WO2015178201A1 - Scanning probe microscope and sample observation method using same - Google Patents

Scanning probe microscope and sample observation method using same Download PDF

Info

Publication number
WO2015178201A1
WO2015178201A1 PCT/JP2015/063159 JP2015063159W WO2015178201A1 WO 2015178201 A1 WO2015178201 A1 WO 2015178201A1 JP 2015063159 W JP2015063159 W JP 2015063159W WO 2015178201 A1 WO2015178201 A1 WO 2015178201A1
Authority
WO
WIPO (PCT)
Prior art keywords
scattered light
light
probe
sample
measurement probe
Prior art date
Application number
PCT/JP2015/063159
Other languages
French (fr)
Japanese (ja)
Inventor
中田 俊彦
馬塲 修一
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Publication of WO2015178201A1 publication Critical patent/WO2015178201A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01QSCANNING-PROBE TECHNIQUES OR APPARATUS; APPLICATIONS OF SCANNING-PROBE TECHNIQUES, e.g. SCANNING PROBE MICROSCOPY [SPM]
    • G01Q60/00Particular types of SPM [Scanning Probe Microscopy] or microscopes; Essential components thereof
    • G01Q60/18SNOM [Scanning Near-Field Optical Microscopy] or apparatus therefor, e.g. SNOM probes
    • G01Q60/22Probes, their manufacture, or their related instrumentation, e.g. holders

