WO2015152405A1 - Power supply system and vehicle - Google Patents

Power supply system and vehicle Download PDF

Info

Publication number
WO2015152405A1
WO2015152405A1 PCT/JP2015/060620 JP2015060620W WO2015152405A1 WO 2015152405 A1 WO2015152405 A1 WO 2015152405A1 JP 2015060620 W JP2015060620 W JP 2015060620W WO 2015152405 A1 WO2015152405 A1 WO 2015152405A1
Authority
WO
WIPO (PCT)
Prior art keywords
control unit
lithium ion
secondary battery
power supply
supply system
Prior art date
Application number
PCT/JP2015/060620
Other languages
French (fr)
Japanese (ja)
Inventor
亜希 長谷川
仁 韮沢
下山田 啓
泰男 角田
高澤 孝次
Original Assignee
株式会社東芝
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社東芝 filed Critical 株式会社東芝
Publication of WO2015152405A1 publication Critical patent/WO2015152405A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/24Conjoint control of vehicle sub-units of different type or different function including control of energy storage means
    • B60W10/26Conjoint control of vehicle sub-units of different type or different function including control of energy storage means for electrical energy, e.g. batteries or capacitors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/28Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the electric energy storing means, e.g. batteries or capacitors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/48Parallel type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/0023Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train
    • B60L3/0046Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train relating to electric energy storage systems, e.g. batteries or capacitors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/12Recording operating variables ; Monitoring of operating variables
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/10Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines
    • B60L50/16Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines with provision for separate direct mechanical propulsion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/60Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
    • B60L50/61Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries by batteries charged by engine-driven generators, e.g. series hybrid electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/12Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
    • B60L58/13Maintaining the SoC within a determined range
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/24Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L7/00Electrodynamic brake systems for vehicles in general
    • B60L7/10Dynamic electric regenerative braking
    • B60L7/14Dynamic electric regenerative braking for vehicles propelled by ac motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/06Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of combustion engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/10Controlling the power contribution of each of the prime movers to meet required power demand
    • B60W20/13Controlling the power contribution of each of the prime movers to meet required power demand in order to stay within battery power input or output limits; in order to prevent overcharging or battery depletion
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • H01M10/443Methods for charging or discharging in response to temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/63Control systems
    • H01M10/633Control systems characterised by algorithms, flow charts, software details or the like
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/10Vehicle control parameters
    • B60L2240/12Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/545Temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/547Voltage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/549Current
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2250/00Driver interactions
    • B60L2250/16Driver interactions by display
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/24Energy storage means
    • B60W2510/242Energy storage means for electrical energy
    • B60W2510/244Charge state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/24Energy storage means
    • B60W2510/242Energy storage means for electrical energy
    • B60W2510/246Temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/30Auxiliary equipments
    • B60W2510/305Power absorbed by auxiliaries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/06Combustion engines, Gas turbines
    • B60W2710/0677Engine power
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/24Energy storage means
    • B60W2710/242Energy storage means for electrical energy
    • B60W2710/248Current for loading or unloading
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors

Definitions

  • Embodiments described herein relate generally to a power supply system and a vehicle.
  • the problem to be solved by the present invention is to provide a power supply system and a vehicle capable of exhibiting more performance while ensuring the safety of the secondary battery.
  • the power supply system of the embodiment has a secondary battery and a control unit.
  • the control unit controls the voltage of the secondary battery to fall between the upper limit voltage and the lower limit voltage.
  • the flowchart which shows an example of the flow of the process performed by the hybrid control part 30 of embodiment.
  • the flowchart which shows an example of the flow of the process by the battery control part 20 of embodiment.
  • FIG. 1 is a diagram illustrating a configuration example of a vehicle 1 on which the power supply system 5 of the embodiment is mounted.
  • the vehicle 1 includes, for example, a power supply system 5, a hybrid control unit 30, an accelerator opening sensor 32, a vehicle speed sensor 34, an engine 40, a generator 42, a motor 50, a motor driving unit 52, and a differential gear. 60, drive wheels 62, and a display unit 70.
  • the power supply system 5 includes a lithium ion battery 10 and a battery control unit 20.
  • a temperature sensor 12, a voltage sensor 14, and a current sensor 16 are attached to the lithium ion battery 10. Values detected by these sensors are input to the battery control unit 20.
  • the lithium ion battery 10 is, for example, a lithium ion battery (secondary battery) using manganese for the positive electrode and lithium titanate for the negative electrode side.
  • the lithium ion battery 10 includes a plurality of stacked structures in which a positive electrode and a negative electrode face each other with a separator interposed therebetween, a positive electrode terminal connected to the plurality of positive electrodes, a negative electrode terminal connected to the plurality of negative electrodes, and a gas discharge valve Is provided on the surface of the housing.
  • a processor such as a CPU (Central Processing Unit), a ROM (Read Only Memory) or a RAM (Random Access Memory), a storage unit such as a flash memory, and an input / output interface are connected to the battery control unit 20 via a bus. It has a configuration.
  • the battery control unit 20 communicates with the hybrid control unit 30 via, for example, a communication line on which a vehicle communication protocol is executed.
  • the battery control unit 20 performs the following control, for example, when the CPU executes a program stored in the storage unit.
  • the battery control unit 20 may perform the following control by hardware such as LSI (Large Scale Integration) or ASIC (Application Specific Integrated Circuit). The contents of control by the battery control unit 20 will be described later.
  • the hybrid control unit 30 is a computer device similar to the battery control unit 20.
  • the hybrid control unit 30 is input with the operation amount of the accelerator pedal (accelerator opening) detected by the accelerator opening sensor 32, the vehicle speed detected by the vehicle speed sensor 34, and the like.
  • the hybrid control unit 30 controls the engine 40, the generator 42, the motor 50, and the motor driving unit 52.
  • Engine 40 outputs power by burning hydrocarbon fuel such as gasoline inside.
  • the power output from the engine 40 is output to the drive wheels 62 via a transmission, a clutch, and a differential gear 60 (not shown).
  • the generator 42 generates power using the power output from the engine 40.
  • the electric power generated by the generator 42 is used to charge the lithium ion battery 10.
  • the motor 50 is driven by a motor driving unit 52.
  • the motor drive unit 52 includes, for example, an inverter for generating a three-phase alternating current supplied to the motor 50. Further, the motor 50 can generate power using the power input from the drive wheels 62 when the vehicle 1 decelerates, and can charge the lithium ion battery 10.
  • the vehicle 1 may be one in which the engine 40 and the generator 42 are connected to the drive wheels 62 via a planetary gear mechanism or the like.
  • the engine 40, the generator 42, and the motor 50 may be connected in any manner.
  • the vehicle 1 may be an electric vehicle that does not include the engine 40.
  • the hybrid control unit 30 determines the output of the engine 40 and the output of the motor 50 based on values input from the accelerator opening sensor 32 and the vehicle speed sensor 34, for example.
  • FIG. 2 is a flowchart illustrating an example of a flow of processing executed by the hybrid control unit 30 according to the embodiment. The processing of this flowchart is repeatedly executed at a predetermined cycle, for example.
  • the hybrid control unit 30 calculates the required power to be output to the drive wheels 62 based on the accelerator opening input from the accelerator opening sensor 32, the vehicle speed input from the vehicle speed sensor 34, and other information. (Step S100).
  • the hybrid control unit 30 acquires the voltage V of the lithium ion battery 10 input from the voltage sensor 14 and the charge / discharge current I of the lithium ion battery 10 input from the current sensor 16 from the battery control unit 20. Then, the motor output power is calculated by multiplying the input voltage V and the charging / discharging current I (step S106). Instead of the processes in steps S104 and S106, a process of acquiring motor output power from the battery control unit 20 may be performed.
  • the hybrid control unit 30 calculates the engine required power by subtracting the motor output power calculated in step S104 from the required power calculated in step S100 (step S106), and outputs the engine required power. 40 is controlled (step S108).
  • the hybrid control unit 30 performs the traveling control of the vehicle 1 based on the measured values of the voltage V and the charge / discharge current I of the lithium ion battery 10. This eliminates the need for complicated calculations such as predicting the power that can be output from the lithium ion battery 10 and reduces the processing load. Such processing is realized by control of the battery control unit 20 described below.
  • the battery control unit 20 refers to the temperature T of the lithium ion battery 10 input from the temperature sensor 12, and (1) the temperature T of the lithium ion battery 10 is lower than the predetermined temperature T1, and (2) the predetermined temperature T1. Different control is performed in the above case.
  • the battery control unit 20 does not monitor the charge / discharge current I of the lithium ion battery 10, and the voltage V of the lithium ion battery 10 is the upper limit voltage Vmax.
  • the lower limit voltage Vmin For example, the upper limit voltage Vmax is determined to be 2.7 [V], and the lower limit voltage Vmin is determined to be 1.5 [V].
  • the battery control unit 20 When the voltage V of the lithium ion battery 10 input from the voltage sensor 14 increases and becomes near the upper limit voltage Vmax (for example, 2.5 to 2.6 [V]), the battery control unit 20 Then, a signal (charging suppression signal) instructing to suppress or stop the current I flowing into the lithium ion battery 10 is transmitted.
  • the charge suppression signal When the charge suppression signal is input, the hybrid control unit 30 suppresses or stops power generation by the generator 42 or the motor 50.
  • the battery control unit 20 A signal (discharge suppression signal) instructing to suppress or stop the current I flowing out from the lithium ion battery 10 is transmitted.
  • the discharge suppression signal is input, the hybrid control unit 30 suppresses or stops power consumption by the motor 50.
  • the discharge suppression signal may be transmitted to a control unit that controls the in-vehicle device other than the motor 50.
  • the battery control unit 20 may perform control to turn off the switch on the power supply path from the lithium ion battery 10 when transmitting the discharge suppression signal.
  • the battery control unit 20 causes the charge / discharge current I of the lithium ion battery 10 input from the current sensor 16 to be equal to or lower than the upper limit current Imax.
  • the upper limit current Imax is a current value when the Joule heat per unit time represented by the product of the square of the current and the resistance (I2 ⁇ R) becomes an upper limit value determined in consideration of safety, Various set values are determined in advance by experiments or the like.
  • the battery control unit 20 A signal (charge / discharge suppression signal) instructing to suppress or stop the current I flowing out from the lithium ion battery 10 or the current I flowing into the lithium ion battery 10 is transmitted to the control unit 30.
  • the hybrid control unit 30 suppresses or stops power generation or power consumption by the generator 42 or the motor 50.
  • the charge / discharge suppression signal may be transmitted to a control unit that controls the in-vehicle device other than the motor 50.
  • the battery control unit 20 may perform control to turn off the switch on the power supply path from the lithium ion battery 10.
  • FIG. 3 is a flowchart illustrating an example of a flow of processing performed by the battery control unit 20 according to the embodiment. The processing of this flowchart is repeatedly executed at a predetermined cycle, for example.
  • the battery control unit 20 refers to the temperature T of the lithium ion battery 10 input from the temperature sensor 12, and determines whether or not the temperature T of the lithium ion battery 10 is lower than a predetermined temperature T1 (step S200). .
  • the battery control unit 20 determines whether or not the voltage V of the lithium ion battery 10 input from the voltage sensor 14 has increased to near the upper limit voltage Vmax. Determination is made (step S202). When the voltage V of the lithium ion battery 10 input from the voltage sensor 14 increases and reaches the upper limit voltage Vmax, the battery control unit 20 transmits a charge suppression signal to the hybrid control unit 30 (step S204).
  • step S202 the battery control unit 20 determines whether or not the voltage V of the lithium ion battery 10 input from the voltage sensor 14 has decreased to near the lower limit voltage Vmin (step). S206). When the voltage V of the lithium ion battery 10 decreases and approaches the lower limit voltage Vmin, the battery control unit 20 transmits a discharge suppression signal to the hybrid control unit 30 (step S208).
  • the battery control unit 20 increases the charge / discharge current I of the lithium ion battery 10 input from the current sensor 16 to the vicinity of the upper limit current Imax. It is determined whether or not (step S210).
  • the battery control unit 20 transmits a charging / discharging suppression signal to the hybrid control unit 30 (step S212).
  • the lithium ion battery 10 of the embodiment uses manganese for the positive electrode and lithium titanate for the negative electrode side, the possibility of an internal short circuit due to lithium deposition is low. For this reason, if the temperature T of the lithium ion battery 10 is lower than the predetermined temperature T1, the lithium ion battery 10 is controlled so that the voltage V is between the upper limit voltage Vmax and the lower limit voltage Vmin. It is possible to suppress the occurrence of defects in the battery 10. Further, by continuing the discharge until the voltage V of the lithium ion battery 10 decreases and becomes near the lower limit voltage Vmin, more performance of the lithium ion battery 10 can be exhibited. Therefore, according to the embodiment, more performance can be exhibited while ensuring the safety of the lithium ion battery 10.
  • FIG. 4 is a diagram illustrating the relationship between the charge / discharge current I that can be realized by the power supply system of the embodiment and the temperature T of the lithium ion battery 10.
  • the charge / discharge resistance I is increased due to a decrease in the amount of carrier movement in the electrolytic solution, so the charge / discharge current I is decreased.
  • the charge / discharge current I increases.
  • the charge / discharge current I increases in the region where the temperature T of the lithium ion battery 10 is equal to or higher than the predetermined temperature T1. It is controlled so as to be lower than the upper limit current Imax. Thereby, the safety of the lithium ion battery 10 can be further improved.
  • the battery control unit 20 calculates a charging rate (SOC; State Of Charge) of the lithium ion battery 10 under the above-described restrictions, and sets the charging rate SOC to a desired level (for example, about 50% to 60%). And information based on the charging rate SOC may be displayed on the display unit 70.
  • the charging rate SOC may be information indicating the charging rate SOC itself, or information indicating a change in charging rate per unit time (instantaneous charging amount). It is preferable that the display unit 70 is attached to a place that is easy to see from the driver of the vehicle 1 such as a front part of the instrument panel.
  • the battery control unit 20 measures the open circuit voltage OCV of the lithium ion battery 10, and based on the relationship between the open circuit voltage OCV and the charge rate SOC, the charge rate SOC as an initial value is determined. Is derived.
  • FIG. 5 is a diagram illustrating the relationship between the open circuit voltage OCV and the charging rate SOC in the lithium ion battery 10 of the embodiment. In the lithium ion battery 10 using manganese for the positive electrode and lithium titanate for the negative electrode side, the relationship between the open circuit voltage OCV and the charge rate SOC does not depend on the temperature.
  • the battery control unit 20 can easily derive the charge rate SOC only by measuring the open-circuit voltage OCV measured by the voltage sensor 14 with the lithium ion battery 10 disconnected from the load. After deriving the charging rate SOC as an initial value, the battery control unit 20 can calculate the charging rate SOC by adding or subtracting the integrated value of the charging / discharging current to the charging rate SOC at that time. it can.
  • the power supply system 5 is applied to a hybrid vehicle including the engine 40 and the traveling motor 50.
  • the power supply system 5 is applied to an electric vehicle including no traveling motor. It can also be installed.
  • the power supply system 5 can also be used in a building such as a house provided with power generation equipment and a load.
  • Drawing 6 is a figure showing typically signs that power supply system 5 of an embodiment is used in a building provided with power generation equipment and a load. In this configuration, when the temperature T of the lithium ion battery 10 is lower than the predetermined temperature T1, the battery control unit 20 of the power supply system 5 keeps the voltage V of the lithium ion battery 10 between the upper limit voltage Vmax and the lower limit voltage Vmin.
  • the charge / discharge current I of the lithium ion battery 10 input from the current sensor 16 is controlled to be equal to or lower than the upper limit current Imax. And a charge suppression signal is transmitted to charging equipment, or a discharge suppression signal is transmitted to the control part of load so that the constraint conditions of the said voltage or charging / discharging current may be satisfied. Even in such a usage mode, the power supply system 5 can achieve the same effects as the above-described embodiment.
  • the performance of the lithium ion battery 10 can be exhibited more while ensuring the safety of the lithium ion battery 10.
  • the lithium ion battery 10 in the above embodiment is an example of a “secondary battery”
  • the battery control unit 20 is an example of a “control unit”
  • the motor 50 is an example of an “in-vehicle device”
  • a hybrid control unit. 30 is an example of an “engine control unit”.

Landscapes

  • Engineering & Computer Science (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Combustion & Propulsion (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Automation & Control Theory (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Hybrid Electric Vehicles (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)

Abstract

A power supply system according to an embodiment has a secondary battery and a control unit. When the temperature of the secondary battery is below a prescribed temperature, the control unit performs control such that the voltage of the secondary battery is between an upper limit voltage and lower limit voltage.

Description

電源システム、および車両Power supply system and vehicle
 本発明の実施形態は、電源システム、および車両に関する。 Embodiments described herein relate generally to a power supply system and a vehicle.
 従来、電動機器を搭載した車両、発電設備を備える建物等に備えられる二次電池は、電力量に基づいて制御されていた。このため、二次電池の性能を十分に発揮できない場合があった。 Conventionally, secondary batteries provided in vehicles equipped with electric devices, buildings equipped with power generation facilities, and the like have been controlled based on electric energy. For this reason, the performance of the secondary battery may not be fully exhibited.
特開2003-219510号公報JP 2003-219510 A
 本発明が解決しようとする課題は、二次電池の安全性を確保しつつ、その性能をより多く発揮することができる電源システム、および車両を提供することである。 The problem to be solved by the present invention is to provide a power supply system and a vehicle capable of exhibiting more performance while ensuring the safety of the secondary battery.
 実施形態の電源システムは、二次電池と、制御部とを持つ。制御部は、前記二次電池の温度が所定温度未満である場合、前記二次電池の電圧が上限電圧と下限電圧の間に収まるように制御する。 The power supply system of the embodiment has a secondary battery and a control unit. When the temperature of the secondary battery is lower than a predetermined temperature, the control unit controls the voltage of the secondary battery to fall between the upper limit voltage and the lower limit voltage.
実施形態の電源システム5が搭載された車両1の構成例を示す図。The figure which shows the structural example of the vehicle 1 by which the power supply system 5 of embodiment is mounted. 実施形態のハイブリッド制御部30により実行される処理の流れの一例を示すフローチャート。The flowchart which shows an example of the flow of the process performed by the hybrid control part 30 of embodiment. 実施形態のバッテリ制御部20による処理の流れの一例を示すフローチャート。The flowchart which shows an example of the flow of the process by the battery control part 20 of embodiment. 実施形態の電源システムによって実現可能な充放電電流Iと、リチウムイオン電池10の温度Tとの関係を例示した図。The figure which illustrated the relationship between the charging / discharging electric current I realizable with the power supply system of embodiment, and the temperature T of the lithium ion battery. 実施形態のリチウムイオン電池10における、開放電圧OCVと充電率SOCとの関係性を示す図。The figure which shows the relationship between the open circuit voltage OCV and the charging rate SOC in the lithium ion battery 10 of embodiment. 実施形態の電源システム5が、発電設備と負荷を備える建物において使用される様子を模式的に示す図。The figure which shows typically a mode that the power supply system 5 of embodiment is used in a building provided with power generation equipment and load.
 以下、実施形態の電源システム、および車両を、図面を参照して説明する。図1は、実施形態の電源システム5が搭載された車両1の構成例を示す図である。車両1は、例えば、電源システム5と、ハイブリッド制御部30と、アクセル開度センサ32と、車速センサ34と、エンジン40と、発電機42と、モータ50と、モータ駆動部52と、デファレンシャルギヤ60と、駆動輪62と、表示部70とを備える。また、電源システム5は、リチウムイオン電池10と、バッテリ制御部20とを備える。リチウムイオン電池10には、温度センサ12、電圧センサ14、および電流センサ16が取り付けられている。これらのセンサによる検出値は、バッテリ制御部20に入力される。 Hereinafter, a power supply system and a vehicle according to an embodiment will be described with reference to the drawings. FIG. 1 is a diagram illustrating a configuration example of a vehicle 1 on which the power supply system 5 of the embodiment is mounted. The vehicle 1 includes, for example, a power supply system 5, a hybrid control unit 30, an accelerator opening sensor 32, a vehicle speed sensor 34, an engine 40, a generator 42, a motor 50, a motor driving unit 52, and a differential gear. 60, drive wheels 62, and a display unit 70. The power supply system 5 includes a lithium ion battery 10 and a battery control unit 20. A temperature sensor 12, a voltage sensor 14, and a current sensor 16 are attached to the lithium ion battery 10. Values detected by these sensors are input to the battery control unit 20.
 リチウムイオン電池10は、例えば、正極にマンガン、負極側にチタン酸リチウムをそれぞれ用いたリチウムイオン電池(二次電池)である。リチウムイオン電池10を、このような態様とすることにより、充電の受け入れ速度を向上させると共に、リチウムの析出により内部短絡が生じる可能性を低減することができる。リチウムイオン電池10は、正極と負極とがセパレータを挟んで対向する構造を複数積層しており、複数の正極に接続された正極端子と、複数の負極に接続された負極端子と、ガス排出弁が筐体表面に設けられている。 The lithium ion battery 10 is, for example, a lithium ion battery (secondary battery) using manganese for the positive electrode and lithium titanate for the negative electrode side. By setting the lithium ion battery 10 in such a manner, it is possible to improve the charge acceptance speed and reduce the possibility of an internal short circuit due to lithium deposition. The lithium ion battery 10 includes a plurality of stacked structures in which a positive electrode and a negative electrode face each other with a separator interposed therebetween, a positive electrode terminal connected to the plurality of positive electrodes, a negative electrode terminal connected to the plurality of negative electrodes, and a gas discharge valve Is provided on the surface of the housing.
 バッテリ制御部20は、例えば、CPU(Central Processing Unit)等のプロセッサ、ROM(Read Only Memory)やRAM(Random Access Memory)、フラッシュメモリ等の記憶部、入出力インターフェース等がバスを介して接続された構成を有している。バッテリ制御部20は、例えば車両用の通信プロトコルが実行される通信線を介して、ハイブリッド制御部30との間で通信を行う。バッテリ制御部20は、例えば、記憶部に記憶されたプログラムをCPUが実行することにより、以下の制御を行う。なお、これに代えてバッテリ制御部20は、LSI(Large Scale Integration)やASIC(Application Specific Integrated Circuit)等のハードウェアによって以下の制御を行うものであってよい。バッテリ制御部20による制御の内容については後述する。 For example, a processor such as a CPU (Central Processing Unit), a ROM (Read Only Memory) or a RAM (Random Access Memory), a storage unit such as a flash memory, and an input / output interface are connected to the battery control unit 20 via a bus. It has a configuration. The battery control unit 20 communicates with the hybrid control unit 30 via, for example, a communication line on which a vehicle communication protocol is executed. The battery control unit 20 performs the following control, for example, when the CPU executes a program stored in the storage unit. Instead of this, the battery control unit 20 may perform the following control by hardware such as LSI (Large Scale Integration) or ASIC (Application Specific Integrated Circuit). The contents of control by the battery control unit 20 will be described later.
 ハイブリッド制御部30は、バッテリ制御部20と同様、コンピュータ装置である。ハイブリッド制御部30には、アクセル開度センサ32により検出されたアクセルペダルの操作量(アクセル開度)や車速センサ34により検出された車速等が入力される。ハイブリッド制御部30は、エンジン40、発電機42、モータ50、およびモータ駆動部52を制御する。 The hybrid control unit 30 is a computer device similar to the battery control unit 20. The hybrid control unit 30 is input with the operation amount of the accelerator pedal (accelerator opening) detected by the accelerator opening sensor 32, the vehicle speed detected by the vehicle speed sensor 34, and the like. The hybrid control unit 30 controls the engine 40, the generator 42, the motor 50, and the motor driving unit 52.
 エンジン40は、ガソリン等の炭化水素系の燃料を内部で燃焼させることによって動力を出力する。エンジン40の出力する動力は、図示しない変速機やクラッチ、デファレンシャルギヤ60を介して駆動輪62に出力される。発電機42は、エンジン40の出力する動力を用いて発電する。発電機42の発電した電力は、リチウムイオン電池10を充電するのに用いられる。 Engine 40 outputs power by burning hydrocarbon fuel such as gasoline inside. The power output from the engine 40 is output to the drive wheels 62 via a transmission, a clutch, and a differential gear 60 (not shown). The generator 42 generates power using the power output from the engine 40. The electric power generated by the generator 42 is used to charge the lithium ion battery 10.
 モータ50は、モータ駆動部52によって駆動される。モータ駆動部52は、例えば、モータ50に供給する三相交流を生成するためのインバータ等を含む。また、モータ50は、車両1が減速する際に駆動輪62から入力される動力を用いて発電し、リチウムイオン電池10を充電することができる。 The motor 50 is driven by a motor driving unit 52. The motor drive unit 52 includes, for example, an inverter for generating a three-phase alternating current supplied to the motor 50. Further, the motor 50 can generate power using the power input from the drive wheels 62 when the vehicle 1 decelerates, and can charge the lithium ion battery 10.
 なお、上記説明した発電機42とモータ50の役割は、あくまで一例であり、車両1は、エンジン40および発電機42が遊星歯車機構等を介して駆動輪62に連結されたものであってもよく、如何なる態様でエンジン40、発電機42、モータ50が接続されたものであってもよい。また、車両1は、エンジン40を備えない電気自動車であってもよい。 The roles of the generator 42 and the motor 50 described above are merely examples, and the vehicle 1 may be one in which the engine 40 and the generator 42 are connected to the drive wheels 62 via a planetary gear mechanism or the like. The engine 40, the generator 42, and the motor 50 may be connected in any manner. The vehicle 1 may be an electric vehicle that does not include the engine 40.
 ハイブリッド制御部30は、例えば、アクセル開度センサ32や車速センサ34から入力される値に基づいて、エンジン40の出力、およびモータ50の出力を決定する。図2は、実施形態のハイブリッド制御部30により実行される処理の流れの一例を示すフローチャートである。本フローチャートの処理は、例えば、所定周期で繰り返し実行される。 The hybrid control unit 30 determines the output of the engine 40 and the output of the motor 50 based on values input from the accelerator opening sensor 32 and the vehicle speed sensor 34, for example. FIG. 2 is a flowchart illustrating an example of a flow of processing executed by the hybrid control unit 30 according to the embodiment. The processing of this flowchart is repeatedly executed at a predetermined cycle, for example.
 まず、ハイブリッド制御部30は、アクセル開度センサ32から入力されるアクセル開度と、車速センサ34から入力される車速、その他の情報に基づいて、駆動輪62に出力すべき要求パワーを算出する(ステップS100)。 First, the hybrid control unit 30 calculates the required power to be output to the drive wheels 62 based on the accelerator opening input from the accelerator opening sensor 32, the vehicle speed input from the vehicle speed sensor 34, and other information. (Step S100).
 次に、ハイブリッド制御部30は、バッテリ制御部20から、電圧センサ14から入力されるリチウムイオン電池10の電圧Vと、電流センサ16から入力されるリチウムイオン電池10の充放電電流Iとを取得し(ステップS104)、入力された電圧Vと充放電電流Iを乗算してモータ出力パワーを算出する(ステップS106)。なお、ステップS104、S106の処理に代えて、バッテリ制御部20からモータ出力パワーを取得する処理を行ってもよい。 Next, the hybrid control unit 30 acquires the voltage V of the lithium ion battery 10 input from the voltage sensor 14 and the charge / discharge current I of the lithium ion battery 10 input from the current sensor 16 from the battery control unit 20. Then, the motor output power is calculated by multiplying the input voltage V and the charging / discharging current I (step S106). Instead of the processes in steps S104 and S106, a process of acquiring motor output power from the battery control unit 20 may be performed.
 次に、ハイブリッド制御部30は、ステップS100で算出した要求パワーから、ステップS104で算出したモータ出力パワーを差し引いて、エンジン要求パワーを算出し(ステップS106)、エンジン要求パワーを出力するようにエンジン40を制御する(ステップS108)。 Next, the hybrid control unit 30 calculates the engine required power by subtracting the motor output power calculated in step S104 from the required power calculated in step S100 (step S106), and outputs the engine required power. 40 is controlled (step S108).
 このように、ハイブリッド制御部30は、リチウムイオン電池10の電圧Vおよび充放電電流Iの実測値に基づいて車両1の走行制御を行う。これによって、リチウムイオン電池10の出力可能なパワーを予測する等の複雑な演算が不要となり、処理負荷を軽減することができる。このような処理は、以下に説明するバッテリ制御部20の制御によって実現される。 As described above, the hybrid control unit 30 performs the traveling control of the vehicle 1 based on the measured values of the voltage V and the charge / discharge current I of the lithium ion battery 10. This eliminates the need for complicated calculations such as predicting the power that can be output from the lithium ion battery 10 and reduces the processing load. Such processing is realized by control of the battery control unit 20 described below.
 以下、バッテリ制御部20による制御の内容について説明する。バッテリ制御部20は、温度センサ12から入力されるリチウムイオン電池10の温度Tを参照し、(1)リチウムイオン電池10の温度Tが所定温度T1未満である場合と、(2)所定温度T1以上である場合とで異なる制御を行う。 Hereinafter, the contents of control by the battery control unit 20 will be described. The battery control unit 20 refers to the temperature T of the lithium ion battery 10 input from the temperature sensor 12, and (1) the temperature T of the lithium ion battery 10 is lower than the predetermined temperature T1, and (2) the predetermined temperature T1. Different control is performed in the above case.
 (1)リチウムイオン電池10の温度Tが所定温度T1未満である場合、バッテリ制御部20は、リチウムイオン電池10の充放電電流Iを監視せず、リチウムイオン電池10の電圧Vが上限電圧Vmaxと下限電圧Vminの間に収まるように制御する。例えば、上限電圧Vmaxは2.7[V]、下限電圧Vminは1.5[V]と定められる。 (1) When the temperature T of the lithium ion battery 10 is lower than the predetermined temperature T1, the battery control unit 20 does not monitor the charge / discharge current I of the lithium ion battery 10, and the voltage V of the lithium ion battery 10 is the upper limit voltage Vmax. And the lower limit voltage Vmin. For example, the upper limit voltage Vmax is determined to be 2.7 [V], and the lower limit voltage Vmin is determined to be 1.5 [V].
 バッテリ制御部20は、電圧センサ14から入力されるリチウムイオン電池10の電圧Vが上昇して上限電圧Vmax付近(例えば2.5~2.6[V])となると、ハイブリッド制御部30に対して、リチウムイオン電池10に流入する電流Iを抑制または停止するように指示する信号(充電抑制信号)を送信する。ハイブリッド制御部30は、充電抑制信号が入力されると、発電機42またはモータ50による発電を抑制または停止する。 When the voltage V of the lithium ion battery 10 input from the voltage sensor 14 increases and becomes near the upper limit voltage Vmax (for example, 2.5 to 2.6 [V]), the battery control unit 20 Then, a signal (charging suppression signal) instructing to suppress or stop the current I flowing into the lithium ion battery 10 is transmitted. When the charge suppression signal is input, the hybrid control unit 30 suppresses or stops power generation by the generator 42 or the motor 50.
 また、バッテリ制御部20は、電圧センサ14から入力されるリチウムイオン電池10の電圧Vが低下して下限電圧Vmin付近(例えば1.6[V])となると、ハイブリッド制御部30に対して、リチウムイオン電池10から流出する電流Iを抑制または停止するように指示する信号(放電抑制信号)を送信する。ハイブリッド制御部30は、放電抑制信号が入力されると、モータ50による電力消費を抑制または停止する。また、リチウムイオン電池10の電力が、モータ50以外の車載機器によって消費される場合、放電抑制信号は、モータ50以外の車載機器を制御する制御部に対して送信されてもよい。また、バッテリ制御部20は、放電抑制信号を送信する際に、リチウムイオン電池10からの電力供給経路上のスイッチを遮断状態にする制御を行ってもよい。 Further, when the voltage V of the lithium ion battery 10 input from the voltage sensor 14 decreases and becomes near the lower limit voltage Vmin (for example, 1.6 [V]), the battery control unit 20 A signal (discharge suppression signal) instructing to suppress or stop the current I flowing out from the lithium ion battery 10 is transmitted. When the discharge suppression signal is input, the hybrid control unit 30 suppresses or stops power consumption by the motor 50. Further, when the power of the lithium ion battery 10 is consumed by an in-vehicle device other than the motor 50, the discharge suppression signal may be transmitted to a control unit that controls the in-vehicle device other than the motor 50. Further, the battery control unit 20 may perform control to turn off the switch on the power supply path from the lithium ion battery 10 when transmitting the discharge suppression signal.
 (2)リチウムイオン電池10の温度Tが所定温度T1以上である場合、バッテリ制御部20は、電流センサ16から入力されるリチウムイオン電池10の充放電電流Iが、上限電流Imax以下となるように制御する。上限電流Imaxは、電流の二乗と抵抗の積(I2・R)で表される単位時間辺りのジュール熱が、安全面を考慮して定められた上限値となる場合の電流値であり、好適な設定値が実験等により予め定められている。 (2) When the temperature T of the lithium ion battery 10 is equal to or higher than the predetermined temperature T1, the battery control unit 20 causes the charge / discharge current I of the lithium ion battery 10 input from the current sensor 16 to be equal to or lower than the upper limit current Imax. To control. The upper limit current Imax is a current value when the Joule heat per unit time represented by the product of the square of the current and the resistance (I2 · R) becomes an upper limit value determined in consideration of safety, Various set values are determined in advance by experiments or the like.
 バッテリ制御部20は、電流センサ16から入力されるリチウムイオン電池10の充放電電流Iが上昇して上限電流Imax付近(Imaxの近傍値であって、Imaxよりも若干小さい値)となると、ハイブリッド制御部30に対して、リチウムイオン電池10から流出する電流Iまたはリチウムイオン電池10に流入する電流Iを抑制または停止するように指示する信号(充放電抑制信号)を送信する。ハイブリッド制御部30は、充放電抑制信号が入力されると、発電機42またはモータ50による発電または電力消費を、抑制または停止する。また、リチウムイオン電池10の電力が、モータ50以外の車載機器によって消費される場合、充放電抑制信号は、モータ50以外の車載機器を制御する制御部に対して送信されてもよい。また、バッテリ制御部20は、充放電抑制信号を送信する際に、リチウムイオン電池10からの電力供給経路上のスイッチを遮断状態にする制御を行ってもよい。 When the charge / discharge current I of the lithium ion battery 10 input from the current sensor 16 rises and becomes near the upper limit current Imax (a value near Imax and slightly smaller than Imax), the battery control unit 20 A signal (charge / discharge suppression signal) instructing to suppress or stop the current I flowing out from the lithium ion battery 10 or the current I flowing into the lithium ion battery 10 is transmitted to the control unit 30. When the charge / discharge suppression signal is input, the hybrid control unit 30 suppresses or stops power generation or power consumption by the generator 42 or the motor 50. Further, when the power of the lithium ion battery 10 is consumed by an in-vehicle device other than the motor 50, the charge / discharge suppression signal may be transmitted to a control unit that controls the in-vehicle device other than the motor 50. Moreover, when transmitting the charge / discharge suppression signal, the battery control unit 20 may perform control to turn off the switch on the power supply path from the lithium ion battery 10.
 図3は、実施形態のバッテリ制御部20による処理の流れの一例を示すフローチャートである。本フローチャートの処理は、例えば、所定周期で繰り返し実行される。 FIG. 3 is a flowchart illustrating an example of a flow of processing performed by the battery control unit 20 according to the embodiment. The processing of this flowchart is repeatedly executed at a predetermined cycle, for example.
 まず、バッテリ制御部20は、温度センサ12から入力されるリチウムイオン電池10の温度Tを参照し、リチウムイオン電池10の温度Tが所定温度T1未満であるか否かを判定する(ステップS200)。 First, the battery control unit 20 refers to the temperature T of the lithium ion battery 10 input from the temperature sensor 12, and determines whether or not the temperature T of the lithium ion battery 10 is lower than a predetermined temperature T1 (step S200). .
 リチウムイオン電池10の温度Tが所定温度T1未満である場合、バッテリ制御部20は、電圧センサ14から入力されるリチウムイオン電池10の電圧Vが上昇して上限電圧Vmax付近となったか否かを判定する(ステップS202)。電圧センサ14から入力されるリチウムイオン電池10の電圧Vが上昇して上限電圧Vmax付近となると、バッテリ制御部20は、充電抑制信号をハイブリッド制御部30に送信する(ステップS204)。 When the temperature T of the lithium ion battery 10 is lower than the predetermined temperature T1, the battery control unit 20 determines whether or not the voltage V of the lithium ion battery 10 input from the voltage sensor 14 has increased to near the upper limit voltage Vmax. Determination is made (step S202). When the voltage V of the lithium ion battery 10 input from the voltage sensor 14 increases and reaches the upper limit voltage Vmax, the battery control unit 20 transmits a charge suppression signal to the hybrid control unit 30 (step S204).
 ステップS202で否定的な判定を得た場合、バッテリ制御部20は、電圧センサ14から入力されるリチウムイオン電池10の電圧Vが低下して下限電圧Vmin付近となったか否かを判定する(ステップS206)。リチウムイオン電池10の電圧Vが低下して下限電圧Vmin付近となると、バッテリ制御部20は、放電抑制信号をハイブリッド制御部30に送信する(ステップS208)。 When a negative determination is obtained in step S202, the battery control unit 20 determines whether or not the voltage V of the lithium ion battery 10 input from the voltage sensor 14 has decreased to near the lower limit voltage Vmin (step). S206). When the voltage V of the lithium ion battery 10 decreases and approaches the lower limit voltage Vmin, the battery control unit 20 transmits a discharge suppression signal to the hybrid control unit 30 (step S208).
 一方、リチウムイオン電池10の温度Tが所定温度T1以上である場合、バッテリ制御部20は、電流センサ16から入力されるリチウムイオン電池10の充放電電流Iが上昇して上限電流Imax付近となったか否かを判定する(ステップS210)。電流センサ16から入力されるリチウムイオン電池10の充放電電流Iが上昇して上限電流Imax付近となると、バッテリ制御部20は、充放電抑制信号をハイブリッド制御部30に送信する(ステップS212)。 On the other hand, when the temperature T of the lithium ion battery 10 is equal to or higher than the predetermined temperature T1, the battery control unit 20 increases the charge / discharge current I of the lithium ion battery 10 input from the current sensor 16 to the vicinity of the upper limit current Imax. It is determined whether or not (step S210). When the charging / discharging current I of the lithium ion battery 10 input from the current sensor 16 increases and reaches the upper limit current Imax, the battery control unit 20 transmits a charging / discharging suppression signal to the hybrid control unit 30 (step S212).
 ここで、従来のリチウムイオン電池では、電池の特性(劣化程度)に応じた制御が必要であった。特に、車両用に用いられるリチウムイオン電池の場合、寒冷地で使用されるときには氷点下の温度下で使用され、また摂氏40度以上の高温で使用される場合もある。このため、従来のリチウムイオン電池に対しては、温度や電池の特性、充電率等に応じた予測演算等が必要であり、そのような演算を行うことでリチウムイオン電池の性能を十分に発揮することができない場合があった。 Here, in the conventional lithium ion battery, it was necessary to control according to the characteristics (deterioration degree) of the battery. In particular, in the case of a lithium ion battery used for a vehicle, when used in a cold region, it is used at a temperature below freezing point, and may be used at a high temperature of 40 degrees Celsius or higher. For this reason, for conventional lithium ion batteries, it is necessary to perform prediction calculations according to temperature, battery characteristics, charging rate, etc., and performing such calculations will fully demonstrate the performance of lithium ion batteries. There was a case that could not be done.
 これに対し、実施形態のリチウムイオン電池10は、正極にマンガン、負極側にチタン酸リチウムをそれぞれ用いているため、リチウムの析出により内部短絡が生じる可能性が低い。このため、リチウムイオン電池10の温度Tが所定温度T1未満である場合には、リチウムイオン電池10の電圧Vが上限電圧Vmaxと下限電圧Vminの間に収まるように制御していれば、リチウムイオン電池10に不具合が生じるのを抑制することができる。また、リチウムイオン電池10の電圧Vが低下して下限電圧Vmin付近となるまで放電を継続することにより、リチウムイオン電池10の性能をより多く発揮することができる。従って、実施形態によれば、リチウムイオン電池10の安全性を確保しつつ、その性能をより多く発揮することができる。 On the other hand, since the lithium ion battery 10 of the embodiment uses manganese for the positive electrode and lithium titanate for the negative electrode side, the possibility of an internal short circuit due to lithium deposition is low. For this reason, if the temperature T of the lithium ion battery 10 is lower than the predetermined temperature T1, the lithium ion battery 10 is controlled so that the voltage V is between the upper limit voltage Vmax and the lower limit voltage Vmin. It is possible to suppress the occurrence of defects in the battery 10. Further, by continuing the discharge until the voltage V of the lithium ion battery 10 decreases and becomes near the lower limit voltage Vmin, more performance of the lithium ion battery 10 can be exhibited. Therefore, according to the embodiment, more performance can be exhibited while ensuring the safety of the lithium ion battery 10.
 図4は、実施形態の電源システムによって実現可能な充放電電流Iと、リチウムイオン電池10の温度Tとの関係を例示した図である。図示するように、リチウムイオン電池10の温度Tが低下すると、電解液中のキャリアの移動量が小さくなることで充放電抵抗が上昇するため、充放電電流Iは小さくなる。一方、リチウムイオン電池10の温度Tが上昇すると充放電電流Iは大きくなるが、過剰な発熱を抑制するため、リチウムイオン電池10の温度Tが所定温度T1以上の領域では、充放電電流Iが上限電流Imax以下となるように制御される。これによって、リチウムイオン電池10の安全性を更に高めることができる。 FIG. 4 is a diagram illustrating the relationship between the charge / discharge current I that can be realized by the power supply system of the embodiment and the temperature T of the lithium ion battery 10. As shown in the figure, when the temperature T of the lithium ion battery 10 is decreased, the charge / discharge resistance I is increased due to a decrease in the amount of carrier movement in the electrolytic solution, so the charge / discharge current I is decreased. On the other hand, when the temperature T of the lithium ion battery 10 increases, the charge / discharge current I increases. However, in order to suppress excessive heat generation, the charge / discharge current I increases in the region where the temperature T of the lithium ion battery 10 is equal to or higher than the predetermined temperature T1. It is controlled so as to be lower than the upper limit current Imax. Thereby, the safety of the lithium ion battery 10 can be further improved.
 また、バッテリ制御部20は、上記説明した制約の下で、リチウムイオン電池10の充電率(SOC;State Of Charge)を算出し、充電率SOCを所望のレベル(例えば50%~60%程度)に維持すると共に、充電率SOCに基づく情報を表示部70に表示させてよい。充電率SOCを、0%~100%の中間程度のレベルに維持することで、モータ50に供給する電力を確保すると共に、モータ50から入力される回生電力の受け入れ性を高めることができる。また、充電率SOCに基づく情報とは、充電率SOCそのものを示す情報であってもよいし、単位時間辺りの充電率の変化(瞬間充電量)を示す情報であってもよい。表示部70は、インストルメントパネル正面部等、車両1の運転者から見やすい場所に取り付けられると好適である。 Further, the battery control unit 20 calculates a charging rate (SOC; State Of Charge) of the lithium ion battery 10 under the above-described restrictions, and sets the charging rate SOC to a desired level (for example, about 50% to 60%). And information based on the charging rate SOC may be displayed on the display unit 70. By maintaining the charging rate SOC at an intermediate level of 0% to 100%, it is possible to secure the power supplied to the motor 50 and improve the acceptability of the regenerative power input from the motor 50. Further, the information based on the charging rate SOC may be information indicating the charging rate SOC itself, or information indicating a change in charging rate per unit time (instantaneous charging amount). It is preferable that the display unit 70 is attached to a place that is easy to see from the driver of the vehicle 1 such as a front part of the instrument panel.
 バッテリ制御部20は、例えば、車両1の始動時等において、リチウムイオン電池10の開放電圧OCVを測定し、開放電圧OCVと充電率SOCとの関係性に基づいて、初期値としての充電率SOCを導出する。図5は、実施形態のリチウムイオン電池10における、開放電圧OCVと充電率SOCとの関係性を示す図である。正極にマンガン、負極側にチタン酸リチウムをそれぞれ用いたリチウムイオン電池10では、開放電圧OCVと充電率SOCとの関係性は、温度に依存しない。従って、バッテリ制御部20は、リチウムイオン電池10を負荷から切り離した状態で電圧センサ14により測定される開放電圧OCVを測定するだけで、容易に充電率SOCを導出することができる。初期値としての充電率SOCを導出した後、バッテリ制御部20は、充放電電流の積算値を、その時点の充電率SOCに加算または減算していくことで、充電率SOCを算出することができる。 For example, when the vehicle 1 is started, the battery control unit 20 measures the open circuit voltage OCV of the lithium ion battery 10, and based on the relationship between the open circuit voltage OCV and the charge rate SOC, the charge rate SOC as an initial value is determined. Is derived. FIG. 5 is a diagram illustrating the relationship between the open circuit voltage OCV and the charging rate SOC in the lithium ion battery 10 of the embodiment. In the lithium ion battery 10 using manganese for the positive electrode and lithium titanate for the negative electrode side, the relationship between the open circuit voltage OCV and the charge rate SOC does not depend on the temperature. Therefore, the battery control unit 20 can easily derive the charge rate SOC only by measuring the open-circuit voltage OCV measured by the voltage sensor 14 with the lithium ion battery 10 disconnected from the load. After deriving the charging rate SOC as an initial value, the battery control unit 20 can calculate the charging rate SOC by adding or subtracting the integrated value of the charging / discharging current to the charging rate SOC at that time. it can.
 なお、上記実施形態では、電源システム5がエンジン40と走行用のモータ50を備えるハイブリッド車両に適用されるものとしたが、電源システム5は、エンジンを備えず走行用のモータを備える電気自動車に搭載されることもできる。また、電源システム5は、発電設備と負荷を備える住宅等の建物においても使用可能である。図6は、実施形態の電源システム5が、発電設備と負荷を備える建物において使用される様子を模式的に示す図である。この構成において電源システム5のバッテリ制御部20は、リチウムイオン電池10の温度Tが所定温度T1未満である場合、リチウムイオン電池10の電圧Vが上限電圧Vmaxと下限電圧Vminの間に収まるように制御し、リチウムイオン電池10の温度Tが所定温度T1以上である場合、電流センサ16から入力されるリチウムイオン電池10の充放電電流Iが、上限電流Imax以下となるように制御する。そして、上記電圧または充放電電流の制約条件を満たすように、充電抑制信号を充電設備に送信したり、放電抑制信号を負荷の制御部に送信したりする。このような使用態様であっても、電源システム5は、上記実施形態と同様の効果を奏することができる。 In the above embodiment, the power supply system 5 is applied to a hybrid vehicle including the engine 40 and the traveling motor 50. However, the power supply system 5 is applied to an electric vehicle including no traveling motor. It can also be installed. The power supply system 5 can also be used in a building such as a house provided with power generation equipment and a load. Drawing 6 is a figure showing typically signs that power supply system 5 of an embodiment is used in a building provided with power generation equipment and a load. In this configuration, when the temperature T of the lithium ion battery 10 is lower than the predetermined temperature T1, the battery control unit 20 of the power supply system 5 keeps the voltage V of the lithium ion battery 10 between the upper limit voltage Vmax and the lower limit voltage Vmin. When the temperature T of the lithium ion battery 10 is equal to or higher than the predetermined temperature T1, the charge / discharge current I of the lithium ion battery 10 input from the current sensor 16 is controlled to be equal to or lower than the upper limit current Imax. And a charge suppression signal is transmitted to charging equipment, or a discharge suppression signal is transmitted to the control part of load so that the constraint conditions of the said voltage or charging / discharging current may be satisfied. Even in such a usage mode, the power supply system 5 can achieve the same effects as the above-described embodiment.
 以上説明した少なくともひとつの実施形態によれば、リチウムイオン電池10の温度Tが所定温度T1未満である場合、リチウムイオン電池10の電圧が上限電圧Vmaxと下限電圧Vminの間に収まるように制御するバッテリ制御部20を持つことにより、リチウムイオン電池10の安全性を確保しつつ、その性能をより多く発揮することができる。 According to at least one embodiment described above, when the temperature T of the lithium ion battery 10 is lower than the predetermined temperature T1, control is performed so that the voltage of the lithium ion battery 10 falls between the upper limit voltage Vmax and the lower limit voltage Vmin. By having the battery control unit 20, the performance of the lithium ion battery 10 can be exhibited more while ensuring the safety of the lithium ion battery 10.
 なお、上記実施形態におけるリチウムイオン電池10が「二次電池」の一例であり、バッテリ制御部20が「制御部」の一例であり、モータ50が「車載機器」の一例であり、ハイブリッド制御部30が「エンジン制御部」の一例である。 The lithium ion battery 10 in the above embodiment is an example of a “secondary battery”, the battery control unit 20 is an example of a “control unit”, the motor 50 is an example of an “in-vehicle device”, and a hybrid control unit. 30 is an example of an “engine control unit”.
 本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれると同様に、特許請求の範囲に記載された発明とその均等の範囲に含まれるものである。 Although several embodiments of the present invention have been described, these embodiments are presented as examples and are not intended to limit the scope of the invention. These embodiments can be implemented in various other forms, and various omissions, replacements, and changes can be made without departing from the spirit of the invention. These embodiments and their modifications are included in the scope and gist of the invention, and are also included in the invention described in the claims and the equivalents thereof.

Claims (7)

  1.  二次電池と、
     前記二次電池の温度が所定温度未満である場合、前記二次電池の電圧が上限電圧と下限電圧の間に収まるように制御する制御部と、
     を備える電源システム。
    A secondary battery,
    When the temperature of the secondary battery is lower than a predetermined temperature, a control unit that controls the voltage of the secondary battery to fall between the upper limit voltage and the lower limit voltage;
    Power supply system comprising.
  2.  前記制御部は、前記二次電池の温度が所定温度以上である場合、前記二次電池の充放電電流が上限電流以下となるように制御する、
     請求項1記載の電源システム。
    The controller controls the charge / discharge current of the secondary battery to be equal to or lower than an upper limit current when the temperature of the secondary battery is equal to or higher than a predetermined temperature.
    The power supply system according to claim 1.
  3.  前記制御部は、前記二次電池の温度が所定温度未満である場合、前記二次電池の充放電電流を監視せず、前記二次電池の電圧が上限電圧と下限電圧の間となるように制御する、
     請求項1または2記載の電源システム。
    When the temperature of the secondary battery is lower than a predetermined temperature, the controller does not monitor the charge / discharge current of the secondary battery, and the voltage of the secondary battery is between the upper limit voltage and the lower limit voltage. Control,
    The power supply system according to claim 1 or 2.
  4.  前記制御部は、前記二次電池の充電量を算出し、前記算出した前記二次電池の充電量に基づく情報を表示部に表示させる、
     請求項1記載の電源システム。
    The control unit calculates a charge amount of the secondary battery, and causes the display unit to display information based on the calculated charge amount of the secondary battery.
    The power supply system according to claim 1.
  5.  前記二次電池は、正極にマンガン、負極側にチタン酸リチウムをそれぞれ用いたリチウムイオン電池である、
     請求項1記載の電源システム。
    The secondary battery is a lithium ion battery using manganese for the positive electrode and lithium titanate for the negative electrode side.
    The power supply system according to claim 1.
  6.  請求項1記載の電源システムを搭載し、
     前記電源システムから車載機器に電力供給する車両。
    The power supply system according to claim 1 is mounted,
    A vehicle that supplies power to the in-vehicle device from the power supply system.
  7.  エンジンと、
     アクセルペダルの操作量と、前記電源システムの二次電池の電圧および充放電電流の実測値に基づいて算出されるパワー値と、に基づいて前記エンジンの出力を決定するエンジン制御部と、
     を更に備える請求項6記載の車両。
    Engine,
    An engine control unit that determines an output of the engine based on an operation amount of an accelerator pedal and a power value calculated based on a measured value of a voltage and a charge / discharge current of a secondary battery of the power supply system;
    The vehicle according to claim 6, further comprising:
PCT/JP2015/060620 2014-04-04 2015-04-03 Power supply system and vehicle WO2015152405A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-078036 2014-04-04
JP2014078036A JP2017103833A (en) 2014-04-04 2014-04-04 Power supply system and vehicle

Publications (1)

Publication Number Publication Date
WO2015152405A1 true WO2015152405A1 (en) 2015-10-08

Family

ID=54240712

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/060620 WO2015152405A1 (en) 2014-04-04 2015-04-03 Power supply system and vehicle

Country Status (2)

Country Link
JP (1) JP2017103833A (en)
WO (1) WO2015152405A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108162968A (en) * 2016-12-05 2018-06-15 郑州宇通客车股份有限公司 Power output control method and device, power back off control method and device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7268642B2 (en) * 2020-05-29 2023-05-08 トヨタ自動車株式会社 Fuel cell system, method for determining target operating point, computer program

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005245069A (en) * 2004-02-24 2005-09-08 Nissan Motor Co Ltd Electric vehicle control device
JP2008098149A (en) * 2006-09-15 2008-04-24 Toshiba Corp Power source system, and electric motor vehicle
JP2011178384A (en) * 2010-02-03 2011-09-15 Denso Corp On-vehicle power source device
JP2011230670A (en) * 2010-04-28 2011-11-17 Honda Motor Co Ltd Electric vehicle
JP2011255824A (en) * 2010-06-10 2011-12-22 Mitsubishi Motors Corp Device for control of hybrid vehicle
WO2013002149A1 (en) * 2011-06-28 2013-01-03 住友重機械工業株式会社 Shovel, and method for controlling shovel
JP2014065453A (en) * 2012-09-27 2014-04-17 Toyota Industries Corp Hybrid-type cargo handling vehicle

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005245069A (en) * 2004-02-24 2005-09-08 Nissan Motor Co Ltd Electric vehicle control device
JP2008098149A (en) * 2006-09-15 2008-04-24 Toshiba Corp Power source system, and electric motor vehicle
JP2011178384A (en) * 2010-02-03 2011-09-15 Denso Corp On-vehicle power source device
JP2011230670A (en) * 2010-04-28 2011-11-17 Honda Motor Co Ltd Electric vehicle
JP2011255824A (en) * 2010-06-10 2011-12-22 Mitsubishi Motors Corp Device for control of hybrid vehicle
WO2013002149A1 (en) * 2011-06-28 2013-01-03 住友重機械工業株式会社 Shovel, and method for controlling shovel
JP2014065453A (en) * 2012-09-27 2014-04-17 Toyota Industries Corp Hybrid-type cargo handling vehicle

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108162968A (en) * 2016-12-05 2018-06-15 郑州宇通客车股份有限公司 Power output control method and device, power back off control method and device

Also Published As

Publication number Publication date
JP2017103833A (en) 2017-06-08

Similar Documents

Publication Publication Date Title
JP5862631B2 (en) Power storage system
JP4494453B2 (en) Secondary battery control device and control method
US8222862B2 (en) Electrically powered vehicle
KR101761539B1 (en) Hybrid vehicle
WO2013051104A1 (en) Electrical charging control apparatus and electrical charging method
WO2012101678A1 (en) Control method and control device for electrical storage device
CN105633437B (en) The control method of fuel cell system, fuel-cell vehicle and fuel cell system
JP2008058278A (en) Internal state estimating device for secondary cell, internal state estimation method for secondary cell, program, and recording medium
JP2008042960A (en) Charge/discharge controller of secondary battery and hybrid vehicle mounting it
US9197078B2 (en) Battery parameter estimation
US20160149275A1 (en) Heating system and battery system
US20140103883A1 (en) Power supply device of vehicle
JP5126150B2 (en) Storage capacity estimation device and storage capacity estimation method
US10604159B2 (en) Display device
JP2009071986A (en) Calculation device for deterioration degree of in-vehicle battery
JP6812898B2 (en) Vehicle charging system
US9365129B2 (en) Vehicle having an electric motor and method of controlling a display displaying a cruising distance of the vehicle
JP2015131573A (en) Hybrid electric vehicle
JP2016530863A (en) Method and apparatus for balancing an energy storage system
JP6451582B2 (en) Charge / discharge control device for power storage device
JP6186248B2 (en) Inverter abnormality determination device
JP2014045567A (en) Energy storage system
JP2009298301A (en) Vehicle and control method thereof
JP2014082923A (en) Diagnostic device and diagnosis system
JP2016181384A (en) Electric vehicle

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15772177

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15772177

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP