WO2015159693A1 - Biosignal detection device and bioinformation measurement device - Google Patents

Biosignal detection device and bioinformation measurement device Download PDF

Info

Publication number
WO2015159693A1
WO2015159693A1 PCT/JP2015/059888 JP2015059888W WO2015159693A1 WO 2015159693 A1 WO2015159693 A1 WO 2015159693A1 JP 2015059888 W JP2015059888 W JP 2015059888W WO 2015159693 A1 WO2015159693 A1 WO 2015159693A1
Authority
WO
WIPO (PCT)
Prior art keywords
pulse wave
living body
peak
photoelectric pulse
detection device
Prior art date
Application number
PCT/JP2015/059888
Other languages
French (fr)
Japanese (ja)
Inventor
亨 志牟田
徹 家邉
小林 弘和
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Priority to JP2016513703A priority Critical patent/JP6226063B2/en
Publication of WO2015159693A1 publication Critical patent/WO2015159693A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/25Bioelectric electrodes therefor
    • A61B5/251Means for maintaining electrode contact with the body
    • A61B5/256Wearable electrodes, e.g. having straps or bands
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/024Detecting, measuring or recording pulse rate or heart rate
    • A61B5/0245Detecting, measuring or recording pulse rate or heart rate by using sensing means generating electric signals, i.e. ECG signals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/25Bioelectric electrodes therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/25Bioelectric electrodes therefor
    • A61B5/263Bioelectric electrodes therefor characterised by the electrode materials
    • A61B5/27Conductive fabrics or textiles
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/25Bioelectric electrodes therefor
    • A61B5/279Bioelectric electrodes therefor specially adapted for particular uses
    • A61B5/28Bioelectric electrodes therefor specially adapted for particular uses for electrocardiography [ECG]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/25Bioelectric electrodes therefor
    • A61B5/279Bioelectric electrodes therefor specially adapted for particular uses
    • A61B5/291Bioelectric electrodes therefor specially adapted for particular uses for electroencephalography [EEG]

Definitions

  • the present invention relates to a biological signal detection device and a biological information measurement device using the biological signal detection device.
  • Patent Document 1 discloses a small body-mounted electrocardiogram recording apparatus that integrally houses various electrodes, lead wires, and an electrocardiograph.
  • Patent Document 2 discloses an electronic device including an electrocardiogram detection unit that detects an electrocardiogram using the back cover of a watch case as one electrocardiogram electrode and the electrode body disposed on the watch case body as the other electrocardiogram electrode. A wristwatch is disclosed.
  • Patent Document 3 is composed of a sensor body with a built-in circuit part, a detection part for detecting pulse wave information of a human body, and a belt or clip for fixing the sensor body to a finger.
  • a ring type pulse wave sensor that is flexibly connected by a flexible printed circuit board.
  • Patent Document 4 discloses a ring provided with an adjustment mechanism (constant load spring) for reducing the diameter of the inner peripheral surface of the mounting portion as a whole, using an annular mounting portion with a part cut off as a ring.
  • a type of photoelectric pulse wave signal detector is disclosed.
  • JP 2005-27992 A Japanese Patent Laid-Open No. 04-200399 JP 2001-70264 A Japanese Patent Laid-Open No. 11-332840
  • the above-mentioned electrocardiogram recording apparatus for body wearing disclosed in Patent Document 1 is to measure an electrocardiogram by fixing the electrocardiograph to the chest with an adhesive material. Therefore, when attaching and detaching the electrocardiograph, I have to take it off. Therefore, it takes time to attach and detach the electrocardiograph.
  • a detection unit mounted on an end of a printed circuit board is disposed on the ventral side of the finger. More specifically, when this pulse wave sensor is used, the sensor main body is arranged on the back side of the finger so that the detection unit contacts the belly side of the finger, and the sensor main body is fixed by the belt. At this time, the length of the belt is adjusted to such an extent that the detection unit can be in close contact with the belly of the finger (a state where the detection unit is pressed against the belly of the finger).
  • the light-emitting element and the light-receiving element are arranged on the abdominal side having more blood vessels than the dorsal side of the finger, thereby effectively detecting the pulsation and the like. I can do it.
  • the abdomen of the finger is greatly deformed by bending and stretching the finger, noise is easily applied when measured on the abdomen of the finger due to bending and stretching of the finger. Therefore, it is difficult to stably measure the photoelectric pulse wave during the activity in which the finger is moving.
  • the present invention has been made to solve the above-described problems, and can detect a biological signal that can be easily attached to a living body and can stably measure a biological signal even during an activity.
  • An object is to provide a device and a biological information measuring device using the biological signal detection device.
  • a biological signal detection apparatus is a biological signal detection apparatus that detects a biological signal by being attached to a living body, and has elasticity, and when attached to a living body, the biological signal detection apparatus is on the side of the bending direction of the living body.
  • the elastic part which presses from the direction and clamps this biological body is provided,
  • part pressed by the biological body of this elastic part has electroconductivity, It is characterized by the above-mentioned.
  • the living body since the living body is sandwiched by the elastic portion having elasticity, it can be easily attached.
  • the conductive part is pressed from the side (substantially perpendicular to the bending direction of the living body), the biological signal can be stably measured even during the activity. As a result, attachment to a living body can be performed more easily, and a living body signal can be stably measured even during an activity.
  • the elastic portion is a leaf spring having a circular cross section.
  • the elastic portion is formed so as to function as a leaf spring having a cross section formed in an arc shape, the state in which the elastic portion having conductivity is brought into contact with the living body can be stabilized with a relatively simple configuration. Can be kept. Therefore, a biological signal can be stably measured even during an activity.
  • the elastic portion is formed such that the radius of curvature of the arc decreases as it approaches the tip portion from the base end portion of the arc.
  • the elastic portion formed as an arc-shaped leaf spring is formed so that the radius of curvature decreases (that is, the curvature increases) as it approaches the distal end portion from the proximal end portion, a living body (for example, a finger or the like) ) Can be easily fitted regardless of the thickness, and can be prevented from falling off.
  • a biological signal detection apparatus is a biological signal detection apparatus that detects a biological signal by being attached to a living body, has elasticity and flexibility, and contracts from the surroundings when attached to the living body.
  • a stretchable part that contacts the living body and expands and contracts in response to the bending of the living body is provided, and a portion of the stretchable part that contacts the living body has conductivity.
  • the stretchable part since the stretchable part has stretchability and flexibility, it can be easily attached.
  • this stretchable part is electrically conductive at the part that comes into contact with the living body, and when it is attached to the living body, it contracts from the surroundings to contact the living body and expands and contracts in response to the bending of the living body. It is possible to stably measure a biological signal even during an activity. As a result, attachment to a living body can be performed more easily, and a living body signal can be stably measured even during an activity.
  • the expansion / contraction part is made of a knitted fabric knitted with conductive yarn having conductivity.
  • the stretchable part is made of a knitted fabric made of conductive yarn having conductivity, the state where the conductive stretchable part is brought into contact with the living body can be stably maintained with a relatively simple configuration. Therefore, a biological signal can be stably measured even during an activity.
  • a biological signal detection apparatus is a biological signal detection apparatus that detects a biological signal by being attached to a living body, and has elasticity, and when attached to a living body, the biological signal detection apparatus is on the side of the bending direction of the living body.
  • a photoelectric pulse wave sensor that has a light emitting element and a light receiving element disposed in the elastic part and detects a photoelectric pulse wave signal.
  • the elastic part has elasticity and can hold the living body easily because it holds the living body.
  • the photoelectric pulse wave sensor light emitting element and light receiving element
  • the photoelectric pulse wave signal can be stably output even during activity. It can be measured.
  • the side surface of a living body for example, a finger
  • the contact state can be stabilized by applying pressure from the side surface and pinching.
  • both the light emitting element and the light receiving element of the photoelectric pulse wave sensor are arranged on the side surface of the living body, even if there is a difference in the thickness of the living body (individual difference) or mounting deviation, it is affected by the bending and stretching of the living body. Difficult to measure stably. As a result, attachment to a living body can be performed more easily, and a photoelectric pulse wave signal can be stably measured even during activity.
  • the elastic portion is a leaf spring.
  • the elastic portion is formed so as to function as a leaf spring, the conductive elastic portion can be stably maintained in contact with the living body with a relatively simple configuration. Therefore, the photoelectric pulse wave signal can be stably measured even during the activity.
  • a biological signal detection apparatus is a biological signal detection apparatus that detects a biological signal by being attached to a living body, has elasticity and flexibility, and contracts from the surroundings when attached to the living body.
  • a photoelectric pulse wave sensor that contacts the living body and expands and contracts in response to the bending of the living body, and a photoelectric pulse wave sensor that has a light emitting element and a light receiving element disposed in the expansion and contraction part and detects a photoelectric pulse wave signal.
  • the photoelectric pulse wave sensor is configured to be disposed laterally with respect to a bending direction of the living body when the photoelectric pulse wave sensor is attached to the living body.
  • the stretchable part since the stretchable part has stretchability and flexibility, it can be easily attached.
  • the photoelectric pulse wave sensor (light emitting element and light receiving element) is contacted from the side (substantially perpendicular direction) to the bending direction of the living body, the photoelectric pulse wave signal can be stably output even during the activity. It can be measured.
  • the side of a living body for example, a finger
  • stable measurement can be performed even if there is a difference in thickness of the living body (individual difference) or wearing deviation. .
  • attachment to a living body can be performed more easily, and a photoelectric pulse wave signal can be stably measured even during activity.
  • the expansion / contraction part is made of a knitted fabric knitted with conductive yarn having conductivity.
  • the stretchable part is made of a knitted fabric made of conductive yarn having conductivity
  • the photoelectric pulse wave sensor can be stably maintained in contact with the living body with a relatively simple configuration. Therefore, the photoelectric pulse wave signal can be stably measured even during the activity.
  • the biological signal detection device includes a power supply unit that supplies power to the photoelectric pulse wave sensor, and the power supply unit is arranged on the back side of the finger when the biological signal detection device is worn on the finger. It is preferable that it is comprised so that it may be arrange
  • the power supply unit that supplies power to the photoelectric pulse wave sensor is disposed on the back side of the finger, thereby preventing interference with adjacent fingers.
  • the photoelectric pulse wave sensor since it is possible to visually indicate to the user the direction to be put on the finger, it is possible to effectively prevent the photoelectric pulse wave sensor from being attached in an incorrect direction so as to contact the belly side or back side of the finger. .
  • a biological signal detection apparatus is a biological signal detection apparatus that detects a biological signal by being attached to a living body, and has elasticity, and when attached to a living body, the biological signal detection apparatus is on the side of the bending direction of the living body.
  • At least the living body of the elastic part comprising: an elastic part that presses the living body to sandwich the living body; and a photoelectric pulse wave sensor that has a light emitting element and a light receiving element disposed in the elastic part and detects a photoelectric pulse wave signal.
  • the portion pressed by the electrode has conductivity.
  • the elastic part has elasticity and can hold the living body easily because it holds the living body.
  • the biological signal and the photoelectric pulse can be stably supplied even during the activity. Wave signals can be measured.
  • the side surface of a living body for example, a finger
  • the contact state can be stabilized by applying pressure from the side surface and pinching.
  • the biological information measuring apparatus includes a pair of any of the above-described biological signal detection apparatuses, and detects an electrocardiogram signal from the left and right fingers using the pair of biological signal detection apparatuses.
  • the biological signal detecting device since the biological signal detecting device is provided with a pair of any of the above-described biological signal detecting devices, it can be easily attached to the left and right fingers and can be stably even during the activity. An electrocardiogram signal can be measured.
  • the biological information measuring device detects a peak of each of the pair of biological signal detection devices, the electrocardiogram signal detected by the pair of elastic portions, and the photoelectric pulse wave signal detected by the photoelectric pulse wave sensor. And a pulse wave propagation time calculation means for obtaining a pulse wave propagation time from a time difference between the peak of the photoelectric pulse wave signal detected by the peak detection means and the peak of the electrocardiogram signal.
  • the biological signal detection apparatus described above since the biological signal detection apparatus described above is provided, it can be easily attached to the living body, and can stably perform electrocardiogram signals and photoelectric pulses even during activities. Wave signals can be measured. As a result, the pulse wave propagation time can be acquired more easily and stably even during activity.
  • the present invention it is possible to more easily attach to a living body, and to stably measure a living body signal even during an activity.
  • FIG. 1 is a block diagram showing a configuration of a biological information measuring device 5 using the biological signal detecting device 1 according to the first embodiment.
  • FIG. 2 is a diagram illustrating an appearance of a biological information measuring device 5 using the biological signal detecting device 1.
  • FIG. 3 is an enlarged view of the external appearance of the biological signal detection device 1
  • FIG. 4 is a view showing the radius of curvature of the first leaf spring portion 11 c constituting the biological signal detection device 1.
  • the biological information measuring device 5 is a device in which a user performs daily operations and activities, for example, an electrocardiogram signal or a photoelectric pulse wave while holding and operating a grasping device such as a game controller or a tablet terminal with both hands. It is configured to measure signals.
  • a case where the present invention is applied to a game controller will be described as an example.
  • the bioelectric potential includes myoelectricity and the like, but in the present embodiment, a case where an electrocardiogram is measured will be described as an example.
  • the biological information measuring device 5 detects an electrocardiogram signal between the left and right hands and a photoelectric pulse wave signal from the left and right fingers and detects the detected electrocardiogram signal (electrocardiogram). From the time difference between the R wave peak and the peak of the photoelectric pulse wave signal (pulse wave), the left and right hand pulse wave propagation times are acquired.
  • the biological information measuring device 5 mainly includes a pair of electrocardiographic electrodes (first electrocardiographic electrode 11 and second electrocardiographic electrode 12) for detecting an electrocardiographic signal between both hands, and photoelectric pulses of left and right hands.
  • a pair having two photoelectric pulse wave sensors (first photoelectric pulse wave sensor 21 and second photoelectric pulse wave sensor 22) for detecting a wave signal (first photoelectric pulse wave signal, second photoelectric pulse wave signal).
  • the pulse wave propagation times first pulse wave propagation time, second pulse wave
  • Signal processing units 31 and 32 for measuring (propagation time).
  • the first electrocardiogram electrode 11 and the second electrocardiogram electrode 12 are for detecting an electrocardiogram signal.
  • the user inserts a finger of the left hand into the first electrocardiogram electrode 11 and the second electrocardiogram electrode.
  • an electrocardiographic signal corresponding to the potential difference between the left and right hands of the user is acquired.
  • a metal such as stainless steel is suitably used, for example, which is resistant to corrosion and hardly causes allergies.
  • Each of the first electrocardiogram electrode 11 and the second electrocardiogram electrode 12 (hereinafter sometimes collectively referred to as the electrocardiogram electrodes 11 and 12) includes a base end portion in which two bending points 11a and 11b are formed at both ends, and A first leaf spring portion 11c and a second leaf spring portion 11d (hereinafter collectively referred to as leaf spring portions 11c and 11d) that are bent and connected to both ends (bending points 11a and 11b) of the base end portion. )have.
  • the cross section of the first leaf spring portion 11c is formed in an arc shape.
  • the first leaf spring portion 11 c is formed so that the radius of curvature of the arc becomes smaller (the curvature becomes larger) from the proximal end portion (bending point 11 a) toward the distal end portion.
  • the cross section of the second leaf spring portion 11d is linear.
  • the electrocardiographic electrodes 11 and 12 as a whole are formed in a substantially ring shape with a part cut when viewed in cross section.
  • a photoelectric pulse wave sensor 21 (22) that has a light emitting element 211 (212) and a light receiving element 221 (222) and detects a photoelectric pulse wave signal is attached to the inner surface of the second leaf spring portion 11d. ing. The details of the photoelectric pulse wave sensor 21 (22) will be described later.
  • the first leaf spring portion 11c and the second leaf spring portion 11d constituting the electrocardiographic electrodes 11 and 12 have elasticity, and are attached to the user's finger. Then, the finger is clamped by pressing from the side (substantially perpendicular) to the bending direction of the finger. That is, the first leaf spring portion 11c and the second leaf spring portion 11d (the first electrocardiogram electrode 11 and the second electrocardiogram electrode 12) correspond to the elastic portion described in the claims.
  • first leaf spring portion 11c and the second leaf spring portion 11d are configured not to contact the stomach side of the finger strongly. This is because when the finger is bent and stretched, the abdomen side of the finger is greatly deformed. Therefore, if the abdomen side of the finger is in close contact, the side surface of the finger is greatly deformed, and the photoelectric pulse wave sensor 21 (22) and the finger This is to prevent the contact state (finger side surface) from changing. Moreover, in order to make a finger hard to be damaged at the time of insertion / extraction of a finger
  • Each of the first electrocardiogram electrode 11 and the second electrocardiogram electrode 12 is connected to the signal processing units 31 and 32 through the cables 101 and 102, and the electrocardiogram signal is transmitted to the signal processing unit via the cables 101 and 102. 31 and 32.
  • the cables 101 and 102 it is desirable to use coaxial cables in order to reduce noise.
  • the photoelectric pulse wave sensor 21 (22) that has the light emitting element 211 (212) and the light receiving element 221 (222) on the inner surface of the second leaf spring portion 11d and detects a photoelectric pulse wave signal. Is attached.
  • the photoelectric pulse wave sensor 21 (22) is a sensor that optically detects a photoelectric pulse wave signal using the light absorption characteristic of blood hemoglobin.
  • the light emitting elements 211 and 221 emit light according to a pulsed drive signal output from the drive unit 350 of the signal processing units 31 and 32.
  • a pulsed drive signal output from the drive unit 350 of the signal processing units 31 and 32.
  • the light emitting elements 211 and 221 for example, an LED, a VCSEL (Vertical Cavity Surface Emitting LASER), or a resonator type LED can be used.
  • the driving unit 350 generates and outputs a pulsed driving signal for driving the light emitting element 211.
  • the light receiving elements 212 and 222 are irradiated from the light emitting elements 211 and 221 and output a detection signal corresponding to the intensity of light incident through the finger or reflected from the finger, for example.
  • a photodiode or a phototransistor is preferably used as the light receiving elements 212 and 222.
  • photodiodes are used as the light receiving elements 212 and 222.
  • the photoelectric pulse wave sensors 21 and 22 are attached to the inner surface of the second leaf spring portion 11d, when the electrocardiographic electrodes 11 and 12 are attached to the finger, The wave sensors 21, 22 are pressed from the side (substantially perpendicular direction) to the bending direction of the finger by the first leaf spring portion 11c and the second leaf spring portion 11d, and contact the side surface of the finger. To do.
  • the light emitting elements 211 and 221 and the light receiving elements 212 and 222 are preferably arranged in parallel with the finger axis. If the light emitting elements 211 and 221 or the light receiving elements 212 and 222 are arranged perpendicular to the finger axis, the light emitting elements 211 and 221 approach the abdominal side of the finger and are easily affected by the deformation of the abdominal side of the finger accompanying the bending and stretching of the finger. It is. Moreover, it is preferable to put a mark, a logo, or the like at the position on the back side of the finger so as not to make a mistake in the direction to be put on the finger.
  • the light receiving elements 212 and 222 are connected to the signal processing units 31 and 32, and the detection signals (photoelectric pulse wave signals) obtained by the light receiving elements 212 and 222 are output to the signal processing units 31 and 32.
  • each of the first electrocardiogram electrode 11, the second electrocardiogram electrode 12, and the first photoelectric pulse wave sensor 21 is connected to the signal processing unit 31, and the detected electrocardiogram signal and the first The photoelectric pulse wave signal is input to the signal processing unit 31.
