WO2015159412A1 - Moving-body detection method and moving-body detection system - Google Patents

Moving-body detection method and moving-body detection system Download PDF

Info

Publication number
WO2015159412A1
WO2015159412A1 PCT/JP2014/060980 JP2014060980W WO2015159412A1 WO 2015159412 A1 WO2015159412 A1 WO 2015159412A1 JP 2014060980 W JP2014060980 W JP 2014060980W WO 2015159412 A1 WO2015159412 A1 WO 2015159412A1
Authority
WO
WIPO (PCT)
Prior art keywords
image data
moving body
image
moving
block
Prior art date
Application number
PCT/JP2014/060980
Other languages
French (fr)
Japanese (ja)
Inventor
浩一 後迫
Original Assignee
株式会社日立システムズ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立システムズ filed Critical 株式会社日立システムズ
Priority to PCT/JP2014/060980 priority Critical patent/WO2015159412A1/en
Publication of WO2015159412A1 publication Critical patent/WO2015159412A1/en

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/20Analysis of motion

Definitions

  • the present invention relates to a method and system for analyzing and detecting the movement of a moving object using image data acquired from imaging means such as a monitoring camera.
  • a method has been used in which the movement of the mobile phone (hereinafter sometimes referred to as “moving body”) is detected and notified to the observer.
  • Patent Document 1 A mechanism that can determine the moving direction of a moving body has been provided (for example, Patent Document 1).
  • a plurality of virtually linear detection lines are drawn on the image data such as the monitoring image, and whether or not the moving object crosses each detection line is determined by the time timing difference (time lapse) across the plurality of detection lines. ).
  • the moving direction of the moving body for example, as shown in FIG. 4, only a one-dimensional direction such as from left to right (or from right to left) is determined. It is difficult to distinguish.
  • the determination is made by detecting temporal changes such as color tone in all image blocks of one frame of the screen.
  • all image blocks must be scanned a predetermined number of times, it takes time to scan and is not efficient.
  • the features of the present invention are as follows.
  • the image data captured by the imaging means is divided into a plurality of image blocks for each frame, a plurality of concentric virtual lines are superimposed on the image data consisting of the image blocks, and the virtual data is formed on at least a part of the image block. All image blocks including lines are scanned a predetermined number of times every predetermined time. By analyzing the trajectory of the moving body obtained from the image block exhibiting a color change exceeding a predetermined threshold in the scanned image block, it is determined whether the moving body is a passing object or staying.
  • the moving direction of a person or an object as a moving object and the flow line including the moving direction can be quickly and easily two-dimensionally (three-dimensionally as necessary). Can be detected.
  • security measures for example, detection of entry into prohibited areas
  • safety protection measures for example, determination of whether the vehicle is moving along the route and reverse running detection
  • marketing for example, the density of human flow
  • FIG. 1 is a diagram illustrating a system configuration in which functional blocks of a moving body detection system according to an embodiment are illustrated.
  • FIG. 2 is a flowchart illustrating a process of analyzing the movement of the moving object from the monitoring image data according to the embodiment.
  • FIG. 3 is a schematic diagram in the case where the flow line of the moving body is detected by concentric virtual lines.
  • FIG. 4 is a schematic diagram in the case of detecting a flow line of a moving body using a linear virtual line.
  • FIG. 5 is a diagram illustrating a case where concentric virtual lines are square lines.
  • FIG. 6 is a diagram illustrating a case where concentric virtual lines are circular lines.
  • the feature of the present invention is that a plurality of concentric virtual images are included in image data photographed by an imaging means such as a surveillance camera in order to determine the moving direction of the moving body two-dimensionally (three-dimensionally as necessary).
  • the line is drawn and image data is scanned along the virtual line.
  • the image data photographed by the imaging means such as a monitoring camera is divided into appropriate block sizes, and a plurality of concentric virtual lines are drawn from the center of the image data for the divided block image data. Then, each image block obtained by dividing the image data is scanned for a plurality of concentric virtual lines, and a change in color tone such as color and brightness of the scanned image block is detected. Or the presence or absence of a stay is determined.
  • a change in color tone that is equal to or greater than a predetermined threshold is continuously detected in the same or adjacent concentric virtual lines in the same or adjacent image block, it is determined that the moving body is staying. be able to.
  • a change in color tone of a predetermined threshold value or more is detected from the outer concentric virtual line toward the inner concentric virtual line, the moving body is in a moving state and each of the color tone changes.
  • the moving direction can be determined from the block number of the image block.
  • a concentric quadrangular line as shown in FIG. 5 can be assumed instead of a concentric circle as in the present invention, but the distance in the oblique direction becomes longer and the distance from the center depending on the direction Since these are not equidistant, the calculation process becomes complicated in calculating the moving direction and the like, which is not a good idea.
  • FIG. 3 a plurality of concentric virtual lines are expressed in an elliptical shape because it is assumed that the ground surface is imaged at an angle by an overhead surveillance camera installed near the ceiling or near the ceiling. is there. According to the surveillance camera facing directly below from the overhead such as the ceiling, it becomes a concentric circle as shown in FIG. It shows the place where it becomes elliptical.
  • image data acquired by an imaging unit such as a monitoring camera is divided into m1 ⁇ m2 image blocks.
  • m1 and m2 are parameters for determining the block size of the image data in accordance with the size of the moving object. As the values of m1 and m2 are larger, the block size is smaller and a small moving object can be detected.
  • n is a parameter indicating the accuracy for detecting the moving direction of the moving body. The larger the n, the more accurately the moving direction of the moving body can be grasped.
  • each image block of image data is P times as a predetermined number of times per predetermined unit time along the concentric circles C1, C2, C3... Cn. to scan.
  • P is a parameter indicating the detection accuracy according to the moving speed of the moving body. It becomes possible to detect even a moving body whose moving speed is faster as P is larger.
  • a threshold value T When there is a change in color tone such as color or brightness in the scanned image block, it is determined whether or not the degree of change exceeds a threshold value T.
  • the threshold T can be detected even when the value is smaller even when the change in color tone is small, and it is necessary to consider the surrounding environment (for example, lighting and solar radiation) and to set an appropriate value according to the change. Sex may come out. It is also possible to use a predetermined color tone area ratio in the image block as a threshold value. For example, if it is 100%, it is not detected that the entire image block is not changed, and if it is 50%, it is detected that the area of more than half of the image block is changed.
  • FIG. 1 is a diagram showing functional blocks when applied to a monitoring apparatus using two monitoring cameras as an embodiment of a moving body detection system according to the present invention.
  • a three-dimensional space composed of XYZ axes as the monitoring images taken by the two monitoring cameras A10 and B20, for example, when monitoring images in the XZ plane direction and monitoring images in the YZ plane direction, or
  • a monitoring image of the XY plane that is, the ground surface
  • a monitoring image of the vertical plane direction from the X-axis or Y-axis are assumed.
  • the functional blocks (11 to 19) for processing the monitoring image data captured by the monitoring camera A10 and the functional blocks (21 to 29) for processing the monitoring image data captured by the monitoring camera B20 are both the same in the monitoring apparatus 1. 1 (block surrounded by a two-dot chain line in FIG. 1), this will be described with reference to a functional block diagram on the monitoring camera A10 side.
  • Image data captured by the monitoring camera A10 (B20) is stored as a monitoring image in the monitoring image recording device 13 (23) by the image data recording unit 12 (22) via the image data input unit 11 (21). Are input to the image block dividing unit 14 (24).
  • the monitoring image recording devices 13 and 23 are illustrated on the monitoring camera A side and the B side in FIG. 1, respectively, the monitoring image recording devices 13 and 23 may be one monitoring image recording device on the A side and the B side.
  • image data for one frame of the screen is divided into m1 ⁇ m2 image blocks.
  • the image data input unit 11 (21) directly captures as described above, and is temporarily stored in the monitoring image recording device 13 (23) via the image data recording unit 12 (22). It is possible to arbitrarily adopt a case of capturing at an appropriate timing from the state.
  • the virtual line creation unit 15 applies n concentric virtual images composed of C1, C2, C3,..., Cn to the image data divided into blocks in one frame of the screen. Create a line.
  • the moving body scanning unit 16 (26) scans all the image blocks that approximate the concentric virtual lines with respect to the image data obtained by superimposing the created (n) concentric virtual lines.
