WO2015178745A1 - 깊이 카메라를 이용한 의료영상 촬영장치 및 의료영상 보정방법 - Google Patents

깊이 카메라를 이용한 의료영상 촬영장치 및 의료영상 보정방법 Download PDF

Info

Publication number
WO2015178745A1
WO2015178745A1 PCT/KR2015/005244 KR2015005244W WO2015178745A1 WO 2015178745 A1 WO2015178745 A1 WO 2015178745A1 KR 2015005244 W KR2015005244 W KR 2015005244W WO 2015178745 A1 WO2015178745 A1 WO 2015178745A1
Authority
WO
WIPO (PCT)
Prior art keywords
medical image
subject
depth
data
motion information
Prior art date
Application number
PCT/KR2015/005244
Other languages
English (en)
French (fr)
Inventor
김재철
장성은
Original Assignee
주식회사 바텍
바텍이우홀딩스
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 바텍, 바텍이우홀딩스 filed Critical 주식회사 바텍
Priority to US15/313,776 priority Critical patent/US20170196528A1/en
Priority to EP15796933.8A priority patent/EP3146900B1/en
Priority to KR1020167035246A priority patent/KR101877405B1/ko
Publication of WO2015178745A1 publication Critical patent/WO2015178745A1/ko

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T5/00Image enhancement or restoration
    • G06T5/50Image enhancement or restoration using two or more images, e.g. averaging or subtraction
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/02Arrangements for diagnosis sequentially in different planes; Stereoscopic radiation diagnosis
    • A61B6/03Computed tomography [CT]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/52Devices using data or image processing specially adapted for radiation diagnosis
    • A61B6/5205Devices using data or image processing specially adapted for radiation diagnosis involving processing of raw data to produce diagnostic data
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/02Arrangements for diagnosis sequentially in different planes; Stereoscopic radiation diagnosis
    • A61B6/03Computed tomography [CT]
    • A61B6/032Transmission computed tomography [CT]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/52Devices using data or image processing specially adapted for radiation diagnosis
    • A61B6/5258Devices using data or image processing specially adapted for radiation diagnosis involving detection or reduction of artifacts or noise
    • A61B6/5264Devices using data or image processing specially adapted for radiation diagnosis involving detection or reduction of artifacts or noise due to motion
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/54Control of apparatus or devices for radiation diagnosis
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/50Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding
    • H04N19/503Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding involving temporal prediction
    • H04N19/51Motion estimation or motion compensation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0059Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence
    • A61B5/0077Devices for viewing the surface of the body, e.g. camera, magnifying lens
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7203Signal processing specially adapted for physiological signals or for diagnostic purposes for noise prevention, reduction or removal
    • A61B5/7207Signal processing specially adapted for physiological signals or for diagnostic purposes for noise prevention, reduction or removal of noise induced by motion artifacts
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/28Details of apparatus provided for in groups G01R33/44 - G01R33/64
    • G01R33/283Intercom or optical viewing arrangements, structurally associated with NMR apparatus
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/44Arrangements or instruments for measuring magnetic variables involving magnetic resonance using nuclear magnetic resonance [NMR]
    • G01R33/48NMR imaging systems
    • G01R33/54Signal processing systems, e.g. using pulse sequences ; Generation or control of pulse sequences; Operator console
    • G01R33/56Image enhancement or correction, e.g. subtraction or averaging techniques, e.g. improvement of signal-to-noise ratio and resolution
    • G01R33/565Correction of image distortions, e.g. due to magnetic field inhomogeneities
    • G01R33/56509Correction of image distortions, e.g. due to magnetic field inhomogeneities due to motion, displacement or flow, e.g. gradient moment nulling
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10028Range image; Depth image; 3D point clouds
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10116X-ray image
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/20Special algorithmic details
    • G06T2207/20212Image combination
    • G06T2207/20221Image fusion; Image merging

Definitions

  • the present invention relates to a medical imaging apparatus and a medical image correction method.
  • references of the prior art include International Publication No. WO 2013/162201 A1 (October 31, 2013 International Publication, Real-Time Motion Tracking and Medical Image Correction Methods of Subjects).
  • the reference is a motion detection module outputs the real-time motion information of the subject, the motion calculation module receives the real-time motion information is analyzed and converted into a three-axis motion parameter, and the drive module to the three-axis motion parameter In response, the driving motor is driven, and the medical image data acquisition module moves as much as the subject actually moves in response to the driving of the driving motor to correct the medical image.
  • some conventional technologies employ an image post-processing method in which image processing is performed first and then image processing is performed.
  • X-ray imaging images such as CT are used for diagnostic purposes.
  • the X-ray image is an image of the internal tissue of the human body, and is not familiar to the general person, not a medical professional such as a doctor.
  • an embodiment of the present invention obtains depth data of a subject through a depth camera when the position of the subject is changed due to vibration of the equipment or movement of the patient during CT imaging.
  • Optical flow algorithm to obtain the motion vectors of the subject, correct the image using an affine transform (image) and then perform an image reconstruction algorithm, without damaging the original data and without moving the medical image acquisition device in real time
  • a medical image photographing apparatus using a depth camera, a method for correcting a medical image, and a computer-readable recording medium recording a program for realizing the method are provided.
  • the present invention provides a medical imaging apparatus that can more clearly capture a three-dimensional surface stereoscopic image of a subject using a depth camera.
  • an X-ray imaging apparatus for capturing a subject to obtain medical image data
  • a depth camera for capturing the subject to obtain depth data
  • a control unit for controlling the X-ray imaging apparatus and the depth camera to simultaneously acquire data
  • a correction unit for correcting the medical image data transmitted from the X-ray imaging apparatus using the depth data transmitted from the depth camera, and a corrected It may include a reconstruction unit for performing an image reconstruction algorithm based on the medical image data.
  • an X-ray imaging apparatus photographs a subject to acquire medical image data, and at the same time, a depth camera photographs the subject to acquire depth data, and a correction unit acquires the depth data. Compensating for calculating the motion information of the subject from the data, correcting by reflecting the motion information to the medical image data, and performing an image reconstruction algorithm based on the corrected medical image data.
  • the method in the correcting step, setting the N-1 (N: positive integer) frame of the depth data as a reference frame, the reference frame of the depth data (N-1 Frame) and a current frame (N frame) to obtain motion information of the subject, determining whether the subject's motion information is greater than or equal to a preset threshold, and when the motion information of the subject is greater than or equal to the threshold,
  • the method may include correcting the corresponding medical image data by substituting the motion information into an affine transformation.
  • An embodiment of the present invention provides a computer readable recording medium having recorded thereon a program for realizing a method of correcting a medical image.
  • a depth surface image of a subject may be obtained using a depth camera, and the depth surface image may be synthesized with a medical image (eg, X-ray CT image) obtained by an X-ray imaging apparatus.
  • a medical image eg, X-ray CT image
  • a clearer three-dimensional stereoscopic surface image of a specimen can be obtained.
  • FIG. 1 is a perspective view showing a medical image photographing apparatus using a depth camera according to an embodiment of the present invention
  • FIG. 2 is a block diagram showing the configuration of a CT imaging apparatus equipped with a medical image correction apparatus for realizing a medical image correction method using a depth camera according to an embodiment of the present invention
  • FIG. 3 is a flowchart illustrating a medical image correction method using a depth camera according to an embodiment of the present invention
  • FIG. 4 is a flowchart illustrating a process of performing correction in a correction unit according to an embodiment of the present invention
  • FIG. 5 is a block diagram illustrating a configuration of a medical image capturing apparatus for realizing a method for synthesizing a medical image using a depth camera according to an exemplary embodiment.
  • FIG. 1 is a diagram of a CT imaging apparatus for explaining the concept of a medical image correction method using a depth camera according to an embodiment of the present invention
  • Figure 2 is a medical image correction using a depth camera according to an embodiment of the present invention
  • a medical image correction apparatus will be described with reference to FIGS. 1 and 2 as follows.
  • the medical imaging apparatus includes a base 51 installed at a bottom, a column 52 standing vertically from the base 51, and a lift part 53 connected to the column 53 so as to be lifted and lowered. And a rotation arm support portion 54 extending horizontally from the lift portion 53 and a rotation arm 55 rotatably installed at the lower portion of the rotation arm support portion 54.
  • Medical imaging apparatus is an X-ray imaging apparatus for capturing the subject 10 to obtain medical image data and the agent installed in the medical imaging apparatus to measure the movement of the subject 10
  • One depth camera 40 is included.
  • the X-ray imaging apparatus will be described using the CT imaging apparatus 50 as an example, and the medical image data will be described using the CT data as an example.
  • the CT imaging apparatus 50 detects X-rays irradiated from the X-ray irradiator 20 and X-rays irradiated from the X-ray irradiator 20 to the X-ray irradiated to the subject 10.
  • the detector 30 is included.
  • the X-ray irradiation unit 20 and the X-ray detection unit 30 are positioned at both ends of the rotary arm 55 to face each other with the subject 10 therebetween.
  • the first depth camera 40 may extract depth data for each pixel of the photographed object 10 based on a time of flight (TOF) at which the optical signal irradiated onto the object 10 is reflected and returned. Refers to the camera to create.
  • the first depth camera 40 may include a light source (for example, LED) for irradiating an optical signal to the object 10.
  • the first depth camera 40 is installed on the rotary arm 40.
  • the present invention is not limited thereto, and may be installed in the column 52 or the lifting unit 53. That is, the position and the number of the first depth camera 40 are not limited.
  • the medical image correcting apparatus may control the CT imaging apparatus 50 and the first depth camera 40 to simultaneously obtain CT data and depth data of the subject 10.
  • the controller 70 may control the CT imaging apparatus 50 and the first depth camera 40 to transmit the acquired CT data and the depth data to the corrector 60.
  • the medical image correction apparatus includes a correction unit 60 for correcting the image using the CT data and the depth data received from the CT imaging apparatus 50 and the first depth camera 40. do.
  • FIG. 3 is a flowchart illustrating a method of correcting a medical image using a depth camera according to an embodiment of the present invention
  • FIG. 4 is a flowchart illustrating a process of correcting by a correction unit according to an embodiment of the present invention. to be.
  • a photographing step (S10) of photographing the subject 10 with the CT photographing apparatus 50 and the first depth camera 40 is performed. Specifically, the X-ray irradiation unit 20 irradiates X-rays to the object 10 under the control of the control unit 70, and the X-ray detection unit 30 detects X-rays transmitted through the object 10. CT imaging is performed to acquire CT data, and at the same time, the first depth camera 40 photographs the subject 10 to acquire depth data. Thereafter, the CT photographing apparatus 50 and the first depth camera 40 transmit the obtained CT data and the depth data to the corrector 60.
  • the CT image is corrected by using the CT data and the depth data received by the correction unit 60.
  • a step (S201) of setting the N-1 frame of the received depth data as a reference frame is performed.
  • a step (S202) of comparing the reference frame (N-1 frame) of the depth data with the current frame (N frame) and measuring the motion information of the subject is performed. That is, the difference between the pixel value of the reference frame and the pixel value of the current frame is calculated, and based on the difference, a motion vector is calculated and determined as motion information.
  • the measurement of such motion information may be made in units of pixels as described above, but may be made in units of macro blocks, for example.
  • an optical flow algorithm may be used to calculate a motion vector value of the subject.
  • Moving the position of the subject with respect to each other causes a change in the brightness of each pixel in the image, and the movement of light and dark in the image is called light flow.
  • a motion vector of a subject that is, motion information, may be calculated for two consecutive images in time, which is already known and used in various fields. It does not explain in detail.
  • the threshold value can be experimentally adjusted to determine whether to perform image correction when the subject moves more or less.
  • the threshold may be applied to a common value for all depth data, or two or more values differentiated for each frame may be applied.
  • the motion information is greater than or equal to a threshold value, correcting an image by applying an affine transform based on the motion information obtained in the step S202 of measuring the motion information of the subject to CT data of the sequence (S204). ) Is performed. At this time, it is possible to know the sequence time at which the motion occurred from the preliminary information. If the movement occurred at the 300 second point, the affine transformation is performed on the 250th data of the CT data corresponding to the 300 second point, that is, the CT data corresponding to the current frame (N frame) of the depth data in time. Image correction can be performed.
  • the affine transformation used in correcting the CT image (S204) is a conventional method that can rotate, translate, scale, shear, and the like of the image. For example, If the motion information determined in the step S202 of measuring motion information is 45 degrees of rotation, 5 X-axis transitions, and 10 Y-axis transitions, the image may be corrected by substituting the above values in an affine transformation.
  • the photographing step S10 of photographing the subject 10 with the CT photographing device 50 and the first depth camera 40 and the step of correcting CT data S20 are repeated until the last frame at which the CT photographing ends. It is performed (S30).
  • CT data corrected by the medical image correction method according to an embodiment of the present invention may be reconstructed into a CT image through a conventional reconstruction algorithm by the reconstruction unit 80.
  • the CT image has an advantage that the image quality is superior to the image obtained by the conventional method of correcting the image after the data is reconstructed.
  • a case of correcting an image acquired by using a CT as an X-ray imaging apparatus will be described as an example, but instead of using a CT, a magnetic resonance imaging (MRI) may be used. It should be understood that the invention is not limited thereto.
  • MRI magnetic resonance imaging
  • an optical flow algorithm and an affine transformation are described as an example of an image processing technique for correcting a medical image of the present invention, it should be understood that the present invention is not limited thereto.
  • the medical image correction method using the depth camera according to the present invention as described above may be implemented in the form of program instructions that can be executed by various computer means may be recorded on a computer readable medium.
  • the computer readable medium may include program instructions, data files, data structures, etc. alone or in combination.
  • Program instructions recorded on the media may be those specially designed and constructed for the purposes of the present invention, or they may be of the kind well-known and available to those having skill in the computer software arts.
  • Examples of computer readable recording media include magnetic media such as hard disks, floppy disks, and magnetic tape, optical media such as CD-ROMs, DVDs, and floppy disks.
  • the medium may be a transmission medium such as an optical or metal wire, a waveguide, or the like including a carrier wave for transmitting a signal specifying a program command, a data structure, or the like.
  • Examples of program instructions include not only machine code generated by a compiler, but also high-level language code that can be executed by a computer using an interpreter or the like.
  • the hardware device may be configured to operate as one or more software modules to perform the operations of the present invention, and vice versa.
  • FIG. 5 is a block diagram illustrating a configuration of a medical image capturing apparatus for realizing a method for synthesizing a medical image using a depth camera according to an exemplary embodiment.
  • a method of obtaining a 3D stereoscopic surface image of a subject by using a depth camera is as follows.
  • the second and third depth cameras 40-1 and 40-2 are provided on the front of the lifting unit 53 so as to face the object 10.
  • the second depth camera 40-1 photographs an arbitrary area of the object 10 to obtain a depth surface image of the area
  • the third depth camera 40-2 of the object 20 is photographed. Another area is taken to obtain a depth surface image of the other area.
  • the inspected object 10 moves in the vertical direction under the control of the control unit 70. You can scan and shoot.
  • the fourth depth camera 40-3 is installed in front of the column 52 to photograph another region of the object 10 to acquire a depth surface image of the other region.
  • the medical imaging apparatus according to an embodiment of the present invention has been described with an example having three depth cameras 40-1, 40-2, and 40-3, the present invention is not limited thereto. Two or four or more depth cameras.
  • the depth cameras 40-1, 40-2, and 40-3 transmit the depth surface images of the respective regions of the subject 10 to be obtained by the synthesizer 90.
  • the CT imaging apparatus 50 captures the subject 10, obtains a medical image (eg, an X-ray CT image), and transmits the same to the synthesis unit 90.
  • a medical image eg, an X-ray CT image
  • the synthesizing unit 90 performs a step of combining and synthesizing the depth surface images and the medical image of the transmitted test object 10, and generating a 3D stereoscopic surface image of the test object 10 through such image synthesis. .
  • the image synthesis method itself is a known technique, a detailed description thereof will be omitted.
  • the depth surface images obtained by the depth cameras 40-1, 40-2, and 40-3 are used for image synthesis, a sharper three-dimensional stereoscopic surface image can be generated. Can be.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Medical Informatics (AREA)
  • Physics & Mathematics (AREA)
  • Heart & Thoracic Surgery (AREA)
  • General Health & Medical Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Optics & Photonics (AREA)
  • Pathology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Biomedical Technology (AREA)
  • Biophysics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Theoretical Computer Science (AREA)
  • Pulmonology (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • General Physics & Mathematics (AREA)
  • Apparatus For Radiation Diagnosis (AREA)

Abstract

본 발명의 일 실시 예는 깊이 카메라를 이용한 의료영상 촬영장치 및 의료영상 보정방법에 관한 것으로, 본 발명의 실시 예는, 피검체를 촬영하여 의료영상 데이터를 획득하기 위한 의료영상 촬영장치, 및 상기 피검체를 촬영하여 깊이 데이터를 획득하기 위한 깊이 카메라를 포함할 수 있다.

Description

깊이 카메라를 이용한 의료영상 촬영장치 및 의료영상 보정방법
본 발명은 의료영상 촬영장치 및 의료영상 보정방법에 관한 것이다.
의료영상 보정 방법에 관한 종래 기술을 살펴보면 다음과 같다.
종래 기술의 참고 문헌으로는 국제공개번호 WO 2013/162201 A1(2013년 10월 31일 국제공개, 피검체의 실시간 움직임 추적 및 의료영상 보정 방법)이 있다.
상기 참고 문헌은 움직임 검출 모듈이 피검체의 실시간 움직임 정보를 출력하고, 움직임 계산 모듈이 상기 실시간 움직임 정보를 인가 받아 분석하여 3축 움직임 파라미터로 변환하여 출력하며, 구동 모듈이 상기 3축 움직임 파라미터에 응답하여 구동 모터를 구동하고, 상기 구동 모터의 구동에 응답하여 상기 피검체가 실제 움직인 만큼 의료영상 데이터 획득 모듈이 이동함으로써 의료영상을 보정하는 기술을 소개하고 있다.
또한, 일부 종래 기술에서는 촬영된 영상을 우선적으로 재구성한 후 영상처리를 수행하는 영상 후처리 방식을 채용하고 있기도 하다.
그러나 상기와 같은 참고 문헌은 장비의 진동 또는 환자의 움직임에 의한 피검체의 위치 변동이 의료영상 촬영장치, 일례로 엑스선 촬영장치를 이동시킬 만큼 크지 않을 경우 영상 보정이 이루어지지 않고 그에 따라 화질이 열화되는 문제점이 있다.
또한, 영상 보정을 위한 상기 엑스선 촬영장치의 이동과 의료영상 데이터 획득이 실시간으로 이루어지지 않아 촬영 시간의 지연이 생기고, 획득한 움직임 정보나 엑스선 촬영장치의 이동이 부정확할 경우 전혀 다른 영상을 얻게 되는 문제점이 있다.
영상 후처리 방식을 채용하고 있는 종래 기술에서는, 영상 재구성 알고리즘을 수행한 후에 영상처리를 수행하기 때문에, 원데이터가 훼손될 우려가 있다.
한편, 의료 분야에서는 진단 목적으로 CT 등의 엑스선 촬영 영상을 사용한다. 그런데, 엑스선 촬영 영상은 인체 내부 조직에 대한 영상으로서, 의사 등 전문 의료인이 아닌 일반인에게는 익숙하지 않다. 또한, 치과 또는 성형외과 분야에서 치료 후의 얼굴 등의 인체 표면의 입체적 변화 등을 확인하고자 하는 요구가 존재하는데, 엑스선 촬영 영상만으로는 이러한 의료 업계의 요구에 부응할 수 없었다.
이에, 얼굴 등의 인체 표면의 3차원 입체 표면 영상을 보다 선명하게 촬영할 수 있는 의료영상 촬영 장치의 개발이 시급한 실정이다.
상기와 같은 종래 기술의 문제점을 해결하고자 하는 것이 본 발명의 과제 중의 하나이다.
따라서 본 발명의 실시 예는 CT(Computed Tomography) 촬영 시 장비의 진동 또는 환자의 움직임에 의해 피검체의 위치 변동이 생긴 경우, 깊이 카메라(Depth camera)로 피검체의 깊이 데이터를 획득하고, 광류 알고리즘(Optical flow algorithm)을 이용해 상기 피검체의 운동 벡터들을 구하고, 아핀 변환(Affine transform)을 이용해 영상을 보정한 후에 영상 재구성 알고리즘을 수행함으로써, 원데이터의 훼손 없이 및 의료영상 획득 장치의 이동 없이 실시간으로 의료영상을 보정할 수 있는, 깊이 카메라를 이용한 의료영상 촬영 장치 및 의료영상 보정 방법과 상기 방법을 실현하기 위한 프로그램을 기록한 컴퓨터로 읽을 수 있는 기록매체를 제공한다.
아울러, 깊이 카메라를 이용하여 피검체의 3차원 표면 입체 영상을 보다 선명하게 촬영할 수 있는 의료영상 촬영 장치를 제공한다.
본 발명의 목적들은 이상에서 언급한 목적으로 제한되지 않으며, 언급되지 않은 본 발명의 다른 목적 및 장점들은 하기의 설명에 의해서 이해될 수 있으며, 본 발명의 실시 예에 의해 보다 분명하게 알게 될 것이다. 또한, 본 발명의 목적 및 장점들은 특허청구범위에 나타낸 수단 및 그 조합에 의해 실현될 수 있음을 쉽게 알 수 있을 것이다.
본 발명의 실시 예에 따른 장치는, 피검체를 촬영하여 의료영상 데이터를 획득하기 위한 엑스선 촬영장치, 상기 피검체를 촬영하여 깊이 데이터를 획득하기 위한 깊이 카메라, 상기 피검체의 의료영상 데이터 및 깊이 데이터를 동시에 획득할 수 있도록 상기 엑스선 촬영장치 및 깊이 카메라를 제어하는 제어부, 상기 깊이 카메라로부터 전송된 깊이 데이터를 이용하여 상기 엑스선 촬영장치로부터 전송된 의료영상 데이터를 보정하기 위한 보정부, 및 보정된 의료영상 데이터에 기초하여 영상 재구성 알고리즘을 수행하는 재구성부를 포함할 수 있다.
본 발명의 실시 예에 따른 방법은, 엑스선 촬영장치가 피검체를 촬영하여 의료영상 데이터를 획득하고 그와 동시에 깊이 카메라가 상기 피검체를 촬영하여 깊이 데이터를 획득하는 데이터 획득 단계, 보정부가 상기 깊이 데이터로 상기 피검체의 움직임 정보를 계산하고, 상기 움직임 정보를 상기 의료영상 데이터에 반영하여 보정하는 보정 단계, 및 보정된 의료영상 데이터에 기초하여 영상 재구성 알고리즘을 수행하는 단계를 포함할 수 있다.
상기 본 발명의 실시 예에 따른 방법은, 상기 보정 단계에 있어서, 상기 깊이 데이터의 N-1(N: 양의 정수) 프레임을 기준 프레임으로 설정하는 단계, 상기 깊이 데이터의 기준 프레임(N-1 프레임)과 현재 프레임(N 프레임)을 비교하여 피검체의 움직임 정보를 획득하는 단계, 상기 피검체의 움직임 정보가 사전 설정된 임계치 이상인지 판단하는 단계, 및 상기 피검체의 움직임 정보가 임계치 이상일 때 상기 움직임 정보를 아핀 변환식에 대입하여 대응되는 의료영상 데이터를 보정하는 단계를 포함할 수 있다.
본 발명의 실시 예는, 의료영상을 보정하는 방법을 실현하기 위한 프로그램을 기록한 컴퓨터로 읽을 수 있는 기록매체를 제공한다.
상기와 같은 본 발명의 실시 예에 따르면, CT 촬영 시 장비의 진동이나 환자의 움직임으로 인해 훼손된 영상을 보정하는데 있어서, 재구성된 영상이 아닌 원데이터에 기초하여 보정을 수행하기 때문에 보다 정밀한 보정 효과를 수반할 수 있다.
본 발명의 실시 예에 따르면, 의료영상 데이터 획득과 동시에 영상 보정이 실시간으로 이루어짐으로써, 촬영 시간의 지연이 생기지 않는 효과가 있다.
본 발명의 실시 예에 따르면, 영상 보정을 위해 촬영 장비를 움직이지 않음으로써, 종래 기술에 비해 더 작은 피검체의 움직임이 있더라도 이를 보정할 수 있는 효과가 있다.
본 발명의 실시 예에 따르면, 깊이 카메라를 사용하여 피검체의 깊이 표면 영상을 획득할 수 있고, 이러한 깊이 표면영상을 엑스선 촬영장치에 의해 획득된 의료 영상(예컨대, 엑스선 CT 영상)과 합성시킴으로써 피검체의 보다 선명한 3차원 입체 표면 영상을 획득할 수 있다.
도 1은 본 발명의 일 실시 예에 따른 깊이 카메라를 이용한 의료영상 촬영 장치를 도시한 사시도,
도 2는 본 발명의 일 실시 예에 따른 깊이 카메라를 이용하여 의료영상 보정 방법의 실현을 위해 의료영상 보정 장치가 구비된 CT 촬영장치의 구성을 나타낸 블록도,
도 3은 본 발명의 일 실시 예에 따른 깊이 카메라를 이용한 의료영상 보정 방법을 설명하기 위한 흐름도,
도 4는 본 발명의 일 실시 예에 따른 보정부에서 보정이 이루어지는 과정을 설명하기 위한 흐름도,
도 5는 본 발명의 일 실시 예에 따른 깊이 카메라를 이용하여 의료영상 합성 방법을 실현하기 위한 의료영상 촬영 장치의 구성을 나타낸 블록도이다.
상술한 목적, 특징 및 장점은 첨부된 도면을 참조하여 상세하게 후술되어 있는 상세한 설명을 통하여 보다 명확해질 것이며, 그에 따라 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 본 발명을 용이하게 실시할 수 있을 것이다. 또한, 본 발명을 설명함에 있어서 본 발명과 관련된 공지 기술에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우에 그 상세한 설명을 생략하기로 한다. 이하, 첨부된 도면을 참조하여 본 발명에 따른 바람직한 실시 예를 상세히 설명하기로 한다.
명세서 전체에서, 어떤 부분이 어떤 구성요소를 "포함" 또는 "구비"한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성요소를 더 포함하거나 구비할 수 있음을 의미한다.
도 1은 본 발명의 일 실시 예에 따른 깊이 카메라를 이용한 의료영상 보정 방법의 개념을 설명하기 위한 CT 촬영장치의 도면이고, 도 2는 본 발명의 일 실시 예에 따른 깊이 카메라를 이용한 의료영상 보정 방법의 실현을 위해 의료영상 보정 장치가 구비된 CT 촬영장치의 구성을 나타낸 블록도이다.
도 1 및 도 2를 참조하여 의료영상 보정 장치에 대하여 살펴보면 다음과 같다.
본 발명에 따른 의료영상 촬영장치는, 바닥에 설치되는 베이스(51)와, 베이스(51)로부터 수직으로 기립하는 컬럼(52)과, 컬럼(53)에 승강 가능하게 연결되는 승강부(53)와, 승강부(53)로부터 수평으로 연장되는 회전암 지지부(54)와, 회전암 지지부(54)의 하부에 회전 가능하게 설치되는 회전암(55)을 포함한다.
본 발명의 일 실시 예에 따른 의료영상 촬영 장치는 피검체(10)를 촬영하여 의료영상 데이터를 획득하기 위한 엑스선 촬영장치 및 피검체(10)의 움직임을 측정하기 위해 의료영상 촬영장치에 설치된 제1 깊이 카메라(40)를 포함한다.
본 발명의 일 실시 예에서 상기 엑스선 촬영장치는 CT 촬영장치(50)를 예로 들어 설명하고, 의료영상 데이터는 CT 데이터를 예로 들어 설명한다.
CT 촬영장치(50)는 피검체(10)에 X선을 조사하는 X선 조사부(20), 및 X선 조사부(20)로부터 조사되어 피검체(10)를 투과한 X선을 검출하는 X선 검출부(30)를 포함한다. 이때, X선 조사부(20) 및 X선 검출부(30)는 피검체(10)를 사이에 두고 서로 마주보도록 회전암(55)의 양 단부에 위치된다.
제1 깊이 카메라(40)는 피검체(10)에 조사된 광 신호가 반사되어 돌아오는 시간차(TOF, Time Of Flight)에 기초하여, 촬영된 상기 피검체(10)에 대한 픽셀 별 깊이 데이터를 생성하는 카메라를 지칭한다. 상기 제1 깊이 카메라(40)는 피검체(10)에 광 신호를 조사하기 위한 광원(예: LED)을 포함할 수 있다.
본 발명의 일 실시 예에서는 제1 깊이 카메라(40)가 회전암(40)에 설치된다. 그러나 본 발명이 이에 한정되는 것은 아니고, 컬럼(52)이나 승강부(53)에 설치될 수도 있다. 즉, 제1 깊이 카메라(40)의 위치와 개수는 제한되지 않는다.
본 발명의 일 실시 예에 따른 의료영상 보정 장치는 피검체(10)에 대한 CT 데이터와 깊이 데이터를 동시에 얻을 수 있도록 CT 촬영장치(50)와 제1 깊이 카메라(40)를 제어할 수 있고, 상기 획득한 CT 데이터와 깊이 데이터를 보정부(60)에 전송하도록 CT 촬영장치(50)와 제1 깊이 카메라(40)를 제어할 수 있는 제어부(70)를 포함한다.
또한, 본 발명의 일 실시 예에 따른 의료영상 보정 장치는 CT 촬영장치(50)와 제1 깊이 카메라(40)로부터 수신한 CT 데이터와 깊이 데이터를 이용해 영상을 보정하는 보정부(60)를 포함한다.
도 3은 본 발명의 일 실시 예에 따른 깊이 카메라를 이용한 의료영상 보정 방법을 설명하기 위한 흐름도이고, 도 4는 본 발명의 일 실시 예에 따른 보정부에 의해 보정이 이루어지는 과정을 설명하기 위한 흐름도이다.
도 1 내지 도 4를 참조하여 깊이 카메라를 이용한 의료영상 보정 방법을 살펴보면 다음과 같다.
피검체(10)를 CT 촬영장치(50)와 제1 깊이 카메라(40)로 촬영하는 촬영 단계(S10)가 수행된다. 구체적으로, 제어부(70)의 제어하에 X선 조사부(20)가 피검체(10)에 X선을 조사하고, X선 검출부(30)가 상기 피검체(10)를 투과한 X선을 검출함으로써 CT 촬영을 하여 CT 데이터를 획득하고, 동시에 제1 깊이 카메라(40)가 상기 피검체(10)를 촬영하여 깊이 데이터를 획득한다. 이후, CT 촬영장치(50)와 제1 깊이 카메라(40)는 획득한 CT 데이터와 깊이 데이터를 보정부(60)에 전송한다.
상기 보정부(60)가 수신한 CT 데이터 및 깊이 데이터를 이용해 CT 영상을 보정하는 단계(S20)가 수행된다.
상기 CT 영상을 보정하는 단계(S20)에서는, 수신한 상기 깊이 데이터의 N-1 프레임을 기준 프레임으로 설정하는 단계(S201)가 수행된다.
이후, 깊이 데이터의 기준 프레임(N-1 프레임)과 현재 프레임(N 프레임)을 비교하여 피검체의 움직임 정보를 측정하는 단계(S202)가 수행된다. 즉, 기준 프레임의 픽셀 값과 현재 프레임의 픽셀 값의 차이를 계산하고, 그 차이에 기초하여 운동 벡터를 산출하고, 이를 움직임 정보로 결정한다. 이러한 움직임 정보의 측정은, 상술한 바와 같이 픽셀 단위로 이루어질 수도 있지만, 예를 들어, 매크로 블록 단위로 행해질 수도 있음을 당업자는 알 것이다. 이때, 상기 피검체의 운동 벡터 값의 계산을 위해 광류 알고리즘(Optical flow Algorithm)을 이용할 수 있는데, 카메라를 이용하여 시간적으로 연속적인 영상들을 얻을 때 피검체에 대하여 카메라의 위치를 이동시키거나 카메라에 대해서 피검체의 위치를 이동시키면 영상 내의 각 화소들의 밝기의 변화가 나타나는데, 이러한 영상 내의 명암의 이동을 광류라고 한다. 상기 광류 정보를 이용해 시간적으로 연속된 2개의 영상에 대해 피검체의 운동 벡터, 즉, 움직임 정보를 계산할 수 있는데, 이는 이미 공지된 기술로서 다양한 분야에서 사용되고 있으므로, 본 발명의 실시 예에서는 계산하는 과정을 구체적으로 설명하지 않는다.
상기 움직임 정보가 사전에 설정된 임계치(Threshold) 이상인지 판단하는 단계(S203)가 수행된다. 이때, 상기 임계치는 피검체가 어느 정도 이상 움직였을 때 영상 보정을 수행할 것인지 판단할 수 있도록 실험적으로 조정될 수 있음을 이해할 수 있을 것이다. 그리고 임계치는 모든 깊이 데이터에 대해 공통된 값이 적용될 수도 있고, 프레임 별로 차별화된 둘 이상의 값이 적용될 수도 있다.
상기 움직임 정보가 임계치 이상이면, 해당 시퀀스의 CT 데이터에 상기 피검체의 움직임 정보를 측정하는 단계(S202)에서 얻어진 움직임 정보에 기초하여 아핀 변환(Affine Transform)을 적용하여 영상을 보정하는 단계(S204)가 수행된다. 이때, 사전 정보로부터 움직임이 발생한 시퀀스 시간을 알 수 있는데, 예를 들어, 촬영 시작부터 종료까지의 시간, 즉, 총 촬영시간이 600초이고 총 촬영 영상 수가 500장이라고 가정했을 때, 깊이 데이터를 통해 300초 지점에서 움직임이 발생했음을 알았다면, 이에 따라 해당 300초 지점에 대응하는 CT 데이터의 250번째 데이터, 즉 깊이 데이터의 현재 프레임(N 프레임)과 시간적으로 대응되는 CT 데이터에 대해 아핀 변환을 적용하여 영상 보정을 수행할 수 있다.
상기 CT 영상을 보정하는 단계(S204)에서 사용되는 아핀 변환은 영상의 회전, 평행이동, 스케일(Scale), 시어링(Shearing) 등을 할 수 있는 통상적인 방법으로, 예를 들어, 상기 피검체의 움직임 정보를 측정하는 단계(S202)에서 결정된 움직임 정보가 회전 45도, X축 천이 5, Y축 천이 10이라면 아핀 변환식에 상기 값들을 대입하여 영상을 보정할 수 있다.
상기 아핀 변환은 이미 공지된 기술로서 다양한 분야에서 사용되고 있으므로, 본 발명의 실시 예에서는 변환 과정을 구체적으로 설명하지 않는다.
한편, 피검체(10)를 CT 촬영장치(50) 및 제1 깊이 카메라(40)로 촬영하는 촬영 단계(S10) 및 CT 데이터를 보정하는 단계(S20)는 CT 촬영이 종료되는 마지막 프레임까지 반복 수행된다(S30).
본 발명의 일 실시 예에 따른 의료영상 보정 방법에 의해 보정된 CT 데이터는 재구성부(80)에 의한 통상적인 재구성 알고리즘을 통해 CT 영상으로 재구성될 수 있다. 상기 CT 영상은 데이터가 재구성된 후 영상을 보정하는 종래의 방식으로 획득된 영상에 비해 영상의 품질이 우수하다는 장점이 있다.
이처럼, 상술한 본 발명의 일 실시 예에서는 CT를 엑스선 촬영장치로서 이용하여 획득한 영상을 보정하는 경우를 예로 들어 설명하나, CT를 이용하는 대신에 MRI(Magnetic Resonance Imaging) 등을 이용할 수도 있으므로, 본 발명이 이에 한정되는 것은 아님을 알아야 한다.
또한, 본 발명의 의료영상 보정을 위한 영상처리 기술로 광류 알고리즘 및 아핀 변환을 예로 들어 설명하나, 본 발명이 이에 한정되는 것은 아님을 알아야 한다. 또한, 전술한 바와 같은 본 발명에 따른 깊이 카메라를 이용한 의료영상 보정 방법은 다양한 컴퓨터 수단을 통하여 수행될 수 있는 프로그램 명령 형태로 구현되어 컴퓨터 판독 가능 매체에 기록될 수 있다. 상기 컴퓨터 판독 가능 매체는 프로그램 명령, 데이터 파일, 데이터 구조 등을 단독으로 또는 조합하여 포함할 수 있다. 상기 매체에 기록되는 프로그램 명령은 본 발명을 위하여 특별히 설계되고 구성된 것들이거나 컴퓨터 소프트웨어 당업자에게 공지되어 사용 가능한 것일 수도 있다. 컴퓨터 판독 가능 기록 매체의 예에는 하드 디스크, 플로피 디스크 및 자기 테이프와 같은 자기 매체(magnetic media), CD-ROM, DVD와 같은 광기록 매체(optical media), 및 플롭티컬 디스크(floptical disk)와 같은 자기-광 매체(magneto-optical media), 및 롬(ROM), 램(RAM), 플래시 메모리 등과 같은 프로그램 명령을 저장하고 수행하도록 특별히 구성된 하드웨어 장치가 포함된다. 상기 매체는 프로그램 명령, 데이터 구조 등을 지정하는 신호를 전송하는 반송파를 포함하는 광 또는 금속선, 도파관 등의 전송 매체일 수도 있다. 프로그램 명령의 예에는 컴파일러에 의해 만들어지는 것과 같은 기계어 코드뿐만 아니라 인터프리터 등을 사용하여 컴퓨터에 의해서 실행될 수 있는 고급 언어 코드를 포함한다. 상기 하드웨어 장치는 본 발명의 동작을 수행하기 위해 하나 이상의 소프트웨어 모듈로서 작동하도록 구성될 수 있으며, 그 역도 마찬가지이다.
도 5는 본 발명의 일 실시 예에 따른 깊이 카메라를 이용하여 의료영상 합성 방법을 실현하기 위한 의료영상 촬영 장치의 구성을 나타낸 블록도이다.
도 5를 참조하여 깊이 카메라를 이용하여 피검체의 3차원 입체 표면 영상을 획득하는 방법을 살펴보면 다음과 같다.
제2 및 제3 깊이 카메라(40-1, 40-2)는 피검체(10)를 마주하도록 승강부(53)의 전면에 설치된다. 제2 깊이 카메라(40-1)는 피검사체(10)의 임의의 일 영역을 촬영하여 그 영역의 깊이 표면 영상을 획득하고, 제3 깊이 카메라는(40-2)는 피검사체(20)의 다른 일 영역을 촬영하여 그 다른 영역의 깊이 표면 영상을 획득한다.
이때, 제2 및 제3 깊이 카메라(40-1, 40-2)는 승강부(53)의 전면에 설치되어 있기 때문에, 제어부(70)의 제어에 의해 상하 방향으로 이동하면서 피검사체(10)를 스캔 촬영할 수 있다.
제4 깊이 카메라(40-3)는 컬럼(52)의 전면에 설치되어 피검체(10)의 또 다른 영역을 촬영하여 그 또 다른 영역의 깊이 표면 영상을 획득한다.
본 발명의 일 실시 예에 따른 의료영상 촬영장치가 3개의 깊이 카메라(40-1, 40-2, 40-3)를 구비하는 것을 예로 들어 설명하였으나, 본 발명이 이에 한정되는 것은 아니고, 1개, 2개 또는 4개 이상의 깊이 카메라를 구비할 수도 있다.
깊이 카메라(40-1, 40-2, 40-3)는 그에 의해 획득된 피검체(10)의 각 영역에 대한 깊이 표면 영상들을 합성부(90)에 전송한다.
CT 촬영장치(50)는 피검체(10)를 촬영하여 의료영상(예컨대, 엑스선 CT 영상)를 획득하여 합성부(90)에 전송한다.
합성부(90)는 전송된 피검체(10)의 깊이 표면 영상들 및 의료영상을 정합하여 합성하는 단계를 수행하고, 이러한 영상 합성을 통해 피검체(10)의 3차원 입체 표면 영상이 생성된다. 이때, 영상 합성 방법 그 자체는 이미 공지된 기술이므로 이에 대한 구제적 설명을 생략하기로 한다.
특히, 본 발명에 따르면, 깊이 카메라(40-1, 40-2, 40-3)에 의해 획득된 깊이 표면 영상들이 영상 합성에 이용되기 때문에 이용되기 때문에, 보다 선명한 3차원 입체 표면 영상이 생성될 수 있다.
이상과 같이 본 발명은 비록 한정된 실시 예와 도면에 의해 설명되었으나, 본 발명은 상기의 실시 예에 한정되는 것은 아니며, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자라면 이러한 기재로부터 본 발명의 기술적 사상을 벗어나지 않는 범위 내에서 다양한 치환, 변형 및 변경이 가능하다.
그러므로 본 발명의 범위는 설명된 실시 예에 국한되어 정해져서는 아니 되며, 후술하는 특허청구범위뿐만 아니라 이 특허청구범위와 균등한 것들에 의해 정해져야 한다.

Claims (9)

  1. 피검체를 촬영하여 의료영상 데이터를 획득하기 위한 엑스선 촬영장치, 및
    상기 피검체를 촬영하여 깊이 데이터를 획득하기 위한 깊이 카메라
    를 포함하는 의료영상 촬영장치.
  2. 제 1 항에 있어서,
    상기 피검체의 의료영상 데이터 및 깊이 데이터를 동시에 획득할 수 있도록 상기 의료영상 촬영장치 및 깊이 카메라를 제어하는 제어부,
    상기 깊이 카메라로부터 전송된 깊이 데이터를 이용하여 상기 의료영상 촬영장치로부터 전송된 의료영상 데이터를 보정하기 위한 보정부, 및
    보정된 의료영상 데이터에 기초하여 영상 재구성 알고리즘을 수행하는 재구성부를 더 포함하는, 의료영상 촬영장치.
  3. 제 2 항에 있어서,
    상기 보정부는,
    상기 깊이 데이터의 인접한 두 프레임을 비교하여 상기 피검체의 움직임 정보를 계산하고, 상기 움직임 정보를 대응되는 상기 의료영상 데이터에 반영하여 보정하는, 의료영상 촬영장치.
  4. 제 1 항에 있어서,
    상기 엑스선 촬영장치는,
    수직의 컬럼과, 상기 컬럼을 따라 승강 가능한 승강부와, 상기 승강부에 연결된 회전암 지지부와, 상기 회전암 지지부에 연결되고 상기 피검체를 사이에 두고 X선 조사부와 X선 검출부가 서로 마주보도록 지지하는 회전암을 포함하고,
    상기 깊이 카메라는,
    상기 회전암, 컬럼 또는 승강부에 1개 이상이 위치되는, 의료영상 촬영장치.
  5. 제 1 항에 있어서,
    상기 깊이 카메라에 의해 촬영된 피검체의 깊이 표면 영상 및 상기 엑스선 촬영장치의 의해 촬영된 피검체의 의료영상을 합성하는 합성부를 더 포함하는, 의료영상 촬영장치.
  6. 제 5 항에 있어서,
    상기 깊이 표면 영상은 피검체를 스캔한 스캔 영상인, 의료영상 촬영장치.
  7. 의료영상 촬영장치가 피검체를 촬영하여 의료영상 데이터를 획득하고 그와 동시에 깊이 카메라가 상기 피검체를 촬영하여 깊이 데이터를 획득하는 데이터 획득 단계,
    보정부가 상기 깊이 데이터로 상기 피검체의 움직임 정보를 계산하고, 상기 움직임 정보를 상기 의료영상 데이터에 반영하여 보정하는 보정 단계, 및
    보정된 의료영상 데이터에 기초하여 영상 재구성 알고리즘을 수행하는 단계
    를 포함하는 의료영상 보정방법.
  8. 제 7 항에 있어서,
    상기 보정 단계는, 상기 깊이 데이터의 N-1(N: 양의 정수) 프레임을 기준 프레임으로 설정하는 단계,
    상기 깊이 데이터의 기준 프레임(N-1 프레임)과 현재 프레임(N 프레임)을 비교하여 피검체의 움직임 정보를 획득하는 단계,
    상기 피검체의 움직임 정보가 사전 설정된 임계치 이상인지 판단하는 단계, 및
    상기 피검체의 움직임 정보가 임계치 이상일 때 상기 움직임 정보를 아핀 변환식에 대입하여 대응되는 의료영상 데이터를 보정하는 단계
    를 포함하는 의료영상 보정방법.
  9. 제 7 항 및 제 8 항 중 어느 한 항의 의료영상 보정 방법을 실현하기 위한 프로그램을 기록한 컴퓨터로 읽을 수 있는 기록매체.
PCT/KR2015/005244 2014-05-23 2015-05-26 깊이 카메라를 이용한 의료영상 촬영장치 및 의료영상 보정방법 WO2015178745A1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US15/313,776 US20170196528A1 (en) 2014-05-23 2015-05-26 Medical image photographing apparatus and medical image correction method using depth camera
EP15796933.8A EP3146900B1 (en) 2014-05-23 2015-05-26 Medical image photographing apparatus and medical image correction method using depth camera
KR1020167035246A KR101877405B1 (ko) 2014-05-23 2015-05-26 깊이 카메라를 이용한 의료영상 촬영장치 및 의료영상 보정방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20140062011 2014-05-23
KR10-2014-0062011 2014-05-23

Publications (1)

Publication Number Publication Date
WO2015178745A1 true WO2015178745A1 (ko) 2015-11-26

Family

ID=54554327

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2015/005244 WO2015178745A1 (ko) 2014-05-23 2015-05-26 깊이 카메라를 이용한 의료영상 촬영장치 및 의료영상 보정방법

Country Status (4)

Country Link
US (1) US20170196528A1 (ko)
EP (1) EP3146900B1 (ko)
KR (1) KR101877405B1 (ko)
WO (1) WO2015178745A1 (ko)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101713859B1 (ko) * 2015-08-31 2017-03-09 삼성전자주식회사 자기 공명 영상 처리 장치 및 그에 따른 자기 공명 영상 처리 방법
KR101950815B1 (ko) * 2017-08-25 2019-02-21 뉴로핏 주식회사 패치 가이드 방법 및 프로그램
US11986319B2 (en) 2017-08-25 2024-05-21 NEUROPHET Inc. Patch guide method and program
WO2019213103A1 (en) * 2018-04-30 2019-11-07 Aih Llc System and method for real image view and tracking guided positioning for a mobile radiology or medical device
EP3844710A4 (en) * 2018-08-28 2022-06-01 Technion Research & Development Foundation Limited CORRECTION OF MOTION-RELATED DISTORTIONS IN RADIOGRAPHIC SCANS
EP3912556A1 (en) * 2020-05-19 2021-11-24 Koninklijke Philips N.V. X-ray imaging system
FI129905B (fi) 2020-07-08 2022-10-31 Palodex Group Oy Röntgenkuvausjärjestelmä ja menetelmä hammasröntgenkuvausta varten
KR102534981B1 (ko) * 2021-01-25 2023-05-19 인제대학교 산학협력단 표면 영상유도 기반의 환자 위치 정렬 및 모니터링 시스템

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008188164A (ja) * 2007-02-02 2008-08-21 Fujifilm Corp 放射線撮像装置、放射線撮像方法、及びプログラム
JP2010115429A (ja) * 2008-11-14 2010-05-27 Toshiba Corp X線診断装置および画像処理装置
US20120170824A1 (en) * 2009-05-13 2012-07-05 Koninklijke Philips Electronics N.V. System for detecting global patient movement during imaging procedures
KR20130028057A (ko) * 2010-02-02 2013-03-18 플란메카 오이 치과용 컴퓨터 단층촬영 장치
JP2013158372A (ja) * 2012-02-01 2013-08-19 Toshiba Corp 医用画像処理装置、医用画像処理方法及びx線撮影装置

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004004604B4 (de) * 2004-01-29 2016-12-29 Siemens Healthcare Gmbh Verfahren und Bildgebungssystem zur Kompensation von Patientenbewegungen bei Serienaufnahmen in der medizinischen Bildgebung
DE102005030609A1 (de) * 2005-06-30 2007-01-04 Siemens Ag Verfahren bzw. Röntgeneinrichtung zum Erstellen einer Serienaufnahme von medizinischen Röntgenbildern eines sich während der Serienaufnahme ggf. bewegenden Patienten
KR20090078646A (ko) * 2008-01-15 2009-07-20 (주)이우테크놀로지 환자의 자세분석이 가능한 x선 촬영장치
TW201028964A (en) * 2009-01-23 2010-08-01 Ind Tech Res Inst Depth calculating method for two dimension video and apparatus thereof
US9775921B2 (en) * 2009-11-24 2017-10-03 Alderbio Holdings Llc Subcutaneously administrable composition containing anti-IL-6 antibody
US8830854B2 (en) * 2011-07-28 2014-09-09 Xirrus, Inc. System and method for managing parallel processing of network packets in a wireless access device
US10925564B2 (en) * 2012-04-20 2021-02-23 Siemens Medical Solutions Usa, Inc. Medical imaging system with range imaging-based control
CN103543166A (zh) * 2012-07-12 2014-01-29 三星电子株式会社 X射线成像设备及其控制方法
KR102046062B1 (ko) * 2012-07-12 2019-12-02 삼성전자주식회사 엑스선 촬영 장치 및 엑스선 촬영 장치 제어 방법
JP6257962B2 (ja) * 2012-09-04 2018-01-10 東芝メディカルシステムズ株式会社 X線ct装置
US9445003B1 (en) * 2013-03-15 2016-09-13 Pelican Imaging Corporation Systems and methods for synthesizing high resolution images using image deconvolution based on motion and depth information

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008188164A (ja) * 2007-02-02 2008-08-21 Fujifilm Corp 放射線撮像装置、放射線撮像方法、及びプログラム
JP2010115429A (ja) * 2008-11-14 2010-05-27 Toshiba Corp X線診断装置および画像処理装置
US20120170824A1 (en) * 2009-05-13 2012-07-05 Koninklijke Philips Electronics N.V. System for detecting global patient movement during imaging procedures
KR20130028057A (ko) * 2010-02-02 2013-03-18 플란메카 오이 치과용 컴퓨터 단층촬영 장치
JP2013158372A (ja) * 2012-02-01 2013-08-19 Toshiba Corp 医用画像処理装置、医用画像処理方法及びx線撮影装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3146900A4 *

Also Published As

Publication number Publication date
US20170196528A1 (en) 2017-07-13
EP3146900B1 (en) 2020-04-29
EP3146900A1 (en) 2017-03-29
KR20170015928A (ko) 2017-02-10
EP3146900A4 (en) 2018-03-07
KR101877405B1 (ko) 2018-07-12

Similar Documents

Publication Publication Date Title
WO2015178745A1 (ko) 깊이 카메라를 이용한 의료영상 촬영장치 및 의료영상 보정방법
KR102617605B1 (ko) 턱의 모션 추적
US8731268B2 (en) CT device and method based on motion compensation
KR101758412B1 (ko) 치과용 컴퓨터 단층촬영 장치
JP4484462B2 (ja) 医療用診断または治療装置における患者の位置決め方法および装置
US20100290707A1 (en) Image acquisition method, device and radiography system
EP2506216B1 (en) X-Ray CT apparatus and image processing method
WO2016032256A1 (ko) 맘모그래피 시스템 및 맘모그래피 촬영 방법
WO2011087306A9 (ko) X선 단층 촬영 장치 및 그 방법
JP2018153299A (ja) 被検体の位置決め装置、被検体の位置決め方法、被検体の位置決めプログラムおよび放射線治療システム
JP2008086389A (ja) 放射線撮影装置および放射線撮影方法
US7796732B2 (en) X-ray imaging system and x-ray imaging method
KR20120010585A (ko) 유방 촬영 장치 및 그 방법
WO2013162201A1 (ko) 피사체의 실시간 움직임 추적 및 의료영상 보정 방법
JP5742970B2 (ja) 放射線撮影装置
JP2009219654A (ja) 放射線ct装置
WO2016137157A1 (ko) 의료 영상 장치 및 의료 영상 처리 방법
WO2016043562A1 (ko) X선 영상 형성 장치 및 방법
CN111184523B (zh) 基于dr设备的三维图像重建方法及系统
WO2015072807A1 (ko) 치과용 3차원 표면영상 생성 장치 및 방법
WO2017188726A1 (ko) 실시간 입체시를 위한 x선 투시 장치
WO2017003223A1 (ko) 영상 획득 장치 및 방법
WO2014168288A1 (ko) 엑스선 영상장치 및 엑스선 영상장치의 이미징 방법
JP2016538065A5 (ko)
WO2024085549A1 (ko) 3차원 컴퓨터 단층 촬영 방법 및 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15796933

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2015796933

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015796933

Country of ref document: EP

Ref document number: 15313776

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20167035246

Country of ref document: KR

Kind code of ref document: A