  • each of the first electrocardiogram electrode 11, the second electrocardiogram electrode 12, and the second photoelectric pulse wave sensor 22 is connected to the signal processing unit 32, and the detected electrocardiogram signal and the second photoelectric pulse wave sensor 22 are connected.
  • a pulse wave signal is input to the signal processing unit 32.
  • the signal processing unit 31 calculates the first pulse wave propagation time (the pulse with the finger of the left hand) from the time difference between the R wave peak of the detected electrocardiogram signal (cardiac radio wave) and the peak of the first photoelectric pulse wave signal (pulse wave). Wave propagation time).
  • the signal processing unit 32 calculates the second pulse wave propagation time (pulse wave propagation time with the finger of the right hand) from the time difference between the detected R wave peak of the electrocardiogram signal and the peak of the second photoelectric pulse wave signal. measure.
  • the signal processing units 31 and 32 process the input electrocardiogram signal and measure a heart rate, a heart beat interval, and the like.
  • the signal processing units 31 and 32 process the input photoelectric pulse wave signal to measure the pulse rate, the pulse interval, and the like. Since the configuration of the signal processing unit 31 and the configuration of the signal processing unit 32 are the same, the signal processing unit 31 will be mainly described below.
  • the signal processing unit 31 includes amplification units 311 and 321, a first signal processing unit 310, a second signal processing unit 320, peak detection units 316 and 326, peak correction units 318 and 328, and a pulse wave propagation time measurement unit. 330.
  • the first signal processing unit 310 includes an analog filter 312, an A / D converter 313, and a digital filter 314.
  • the second signal processing unit 320 includes an analog filter 322, an A / D converter 323, a digital filter 324, and a second-order differentiation processing unit 325.
  • the digital filter 314, 324, the second-order differentiation processing unit 325, the peak detection units 316, 326, the peak correction units 318, 328, and the pulse wave propagation time measurement unit 330 are CPUs that perform arithmetic processing.
  • a ROM for storing a program and data for causing the CPU to execute each process, a RAM for temporarily storing various data such as calculation results, and the like are included. That is, the functions of the above-described units are realized by executing the program stored in the ROM by the CPU.
  • the amplification unit 311 is configured by an amplifier using an operational amplifier, for example, and amplifies the electrocardiogram signals detected by the first electrocardiogram electrode 11 and the second electrocardiogram electrode 12.
  • the electrocardiographic signal amplified by the amplifying unit 311 is output to the first signal processing unit 310.
  • the amplification unit 321 is configured by an amplifier using an operational amplifier, for example, and amplifies the first (second) photoelectric pulse wave signal detected by the first (second) photoelectric pulse wave sensor 21 (22). .
  • the photoelectric pulse wave signal amplified by the amplification unit 321 is output to the second signal processing unit 320.
  • the first signal processing unit 310 includes the analog filter 312, the A / D converter 313, and the digital filter 314, and performs filtering processing on the electrocardiogram signal amplified by the amplification unit 311. This extracts the pulsation component.
  • the second signal processing unit 320 includes the analog filter 322, the A / D converter 323, the digital filter 324, and the second-order differentiation processing unit 325, and the first signal amplified by the amplification unit 321.
  • a pulsation component is extracted by applying filtering processing and second-order differentiation processing to the photoelectric pulse wave signal.
  • the analog filters 312 and 322 and the digital filters 314 and 324 remove components (noise) other than the frequency characterizing the electrocardiogram signal and the first (second) photoelectric pulse wave signal, and improve the S / N. Perform filtering. More specifically, a frequency component of 0.1 to 200 Hz is generally dominant for an electrocardiogram signal, and a frequency component of 0.1 to several tens of Hz is dominant for a photoelectric pulse wave signal.
  • the S / N is improved by performing filtering using the analog filters 312 and 322 and the digital filters 314 and 324 and selectively passing only signals in the frequency range.
  • the purpose is to extract only the pulsating component (that is, when it is not necessary to acquire a waveform or the like), a component other than the pulsating component by narrowing the pass frequency range to improve noise resistance. May be blocked.
  • the analog filters 312, 322 and the digital filters 314, 324 are not necessarily provided, and only one of the analog filters 312, 322 and the digital filters 314, 324 may be provided. Note that the electrocardiogram signal subjected to the filtering process by the analog filter 312 and the digital filter 314 is output to the peak detection unit 316. Similarly, the first (second) photoelectric pulse wave signal filtered by the analog filter 322 and the digital filter 324 is output to the second-order differentiation processing unit 325.
  • the second-order differential processing unit 325 obtains a second-order differential pulse wave (acceleration pulse wave) signal by performing second-order differentiation on the first (second) photoelectric pulse wave signal.
  • the acquired acceleration pulse wave signal is output to the peak detector 326.
  • the peak (rising point) of the photoelectric pulse wave is not clearly changed and may be difficult to detect. Therefore, it is preferable to detect the peak by converting it to an acceleration pulse wave.
  • a second-order differential processing unit 325 is provided. Is not essential and may be omitted.
  • the peak detection unit 316 detects the peak (R wave) of the electrocardiogram signal that has been subjected to signal processing by the first signal processing unit 310 (the pulsating component has been extracted).
  • the peak detector 326 detects the peak of the first (second) photoelectric pulse wave signal (acceleration pulse wave) subjected to the filtering process by the second signal processor 320. That is, the peak detection units 316 and 326 function as peak detection means described in the claims.
  • Each of the peak detection unit 316 and the peak detection unit 326 performs peak detection within the normal range of the heartbeat interval and the pulse interval, and information on the peak time, peak amplitude, and the like for all detected peaks is stored in the RAM or the like. save.
  • the peak correction unit 318 obtains the delay time of the electrocardiogram signal in the first signal processing unit 310 (analog filter 312 and digital filter 314).
  • the peak correction unit 318 corrects the peak of the electrocardiogram signal detected by the peak detection unit 316 based on the obtained delay time of the electrocardiogram signal.
  • the peak correction unit 328 obtains the delay time of the photoelectric pulse wave signal in the second signal processing unit 320 (analog filter 322, digital filter 324, second-order differentiation processing unit 325).
  • the peak correction unit 328 corrects the peak of the first (second) photoelectric pulse wave signal (acceleration pulse wave signal) detected by the peak detection unit 326 based on the obtained delay time of the photoelectric pulse wave signal.
  • the corrected peak of the electrocardiogram signal and the corrected first (second) photoelectric pulse wave signal (acceleration pulse wave) are output to the pulse wave propagation time measurement unit 330. Note that providing the peak correction unit 318 is not essential and may be omitted.
  • the pulse wave propagation time measurement unit 330 is configured to output the R wave peak of the electrocardiogram signal corrected by the peak correction unit 318 and the first (second) photoelectric pulse wave signal (acceleration pulse wave) corrected by the peak correction unit 328.
  • the first (second) pulse wave propagation time is obtained from the interval (time difference) from the peak. That is, the pulse wave propagation time measurement unit 330 functions as a calculation unit described in the claims.
  • the pulse wave propagation time measurement unit 330 of the signal processing unit 31 acquires the first pulse wave propagation time, that is, the pulse wave propagation time with the finger of the left hand.
  • the pulse wave propagation time measuring unit 330 of the signal processing unit 32 acquires the second pulse wave propagation time, that is, the pulse wave propagation time with the finger of the right hand.
  • the pulse wave propagation time measurement unit 330 calculates, for example, a heart rate, a heartbeat interval, a heartbeat interval change rate, and the like from an electrocardiogram signal. Similarly, the pulse wave propagation time measurement unit 330 calculates a pulse rate, a pulse interval, a pulse interval change rate, and the like from the photoelectric pulse wave signal (acceleration pulse wave).
  • the acquired measurement data such as the pulse wave propagation time, heart rate, and pulse rate are accumulated and stored in, for example, the above-described RAM and the like and stored in a personal computer (PC) after the measurement is completed. You may make it output and confirm.
  • the information may be transmitted to the PC, a portable music player having a display, a smartphone, or the like via the communication unit 60 and displayed. In this case, it is preferable to transmit data such as measurement date and time in addition to the measurement result and detection result.
  • the biological information measuring device 5 biological signal detection device 1.
  • the finger of the left hand is inserted into the first electrocardiogram electrode 11.
  • the finger is brought into contact with the first electrocardiogram electrode 11 and the first photoelectric pulse wave sensor 21, and the finger of the right hand is inserted into the second electrocardiogram electrode 12, and the finger is inserted into the second electrocardiogram electrode 12 and the second photoelectric pulse wave.
  • the game controller 100 is held with both hands.
  • an electrocardiogram signal, a photoelectric pulse wave signal, and a pulse wave propagation time can be detected and measured.
  • the leaf spring portions 11c and 11d have elasticity and pinch fingers, so that they can be easily mounted. Also, since the conductive leaf springs 11c and 11d and the photoelectric pulse wave sensors 21 and 22 are pressed from the side (substantially perpendicular) to the bending direction of the finger, they are active (for example, during a game) ), The electrocardiogram signal (biological potential) and the photoelectric pulse wave signal can be measured stably. In particular, unlike the ventral side, the side surface of the finger is not greatly deformed by bending and stretching, so that the contact state can be stabilized by applying pressure from the side surface and pinching.
  • the leaf spring portions 11c and 11d are formed so as to function as leaf springs having a cross section formed in an arc shape. Therefore, a conductive plate with a relatively simple configuration. The state in which the spring parts 11c and 11d (electrocardiographic electrodes 11 and 12) are in contact with the living body can be stably maintained. Therefore, the electrocardiogram signal and the photoelectric pulse wave signal can be stably measured even during the activity.
  • the first leaf spring portion 11c formed as an arcuate leaf spring is formed so that the radius of curvature decreases (that is, the curvature increases) as it approaches the distal end portion from the proximal end portion. Therefore, it is easy to fit regardless of the thickness of the finger, and can be made difficult to fall off.
  • the biological information measuring device 5 since the pair of biological signal detection devices 1 are provided, it is possible to more easily attach to the left and right fingers.
  • the biological information measuring device 5 since the biological signal detecting device 1 is provided, it is possible to stably measure an electrocardiogram signal and a photoelectric pulse wave signal even during activity. As a result, the pulse wave propagation time can be acquired more easily and stably even during activity.
  • the electrocardiographic electrodes 11 and 12 are configured to include the first leaf spring portion 11c and the second leaf spring portion 11d. Instead of the member, it may be made of a stretchable material. Moreover, in the biological signal detection apparatus 1 according to the first embodiment described above, each of the electrocardiographic electrodes 11 and 12 includes a photoelectric pulse wave sensor (a first photoelectric pulse wave sensor 21 and a second photoelectric pulse wave sensor 22). However, a configuration in which a photoelectric pulse wave sensor is provided only on one of the electrocardiographic electrodes may be employed.
  • FIG. 5 is a block diagram showing the configuration of the biological information measuring device 6 using the biological signal detecting device 2.
  • FIG. 6 is a diagram showing an appearance of the biological information measuring device 6 using the biological signal detecting device 2. 5 and 6, the same or equivalent components as those in the first embodiment are denoted by the same reference numerals.
  • the biosignal detection device 2 includes a first electrocardiogram electrode 13 and a second electrocardiogram electrode 14 that have elasticity and flexibility instead of the leaf spring portions 11c and 11d. It differs from the above-described biological signal detection device 1 in that it is composed of a finger band (stretchable part) that contracts from the surroundings when it is attached to the finger and expands and contracts in response to the bending of the finger.
  • the electrocardiographic electrodes 13, 14 may be referred to as finger bands 13, 14).
  • the biological signal detection device 2 has a second photoelectric pulse wave sensor 22 that detects the second photoelectric pulse wave signal, and pulse wave propagation based on the second photoelectric pulse wave signal.
  • the signal processing unit 32 that measures time is not provided.
  • Other configurations are the same as or similar to those of the biological signal detection apparatus 1 described above, and thus detailed description thereof is omitted here.
  • the electrocardiographic electrodes 13 and 14 have elasticity and flexibility, and when they are worn on the user's finger, they contract from the surroundings and come into contact with the finger. , Expands and contracts in response to finger bending. That is, the finger bands 13 and 14 are equivalent to the expansion-contraction part as described in a claim.
  • the finger bands 13 and 14 are preferably made of a knitted fabric made of conductive yarn having conductivity. That is, as for the finger bands 13 and 14, the site
  • the conductive yarn for example, a conductive polymer such as Ag-plated, carbon nanotube-coated, or PEDOT (poly (3,4-ethylenedioxythiophene)) is coated. The thing etc. which can be used can be used suitably.
  • the finger bands 13 and 14 are attached to the index finger, but may be attached to the middle finger, the ring finger, and the little finger.
  • a photoelectric pulse wave sensor 21 that includes a light emitting element 211 and a light receiving element 212 and detects a photoelectric pulse wave signal is provided on the inner surface of the finger band 14.
  • the photoelectric pulse wave sensor 21 is configured to be disposed laterally (substantially perpendicular) to the bending direction of the finger when the photoelectric pulse wave sensor 21 is worn on the user's finger.
  • the biological information measuring means 6 biological signal detection device 2
  • the left hand is placed on the finger band 13 (first electrocardiogram electrode 13).
  • the finger is brought into contact with the first electrocardiogram electrode 13, and the finger of the right hand is inserted into the finger band 14 (second electrocardiogram electrode 14) to insert the finger into the second electrocardiogram electrode 14 and the photoelectric pulse wave.
  • the game controller 100 is held with both hands.
  • an electrocardiogram signal, a photoelectric pulse wave signal, a pulse wave propagation time, and the like can be detected and measured.
  • the finger bands 13 and 14 have elasticity and flexibility, they can be easily attached. Further, the finger bands 13 and 14 are electrically conductive at a portion that comes into contact with the user's finger, and when worn on the finger, the finger band 13 and 14 contracts from the surroundings to come into contact with the finger and cope with bending of the finger. Therefore, it is possible to stably measure an electrocardiogram signal even during activity. Further, since the photoelectric pulse wave sensor 21 (the light emitting element 211 and the light receiving element 212) is contacted from the side (substantially perpendicular direction) with respect to the bending direction of the finger, even during an activity (for example, during a game).
  • An electrocardiogram signal (biological potential) and a photoelectric pulse wave signal can be measured stably.
  • the side surface of the finger is not greatly deformed by bending and stretching unlike the ventral side, even if there is a difference in finger thickness (individual difference) or wearing deviation, it is possible to measure stably.
  • the finger bands 13 and 14 consist of the knitted fabric which knit the electroconductive thread which has electroconductivity
  • the finger bands 13 and 14 which have electroconductivity (electrocardiogram electrode) 13 and 14) can be stably kept in contact with the finger. Therefore, the electrocardiogram signal can be stably measured even during the activity.
  • the state in which the photoelectric pulse wave sensor 21 is in contact with the finger can be stably maintained with a relatively simple configuration. Therefore, the photoelectric pulse wave signal can be stably measured even during the activity.
  • the biological information measuring device 5 includes the pair (two) of biological signal detection devices 1, but may be configured to include only one biological signal detection device. That is, in the first embodiment described above, the leaf spring portions 11c, 11d constitute the electrocardiographic electrodes 11, 12, and also have the function of mounting the photoelectric pulse wave sensors 21, 22 on the finger. It is good also as a structure used as a mounting tool for pressing the photoelectric pulse wave sensor 21 against the side surface of a finger instead of using the portions 11c and 11d as electrocardiographic electrodes. Therefore, in this case, only the photoelectric pulse wave signal is detected.
  • FIG. 7 is a diagram illustrating an appearance of a biological information measuring device 7 using the biological signal detection device 3 according to the third embodiment.
  • the same or equivalent components as those in the first embodiment are denoted by the same reference numerals.
  • the biological information measuring device 7 includes, for example, a secondary battery built in the above-described biological signal detection device 1, and a power supply unit 110 that supplies power to the photoelectric pulse wave sensor 21, and a power supply unit.
  • a cable 111 for connecting 110 and the photoelectric pulse wave sensor 21 is added.
  • the power supply unit 110 is configured to be disposed on the back side of the finger when the biological signal detection device 3 (photoelectric pulse wave sensor 21) is worn on the finger of the user.
  • Other configurations are the same as or similar to those of the biological signal detection apparatus 1 described above, and thus detailed description thereof is omitted here.
  • the power supply unit 110 that supplies power to the photoelectric pulse wave sensor 21 is arranged on the back side of the finger, thereby preventing interference with adjacent fingers.
  • the photoelectric pulse wave sensor 21 is worn in the wrong direction so as to contact the abdomen or back side of the finger. Can be prevented.
  • the biological signal detection devices 1 and 2 include the electrocardiographic electrodes 11, 12, 13, and 14 and the photoelectric pulse wave sensors 21 and 22, but only the electrocardiographic electrodes. (That is, the photoelectric pulse wave sensor is removed).
  • each of the pair of biological signal detection devices 1 includes the electrocardiographic electrodes 11 and 12 and the photoelectric pulse wave sensors 21 and 22. It is good also as a structure provided only with an electrocardiogram electrode (namely, the photoelectric pulse wave sensor was removed).
  • the biological signal detection device 1 and the biological signal detection device 2 may be used in combination. Furthermore, it is good also as a structure used combining the biological signal detection apparatus 1 and the biological signal detection apparatus 2 which removed the photoelectric pulse wave sensor 22, and the biological signal detection apparatus 1 and biological body which removed the photoelectric pulse wave sensor 21 (22).
  • the signal detection device 2 may be used in combination.
  • the photoelectric pulse wave sensor 21 was attached to the leaf
  • the acquired measurement data such as the pulse interval and measurement time may be stored in a memory so that it can be read out as daily fluctuation history, or transmitted wirelessly to many external devices on the smartphone. You may do it. Further, it may be stored in a memory in the apparatus during measurement and automatically connected to an external device to transmit data after the measurement is completed.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Molecular Biology (AREA)
  • Physics & Mathematics (AREA)
  • Veterinary Medicine (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • Biomedical Technology (AREA)
  • Public Health (AREA)
  • Medical Informatics (AREA)
  • General Health & Medical Sciences (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • Cardiology (AREA)
  • Physiology (AREA)
  • Signal Processing (AREA)
  • Measuring Pulse, Heart Rate, Blood Pressure Or Blood Flow (AREA)
  • Measurement And Recording Of Electrical Phenomena And Electrical Characteristics Of The Living Body (AREA)

Abstract

This biosignal detection device (1) is provided with: a first ECG electrode (11) having a first leaf spring unit (11c) and a second leaf spring unit (11d) which are elastic and which, worn on a user's finger, hold the finger by pressing from the sides (the sides of the finger) with respect to the bending direction of the finger; and a photoelectric pulse wave sensor (21) which has a light emitting element (211) and a light receiving element (212) arranged on the second leaf spring unit (11d). The first leaf spring unit (11c) and the second leaf spring unit (11d) are conductive. Further, the first leaf spring unit (11c) has a cross section formed in an arcuate shape.

Description

生体信号検出装置および生体情報計測装置Biological signal detection device and biological information measurement device
 本発明は、生体信号検出装置、および該生体信号検出装置を用いた生体情報計測装置に関する。 The present invention relates to a biological signal detection device and a biological information measurement device using the biological signal detection device.
 近年、健康の管理や維持・増進に対する人々の関心が高まっている。そこでは、人々が、日常生活の中で、より手軽に例えば脈拍や心電などの生体情報を得られることが望まれている。ここで、特許文献1には、各種電極、リード線、および心電計を一体的に収納した小型の身体装着用心電図記録装置が開示されている。また、特許文献2には、腕時計ケースの裏蓋を一方の心電電極とし、腕時計ケース本体に配置された電極体を他方の心電電極として心電波を検出する心電波検出部を備えた電子腕時計が開示されている。 In recent years, people's interest in health management, maintenance and promotion has increased. Therefore, it is desired that people can obtain biological information such as pulse and electrocardiogram more easily in daily life. Here, Patent Document 1 discloses a small body-mounted electrocardiogram recording apparatus that integrally houses various electrodes, lead wires, and an electrocardiograph. Patent Document 2 discloses an electronic device including an electrocardiogram detection unit that detects an electrocardiogram using the back cover of a watch case as one electrocardiogram electrode and the electrode body disposed on the watch case body as the other electrocardiogram electrode. A wristwatch is disclosed.
 また、特許文献3には、回路部を内蔵するセンサ本体、人体の脈波情報を検出する検出部、およびセンサ本体を指に固定するためのベルトやクリップから構成され、センサ本体と検出部とが可撓性を有するプリント基板によってフレキシブルに連結された指輪型の脈波センサが開示されている。さらに、特許文献4には、一部が切断された円環状の装着部を指輪として、この装着部の内周面の径を全体的に縮小する調節機構(定荷重バネ)を備えている指輪型の光電脈波信号検出装置が開示されている。 Patent Document 3 is composed of a sensor body with a built-in circuit part, a detection part for detecting pulse wave information of a human body, and a belt or clip for fixing the sensor body to a finger. Discloses a ring type pulse wave sensor that is flexibly connected by a flexible printed circuit board. Further, Patent Document 4 discloses a ring provided with an adjustment mechanism (constant load spring) for reducing the diameter of the inner peripheral surface of the mounting portion as a whole, using an annular mounting portion with a part cut off as a ring. A type of photoelectric pulse wave signal detector is disclosed.
特開2005-27992号公報JP 2005-27992 A 特開平04-200439号公報Japanese Patent Laid-Open No. 04-200399 特開2001-70264号公報JP 2001-70264 A 特開平11-332840号公報Japanese Patent Laid-Open No. 11-332840
 上述した特許文献1の身体装着用心電図記録装置は、胸部に粘着材で心電計を固定して心電測定を行うものであるため、心電計を着脱する際に、着ている衣服を脱がなければならない。そのため、心電計の着脱に手間がかかる。 The above-mentioned electrocardiogram recording apparatus for body wearing disclosed in Patent Document 1 is to measure an electrocardiogram by fixing the electrocardiograph to the chest with an adhesive material. Therefore, when attaching and detaching the electrocardiograph, I have to take it off. Therefore, it takes time to attach and detach the electrocardiograph.
 また、特許文献2の電子腕時計では、裏蓋に設けられた心電電極を皮膚に密着させるために腕時計のベルトをある程度きつく締める必要があるが、きつく締めると装着感が悪化するため、ユーザーがベルトを緩めてしまい、安定して計測することができなくなるおそれがある。また、この構成では、心電波を計測するためには、一方の手(例えば左手)に腕時計をはめた状態で、腕時計ケース本体に配置された電極体(心電電極)を他方の手(例えば左手)で触っている必要がある。すなわち、両手を略固定していなければ心電波を計測することができないため、活動中に連続して計測することが困難である。 In addition, in the electronic wristwatch of Patent Document 2, it is necessary to tighten the wristwatch belt to some extent in order to bring the electrocardiographic electrode provided on the back cover into close contact with the skin. There is a risk that the belt will be loosened and stable measurement will not be possible. In this configuration, in order to measure the electrocardiogram, an electrode body (electrocardiographic electrode) disposed on the wristwatch case body is placed on the other hand (for example, the left hand) while the wristwatch is worn on the other hand (for example, the left hand). It is necessary to touch with the left hand). That is, it is difficult to measure continuously during an activity because the heart wave cannot be measured unless both hands are substantially fixed.
 特許文献3の指輪型の脈波センサでは、プリント基板の端部に搭載された検出部が指の腹側に配置される。より詳細には、この脈波センサを使用する際には、検出部が指の腹側に当たるようにセンサ本体が指の背側に配置され、センサ本体がベルトによって固定される。この時、検出部が指の腹に密着できる程度(検出部が指の腹に押し当てられた状態)にベルトの長さが調節される。同様に、特許文献4の指輪型の光電脈波信号検出装置では、発光素子と受光素子を指の背側よりも血管が多い腹側に配置することにより、効果的に脈派等の検出が行えるようにしている。しかしながら、指の腹側は指の曲げ伸ばしによって大きく変形するため、指の腹側で計測すると指の曲げ伸ばし等に起因してノイズが乗り易くなる。そのため、指が動いている活動中には光電脈波を安定して計測することが難しい。 In the ring-type pulse wave sensor of Patent Document 3, a detection unit mounted on an end of a printed circuit board is disposed on the ventral side of the finger. More specifically, when this pulse wave sensor is used, the sensor main body is arranged on the back side of the finger so that the detection unit contacts the belly side of the finger, and the sensor main body is fixed by the belt. At this time, the length of the belt is adjusted to such an extent that the detection unit can be in close contact with the belly of the finger (a state where the detection unit is pressed against the belly of the finger). Similarly, in the ring-type photoelectric pulse wave signal detection device of Patent Document 4, the light-emitting element and the light-receiving element are arranged on the abdominal side having more blood vessels than the dorsal side of the finger, thereby effectively detecting the pulsation and the like. I can do it. However, since the abdomen of the finger is greatly deformed by bending and stretching the finger, noise is easily applied when measured on the abdomen of the finger due to bending and stretching of the finger. Therefore, it is difficult to stably measure the photoelectric pulse wave during the activity in which the finger is moving.
 本発明は、上記問題点を解消する為になされたものであり、生体への装着をより簡易に行うことができ、かつ、活動中でも安定して生体信号を計測することが可能な生体信号検出装置、および該生体信号検出装置を用いた生体情報計測装置を提供することを目的とする。 The present invention has been made to solve the above-described problems, and can detect a biological signal that can be easily attached to a living body and can stably measure a biological signal even during an activity. An object is to provide a device and a biological information measuring device using the biological signal detection device.
 本発明に係る生体信号検出装置は、生体に装着されて生体信号を検出する生体信号検出装置であって、弾性を有し、生体に装着されたときに、該生体の屈曲方向に対して側方から押圧して該生体を挟持する弾性部を備え、該弾性部の少なくとも生体に押圧される部位が導電性を有することを特徴とする。 A biological signal detection apparatus according to the present invention is a biological signal detection apparatus that detects a biological signal by being attached to a living body, and has elasticity, and when attached to a living body, the biological signal detection apparatus is on the side of the bending direction of the living body. The elastic part which presses from the direction and clamps this biological body is provided, The site | part pressed by the biological body of this elastic part has electroconductivity, It is characterized by the above-mentioned.
 本発明に係る生体信号検出装置によれば、弾性を有する弾性部によって生体が挟持されるため、容易に装着することができる。また、導電性を有する部位が生体の屈曲方向に対して側方(略垂直な方向)から押圧されるため、活動中であっても安定して生体信号を計測することができる。その結果、生体への装着をより簡易に行うことができ、かつ、活動中でも安定して生体信号を計測することが可能となる。 According to the biological signal detection device of the present invention, since the living body is sandwiched by the elastic portion having elasticity, it can be easily attached. In addition, since the conductive part is pressed from the side (substantially perpendicular to the bending direction of the living body), the biological signal can be stably measured even during the activity. As a result, attachment to a living body can be performed more easily, and a living body signal can be stably measured even during an activity.
 また、本発明に係る生体信号検出装置では、弾性部が、断面が円弧状に形成された板バネであることが好ましい。 In the biological signal detection apparatus according to the present invention, it is preferable that the elastic portion is a leaf spring having a circular cross section.
 この場合、弾性部が、断面が円弧状に形成された板バネとして機能するように形成されているため、比較的簡易な構成により、導電性を有する弾性部を生体に接触させた状態を安定して保つことができる。よって、活動中でも安定して生体信号を計測することができる。 In this case, since the elastic portion is formed so as to function as a leaf spring having a cross section formed in an arc shape, the state in which the elastic portion having conductivity is brought into contact with the living body can be stabilized with a relatively simple configuration. Can be kept. Therefore, a biological signal can be stably measured even during an activity.
 さらに、本発明に係る生体信号検出装置では、弾性部が、円弧の基端部から先端部に近づくにつれて円弧の曲率半径が小さくなるように形成されていることが好ましい。 Furthermore, in the biological signal detection apparatus according to the present invention, it is preferable that the elastic portion is formed such that the radius of curvature of the arc decreases as it approaches the tip portion from the base end portion of the arc.
 この場合、円弧状の板バネとして形成された弾性部が、基端部から先端部に近づくにつれて曲率半径が小さくなる(すなわち曲率が大きくなる)ように形成されているため、生体(例えば指など)の太さにかかわらずフィットしやすく、かつ抜け落ちにくくすることができる。 In this case, since the elastic portion formed as an arc-shaped leaf spring is formed so that the radius of curvature decreases (that is, the curvature increases) as it approaches the distal end portion from the proximal end portion, a living body (for example, a finger or the like) ) Can be easily fitted regardless of the thickness, and can be prevented from falling off.
 本発明に係る生体信号検出装置は、生体に装着されて生体信号を検出する生体信号検出装置であって、伸縮性および柔軟性を有し、生体に装着されたときに、周囲から収縮して該生体に接触するとともに、該生体の屈曲に対応して伸縮する伸縮部を備え、伸縮部の生体と接触する部位が導電性を有することを特徴とする。 A biological signal detection apparatus according to the present invention is a biological signal detection apparatus that detects a biological signal by being attached to a living body, has elasticity and flexibility, and contracts from the surroundings when attached to the living body. A stretchable part that contacts the living body and expands and contracts in response to the bending of the living body is provided, and a portion of the stretchable part that contacts the living body has conductivity.
 本発明に係る生体信号検出装置によれば、伸縮部が伸縮性および柔軟性を有しているため、容易に装着することができる。また、この伸縮部は、生体と接触する部位が導電性を有し、生体に装着されたときに、周囲から収縮して該生体に接触するとともに、該生体の屈曲に対応して伸縮するため、活動中であっても安定して生体信号を計測することができる。その結果、生体への装着をより簡易に行うことができ、かつ、活動中でも安定して生体信号を計測することが可能となる。 According to the biological signal detection device of the present invention, since the stretchable part has stretchability and flexibility, it can be easily attached. In addition, this stretchable part is electrically conductive at the part that comes into contact with the living body, and when it is attached to the living body, it contracts from the surroundings to contact the living body and expands and contracts in response to the bending of the living body. It is possible to stably measure a biological signal even during an activity. As a result, attachment to a living body can be performed more easily, and a living body signal can be stably measured even during an activity.
 また、本発明に係る生体信号検出装置では、伸縮部が、導電性を有する導電糸を編んだ編物からなることが好ましい。 Moreover, in the biological signal detection apparatus according to the present invention, it is preferable that the expansion / contraction part is made of a knitted fabric knitted with conductive yarn having conductivity.
 この場合、伸縮部が導電性を有する導電糸を編んだ編物からなるため、比較的簡易な構成により、導電性を有する伸縮部を生体に接触させた状態を安定して保つことができる。よって、活動中でも安定して生体信号を計測することができる。 In this case, since the stretchable part is made of a knitted fabric made of conductive yarn having conductivity, the state where the conductive stretchable part is brought into contact with the living body can be stably maintained with a relatively simple configuration. Therefore, a biological signal can be stably measured even during an activity.
 本発明に係る生体信号検出装置は、生体に装着されて生体信号を検出する生体信号検出装置であって、弾性を有し、生体に装着されたときに、該生体の屈曲方向に対して側方から押圧して該生体を挟持する弾性部と、弾性部に配設された発光素子および受光素子を有し、光電脈波信号を検出する光電脈波センサとを備えることを特徴とする。 A biological signal detection apparatus according to the present invention is a biological signal detection apparatus that detects a biological signal by being attached to a living body, and has elasticity, and when attached to a living body, the biological signal detection apparatus is on the side of the bending direction of the living body. And a photoelectric pulse wave sensor that has a light emitting element and a light receiving element disposed in the elastic part and detects a photoelectric pulse wave signal.
 本発明に係る生体信号検出装置によれば、弾性部が弾性を有し、生体を挟持するため、容易に装着することができる。また、光電脈波センサ(発光素子および受光素子)が、生体の屈曲方向に対して側方(略垂直な方向)から押圧されるため、活動中であっても安定して光電脈波信号を計測することができる。特に、生体(例えば指など)の側面は腹側と異なり、曲げ伸ばしによって大きく変形しないため、側面から圧力を加えて挟持することで接触状態を安定させることができる。また、光電脈波センサの発光素子と受光素子が共に生体の側面に配置されるため、生体の太さの違い(個人差)や装着ずれがあったとしても、生体の曲げ伸ばしの影響を受け難く、安定して計測することができる。その結果、生体への装着をより簡易に行うことができ、かつ、活動中でも安定して光電脈波信号を計測することが可能となる。 According to the biological signal detection device of the present invention, the elastic part has elasticity and can hold the living body easily because it holds the living body. In addition, since the photoelectric pulse wave sensor (light emitting element and light receiving element) is pressed from the side (substantially perpendicular direction) with respect to the bending direction of the living body, the photoelectric pulse wave signal can be stably output even during activity. It can be measured. In particular, since the side surface of a living body (for example, a finger) is not greatly deformed by bending and stretching unlike the abdominal side, the contact state can be stabilized by applying pressure from the side surface and pinching. In addition, since both the light emitting element and the light receiving element of the photoelectric pulse wave sensor are arranged on the side surface of the living body, even if there is a difference in the thickness of the living body (individual difference) or mounting deviation, it is affected by the bending and stretching of the living body. Difficult to measure stably. As a result, attachment to a living body can be performed more easily, and a photoelectric pulse wave signal can be stably measured even during activity.
 また、本発明に係る生体信号検出装置では、弾性部が、板バネであることが好ましい。 In the biological signal detection apparatus according to the present invention, it is preferable that the elastic portion is a leaf spring.
 この場合、弾性部が板バネとして機能するように形成されているため、比較的簡易な構成により、導電性を有する弾性部を生体に接触させた状態を安定して保つことができる。よって、活動中でも安定して光電脈波信号を計測することができる。 In this case, since the elastic portion is formed so as to function as a leaf spring, the conductive elastic portion can be stably maintained in contact with the living body with a relatively simple configuration. Therefore, the photoelectric pulse wave signal can be stably measured even during the activity.
 本発明に係る生体信号検出装置は、生体に装着されて生体信号を検出する生体信号検出装置であって、伸縮性および柔軟性を有し、生体に装着されたときに、周囲から収縮して該生体に接触するとともに、該生体の屈曲に対応して伸縮する伸縮部と、伸縮部に配設された発光素子および受光素子を有し、光電脈波信号を検出する光電脈波センサとを備え、該光電脈波センサが、生体に装着される際に、該生体の屈曲方向に対して側方に配設されるように構成されることを特徴とする。 A biological signal detection apparatus according to the present invention is a biological signal detection apparatus that detects a biological signal by being attached to a living body, has elasticity and flexibility, and contracts from the surroundings when attached to the living body. A photoelectric pulse wave sensor that contacts the living body and expands and contracts in response to the bending of the living body, and a photoelectric pulse wave sensor that has a light emitting element and a light receiving element disposed in the expansion and contraction part and detects a photoelectric pulse wave signal. The photoelectric pulse wave sensor is configured to be disposed laterally with respect to a bending direction of the living body when the photoelectric pulse wave sensor is attached to the living body.
 本発明に係る生体信号検出装置によれば、伸縮部が伸縮性および柔軟性を有しているため、容易に装着することができる。また、光電脈波センサ(発光素子および受光素子)が、生体の屈曲方向に対して側方(略垂直な方向)から接触されるため、活動中であっても安定して光電脈波信号を計測することができる。特に、生体(例えば指など)の側面は腹側と異なり、曲げ伸ばしによって大きく変形しないため、生体の太さの違い(個人差)や装着ずれがあったとしても安定して計測することができる。その結果、生体への装着をより簡易に行うことができ、かつ、活動中でも安定して光電脈波信号を計測することが可能となる。 According to the biological signal detection device of the present invention, since the stretchable part has stretchability and flexibility, it can be easily attached. In addition, since the photoelectric pulse wave sensor (light emitting element and light receiving element) is contacted from the side (substantially perpendicular direction) to the bending direction of the living body, the photoelectric pulse wave signal can be stably output even during the activity. It can be measured. In particular, since the side of a living body (for example, a finger) is different from the ventral side and is not greatly deformed by bending and stretching, stable measurement can be performed even if there is a difference in thickness of the living body (individual difference) or wearing deviation. . As a result, attachment to a living body can be performed more easily, and a photoelectric pulse wave signal can be stably measured even during activity.
 また、本発明に係る生体信号検出装置では、伸縮部が、導電性を有する導電糸を編んだ編物からなることが好ましい。 Moreover, in the biological signal detection apparatus according to the present invention, it is preferable that the expansion / contraction part is made of a knitted fabric knitted with conductive yarn having conductivity.
 この場合、伸縮部が導電性を有する導電糸を編んだ編物からなるため、比較的簡易な構成により、光電脈波センサを生体に接触させた状態を安定して保つことができる。よって、活動中でも安定して光電脈波信号を計測することができる。 In this case, since the stretchable part is made of a knitted fabric made of conductive yarn having conductivity, the photoelectric pulse wave sensor can be stably maintained in contact with the living body with a relatively simple configuration. Therefore, the photoelectric pulse wave signal can be stably measured even during the activity.
 また、本発明に係る生体信号検出装置は、光電脈波センサに電力を供給する電力供給部を備え、該電力供給部が、生体信号検出装置が指に装着される際に、指の背面側に配設されるように構成されていることが好ましい。 In addition, the biological signal detection device according to the present invention includes a power supply unit that supplies power to the photoelectric pulse wave sensor, and the power supply unit is arranged on the back side of the finger when the biological signal detection device is worn on the finger. It is preferable that it is comprised so that it may be arrange | positioned.
 この場合、光電脈波センサに電力を供給する電力供給部が指の背面側に配置されることで、隣り合う指と干渉することを防止できる。また、使用者に指にはめる向きを視覚的に示すことができるため、光電脈波センサが指の腹側や背面側に接触するような誤った向きに装着されることを効果的に防止できる。 In this case, the power supply unit that supplies power to the photoelectric pulse wave sensor is disposed on the back side of the finger, thereby preventing interference with adjacent fingers. In addition, since it is possible to visually indicate to the user the direction to be put on the finger, it is possible to effectively prevent the photoelectric pulse wave sensor from being attached in an incorrect direction so as to contact the belly side or back side of the finger. .
 本発明に係る生体信号検出装置は、生体に装着されて生体信号を検出する生体信号検出装置であって、弾性を有し、生体に装着されたときに、該生体の屈曲方向に対して側方から押圧して該生体を挟持する弾性部と、弾性部に配設された発光素子および受光素子を有し、光電脈波信号を検出する光電脈波センサとを備え、弾性部の少なくとも生体に押圧される部位が導電性を有することを特徴とする。 A biological signal detection apparatus according to the present invention is a biological signal detection apparatus that detects a biological signal by being attached to a living body, and has elasticity, and when attached to a living body, the biological signal detection apparatus is on the side of the bending direction of the living body. At least the living body of the elastic part, comprising: an elastic part that presses the living body to sandwich the living body; and a photoelectric pulse wave sensor that has a light emitting element and a light receiving element disposed in the elastic part and detects a photoelectric pulse wave signal. The portion pressed by the electrode has conductivity.
 本発明に係る生体信号検出装置によれば、弾性部が弾性を有し、生体を挟持するため、容易に装着することができる。また、導電性を有する部位および光電脈波センサそれぞれが、生体の屈曲方向に対して側方(略垂直な方向)から押圧されるため、活動中であっても安定して生体信号および光電脈波信号を計測することができる。特に、生体(例えば指など)の側面は腹側と異なり、曲げ伸ばしによって大きく変形しないため、側面から圧力を加えて挟持することで接触状態を安定させることができる。また、生体の太さの違い(個人差)や装着ずれがあったとしても、生体の曲げ伸ばしの影響を受け難く、安定して計測することができる。その結果、生体への装着をより簡易に行うことができ、かつ、活動中でも安定して生体信号および光電脈波信号を計測することが可能となる。 According to the biological signal detection device of the present invention, the elastic part has elasticity and can hold the living body easily because it holds the living body. In addition, since each of the conductive portion and the photoelectric pulse wave sensor is pressed from the side (substantially perpendicular to the bending direction of the living body), the biological signal and the photoelectric pulse can be stably supplied even during the activity. Wave signals can be measured. In particular, since the side surface of a living body (for example, a finger) is not greatly deformed by bending and stretching unlike the abdominal side, the contact state can be stabilized by applying pressure from the side surface and pinching. Moreover, even if there is a difference in the thickness of the living body (individual difference) or a mounting deviation, it is difficult to be affected by the bending and stretching of the living body and can be stably measured. As a result, it is possible to more easily attach to a living body, and to stably measure a biological signal and a photoelectric pulse wave signal even during activity.
 本発明に係る生体情報計測装置は、一対の上記いずれかの生体信号検出装置を備え、該一対の生体信号検出装置により左右の指から心電信号を検出することを特徴とする。 The biological information measuring apparatus according to the present invention includes a pair of any of the above-described biological signal detection apparatuses, and detects an electrocardiogram signal from the left and right fingers using the pair of biological signal detection apparatuses.
 本発明に係る生体情報計測装置によれば、一対の上記いずれかの生体信号検出装置を備えているため、左右の指への装着をより簡易に行うことができ、かつ、活動中でも安定して心電信号を計測することが可能となる。 According to the biological information measuring device according to the present invention, since the biological signal detecting device is provided with a pair of any of the above-described biological signal detecting devices, it can be easily attached to the left and right fingers and can be stably even during the activity. An electrocardiogram signal can be measured.
 本発明に係る生体情報計測装置は、一対の上記生体信号検出装置と、一対の弾性部により検出された心電信号、及び、光電脈波センサにより検出された光電脈波信号それぞれのピークを検出するピーク検出手段と、ピーク検出手段により検出された光電脈波信号のピークと心電信号のピークとの時間差から脈波伝播時間を求める脈波伝播時間演算手段とを備えることを特徴とする。 The biological information measuring device according to the present invention detects a peak of each of the pair of biological signal detection devices, the electrocardiogram signal detected by the pair of elastic portions, and the photoelectric pulse wave signal detected by the photoelectric pulse wave sensor. And a pulse wave propagation time calculation means for obtaining a pulse wave propagation time from a time difference between the peak of the photoelectric pulse wave signal detected by the peak detection means and the peak of the electrocardiogram signal.
 本発明に係る生体情報計測装置によれば、上述した生体信号検出装置を備えているため、生体への装着をより簡易に行うことができ、かつ、活動中でも安定して心電信号および光電脈波信号を計測することができる。その結果、より簡易に、かつ、活動中であっても安定して脈波伝播時間を取得することが可能となる。 According to the biological information measuring apparatus according to the present invention, since the biological signal detection apparatus described above is provided, it can be easily attached to the living body, and can stably perform electrocardiogram signals and photoelectric pulses even during activities. Wave signals can be measured. As a result, the pulse wave propagation time can be acquired more easily and stably even during activity.
 本発明によれば、生体への装着をより簡易に行うことができ、かつ、活動中でも安定して生体信号を計測することが可能となる。 According to the present invention, it is possible to more easily attach to a living body, and to stably measure a living body signal even during an activity.
第1実施形態に係る生体信号検出装置を用いた生体情報計測装置の構成を示すブロック図である。It is a block diagram which shows the structure of the biological information measuring device using the biological signal detection apparatus which concerns on 1st Embodiment. 第1実施形態に係る生体信号検出装置を用いた生体情報計測装置の外観を示す図である。It is a figure which shows the external appearance of the biological information measuring device using the biological signal detection apparatus which concerns on 1st Embodiment. 第1実施形態に係る生体信号検出装置の外観を拡大して示す図である。It is a figure which expands and shows the external appearance of the biosignal detection apparatus which concerns on 1st Embodiment. 第1実施形態に係る生体信号検出装置を構成する板バネ部の曲率半径を示す図である。It is a figure which shows the curvature radius of the leaf | plate spring part which comprises the biosignal detection apparatus which concerns on 1st Embodiment. 第2実施形態に係る生体信号検出装置を用いた生体情報計測装置の構成を示すブロック図である。It is a block diagram which shows the structure of the biological information measuring device using the biological signal detection apparatus which concerns on 2nd Embodiment. 第2実施形態に係る生体信号検出装置を用いた生体情報計測装置の外観を示す図である。It is a figure which shows the external appearance of the biological information measuring device using the biological signal detection apparatus which concerns on 2nd Embodiment. 第3実施形態に係る生体信号検出装置を用いた生体情報計測装置の外観を示す図である。It is a figure which shows the external appearance of the biological information measuring device using the biological signal detection apparatus which concerns on 3rd Embodiment.
 以下、図面を参照して本発明の好適な実施形態について詳細に説明する。なお、図中、同一又は相当部分には同一符号を用いることとする。また、各図において、同一要素には同一符号を付して重複する説明を省略する。 Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the drawings. In the drawings, the same reference numerals are used for the same or corresponding parts. Moreover, in each figure, the same code | symbol is attached | subjected to the same element and the overlapping description is abbreviate | omitted.
 (第1実施形態)
 まず、図1~図4を併せて用いて、第1実施形態に係る生体信号検出装置1および該生体信号検出装置1を用いた生体情報計測装置5の構成について説明する。図1は、第1実施形態に係る生体信号検出装置1を用いた生体情報計測装置5の構成を示すブロック図である。図2は、生体信号検出装置1を用いた生体情報計測装置5の外観を示す図である。また、図3は、生体信号検出装置1の外観を拡大して示す図であり、図4は、生体信号検出装置1を構成する第1板バネ部11cの曲率半径を示す図である。
(First embodiment)
First, the configuration of the biological signal detection device 1 according to the first embodiment and the biological information measurement device 5 using the biological signal detection device 1 will be described with reference to FIGS. FIG. 1 is a block diagram showing a configuration of a biological information measuring device 5 using the biological signal detecting device 1 according to the first embodiment. FIG. 2 is a diagram illustrating an appearance of a biological information measuring device 5 using the biological signal detecting device 1. FIG. 3 is an enlarged view of the external appearance of the biological signal detection device 1, and FIG. 4 is a view showing the radius of curvature of the first leaf spring portion 11 c constituting the biological signal detection device 1.
 生体情報計測装置5(生体信号検出装置1)は、使用者が日常の動作・活動、例えばゲームコントローラやタブレット端末等の把持型装置を両手で把持して操作しながら心電信号や光電脈波信号などを計測できるように構成されている。なお、本実施形態では、本発明をゲームコントローラに適用した場合を例にして説明する。また、生体電位としては、筋電等もあるが、本実施形態では心電を計測する場合を例にして説明する。 The biological information measuring device 5 (biological signal detection device 1) is a device in which a user performs daily operations and activities, for example, an electrocardiogram signal or a photoelectric pulse wave while holding and operating a grasping device such as a game controller or a tablet terminal with both hands. It is configured to measure signals. In the present embodiment, a case where the present invention is applied to a game controller will be described as an example. The bioelectric potential includes myoelectricity and the like, but in the present embodiment, a case where an electrocardiogram is measured will be described as an example.
 生体情報計測装置5(生体信号検出装置1)は、左右両手間の心電信号、及び、左手の指並びに右手の指での光電脈波信号を検出し、検出した心電信号(心電波)のR波ピークと光電脈波信号(脈波)のピークとの時間差から左手及び右手それぞれの脈波伝播時間などを取得する。 The biological information measuring device 5 (biological signal detection device 1) detects an electrocardiogram signal between the left and right hands and a photoelectric pulse wave signal from the left and right fingers and detects the detected electrocardiogram signal (electrocardiogram). From the time difference between the R wave peak and the peak of the photoelectric pulse wave signal (pulse wave), the left and right hand pulse wave propagation times are acquired.
 そのため、生体情報計測装置5は、主として、両手間の心電信号を検出するための一対の心電電極(第1心電電極11、第2心電電極12)、および左右の手の光電脈波信号(第1の光電脈波信号、第2の光電脈波信号)を検出するための2つの光電脈波センサ(第1光電脈波センサ21、第2光電脈波センサ22)を有する一対の生体信号検出装置1,1と、検出された心電信号及び第1,第2の光電脈波信号に基づいて左右の手における脈波伝播時間(第1脈波伝播時間、第2脈波伝播時間)を計測する信号処理部31,32とを備えている。以下、各構成要素について詳細に説明する。 Therefore, the biological information measuring device 5 mainly includes a pair of electrocardiographic electrodes (first electrocardiographic electrode 11 and second electrocardiographic electrode 12) for detecting an electrocardiographic signal between both hands, and photoelectric pulses of left and right hands. A pair having two photoelectric pulse wave sensors (first photoelectric pulse wave sensor 21 and second photoelectric pulse wave sensor 22) for detecting a wave signal (first photoelectric pulse wave signal, second photoelectric pulse wave signal). , And the pulse wave propagation times (first pulse wave propagation time, second pulse wave) in the left and right hands based on the detected electrocardiogram signal and the first and second photoelectric pulse wave signals. Signal processing units 31 and 32 for measuring (propagation time). Hereinafter, each component will be described in detail.
 第1心電電極11及び第2心電電極12は、心電信号を検出するものであり、例えば、使用者が、第1心電電極11に左手の指を挿入し、第2心電電極12に右手の指を挿入することにより、使用者の左右の手の間の電位差に応じた心電信号を取得する。第1心電電極11、第2心電電極12の電極材料としては、腐食に強くアレルギーが起こり難い、例えばステンレス等の金属が好適に用いられる。また、ステンレスを基材として導電性のあるメッキやコーティングを施したものを用いてもよい。 The first electrocardiogram electrode 11 and the second electrocardiogram electrode 12 are for detecting an electrocardiogram signal. For example, the user inserts a finger of the left hand into the first electrocardiogram electrode 11 and the second electrocardiogram electrode. By inserting the finger of the right hand into 12, an electrocardiographic signal corresponding to the potential difference between the left and right hands of the user is acquired. As the electrode material of the first electrocardiogram electrode 11 and the second electrocardiogram electrode 12, a metal such as stainless steel is suitably used, for example, which is resistant to corrosion and hardly causes allergies. Moreover, you may use what gave the electroplating and coating which used stainless steel as the base material.
 第1心電電極11及び第2心電電極12(以下、まとめて心電電極11,12ということもある)それぞれは、両端に2つの屈曲点11a,11bが形成された基端部、および該基端部の両端(屈曲点11a,11b)それぞれに屈曲してつながった第1の板バネ部11c並びに第2の板バネ部11d(以下、まとめて板バネ部11c,11dということもある)を有している。第1の板バネ部11cは、断面が円弧状に形成されている。ここで、図4に示されるように、第1の板バネ部11cは、基端部(屈曲点11a)から先端部に近づくにつれて円弧の曲率半径が小さく(曲率が大きく)なるように形成されている。一方、第2の板バネ部11dは、断面が直線状に形成されている。そして、心電電極11,12は、全体としては、断面で見た場合に、一部が切れた略リング状に形成されている。 Each of the first electrocardiogram electrode 11 and the second electrocardiogram electrode 12 (hereinafter sometimes collectively referred to as the electrocardiogram electrodes 11 and 12) includes a base end portion in which two bending points 11a and 11b are formed at both ends, and A first leaf spring portion 11c and a second leaf spring portion 11d (hereinafter collectively referred to as leaf spring portions 11c and 11d) that are bent and connected to both ends (bending points 11a and 11b) of the base end portion. )have. The cross section of the first leaf spring portion 11c is formed in an arc shape. Here, as shown in FIG. 4, the first leaf spring portion 11 c is formed so that the radius of curvature of the arc becomes smaller (the curvature becomes larger) from the proximal end portion (bending point 11 a) toward the distal end portion. ing. On the other hand, the cross section of the second leaf spring portion 11d is linear. The electrocardiographic electrodes 11 and 12 as a whole are formed in a substantially ring shape with a part cut when viewed in cross section.
 また、第2の板バネ部11dの内面には、発光素子211(212)と受光素子221(222)とを有し、光電脈波信号を検出する光電脈波センサ21(22)が取り付けられている。なお、この光電脈波センサ21(22)の詳細については後述する。 A photoelectric pulse wave sensor 21 (22) that has a light emitting element 211 (212) and a light receiving element 221 (222) and detects a photoelectric pulse wave signal is attached to the inner surface of the second leaf spring portion 11d. ing. The details of the photoelectric pulse wave sensor 21 (22) will be described later.
 このように構成されることにより、心電電極11,12を構成する第1の板バネ部11c、第2の板バネ部11dは、弾性を有し、使用者の指に装着されたときに、その指の屈曲方向に対して側方(略垂直な方向)から押圧して指を挟持する。すなわち、第1の板バネ部11c、第2の板バネ部11d(第1心電電極11、第2心電電極12)は、請求の範囲に記載の弾性部に相当する。 By being configured in this manner, the first leaf spring portion 11c and the second leaf spring portion 11d constituting the electrocardiographic electrodes 11 and 12 have elasticity, and are attached to the user's finger. Then, the finger is clamped by pressing from the side (substantially perpendicular) to the bending direction of the finger. That is, the first leaf spring portion 11c and the second leaf spring portion 11d (the first electrocardiogram electrode 11 and the second electrocardiogram electrode 12) correspond to the elastic portion described in the claims.
 なお、第1の板バネ部11cおよび第2の板バネ部11dは指の腹側には強く接触しない構造とされている。これは、指を曲げ伸ばしすると指の腹側が大きく変形するため、指の腹側を密着させていると、指の側面まで大きく変形してしまい、光電脈波センサ21(22)と指との接触箇所(指側面)の接触状態が変化してしまうのを避けるためである。また、指の挿抜時に指が傷つきにくくするために、板バネ部11c、11dの側面を樹脂やゴムなどでコーティングしたり、外側に反らしてもよい。 Note that the first leaf spring portion 11c and the second leaf spring portion 11d are configured not to contact the stomach side of the finger strongly. This is because when the finger is bent and stretched, the abdomen side of the finger is greatly deformed. Therefore, if the abdomen side of the finger is in close contact, the side surface of the finger is greatly deformed, and the photoelectric pulse wave sensor 21 (22) and the finger This is to prevent the contact state (finger side surface) from changing. Moreover, in order to make a finger hard to be damaged at the time of insertion / extraction of a finger | toe, the side surface of the leaf | plate spring parts 11c and 11d may be coated with resin, rubber | gum, etc., or it may warp outside.
 第1心電電極11及び第2心電電極12それぞれは、ケーブル101,102を通して、信号処理部31,32と接続されており、該ケーブル101,102を介して、心電信号を信号処理部31,32へ出力する。なお、ケーブル101,102としては、ノイズを低減するために、同軸ケーブルを用いることが望ましい。 Each of the first electrocardiogram electrode 11 and the second electrocardiogram electrode 12 is connected to the signal processing units 31 and 32 through the cables 101 and 102, and the electrocardiogram signal is transmitted to the signal processing unit via the cables 101 and 102. 31 and 32. As the cables 101 and 102, it is desirable to use coaxial cables in order to reduce noise.
 上述したように、第2の板バネ部11dの内面には、発光素子211(212)と受光素子221(222)とを有し、光電脈波信号を検出する光電脈波センサ21(22)が取り付けられている。光電脈波センサ21(22)は、血中ヘモグロビンの吸光特性を利用して、光電脈波信号を光学的に検出するセンサである。 As described above, the photoelectric pulse wave sensor 21 (22) that has the light emitting element 211 (212) and the light receiving element 221 (222) on the inner surface of the second leaf spring portion 11d and detects a photoelectric pulse wave signal. Is attached. The photoelectric pulse wave sensor 21 (22) is a sensor that optically detects a photoelectric pulse wave signal using the light absorption characteristic of blood hemoglobin.
 発光素子211,221は、信号処理部31,32の駆動部350から出力されるパルス状の駆動信号に応じて発光する。発光素子211,221としては、例えば、LED、VCSEL(Vertical Cavity Surface Emitting LASER)、又は共振器型LED等を用いることができる。なお、駆動部350は、発光素子211を駆動するパルス状の駆動信号を生成して出力する。 The light emitting elements 211 and 221 emit light according to a pulsed drive signal output from the drive unit 350 of the signal processing units 31 and 32. As the light emitting elements 211 and 221, for example, an LED, a VCSEL (Vertical Cavity Surface Emitting LASER), or a resonator type LED can be used. Note that the driving unit 350 generates and outputs a pulsed driving signal for driving the light emitting element 211.
 受光素子212,222は、発光素子211,221から照射され、例えば指を透過して、又は指に反射して入射される光の強さに応じた検出信号を出力する。受光素子212,222としては、例えば、フォトダイオードやフォトトランジスタ等が好適に用いられる。本実施形態では、受光素子212,222として、フォトダイオードを用いた。 The light receiving elements 212 and 222 are irradiated from the light emitting elements 211 and 221 and output a detection signal corresponding to the intensity of light incident through the finger or reflected from the finger, for example. As the light receiving elements 212 and 222, for example, a photodiode or a phototransistor is preferably used. In the present embodiment, photodiodes are used as the light receiving elements 212 and 222.
 ここで、上述したように、光電脈波センサ21,22は、第2の板バネ部11dの内面に取り付けられているため、心電電極11,12が指に装着されたときに、光電脈波センサ21,22は、第1の板バネ部11cと第2の板バネ部11dにより、指の屈曲方向に対して側方(略垂直な方向)から押し当てられて、指の側面に接触する。 Here, as described above, since the photoelectric pulse wave sensors 21 and 22 are attached to the inner surface of the second leaf spring portion 11d, when the electrocardiographic electrodes 11 and 12 are attached to the finger, The wave sensors 21, 22 are pressed from the side (substantially perpendicular direction) to the bending direction of the finger by the first leaf spring portion 11c and the second leaf spring portion 11d, and contact the side surface of the finger. To do.
 なお、発光素子211,221と受光素子212,222は指の軸と並行に配置することが好ましい。指の軸と垂直に配置すると、発光素子211,221又は受光素子212,222が指の腹側に近付いてしまい指の曲げ伸ばしに伴う指の腹側の変形の影響を受けやすくなってしまうためである。また、指にはめる向きを間違えないよう、指の背面側の位置にマークやロゴ等を入れることが好ましい。 It should be noted that the light emitting elements 211 and 221 and the light receiving elements 212 and 222 are preferably arranged in parallel with the finger axis. If the light emitting elements 211 and 221 or the light receiving elements 212 and 222 are arranged perpendicular to the finger axis, the light emitting elements 211 and 221 approach the abdominal side of the finger and are easily affected by the deformation of the abdominal side of the finger accompanying the bending and stretching of the finger. It is. Moreover, it is preferable to put a mark, a logo, or the like at the position on the back side of the finger so as not to make a mistake in the direction to be put on the finger.
 受光素子212,222は、信号処理部31,32に接続されており、受光素子212,222で得られた検出信号(光電脈波信号)は信号処理部31,32に出力される。 The light receiving elements 212 and 222 are connected to the signal processing units 31 and 32, and the detection signals (photoelectric pulse wave signals) obtained by the light receiving elements 212 and 222 are output to the signal processing units 31 and 32.
 上述したように、第1心電電極11、第2心電電極12、及び第1光電脈波センサ21それぞれは、信号処理部31に接続されており、検出された心電信号、及び第1の光電脈波信号が信号処理部31に入力される。同様に、第1心電電極11、第2心電電極12、及び第2光電脈波センサ22それぞれは、信号処理部32に接続されており、検出された心電信号、及び第2の光電脈波信号が信号処理部32に入力される。 As described above, each of the first electrocardiogram electrode 11, the second electrocardiogram electrode 12, and the first photoelectric pulse wave sensor 21 is connected to the signal processing unit 31, and the detected electrocardiogram signal and the first The photoelectric pulse wave signal is input to the signal processing unit 31. Similarly, each of the first electrocardiogram electrode 11, the second electrocardiogram electrode 12, and the second photoelectric pulse wave sensor 22 is connected to the signal processing unit 32, and the detected electrocardiogram signal and the second photoelectric pulse wave sensor 22 are connected. A pulse wave signal is input to the signal processing unit 32.
 信号処理部31は、検出した心電信号(心電波)のR波ピークと第1の光電脈波信号(脈波)のピークとの時間差から第1脈波伝播時間(左手の指での脈波伝播時間)を計測する。同様に、信号処理部32は、検出した心電信号のR波ピークと第2の光電脈波信号のピークとの時間差から第2脈波伝播時間(右手の指での脈波伝播時間)を計測する。また、信号処理部31,32は、入力された心電信号を処理して、心拍数や心拍間隔などを計測する。さらに、信号処理部31,32は、入力された光電脈波信号を処理して、脈拍数や脈拍間隔などを計測する。なお、信号処理部31の構成と信号処理部32の構成とは、同一であるので、以下、信号処理部31を主にして説明する。 The signal processing unit 31 calculates the first pulse wave propagation time (the pulse with the finger of the left hand) from the time difference between the R wave peak of the detected electrocardiogram signal (cardiac radio wave) and the peak of the first photoelectric pulse wave signal (pulse wave). Wave propagation time). Similarly, the signal processing unit 32 calculates the second pulse wave propagation time (pulse wave propagation time with the finger of the right hand) from the time difference between the detected R wave peak of the electrocardiogram signal and the peak of the second photoelectric pulse wave signal. measure. In addition, the signal processing units 31 and 32 process the input electrocardiogram signal and measure a heart rate, a heart beat interval, and the like. Furthermore, the signal processing units 31 and 32 process the input photoelectric pulse wave signal to measure the pulse rate, the pulse interval, and the like. Since the configuration of the signal processing unit 31 and the configuration of the signal processing unit 32 are the same, the signal processing unit 31 will be mainly described below.
 信号処理部31(32)は、増幅部311,321、第1信号処理部310、第2信号処理部320、ピーク検出部316,326、ピーク補正部318,328、及び脈波伝播時間計測部330を有している。また、上記第1信号処理部310は、アナログフィルタ312、A/Dコンバータ313、ディジタルフィルタ314を有している。一方、第2信号処理部320は、アナログフィルタ322、A/Dコンバータ323、ディジタルフィルタ324、2階微分処理部325を有している。 The signal processing unit 31 (32) includes amplification units 311 and 321, a first signal processing unit 310, a second signal processing unit 320, peak detection units 316 and 326, peak correction units 318 and 328, and a pulse wave propagation time measurement unit. 330. The first signal processing unit 310 includes an analog filter 312, an A / D converter 313, and a digital filter 314. On the other hand, the second signal processing unit 320 includes an analog filter 322, an A / D converter 323, a digital filter 324, and a second-order differentiation processing unit 325.
 ここで、上述した各部の内、ディジタルフィルタ314,324、2階微分処理部325、ピーク検出部316,326、ピーク補正部318,328、脈波伝播時間計測部330は、演算処理を行うCPU、該CPUに各処理を実行させるためのプログラムやデータを記憶するROM、及び演算結果などの各種データを一時的に記憶するRAM等により構成されている。すなわち、ROMに記憶されているプログラムがCPUによって実行されることにより、上記各部の機能が実現される。 Here, among the above-described units, the digital filter 314, 324, the second-order differentiation processing unit 325, the peak detection units 316, 326, the peak correction units 318, 328, and the pulse wave propagation time measurement unit 330 are CPUs that perform arithmetic processing. A ROM for storing a program and data for causing the CPU to execute each process, a RAM for temporarily storing various data such as calculation results, and the like are included. That is, the functions of the above-described units are realized by executing the program stored in the ROM by the CPU.
 増幅部311は、例えばオペアンプ等を用いた増幅器により構成され、第1心電電極11、第2心電電極12により検出された心電信号を増幅する。増幅部311で増幅された心電信号は、第1信号処理部310に出力される。同様に、増幅部321は、例えばオペアンプ等を用いた増幅器により構成され、第1(第2)光電脈波センサ21(22)により検出された第1(第2)光電脈波信号を増幅する。増幅部321で増幅された光電脈波信号は、第2信号処理部320に出力される。 The amplification unit 311 is configured by an amplifier using an operational amplifier, for example, and amplifies the electrocardiogram signals detected by the first electrocardiogram electrode 11 and the second electrocardiogram electrode 12. The electrocardiographic signal amplified by the amplifying unit 311 is output to the first signal processing unit 310. Similarly, the amplification unit 321 is configured by an amplifier using an operational amplifier, for example, and amplifies the first (second) photoelectric pulse wave signal detected by the first (second) photoelectric pulse wave sensor 21 (22). . The photoelectric pulse wave signal amplified by the amplification unit 321 is output to the second signal processing unit 320.
 第1信号処理部310は、上述したように、アナログフィルタ312、A/Dコンバータ313、ディジタルフィルタ314を有しており、増幅部311で増幅された心電信号に対して、フィルタリング処理を施すことにより拍動成分を抽出する。 As described above, the first signal processing unit 310 includes the analog filter 312, the A / D converter 313, and the digital filter 314, and performs filtering processing on the electrocardiogram signal amplified by the amplification unit 311. This extracts the pulsation component.
 また、第2信号処理部320は、上述したように、アナログフィルタ322、A/Dコンバータ323、ディジタルフィルタ324、2階微分処理部325を有しており、増幅部321で増幅された第1(第2)光電脈波信号に対して、フィルタリング処理及び2階微分処理を施すことにより拍動成分を抽出する。 Further, as described above, the second signal processing unit 320 includes the analog filter 322, the A / D converter 323, the digital filter 324, and the second-order differentiation processing unit 325, and the first signal amplified by the amplification unit 321. (Second) A pulsation component is extracted by applying filtering processing and second-order differentiation processing to the photoelectric pulse wave signal.
 アナログフィルタ312,322、及び、ディジタルフィルタ314,324は、心電信号、第1(第2)光電脈波信号を特徴づける周波数以外の成分(ノイズ)を除去し、S/Nを向上するためのフィルタリングを行う。より詳細には、心電信号は一般的に0.1~200Hzの周波数成分、光電脈波信号は0.1~数十Hz付近の周波数成分が支配的であるため、ローパスフィルタやバンドパスフィルタ等のアナログフィルタ312,322、及びディジタルフィルタ314,324を用いてフィルタリング処理を施し、上記周波数範囲の信号のみを選択的に通過させることによりS/Nを向上する。 The analog filters 312 and 322 and the digital filters 314 and 324 remove components (noise) other than the frequency characterizing the electrocardiogram signal and the first (second) photoelectric pulse wave signal, and improve the S / N. Perform filtering. More specifically, a frequency component of 0.1 to 200 Hz is generally dominant for an electrocardiogram signal, and a frequency component of 0.1 to several tens of Hz is dominant for a photoelectric pulse wave signal. The S / N is improved by performing filtering using the analog filters 312 and 322 and the digital filters 314 and 324 and selectively passing only signals in the frequency range.
 なお、拍動成分の抽出のみを目的とする場合(すなわち、波形等を取得する必要がない場合)には、ノイズ耐性を向上するために通過周波数範囲をより狭くして拍動成分以外の成分を遮断してもよい。また、アナログフィルタ312,322とディジタルフィルタ314,324は必ずしも両方備える必要はなく、アナログフィルタ312,322とディジタルフィルタ314,324のいずれか一方のみを設ける構成としてもよい。なお、アナログフィルタ312、ディジタルフィルタ314によりフィルタリング処理が施された心電信号は、ピーク検出部316へ出力される。同様に、アナログフィルタ322、ディジタルフィルタ324によりフィルタリング処理が施された第1(第2)光電脈波信号は、2階微分処理部325へ出力される。 If the purpose is to extract only the pulsating component (that is, when it is not necessary to acquire a waveform or the like), a component other than the pulsating component by narrowing the pass frequency range to improve noise resistance. May be blocked. The analog filters 312, 322 and the digital filters 314, 324 are not necessarily provided, and only one of the analog filters 312, 322 and the digital filters 314, 324 may be provided. Note that the electrocardiogram signal subjected to the filtering process by the analog filter 312 and the digital filter 314 is output to the peak detection unit 316. Similarly, the first (second) photoelectric pulse wave signal filtered by the analog filter 322 and the digital filter 324 is output to the second-order differentiation processing unit 325.
 2階微分処理部325は、第1(第2)光電脈波信号を2階微分することにより、2階微分脈波(加速度脈波)信号を取得する。取得された加速度脈波信号は、ピーク検出部326へ出力される。なお、光電脈波のピーク(立ち上がり点)は変化が明確でなく検出しにくいことがあるため、加速度脈波に変換してピーク検出を行うことが好ましいが、2階微分処理部325を設けることは必須ではなく、省略した構成としてもよい。 The second-order differential processing unit 325 obtains a second-order differential pulse wave (acceleration pulse wave) signal by performing second-order differentiation on the first (second) photoelectric pulse wave signal. The acquired acceleration pulse wave signal is output to the peak detector 326. The peak (rising point) of the photoelectric pulse wave is not clearly changed and may be difficult to detect. Therefore, it is preferable to detect the peak by converting it to an acceleration pulse wave. However, a second-order differential processing unit 325 is provided. Is not essential and may be omitted.
 ピーク検出部316は、第1信号処理部310により信号処理が施された(拍動成分が抽出された)心電信号のピーク(R波)を検出する。一方、ピーク検出部326は、第2信号処理部320によりフィルタリング処理が施された第1(第2)光電脈波信号(加速度脈波)のピークを検出する。すなわち、ピーク検出部316,326は、請求の範囲に記載のピーク検出手段として機能する。なお、ピーク検出部316、及びピーク検出部326それぞれは、心拍間隔、及び脈拍間隔の正常範囲内においてピーク検出を行い、検出したすべてのピークについて、ピーク時間、ピーク振幅等の情報をRAM等に保存する。 The peak detection unit 316 detects the peak (R wave) of the electrocardiogram signal that has been subjected to signal processing by the first signal processing unit 310 (the pulsating component has been extracted). On the other hand, the peak detector 326 detects the peak of the first (second) photoelectric pulse wave signal (acceleration pulse wave) subjected to the filtering process by the second signal processor 320. That is, the peak detection units 316 and 326 function as peak detection means described in the claims. Each of the peak detection unit 316 and the peak detection unit 326 performs peak detection within the normal range of the heartbeat interval and the pulse interval, and information on the peak time, peak amplitude, and the like for all detected peaks is stored in the RAM or the like. save.
 ピーク補正部318は、第1信号処理部310(アナログフィルタ312、ディジタルフィルタ314)における心電信号の遅延時間を求める。ピーク補正部318は、求めた心電信号の遅延時間に基づいて、ピーク検出部316により検出された心電信号のピークを補正する。同様に、ピーク補正部328は、第2信号処理部320(アナログフィルタ322、ディジタルフィルタ324、2階微分処理部325)における光電脈波信号の遅延時間を求める。ピーク補正部328は、求めた光電脈波信号の遅延時間に基づいて、ピーク検出部326により検出された第1(第2)光電脈波信号(加速度脈波信号)のピークを補正する。補正後の心電信号のピーク、及び補正後の第1(第2)光電脈波信号(加速度脈波)のピークは、脈波伝播時間計測部330に出力される。なお、ピーク補正部318を設けることは必須ではなく、省略した構成としてもよい。 The peak correction unit 318 obtains the delay time of the electrocardiogram signal in the first signal processing unit 310 (analog filter 312 and digital filter 314). The peak correction unit 318 corrects the peak of the electrocardiogram signal detected by the peak detection unit 316 based on the obtained delay time of the electrocardiogram signal. Similarly, the peak correction unit 328 obtains the delay time of the photoelectric pulse wave signal in the second signal processing unit 320 (analog filter 322, digital filter 324, second-order differentiation processing unit 325). The peak correction unit 328 corrects the peak of the first (second) photoelectric pulse wave signal (acceleration pulse wave signal) detected by the peak detection unit 326 based on the obtained delay time of the photoelectric pulse wave signal. The corrected peak of the electrocardiogram signal and the corrected first (second) photoelectric pulse wave signal (acceleration pulse wave) are output to the pulse wave propagation time measurement unit 330. Note that providing the peak correction unit 318 is not essential and may be omitted.
 脈波伝播時間計測部330は、ピーク補正部318により補正された心電信号のR波ピークと、ピーク補正部328により補正された第1(第2)光電脈波信号(加速度脈波)のピークとの間隔(時間差)から第1(第2)脈波伝播時間を求める。すなわち、脈波伝播時間計測部330は、請求の範囲に記載の演算手段として機能する。ここで、信号処理部31の脈波伝播時間計測部330は、第1脈波伝播時間、すなわち左手の指での脈波伝播時間を取得する。同様に、信号処理部32の脈波伝播時間計測部330は、第2脈波伝播時間、すなわち右手の指での脈波伝播時間を取得する。 The pulse wave propagation time measurement unit 330 is configured to output the R wave peak of the electrocardiogram signal corrected by the peak correction unit 318 and the first (second) photoelectric pulse wave signal (acceleration pulse wave) corrected by the peak correction unit 328. The first (second) pulse wave propagation time is obtained from the interval (time difference) from the peak. That is, the pulse wave propagation time measurement unit 330 functions as a calculation unit described in the claims. Here, the pulse wave propagation time measurement unit 330 of the signal processing unit 31 acquires the first pulse wave propagation time, that is, the pulse wave propagation time with the finger of the left hand. Similarly, the pulse wave propagation time measuring unit 330 of the signal processing unit 32 acquires the second pulse wave propagation time, that is, the pulse wave propagation time with the finger of the right hand.
 脈波伝播時間計測部330は、第1(第2)脈波伝播時間に加えて、例えば、心電信号から心拍数、心拍間隔、心拍間隔変化率等も算出する。同様に、脈波伝播時間計測部330は、光電脈波信号(加速度脈波)から脈拍数、脈拍間隔、脈拍間隔変化率等も算出する。 In addition to the first (second) pulse wave propagation time, the pulse wave propagation time measurement unit 330 calculates, for example, a heart rate, a heartbeat interval, a heartbeat interval change rate, and the like from an electrocardiogram signal. Similarly, the pulse wave propagation time measurement unit 330 calculates a pulse rate, a pulse interval, a pulse interval change rate, and the like from the photoelectric pulse wave signal (acceleration pulse wave).
 なお、取得された脈波伝播時間や、心拍数、脈拍数等の計測データは、例えば、上述したRAMなどに蓄積して記憶しておき、計測が終了した後に、パーソナルコンピュータ(PC)等に出力して確認するようにしてもよい。また、上記情報を、通信部60を介して、例えば、PCや、ディスプレイを有する携帯型音楽プレーヤ、又はスマートフォン等に送信して表示させる構成とすることもできる。なお、その場合には、測定結果や検出結果に加えて、測定日時等のデータも送信することが好ましい。 The acquired measurement data such as the pulse wave propagation time, heart rate, and pulse rate are accumulated and stored in, for example, the above-described RAM and the like and stored in a personal computer (PC) after the measurement is completed. You may make it output and confirm. In addition, the information may be transmitted to the PC, a portable music player having a display, a smartphone, or the like via the communication unit 60 and displayed. In this case, it is preferable to transmit data such as measurement date and time in addition to the measurement result and detection result.
 次に、生体情報計測装置5(生体信号検出装置1)の使用方法について説明する。生体情報計測装置5(心電信号計測装置1)を用いて心電信号、光電脈波信号、脈波伝搬時間などを検出する際には、第1心電電極11に左手の指を挿入して指を第1心電電極11及び第1光電脈波センサ21に接触させるとともに、第2心電電極12に右手の指を挿入して指を第2心電電極12及び第2光電脈波センサ22に接触させる。そして、ゲームコントローラ100を両手で把持する。 Next, a method of using the biological information measuring device 5 (biological signal detection device 1) will be described. When detecting the electrocardiogram signal, photoelectric pulse wave signal, pulse wave propagation time, etc. using the biological information measuring device 5 (electrocardiogram signal measuring device 1), the finger of the left hand is inserted into the first electrocardiogram electrode 11. The finger is brought into contact with the first electrocardiogram electrode 11 and the first photoelectric pulse wave sensor 21, and the finger of the right hand is inserted into the second electrocardiogram electrode 12, and the finger is inserted into the second electrocardiogram electrode 12 and the second photoelectric pulse wave. Contact the sensor 22. Then, the game controller 100 is held with both hands.
 そうすることにより、両手間の心電信号、及び、左手の指での第1の光電脈波信号、並びに右手の指での第2の光電脈波信号が取得される。そして、左手の指での第1脈波伝播時間、及び右手の指での第2脈波伝播時間が取得される。なお、第1,第2第脈波伝播時間の取得方法については上述した通りであるので、ここでは詳細な説明を省略する。 By doing so, an electrocardiogram signal between both hands, a first photoelectric pulse wave signal with the left hand finger, and a second photoelectric pulse wave signal with the right hand finger are acquired. Then, the first pulse wave propagation time with the left hand finger and the second pulse wave propagation time with the right hand finger are acquired. In addition, since it is as having mentioned above about the acquisition method of the 1st, 2nd pulse wave propagation time, detailed description is abbreviate | omitted here.
 このようにして、使用者は、左手の指を第1心電電極11に挿入するとともに、右手の指を第2心電電極12に挿入するだけで、ゲームコントローラ100を把持しつつ(すなわちゲームをしつつ)、心電信号、光電脈波信号、および脈波伝搬時間などを検出・計測することができる。 In this way, the user simply inserts the finger of the left hand into the first electrocardiogram electrode 11 and inserts the finger of the right hand into the second electrocardiogram electrode 12 while holding the game controller 100 (that is, the game In addition, an electrocardiogram signal, a photoelectric pulse wave signal, and a pulse wave propagation time can be detected and measured.
 以上、本実施形態によれば、板バネ部11c,11dが弾性を有し、指を挟持するため、容易に装着することができる。また、導電性を有する板バネ部11c,11dおよび光電脈波センサ21,22それぞれが、指の屈曲方向に対して側方(略垂直な方向)から押圧されるため、活動中(例えばゲーム中)であっても安定して心電信号(生体電位)および光電脈波信号を計測することができる。特に、指の側面は腹側と異なり、曲げ伸ばしによって大きく変形しないため、側面から圧力を加えて挟持することで接触状態を安定させることができる。また、指の太さの違い(個人差)や装着ずれがあったとしても、指の曲げ伸ばしの影響を受け難いため、安定して計測することができる。その結果、指への装着をより簡易に行うことができ、かつ、活動中でも安定して心電信号および光電脈波信号を計測することが可能となる。 As described above, according to the present embodiment, the leaf spring portions 11c and 11d have elasticity and pinch fingers, so that they can be easily mounted. Also, since the conductive leaf springs 11c and 11d and the photoelectric pulse wave sensors 21 and 22 are pressed from the side (substantially perpendicular) to the bending direction of the finger, they are active (for example, during a game) ), The electrocardiogram signal (biological potential) and the photoelectric pulse wave signal can be measured stably. In particular, unlike the ventral side, the side surface of the finger is not greatly deformed by bending and stretching, so that the contact state can be stabilized by applying pressure from the side surface and pinching. In addition, even if there is a difference in finger thickness (individual difference) or wearing deviation, it is difficult to be affected by the bending and stretching of the finger, so that stable measurement can be performed. As a result, it is possible to more easily attach to the finger and to stably measure the electrocardiogram signal and the photoelectric pulse wave signal even during the activity.
 また、本実施形態によれば、板バネ部11c,11dが、断面が円弧状に形成された板バネとして機能するように形成されているため、比較的簡易な構成により、導電性を有する板バネ部11c,11d(心電電極11,12)を生体に接触させた状態を安定して保つことができる。よって、活動中でも安定して心電信号および光電脈波信号を計測することができる。 In addition, according to the present embodiment, the leaf spring portions 11c and 11d are formed so as to function as leaf springs having a cross section formed in an arc shape. Therefore, a conductive plate with a relatively simple configuration. The state in which the spring parts 11c and 11d (electrocardiographic electrodes 11 and 12) are in contact with the living body can be stably maintained. Therefore, the electrocardiogram signal and the photoelectric pulse wave signal can be stably measured even during the activity.
 また、本実施形態によれば、円弧状の板バネとして形成された第1板バネ部11cが、基端部から先端部に近づくにつれて曲率半径が小さくなる(すなわち曲率が大きくなる)ように形成されているため、指の太さにかかわらずフィットしやすく、かつ抜け落ちにくくすることができる。 Further, according to the present embodiment, the first leaf spring portion 11c formed as an arcuate leaf spring is formed so that the radius of curvature decreases (that is, the curvature increases) as it approaches the distal end portion from the proximal end portion. Therefore, it is easy to fit regardless of the thickness of the finger, and can be made difficult to fall off.
 本実施形態に係る生体情報計測装置5によれば、一対の生体信号検出装置1を備えているため、左右の指への装着をより簡易に行うことができる。 According to the biological information measuring device 5 according to the present embodiment, since the pair of biological signal detection devices 1 are provided, it is possible to more easily attach to the left and right fingers.
 また、本実施形態に係る生体情報計測装置5によれば、生体信号検出装置1を備えているため、活動中でも安定して心電信号および光電脈波信号を計測することができる。その結果、より簡易に、かつ、活動中であっても安定して脈波伝播時間を取得することが可能となる。 Moreover, according to the biological information measuring device 5 according to the present embodiment, since the biological signal detecting device 1 is provided, it is possible to stably measure an electrocardiogram signal and a photoelectric pulse wave signal even during activity. As a result, the pulse wave propagation time can be acquired more easily and stably even during activity.
 (第2実施形態)
 上述した第1実施形態に係る生体信号検出装置1では、心電電極11,12が、第1の板バネ部11c並びに第2の板バネ部11dを有して構成されていたが、板バネ部材に代えて、伸縮性素材で構成してもよい。また、上述した第1実施形態に係る生体信号検出装置1では、双方の心電電極11,12それぞれに光電脈波センサ(第1光電脈波センサ21、第2光電脈波センサ22)を備えたが、一方の心電電極のみに光電脈波センサを設けた構成とすることもできる。
(Second Embodiment)
In the biological signal detection device 1 according to the first embodiment described above, the electrocardiographic electrodes 11 and 12 are configured to include the first leaf spring portion 11c and the second leaf spring portion 11d. Instead of the member, it may be made of a stretchable material. Moreover, in the biological signal detection apparatus 1 according to the first embodiment described above, each of the electrocardiographic electrodes 11 and 12 includes a photoelectric pulse wave sensor (a first photoelectric pulse wave sensor 21 and a second photoelectric pulse wave sensor 22). However, a configuration in which a photoelectric pulse wave sensor is provided only on one of the electrocardiographic electrodes may be employed.
 そこで、次に、図5および図6を併せて用いて、第2実施形態に係る生体信号検出装置2および該生体信号検出装置2を用いた生体情報計測装置6について説明する。ここでは、上述した第1実施形態と同一・同様な構成については説明を簡略化又は省略し、異なる点を主に説明する。図5は、生体信号検出装置2を用いた生体情報計測装置6の構成を示すブロック図である。また、図6は、生体信号検出装置2を用いた生体情報計測装置6の外観を示す図である。なお、図5,6において第1実施形態と同一又は同等の構成要素については同一の符号が付されている。 Therefore, next, the biological signal detection device 2 according to the second embodiment and the biological information measurement device 6 using the biological signal detection device 2 will be described with reference to FIGS. 5 and 6 together. Here, the description of the same or similar configuration as in the first embodiment will be simplified or omitted, and different points will be mainly described. FIG. 5 is a block diagram showing the configuration of the biological information measuring device 6 using the biological signal detecting device 2. FIG. 6 is a diagram showing an appearance of the biological information measuring device 6 using the biological signal detecting device 2. 5 and 6, the same or equivalent components as those in the first embodiment are denoted by the same reference numerals.
 生体信号検出装置2は、図6に示されるように、第1心電電極13および第2心電電極14が、板バネ部11c,11dに代えて、伸縮性および柔軟性を有し、指に装着されたときに、周囲から収縮して指に接触するとともに、指の屈曲に対応して伸縮するフィンガーバンド(伸縮部)から構成されている点で、上述した生体信号検出装置1と異なっている(以下、心電電極13,14をフィンガーバンド13,14ということもある)。 As shown in FIG. 6, the biosignal detection device 2 includes a first electrocardiogram electrode 13 and a second electrocardiogram electrode 14 that have elasticity and flexibility instead of the leaf spring portions 11c and 11d. It differs from the above-described biological signal detection device 1 in that it is composed of a finger band (stretchable part) that contracts from the surroundings when it is attached to the finger and expands and contracts in response to the bending of the finger. (Hereinafter, the electrocardiographic electrodes 13, 14 may be referred to as finger bands 13, 14).
 また、生体信号検出装置2は、図5に示されるように、第2の光電脈波信号を検出する第2光電脈波センサ22、及び、第2の光電脈波信号に基づいて脈波伝播時間(第2脈波伝播時間)を計測する信号処理部32を備えていない点で、上述した生体信号検出装置1と異なっている。その他の構成は、上述した生体信号検出装置1と同一又は同様であるので、ここでは詳細な説明を省略する。 Further, as shown in FIG. 5, the biological signal detection device 2 has a second photoelectric pulse wave sensor 22 that detects the second photoelectric pulse wave signal, and pulse wave propagation based on the second photoelectric pulse wave signal. This is different from the above-described biological signal detection apparatus 1 in that the signal processing unit 32 that measures time (second pulse wave propagation time) is not provided. Other configurations are the same as or similar to those of the biological signal detection apparatus 1 described above, and thus detailed description thereof is omitted here.
 心電電極13,14(フィンガーバンド13,14)は、上述したように、伸縮性および柔軟性を有し、使用者の指に装着されたときに、周囲から収縮して指に接触するとともに、指の屈曲に対応して伸縮する。すなわち、フィンガーバンド13,14は、請求の範囲に記載の伸縮部に相当する。 As described above, the electrocardiographic electrodes 13 and 14 (finger bands 13 and 14) have elasticity and flexibility, and when they are worn on the user's finger, they contract from the surroundings and come into contact with the finger. , Expands and contracts in response to finger bending. That is, the finger bands 13 and 14 are equivalent to the expansion-contraction part as described in a claim.
 フィンガーバンド13,14は、導電性を有する導電糸を編んだ編物からなることが好ましい。すなわち、フィンガーバンド13,14は、指と接触する部位が導電性を有する。ここで、導電糸としては、例えば、Agめっきを施したもの、カーボンナノチューブ・コーティングを施したもの、PEDOT(poly(3,4-ethylenedioxythiophene);ポリエチレンジオキシチオフェン)等の導電性高分子をコーティングしたもの等を好適に用いることができる。なお、本実施形態では、フィンガーバンド13,14を人差し指に装着する構成としたが、中指、薬指、小指に装着するようにしてもよい。 The finger bands 13 and 14 are preferably made of a knitted fabric made of conductive yarn having conductivity. That is, as for the finger bands 13 and 14, the site | part which contacts a finger | toe has electroconductivity. Here, as the conductive yarn, for example, a conductive polymer such as Ag-plated, carbon nanotube-coated, or PEDOT (poly (3,4-ethylenedioxythiophene)) is coated. The thing etc. which can be used can be used suitably. In this embodiment, the finger bands 13 and 14 are attached to the index finger, but may be attached to the middle finger, the ring finger, and the little finger.
 フィンガーバンド14の内面には、発光素子211と受光素子212とを有し、光電脈波信号を検出する光電脈波センサ21が設けられている。光電脈波センサ21は、使用者の指に装着される際に、指の屈曲方向に対して側方(略垂直な方向)に配設されるように構成される。なお、指に嵌める向きを間違えないよう、指の背面側を向く箇所に指の向きを示すマークやロゴ等を入れることが好ましい。 A photoelectric pulse wave sensor 21 that includes a light emitting element 211 and a light receiving element 212 and detects a photoelectric pulse wave signal is provided on the inner surface of the finger band 14. The photoelectric pulse wave sensor 21 is configured to be disposed laterally (substantially perpendicular) to the bending direction of the finger when the photoelectric pulse wave sensor 21 is worn on the user's finger. In addition, it is preferable to put a mark or a logo indicating the direction of the finger at a position facing the back side of the finger so as not to make a mistake in the direction of fitting to the finger.
 次に、生体情報計測手段6(生体信号検出装置2)の使用方法について説明する。生体情報計測手段6(心電信号計測装置2)を用いて心電信号、光電脈波信号、脈波伝搬時間などを検出する際には、フィンガーバンド13(第1心電電極13)に左手の指を挿入して指を第1心電電極13に接触させるとともに、フィンガーバンド14(第2心電電極14)に右手の指を挿入して指を第2心電電極14および光電脈波センサ21に接触させる。そして、ゲームコントローラ100を両手で把持する。 Next, a method of using the biological information measuring means 6 (biological signal detection device 2) will be described. When detecting an electrocardiogram signal, a photoelectric pulse wave signal, a pulse wave propagation time, etc. using the biological information measuring means 6 (electrocardiogram signal measuring device 2), the left hand is placed on the finger band 13 (first electrocardiogram electrode 13). And the finger is brought into contact with the first electrocardiogram electrode 13, and the finger of the right hand is inserted into the finger band 14 (second electrocardiogram electrode 14) to insert the finger into the second electrocardiogram electrode 14 and the photoelectric pulse wave. Contact the sensor 21. Then, the game controller 100 is held with both hands.
 そうすることにより、両手間の心電信号、及び、右手の指での光電脈波信号が取得される。そして、右手の指での脈波伝播時間が取得される。 By doing so, an electrocardiogram signal between both hands and a photoelectric pulse wave signal with the finger of the right hand are acquired. Then, the pulse wave propagation time with the finger of the right hand is acquired.
 このようにして、使用者は、左手の指をフィンガーバンド13(第1心電電極13)に挿入するとともに、右手の指をフィンガーバンド14(第2心電電極14)に挿入するだけで、ゲームコントローラ100を把持しつつ(すなわちゲームをしつつ)、心電信号、光電脈波信号、および脈波伝搬時間などを検出・計測することができる。 In this way, the user simply inserts the finger of the left hand into the finger band 13 (first ECG electrode 13) and the finger of the right hand into the finger band 14 (second ECG electrode 14). While grasping the game controller 100 (that is, playing a game), an electrocardiogram signal, a photoelectric pulse wave signal, a pulse wave propagation time, and the like can be detected and measured.
 本実施形態によれば、フィンガーバンド13,14が伸縮性および柔軟性を有しているため、容易に装着することができる。また、このフィンガーバンド13,14は、使用者の指と接触する部位が導電性を有し、指に装着されたときに、周囲から収縮して指に接触するとともに、指の屈曲に対応して伸縮するため、活動中であっても安定して心電信号を計測することができる。また、光電脈波センサ21(発光素子211および受光素子212)が、指の屈曲方向に対して側方(略垂直な方向)から接触されるため、活動中(例えばゲーム中)であっても安定して心電信号(生体電位)および光電脈波信号を計測することができる。特に、指の側面は腹側と異なり、曲げ伸ばしによって大きく変形しないため、指の太さの違い(個人差)や装着ずれがあったとしても安定して計測することができる。その結果、指への装着をより簡易に行うことができ、かつ、活動中でも安定して心電信号および光電脈波信号を計測することが可能となる。 According to this embodiment, since the finger bands 13 and 14 have elasticity and flexibility, they can be easily attached. Further, the finger bands 13 and 14 are electrically conductive at a portion that comes into contact with the user's finger, and when worn on the finger, the finger band 13 and 14 contracts from the surroundings to come into contact with the finger and cope with bending of the finger. Therefore, it is possible to stably measure an electrocardiogram signal even during activity. Further, since the photoelectric pulse wave sensor 21 (the light emitting element 211 and the light receiving element 212) is contacted from the side (substantially perpendicular direction) with respect to the bending direction of the finger, even during an activity (for example, during a game). An electrocardiogram signal (biological potential) and a photoelectric pulse wave signal can be measured stably. In particular, since the side surface of the finger is not greatly deformed by bending and stretching unlike the ventral side, even if there is a difference in finger thickness (individual difference) or wearing deviation, it is possible to measure stably. As a result, it is possible to more easily attach to the finger and to stably measure the electrocardiogram signal and the photoelectric pulse wave signal even during the activity.
 また、本実施形態によれば、フィンガーバンド13,14が、導電性を有する導電糸を編んだ編物からなるため、比較的簡易な構成により、導電性を有するフィンガーバンド13,14(心電電極13,14)を指に接触させた状態を安定して保つことができる。よって、活動中でも安定して心電信号を計測することができる。同様に、本実施形態によれば、比較的簡易な構成により、光電脈波センサ21を指に接触させた状態を安定して保つことができる。よって、活動中でも安定して光電脈波信号を計測することができる。 Moreover, according to this embodiment, since the finger bands 13 and 14 consist of the knitted fabric which knit the electroconductive thread which has electroconductivity, by the comparatively simple structure, the finger bands 13 and 14 which have electroconductivity (electrocardiogram electrode) 13 and 14) can be stably kept in contact with the finger. Therefore, the electrocardiogram signal can be stably measured even during the activity. Similarly, according to the present embodiment, the state in which the photoelectric pulse wave sensor 21 is in contact with the finger can be stably maintained with a relatively simple configuration. Therefore, the photoelectric pulse wave signal can be stably measured even during the activity.
 (第3実施形態)
 上述した第1実施形態では、生体情報計測装置5が、一対(2つ)の生体信号検出装置1を備えていたが、1つの生体信号検出装置のみを備える構成としてもよい。すなわち、上述した第1実施形態では、板バネ部11c,11dが心電電極11,12を構成するとともに、光電脈波センサ21,22を指に装着する機能も有していたが、板バネ部11c,11dを心電電極としてではなく光電脈波センサ21を指の側面に押圧して接触させるための装着具として用いる構成としてもよい。よって、この場合には、光電脈波信号のみが検出される。
(Third embodiment)
In the first embodiment described above, the biological information measuring device 5 includes the pair (two) of biological signal detection devices 1, but may be configured to include only one biological signal detection device. That is, in the first embodiment described above, the leaf spring portions 11c, 11d constitute the electrocardiographic electrodes 11, 12, and also have the function of mounting the photoelectric pulse wave sensors 21, 22 on the finger. It is good also as a structure used as a mounting tool for pressing the photoelectric pulse wave sensor 21 against the side surface of a finger instead of using the portions 11c and 11d as electrocardiographic electrodes. Therefore, in this case, only the photoelectric pulse wave signal is detected.
 そこで、次に、図7を用いて、第3実施形態に係る生体信号検出装置3および該生体信号検出装置3を用いた生体情報計測装置7について説明する。ここでは、上述した第1実施形態に係る生体信号検出装置1と同一・同様な構成については説明を簡略化又は省略し、異なる点を主に説明する。図7は、第3実施形態に係る生体信号検出装3を用いた生体情報計測装置7の外観を示す図である。なお、図7において第1実施形態と同一又は同等の構成要素については同一の符号が付されている。 Therefore, next, the biological signal detection device 3 according to the third embodiment and the biological information measurement device 7 using the biological signal detection device 3 will be described with reference to FIG. Here, the description of the same or similar configuration as that of the biological signal detection apparatus 1 according to the first embodiment described above will be simplified or omitted, and different points will be mainly described. FIG. 7 is a diagram illustrating an appearance of a biological information measuring device 7 using the biological signal detection device 3 according to the third embodiment. In FIG. 7, the same or equivalent components as those in the first embodiment are denoted by the same reference numerals.
 生体情報計測装置7(生体信号検出装置3)は、上述した生体信号検出装置1に、例えば二次電池が内蔵され、光電脈波センサ21に電力を供給する電力供給部110、および電力供給部110と光電脈波センサ21とを接続するケーブル111が付加されている。電力供給部110は、生体信号検出装置3(光電脈波センサ21)が使用者の指に装着される際に、指の背面側に配設されるように構成されている。その他の構成は、上述した生体信号検出装置1と同一又は同様であるので、ここでは詳細な説明を省略する。 The biological information measuring device 7 (biological signal detection device 3) includes, for example, a secondary battery built in the above-described biological signal detection device 1, and a power supply unit 110 that supplies power to the photoelectric pulse wave sensor 21, and a power supply unit. A cable 111 for connecting 110 and the photoelectric pulse wave sensor 21 is added. The power supply unit 110 is configured to be disposed on the back side of the finger when the biological signal detection device 3 (photoelectric pulse wave sensor 21) is worn on the finger of the user. Other configurations are the same as or similar to those of the biological signal detection apparatus 1 described above, and thus detailed description thereof is omitted here.
 本実施形態によれば、光電脈波センサ21に電力を供給する電力供給部110が指の背面側に配置されることで、隣り合う指と干渉することを防止できる。また、使用者に対して、指にはめる向きを視覚的に示すことができるため、光電脈波センサ21が指の腹側や背面側に接触するような誤った向きに装着しまうことを効果的に防止することができる。 According to the present embodiment, the power supply unit 110 that supplies power to the photoelectric pulse wave sensor 21 is arranged on the back side of the finger, thereby preventing interference with adjacent fingers. In addition, since it is possible to visually indicate to the user the direction to be worn on the finger, it is effective that the photoelectric pulse wave sensor 21 is worn in the wrong direction so as to contact the abdomen or back side of the finger. Can be prevented.
 以上、本発明の実施の形態について説明したが、本発明は、上記実施形態に限定されるものではなく種々の変形が可能である。例えば、上記第1,第2実施形態では、生体信号検出装置1,2が、心電電極11,12,13,14と光電脈波センサ21,22とを備えていたが、心電電極のみを備える(すなわち光電脈波センサを取り外した)構成としてもよい。 Although the embodiments of the present invention have been described above, the present invention is not limited to the above-described embodiments, and various modifications can be made. For example, in the first and second embodiments, the biological signal detection devices 1 and 2 include the electrocardiographic electrodes 11, 12, 13, and 14 and the photoelectric pulse wave sensors 21 and 22, but only the electrocardiographic electrodes. (That is, the photoelectric pulse wave sensor is removed).
 また、上記第1実施形態では、一対の生体信号検出装置1それぞれが、心電電極11,12と光電脈波センサ21,22とを備えていたが、いずれかの生体信号検出装置1が、心電電極のみを備える(すなわち光電脈波センサを取り外した)構成としてもよい。 In the first embodiment, each of the pair of biological signal detection devices 1 includes the electrocardiographic electrodes 11 and 12 and the photoelectric pulse wave sensors 21 and 22. It is good also as a structure provided only with an electrocardiogram electrode (namely, the photoelectric pulse wave sensor was removed).
 また、生体信号検出装置1と生体信号検出装置2とを組み合わせて用いる構成としてもよい。さらに、生体信号検出装置1と光電脈波センサ22を取り外した生体信号検出装置2とを組み合わせて用いる構成としてもよいし、光電脈波センサ21(22)を取り外した生体信号検出装置1と生体信号検出装置2とを組み合わせて用いる構成としてもよい。 Alternatively, the biological signal detection device 1 and the biological signal detection device 2 may be used in combination. Furthermore, it is good also as a structure used combining the biological signal detection apparatus 1 and the biological signal detection apparatus 2 which removed the photoelectric pulse wave sensor 22, and the biological signal detection apparatus 1 and biological body which removed the photoelectric pulse wave sensor 21 (22). The signal detection device 2 may be used in combination.
 また、上記第3実施形態では、板バネ部11c,11dに光電脈波センサ21を取り付けたが、板バネ部11c,11dに代えて、上述したフィンガーバンド13に光電脈波センサ21を取り付ける構成としてもよい。 Moreover, in the said 3rd Embodiment, although the photoelectric pulse wave sensor 21 was attached to the leaf | plate spring parts 11c and 11d, it replaced with the leaf | plate spring parts 11c and 11d, and the structure which attaches the photoelectric pulse wave sensor 21 to the finger band 13 mentioned above. It is good.
 なお、取得された脈拍間隔や測定時間等の計測データは、メモリに保持しておいて日々の変動履歴として読み出せるようにしておいてもよいし、スマートフォン何度の外部機器に無線で送信するようにしてもよい。また、測定中は装置内のメモリに保存し、測定終了後に自動的に外部機器に接続してデータ送信を行うようにしてもよい。 The acquired measurement data such as the pulse interval and measurement time may be stored in a memory so that it can be read out as daily fluctuation history, or transmitted wirelessly to many external devices on the smartphone. You may do it. Further, it may be stored in a memory in the apparatus during measurement and automatically connected to an external device to transmit data after the measurement is completed.
 1,2,3 生体信号検出装置
 5,6,7 生体情報計測装置
 11,13 第1心電電極
 11a 第1屈曲点
 11b 第2屈曲点
 11c 第1板バネ部
 11d 第2板バネ部
 12,14 第2心電電極
 21 第1光電脈波センサ
 22 第2光電脈波センサ
 211,221 発光素子
 212,222 受光素子
 31,32 信号処理部
 310 第1信号処理部
 320 第2信号処理部
 311 心電信号増幅部
 321 脈波信号増幅部
 312,322 アナログフィルタ
 313,323 A/Dコンバータ
 314,324 ディジタルフィルタ
 325 2階微分処理部
 316,326 ピーク検出部
 318,328 ピーク補正部
 330 脈波伝播時間計測部
 350 駆動部
 60 通信部
 100 ゲームコントローラ
 110 電源供給部
 101,102,111 ケーブル
 
1, 2, 3 Biological signal detection device 5, 6, 7 Biological information measurement device 11, 13 First electrocardiogram electrode 11a First bending point 11b Second bending point 11c First leaf spring portion 11d Second leaf spring portion 12, 14 Second electrocardiographic electrode 21 First photoelectric pulse wave sensor 22 Second photoelectric pulse wave sensor 211, 221 Light emitting element 212, 222 Light receiving element 31, 32 Signal processing unit 310 First signal processing unit 320 Second signal processing unit 311 core Electric signal amplification unit 321 Pulse wave signal amplification unit 312, 322 Analog filter 313, 323 A / D converter 314, 324 Digital filter 325 Second order differential processing unit 316, 326 Peak detection unit 318, 328 Peak correction unit 330 Pulse wave propagation time Measurement unit 350 Drive unit 60 Communication unit 100 Game controller 110 Power supply unit 101, 102, 111 case Le

Claims (17)

  1.  生体に装着されて生体信号を検出する生体信号検出装置であって、
     弾性を有し、生体に装着されたときに、該生体の屈曲方向に対して側方から押圧して該生体を挟持する弾性部を備え、
     前記弾性部は、少なくとも生体に押圧される部位が導電性を有することを特徴とする生体信号検出装置。
    A biological signal detection device that detects a biological signal attached to a living body,
    It has elasticity and comprises an elastic part that, when attached to a living body, holds the living body by pressing from the side with respect to the bending direction of the living body,
    The biological signal detection device according to claim 1, wherein at least a portion pressed by the living body has conductivity.
  2.  前記弾性部は、断面が円弧状に形成された板バネであることを特徴とする請求項1に記載の生体信号検出装置。 2. The biosignal detection device according to claim 1, wherein the elastic portion is a leaf spring having a circular cross section.
  3.  前記弾性部は、円弧の基端部から先端部に近づくにつれて円弧の曲率半径が小さくなるように形成されていることを特徴とする請求項2に記載の生体信号検出装置。 3. The biological signal detection device according to claim 2, wherein the elastic portion is formed such that a radius of curvature of the arc decreases as the distance from the base end portion of the arc approaches the tip end portion.
  4.  生体に装着されて生体信号を検出する生体信号検出装置であって、
     伸縮性および柔軟性を有し、生体に装着されたときに、周囲から収縮して該生体に接触するとともに、該生体の屈曲に対応して伸縮する伸縮部を備え、
     前記伸縮部は、生体と接触する部位が導電性を有することを特徴とする生体信号検出装置。
    A biological signal detection device that detects a biological signal attached to a living body,
    It has elasticity and flexibility, and includes a stretchable part that contracts from the surroundings when it is attached to a living body and contacts the living body, and expands and contracts in response to bending of the living body,
    The living body signal detecting device, wherein the stretchable part is electrically conductive at a portion in contact with the living body.
  5.  前記伸縮部は、導電性を有する導電糸を編んだ編物からなることを特徴とする請求項4に記載の生体信号検出装置。 The biological signal detection device according to claim 4, wherein the expansion / contraction section is formed of a knitted fabric made of conductive yarn having conductivity.
  6.  生体に装着されて生体信号を検出する生体信号検出装置であって、
     弾性を有し、生体に装着されたときに、該生体の屈曲方向に対して側方から押圧して該生体を挟持する弾性部と、
     前記弾性部に配設された発光素子および受光素子を有し、光電脈波信号を検出する光電脈波センサと、を備えることを特徴とする生体信号検出装置。
    A biological signal detection device that detects a biological signal attached to a living body,
    An elastic part that has elasticity and presses from the side with respect to the bending direction of the living body to sandwich the living body when attached to the living body;
    A biological signal detection device comprising: a light emitting element and a light receiving element disposed in the elastic portion; and a photoelectric pulse wave sensor that detects a photoelectric pulse wave signal.
  7.  前記弾性部は、板バネであることを特徴とする請求項6に記載の生体信号検出装置。 The biological signal detection device according to claim 6, wherein the elastic portion is a leaf spring.
  8.  生体に装着されて生体信号を検出する生体信号検出装置であって、
     伸縮性および柔軟性を有し、生体に装着されたときに、周囲から収縮して該生体に接触するとともに、該生体の屈曲に対応して伸縮する伸縮部と、
     前記伸縮部に配設された発光素子および受光素子を有し、光電脈波信号を検出する光電脈波センサと、を備え、
     前記光電脈波センサは、生体に装着される際に、該生体の屈曲方向に対して側方に配設されるように構成されることを特徴とする生体信号検出装置。
    A biological signal detection device that detects a biological signal attached to a living body,
    An elastic part having elasticity and flexibility, and contracts from the surroundings when it is attached to a living body and contacts the living body, and expands and contracts corresponding to the bending of the living body;
    A photoelectric pulse wave sensor that has a light emitting element and a light receiving element disposed in the expansion and contraction part and detects a photoelectric pulse wave signal;
    The photoelectric pulse wave sensor is configured to be disposed laterally with respect to a bending direction of the living body when the photoelectric pulse wave sensor is attached to the living body.
  9.  前記伸縮部は、導電性を有する導電糸を編んだ編物からなることを特徴とする請求項8に記載の生体信号検出装置。 The biological signal detection device according to claim 8, wherein the expansion / contraction part is made of a knitted fabric made of conductive yarn having conductivity.
  10.  前記光電脈波センサに電力を供給する電力供給部を備え、
     前記電力供給部は、前記生体信号検出装置が指に装着される際に、指の背面側に配設されるように構成されていることを特徴とする請求項6~9のいずれか1項に記載の生体信号検出装置。
    A power supply unit for supplying power to the photoelectric pulse wave sensor;
    10. The power supply unit according to claim 6, wherein the power supply unit is arranged on a back side of the finger when the biological signal detection device is worn on the finger. The biological signal detection device according to 1.
  11.  生体に装着されて生体信号を検出する生体信号検出装置であって、
     弾性を有し、生体に装着されたときに、該生体の屈曲方向に対して側方から押圧して該生体を挟持する弾性部と、
     前記弾性部に配設された発光素子および受光素子を有する光電脈波センサと、を備え、
     前記弾性部は、少なくとも生体に押圧される部位が導電性を有することを特徴とする生体信号検出装置。
    A biological signal detection device that detects a biological signal attached to a living body,
    An elastic part that has elasticity and presses from the side with respect to the bending direction of the living body to sandwich the living body when attached to the living body;
    A photoelectric pulse wave sensor having a light emitting element and a light receiving element disposed in the elastic part,
    The biological signal detection device according to claim 1, wherein at least a portion pressed by the living body has conductivity.
  12.  一対の請求項1~5のいずれか1項に記載の生体信号検出装置を備え、
     前記一対の生体信号検出装置により左右の指から心電信号を検出することを特徴とする生体情報計測装置。
    A pair of biological signal detection devices according to any one of claims 1 to 5,
    A biometric information measuring apparatus, wherein an electrocardiographic signal is detected from left and right fingers by the pair of biosignal detecting apparatuses.
  13.  一対の請求項11に記載の生体信号検出装置と、
     一対の前記弾性部により検出された心電信号、及び、前記光電脈波センサにより検出された光電脈波信号それぞれのピークを検出するピーク検出手段と、
     前記ピーク検出手段により検出された光電脈波信号のピークと心電信号のピークとの時間差から脈波伝播時間を求める脈波伝播時間演算手段と、を備えることを特徴とする生体情報計測装置。
    A pair of biological signal detection devices according to claim 11;
    Peak detection means for detecting the peak of each of the electrocardiogram signals detected by the pair of elastic portions and the photoelectric pulse wave signal detected by the photoelectric pulse wave sensor;
    A biological information measuring device comprising: a pulse wave propagation time calculation unit that obtains a pulse wave propagation time from a time difference between a peak of a photoelectric pulse wave signal detected by the peak detection unit and a peak of an electrocardiogram signal.
  14.  請求項11に記載の生体信号検出装置と、
     請求項1~3のいずれか1項に記載の生体信号検出装置と、
     それぞれの前記弾性部により検出された心電信号、及び、前記光電脈波センサにより検出された光電脈波信号それぞれのピークを検出するピーク検出手段と、
     前記ピーク検出手段により検出された光電脈波信号のピークと心電信号のピークとの時間差から脈波伝播時間を求める脈波伝播時間演算手段と、を備えることを特徴とする生体情報計測装置。
    The biological signal detection device according to claim 11,
    The biological signal detection device according to any one of claims 1 to 3,
    Peak detection means for detecting the peak of each of the electrocardiogram signal detected by each of the elastic parts and the photoelectric pulse wave signal detected by the photoelectric pulse wave sensor;
    A biological information measuring device comprising: a pulse wave propagation time calculation unit that obtains a pulse wave propagation time from a time difference between a peak of a photoelectric pulse wave signal detected by the peak detection unit and a peak of an electrocardiogram signal.
  15.  請求項11に記載の生体信号検出装置と、
     請求項4又は5に記載の生体信号検出装置と、
     前記弾性部および前記伸縮部により検出された心電信号、及び、前記光電脈波センサにより検出された光電脈波信号それぞれのピークを検出するピーク検出手段と、
     前記ピーク検出手段により検出された光電脈波信号のピークと心電信号のピークとの時間差から脈波伝播時間を求める脈波伝播時間演算手段と、を備えることを特徴とする生体情報計測装置。
    The biological signal detection device according to claim 11,
    The biological signal detection device according to claim 4 or 5,
    Peak detection means for detecting the peak of each of the electrocardiogram signal detected by the elastic part and the expansion / contraction part and the photoelectric pulse wave signal detected by the photoelectric pulse wave sensor;
    A biological information measuring device comprising: a pulse wave propagation time calculation unit that obtains a pulse wave propagation time from a time difference between a peak of a photoelectric pulse wave signal detected by the peak detection unit and a peak of an electrocardiogram signal.
  16.  請求項9に記載の生体信号検出装置と、
     請求項1~3のいずれか1項に記載の生体信号検出装置と、
     前記伸縮部および前記弾性部により検出された心電信号、及び、前記光電脈波センサにより検出された光電脈波信号それぞれのピークを検出するピーク検出手段と、
     前記ピーク検出手段により検出された光電脈波信号のピークと心電信号のピークとの時間差から脈波伝播時間を求める脈波伝播時間演算手段と、を備えることを特徴とする生体情報計測装置。
    The biological signal detection device according to claim 9,
    The biological signal detection device according to any one of claims 1 to 3,
    Peak detection means for detecting the peak of each of the electrocardiogram signal detected by the stretchable part and the elastic part, and the photoelectric pulse wave signal detected by the photoelectric pulse wave sensor;
    A biological information measuring device comprising: a pulse wave propagation time calculation unit that obtains a pulse wave propagation time from a time difference between a peak of a photoelectric pulse wave signal detected by the peak detection unit and a peak of an electrocardiogram signal.
  17.  請求項9に記載の生体信号検出装置と、
     請求項4又は5に記載の生体信号検出装置と、
     それぞれの前記伸縮部により検出された心電信号、及び、前記光電脈波センサにより検出された光電脈波信号それぞれのピークを検出するピーク検出手段と、
     前記ピーク検出手段により検出された光電脈波信号のピークと心電信号のピークとの時間差から脈波伝播時間を求める脈波伝播時間演算手段と、を備えることを特徴とする生体情報計測装置。
     
    The biological signal detection device according to claim 9,
    The biological signal detection device according to claim 4 or 5,
    Peak detection means for detecting the peak of each electrocardiogram signal detected by each of the expansion and contraction parts, and the photoelectric pulse wave signal detected by the photoelectric pulse wave sensor,
    A biological information measuring device comprising: a pulse wave propagation time calculation unit that obtains a pulse wave propagation time from a time difference between a peak of a photoelectric pulse wave signal detected by the peak detection unit and a peak of an electrocardiogram signal.
PCT/JP2015/059888 2014-04-18 2015-03-30 Biosignal detection device and bioinformation measurement device WO2015159693A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016513703A JP6226063B2 (en) 2014-04-18 2015-03-30 Biological signal detection device and biological information measurement device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-086897 2014-04-18
JP2014086897 2014-04-18

Publications (1)

Publication Number Publication Date
WO2015159693A1 true WO2015159693A1 (en) 2015-10-22

Family

ID=54323904

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/059888 WO2015159693A1 (en) 2014-04-18 2015-03-30 Biosignal detection device and bioinformation measurement device

Country Status (2)

Country Link
JP (1) JP6226063B2 (en)
WO (1) WO2015159693A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11051760B2 (en) 2016-05-09 2021-07-06 Belun Technology Company Limited Wearable device for healthcare and method thereof
DE102022206936A1 (en) 2021-07-12 2023-01-12 Japan Display Inc. DETECTION DEVICE

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04200439A (en) * 1990-11-30 1992-07-21 Casio Comput Co Ltd Wrist watch type blood pressure display device
JP2002000576A (en) * 2000-06-22 2002-01-08 Omron Corp Organism information measuring sensor
JP2007167183A (en) * 2005-12-20 2007-07-05 Konica Minolta Sensing Inc Photoelectric pulse wave measuring device, probe for attaching to fingertip, and photoelectric pulse wave measuring method
JP2009172182A (en) * 2008-01-25 2009-08-06 Seiko Epson Corp Supporter for wearing sensor and arm-worn type biological information measuring instrument

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04200439A (en) * 1990-11-30 1992-07-21 Casio Comput Co Ltd Wrist watch type blood pressure display device
JP2002000576A (en) * 2000-06-22 2002-01-08 Omron Corp Organism information measuring sensor
JP2007167183A (en) * 2005-12-20 2007-07-05 Konica Minolta Sensing Inc Photoelectric pulse wave measuring device, probe for attaching to fingertip, and photoelectric pulse wave measuring method
JP2009172182A (en) * 2008-01-25 2009-08-06 Seiko Epson Corp Supporter for wearing sensor and arm-worn type biological information measuring instrument

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11051760B2 (en) 2016-05-09 2021-07-06 Belun Technology Company Limited Wearable device for healthcare and method thereof
DE102022206936A1 (en) 2021-07-12 2023-01-12 Japan Display Inc. DETECTION DEVICE

Also Published As

Publication number Publication date
JPWO2015159693A1 (en) 2017-04-13
JP6226063B2 (en) 2017-11-08

Similar Documents

Publication Publication Date Title
US11925476B2 (en) Biological signal detection apparatus
JP5843005B2 (en) ECG signal measuring apparatus and ECG signal measuring method
US11076763B2 (en) Remote physiological monitor
EP2116183B1 (en) Robust opto-electrical ear located cardiovascular monitoring device
JP6620821B2 (en) Fatigue detection device
US20180333056A1 (en) Apparatus for monitoring cardiovascular health
US20150057506A1 (en) Arrayed electrodes in a wearable device for determining physiological characteristics
JP6583427B2 (en) Pulse wave propagation time measurement device and biological state estimation device
JP2008086390A (en) Biological information detecting device
JP6569509B2 (en) Biological signal detection device
JP2022169791A (en) Electrocardiographic signal measuring device
EP1364614B1 (en) Voltage measuring device comprising fixing member, electrode and transmitter
US20230095971A1 (en) Comprehensive wearable vital signs monitor
JP6226063B2 (en) Biological signal detection device and biological information measurement device
KR20180135505A (en) Apparatus for Inference of sleeping status using Patch type Electrode
JP4346617B2 (en) Pulse wave measurement module
JP6379297B2 (en) Biological signal detection device
KR20140001612A (en) Biomedical signal detection electrode made of flexible metal to measure a variety of physiological signals
KR101038434B1 (en) Heart rate systolic blood pressure measurement device using belt type ECG and band type pulse wave measuring device
JP2008086392A (en) Biological information detecting device
KR101780061B1 (en) Potable apparatus for measuring bio-signal
JP6226088B2 (en) Fatigue detection device
KR102471204B1 (en) Head set appartus for detecting human signal
JP2008086361A (en) Biological information detecting device
JP2004081285A (en) Portable type blood pressure measuring instrument

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15779493

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016513703

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15779493

Country of ref document: EP

Kind code of ref document: A1