  • the image block approximating the concentric virtual line includes the concentric virtual line in a part of the image block (in other words, the concentric virtual line is slightly applied in the image block). ) Refers to the image block.
  • the moving object detection unit 17 (27) changes color tone such as color and brightness from the scanned image block through a predetermined number of times (P times) of scanning every predetermined time (S time) by the moving object scanning unit 16 (26). Detects an image block that exceeds a predetermined threshold (T). Thereby, the movement of a person or an object is detected as a moving body.
  • the detection block storage unit 18 (28) generates the occurrence time, the image block number, and the image for all the image blocks in which the color change such as color and brightness detected by the moving object detection unit 17 (27) exceeds the threshold (T). Necessary data such as concentric virtual line numbers closest to the block are stored.
  • storage parts 18 and 28 are illustrated in the monitoring camera A side and B side in FIG. 1, respectively, it does not interfere at all as one detection block memory
  • the trajectory analysis unit 19 detects temporal changes (transitions) in color tone between image blocks from all the image blocks detected / stored by the detection block storage unit 18 (28). As a result, information on the trajectory such as the moving direction of the moving body is analyzed.
  • the correlation analysis determination unit 31 analyzes both the trajectories in a wide area and three-dimensionally in consideration of the correlation between both image data based on the analysis result (trajectory) input from both the trajectory analysis units 19 and 29. Then, the movement of the moving body (flow line including the moving direction), the presence / absence of staying, and the like are determined comprehensively. When this correlation is taken into consideration, necessary correction processing such as alignment of the coordinates of the respective image data and alignment of the scales is performed in accordance with the relative positional relationship between the two monitoring cameras.
  • the analysis result classification unit 32 classifies the movement of the moving object (two-dimensional or three-dimensional movement direction including the height direction, stay in a specific range, etc.). .
  • the image data input unit 11 (21) to the moving object scanning unit 16 (26) execute processing relating to the image block and can be said to be a block processing unit.
  • the moving object detection unit 17 (27) to the determination result classification unit 32 determine the movement of the moving object by obtaining and analyzing the trajectory of the moving object, and can be regarded as an analysis determination processing unit.
  • the notification unit 33 notifies the monitoring display terminal 2 of necessary information regarding movement based on the classified analysis results.
  • the analysis information is displayed on the screen of the monitoring display terminal 2 using characters and graphics. Moreover, it is also possible to notify by voice together with display as necessary.
  • the monitoring image recording device 13 (23) and the detection block storage unit 18 (28) are shown as separate recording media. However, it is of course possible to use one recording medium. In FIG. 1, two monitoring cameras are used. However, even if one monitoring camera is used, an analysis of a moving line or a stay of a moving body in a two-dimensional plane such as the ground surface or a floor surface, or 2 It is possible to analyze the movement of the moving body up and down in the vertical dimension.
  • monitoring cameras when three or more monitoring cameras are installed, one or two of them can be selected in combination as appropriate, and the flow line of the moving body can be analyzed as described above. . Furthermore, it is also possible to analyze the flow line and stay of the moving body in more detail or with high accuracy by using all three or more surveillance cameras. However, in that case, necessary correction processing such as alignment of coordinates of each image data and alignment of scales is performed in accordance with the relative positional relationship between three or more monitoring cameras.
  • FIG. 2 is a diagram illustrating a flowchart of processing for analyzing the movement of a moving object from image data captured by an imaging unit such as a monitoring camera.
  • step S ⁇ b> 101 the image data input unit 11 (21) acquires image data for one frame of a screen captured by an imaging unit such as a surveillance camera.
  • step S102 the image block dividing unit 14 (24) divides the acquired image data of one frame of the screen into m1 ⁇ m2 image blocks (m1 and m2 are positive integers and variable parameters indicating detection accuracy). ), And assign coordinates to each image block.
  • the block size (the size of m1 and m2) can be made variable in a form proportional to the size (size) of the moving body. That is, if the size (size) of the moving body is large, the block size can also be increased (m1 and m2 are decreased, but the balance with detection accuracy is taken into consideration).
  • step S103 the virtual line creation unit 15 (25) determines an integer multiple of the radius r from the center of the image data of one frame of the screen (r ⁇ 1, r ⁇ 2, r ⁇ 3,... R ⁇ n, where n is a positive value.
  • N concentric virtual lines are created every r ⁇ n ⁇ m1 / 2 and r ⁇ n ⁇ m2 / 2).
  • the number n can be varied in proportion to the detection accuracy of the trajectory of the moving body.
  • step S ⁇ b> 104 the virtual line creation unit 15 (25) stores all the coordinates of a block that approximates each of these n concentric virtual lines (hereinafter referred to as “concentric line approximate block”).
  • step S105 the moving body scanning unit 16 (26) scans all the concentric line approximate blocks.
  • step S106 the moving body scanning unit 16 (26) adds 1 to the number of scans (+1).
  • step S107 the moving object detection unit 17 (27) determines whether or not a change in color tone such as color and brightness has exceeded a threshold value T from the previous scan in the concentric line approximate block scanned this time. If the image block indicates a change exceeding the threshold T (Yes), the moving object detection unit 17 (27) stores the coordinates of the image block in the detection block storage unit 18 (28) in step S108. To do. For an image block that does not exceed the threshold T (No), the process proceeds to step S111 (wait for S seconds).
  • step S109 the moving object detection unit 17 (27) stores that the image block that shows a change exceeding the threshold T in the current scan has changed beyond the threshold T in the previous scan. It is determined whether the image block is close to the coordinates of the image block. If it is determined that it is not an adjacent image block (No), in step S110, the coordinates of the image block stored in step S108 are deleted, and the process proceeds to step S111 (weight of S seconds). This determination step is provided in order to determine and exclude a change in color tone of an image block that is not close as being erroneously detected due to noise or the like.
  • step S109 If it is determined in step S109 that the image blocks are close (Yes), the process proceeds to step S111 as it is, and the moving body scanning unit 16 (26) waits for S seconds.
  • S seconds indicates a predetermined time interval of the scanning process.
  • step S112 the moving body scanning unit 16 (26) determines whether or not the predetermined number of scans has been performed. If the execution has not yet been performed P times (No), the process returns to step S105, and the process up to step S111 (the above-described scan process) is repeated.
  • step S113 the trajectory analyzing unit 19 (29) converts the trajectory of the moving object for the P scans from the coordinates of all the stored image blocks. Further, as shown in FIG. 1, when there are two systems of image data captured from the monitoring camera, the processing from step S101 to step S113 is executed in each system. Then, the trajectory data of the moving body obtained from each system is sent to the subsequent step S114.
  • step S114 the correlation analysis determination unit 31 analyzes the trajectory of the moving body converted into data, and determines whether the trajectory is a straight line or a curved line that changes in a specific direction with continuity. At this time, if the data trajectory is taken from two systems, necessary correction processing such as alignment based on the mutual coordinate relationship and scale alignment is performed, analyzed in three dimensions, and the above determination is made. Do.
  • step S115 the analysis result classification unit 32 determines that the moving body is a passing object, and calculates the moving direction.
  • the notification unit 33 notifies the monitoring display terminal 2 of the moving body as a passing object together with its moving direction.
  • step S117 the analysis result classification unit 32 determines that the moving body is a staying object staying in an area in the photographed screen.
  • the notification unit 33 notifies the monitoring display terminal 2 of the moving body as a staying object.
  • the moving direction of the moving object can be quickly displayed by superimposing the displayed image data (monitoring image) with a virtual arrow or the like. It can be connected to grasp.
  • various display patterns can be provided, such as counting the number of moving objects for each time period and displaying them by a statistical graph or the like.
  • a jurisdiction area to be monitored includes a dangerous area, an entry prohibition area, or the like
  • a scene in which movement or reverse movement of a person or an object within the area is detected is assumed.
  • a warning message is displayed together with the monitoring image (highlighted display, blinking display, etc.), or a warning sound is uttered (sounded) in accordance with the monitoring image.
  • the surveillance camera has been mainly described as the imaging means, the present invention is not limited to this.
  • a general imaging means such as a portable type or a handy type video camera can be used as a matter of course. It is.

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Image Analysis (AREA)
  • Closed-Circuit Television Systems (AREA)

Abstract

When determining whether or not a moving body has crossed a plurality of virtual straight detection lines drawn on image data such as surveillance images, only one-dimensional movement such as left-right movement is identified, and it is difficult to also identify two-dimensional movement. As such, in this invention, each frame of image data captured by an imaging means is partitioned into a plurality of image blocks, a plurality of concentric circular virtual lines are superimposed on said image data, and at prescribed intervals, each image block that contains a virtual line in at least part of said image block is scanned a prescribed number of times. By analyzing the path of a moving body, said path being obtained from scanned image blocks that exhibit color changes in excess of a threshold, a determination as to whether said moving body is passing through or dwelling is made.

Description

移動体検知方法および移動体検知システムMoving object detection method and moving object detection system
 本発明は、監視カメラ等の撮像手段から取得した画像データを利用して移動体の動きを解析し検知する方法及びシステムに関する。 The present invention relates to a method and system for analyzing and detecting the movement of a moving object using image data acquired from imaging means such as a monitoring camera.
 従来、スーパーやショッピングセンターなどの商業施設、駅や空港などの交通機関、テーマパークなどのアミューズメント施設などに設置された監視カメラを用いた監視システムにおいては、撮影された監視画像内の人や物(以下、「移動体」という場合がある)の動きを検知して監視者に通知する方法が用いられてきた。 Conventionally, in surveillance systems using surveillance cameras installed in commercial facilities such as supermarkets and shopping centers, transportation facilities such as stations and airports, and amusement facilities such as theme parks, people and objects in the captured surveillance images are used. A method has been used in which the movement of the mobile phone (hereinafter sometimes referred to as “moving body”) is detected and notified to the observer.
 この場合の動き検知による通知方法としては、移動体の動きの有無のみで、監視画像の画面内における移動体の位置や移動方向までは判別できなかった。そのため、例えば、進入禁止区域に人が立ち入ったか否か、特定会場への入場か退場か、などの区別を判断する用途などに対して、監視カメラの監視画像を利用するには至らなかった。 In this case, as a notification method based on motion detection, only the presence / absence of the movement of the moving body was used, and the position and moving direction of the moving body in the monitor image screen could not be determined. For this reason, for example, it has not been possible to use the monitoring image of the monitoring camera for purposes such as determining whether or not a person has entered the prohibited entry area and whether or not to enter or leave a specific venue.
 最近では、監視画像上に仮想的に検知ラインを1本もしくは複数本引き、このラインを移動体が横切ったか否かをチェックすることで、進入区域に立ち入ったか、入場か退場かなど画像内における移動体の移動方向を判別できる仕組みが提供されるようになった(例えば、特許文献1)。 Recently, one or more detection lines are virtually drawn on the monitoring image, and it is checked whether the moving object has crossed this line. A mechanism that can determine the moving direction of a moving body has been provided (for example, Patent Document 1).
特開2010-9134号公報JP 2010-9134 A
 監視画像等の画像データ上に仮想的に直線状の検知ラインを複数本引き、移動体が各検知ラインを横切ったか否かを、この複数本の検知ラインを横切る時間的タイミングのずれ(時間経過)により判別する。しかし、この場合に移動体の移動方向としては、例えば図4のように、左から右へ(または右から左へ)といった一次元的な方向が判定されるのみで、二次元の移動方向まで判別することは困難である。
 また、移動体の移動方向や滞留を検知するために、例えば、画面1フレームの全画像ブロックにおける色調等の時間的変化を検出することにより判別する。しかし、この場合には全画像ブロックを所定回数スキャンしなければならないため、スキャンに要する時間がかかり効率的ではない。
A plurality of virtually linear detection lines are drawn on the image data such as the monitoring image, and whether or not the moving object crosses each detection line is determined by the time timing difference (time lapse) across the plurality of detection lines. ). However, in this case, as the moving direction of the moving body, for example, as shown in FIG. 4, only a one-dimensional direction such as from left to right (or from right to left) is determined. It is difficult to distinguish.
Further, in order to detect the moving direction and stay of the moving body, for example, the determination is made by detecting temporal changes such as color tone in all image blocks of one frame of the screen. However, in this case, since all image blocks must be scanned a predetermined number of times, it takes time to scan and is not efficient.
 本発明の特徴は、以下のとおりである。撮像手段で撮影した画像データを1フレームごとに複数個の画像ブロックに分割し、該画像ブロックなら成る画像データに複数本の同心円状の仮想ラインを重ね合わせ、画像ブロック内の少なくとも一部分に該仮想ラインを含む画像ブロック全てを所定時間毎に所定回数スキャンする。該スキャンした画像ブロックの中で所定の閾値を超える色調変化を呈する画像ブロックから求めた移動体の軌跡を解析することにより、移動体が通過物体であるか滞留しているかを判定する。 The features of the present invention are as follows. The image data captured by the imaging means is divided into a plurality of image blocks for each frame, a plurality of concentric virtual lines are superimposed on the image data consisting of the image blocks, and the virtual data is formed on at least a part of the image block. All image blocks including lines are scanned a predetermined number of times every predetermined time. By analyzing the trajectory of the moving body obtained from the image block exhibiting a color change exceeding a predetermined threshold in the scanned image block, it is determined whether the moving body is a passing object or staying.
 本発明によれば、監視画像等の画像データを利用して、移動体としての人や物の移動方向やそれを含めた動線を2次元的(必要に応じて3次元的)に迅速簡便に検知することができる。これにより、セキュリティ対策(例えば、進入禁止区域への立ち入り検知)や安全保護対策(例えば、順路に従って移動しているかの判定や逆走検知)は勿論のこと、マーケティング(例えば、人物の流れの粗密情報の把握)や交通整理(例えば、停滞や渋滞の有無)といった方面への応用も図ることができるという効果を奏する。 According to the present invention, by using image data such as a monitoring image, the moving direction of a person or an object as a moving object and the flow line including the moving direction can be quickly and easily two-dimensionally (three-dimensionally as necessary). Can be detected. As a result, security measures (for example, detection of entry into prohibited areas) and safety protection measures (for example, determination of whether the vehicle is moving along the route and reverse running detection), as well as marketing (for example, the density of human flow) There is an effect that it can be applied in the direction of information grasping) and traffic control (for example, whether there is a stagnation or traffic jam).
図1は、実施例に係る移動体検知システムの機能ブロックを示した図であるおけるシステム構成を示す図である。FIG. 1 is a diagram illustrating a system configuration in which functional blocks of a moving body detection system according to an embodiment are illustrated. 図2は、実施例に係る監視画像データから移動体の動きを解析する処理のフローチャートを示す図である。FIG. 2 is a flowchart illustrating a process of analyzing the movement of the moving object from the monitoring image data according to the embodiment. 図3は、同心円状の仮想ラインにより移動体の動線を検知する場合の模式図である。FIG. 3 is a schematic diagram in the case where the flow line of the moving body is detected by concentric virtual lines. 図4は、直線状の仮想ラインにより移動体の動線を検知する場合の模式図である。FIG. 4 is a schematic diagram in the case of detecting a flow line of a moving body using a linear virtual line. 図5は、同心状の仮想ラインを四角のラインとした場合を示す図である。FIG. 5 is a diagram illustrating a case where concentric virtual lines are square lines. 図6は、同心状の仮想ラインを円のラインとした場合を示す図である。FIG. 6 is a diagram illustrating a case where concentric virtual lines are circular lines.
 まず、本発明に係る移動体の移動方向または滞留の有無を解析および検知するための手法について説明する。
 本発明の特徴点は、移動体の移動方向を2次元的(必要に応じて3次元的)に判別するために、監視カメラ等の撮像手段により撮影した画像データ内に複数の同心円状の仮想ラインを引き、この仮想ラインに沿って画像データをスキャンするようにした点である。その処理フローの詳細は後述するが、その概略を、以下に説明する。
First, a method for analyzing and detecting the moving direction of the moving body or the presence or absence of staying according to the present invention will be described.
The feature of the present invention is that a plurality of concentric virtual images are included in image data photographed by an imaging means such as a surveillance camera in order to determine the moving direction of the moving body two-dimensionally (three-dimensionally as necessary). The line is drawn and image data is scanned along the virtual line. The details of the processing flow will be described later, but the outline will be described below.
 監視カメラ等の撮像手段により撮影した画像データを適切なブロックサイズに分割し、そのブロック分割した画像データに対して、画像データの中心から複数の同心円状の仮想ラインを引く。そして、画像データを分割した各画像ブロックを複数の同心円状の各仮想ラインについてスキャンをし、スキャンした画像ブロックの色や明るさなどの色調変化を検出し、それを基に移動体の移動方向または滞留の有無を判定する。 The image data photographed by the imaging means such as a monitoring camera is divided into appropriate block sizes, and a plurality of concentric virtual lines are drawn from the center of the image data for the divided block image data. Then, each image block obtained by dividing the image data is scanned for a plurality of concentric virtual lines, and a change in color tone such as color and brightness of the scanned image block is detected. Or the presence or absence of a stay is determined.
 例えば、同一または近接する画像ブロック内でかつ同一または近接する同心円状の仮想ラインで、連続して所定の閾値以上の色調変化が検知された場合は、移動体は滞留しているものと判別することができる。
 または、外側の同心円状の仮想ラインから内側の同心円状の仮想ラインの方へ所定の閾値以上の色調変化が検知された場合は、移動体は移動している状態にありその色調変化した各々の画像ブロックのブロック番号から移動方向を判別することができる。
For example, if a change in color tone that is equal to or greater than a predetermined threshold is continuously detected in the same or adjacent concentric virtual lines in the same or adjacent image block, it is determined that the moving body is staying. be able to.
Alternatively, when a change in color tone of a predetermined threshold value or more is detected from the outer concentric virtual line toward the inner concentric virtual line, the moving body is in a moving state and each of the color tone changes. The moving direction can be determined from the block number of the image block.
 さらに、画像ブロックの通過回数をカウントすることにより、単純または直線的な動きだけでなく、ジグザグなどの複雑な動きをする移動体についても判別可能となる。
 また、スキャンに要する時間に関しても、スキャンする画像ブロックを同心円状の仮想ラインに絞ることで、スキャン時間を短縮でき処理の効率化を図ることができる。
Furthermore, by counting the number of times an image block has passed, it is possible to discriminate not only a simple or linear movement but also a moving body having a complicated movement such as a zigzag.
Further, regarding the time required for scanning, by narrowing the image blocks to be scanned to concentric virtual lines, the scanning time can be shortened and the processing efficiency can be improved.
 なお、スキャンする閉曲線状のラインとしては、本発明のように同心円ではなく、図5のように、同心状の四角形のラインも想定できるが、斜め方向の距離が長くなり方向により中心からの距離が等距離でなくなるため、移動方向等の算出に当たり計算処理が複雑となり得策とはいえない。 As the closed curved line to be scanned, a concentric quadrangular line as shown in FIG. 5 can be assumed instead of a concentric circle as in the present invention, but the distance in the oblique direction becomes longer and the distance from the center depending on the direction Since these are not equidistant, the calculation process becomes complicated in calculating the moving direction and the like, which is not a good idea.
 図3においては、複数の同心円状の仮想ラインを楕円形状で表現しているが、これは、天井や天井付近に設置した頭上の監視カメラにより角度をもって地表面上を撮影した場合を想定したためである。天井などの頭上から真下に向けた監視カメラによれば、図6のように同心円となるところ、鉛直方向に対する監視カメラの撮影方向の角度に応じて地表面上のブロックを座標変換することにより、楕円形状となったところを示したものである。 In FIG. 3, a plurality of concentric virtual lines are expressed in an elliptical shape because it is assumed that the ground surface is imaged at an angle by an overhead surveillance camera installed near the ceiling or near the ceiling. is there. According to the surveillance camera facing directly below from the overhead such as the ceiling, it becomes a concentric circle as shown in FIG. It shows the place where it becomes elliptical.
 続いて、本発明の特徴である処理内容について説明する。
 まず、監視カメラ等の撮像手段により取得した画像データをm1×m2の画像ブロックに分割する。ここで、m1、m2は、移動体の大きさに応じて画像データのブロックサイズを決定するためのパラメータである。m1、m2の値が大きいほどブロックサイズは小さくなり、小さな移動体を検知することが可能となる。
Next, the processing content that is a feature of the present invention will be described.
First, image data acquired by an imaging unit such as a monitoring camera is divided into m1 × m2 image blocks. Here, m1 and m2 are parameters for determining the block size of the image data in accordance with the size of the moving object. As the values of m1 and m2 are larger, the block size is smaller and a small moving object can be detected.
 次に、ブロック分割した画像データに対して、複数の同心円状のラインとして、画像の中心から各々C1、C2、C3・・・Cnと定義した仮想ラインを引く。ここで、nは、移動体の移動方向検知のための精度を示すパラメータである。nが大きいほど移動体の移動方向を正確に把握することが可能となる。図3には、n=3の場合として、同心円状のC1、C2、C3の仮想ラインを示す。 Next, virtual lines defined as C1, C2, C3... Cn are drawn from the center of the image as a plurality of concentric lines for the image data divided into blocks. Here, n is a parameter indicating the accuracy for detecting the moving direction of the moving body. The larger the n, the more accurately the moving direction of the moving body can be grasped. FIG. 3 shows concentric imaginary lines C1, C2, and C3 in the case of n = 3.
 上記した同心円状の仮想ラインとブロックサイズの下で、画像データの各画像ブロックを同心円C1、C2、C3・・・Cnの各仮想ラインに沿って、所定の単位時間毎に所定回数としてP回スキャンする。ここで、Pは、移動体の移動速度に応じた検知精度を示すパラメータである。Pが大きいほど移動速度の速い移動体まで検知することが可能となる。 Under the above concentric virtual lines and block size, each image block of image data is P times as a predetermined number of times per predetermined unit time along the concentric circles C1, C2, C3... Cn. to scan. Here, P is a parameter indicating the detection accuracy according to the moving speed of the moving body. It becomes possible to detect even a moving body whose moving speed is faster as P is larger.
 上記スキャンされた画像ブロックにおいて、色や明るさなどの色調に変化があった場合に、その変化度合いが閾値Tを超えているか否かを判定する。この閾値Tについては、値が小さいほど色調の変化が少ない場合であっても検知可能となるところ、周囲環境(例えば、照明や日射)を考慮してその変化に応じて適正な値にする必要性が出てくる場合がある。また、画像ブロック内における所定の色調変化の面積比率を閾値とすることも可能である。例えば、100%とすると、画像ブロック全体が変化しないと検知せず、50%とすると、画像ブロックの半分以上の面積が変化すると検知することになる。 When there is a change in color tone such as color or brightness in the scanned image block, it is determined whether or not the degree of change exceeds a threshold value T. The threshold T can be detected even when the value is smaller even when the change in color tone is small, and it is necessary to consider the surrounding environment (for example, lighting and solar radiation) and to set an appropriate value according to the change. Sex may come out. It is also possible to use a predetermined color tone area ratio in the image block as a threshold value. For example, if it is 100%, it is not detected that the entire image block is not changed, and if it is 50%, it is detected that the area of more than half of the image block is changed.
 図1は、本発明に係る移動体検知システムの実施例として、監視カメラ2台を使用した監視装置に適用した場合の機能ブロックを示した図である。2台の監視カメラA10およびB20により撮影される監視画像としては、XYZ各軸からなる3次元空間を想定すると、例えば、XZ平面方向の監視画像およびYZ平面方向の監視画像とする場合、または、Z軸上方から鉛直下方向に撮ったXY平面(すなわち地表面)の監視画像およびX軸またはY軸からの垂直面方向の監視画像とする場合、等が想定される。 FIG. 1 is a diagram showing functional blocks when applied to a monitoring apparatus using two monitoring cameras as an embodiment of a moving body detection system according to the present invention. Assuming a three-dimensional space composed of XYZ axes as the monitoring images taken by the two monitoring cameras A10 and B20, for example, when monitoring images in the XZ plane direction and monitoring images in the YZ plane direction, or For example, a monitoring image of the XY plane (that is, the ground surface) taken from the upper side of the Z-axis vertically downward and a monitoring image of the vertical plane direction from the X-axis or Y-axis are assumed.
 監視カメラA10により撮影した監視画像のデータを処理する機能ブロック(11~19)と監視カメラB20により撮影した監視画像のデータを処理する機能ブロック(21~29)は、共に監視装置1内において同様の構成であるので(図1中の2点鎖線で囲んだブロック)、監視カメラA10側の機能ブロック図を用いて説明する。 The functional blocks (11 to 19) for processing the monitoring image data captured by the monitoring camera A10 and the functional blocks (21 to 29) for processing the monitoring image data captured by the monitoring camera B20 are both the same in the monitoring apparatus 1. 1 (block surrounded by a two-dot chain line in FIG. 1), this will be described with reference to a functional block diagram on the monitoring camera A10 side.
 監視カメラA10(B20)により撮影した画像データは、画像データ入力部11(21)を介して、監視画像として画像データ記録部12(22)により監視画像記録装置13(23)に格納されると共に、画像ブロック分割部14(24)に入力される。なお、監視画像記録装置13および23は、図1において監視カメラA側およびB側それぞれに図示しているが、A側およびB側で一つの監視画像記録装置としても何ら差支えない。 Image data captured by the monitoring camera A10 (B20) is stored as a monitoring image in the monitoring image recording device 13 (23) by the image data recording unit 12 (22) via the image data input unit 11 (21). Are input to the image block dividing unit 14 (24). Although the monitoring image recording devices 13 and 23 are illustrated on the monitoring camera A side and the B side in FIG. 1, respectively, the monitoring image recording devices 13 and 23 may be one monitoring image recording device on the A side and the B side.
 画像ブロック分割部14(24)において、画面1フレーム分の画像データが、m1×m2個の画像ブロックに分割される。ここで、入力となる画像データとしては、上記のように画像データ入力部11(21)から直接取り込むケース、一旦画像データ記録部12(22)を介して監視画像記録装置13(23)に格納した状態から適宜のタイミングで取り込むケースを任意に採用することができる。 In the image block dividing unit 14 (24), image data for one frame of the screen is divided into m1 × m2 image blocks. Here, as the image data to be input, the image data input unit 11 (21) directly captures as described above, and is temporarily stored in the monitoring image recording device 13 (23) via the image data recording unit 12 (22). It is possible to arbitrarily adopt a case of capturing at an appropriate timing from the state.
 仮想ライン作成部15(25)は、画面1フレーム内のブロック分割された画像データに対して、図3に示すように、C1、C2、C3、…、Cnから成るn本の同心円状の仮想ラインを作成する。 As shown in FIG. 3, the virtual line creation unit 15 (25) applies n concentric virtual images composed of C1, C2, C3,..., Cn to the image data divided into blocks in one frame of the screen. Create a line.
 動体スキャン部16(26)は、作成した複数(n)本の同心円状の仮想ラインを重ね合わせた画像データに対して、これら同心円状の仮想ラインに近似する全ての画像ブロックをスキャンする。ここで、同心円状の仮想ラインに近似する画像ブロックとは、この同心円状の仮想ラインを画像ブロック中に一部分にでも含む(換言すると、画像ブロック中に同心円状の仮想ラインが少しでもかかっている)当該画像ブロックのことをいう。 The moving body scanning unit 16 (26) scans all the image blocks that approximate the concentric virtual lines with respect to the image data obtained by superimposing the created (n) concentric virtual lines. Here, the image block approximating the concentric virtual line includes the concentric virtual line in a part of the image block (in other words, the concentric virtual line is slightly applied in the image block). ) Refers to the image block.
 動体検知部17(27)は、動体スキャン部16(26)による所定時間(S時間)毎の所定回数(P回)のスキャンを通して、走査した画像ブロックの中から色や明るさ等の色調変化が所定の閾値(T)を超えた画像ブロックを検出する。これにより、人や物の動きを移動体として検知することになる。 The moving object detection unit 17 (27) changes color tone such as color and brightness from the scanned image block through a predetermined number of times (P times) of scanning every predetermined time (S time) by the moving object scanning unit 16 (26). Detects an image block that exceeds a predetermined threshold (T). Thereby, the movement of a person or an object is detected as a moving body.
 検知ブロック記憶部18(28)は、動体検知部17(27)で検出した色や明るさ等の色調変化が閾値(T)を超えた画像ブロック全てについて、発生時刻、画像ブロック番号、その画像ブロックに最も近い同心円状の仮想ライン番号などの所要のデータを記憶する。なお、検知ブロック記憶部18および28は、図1において監視カメラA側およびB側それぞれに図示しているが、A側およびB側で一つの検知ブロック記憶部としても何ら差支えない。 The detection block storage unit 18 (28) generates the occurrence time, the image block number, and the image for all the image blocks in which the color change such as color and brightness detected by the moving object detection unit 17 (27) exceeds the threshold (T). Necessary data such as concentric virtual line numbers closest to the block are stored. In addition, although the detection block memory | storage parts 18 and 28 are illustrated in the monitoring camera A side and B side in FIG. 1, respectively, it does not interfere at all as one detection block memory | storage part in A side and B side.
 軌跡解析部19(29)は、検知ブロック記憶部18(28)で検知/記憶した全ての画像ブロックから、画像ブロック間に渡る色調の時間的変化(推移)を検出する。これにより、移動体の移動方向等、その軌跡に関する情報を解析する。 The trajectory analysis unit 19 (29) detects temporal changes (transitions) in color tone between image blocks from all the image blocks detected / stored by the detection block storage unit 18 (28). As a result, information on the trajectory such as the moving direction of the moving body is analyzed.
 相関解析判定部31は、軌跡解析部19および29双方から入力される解析結果(軌跡)に基づき、双方の画像データの相関関係を考慮して、広域的かつ3次元的に双方の軌跡を解析し、総合的に移動体の動き(移動方向を含めた動線)や滞留の有無等を判定する。この相関関係を考慮する場合には、2台の監視カメラの相対的な位置関係等に応じて、それぞれの画像データの座標の位置合わせや縮尺の整合等の必要な補正処理を行う。 The correlation analysis determination unit 31 analyzes both the trajectories in a wide area and three-dimensionally in consideration of the correlation between both image data based on the analysis result (trajectory) input from both the trajectory analysis units 19 and 29. Then, the movement of the moving body (flow line including the moving direction), the presence / absence of staying, and the like are determined comprehensively. When this correlation is taken into consideration, necessary correction processing such as alignment of the coordinates of the respective image data and alignment of the scales is performed in accordance with the relative positional relationship between the two monitoring cameras.
 解析結果分類部32は、相関解析判定部31からの解析結果に基づいて、移動体の動き(2次元または高さ方向を含めた3次元の移動方向や特定範囲内の滞留など)を分類する。 Based on the analysis result from the correlation analysis determination unit 31, the analysis result classification unit 32 classifies the movement of the moving object (two-dimensional or three-dimensional movement direction including the height direction, stay in a specific range, etc.). .
 以上の構成要件を大別すると、画像データ入力部11(21)から動体スキャン部16(26)までが、画像ブロックに関する処理を実行し、ブロック処理部といえる部分である。また、動体検知部17(27)から判定結果分類部32までが、移動体の軌跡を求め解析することにより移動体の動き等を判定し、解析判定処理部といえる部分である。 When the above constituent requirements are roughly classified, the image data input unit 11 (21) to the moving object scanning unit 16 (26) execute processing relating to the image block and can be said to be a block processing unit. Further, the moving object detection unit 17 (27) to the determination result classification unit 32 determine the movement of the moving object by obtaining and analyzing the trajectory of the moving object, and can be regarded as an analysis determination processing unit.
 通知部33は、分類した解析結果を基に移動に関する必要な情報を監視用表示端末2に通知する。監視用表示端末2の画面上には、その解析情報が文字やグラフィックを用いて表示される。また、必要に応じて表示と共に音声により報知することも可能である。 The notification unit 33 notifies the monitoring display terminal 2 of necessary information regarding movement based on the classified analysis results. The analysis information is displayed on the screen of the monitoring display terminal 2 using characters and graphics. Moreover, it is also possible to notify by voice together with display as necessary.
 なお、図1では、監視画像記録装置13(23)と検知ブロック記憶部18(28)を別々の記録媒体として示したが、1つの記録媒体を兼用して使用することも勿論可能である。
 また、図1では、監視カメラを2台としたが、1台の監視カメラであっても、地表面やフロア面といった2次元平面内での移動体の動線や滞留等の解析、または2次元垂直面内での階上や階下への移動体の動き等の解析が可能である。
In FIG. 1, the monitoring image recording device 13 (23) and the detection block storage unit 18 (28) are shown as separate recording media. However, it is of course possible to use one recording medium.
In FIG. 1, two monitoring cameras are used. However, even if one monitoring camera is used, an analysis of a moving line or a stay of a moving body in a two-dimensional plane such as the ground surface or a floor surface, or 2 It is possible to analyze the movement of the moving body up and down in the vertical dimension.
 そしてまた、監視カメラが3台以上設置されている場合には、その内の1台または2台を適宜に組み合わせて選択し、上記のように移動体の動線等の解析を行うことができる。さらに、3台以上の監視カメラを全て使用して、より詳細または高精度に移動体の動線や滞留等の解析を行うことも可能である。ただし、その場合には、3台以上の監視カメラ相互の相対的な位置関係等に応じて、各画像データの座標の位置合わせや縮尺の整合等の必要な補正処理を行う。 In addition, when three or more monitoring cameras are installed, one or two of them can be selected in combination as appropriate, and the flow line of the moving body can be analyzed as described above. . Furthermore, it is also possible to analyze the flow line and stay of the moving body in more detail or with high accuracy by using all three or more surveillance cameras. However, in that case, necessary correction processing such as alignment of coordinates of each image data and alignment of scales is performed in accordance with the relative positional relationship between three or more monitoring cameras.
 次に、図1の各機能ブロックによって、監視画像等の画像データから移動体の動き(移動方向を含めた動線や滞留等)を解析する処理フローについて説明する。
 図2は、監視カメラ等の撮像手段が撮影した画像データから移動体の動きを解析する処理のフローチャートを示す図である。
Next, a processing flow for analyzing the movement of the moving body (flow line including the moving direction, staying, etc.) from the image data such as the monitoring image by each functional block of FIG. 1 will be described.
FIG. 2 is a diagram illustrating a flowchart of processing for analyzing the movement of a moving object from image data captured by an imaging unit such as a monitoring camera.
 ステップS101で、画像データ入力部11(21)は、監視カメラ等の撮像手段が撮影した画面1フレーム分の画像データを取得する。
 ステップS102で、画像ブロック分割部14(24)は、取得した画面1フレームの画像データをm1×m2個の画像ブロックに分割し(m1、m2は、正の整数で検知精度を示す可変のパラメータ)、各画像ブロックに座標を付与する。その際に、移動体の大きさ(サイズ)に比例する形でブロックサイズ(m1およびm2の大きさ)を可変にすることができる。すなわち、移動体の大きさ(サイズ)が大きければ、ブロックサイズも大きくする(m1およびm2を小さくする、ただし、検知精度との兼ね合いを考慮する)ことができる。
In step S <b> 101, the image data input unit 11 (21) acquires image data for one frame of a screen captured by an imaging unit such as a surveillance camera.
In step S102, the image block dividing unit 14 (24) divides the acquired image data of one frame of the screen into m1 × m2 image blocks (m1 and m2 are positive integers and variable parameters indicating detection accuracy). ), And assign coordinates to each image block. At that time, the block size (the size of m1 and m2) can be made variable in a form proportional to the size (size) of the moving body. That is, if the size (size) of the moving body is large, the block size can also be increased (m1 and m2 are decreased, but the balance with detection accuracy is taken into consideration).
 ステップS103で、仮想ライン作成部15(25)は、画面1フレームの画像データの中心から半径rの整数倍(r×1、r×2、r×3、…r×n ただし、nは正の整数で、r×n≦m1/2かつr×n≦m2/2)ごとに、n本の同心円状の仮想ラインを作成する。その際に、移動体の軌跡の検知精度の高さに比例して本数nを可変にすることができる。
 ステップS104で、仮想ライン作成部15(25)は、これらn本の同心円状の各仮想ラインに近似するブロック(以下、「同心円ライン近似ブロック」という)の座標を全て記憶する。
In step S103, the virtual line creation unit 15 (25) determines an integer multiple of the radius r from the center of the image data of one frame of the screen (r × 1, r × 2, r × 3,... R × n, where n is a positive value. N concentric virtual lines are created every r × n ≦ m1 / 2 and r × n ≦ m2 / 2). At that time, the number n can be varied in proportion to the detection accuracy of the trajectory of the moving body.
In step S <b> 104, the virtual line creation unit 15 (25) stores all the coordinates of a block that approximates each of these n concentric virtual lines (hereinafter referred to as “concentric line approximate block”).
 ステップS105で、動体スキャン部16(26)は、同心円ライン近似ブロックの全てをスキャンする。
 ステップS106で、動体スキャン部16(26)は、スキャン回数に1を加える(+1)。
In step S105, the moving body scanning unit 16 (26) scans all the concentric line approximate blocks.
In step S106, the moving body scanning unit 16 (26) adds 1 to the number of scans (+1).
 ステップS107で、動体検知部17(27)は、今回スキャンした同心円ライン近似ブロックにおいて、前回のスキャンから色、明るさ等の色調の変化が閾値Tを超えたか否かを判定する。
 ここで、閾値Tを超える変化を示す画像ブロックである場合には(Yes)、ステップS108で、動体検知部17(27)は、その画像ブロックの座標を検知ブロック記憶部18(28)に記憶する。閾値Tを超えない画像ブロックについては(No)、ステップS111(S秒間のウェイト)へ遷移する。
In step S107, the moving object detection unit 17 (27) determines whether or not a change in color tone such as color and brightness has exceeded a threshold value T from the previous scan in the concentric line approximate block scanned this time.
If the image block indicates a change exceeding the threshold T (Yes), the moving object detection unit 17 (27) stores the coordinates of the image block in the detection block storage unit 18 (28) in step S108. To do. For an image block that does not exceed the threshold T (No), the process proceeds to step S111 (wait for S seconds).
 次に、ステップS108に続くステップS109で、動体検知部17(27)は、今回のスキャンで閾値Tを超える変化を示した画像ブロックが、前回のスキャンで閾値Tを超える変化があったとして記憶した画像ブロックの座標と近接する画像ブロックであるか否かを判定する。近接する画像ブロックではないと判定した場合には(No)、ステップS110で、ステップS108で記憶した画像ブロックの座標を削除し、ステップS111(S秒間のウェイト)へ遷移する。この判定ステップは、近接しない画像ブロックの色調変化はノイズ等により誤検知されたものとして判断して除外するために設けたものである。 Next, in step S109 subsequent to step S108, the moving object detection unit 17 (27) stores that the image block that shows a change exceeding the threshold T in the current scan has changed beyond the threshold T in the previous scan. It is determined whether the image block is close to the coordinates of the image block. If it is determined that it is not an adjacent image block (No), in step S110, the coordinates of the image block stored in step S108 are deleted, and the process proceeds to step S111 (weight of S seconds). This determination step is provided in order to determine and exclude a change in color tone of an image block that is not close as being erroneously detected due to noise or the like.
 ステップS109で近接する画像ブロックであると判定した場合には(Yes)、そのままステップS111へ遷移し、動体スキャン部16(26)はS秒間ウェイトする。ここで、S秒はスキャン処理の所定の時間間隔を示す。
 そのS秒間ウェイトの後、ステップS112で、動体スキャン部16(26)は、スキャン回数として所定のP回実行したか否かを判定する。まだP回実行に至っていない場合には(No)、ステップS105に戻り、ステップS111までの処理(上述のスキャン処理)を繰り返す。
If it is determined in step S109 that the image blocks are close (Yes), the process proceeds to step S111 as it is, and the moving body scanning unit 16 (26) waits for S seconds. Here, S seconds indicates a predetermined time interval of the scanning process.
After the S second wait, in step S112, the moving body scanning unit 16 (26) determines whether or not the predetermined number of scans has been performed. If the execution has not yet been performed P times (No), the process returns to step S105, and the process up to step S111 (the above-described scan process) is repeated.
 P回のスキャン処理が終了した場合には(Yes)、ステップS113で、軌跡解析部19(29)は、記憶した画像ブロック全ての座標からスキャンP回分による移動体の軌跡をデータ化する。また、図1のように、監視カメラから取り込む画像データが2系統である場合には、上記ステップS101からステップS113までの処理をそれぞれの系統において実行する。そして、各系統から得た移動体の軌跡のデータが、続くステップS114へ送られることになる。 When the P scanning processes are completed (Yes), in step S113, the trajectory analyzing unit 19 (29) converts the trajectory of the moving object for the P scans from the coordinates of all the stored image blocks. Further, as shown in FIG. 1, when there are two systems of image data captured from the monitoring camera, the processing from step S101 to step S113 is executed in each system. Then, the trajectory data of the moving body obtained from each system is sent to the subsequent step S114.
 ステップS114で、相関解析判定部31は、データ化した移動体の軌跡を解析し、その軌跡が連続性をもって特定の方向へ変化する直線状または曲線状であるか否かを判定する。この時、データ化した軌跡を2系統から取り込んだ場合には、相互の座標関係に基づく位置合わせや縮尺の整合等の必要な補正処理を行い、3次元に展開して解析し、上記判定を行う。 In step S114, the correlation analysis determination unit 31 analyzes the trajectory of the moving body converted into data, and determines whether the trajectory is a straight line or a curved line that changes in a specific direction with continuity. At this time, if the data trajectory is taken from two systems, necessary correction processing such as alignment based on the mutual coordinate relationship and scale alignment is performed, analyzed in three dimensions, and the above determination is made. Do.
 上記の条件に該当する場合には(Yes)、ステップS115で、解析結果分類部32は、その移動体は通過物体と判定し、併せて移動方向を算出する。続くステップS116で、通知部33は、監視用表示端末2に対して、その移動体を通過物体としてその移動方向と共に通知する。 If the above condition is satisfied (Yes), in step S115, the analysis result classification unit 32 determines that the moving body is a passing object, and calculates the moving direction. In subsequent step S116, the notification unit 33 notifies the monitoring display terminal 2 of the moving body as a passing object together with its moving direction.
 他方、上記の条件に該当しない場合には(No)、ステップS117で、解析結果分類部32は、その移動体は撮影した画面内のエリアに滞留している滞留物体と判定する。続くステップS118で、通知部33は、監視用表示端末2に対して、その移動体を滞留物体として通知する。 On the other hand, if the above condition is not satisfied (No), in step S117, the analysis result classification unit 32 determines that the moving body is a staying object staying in an area in the photographed screen. In subsequent step S118, the notification unit 33 notifies the monitoring display terminal 2 of the moving body as a staying object.
 上記の通知を受けた監視用表示端末2の表示態様として、移動体の移動方向については、表示される画像データ(監視画像)に対して仮想的な矢印等により重ねて表示するなど、迅速な把握につなげることができる。他にも、時間帯ごとの移動体の数をカウントして統計グラフ等により表示するなど、種々の表示パターンを提供することができる。 As the display mode of the monitoring display terminal 2 that has received the above notification, the moving direction of the moving object can be quickly displayed by superimposing the displayed image data (monitoring image) with a virtual arrow or the like. It can be connected to grasp. In addition, various display patterns can be provided, such as counting the number of moving objects for each time period and displaying them by a statistical graph or the like.
 また、監視対象となる管轄区域に、危険エリアや進入禁止エリア等が含まれる場合に、それらエリア内への人や物の移動や逆行等が検知される場面が想定される。その時には、監視用表示端末2等において、監視画像と共に警告メッセージを表示(強調表示、点滅表示等)する、または、監視画像に合わせて警告音声を発声(発音)するなどにより報知することで対処する。
 なお、撮像手段としては主に監視カメラについて述べたが、これに限定されるものではなく、例えば、可搬タイプまたはハンディタイプのビデオカメラ等、一般的な撮像手段を用いることも当然のごとく可能である。
In addition, when a jurisdiction area to be monitored includes a dangerous area, an entry prohibition area, or the like, a scene in which movement or reverse movement of a person or an object within the area is detected is assumed. At that time, on the monitoring display terminal 2 or the like, a warning message is displayed together with the monitoring image (highlighted display, blinking display, etc.), or a warning sound is uttered (sounded) in accordance with the monitoring image. To do.
Although the surveillance camera has been mainly described as the imaging means, the present invention is not limited to this. For example, a general imaging means such as a portable type or a handy type video camera can be used as a matter of course. It is.
1・・・監視装置
2・・・監視用表示端末
10、20・・・監視カメラ(A、B)
11、21・・・画像データ入力部
12、22・・・画像データ記録部
13、23・・・監視画像記録装置
14、24・・・画像ブロック分割部
15、25・・・仮想ライン作成部
16、26・・・動体スキャン部
17、27・・・動体検知部
18、28・・・検知ブロック記憶部
19、29・・・軌跡解析部
31・・・相関解析判定部
32・・・解析結果分類部
33・・・通知部
DESCRIPTION OF SYMBOLS 1 ... Monitoring apparatus 2 ... Display terminal 10 for monitoring, 20 ... Surveillance camera (A, B)
DESCRIPTION OF SYMBOLS 11, 21 ... Image data input part 12, 22 ... Image data recording part 13, 23 ... Surveillance image recording device 14, 24 ... Image block division part 15, 25 ... Virtual line creation part 16, 26 ... Moving body scanning unit 17, 27 ... Moving body detection unit 18, 28 ... Detection block storage unit 19, 29 ... Trajectory analysis unit 31 ... Correlation analysis determination unit 32 ... Analysis Result classification unit 33 ... notification unit

Claims (7)

  1.  複数の撮像手段の少なくとも1台で撮影した画像データを1フレームごとに複数個の画像ブロックに分割する第1のステップと、
     前記画像ブロックなら成る前記画像データに複数本の同心円状の仮想ラインを重ね合わせる第2のステップと、
     画像ブロック内の少なくとも一部分に前記仮想ラインを含む前記画像ブロック全てを所定時間毎に所定回数スキャンし、該スキャンした画像ブロックの中で所定の閾値を超える色調変化を呈する画像ブロックを記憶する第3のステップと、
     前記記憶した画像ブロックから前記画像データ内の移動体の軌跡を求める第4のステップと、
     前記軌跡を解析することにより前記移動体が通過物体であるか滞留しているかを判定する第5のステップと
    を有することを特徴とする移動体検知方法。
    A first step of dividing image data captured by at least one of a plurality of imaging means into a plurality of image blocks for each frame;
    A second step of superimposing a plurality of concentric virtual lines on the image data comprising the image block;
    A third scan that scans all of the image blocks including the virtual line in at least a part of the image block a predetermined number of times every predetermined time and stores an image block exhibiting a color tone change exceeding a predetermined threshold among the scanned image blocks And the steps
    A fourth step of obtaining a trajectory of the moving object in the image data from the stored image block;
    And a fifth step of determining whether the moving body is a passing object or staying by analyzing the trajectory.
  2.  請求項1に記載の移動体検知方法であって、
     前記第5のステップは、前記移動体の軌跡が連続性をもって特定の方向へ変化する直線状または曲線状である場合に、前記移動体が通過物体であると判定し、そうでない場合に、前記移動体が滞留していると判定する
    ことを特徴とする移動体検知方法。
    It is a moving body detection method of Claim 1, Comprising:
    The fifth step determines that the moving body is a passing object when the trajectory of the moving body is a linear shape or a curved shape that changes in a specific direction with continuity, and otherwise, A moving body detection method, characterized by determining that a moving body is stagnant.
  3.  請求項1または2に記載の移動体検知方法であって、
     前記画像データを2台以上の前記撮像手段で撮影した場合に、
     それぞれの画像データについて前記第1から第4のステップを実行し、
     前記第5のステップは、前記それぞれの画像データに対して求めた軌跡を該それぞれの画像データ相互の相関関係に応じて解析することにより、前記移動体の3次元的な動きも含めて前記移動体が通過物体であるか滞留しているかを判定する
    ことを特徴とする移動体検知方法。
    It is a moving body detection method of Claim 1 or 2,
    When the image data is captured by two or more of the imaging means,
    The first to fourth steps are executed for each image data,
    In the fifth step, the movement including the three-dimensional movement of the moving body is analyzed by analyzing the locus obtained for the respective image data according to the correlation between the respective image data. A moving body detection method comprising: determining whether a body is a passing object or staying.
  4.  請求項1から3のいずれかに記載の移動体検知方法であって、
     前記第1のステップにおける画像ブロックは、前記移動体の大きさに比例して該ブロックサイズを変更し、
     前記第2のステップにおける仮想ラインは、前記移動体の軌跡の検知精度の高さに比例して該仮想ラインの本数を変更する
    ことを特徴とする移動体検知方法。
    It is a moving body detection method in any one of Claim 1 to 3,
    The image block in the first step changes the block size in proportion to the size of the moving object,
    The virtual line in the second step is characterized in that the number of virtual lines is changed in proportion to the detection accuracy of the trajectory of the mobile body.
  5.  請求項1から4のいずれかに記載の移動体検知方法であって、
     前記第5のステップで判定した結果を、前記画像データに重ねて表示するかまたは前記画像データの表示に合わせて音声にて報知する第6のステップを有する
    ことを特徴とする移動体線検知方法。
    It is a moving body detection method in any one of Claim 1 to 4, Comprising:
    A moving body line detection method comprising: a sixth step of displaying the result determined in the fifth step over the image data or notifying the sound in accordance with the display of the image data. .
  6.  複数の撮像手段と、
     前記撮像手段の少なくとも1台で撮影した画像データを記録および解析する記録解析手段と、
     表示および報知機能を有する出力手段と
    を備え、
     前記記録解析手段は、
     前記画像データを1フレームごとに複数個の画像ブロックに分割し、該画像ブロックなら成る前記画像データに複数本の同心円状の仮想ラインを重ね合わせ、画像ブロック内の少なくとも一部分に該仮想ラインを含む前記画像ブロック全てを所定時間毎に所定回数スキャンするブロック処理部と、
     前記スキャンした画像ブロックの内で所定の閾値を超える色調変化を呈する画像ブロックを記憶し、該記憶した画像ブロックから前記画像データ内の移動体の軌跡を求め、該軌跡を解析することにより前記移動体が通過物体であるか滞留しているかを判定する解析判定処理部と、
     前記画像データおよび前記判定の結果を外部に通知する通知部とを有し、
     前記出力手段は、
     前記通知部からの前記画像データおよび前記判定の結果を重ねて表示するかまたは前記画像データの表示に合わせて前記判定の結果を音声にて報知する
    ことを特徴とする移動体検知システム。
    A plurality of imaging means;
    Recording analysis means for recording and analyzing image data taken by at least one of the imaging means;
    Output means having a display and notification function,
    The record analysis means includes
    The image data is divided into a plurality of image blocks for each frame, a plurality of concentric virtual lines are superimposed on the image data including the image blocks, and the virtual lines are included in at least a part of the image block. A block processing unit that scans all the image blocks a predetermined number of times every predetermined time;
    An image block exhibiting a color change exceeding a predetermined threshold is stored in the scanned image block, a trajectory of the moving object in the image data is obtained from the stored image block, and the movement is analyzed by analyzing the trajectory. An analysis determination processing unit for determining whether the body is a passing object or staying, and
    A notification unit that notifies the image data and the determination result to the outside;
    The output means includes
    The moving object detection system, wherein the image data from the notification unit and the determination result are displayed in an overlapping manner, or the determination result is notified by voice in accordance with the display of the image data.
  7.  請求項6に記載の移動体検知システムであって、
     前記ブロック処理部は、2台以上の前記撮像手段で撮影した前記画像データそれぞれに対して前記自らの処理を実行し、
     前記解析判定処理部は、前記画像データそれぞれに対して求めた前記移動体の軌跡を、前記それぞれの画像データ相互の相関関係に応じて解析することにより、前記移動体の3次元的な動きも含めて前記移動体が通過物体であるか滞留しているかを判定する
    ことを特徴とする移動体検知システム。
    It is a moving body detection system of Claim 6, Comprising:
    The block processing unit executes the process for each of the image data photographed by two or more imaging units,
    The analysis determination processing unit analyzes the trajectory of the moving object obtained for each of the image data in accordance with the correlation between the respective image data, so that the three-dimensional movement of the moving object is also detected. In addition, it is determined whether the moving body is a passing object or stays.
PCT/JP2014/060980 2014-04-17 2014-04-17 Moving-body detection method and moving-body detection system WO2015159412A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/060980 WO2015159412A1 (en) 2014-04-17 2014-04-17 Moving-body detection method and moving-body detection system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/060980 WO2015159412A1 (en) 2014-04-17 2014-04-17 Moving-body detection method and moving-body detection system

Publications (1)

Publication Number Publication Date
WO2015159412A1 true WO2015159412A1 (en) 2015-10-22

Family

ID=54323654

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/060980 WO2015159412A1 (en) 2014-04-17 2014-04-17 Moving-body detection method and moving-body detection system

Country Status (1)

Country Link
WO (1) WO2015159412A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109661667A (en) * 2016-10-14 2019-04-19 富士通株式会社 The retrograde detection device of vehicle and method, electronic equipment

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05307605A (en) * 1991-09-12 1993-11-19 Fuji Photo Film Co Ltd Method for extracting subject
JPH08123935A (en) * 1994-08-31 1996-05-17 Nippon Telegr & Teleph Corp <Ntt> Method and device for counting moving object by direction
WO2014045479A1 (en) * 2012-09-24 2014-03-27 日本電気株式会社 Object information extraction unit, object information extraction program, and object information extraction method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05307605A (en) * 1991-09-12 1993-11-19 Fuji Photo Film Co Ltd Method for extracting subject
JPH08123935A (en) * 1994-08-31 1996-05-17 Nippon Telegr & Teleph Corp <Ntt> Method and device for counting moving object by direction
WO2014045479A1 (en) * 2012-09-24 2014-03-27 日本電気株式会社 Object information extraction unit, object information extraction program, and object information extraction method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109661667A (en) * 2016-10-14 2019-04-19 富士通株式会社 The retrograde detection device of vehicle and method, electronic equipment

Similar Documents

Publication Publication Date Title
JP6156665B1 (en) Facility activity analysis apparatus, facility activity analysis system, and facility activity analysis method
JP6144656B2 (en) System and method for warning a driver that visual recognition of a pedestrian may be difficult
JP2021182754A (en) Monitoring system, method for monitoring, and program
US20080144961A1 (en) Method and Image Evaluation Unit for Scene Analysis
CN108877024B (en) Shared civilized queuing system and queuing method thereof
CN106463032A (en) Intrusion detection with directional sensing
CN104954747B (en) Video monitoring method and device
CN108363953B (en) Pedestrian detection method and binocular monitoring equipment
JP6712778B2 (en) Object detection device, object detection system, and object detection method
JP2014028667A (en) Escalator monitoring system
CN115797873B (en) Crowd density detection method, system, equipment, storage medium and robot
JPWO2018179202A1 (en) Information processing apparatus, control method, and program
Liu et al. iSee: obstacle detection and feedback system for the blind
JP2016092693A (en) Imaging apparatus, imaging apparatus control method, and program
Ziran et al. A contactless solution for monitoring social distancing: A stereo vision enabled real-time human distance measuring system
JP2007018324A (en) Apparatus, method and program for detecting intruding object by image processing
WO2015159412A1 (en) Moving-body detection method and moving-body detection system
KR101640527B1 (en) Method and Apparatus for Monitoring Video for Estimating Size of Single Object
CN108362382A (en) A kind of thermal imaging monitoring method and its monitoring system
Chen et al. SVM based people counting method in the corridor scene using a single-layer laser scanner
JP2008152586A (en) Automatic identification monitor system for area surveillance
JP5864230B2 (en) Object detection device
JP2005284652A (en) Video monitoring method and apparatus using moving vector
JP2020017102A (en) Fire monitoring apparatus and fire monitoring system
JP4888290B2 (en) Intruder detection device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14889615

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14889615

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP