (en) Object detection device, object removal operation control system, object detection method, and object detection program
JP6701542B2 (en) Detection device, mobile device control system, and detection program
JP6536946B2 (en) Imaging device, imaging method, program, and mobile device control system
JP2016218046A (en) Object detection device, object removal operation control system, object detection method, and program for object detection
JP2014232026A (en) Attachment detection device, moving body apparatus control system, and moving body

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15809614

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15809614

Country of ref document: EP

Kind code of ref document: A1