Definitions

  • the present invention relates to a scanning probe microscope and a sample observation method using the same.
  • a near-field optical scanning microscope which is a type of scanning probe microscope, is known as a means for measuring optical properties and physical property information of a sample surface with high resolution.
  • Patent Document 1 JP 2009-236895 A.
  • Patent Document 1 JP 2009-236895 A.
  • This publication states that “a plasmon-enhanced near-field probe having a nanometer-order optical component function is constructed by combining a nanometer-order cylindrical structure and a nanometer-order microstructure, and is low at each measurement point on the sample. By repeatedly approaching and retracting with contact force, the optical information and unevenness information on the sample surface is measured with nanometer resolution and high reproducibility without damaging both the probe and the sample. " (See summary).
  • CNT is used for the probe, and a metal carbide such as V, Y, Ta, and Sb that expresses photoluminescence and electroluminescence at its upper end, ZnS phosphor, and CaS phosphor.
  • a metal carbide such as V, Y, Ta, and Sb that expresses photoluminescence and electroluminescence at its upper end, ZnS phosphor, and CaS phosphor.
  • Incorporating fluorescent particles such as CdSe (core) / ZnS (outer shell) or wavelength conversion elements such as nonlinear optical crystals to form a light guide unit, the incident laser light is wavelength-converted, and after wavelength conversion
  • a method for generating near-field light at the tip of a CNT probe is disclosed.
  • Patent Document 1 the method of wavelength conversion by mounting fluorescent particles or a nonlinear optical crystal on the upper end of the CNT has low conversion efficiency, so that a near-field with a sufficient amount of light at the tip of the CNT probe in the nanometer order. It is difficult to obtain light, and there is an essential problem that background noise cannot be sufficiently reduced. Furthermore, there is a problem that it is difficult to stably form fluorescent particles and nonlinear optical crystals on the upper end of fine CNTs.
  • an object of the present invention is to provide an apparatus and method that can solve the above-described problems and can significantly reduce background noise.
  • the present invention includes a driving unit that scans a measurement probe relative to a sample, and scattered light generated between the measurement probe and the sample by irradiation of excitation light.
  • a scanning probe microscope comprising a scattered light detection system that selects and detects inelastic scattered light.
  • the measurement probe is scanned relative to the sample, and the measurement probe is irradiated with excitation light, and the measurement probe and the sample are irradiated with the excitation light.
  • a sample observation method for selecting and detecting inelastic scattered light among scattered light generated in between.
  • the background noise can be greatly reduced, and a near-field light image having a resolution of nanometer order with improved SN ratio, contrast, and measurement reproducibility can be obtained.
  • FIG. 3 is a perspective view of a Si 3 N 4 cantilever-mounted gold-coated Si 3 N 4 chip and a probe fixed to the tip of each of Examples 1 to 3.
  • FIG. 3 is a front view showing the structure of a CNT probe filled with gold nanoparticles in Examples 1 to 3.
  • FIG. 3 is a front view showing the structure of a CNT probe with gold nanoparticles filled in the tip in Examples 1 to 3.
  • FIG. 6 is a front view showing the structure of a CNT probe without a filler in Examples 1 to 3 and having a tip closed with carbon.
  • FIG. 3 is a front view showing the structure of a Si probe with a sharpened tip in Examples 1 to 3.
  • FIG. 4 is a side view showing a gold-coated Si 3 N 4 tip and a probe fixed to the tip end in Examples 1 to 3.
  • FIG. 4 is a graph showing an example of a Raman spectrum of CNT in Examples 1 to 3.
  • 1 is a block diagram illustrating a schematic configuration of a scanning probe microscope according to Embodiment 1.
  • FIG. 6 is a graph showing the spectral transmittance of notch filters in Examples 1 to 3. It is a graph which shows the spectral transmission factor of the band pass filter in Example 1 and 2.
  • FIG. It is a graph which shows the spectral transmission factor of the long wavelength transmission filter in Example 1 and 2.
  • 6 is a side view showing a modified example of the gold-coated Si 3 N 4 tip and the probe fixed to the tip end in Examples 1 to 3.
  • 6 is a block diagram illustrating a schematic configuration of a scanning probe microscope in Embodiment 2.
  • FIG. 6 is a block diagram illustrating a schematic configuration of a scanning probe microscope in Embodiment 3.
  • FIG. 1 is a side view showing a modified example of the gold-coated Si 3 N 4 tip and the probe fixed to the tip end in Examples 1 to 3.
  • 6 is a block diagram illustrating a schematic configuration of a scanning probe microscope in Embodiment 2.
  • FIG. 6 is a block diagram illustrating a schematic configuration of a scanning probe microscope in Embodiment 3.
  • FIG. 1 is a perspective view of a Si 3 N 4 cantilever-mounted gold-coated Si 3 N 4 chip and a measurement probe fixed to the tip of the first embodiment.
  • the tip of the Si 3 N 4 cantilever 4 is formed with a triangular pyramid-shaped Si 3 N 4 tip 2 coated with a gold thin film 3, and a carbon nanotube (CNT: Carbon Nanotube) as a measurement probe is further provided at the tip end.
  • the probe 1 is fixed.
  • the material of the chip 2 and the cantilever 4 is not limited to Si 3 N 4 , and may be Si, SiO 2 or the like as long as it is a material that transmits laser light having a specific wavelength.
  • the gold thin film 3 may be a film made of another material as long as it is a metal material that shields laser light depending on the film thickness, and may be, for example, an aluminum or silver film.
  • FIG. 2 shows an example of the structure of the CNT probe 1.
  • the CNT probe 1 has a length of 2 to 3 ⁇ m, an outer diameter of ⁇ 20 nm, an inner diameter of ⁇ 4 nm, a multilayer CNT sharpened to a tip of about ⁇ 4 nm as a base, and filled with gold nanoparticles 10 of ⁇ 4 nm.
  • the filler is not limited to gold nanoparticles.
  • gold nanoparticles can be used for near infrared light
  • silver nanoparticles can be used for visible light
  • Al nanoparticles can be used for ultraviolet light.
  • nanorods may be used instead of nanoparticles.
  • a structure in which the tip is closed with carbon without a filler as shown in FIG. 4 may be used.
  • the probe material is not limited to CNT, and any other material may be used as long as it is a material that induces inelastic scattering typified by Raman scattering as in CNT.
  • a Si probe 15 having a sharpened tip can be used.
  • the CNT probe 1 is fused and fixed on the ridge line of the gold-coated Si 3 N 4 chip 2 using three gold dots 15 formed by electron beam selective CVD (Chemical Vapor Deposition) as a binder. Is done.
  • the dots 15 are not limited to gold, and may be carbon or tungsten.
  • the CNT probe 1 protrudes from the tip of the gold-coated Si 3 N 4 chip 2 by 200 to 300 nm.
  • excitation laser light 5a having a wavelength of 532 nm for example, as excitation light is condensed and irradiated on the front edge of the gold-coated Si 3 N 4 chip 2 from the back surface of the Si 3 N 4 cantilever 4
  • the surface plasmon 8 is excited on the ridgeline of the gold thin film 3. Since the intensity of the surface plasmon 8 depends on the incident angle of the excitation laser beam 5a with respect to the back surface of the Si 3 N 4 cantilever 4, the excitation laser beam 5a is at an angle at which the intensity of the surface plasmon 8 is the strongest (plasmon resonance). Should be incident.
  • the angle at which the strength of the surface plasmon 8 is the strongest is the thickness of the metal thin film that coats the material of the cantilever tip (Si 3 N 4 in this embodiment) and the measuring probe (in this embodiment, the thickness of the gold thin film). ) Etc. Similarly, it is desirable to set the thickness of the metal thin film to a thickness at which the strength of the surface plasmon 8 is the strongest.
  • the surface plasmon 8 propagates toward the tip of the gold-coated Si 3 N 4 chip 2 and the near-field light 11 localized at the tip of the chip 2 is excited.
  • the tip of the CNT probe 1 is present in the electric field of the near-field light 11, and when the electric field is concentrated on the tip, ⁇ 4 nm (spot size), which is the same as the tip diameter, is provided at the tip of the probe.
  • Second near-field light 6 is generated.
  • the surface plasmon 8 propagates along the gold nanoparticles 10 and concentrates the electric field on the tip of the CNT probe 1, Along with the electric field concentration of the near-field light 11, a very strong near-field light 6 is excited. As shown in FIGS. 2 to 5, the near-field light 6 interacts with the surface of the sample 20 and the CNT probe 1 itself, and scattered light (propagating light) 7 is generated.
  • scattered light generated from the surface of the sample 20 by the near-field light 6 and Raman scattered light generated by the interaction between the near-field light and the CNT probe 1 itself are scattered on the surface of the sample 20.
  • scattered light obtained by scattering Raman scattered light generated by the interaction between the near-field light and the CNT probe 1 itself on the surface of the sample 20 is used as the probe light.
  • the intensity of the scattered light changes according to the magnitude relationship between the refractive index n 0 of the region 21 constituting the sample 20 and the refractive index n 1 of the region 22, and this is a near field obtained by scanning the CNT probe 1. It becomes the contrast of the optical image.
  • FIG. 7 shows an example of a Raman spectrum that is inelastically scattered light of CNTs.
  • the vertical axis represents the Raman intensity normalized based on the intensity of the excitation light
  • the horizontal axis represents the wave number representing the amount of wavelength shift from the wavelength of the excitation light.
  • the wave number representing the wavelength shift amount can be obtained by subtracting the reciprocal of the wavelength after the shift from the reciprocal of the excitation light wavelength.
  • a spectrum called G band appearing in the vicinity of 1590 cm ⁇ 1 is a spectrum unique to graphite.
  • the G band is split into two and there are G + and G ⁇ spectra, but G + appears to be around 1593 cm ⁇ 1 (G +) regardless of the diameter.
  • the spectrum observed in the low frequency region of 100 to 300 cm ⁇ 1 is a mode in which the diameter of the CNT vibrates, and is a spectrum called a radial breathing mode (RBM).
  • RBM radial breathing mode
  • the spectrum in the vicinity of 1350 cm ⁇ 1 is called a D band, and this spectrum becomes strong when the CNT has a defect such as a point defect or a crystal edge, which is a spectrum caused by the defect.
  • the near-field light 6 excited at the tip of the CNT probe 1 includes the above-described Raman spectrum component (inelastically scattered light) along with the component of the excitation laser beam 5a having the wavelength of 532 nm.
  • the G-band spectrum having a high intensity is separated from the excitation wavelength and used as the probe light.
  • the G band (wave number: 1593 cm ⁇ 1 ) is a wavelength component of 581 nm shifted to the longer wavelength side by 49 nm.
  • the Raman spectral component of 581 nm is extracted by wavelength separation.
  • a near-field light image equivalent to imaging the surface of the sample 20 can be obtained with light having a wavelength of 581 nm, not the excitation wavelength of 532 nm, with a resolution of 4 nm or less, which is the same as the diameter of the CNT probe tip.
  • wavelength-separating scattered light having a wavelength of 581 nm of the Raman spectrum component (G band) of the CNT probe 1 instead of the excitation wavelength of 532 nm are as follows. As shown in FIG. 6, when the excitation laser beam 5 a having a wavelength of 532 nm is condensed and irradiated on the front ridge line of the gold-coated Si 3 N 4 chip 2, 100% thereof is converted into the surface plasmon 8. Instead, a part of the light leaks from the gold thin film 3 to generate scattered light (propagating light) 12, or a component scattered from the back surface of the Si 3 N 4 cantilever 4 or the surface of the sample 20.
  • the Raman spectral component having a wavelength of 581 nm generated in the CNT probe 1 has very high intensity as near-field light at the CNT probe tip where the electric field is concentrated, and the tip region of the probe on the surface of the sample 20 Only the information is selectively stored.
  • the Raman spectrum component having the wavelength of 581 nm from the scattered light 7 and 12 by separating the wavelength, the background noise can be greatly reduced, and the SN ratio, contrast, and measurement reproducibility are improved. It is possible to obtain a near-field light image having a resolution of nanometer order.
  • FIG. 8 shows the configuration of a scanning probe microscope based on the above principle.
  • the scanning probe microscope includes a sample holder 25 on which the sample 20 is mounted, an XY piezoelectric element stage 30 on which the sample holder 25 is mounted and which scans the sample 20 in the X and Y directions relative to the measurement probe, and the sample 20 on the tip.
  • a Si 3 N 4 cantilever 4 mounted with a gold-coated Si 3 N 4 chip 2 to which a CNT probe 1 is fixed, a piezoelectric element actuator 34 for minutely vibrating the Si 3 N 4 cantilever 4 in the Z direction, and Si 3 N 4 Optical lever detection that detects the contact force between the CNT probe 1 and the sample 20 by detecting the deflection of the Z piezoelectric element stage 33 that scans the cantilever 4 relative to the sample 20 in the Z direction.
  • excitation to be irradiated with the system 100 for example, the excitation laser beam 5a of a solid laser as a light source wavelength 532nm to CNT probe 1 via a Si 3 N 4 cantilevers 4 back Laser light irradiation system 50, scattered light detection system 110 that collects scattered light and photoelectrically converts it, and signal processing that generates and outputs a near-field light image and a surface unevenness image from the obtained scattered light signal and XYZ displacement signal
  • a control system 120 is provided.
  • the drive unit includes an XY piezoelectric element stage 30 and a Z piezoelectric element stage 33 and scans the CNT probe 1 relative to the sample 20.
  • the back surface of the cantilever 4 is irradiated with the laser light 36 from the semiconductor laser 35, the reflected light is received by the quadrant sensor 37, and the deflection amount of the cantilever 4 is detected from the change in position of the reflected light. Further, the contact force between the CNT probe 1 and the sample 20 is detected from the deflection amount, and the Z piezoelectric element stage 33 is controlled by the control unit 80 of the signal processing / control system 120 so that the contact force always has a preset value. Feedback control.
  • Si 3 N 4 cantilever 4 it is preferable to increase the reflectance by coating an aluminum film on the laser light 36 irradiation portion on the back surface of the cantilever.
  • the CNT probe 1 Since the CNT probe 1 is minutely vibrated in the Z direction at the resonance frequency of the cantilever 4 by the piezoelectric element actuator 34 based on the signal from the oscillator 60, the generated near-field light 6, scattered light 7, and scattered light 12 are also generated. Intensity modulated at the same frequency.
  • the two scattered lights 7 and 12 are converted into parallel light by the condenser lens 41, and, for example, are transmitted through the notch filter 46 and the bandpass filter 47, thereby removing the excitation wavelength component and the Raman spectrum component 43. Is selected.
  • the Raman spectral component 43 is condensed at one point on the light receiving surface 45 of the detector 44 such as a photomultiplier tube or a photodiode by the imaging lens 42 and is photoelectrically converted.
  • the thickness of the gold thin film 3 was set to 50 nm at which the excitation efficiency of the surface plasmon 8 was maximized.
  • FIG. 9 shows the spectral transmittance of the notch filter 46.
  • the transmittance is about 0.0008% at the excitation wavelength of 532 nm, the transmittance is about 98% at the wavelength of 581 nm of the Raman spectrum component (G band) of the CNT probe 1 to be detected, and the excitation light wavelength in the scattered light.
  • the component can be greatly attenuated.
  • FIG. 10 shows the spectral transmittance of the bandpass filter 47.
  • the transmittance of the Raman spectrum component (G band) of the CNT probe 1 is about 91% at a wavelength of 581 nm, and the transmittance is 0.00002% at an excitation wavelength of 532 nm to be removed.
  • the Raman spectral component of the excitation light is a weak scattered light of nearly 6 digits, but by combining the notch filter 46 and the bandpass filter 47, an extinction ratio of nearly 12 digits can be obtained, greatly increasing the background noise. It is possible to stably obtain a near-field light image having a Raman spectrum component reduced to a very low level.
  • the wavelength-separated and intensity-modulated Raman spectrum signal output from the detector 44 is synchronously detected by the lock-in amplifier 70 of the signal processing / control system 120, and the resonance frequency component of the cantilever 4 is output. Since the Raman scattered light component (propagation light) generated by the excitation laser beam 5 a other than the tip of the CNT probe 1 is a direct current component without reacting to the minute vibration of the cantilever 4, the output of the lock-in amplifier 70. It is not included in the signal. Thereby, it is possible to selectively detect a Raman spectrum component due to near-field light while suppressing background noise.
  • the signal SN ratio can be further improved by detecting harmonic components such as the second harmonic and the third harmonic of the resonance frequency.
  • the Raman spectrum signal from the lock-in amplifier 70 is sent to the control unit 80 of the signal processing / control system 120 and combined with the XY signal from the XY piezoelectric element stage 30, a near-field light image is generated and output to the display 90.
  • the At the same time, the Z signal from the Z piezoelectric element stage 33 is also combined with the XY signal by the control unit 80 to generate an uneven image on the sample surface and output to the display 90.
  • Raman scattered light (Raman spectral component) is used as inelastic scattered light
  • the present invention is not limited to this. If conditions such as the measurement probe material and the excitation light irradiation method are in place, Brillouin scattering and coherent anti-Stokes Raman scattering (CARS: Coherent Anti-Stokes Raman Scattering) can be used as inelastically scattered light generated from the measurement probe. Applicable.
  • CARS Coherent Anti-Stokes Raman Scattering
  • the Raman intensity becomes about 1000 times stronger. This is called the resonance Raman effect.
  • excitation light having a wavelength that produces this resonance Raman effect the intensity of the Raman spectrum component can be increased, and the background noise can be relatively greatly reduced. As a result, it is possible to obtain a near-field light image with a nanometer-order resolution with further improved SN ratio, contrast, and measurement reproducibility.
  • the Raman spectral component of the CNT is caused by tip enhanced near-field Raman scattering (TERS). Is further enhanced by nearly 1000 times, and it becomes possible to obtain a near-field light image having a resolution of nanometer order with improved SN ratio, contrast, and measurement reproducibility.
  • TMS tip enhanced near-field Raman scattering
  • the background noise can be greatly reduced by extracting the Raman spectrum component generated at the tip of the CNT probe 1 from the scattered light 7 and 12 by wavelength separation. This makes it possible to obtain a near-field light image having a resolution of nanometer order with improved SN ratio, contrast, and measurement reproducibility.
  • the tip of the CNT probe 1 is present in the electric field of the near-field light 11, and when the electric field is concentrated on the tip, ⁇ 4 nm (spot size), which is the same as the tip diameter, is provided at the tip of the probe.
  • Second near-field light 6 is generated. As shown in FIGS. 2 to 5, the near-field light 6 interacts with the surface of the sample 20 and the CNT probe 1 itself, and scattered light (propagating light) 7 is generated.
  • scattered light generated from the surface of the sample 20 by the near-field light 6 and Raman scattered light generated by the interaction between the near-field light and the CNT probe 1 itself are scattered on the surface of the sample 20.
  • the intensity of the scattered light 7 changes according to the magnitude relationship between the refractive index n 0 of the region 21 constituting the sample 20 and the refractive index n 1 of the region 22, and this is a near field obtained by scanning the CNT probe 1. It becomes the contrast of the optical image. Since the configuration and function of the scanning probe microscope are the same as those shown in FIG.
  • the background noise can be significantly reduced by extracting the Raman spectrum component generated at the tip of the CNT probe 1 from the scattered light 7 and 12 by wavelength separation. It is possible to obtain a near-field light image having a resolution of nanometer order with improved ratio, contrast, and measurement reproducibility.
  • the present modification irradiates excitation laser light from the outside, so that Si that does not transmit laser light can be used as the material constituting the cantilever 4 and the gold coat chip 2. .
  • Si it is only necessary to sharpen the tip of the chip, and it is not necessary to form CNT as a measurement probe on the tip of the chip. Therefore, a measurement probe that easily generates inelastically scattered light can be produced.
  • a second embodiment of the present invention will be described with reference to FIG.
  • scattered light on the surface of the sample 20 of the near-field light 6 at the tip of the CNT probe 1 is detected.
  • the sample 20 of the near-field light 6 at the tip of the CNT probe 1 is detected.
  • the scattered light component 7 transmitted through the sample 20 is detected.
  • the two scattered lights 7 and 12 pass through the transparent sample holder 26 and become parallel light by the condenser lens 41.
  • the parallel light passes through the notch filter 46 and the band pass filter 47, so that the Raman spectrum component 43 is selected.
  • the light of the selected Raman spectral component 43 is condensed by the imaging lens 42 at one point on the light receiving surface 45 of the detector 44 such as a photomultiplier tube or a photodiode, and subjected to photoelectric conversion.
  • Modification 1 of the excitation laser beam irradiation system 50 can also be incorporated in this embodiment.
  • the XY piezoelectric element stage 31 that places the sample holder 26 and scans the sample 20 in the XY direction has a structure in which a hole is opened in the center in order to transmit the transmitted scattered light.
  • the configurations and functions of the other excitation laser beam irradiation system 50, optical lever detection system 100, and signal processing / control system 120 are the same as those in the first embodiment, and thus description thereof is omitted.
  • the Raman spectrum component generated at the tip of the CNT probe 1 is extracted from the scattered light 7 and 12 by wavelength separation, thereby greatly reducing the background noise.
  • the Raman spectrum component generated at the tip of the CNT probe 1 is extracted from the scattered light 7 and 12 by wavelength separation, thereby greatly reducing the background noise.
  • the detection solid angle can be increased, and imaging can be performed with higher contrast than in the first embodiment.
  • the SN ratio and measurement reproducibility of the optical image can be further improved.
  • the excitation laser light irradiation system 50 irradiates the CNT probe 1 with excitation laser light 5a and 5b having a constant wavelength
  • the scattered light detection system 110 provides two scattered light 7 And 12 are transmitted through the notch filter 46 and the band pass filter 47 to extract the Raman spectrum component 43, and then received by the detector 44.
  • excitation laser light 5c having an arbitrary wavelength is generated using a wavelength variable solid-state laser as a light source.
  • the excitation laser beam irradiation system 51 that emits light is used, and the notch filter 46 can be replaced with a notch filter having a different light blocking wavelength region according to the excitation wavelength.
  • the scattered light detection system 110 the two scattered lights 7 and 12 are guided not to the band pass filter but to the spectroscope 48 so that inelastic scattered light to be detected can be selected from a plurality of scattered lights. Thereby, it becomes the structure which can select a Raman spectrum component flexibly according to an excitation wavelength.
  • control unit 81 of the signal processing / control system 120 executes wavelength control of the wavelength tunable laser and control of the Raman spectrum component extracted by the spectroscope 48. For example, it is possible to monitor the intensity of a specific Raman spectral component while changing the excitation wavelength and search for an excitation wavelength at which the resonance Raman effect occurs. Other configurations and functions are the same as those of the first embodiment, and thus description thereof is omitted. By observing the surface of the sample 20 using an excitation wavelength that causes a resonance Raman effect, it is possible to perform measurement with higher sensitivity while reducing background noise.
  • the spectroscopic optical system having the spectroscope 48 can acquire the Raman spectrum of the sample 20 itself excited by the Raman spectrum component of the CNT probe 1, and the surface of the sample 20 can be nano-sized. It becomes possible to perform Raman spectroscopic imaging with meter resolution. Modification 1 of the excitation laser beam irradiation system 50 can also be incorporated in this embodiment.
  • the background noise can be greatly reduced by extracting the Raman spectral component generated at the tip of the CNT probe 1 from the scattered light 7 and 12 by wavelength separation. It is possible to obtain a near-field light image having a resolution of nanometer order with improved ratio, contrast, and measurement reproducibility. In addition, it is possible to easily search for an excitation wavelength at which the resonance Raman effect occurs. Therefore, the intensity of the Raman spectrum component used as the probe light can be increased by using excitation light having a wavelength that causes the resonance Raman effect in the measurement probe, and the background noise can be significantly reduced relatively. Become. As a result, it is possible to obtain a near-field light image with a nanometer-order resolution with further improved SN ratio, contrast, and measurement reproducibility.
  • the excitation laser beams 5a, 5b, and 5c are all monochromatic light.
  • the present invention is not limited to this, and the excitation wavelengths for three wavelengths of red, green, and blue are used. It is also possible to perform color near-field imaging by simultaneously acquiring three Raman spectral components corresponding to each wavelength by combining laser light and a spectroscope.
  • the cantilever and the tip can be changed to Si.
  • the other configurations are not limited to the configurations of all the above-described embodiments, and it is needless to say that the configurations can be appropriately changed as long as the configurations exhibit the effects of the present invention.

Abstract

The purpose of the present invention is to provide a method and device for obtaining a nanometer-order-resolution near-field light image having an enhanced signal-to-noise ratio, contrast, and measurement reproducibility by significantly reducing background noise in a near-field optical scanning microscope. The present invention provides a scanning probe microscope provided with a drive unit for scanning a measurement probe in relation to a sample and a scattered light detection system for selecting and detecting inelastically scattered light from among scattered light generated between the measurement probe and the sample through the irradiation of excitation light.

Description

走査プローブ顕微鏡およびこれを用いた試料の観察方法Scanning probe microscope and sample observation method using the same
 本発明は、走査プローブ顕微鏡およびこれを用いた試料観察方法に関する。 The present invention relates to a scanning probe microscope and a sample observation method using the same.
 試料表面の光学的性質や物性情報を高分解能で測定する手段として、走査プローブ顕微鏡の一種である近接場光走査顕微鏡(SNOM:Scanning Near-field Optical Microscope)が知られる。 A near-field optical scanning microscope (SNOM), which is a type of scanning probe microscope, is known as a means for measuring optical properties and physical property information of a sample surface with high resolution.
 そして、本技術分野の背景技術として、特開2009-236895号公報(特許文献1)がある。この公報には、「ナノメートルオーダの円筒形構造とナノメートルオーダの微小構造を組み合わせて、ナノメートルオーダの光学分機能を有するプラズモン増強近接場プローブを構成し、試料上の各測定点で低接触力での接近・退避を繰り返すことにより、プローブと試料の双方にダメージを与えることなく、ナノメートルオーダの分解能でかつ高い再現性で、試料表面の光学情報及び凹凸情報を測定する。」と記載されている(要約参照)。 And as a background art of this technical field, there is JP 2009-236895 A (Patent Document 1). This publication states that “a plasmon-enhanced near-field probe having a nanometer-order optical component function is constructed by combining a nanometer-order cylindrical structure and a nanometer-order microstructure, and is low at each measurement point on the sample. By repeatedly approaching and retracting with contact force, the optical information and unevenness information on the sample surface is measured with nanometer resolution and high reproducibility without damaging both the probe and the sample. " (See summary).
特開2009-236895号公報JP 2009-236895 A
 従来、近接場光走査顕微鏡では、励起光をカンチレバーに集光して照射した際に、励起光で励起された近接場光と試料との相互作用により発生した散乱光だけでなく、励起光の一部がプローブを構成する材料から漏れてきて生じた散乱光、また、カンチレバーの背面あるいは試料表面から散乱した励起光の散乱光などが存在する。その結果、これらの散乱光成分は背景雑音として近接場光画像に重畳し、近接場光画像のSN比、コントラスト、測定再現性を劣化させる要因となっている。 Conventionally, in the near-field light scanning microscope, when the excitation light is focused on the cantilever and irradiated, not only the scattered light generated by the interaction between the near-field light excited by the excitation light and the sample but also the excitation light There are scattered light that is partly leaked from the material constituting the probe, and scattered light of excitation light scattered from the back surface of the cantilever or the sample surface. As a result, these scattered light components are superimposed on the near-field light image as background noise, which is a factor that degrades the SN ratio, contrast, and measurement reproducibility of the near-field light image.
 そこで、前記特許文献1では、探針にCNTを用い、その上端部にフォトルミネセンス、エレクトロルミネセンスを発現するV、Y、Ta、Sb等の金属カーバイトや、ZnS蛍光体、CaS蛍光体、CdSe(コア)/ZnS(外殻)等の蛍光粒子、または非線形光学結晶等の波長変換素子を搭載して導光部を形成することで、入射レーザ光を波長変換し、波長変換後の近接場光をCNT探針先端に生成する方法が開示されている。 Therefore, in Patent Document 1, CNT is used for the probe, and a metal carbide such as V, Y, Ta, and Sb that expresses photoluminescence and electroluminescence at its upper end, ZnS phosphor, and CaS phosphor. Incorporating fluorescent particles such as CdSe (core) / ZnS (outer shell) or wavelength conversion elements such as nonlinear optical crystals to form a light guide unit, the incident laser light is wavelength-converted, and after wavelength conversion A method for generating near-field light at the tip of a CNT probe is disclosed.
 しかしながら、前記特許文献1において、CNTの上端部に蛍光粒子や非線形光学結晶を搭載して波長変換する方法は、変換効率が低いため、ナノメートルオーダのCNT探針先端で十分な光量の近接場光を得ることが難しく、相対的に背景雑音を十分低減できないという本質的課題を有している。さらに、微細なCNTの上端部に蛍光粒子や非線形光学結晶を安定に形成することが困難であるという課題を抱えている。 However, in Patent Document 1, the method of wavelength conversion by mounting fluorescent particles or a nonlinear optical crystal on the upper end of the CNT has low conversion efficiency, so that a near-field with a sufficient amount of light at the tip of the CNT probe in the nanometer order. It is difficult to obtain light, and there is an essential problem that background noise cannot be sufficiently reduced. Furthermore, there is a problem that it is difficult to stably form fluorescent particles and nonlinear optical crystals on the upper end of fine CNTs.
 そこで、本発明の目的は、上記課題を解決し、背景雑音を大幅に低減することができる装置及び方法を提供することにある。 Therefore, an object of the present invention is to provide an apparatus and method that can solve the above-described problems and can significantly reduce background noise.
 上記目的を達成するために、本発明は、試料に対して測定探針を相対的に走査する駆動部と、励起光の照射により前記測定探針と前記試料との間に発生する散乱光のうち非弾性散乱光を選択して検出する散乱光検出系と、を備える走査プローブ顕微鏡を提供する。 In order to achieve the above object, the present invention includes a driving unit that scans a measurement probe relative to a sample, and scattered light generated between the measurement probe and the sample by irradiation of excitation light. There is provided a scanning probe microscope comprising a scattered light detection system that selects and detects inelastic scattered light.
 また、他の観点における本発明は、 試料に対して相対的に測定探針を走査し、励起光を前記測定探針に照射し、前記励起光の照射により前記測定探針と前記試料との間に発生する散乱光のうち非弾性散乱光を選択して検出する試料観察方法を提供する。 In another aspect of the present invention, the measurement probe is scanned relative to the sample, and the measurement probe is irradiated with excitation light, and the measurement probe and the sample are irradiated with the excitation light. Provided is a sample observation method for selecting and detecting inelastic scattered light among scattered light generated in between.
 本発明によれば、背景雑音を大幅に低減することが可能となり、SN比、コントラスト、測定再現性が向上したナノメートルオーダの分解能の近接場光画像を得ることが可能となる。 According to the present invention, the background noise can be greatly reduced, and a near-field light image having a resolution of nanometer order with improved SN ratio, contrast, and measurement reproducibility can be obtained.
実施例1~3におけるSiカンチレバー搭載金コートSiチップと、チップ先端に固定した探針の斜視図である。FIG. 3 is a perspective view of a Si 3 N 4 cantilever-mounted gold-coated Si 3 N 4 chip and a probe fixed to the tip of each of Examples 1 to 3. 実施例1~3における金ナノ粒子が充填されCNT探針の構造を示す正面図である。FIG. 3 is a front view showing the structure of a CNT probe filled with gold nanoparticles in Examples 1 to 3. 実施例1~3における金ナノ粒子が先端に充填されCNT探針の構造を示す正面図である。FIG. 3 is a front view showing the structure of a CNT probe with gold nanoparticles filled in the tip in Examples 1 to 3. 実施例1~3における充填材無しで先端がカーボンで閉じたCNT探針の構造を示す正面図である。FIG. 6 is a front view showing the structure of a CNT probe without a filler in Examples 1 to 3 and having a tip closed with carbon. 実施例1~3における先端が先鋭化されたSi探針の構造を示す正面図である。FIG. 3 is a front view showing the structure of a Si probe with a sharpened tip in Examples 1 to 3. 実施例1~3における金コートSiチップと、チップ先端に固定した探針を示す側面図である。FIG. 4 is a side view showing a gold-coated Si 3 N 4 tip and a probe fixed to the tip end in Examples 1 to 3. 実施例1~3におけるCNTのラマンスペクトルの一例を示すグラフ図である。FIG. 4 is a graph showing an example of a Raman spectrum of CNT in Examples 1 to 3. 実施例1における走査プローブ顕微鏡の概略の構成を示すブロック図である。1 is a block diagram illustrating a schematic configuration of a scanning probe microscope according to Embodiment 1. FIG. 実施例1~3におけるノッチフィルタの分光透過率を示すグラフ図である。FIG. 6 is a graph showing the spectral transmittance of notch filters in Examples 1 to 3. 実施例1及び2におけるバンドパスフィルタの分光透過率を示すグラフ図である。It is a graph which shows the spectral transmission factor of the band pass filter in Example 1 and 2. FIG. 実施例1及び2における長波長透過フィルタの分光透過率を示すグラフ図である。It is a graph which shows the spectral transmission factor of the long wavelength transmission filter in Example 1 and 2. FIG. 実施例1~3における金コートSiチップと、チップ先端に固定した探針の変形例を示す側面図である。FIG. 6 is a side view showing a modified example of the gold-coated Si 3 N 4 tip and the probe fixed to the tip end in Examples 1 to 3. 実施例2における走査プローブ顕微鏡の概略の構成を示すブロック図である。6 is a block diagram illustrating a schematic configuration of a scanning probe microscope in Embodiment 2. FIG. 実施例3における走査プローブ顕微鏡の概略の構成を示すブロック図である。6 is a block diagram illustrating a schematic configuration of a scanning probe microscope in Embodiment 3. FIG.
 以下、実施例を図面を用いて説明する。 Hereinafter, examples will be described with reference to the drawings.
 本発明の第1の実施例を、図1~図11に基づいて説明する。 A first embodiment of the present invention will be described with reference to FIGS.
 図1は第1の実施例におけるSiカンチレバー搭載金コートSiチップと、チップ先端に固定した測定探針の斜視図である。Siカンチレバー4の先端には金薄膜3がコーティングされた三角錐状のSiチップ2が形成され、さらにチップ先端には、測定探針であるカーボンナノチューブ(CNT:Carbon Nanotube)探針1が固定されている。ここで、チップ2及びカンチレバー4の材料はSiに限らず、特定の波長のレーザ光を透過する材料であれば、Si、SiOなどであってもよい。また、金薄膜3は膜厚に応じてレーザ光を遮光する金属材料であれば他の材料の膜であってもよく、例えば、アルミ、銀の膜であってもよい。 FIG. 1 is a perspective view of a Si 3 N 4 cantilever-mounted gold-coated Si 3 N 4 chip and a measurement probe fixed to the tip of the first embodiment. The tip of the Si 3 N 4 cantilever 4 is formed with a triangular pyramid-shaped Si 3 N 4 tip 2 coated with a gold thin film 3, and a carbon nanotube (CNT: Carbon Nanotube) as a measurement probe is further provided at the tip end. The probe 1 is fixed. Here, the material of the chip 2 and the cantilever 4 is not limited to Si 3 N 4 , and may be Si, SiO 2 or the like as long as it is a material that transmits laser light having a specific wavelength. The gold thin film 3 may be a film made of another material as long as it is a metal material that shields laser light depending on the film thickness, and may be, for example, an aluminum or silver film.
 図2にCNT探針1の構造の一例を示す。CNT探針1は、長さ2~3μm、外径がφ20nm、内径φ4nmで、先端がφ4nm程度に先鋭化された多層CNTを母体とし、内部にφ4nmの金ナノ粒子10が充填されている。充填材は金ナノ粒子に限定されることは無い。用いるレーザ光の波長に応じて、例えば近赤外光に対しては金ナノ粒子、可視光に対しては銀ナノ粒子、紫外光に対してはAlナノ粒子を用いることができる。 FIG. 2 shows an example of the structure of the CNT probe 1. The CNT probe 1 has a length of 2 to 3 μm, an outer diameter of φ20 nm, an inner diameter of φ4 nm, a multilayer CNT sharpened to a tip of about φ4 nm as a base, and filled with gold nanoparticles 10 of φ4 nm. The filler is not limited to gold nanoparticles. Depending on the wavelength of the laser light used, for example, gold nanoparticles can be used for near infrared light, silver nanoparticles can be used for visible light, and Al nanoparticles can be used for ultraviolet light.
 また、ナノ粒子ではなく、ナノロッドでも構わない。また、図3に示すようにCNT先端の充填、あるいは近接場光の発生効率が低くても問題ない場合は、図4に示すように充填材無しで先端がカーボンで閉じた構造でも構わない。さらに、探針材料としてはCNTに限定されるものではなく、CNTと同様にラマン散乱に代表される非弾性散乱が誘起される材料であれば、他の材料でも構わない。例えば、図5に示すように先端が先鋭化されたSi探針15も使用可能である。 Also, nanorods may be used instead of nanoparticles. Also, as shown in FIG. 3, when there is no problem even if the tip of the CNT is filled or the generation efficiency of near-field light is low, a structure in which the tip is closed with carbon without a filler as shown in FIG. 4 may be used. Further, the probe material is not limited to CNT, and any other material may be used as long as it is a material that induces inelastic scattering typified by Raman scattering as in CNT. For example, as shown in FIG. 5, a Si probe 15 having a sharpened tip can be used.
 図6に示すように、CNT探針1は、金コートSiチップ2の稜線上に、電子ビーム選択CVD(Chemical Vapor Deposition)により形成された3個の金ドット15をバインダとして溶融固着される。ドット15は金に限定されず、カーボン、タングステンでも構わない。CNT探針1は、金コートSiチップ2の先端から200~300nm突出している。 As shown in FIG. 6, the CNT probe 1 is fused and fixed on the ridge line of the gold-coated Si 3 N 4 chip 2 using three gold dots 15 formed by electron beam selective CVD (Chemical Vapor Deposition) as a binder. Is done. The dots 15 are not limited to gold, and may be carbon or tungsten. The CNT probe 1 protrudes from the tip of the gold-coated Si 3 N 4 chip 2 by 200 to 300 nm.
 図1に示すように、Siカンチレバー4の背面から、例えば励起光として波長532nmの励起用レーザ光5aを、金コートSiチップ2の前側稜線上に集光して照射すると、図6に示すように、金薄膜3の稜線上に表面プラズモン8が励起される。この表面プラズモン8の強度は、Siカンチレバー4の背面に対する励起用レーザ光5aの入射角度に依存するので、最も表面プラズモン8の強度が強くなる(プラズモン共鳴)角度で励起用レーザ光5aを入射させるのがよい。尚、最も表面プラズモン8の強度が強くなる角度は、カンチレバーチップの材料(本実施例ではSi)と測定探針をコートする金属薄膜の膜厚(本実施例では金薄膜の膜厚)などに基づき決めることができる。同様に、金属薄膜の膜厚も表面プラズモン8の強度が最も強くなる膜厚に設定することが望ましい。 As shown in FIG. 1, when excitation laser light 5a having a wavelength of 532 nm, for example, as excitation light is condensed and irradiated on the front edge of the gold-coated Si 3 N 4 chip 2 from the back surface of the Si 3 N 4 cantilever 4 As shown in FIG. 6, the surface plasmon 8 is excited on the ridgeline of the gold thin film 3. Since the intensity of the surface plasmon 8 depends on the incident angle of the excitation laser beam 5a with respect to the back surface of the Si 3 N 4 cantilever 4, the excitation laser beam 5a is at an angle at which the intensity of the surface plasmon 8 is the strongest (plasmon resonance). Should be incident. Note that the angle at which the strength of the surface plasmon 8 is the strongest is the thickness of the metal thin film that coats the material of the cantilever tip (Si 3 N 4 in this embodiment) and the measuring probe (in this embodiment, the thickness of the gold thin film). ) Etc. Similarly, it is desirable to set the thickness of the metal thin film to a thickness at which the strength of the surface plasmon 8 is the strongest.
 表面プラズモン8は金コートSiチップ2の先端に向かって伝搬し、チップ2先端部に局在した近接場光11が励起される。この近接場光11の電界の中にはCNT探針1の先端部が存在しており、この先端部に電界が集中することで、探針先端に先端直径と同程度のφ4nm(スポットサイズ)の第2の近接場光6が生じる。 The surface plasmon 8 propagates toward the tip of the gold-coated Si 3 N 4 chip 2 and the near-field light 11 localized at the tip of the chip 2 is excited. The tip of the CNT probe 1 is present in the electric field of the near-field light 11, and when the electric field is concentrated on the tip, φ4 nm (spot size), which is the same as the tip diameter, is provided at the tip of the probe. Second near-field light 6 is generated.
 特に、図2に示すように、CNT内部に金ナノ粒子10が充填されている場合には、表面プラズモン8が金ナノ粒子10に沿って伝搬してCNT探針1の先端に電界集中し、近接場光11の電界集中と合わせて、非常に強い近接場光6が励起される。図2~図5に示すように、近接場光6は試料20の表面及びCNT探針1自身と相互作用し、散乱光(伝搬光)7が生じる。 In particular, as shown in FIG. 2, when gold nanoparticles 10 are filled inside the CNT, the surface plasmon 8 propagates along the gold nanoparticles 10 and concentrates the electric field on the tip of the CNT probe 1, Along with the electric field concentration of the near-field light 11, a very strong near-field light 6 is excited. As shown in FIGS. 2 to 5, the near-field light 6 interacts with the surface of the sample 20 and the CNT probe 1 itself, and scattered light (propagating light) 7 is generated.
 この散乱光7には、近接場光6によって試料20の表面から発生する散乱光、また、近接場光とCNT探針1自身の相互作用によって発生したラマン散乱光が試料20の表面で散乱した散乱光などが含まれる。本実施例では、近接場光とCNT探針1自身の相互作用によって発生したラマン散乱光が試料20の表面で散乱した散乱光をプローブ光として用いる。この散乱光の強度は、試料20を構成する領域21の屈折率nと領域22の屈折率nの大小関係に応じて変化し、これがCNT探針1を走査することで得られる近接場光画像のコントラストとなる。 In the scattered light 7, scattered light generated from the surface of the sample 20 by the near-field light 6 and Raman scattered light generated by the interaction between the near-field light and the CNT probe 1 itself are scattered on the surface of the sample 20. This includes scattered light. In this embodiment, scattered light obtained by scattering Raman scattered light generated by the interaction between the near-field light and the CNT probe 1 itself on the surface of the sample 20 is used as the probe light. The intensity of the scattered light changes according to the magnitude relationship between the refractive index n 0 of the region 21 constituting the sample 20 and the refractive index n 1 of the region 22, and this is a near field obtained by scanning the CNT probe 1. It becomes the contrast of the optical image.
 図7は、CNTの非弾性散乱光であるラマンスペクトルの一例を示したものである。図7において、縦軸は、励起光の強度に基づいて規格化したラマン強度であり、横軸は、励起光の波長からの波長シフト量を表した波数である。ここで、波長シフト量を表した波数は、励起光波長の逆数からシフト後の波長の逆数を引くことで求められる。1590cm-1付近に現れるGバンドと呼ばれるスペクトルがグラファイト固有のスペクトルである。特にCNTの場合には、Gバンドが二つに分裂し、G+とG-のスペクトルが存在するが、G+は直径によらずほぼ1593cm-1(G+)付近に現れるのが大きな特徴である。100~300cm-1の低周波数領域に観測されるスペクトル(図7中では186cm-1)は、CNTの直径が振動するモードで、ラジアルブリ―ジングモード(RBM:Radial Breathing Mode)と呼ばれるスペクトルである。1350cm-1付近にあるスペクトルはDバンドと呼ばれていて、欠陥に起因するスペクトルである、CNTに点欠陥や結晶の端などの欠陥がある場合には、このスペクトルが強くなる。 FIG. 7 shows an example of a Raman spectrum that is inelastically scattered light of CNTs. In FIG. 7, the vertical axis represents the Raman intensity normalized based on the intensity of the excitation light, and the horizontal axis represents the wave number representing the amount of wavelength shift from the wavelength of the excitation light. Here, the wave number representing the wavelength shift amount can be obtained by subtracting the reciprocal of the wavelength after the shift from the reciprocal of the excitation light wavelength. A spectrum called G band appearing in the vicinity of 1590 cm −1 is a spectrum unique to graphite. In particular, in the case of CNT, the G band is split into two and there are G + and G− spectra, but G + appears to be around 1593 cm −1 (G +) regardless of the diameter. The spectrum observed in the low frequency region of 100 to 300 cm −1 (186 cm −1 in FIG. 7) is a mode in which the diameter of the CNT vibrates, and is a spectrum called a radial breathing mode (RBM). . The spectrum in the vicinity of 1350 cm −1 is called a D band, and this spectrum becomes strong when the CNT has a defect such as a point defect or a crystal edge, which is a spectrum caused by the defect.
 CNT探針1の先端に励起された近接場光6の中には、励起用レーザ光5aの波長532nmの成分と共に、上述したラマンスペクトル成分(非弾性散乱光)が含まれる。本発明では、上記のラマンスペクトルのうち、強度の高いGバンドのスペクトルを励起波長から分離してプローブ光として用いる。 The near-field light 6 excited at the tip of the CNT probe 1 includes the above-described Raman spectrum component (inelastically scattered light) along with the component of the excitation laser beam 5a having the wavelength of 532 nm. In the present invention, among the above-described Raman spectra, the G-band spectrum having a high intensity is separated from the excitation wavelength and used as the probe light.
 図7に示すように、励起光として波長532nmのレーザ光を用いた場合、Gバンド(波数:1593cm-1)は49nm長波長側にシフトした581nmの波長成分となる。近接場光6と試料20及びCNT探針1自身との相互作用によって生じた散乱光(伝搬光)の中から、この581nmのラマンスペクトル成分を波長分離して取り出す。これにより、励起波長532nmではなく、581nmの波長の光でCNT探針先端直径と同程度の4nm以下の分解能で、試料20表面をイメージングしたと等価な近接場光画像を得ることができる。 As shown in FIG. 7, when laser light having a wavelength of 532 nm is used as excitation light, the G band (wave number: 1593 cm −1 ) is a wavelength component of 581 nm shifted to the longer wavelength side by 49 nm. From the scattered light (propagating light) generated by the interaction between the near-field light 6, the sample 20, and the CNT probe 1 itself, the Raman spectral component of 581 nm is extracted by wavelength separation. As a result, a near-field light image equivalent to imaging the surface of the sample 20 can be obtained with light having a wavelength of 581 nm, not the excitation wavelength of 532 nm, with a resolution of 4 nm or less, which is the same as the diameter of the CNT probe tip.
 励起波長532nmではなく、CNT探針1のラマンスペクトル成分(Gバンド)の波長581nmの散乱光を波長分離して得る利点は、以下の通りである。図6に示すように、波長532nmの励起用レーザ光5aを、金コートSiチップ2の前側稜線上に集光して照射した際、その100%が表面プラズモン8に変換される訳ではなく、その一部は金薄膜3から漏れ、散乱光(伝搬光)12が発生したり、あるいはSiカンチレバー4の背面、あるいは試料20表面から散乱する成分となる。 Advantages obtained by wavelength-separating scattered light having a wavelength of 581 nm of the Raman spectrum component (G band) of the CNT probe 1 instead of the excitation wavelength of 532 nm are as follows. As shown in FIG. 6, when the excitation laser beam 5 a having a wavelength of 532 nm is condensed and irradiated on the front ridge line of the gold-coated Si 3 N 4 chip 2, 100% thereof is converted into the surface plasmon 8. Instead, a part of the light leaks from the gold thin film 3 to generate scattered light (propagating light) 12, or a component scattered from the back surface of the Si 3 N 4 cantilever 4 or the surface of the sample 20.
 また、近接場光11と試料との相互作用により発生した散乱光も存在する。これらの散乱光成分は背景雑音として近接場光画像に重畳し、近接場光画像のSN比、コントラスト、測定再現性を劣化させる要因となる。これらの散乱光成分の波長は総て励起波長に等しい532nmである。これに対し、CNT探針1に生じた波長581nmのラマンスペクトル成分は、電界が集中するCNT探針先端で近接場光として非常に高い強度を有し、かつ試料20表面上の探針先端領域の情報のみを選択的にもつ。従って、散乱光7、12の中から波長581nmのラマンスペクトル成分を選択的に波長分離して取り出すことにより、背景雑音を大幅に低減することが可能となり、SN比、コントラスト、測定再現性が向上したナノメートルオーダの分解能の近接場光画像を得ることが可能となる。 There is also scattered light generated by the interaction between the near-field light 11 and the sample. These scattered light components are superimposed on the near-field light image as background noise, and become a factor that degrades the SN ratio, contrast, and measurement reproducibility of the near-field light image. The wavelengths of these scattered light components are all 532 nm, which is equal to the excitation wavelength. On the other hand, the Raman spectral component having a wavelength of 581 nm generated in the CNT probe 1 has very high intensity as near-field light at the CNT probe tip where the electric field is concentrated, and the tip region of the probe on the surface of the sample 20 Only the information is selectively stored. Therefore, by selectively separating the Raman spectrum component having the wavelength of 581 nm from the scattered light 7 and 12 by separating the wavelength, the background noise can be greatly reduced, and the SN ratio, contrast, and measurement reproducibility are improved. It is possible to obtain a near-field light image having a resolution of nanometer order.
 図8に、上記原理に基づく走査プローブ顕微鏡の構成を示す。走査プローブ顕微鏡は、試料20を搭載する試料ホルダ25と、それを載置して試料20を測定探針に対して相対的にXY方向に走査するXY圧電素子ステージ30と、先端に試料20上を走査するCNT探針1を固定した金コートSiチップ2を搭載したSiカンチレバー4とSiカンチレバー4をZ方向に微小振動させる圧電素子アクチュエータ34と、Siカンチレバー4を試料20に対して相対的にZ方向に走査するZ圧電素子ステージ33と、カンチレバー4のたわみを検知することでCNT探針1と試料20との接触力を検知する光てこ検出系100と、例えば固体レーザを光源とし波長532nmの励起用レーザ光5aをSiカンチレバー4背面を介してCNT探針1に照射する励起用レーザ光照射系50と、散乱光を集光し光電変換する散乱光検出系110と、得られた散乱光信号とXYZ変位信号から近接場光画像と表面凹凸画像を生成し出力する信号処理・制御系120とを備えて構成される。駆動部は、XY圧電素子ステージ30とZ圧電素子ステージ33を備え、CNT探針1を試料20に対して相対的に走査する。 FIG. 8 shows the configuration of a scanning probe microscope based on the above principle. The scanning probe microscope includes a sample holder 25 on which the sample 20 is mounted, an XY piezoelectric element stage 30 on which the sample holder 25 is mounted and which scans the sample 20 in the X and Y directions relative to the measurement probe, and the sample 20 on the tip. A Si 3 N 4 cantilever 4 mounted with a gold-coated Si 3 N 4 chip 2 to which a CNT probe 1 is fixed, a piezoelectric element actuator 34 for minutely vibrating the Si 3 N 4 cantilever 4 in the Z direction, and Si 3 N 4 Optical lever detection that detects the contact force between the CNT probe 1 and the sample 20 by detecting the deflection of the Z piezoelectric element stage 33 that scans the cantilever 4 relative to the sample 20 in the Z direction. excitation to be irradiated with the system 100, for example, the excitation laser beam 5a of a solid laser as a light source wavelength 532nm to CNT probe 1 via a Si 3 N 4 cantilevers 4 back Laser light irradiation system 50, scattered light detection system 110 that collects scattered light and photoelectrically converts it, and signal processing that generates and outputs a near-field light image and a surface unevenness image from the obtained scattered light signal and XYZ displacement signal A control system 120 is provided. The drive unit includes an XY piezoelectric element stage 30 and a Z piezoelectric element stage 33 and scans the CNT probe 1 relative to the sample 20.
 光てこ検出系100では、半導体レーザ35からのレーザ光36をカンチレバー4の背面に照射し、その反射光を4分割センサ37で受光し、反射光の位置変化からカンチレバー4のたわみ量を検出し、さらにたわみ量からCNT探針1と試料20との接触力を検知して、常に接触力が予め設定した値となるように、信号処理・制御系120の制御部80でZ圧電素子ステージ33をフィードバック制御する。尚、Si製カンチレバー4を使用する場合は、カンチレバー背面のレーザ光36照射部に、アルミ膜をコーティングして反射率を高くしておくと良い。 In the optical lever detection system 100, the back surface of the cantilever 4 is irradiated with the laser light 36 from the semiconductor laser 35, the reflected light is received by the quadrant sensor 37, and the deflection amount of the cantilever 4 is detected from the change in position of the reflected light. Further, the contact force between the CNT probe 1 and the sample 20 is detected from the deflection amount, and the Z piezoelectric element stage 33 is controlled by the control unit 80 of the signal processing / control system 120 so that the contact force always has a preset value. Feedback control. When the Si 3 N 4 cantilever 4 is used, it is preferable to increase the reflectance by coating an aluminum film on the laser light 36 irradiation portion on the back surface of the cantilever.
 CNT探針1は、発振器60からの信号に基づいて圧電素子アクチュエータ34によりカンチレバー4の共振周波数でZ方向に微小振動されるので、発生する近接場光6、散乱光7、及び散乱光12も同じ周波数で強度変調される。散乱光検出系110において、二つの散乱光7及び12は集光レンズ41により平行光となり、例えばノッチフィルタ46及びバンドパスフィルタ47を透過することにより、励起波長成分が除去され、ラマンスペクトル成分43が選択される。ラマンスペクトル成分43は結像レンズ42により光電子増倍管やホトダイオード等の検出器44の受光面45上の1点に集光し、光電変換される。本実施例では、金薄膜3の膜厚は表面プラズモン8の励起効率が最大となる50nmとした。 Since the CNT probe 1 is minutely vibrated in the Z direction at the resonance frequency of the cantilever 4 by the piezoelectric element actuator 34 based on the signal from the oscillator 60, the generated near-field light 6, scattered light 7, and scattered light 12 are also generated. Intensity modulated at the same frequency. In the scattered light detection system 110, the two scattered lights 7 and 12 are converted into parallel light by the condenser lens 41, and, for example, are transmitted through the notch filter 46 and the bandpass filter 47, thereby removing the excitation wavelength component and the Raman spectrum component 43. Is selected. The Raman spectral component 43 is condensed at one point on the light receiving surface 45 of the detector 44 such as a photomultiplier tube or a photodiode by the imaging lens 42 and is photoelectrically converted. In this example, the thickness of the gold thin film 3 was set to 50 nm at which the excitation efficiency of the surface plasmon 8 was maximized.
 図9に、ノッチフィルタ46の分光透過率を示す。532nmの励起波長において透過率は約0.0008%、検出すべきCNT探針1のラマンスペクトル成分(Gバンド)の波長581nmにおいて透過率は約98%であり、散乱光の中の励起光波長成分を大きく減衰させることができる。 FIG. 9 shows the spectral transmittance of the notch filter 46. The transmittance is about 0.0008% at the excitation wavelength of 532 nm, the transmittance is about 98% at the wavelength of 581 nm of the Raman spectrum component (G band) of the CNT probe 1 to be detected, and the excitation light wavelength in the scattered light. The component can be greatly attenuated.
 図10に、バンドパスフィルタ47の分光透過率を示す。CNT探針1のラマンスペクトル成分(Gバンド)の波長581nmにおいて透過率は約91%、除去すべき532nmの励起波長において透過率は0.00002%である。一般に、励起光に対しラマンスペクトル成分は6桁近く微弱な散乱光となるが、上記ノッチフィルタ46とバンドパスフィルタ47を組み合わせることで、12桁近い消光比を得ることができ、背景雑音を大幅に低減したラマンスペクトル成分の近接場光画像を安定に得ることができる。 FIG. 10 shows the spectral transmittance of the bandpass filter 47. The transmittance of the Raman spectrum component (G band) of the CNT probe 1 is about 91% at a wavelength of 581 nm, and the transmittance is 0.00002% at an excitation wavelength of 532 nm to be removed. In general, the Raman spectral component of the excitation light is a weak scattered light of nearly 6 digits, but by combining the notch filter 46 and the bandpass filter 47, an extinction ratio of nearly 12 digits can be obtained, greatly increasing the background noise. It is possible to stably obtain a near-field light image having a Raman spectrum component reduced to a very low level.
 尚、CNT探針1のラマンスペクトル成分(Gバンド)の波長581nmが変動する場合には、バンドパスフィルタ47に代えて、図11に示す分光透過率を有する長波長透過フィルタを用いることも可能である。すなわち、選択して検出したい波長を抽出できるフィルタを適宜用いればよい。 When the wavelength of 581 nm of the Raman spectral component (G band) of the CNT probe 1 fluctuates, it is possible to use a long wavelength transmission filter having the spectral transmittance shown in FIG. It is. In other words, a filter that can extract and extract a wavelength that is desired to be detected may be used as appropriate.
 検出器44から出力される波長分離及び強度変調されたラマンスペクトル信号は信号処理・制御系120のロックインアンプ70で同期検波され、カンチレバー4の共振周波数成分が出力される。励起用レーザ光5aによって、CNT探針1の先端部以外で生じたラマン散乱光成分(伝搬光)は、カンチレバー4の微小振動には反応せず直流成分であるので、ロックインアンプ70の出力信号には含まれない。これにより、背景雑音を抑圧しつつ近接場光によるラマンスペクトル成分を選択的に検出することができる。 The wavelength-separated and intensity-modulated Raman spectrum signal output from the detector 44 is synchronously detected by the lock-in amplifier 70 of the signal processing / control system 120, and the resonance frequency component of the cantilever 4 is output. Since the Raman scattered light component (propagation light) generated by the excitation laser beam 5 a other than the tip of the CNT probe 1 is a direct current component without reacting to the minute vibration of the cantilever 4, the output of the lock-in amplifier 70. It is not included in the signal. Thereby, it is possible to selectively detect a Raman spectrum component due to near-field light while suppressing background noise.
 また、共振周波数の2倍波、3倍波といった高調波成分を検出することで、さらに信号SN比を向上させることができる。ロックインアンプ70からのラマンスペクトル信号は信号処理・制御系120の制御部80に送られ、XY圧電素子ステージ30からのXY信号と組み合わせられて近接場光画像が生成され、ディスプレイ90に出力される。同時に、Z圧電素子ステージ33からのZ信号も制御部80でXY信号と組み合わせられて試料表面の凹凸画像が生成され、ディスプレイ90に出力される。 Also, the signal SN ratio can be further improved by detecting harmonic components such as the second harmonic and the third harmonic of the resonance frequency. The Raman spectrum signal from the lock-in amplifier 70 is sent to the control unit 80 of the signal processing / control system 120 and combined with the XY signal from the XY piezoelectric element stage 30, a near-field light image is generated and output to the display 90. The At the same time, the Z signal from the Z piezoelectric element stage 33 is also combined with the XY signal by the control unit 80 to generate an uneven image on the sample surface and output to the display 90.
 尚、本実施例では、励起波長として532nmを用い、CNT探針1のラマンスペクトル成分のうち、Gバンドに相当する581nmの波長成分を検出する例を示したが、本発明はこれに限定されるものではなく、他の励起波長(例えば514.5nmや850nm)を用い、Gバンドに相当するラマンスペクトル成分(例えば584.54nmや982.83nm)を検出することも可能である。 In this embodiment, an example in which 532 nm is used as the excitation wavelength and a wavelength component of 581 nm corresponding to the G band is detected among the Raman spectrum components of the CNT probe 1 is shown, but the present invention is not limited to this. However, it is also possible to detect a Raman spectrum component (for example, 584.54 nm or 982.83 nm) corresponding to the G band using another excitation wavelength (for example, 514.5 nm or 850 nm).
 また、本実施例では、非弾性散乱光としてラマン散乱光(ラマンスペクトル成分)を用いる例を説明したが、本発明はこれに限定されるものではない。測定探針の材料や励起光の照射方法などの条件が整えば、測定探針から発生する非弾性散乱光として、ブリルアン散乱やコヒーレントアンチストークスラマン散乱(CARS:Coherent Anti-Stokes Raman Scattering)なども適用可能である。 In this embodiment, an example in which Raman scattered light (Raman spectral component) is used as inelastic scattered light has been described. However, the present invention is not limited to this. If conditions such as the measurement probe material and the excitation light irradiation method are in place, Brillouin scattering and coherent anti-Stokes Raman scattering (CARS: Coherent Anti-Stokes Raman Scattering) can be used as inelastically scattered light generated from the measurement probe. Applicable.
 また、入射光(もしくは散乱光)のエネルギーが、CNTの光吸収(もしくは発光)のエネルギーに等しい場合には、ラマン強度は約1000倍強くなる。これを共鳴ラマン効果という。この共鳴ラマン効果を生じる波長の励起光を用いることで、ラマンスペクトル成分の強度を増大させ、相対的に背景雑音を大幅に低減することができる。その結果、SN比、コントラスト、測定再現性がさらに向上したナノメートルオーダの分解能の近接場光画像を得ることが可能となる。 Also, when the energy of incident light (or scattered light) is equal to the energy of light absorption (or light emission) of CNTs, the Raman intensity becomes about 1000 times stronger. This is called the resonance Raman effect. By using excitation light having a wavelength that produces this resonance Raman effect, the intensity of the Raman spectrum component can be increased, and the background noise can be relatively greatly reduced. As a result, it is possible to obtain a near-field light image with a nanometer-order resolution with further improved SN ratio, contrast, and measurement reproducibility.
 また、図2及び図3に示すように、CNT先端に金属ナノ粒子が充填された探針を用いた場合、チップ増強近接場ラマン散乱(TERS:Tip Enhanced Raman Scattering)により、CNTのラマンスペクトル成分の強度がさらに1000倍近く増強され、SN比、コントラスト、測定再現性がさらに向上したナノメートルオーダの分解能の近接場光画像を得ることが可能となる。 In addition, as shown in FIGS. 2 and 3, when using a probe in which metal nanoparticles are filled at the tip of the CNT, the Raman spectral component of the CNT is caused by tip enhanced near-field Raman scattering (TERS). Is further enhanced by nearly 1000 times, and it becomes possible to obtain a near-field light image having a resolution of nanometer order with improved SN ratio, contrast, and measurement reproducibility.
 本実施例によれば、前述の通り、散乱光7、12の中からCNT探針1の先端部で生じたラマンスペクトル成分を波長分離して取り出すことにより、背景雑音を大幅に低減することが可能となり、SN比、コントラスト、測定再現性が向上したナノメートルオーダの分解能の近接場光画像を得ることが可能となる。 According to the present embodiment, as described above, the background noise can be greatly reduced by extracting the Raman spectrum component generated at the tip of the CNT probe 1 from the scattered light 7 and 12 by wavelength separation. This makes it possible to obtain a near-field light image having a resolution of nanometer order with improved SN ratio, contrast, and measurement reproducibility.
 [励起用レーザ光照射系50の変形例1]
 本実施例の励起用レーザ光照射系50の変形例を、図12に基づいて説明する。本変形例では、励起用レーザ光5bをSiカンチレバー4の背面から金コートSiチップ2内部を経由して、Siチップ稜線に照射するのではなく、例えばSiカンチレバー4の斜め前方から照射する。これにより、チップ2先端部に局在した近接場光11が励起される。この近接場光11の電界の中にはCNT探針1の先端部が存在しており、この先端部に電界が集中することで、探針先端に先端直径と同程度のφ4nm(スポットサイズ)の第2の近接場光6が生じる。図2~図5に示すように、近接場光6は試料20の表面及びCNT探針1自身と相互作用し、散乱光(伝搬光)7が生じる。
[Modification 1 of Excitation Laser Light Irradiation System 50]
A modification of the excitation laser light irradiation system 50 of the present embodiment will be described with reference to FIG. In the present modification, the excitation laser beam 5b is not irradiated from the back surface of the Si 3 N 4 cantilever 4 to the ridge line of the Si 3 N 4 chip via the gold-coated Si 3 N 4 chip 2 but, for example, Si 3 Irradiate from diagonally forward of the N 4 cantilever 4. As a result, the near-field light 11 localized at the tip of the chip 2 is excited. The tip of the CNT probe 1 is present in the electric field of the near-field light 11, and when the electric field is concentrated on the tip, φ4 nm (spot size), which is the same as the tip diameter, is provided at the tip of the probe. Second near-field light 6 is generated. As shown in FIGS. 2 to 5, the near-field light 6 interacts with the surface of the sample 20 and the CNT probe 1 itself, and scattered light (propagating light) 7 is generated.
 この散乱光7には、近接場光6による試料20の表面から発生する散乱光、また、近接場光とCNT探針1自身の相互作用により発生したラマン散乱光が試料20の表面で散乱した散乱光などが含まれる。散乱光7の強度は、試料20を構成する領域21の屈折率nと領域22の屈折率nの大小関係に応じて変化し、これがCNT探針1を走査することで得られる近接場光画像のコントラストとなる。走査プローブ顕微鏡の構成と機能は図8に示すと同様であるので、説明を省略する。 In this scattered light 7, scattered light generated from the surface of the sample 20 by the near-field light 6 and Raman scattered light generated by the interaction between the near-field light and the CNT probe 1 itself are scattered on the surface of the sample 20. This includes scattered light. The intensity of the scattered light 7 changes according to the magnitude relationship between the refractive index n 0 of the region 21 constituting the sample 20 and the refractive index n 1 of the region 22, and this is a near field obtained by scanning the CNT probe 1. It becomes the contrast of the optical image. Since the configuration and function of the scanning probe microscope are the same as those shown in FIG.
 本変形例によれば、散乱光7、12の中からCNT探針1の先端部で生じたラマンスペクトル成分を波長分離して取り出すことにより、背景雑音を大幅に低減することが可能となり、SN比、コントラスト、測定再現性が向上したナノメートルオーダの分解能の近接場光画像を得ることが可能となる。 According to this modification, the background noise can be significantly reduced by extracting the Raman spectrum component generated at the tip of the CNT probe 1 from the scattered light 7 and 12 by wavelength separation. It is possible to obtain a near-field light image having a resolution of nanometer order with improved ratio, contrast, and measurement reproducibility.
 また、本変形例では、実施例1とは異なり、外部から励起用レーザ光を照射するので、カンチレバー4及び金コートチップ2を構成する材料に、レーザ光が透過しないSiを使用することができる。Siを用いる場合、チップ先端を尖鋭化するなどの加工を施すだけでよく、測定探針としてCNTをチップ先端に形成する必要がない。そのため、容易に非弾性散乱光を発生する測定探針を作製することができる。 In addition, unlike the first embodiment, the present modification irradiates excitation laser light from the outside, so that Si that does not transmit laser light can be used as the material constituting the cantilever 4 and the gold coat chip 2. . When Si is used, it is only necessary to sharpen the tip of the chip, and it is not necessary to form CNT as a measurement probe on the tip of the chip. Therefore, a measurement probe that easily generates inelastically scattered light can be produced.
 本発明の第2の実施例を、図13に基づいて説明する。第1の実施例では、CNT探針1先端の近接場光6の試料20表面での散乱光を検出していたが、本実施例では、CNT探針1先端の近接場光6の試料20表面での散乱光のうち、試料20を透過した散乱光成分7を検出する。散乱光検出系110において、二つの散乱光7及び12は、透明な試料ホルダ26を透過して集光レンズ41により平行光となる。そして、その平行光は、ノッチフィルタ46及びバンドパスフィルタ47を透過することにより、ラマンスペクトル成分43が選択される。選択されたラマンスペクトル成分43の光は、結像レンズ42により光電子増倍管やホトダイオード等の検出器44の受光面45上の1点に集光し、光電変換される。 A second embodiment of the present invention will be described with reference to FIG. In the first embodiment, scattered light on the surface of the sample 20 of the near-field light 6 at the tip of the CNT probe 1 is detected. In this embodiment, the sample 20 of the near-field light 6 at the tip of the CNT probe 1 is detected. Of the scattered light on the surface, the scattered light component 7 transmitted through the sample 20 is detected. In the scattered light detection system 110, the two scattered lights 7 and 12 pass through the transparent sample holder 26 and become parallel light by the condenser lens 41. Then, the parallel light passes through the notch filter 46 and the band pass filter 47, so that the Raman spectrum component 43 is selected. The light of the selected Raman spectral component 43 is condensed by the imaging lens 42 at one point on the light receiving surface 45 of the detector 44 such as a photomultiplier tube or a photodiode, and subjected to photoelectric conversion.
 励起用レーザ光照射系50の変形例1も、この実施例に組み込むことが可能である。試料ホルダ26を載置して試料20をXY方向に走査するXY圧電素子ステージ31は、透過散乱光を通過させるため、中央に穴が開いた構造となっている。その他の励起用レーザ光照射系50、光てこ検出系100、信号処理・制御系120の構成とその機能は第1の実施例と同様であるので、説明を省略する。 Modification 1 of the excitation laser beam irradiation system 50 can also be incorporated in this embodiment. The XY piezoelectric element stage 31 that places the sample holder 26 and scans the sample 20 in the XY direction has a structure in which a hole is opened in the center in order to transmit the transmitted scattered light. The configurations and functions of the other excitation laser beam irradiation system 50, optical lever detection system 100, and signal processing / control system 120 are the same as those in the first embodiment, and thus description thereof is omitted.
 本実施例によれば、第1の実施例と同様、散乱光7、12の中からCNT探針1の先端部で生じたラマンスペクトル成分を波長分離して取り出すことにより、背景雑音を大幅に低減することが可能となり、SN比、コントラスト、測定再現性が向上したナノメートルオーダの分解能の近接場光画像を得ることが可能となる。 According to the present embodiment, as in the first embodiment, the Raman spectrum component generated at the tip of the CNT probe 1 is extracted from the scattered light 7 and 12 by wavelength separation, thereby greatly reducing the background noise. Thus, it is possible to obtain a near-field light image having a nanometer-order resolution with improved SN ratio, contrast, and measurement reproducibility.
 また、本実施例によれば、カンチレバー4やXY圧電素子ステージ31、圧電素子アクチュエータ34によって散乱光がさえぎられないため、検出立体角を大きくとれ、実施例1より高いコントラストでイメージングでき、近接場光画像のSN比及び測定再現性をさらに向上させることができる。 Further, according to the present embodiment, since the scattered light is not blocked by the cantilever 4, the XY piezoelectric element stage 31, and the piezoelectric element actuator 34, the detection solid angle can be increased, and imaging can be performed with higher contrast than in the first embodiment. The SN ratio and measurement reproducibility of the optical image can be further improved.
 本発明の第3の実施例を、図14に基づいて説明する。第1及び第2の実施例では、励起用レーザ光照射系50により波長が一定の励起用レーザ光5a、5bをCNT探針1に照射し、散乱光検出系110において、二つの散乱光7及び12をノッチフィルタ46及びバンドパスフィルタ47を透過させて、ラマンスペクトル成分43を取り出した後、検出器44で受光する構成となっていた。 A third embodiment of the present invention will be described with reference to FIG. In the first and second embodiments, the excitation laser light irradiation system 50 irradiates the CNT probe 1 with excitation laser light 5a and 5b having a constant wavelength, and the scattered light detection system 110 provides two scattered light 7 And 12 are transmitted through the notch filter 46 and the band pass filter 47 to extract the Raman spectrum component 43, and then received by the detector 44.
 本実施例では、高感度・高精度に試料表面を測定するにあたり最適な測定探針の非弾性散乱光を発生させるために、波長可変固体レーザを光源として任意の波長の励起用レーザ光5cを出射する励起用レーザ光照射系51を用い、ノッチフィルタ46は励起波長に応じて遮光波長領域の異なるノッチフィルタに交換可能としている。さらに、散乱光検出系110において、二つの散乱光7及び12はバンドパスフィルタではなく分光器48に導かれ、複数ある散乱光の中で検出したい非弾性散乱光を選択できるようにしている。これにより、励起波長に応じてラマンスペクトル成分をフレキシブルに選択可能な構成となっている。 In the present embodiment, in order to generate inelastically scattered light of a measurement probe optimum for measuring a sample surface with high sensitivity and high accuracy, excitation laser light 5c having an arbitrary wavelength is generated using a wavelength variable solid-state laser as a light source. The excitation laser beam irradiation system 51 that emits light is used, and the notch filter 46 can be replaced with a notch filter having a different light blocking wavelength region according to the excitation wavelength. Further, in the scattered light detection system 110, the two scattered lights 7 and 12 are guided not to the band pass filter but to the spectroscope 48 so that inelastic scattered light to be detected can be selected from a plurality of scattered lights. Thereby, it becomes the structure which can select a Raman spectrum component flexibly according to an excitation wavelength.
 また、信号処理・制御系120の制御部81では、波長可変レーザの波長制御と分光器48において抽出するラマンスペクトル成分の制御を実行する。例えば、励起波長を変化させながら特定のラマンスペクトル成分の強度をモニタリングし、共鳴ラマン効果が生じる励起波長を探索することも可能である。その他の構成と機能は第1の実施例と同様であるので、説明を省略する。共鳴ラマン効果が生じる励起波長を用い、試料20の表面の観察を行えば、背景雑音を低減しつつ、より高感度に測定することが可能となる。 Also, the control unit 81 of the signal processing / control system 120 executes wavelength control of the wavelength tunable laser and control of the Raman spectrum component extracted by the spectroscope 48. For example, it is possible to monitor the intensity of a specific Raman spectral component while changing the excitation wavelength and search for an excitation wavelength at which the resonance Raman effect occurs. Other configurations and functions are the same as those of the first embodiment, and thus description thereof is omitted. By observing the surface of the sample 20 using an excitation wavelength that causes a resonance Raman effect, it is possible to perform measurement with higher sensitivity while reducing background noise.
 尚、本実施例では、分光器48を有する分光光学系で、上記CNT探針1のラマンスペクトル成分によって励起された試料20自身のラマンスペクペクトルを取得することができ、試料20の表面をナノメートル分解能でラマン分光イメージングすることが可能となる。励起用レーザ光照射系50の変形例1も、この実施例に組み込むことが可能である。 In the present embodiment, the spectroscopic optical system having the spectroscope 48 can acquire the Raman spectrum of the sample 20 itself excited by the Raman spectrum component of the CNT probe 1, and the surface of the sample 20 can be nano-sized. It becomes possible to perform Raman spectroscopic imaging with meter resolution. Modification 1 of the excitation laser beam irradiation system 50 can also be incorporated in this embodiment.
 本実施例によれば、散乱光7、12の中からCNT探針1の先端部で生じたラマンスペクトル成分を波長分離して取り出すことにより、背景雑音を大幅に低減することが可能となり、SN比、コントラスト、測定再現性が向上したナノメートルオーダの分解能の近接場光画像を得ることが可能となる。また、共鳴ラマン効果が生じる励起波長を容易に探索することが可能である。そのため、測定探針に共鳴ラマン効果が生じる波長の励起光を用いることにより、プローブ光として用いるラマンスペクトル成分の強度を増大させることができ、相対的に背景雑音を大幅に低減することが可能となる。その結果、SN比、コントラスト、測定再現性がさらに向上したナノメートルオーダの分解能の近接場光画像を得ることが可能となる。 According to the present embodiment, the background noise can be greatly reduced by extracting the Raman spectral component generated at the tip of the CNT probe 1 from the scattered light 7 and 12 by wavelength separation. It is possible to obtain a near-field light image having a resolution of nanometer order with improved ratio, contrast, and measurement reproducibility. In addition, it is possible to easily search for an excitation wavelength at which the resonance Raman effect occurs. Therefore, the intensity of the Raman spectrum component used as the probe light can be increased by using excitation light having a wavelength that causes the resonance Raman effect in the measurement probe, and the background noise can be significantly reduced relatively. Become. As a result, it is possible to obtain a near-field light image with a nanometer-order resolution with further improved SN ratio, contrast, and measurement reproducibility.
 尚、上記総ての実施例では励起用レーザ光5a、5b、5cはいずれも単色光としたが、本発明はこれに限定されるものではなく、赤、緑、青の3波長の励起用レーザ光と分光器を組み合わせて、各波長に対応した3つのラマンスペクトル成分を同時に取得し、カラー近接場イメージングを行うことも可能である。さらに、上記励起用レーザ光に近赤外光を使用する場合は、カンチレバーとチップはSiに変更することも可能である。また、その他の構成も、上記総ての実施例の構成に限定されるものではなく、本願発明の効果を奏する構成であれば、適宜構成は変更可能であることは言うまでもない。 In all the embodiments described above, the excitation laser beams 5a, 5b, and 5c are all monochromatic light. However, the present invention is not limited to this, and the excitation wavelengths for three wavelengths of red, green, and blue are used. It is also possible to perform color near-field imaging by simultaneously acquiring three Raman spectral components corresponding to each wavelength by combining laser light and a spectroscope. Furthermore, when near infrared light is used for the excitation laser light, the cantilever and the tip can be changed to Si. Further, the other configurations are not limited to the configurations of all the above-described embodiments, and it is needless to say that the configurations can be appropriately changed as long as the configurations exhibit the effects of the present invention.
1・・・CNT探針
2・・・金コートSiチップ
3・・・金薄膜
4・・・Siカンチレバー
5a、5b、5c・・・励起用レーザ光
6、11・・・近接場光
7、12・・・散乱光(伝搬光)
8・・・表面プラズモン
10・・・金ナノ粒子
15・・・Si探針
20・・・試料
25、26・・・試料ホルダ
30・・・XY圧電素子ステージ
33・・・Z圧電素子ステージ
34・・・圧電素子アクチュエータ
41・・・集光レンズ
42・・・結像レンズ
43・・・ラマンスペクトル成分
44・・・検出器
48・・・分光器
50、51・・・励起用レーザ光照射系
60・・・発振器
70・・・ロックインアンプ
80、81・・・制御部
90・・・ディスプレイ
100・・・光てこ検出系
110・・・散乱光検出系
120・・・信号処理・制御系
1 ... CNT probe 2 ... gold coated Si 3 N 4 tip 3 ... gold thin film 4 ... Si 3 N 4 cantilevers 5a, 5b, 5c ... pumping laser light 6,11 ...・ Near- field light 7, 12 ... Scattered light (propagating light)
8 ... surface plasmon 10 ... gold nanoparticles 15 ... Si probe 20 ... sample 25, 26 ... sample holder 30 ... XY piezoelectric element stage 33 ... Z piezoelectric element stage 34 ... Piezoelectric actuator 41 ... Condensing lens 42 ... Imaging lens 43 ... Raman spectral component 44 ... Detector 48 ... Spectrometers 50 and 51 ... Excitation laser light irradiation System 60: Oscillator 70: Lock-in amplifier 80, 81 ... Control unit 90 ... Display 100 ... Optical lever detection system 110 ... Scattered light detection system 120 ... Signal processing / control system

Claims (15)

  1.  試料に対して測定探針を相対的に走査する駆動部と、
     励起光の照射により前記測定探針と前記試料との間に発生する散乱光のうち非弾性散乱光を選択して検出する散乱光検出系と、
     を備える走査プローブ顕微鏡。
    A drive unit that scans the measurement probe relative to the sample;
    A scattered light detection system that selects and detects inelastic scattered light among scattered light generated between the measurement probe and the sample by irradiation of excitation light;
    A scanning probe microscope.
  2.  前記散乱光検出系は、前記非弾性散乱光を選択的に通すフィルタを備えることを特徴とする請求項1に記載の走査プローブ顕微鏡。 The scanning probe microscope according to claim 1, wherein the scattered light detection system includes a filter that selectively allows the inelastic scattered light to pass through.
  3.  前記測定探針が設けられたカンチレバーの背面に前記励起光を照射し、前記測定探針に非弾性散乱光を発生させるレーザ光照射系を備えることを特徴とする請求項1に記載の走査プローブ顕微鏡。 The scanning probe according to claim 1, further comprising a laser beam irradiation system that irradiates the back surface of the cantilever provided with the measurement probe with the excitation light and generates inelastic scattered light on the measurement probe. microscope.
  4.  前記測定探針に前記励起光を照射し、前記測定探針に非弾性散乱光を発生させるレーザ光照射系を備えることを特徴とする請求項1に記載の走査プローブ顕微鏡。 The scanning probe microscope according to claim 1, further comprising a laser beam irradiation system that irradiates the measurement probe with the excitation light and generates inelastic scattered light on the measurement probe.
  5.  前記測定探針は、カーボンナノチューブを備えることを特徴とする請求項3または4に記載の走査プローブ顕微鏡。 The scanning probe microscope according to claim 3 or 4, wherein the measurement probe includes a carbon nanotube.
  6.  前記カーボンナノチューブは、金属ナノ粒子を有していることを特徴とする請求項5に記載の走査プローブ顕微鏡。 The scanning probe microscope according to claim 5, wherein the carbon nanotube has metal nanoparticles.
  7.  前記測定探針は、Siで構成されることを特徴とする請求項3または4に記載の走査プローブ顕微鏡。 The scanning probe microscope according to claim 3, wherein the measurement probe is made of Si.
  8.  前記散乱光検出系は、前記試料を透過した非弾性散乱光を選択することを特徴とする請求項1または2のいずれかに記載の走査プローブ顕微鏡。 3. The scanning probe microscope according to claim 1, wherein the scattered light detection system selects inelastic scattered light that has passed through the sample.
  9.  前記散乱光検出系は、前記散乱光を分光する分光光学系を備えることを特徴とする請求項1に記載の走査プローブ顕微鏡。 The scanning probe microscope according to claim 1, wherein the scattered light detection system includes a spectroscopic optical system that splits the scattered light.
  10.  試料に対して相対的に測定探針を走査し、
     励起光を前記測定探針に照射し、
     前記励起光の照射により前記測定探針と前記試料との間に発生する散乱光のうち非弾性散乱光を選択して検出する試料観察方法。
    Scan the measuring probe relative to the sample,
    Irradiate the measurement probe with excitation light,
    A sample observation method for selecting and detecting inelastic scattered light among scattered light generated between the measurement probe and the sample by irradiation of the excitation light.
  11. 前記非弾性散乱光の選択は、フィルタにより行うことを特徴とする請求項1に記載の試料観察方法。 The sample observation method according to claim 1, wherein the selection of the inelastic scattered light is performed by a filter.
  12.  前記励起光は、前記測定探針を有するチップの背面に照射し、前記測定探針に前記非弾性散乱光を発生させることを特徴とする請求項10に記載の試料観察方法。 The sample observation method according to claim 10, wherein the excitation light is applied to a back surface of a chip having the measurement probe, and the inelastic scattered light is generated on the measurement probe.
  13.  前記励起光は、前記測定探針に照射し、前記測定探針に前記非弾性散乱光を発生させることを特徴とする請求項10に記載の試料観察方法。 The sample observation method according to claim 10, wherein the excitation light is applied to the measurement probe, and the inelastic scattered light is generated on the measurement probe.
  14.  前記試料を透過した前記非弾性散乱光を選択することを特徴とする請求項10または11のいずれかに記載の試料観察方法。 The sample observation method according to claim 10, wherein the inelastically scattered light transmitted through the sample is selected.
  15.  前記散乱光を分光して前記非弾性散乱光を選択することを特徴とする請求項10に記載の走査プローブ顕微鏡。 The scanning probe microscope according to claim 10, wherein the inelastic scattered light is selected by splitting the scattered light.
PCT/JP2015/063159 2014-05-22 2015-05-07 Scanning probe microscope and sample observation method using same WO2015178201A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014105760A JP2017150814A (en) 2014-05-22 2014-05-22 Scan probe microscope and method for observing sample with the scan probe microscope
JP2014-105760 2014-05-22

Publications (1)

Publication Number Publication Date
WO2015178201A1 true WO2015178201A1 (en) 2015-11-26

Family

ID=54553874

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/063159 WO2015178201A1 (en) 2014-05-22 2015-05-07 Scanning probe microscope and sample observation method using same

Country Status (2)

Country Link
JP (1) JP2017150814A (en)
WO (1) WO2015178201A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6949573B2 (en) 2017-06-21 2021-10-13 株式会社日立製作所 Close-field scanning probe microscope, scanning probe microscope probe and sample observation method
US11733264B2 (en) 2019-07-31 2023-08-22 Hitachi High-Tech Corporation Cantilever, scanning probe microscope, and measurement method using scanning probe microscope
JP7344832B2 (en) * 2019-07-31 2023-09-14 株式会社日立ハイテク Measurement method using cantilever and scanning probe microscopes and scanning probe microscopes

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090045336A1 (en) * 2007-08-14 2009-02-19 Harald Bloess Scanning probe microscopy cantilever, corresponding manufacturing method, scanning probe microscope, and scanning method
JP2010197208A (en) * 2009-02-25 2010-09-09 Hitachi Ltd Scanning probe microscope and sample observation method using same
JP2014059273A (en) * 2012-09-19 2014-04-03 Canon Inc Near-field scattered light measuring device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090045336A1 (en) * 2007-08-14 2009-02-19 Harald Bloess Scanning probe microscopy cantilever, corresponding manufacturing method, scanning probe microscope, and scanning method
JP2010197208A (en) * 2009-02-25 2010-09-09 Hitachi Ltd Scanning probe microscope and sample observation method using same
JP2014059273A (en) * 2012-09-19 2014-04-03 Canon Inc Near-field scattered light measuring device

Also Published As

Publication number Publication date
JP2017150814A (en) 2017-08-31

Similar Documents

Publication Publication Date Title
JP5292128B2 (en) Scanning probe microscope and sample observation method using the same
US8181268B2 (en) Scanning probe microscope and method of observing sample using the same
Stadler et al. Developments in and practical guidelines for tip-enhanced Raman spectroscopy
JP5667968B2 (en) Scanning probe microscope and sample observation method using the same
JP5504418B2 (en) Plasmon evaluation method and plasmon evaluation apparatus
WO2015033681A1 (en) Scanning probe microscope and sample observation method using same
WO2015178201A1 (en) Scanning probe microscope and sample observation method using same
US10429411B2 (en) Near field scanning probe microscope, probe for scanning probe microscope, and sample observation method
Vannier et al. Multifunctional microscope for far-field and tip-enhanced Raman spectroscopy
US9417262B2 (en) Scanning probe microscope and sample observation method using same
KR101274030B1 (en) Scanning absorption nanoscopy system with supercontinuum light sources and spectroscoping method thereof
Celebrano et al. Hollow-pyramid based scanning near-field optical microscope coupled to femtosecond pulses: A tool for nonlinear optics at the nanoscale
US9063168B2 (en) Scanning probe microscope and measurement method using same
WO2016067398A1 (en) Scanning probe microscope and sample observation method using same
JP2010286397A (en) Ultraviolet near-field optical microscope
WO2014045646A1 (en) Scanning probe microscope and method for observing sample using same
Gucciardi et al. Near-field Raman spectroscopy and imaging
JP2006052965A (en) Analyzing method due to measurement of resonance raman scattering
RU2442993C1 (en) Probe for locally enhanced spectrums of surface-enhanced raman scattering
JP2014224704A (en) Near-field optical microscope, and determination method of irradiation position of laser beam thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15796542

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15796542

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP