WO2015151583A1 - Mine management system - Google Patents

Mine management system Download PDF

Info

Publication number
WO2015151583A1
WO2015151583A1 PCT/JP2015/053429 JP2015053429W WO2015151583A1 WO 2015151583 A1 WO2015151583 A1 WO 2015151583A1 JP 2015053429 W JP2015053429 W JP 2015053429W WO 2015151583 A1 WO2015151583 A1 WO 2015151583A1
Authority
WO
WIPO (PCT)
Prior art keywords
machine
ore
loading
mine
loading machine
Prior art date
Application number
PCT/JP2015/053429
Other languages
French (fr)
Japanese (ja)
Inventor
川合 一成
紳一 寺田
泰人 藤田
祐一 児玉
正明 植竹
Original Assignee
株式会社小松製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社小松製作所 filed Critical 株式会社小松製作所
Priority to US15/300,375 priority Critical patent/US10240457B2/en
Priority to JP2016511425A priority patent/JP6416882B2/en
Priority to CA2944404A priority patent/CA2944404C/en
Priority to AU2015241937A priority patent/AU2015241937B2/en
Publication of WO2015151583A1 publication Critical patent/WO2015151583A1/en

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21CMINING OR QUARRYING
    • E21C41/00Methods of underground or surface mining; Layouts therefor
    • E21C41/16Methods of underground mining; Layouts therefor
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21CMINING OR QUARRYING
    • E21C35/00Details of, or accessories for, machines for slitting or completely freeing the mineral from the seam, not provided for in groups E21C25/00 - E21C33/00, E21C37/00 or E21C39/00
    • E21C35/24Remote control specially adapted for machines for slitting or completely freeing the mineral
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21CMINING OR QUARRYING
    • E21C37/00Other methods or devices for dislodging with or without loading
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21CMINING OR QUARRYING
    • E21C41/00Methods of underground or surface mining; Layouts therefor
    • E21C41/16Methods of underground mining; Layouts therefor
    • E21C41/22Methods of underground mining; Layouts therefor for ores, e.g. mining placers
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21FSAFETY DEVICES, TRANSPORT, FILLING-UP, RESCUE, VENTILATION, OR DRAINING IN OR OF MINES OR TUNNELS
    • E21F13/00Transport specially adapted to underground conditions
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21FSAFETY DEVICES, TRANSPORT, FILLING-UP, RESCUE, VENTILATION, OR DRAINING IN OR OF MINES OR TUNNELS
    • E21F13/00Transport specially adapted to underground conditions
    • E21F13/02Transport of mined mineral in galleries
    • E21F13/025Shuttle cars
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/06Resources, workflows, human or project management; Enterprise or organisation planning; Enterprise or organisation modelling
    • G06Q10/063Operations research, analysis or management
    • G06Q10/0631Resource planning, allocation, distributing or scheduling for enterprises or organisations
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
    • G06Q50/02Agriculture; Fishing; Forestry; Mining

Definitions

  • the present invention relates to a mine management system.
  • Patent Document 1 describes a working machine that moves a tunnel while holding a drilled ore in a bucket after a vehicle that excavates ore with a bucket enters the tunnel and excavates the ore.
  • An object of an aspect of the present invention is to provide a mine management system capable of smoothly performing work in a production system according to a request.
  • aspects of the present invention include a transport machine that travels by loading ore from a mining site to a discharge site in a mine, a loading machine that mines the ore at the mining site and loads the ore into the transport machine, and an input signal
  • the management system of the mine provided with the management apparatus which sets the operation mode in the said mine based on this and changes the operation parameter of the said transport machine and the operation parameter of the said loading machine is provided.
  • the work can be smoothly performed in the production system according to the request.
  • FIG. 1 is a mimetic diagram showing an example of the field where the conveyance machine and loading machine concerning this embodiment operate.
  • FIG. 2 is a schematic diagram showing an example of a mine and a mining system.
  • FIG. 3 is an enlarged view of a part of FIG.
  • FIG. 4 is a diagram showing excavation of ore from the natural ground by the loading machine and loading of the ore into the transporting machine.
  • FIG. 5 is a diagram illustrating excavation of ore from the natural ground by the loading machine and loading of the ore into the transporting machine.
  • FIG. 6 is an example of a functional block diagram of a management device provided in the mine management system.
  • FIG. 7 is a perspective view of the transport machine according to the present embodiment.
  • FIG. 8 is a side view of the transport machine according to the present embodiment.
  • FIG. 9 is a diagram illustrating a support structure of a vessel provided in the transport machine according to the present embodiment.
  • FIG. 10 is a top view of the transport machine according to the present embodiment.
  • FIG. 11 is a diagram illustrating a state where the transport machine according to the present embodiment tilts the vessel.
  • FIG. 12 is an example of a block diagram illustrating a control device included in the transport machine.
  • FIG. 13 is a side view of the loading machine according to the present embodiment.
  • FIG. 14 is a top view of the loading machine according to the present embodiment.
  • FIG. 15 is a front view of the loading machine according to the present embodiment.
  • FIG. 16 is a diagram illustrating a posture when the loading machine according to the present embodiment travels.
  • FIG. 17 is an example of a block diagram illustrating a control device included in the loading machine according to the present embodiment.
  • FIG. 18 is a diagram illustrating an example of a capacitor handling device provided in the mining system of the mine according to the present embodiment.
  • FIG. 19 is a diagram illustrating a direction in which the transport machine advances drift in the mine in the mining system according to the present embodiment.
  • FIG. 20 is a diagram illustrating the relationship between the work mode and the mine productivity according to the present embodiment.
  • FIG. 21 is a diagram for explaining an example of work parameters of the transport machine according to the present embodiment.
  • FIG. 22 is a diagram for explaining an example of work parameters of the transport machine according to the present embodiment.
  • FIG. 23 is a diagram for explaining an example of work parameters of the transport machine according to the present embodiment.
  • FIG. 24 is a diagram for explaining an example of the relationship between the work mode according to the present embodiment and the work parameters of the transport machine.
  • FIG. 25 is a flowchart illustrating an example of processing of the management
  • one direction in the predetermined plane is the X axis direction
  • a direction orthogonal to the X axis direction in the predetermined plane is the Y axis direction
  • a direction orthogonal to each of the X axis direction and the Y axis direction is the Z axis direction.
  • the positional relationship of each part is demonstrated suitably.
  • the direction of gravity action is referred to as the downward direction
  • the direction opposite to the direction of gravity action is referred to as the upward direction.
  • Mine productivity includes mining cost ($ / t) per unit weight of ore to be mined and mining amount (t / h) per unit time.
  • t is the mining amount
  • h is the time
  • $ is the cost.
  • FIG. 1 is a schematic diagram illustrating an example of a site where the transport machine 10 and the loading machine 30 according to the present embodiment operate.
  • the transporting machine 10 and the loading machine 30 are used for underground mining for mining ore from underground.
  • the transport machine 10 is a type of work machine that transports a load in the mine shaft R
  • the load machine 30 is a type of work machine that loads a load on the transport machine 10.
  • ore is mined by the block caving method.
  • the block caving method is the installation of an ore MR mining site (draw point) DP and a mine channel R for transporting the mined ore MR in the ore body (or vein) MG of the mine M, and the upper part of the draw point DP.
  • the draw point DP is installed inside the ore body MG or below the ore body MG.
  • the block caving method is a method that utilizes the property that a fragile rock starts to naturally collapse when the lower part of the bedrock or ore body is undercut.
  • the ore MR When the ore MR is mined from inside or below the ore body MG, the collapse propagates to the upper part. For this reason, when the block caving method is used, the ore MR of the ore body MG can be mined efficiently. In the block caving method, a plurality of draw points DP are often provided.
  • the management device 3 is arranged on the ground.
  • the management device 3 is installed in a management facility on the ground. In principle, the management device 3 does not consider movement.
  • the management device 3 manages the mining site.
  • the management device 3 can communicate with work machines in the mine including the transporting machine 10 and the loading machine 30 via a communication system including the wireless communication device 4 and the antenna 4A.
  • the transport machine 10 and the loading machine 30 are work machines that operate unattended.
  • the transporting machine 10 and the loading machine 30 may be manned work machines that are operated by an operator's operation.
  • FIG. 2 is a schematic diagram illustrating an example of the underground mine MI and the mine management system 1 according to the present embodiment.
  • FIG. 3 is an enlarged view of a part of FIG.
  • the mine shaft R installed below the mine MG includes a first mine shaft DR and a second mine shaft CR.
  • the mine shaft R is installed, for example, inside the ore body MG or below the ore body M.
  • the underground mine MI there are a plurality of first and second tunnels DR and CR, respectively.
  • the second tunnel CR connects each draw point DP and the first tunnel DR.
  • the loading machine 30 can approach the draw point DP through the second mine tunnel CR.
  • the mine shaft R includes a third mine shaft TR.
  • a plurality (two in this example) of third tunnels TR are connected to a plurality of first tunnels DR.
  • the first mine shaft DR is appropriately referred to as a drift DR
  • the second mine shaft CR is appropriately referred to as a cross-cut CR
  • the third mine shaft TR is appropriately referred to as an outer periphery TR.
  • two outer circumferential paths TR are installed in the underground mine MI.
  • the cross cut CR is divided by the draw point DP.
  • Each outer periphery TR is not divided by the draw point DP.
  • One outer peripheral path TR connects one end of each of the plurality of drifts DR, and the other outer peripheral path TR connects the other end of each of the plurality of drifts DR.
  • all the drifts DR are connected to the two outer peripheral paths TR.
  • the transport machine 10 and the loading machine 30 can enter from one outer circumferential path TR regardless of which drift DR.
  • the transport machine 10 and the loading machine 30 travel in the direction of the arrow FC in the drift DR.
  • the loading position LP where the loading operation by the loading machine 30 to the transporting machine 10 is performed is determined at the crosscut CR or in the vicinity thereof.
  • an area including the draw point DP and the loading position LP is appropriately referred to as a loading place LA.
  • the underground mine MI is provided with a soil removal place (or pass) OP from which ore MR as a load transported by the transporting machine 10 is discharged.
  • a soil removal place (or pass) OP from which ore MR as a load transported by the transporting machine 10 is discharged.
  • the transporting machine 10 includes an electric motor for traveling and a capacitor that supplies electric power to the electric motor.
  • a space SP is connected to the outer circumferential path TR.
  • a capacitor exchange device EX for replacing a capacitor mounted on the transporting machine 10 is installed.
  • the road surface of the mine shaft R on which the transporting machine 10 travels and the XY plane are substantially parallel.
  • the road surface of the mine shaft R is often uneven or has an uphill and a downhill.
  • the mine management system 1 includes a management device 3 and an antenna 4A for wireless communication.
  • the management device 3 manages the operation of the transporting machine 10 and the loading machine 30 that operate in the underground mine MI, for example.
  • the management of the operation includes allocation of the transporting machine 10 and the loading machine 30, collection of information (operation information) regarding the operating state of the transporting machine 10 and the loading machine 30, and management thereof.
  • the operation information includes, for example, the operation time of the transporting machine 10 and the loading machine 30, the travel distance, the travel speed, the remaining capacity of the battery, the presence / absence of an abnormality, the location of the abnormality, and the loading capacity.
  • the operation information is mainly used for operation evaluation, preventive maintenance, and abnormality diagnosis of the transport machine 10 and the loading machine 30. Therefore, the operation information is useful in order to meet the needs for improving the productivity of the mine M or improving the operation of the mine.
  • the management device 3 includes a communication device.
  • the wireless communication device 4 including the antenna 4A is connected to the communication device of the management device 3.
  • the management device 3 can transmit information between the transport machine 10 and the loading machine 30 operating in the underground mine MI via the communication device, the wireless communication device 4, and the antenna 4A.
  • the loading machine 30 travels with a traveling motor, and drives the stirrer with the motor to excavate the ore MR.
  • a feeding cable 5 that supplies electric power to these electric motors from the outside of the loading machine 30 is provided in the mine channel R of the mine MI.
  • the loading machine 30 is supplied with power from the power feeding cable 5 via, for example, a power feeding connector 6 as a power supply device provided in the loading place LA and a power cable 7 from the loading machine 30.
  • the electric power supply apparatus should just be provided in any one of drift DR or crosscut CR.
  • the loading machine 30 may perform at least one of traveling and excavation with electric power supplied from the outside.
  • the loading machine 30 may be equipped with a capacitor, and may receive at least one of traveling and excavation by receiving power supply from the capacitor. Further, the loading machine 30 may be equipped with a capacitor, and may receive at least one of traveling and excavation by receiving power supply from the capacitor. That is, the loading machine 30 performs at least one of traveling and excavation with at least one of electric power supplied from the outside and electric power supplied from the battery. For example, the loading machine 30 can perform excavation with electric power supplied from the outside and can travel with electric power supplied from the storage battery. Further, when traveling in the crosscut CR, the loading machine 30 may travel with electric power supplied from the outside.
  • the loading machine 30 may excavate the ore MR by driving a hydraulic pump with an electric motor to generate hydraulic pressure and driving the hydraulic motor with this hydraulic pressure.
  • the loading machine 30 may be provided with an electric storage device, run by electric power supplied from the electric storage device, and excavate.
  • the connection between the power supply cable 5 and the power cable 7 from the loading machine 30 is not limited to the connector 6.
  • an electrode provided on the tunnel R side and connected to the power supply cable 5 and an electrode connected to the power cable 7 from the loading machine 30 side are used as a power supply device, and both electrodes are brought into contact with each other.
  • power may be supplied from the feeding cable 5 to the loading machine 30. If it does in this way, even if the positioning accuracy of both electrodes is low, both can be contacted and electric power can be supplied to loading machine 30.
  • the loading machine 30 shall operate
  • the loading machine 30 may be, for example, one that travels by an internal combustion engine or excavates the ore MR. In this case, the loading machine 30 drives a hydraulic pump by an internal combustion engine, and travels by driving a hydraulic motor, a hydraulic cylinder, or the like with hydraulic oil discharged from the hydraulic pump, or excavates the ore MR. Or you may.
  • FIGS. 4 and 5 are diagrams showing excavation of the ore MR of the natural ground RM by the loading machine 30 and loading of the ore MR into the transporting machine 10.
  • a natural ground RM of the ore MR is formed at the draw point DP of the loading place LA.
  • the loading machine 30 is installed in the crosscut CR at the loading place LA, and the tip portion penetrates into the natural ground RM of the ore MR to excavate it.
  • the loading machine 30 loads the excavated ore MR on the transporting machine 10 that is on the opposite side of the natural ground RM and is waiting in the drift DR.
  • a power supply cable 5 for supplying power to the loading machine 30 is provided.
  • the loading machine 30 includes a vehicle body 30 ⁇ / b> B, a feeder 31 as a conveying device, a rotating roller 33 as an excavating device, a support mechanism 32 that supports the rotating roller 33, and a traveling device. 34.
  • the rotating roller 33 and the support mechanism 32 function as a scraping device that excavates the ore MR and sends it to the feeder 31.
  • the support mechanism 32 includes a boom 32a attached to the vehicle body 30B, and an arm 32b that is connected to and swings and supports the rotating roller 33 so as to be rotatable.
  • the vehicle body 30 ⁇ / b> B of the loading machine 30 includes a penetrating member 35 that penetrates into the natural ground RM of the ore MR, a rotating body 36, and a rock guard 37.
  • the penetration member 35 penetrates the natural ground RM when excavating the ore MR.
  • the rotating body 36 rotates when the penetrating member 35 of the loading machine 30 penetrates the natural ground RM, and assists the penetrating.
  • the transporting machine 10 includes a vehicle body 10 ⁇ / b> B and a vessel 11.
  • the vessel 11 is mounted on the vehicle body 10B.
  • the vessel 11 loads the ore MR as a load.
  • the vessel 11 moves in the width direction W of the vehicle body 10B, that is, in a direction parallel to the axle, as shown in FIGS.
  • the vessel 11 is installed at the center in the width direction of the vehicle body 10B when the transporting machine 10 travels. Further, the vessel 11 moves outward in the width direction of the vehicle body 10B when the ore MR is loaded.
  • the transporting machine 10 can bring the vessel 11 closer to the lower part D of the feeder 31 of the loading machine 30, the possibility that the ore MR transported by the feeder 31 falls outside the vessel 11, The ore MR can be reliably dropped into the vessel 11.
  • the loading machine 30 excavates the ore MR at the draw point (mining place) DP of the mine MI of the mine M, and conveys the ore MR mined at the draw point DP to the transport machine 10 for loading.
  • the transporting machine 10 travels by loading the ore MR from the draw point DP to the ore pass (sinking place) OP of the mine MI.
  • the transport machine 10 transports the ore MR to the ore pass OP, and then discharges it to the ore pass OP.
  • the loading machine 30 stays in the crosscut CR while leaving the space in which the transporting machine 10 travels in the drift DR, and excavates the ore MR at the draw point DP.
  • the loading machine 30 conveys the excavated ore MR in a direction away from the draw point DP and loads it on the transporting machine 10.
  • the loading machine 30 does not move in a state where the excavated ore MR is loaded.
  • the transport machine 10 loads the ore MR mined at the draw point DP, travels on the drift DR, and transports it to the ore pass OP shown in FIG.
  • the mine management system 1 causes the loading machine 30 to perform only excavation and loading of the ore MR and causes the transport machine 10 to transport only the ore MR.
  • the functions of both are separated.
  • the loading machine 30 can concentrate on excavation work and conveyance work, and the conveyance machine 10 can concentrate on conveyance work. That is, the loading machine 30 may not have the function of transporting the ore MR, and the transporting machine 10 may not have the function of excavating and transporting the ore MR.
  • the loading machine 30 can specialize in the function of excavation and conveyance, and the conveyance machine 10 can be specialized in the function of conveyance of the ore MR, each function can be exhibited to the maximum. As a result, the mine management system 1 can improve the productivity of the mine M.
  • FIG. 6 is a functional block diagram illustrating an example of the management apparatus 3 according to the present embodiment.
  • the management device 3 includes a processing device 3C, a storage device 3M, and an input / output unit (I / O) 3IO.
  • a display device 8 as an output device, an input device 9, and a communication device 3R are connected to the input / output unit 3IO of the management device 3.
  • the management device 3 is a computer, for example.
  • the processing device 3C is, for example, a CPU (Central Processing Unit).
  • the storage device 3M is, for example, a RAM (Random Access Memory), a ROM (Read Only Memory), a flash memory, a hard disk drive, or the like, or a combination thereof.
  • the input / output unit 3IO is used for input / output (interface) of information between the processing device 3C and the display device 8, the input device 9, and the communication device 3R connected to the outside of the processing device 3C.
  • the processing device 3C executes processing of the management device 3 such as allocation of the transporting machine 10 and the loading machine 30 and collection of operation information thereof. Processing such as vehicle allocation and collection of operation information is realized by the processing device 3C reading the corresponding computer program from the storage device 3M and executing it.
  • the processing device 3C sets the work mode of the underground mine MI based on the input signal generated by the operation of the input device 9.
  • the management device 3 changes both the work parameters of the transport machine 10 and the work parameters of the loading machine 30 based on the set work mode.
  • the storage device 3M stores various computer programs for causing the processing device 3C to execute various processes.
  • the computer program stored in the storage device 3M collects, for example, a computer program for dispatching the transporting machine 10 and the loading machine 30, and operation information of the transporting machine 10 and the loading machine 30.
  • the display device 8 is, for example, a liquid crystal display or the like, and displays information necessary for dispatching the transporting machine 10 and the loading machine 30 and collecting operation information.
  • the input device 9 is, for example, a keyboard, a touch panel, a mouse, or the like, and inputs information necessary for dispatching the transporting machine 10 and the loading machine 30 and collecting their operation information.
  • the communication device 3R is connected to the wireless communication device 4 including the antenna 4A. As described above, the wireless communication device 4 and the antenna 4A are installed in the underground mine MI. The communication device 3R and the wireless communication device 4 are connected by wire.
  • the communication device 3R and the transport machine 10 and the loading machine 30 in the underground mine MI can communicate with each other by, for example, a wireless LAN (Local Aria Network). Next, the transporting machine 10 will be described in more detail.
  • FIG. 7 is a perspective view illustrating an example of the transport machine 10 according to the present embodiment.
  • FIG. 8 is a side view of the transport machine 10 according to the present embodiment.
  • the transporting machine 10 includes a vehicle body 10B, a vessel 11, and wheels 12A and 12B. Further, the transporting machine 10 includes a power storage device 14 as a power storage device, an antenna 15, imaging devices 16A and 16B, and non-contact sensors 17A and 17B.
  • the wheels 12A and 12B are attached to the front and rear of the vehicle body 10B, respectively. In the present embodiment, the wheels 12A and 12B are driven by electric motors 13A and 13B mounted in the vehicle body 10B shown in FIG.
  • all the wheels 12A and 12B are driving wheels.
  • the wheels 12A and 12B are respectively steered wheels.
  • the wheels 12A and 12B are, for example, solid tires.
  • the transporting machine 10 can travel in any of the direction from the wheel 12A to the wheel 12B and the direction from the wheel 12B to the wheel 12A.
  • the wheels 12A and 12B are not limited to solid tires, and may be pneumatic tires, for example. Further, only one of the wheels 12A and 12B may be a drive wheel.
  • both the wheel 12A and the wheel 12B can function as steering wheels
  • the transport machine 10 advances so that the wheel 12A is the front wheel and the wheel 12B is the rear wheel
  • only the wheel 12A (front wheel) is steered.
  • the wheel 12B (rear wheel) may not be steered, only the wheel 12B (rear wheel) may be steered and the wheel 12A (front wheel) may not be steered, the wheel 12A (front wheel) and the wheel 12B (rear wheel) ) May be steered.
  • the wheel 12A and the wheel 12B may be steered in the same phase direction, or the wheel 12A and the wheel 12B may be steered in the opposite phase direction.
  • the vehicle By steering the wheels 12A and 12B in the same phase direction, for example, the vehicle can stably travel during high-speed turning.
  • the turning radius can be reduced by steering the wheel 12A and the wheel 12B in the opposite phase direction.
  • the transport machine 10 advances so that the wheel 12B is the front wheel and the wheel 12A is the rear wheel.
  • the vessel 11 is mounted above the vehicle body 10B and supported by the vehicle body 10B.
  • a battery 14 for supplying electric power to the electric motors 13A and 13B is mounted on the vehicle body 10B.
  • the external shape of the battery 14 is a rectangular parallelepiped shape.
  • One battery 14 is mounted before and after the vehicle body 10B. By doing in this way, since the balance of the mass of front and back becomes close
  • the battery 14 is detachably mounted on the vehicle body 10B.
  • the electric motors 13 ⁇ / b> A and 13 ⁇ / b> B and the electronic device included in the transport machine 10 are operated by the electric power supplied from the battery 14.
  • the transport machine 10 is electrically driven, but the internal combustion engine may be a power source.
  • An antenna 15, imaging devices 16A and 16B, and non-contact sensors 17A and 17B are attached to the vehicle body 10B.
  • the antenna 15 wirelessly communicates with the management device 3 via the antenna 4A and the communication device 3R illustrated in FIG.
  • the imaging devices 16A and 16B photograph the load loaded on the vessel 11, that is, the state (packing state) of the ore MR shown in FIGS. 3 and 4 in this embodiment.
  • the imaging devices 16A and 16B may be, for example, cameras that capture visible light or infrared cameras that capture infrared light.
  • the imaging devices 16A and 16B are attached to the tips of support columns 16AS and 16BS attached to the upper surface of the vehicle body 10B, respectively. With such a structure, each of the imaging devices 16 ⁇ / b> A and 16 ⁇ / b> B can image the entire vessel 11 from above, so that the state of the ore MR loaded on the vessel 11 can be reliably imaged.
  • Non-contact sensors 17A and 17B are attached to the front and rear of the vehicle body 10B, respectively.
  • the non-contact sensors 17A and 17B detect an object existing around the transport machine 10, particularly on the traveling direction side, in a non-contact manner.
  • radar devices are used as the non-contact sensors 17A and 17B.
  • the non-contact sensors 17A and 17B can emit a radio wave or an ultrasonic wave, receive a radio wave reflected by the object, and detect a relative distance and direction from the object.
  • the non-contact sensors 17A and 17B are not limited to radar devices.
  • the non-contact sensors 17A and 17B may include at least one of a laser scanner and a three-dimensional distance sensor, for example.
  • the transporting machine 10 includes peripheral monitoring cameras 17CA and 17CB as imaging devices before and after the vehicle body 10B.
  • the peripheral monitoring cameras 17CA and 17CB image the periphery of the vehicle body 10B, particularly the front, and detect the shape of an object existing around the vehicle body 10B.
  • the vehicle body 10B has a recess 10BU between the front and rear.
  • Recess 10BU is arranged between wheel 12A and wheel 12B.
  • the vessel 11 is a member on which ore MR as a load is loaded by the loading machine 30. At least a part of the vessel 11 is disposed in the recess 10BU.
  • a part of the vehicle body 10B disposed on one side of the center portion AX of the vehicle body 10B and a part of the vehicle body 10B disposed on the other side in the front-rear direction of the vehicle body 10B are symmetric (front-back symmetry). Further, in the front-rear direction of the vehicle body 10B, a part of the vessel 11 arranged on one side of the center part AX of the vehicle body 10B and a part of the vessel 11 arranged on the other side are symmetrical (front-rear object). Further, the vehicle body 10B and the vessel 11 are symmetric (laterally symmetric) with respect to the central axis in the front-rear direction of the vehicle body 10B in plan view.
  • the vessel 11 includes a bottom surface 11B and four side surfaces 11SF, 11SR, 11SA, and 11SB connected to the bottom surface 11B.
  • the side surfaces 11SA and 11SB stand up vertically from the bottom surface 11B.
  • the side surfaces 11SF and 11SR are inclined toward the wheels 12A and 12B, respectively, with respect to the bottom surface 11B.
  • a recess 11U is formed by the bottom surface 11B and the four side surfaces 11SF, 11SR, 11SA, and 11SB. Ore MR as a load is loaded in the recess 11U.
  • the recess 10BU of the vehicle body 10B has a shape along the outer shape of the vessel 11.
  • FIG. 9 is a diagram illustrating a support structure of the vessel 11 provided in the transport machine 10 according to the present embodiment.
  • FIG. 10 is a top view of the transport machine 10 according to the present embodiment.
  • FIG. 11 is a diagram illustrating a state in which the transport machine 10 according to the present embodiment tilts the vessel.
  • the vessel 11 is placed on the upper surface of the table 11T via a hydraulic cylinder (hoist cylinder) 11Cb as an actuator for moving the vessel 11 up and down.
  • a hydraulic cylinder (hoist cylinder) 11Cb as an actuator for moving the vessel 11 up and down.
  • the table 11T is supported by the vehicle body 10B via a pair of support bodies 11R and 11R provided on the upper surface of the recess 10BU of the vehicle body 10B.
  • the support 11R is a rod-like member extending in the width direction of the vehicle body 10B.
  • Each support 11R, 11R is fitted in a pair of grooves 11TU, 11TU provided in a portion of the table 11T facing the vehicle body 10B.
  • the grooves 11TU and 11TU are provided in the direction in which the support 11R extends, that is, in the width direction of the vehicle body 10B.
  • the table 11T moves along the supports 11R and 11R. That is, the table 11T can move in the width direction of the vehicle body 10B of the transporting machine 10.
  • a hydraulic cylinder (slide cylinder) 11Ca is attached between the table 11T and the vehicle body 10B as an actuator for moving the table 11T in the width direction of the vehicle body 10B.
  • the hydraulic cylinder 11Ca expands and contracts, the table 11T moves to both sides in the width direction of the vehicle body 10B. Since the vessel 11 is attached to the table 11T, as shown in FIG. 10, the vessel 11 can also move to both sides in the width direction W of the vehicle body 10B together with the table 11T.
  • the vessel 11 moves to the loading machine 30 side as shown in FIG. By doing in this way, the conveyance machine 10 can load the ore MR on the vessel 11 reliably. Further, when the ore MR is loaded on one side of the vessel 11, the transporting machine 10 reciprocates the vessel 11 in the width direction of the vehicle body 10 ⁇ / b> B to disperse the ore MR over the entire vessel 11, and the ore MR. Can be suppressed.
  • FIG. 11 shows a state where the hydraulic cylinder 11Cb is extended and the vessel 11 is tilted. As shown in FIG. 11, the vessel 11 swings about an axis Zb on one side in the width direction W of the vehicle body 10B.
  • the axis Zb is included in the table 11T and is parallel to the front-rear direction of the vehicle body 10B.
  • the hydraulic cylinder 11Cb extends, the vessel 11 becomes higher on the side opposite to the axis Zb and protrudes from the recess 10BU of the vehicle body 10B.
  • the vessel 11 is inclined, the lid 11CV on the axis Zb side is opened, and the ore MR is discharged from the axis Zb side.
  • the hydraulic cylinder 11Cb contracts, the vessel 11 is received in the recess 10BU of the vehicle body 10B.
  • the lid 11CV is interlocked with the operation in which the vessel 11 moves up and down by a link mechanism (not shown).
  • the vessel 11 swings about only the axis Zb existing on one side in the width direction W of the vehicle body 10B, but is not limited to this.
  • the vessel 11 may swing about another axis that is present on the other side and parallel to the longitudinal direction of the vehicle body 10B in addition to the axis Zb on one side of the vehicle body 10B. In this way, the transporting machine 10 can discharge the ore MR from both sides in the width direction W of the vehicle body 10B.
  • FIG. 12 is an example of a block diagram illustrating the control device 70 provided in the transport machine 10.
  • the control device 70 included in the transport machine 10 controls the travel of the transport machine 10 and the movement and elevation of the vessel 11 in the width direction.
  • the control device 70 includes a processing device 71 and a storage device 72.
  • the processing device 71 includes imaging devices 16A and 16B, non-contact sensors 17A and 17B, peripheral monitoring cameras 17CA and 17CB, a mass sensor 18, a reading device 19, a range sensor 20, a gyro sensor 21, a speed sensor 22, and an acceleration sensor 23.
  • the drive control device 24, the communication device 25, the storage device 72, and the like are connected.
  • the imaging devices 16A and 16B and the peripheral monitoring cameras 17CA and 17CB include an image sensor such as a CCD or a CMOS, and can acquire an optical image of an object and detect the outer shape of the object.
  • at least one of the imaging devices 16A and 16B and the peripheral monitoring cameras 17CA and 17CB includes a stereo camera, and can acquire three-dimensional outline data of an object.
  • the imaging devices 16A and 16B and the surrounding monitoring cameras 17CA and 17CB output the captured results to the processing device 71.
  • the processing device 71 acquires the detection results of the imaging devices 16A and 16B, and acquires information related to the state of the ore MR in the vessel 11 based on the detection results.
  • the outer shape of the ore MR loaded on the vessel 11 may be detected using at least one of a laser scanner and a three-dimensional distance sensor.
  • the non-contact sensors 17A and 17B are connected to the processing device 71 and output the detection result to the processing device 71.
  • the non-contact sensors 17A and 17B output the acquired results to the processing device 71.
  • the mass sensor 18 detects the mass of the vessel 11 and the ore MR loaded on the vessel 11. Since the mass of the vessel 11 is known in advance, the mass of the ore MR loaded on the vessel 11 can be obtained by subtracting the mass of the vessel 11 from the detection result of the mass sensor 18.
  • the mass sensor 18 is connected to the processing device 71 and outputs a detection result to the processing device 71.
  • the processing device 71 Based on the detection result of the mass sensor 18, the processing device 71 obtains information on the mass of the ore MR loaded on the vessel 11 and whether or not the ore MR is loaded on the vessel 11.
  • the mass sensor 18 may be, for example, a strain gauge type load cell provided between the vessel 11 and the table 11T, or may be a pressure sensor that detects the hydraulic pressure of the hydraulic cylinder 11Cb.
  • the reading device 19 detects the identification information (unique information) of the mark provided in the drift DR.
  • a plurality of marks are arranged along the drift DR.
  • the mark may be an identifier (code) such as a barcode and a two-dimensional code, or may be an identifier (tag) such as an IC tag or RFID.
  • the reading device 19 is connected to the processing device 71 and outputs a detection result to the processing device 71.
  • the range sensor 20 is attached to the outside of the vehicle body 10B of the transporting machine 10, for example, forward and rearward, and acquires and outputs physical shape data of the space around the transporting machine 10.
  • the gyro sensor 21 detects the direction (direction change amount) of the transport machine 10 and outputs the detection result to the processing device 71.
  • the speed sensor 22 detects the traveling speed of the transport machine 10 and outputs the detection result to the processing device 71.
  • the acceleration sensor 23 detects the acceleration of the transport machine 10 and outputs the detection result to the processing device 71.
  • the drive control device 24 is, for example, a microcomputer.
  • the drive control device 24 controls the operation of the electric motors 13A and 13B, the braking system 13BS, the steering system 13SS, and the electric motor 13C that drives the hydraulic pump 13P based on a command from the processing device 71.
  • the hydraulic pump 13P is a device that supplies hydraulic oil to the hydraulic cylinders 11Ca and 11Cb.
  • the transporting machine 10 travels using the traveling electric motors 13A and 13B, but is not limited thereto.
  • the transporting machine 10 may travel by a hydraulic motor that is driven by hydraulic fluid discharged from the hydraulic pump 13P.
  • the braking system 13BS and the steering system 13SS may also be electric, or may operate using hydraulic pressure.
  • the information regarding the position (absolute position) where the mark is arranged in the drift DR is known information measured in advance.
  • Information regarding the absolute position of the mark is stored in the storage device 72.
  • the processing device 71 determines the absolute value of the transport machine 10 in the drift DR based on the mark detection result (mark identification information) detected by the reading device 19 provided in the transport machine 10 and the storage information in the storage device 72. The position can be determined.
  • the range sensor 20 includes a scanning lightwave distance meter that can output physical shape data of a space.
  • the range sensor 20 includes, for example, at least one of a laser scanner and a three-dimensional distance sensor, and can acquire and output two-dimensional or three-dimensional spatial data.
  • the range sensor 20 detects at least one of the loading machine 30 and the wall surface of the drift DR.
  • the range sensor 20 can acquire at least one of the shape data of the loading machine 30, the shape data of the wall surface of the drift DR, and the shape data of the load of the vessel 11.
  • the range sensor 20 can detect at least one of a relative position (relative distance and direction) with the loading machine 30 and a relative position with the wall surface of the drift DR.
  • the range sensor 20 outputs the detected information to the processing device 71.
  • information regarding the wall surface of the drift DR is obtained in advance and stored in the storage device 72. That is, the information regarding the wall surface of the drift DR is known information measured in advance.
  • the information regarding the wall surface of the drift DR includes information regarding each shape of the plurality of portions of the wall surface and information regarding the absolute position of each of the wall surface portions.
  • the storage device 72 stores the relationship between the shapes of the plurality of wall portions and the absolute positions of the wall portions having the shapes.
  • the processing device 71 transports in the drift DR based on the detection result (wall shape data) of the drift DR detected by the range sensor 20 provided in the transporting machine 10 and the storage information in the storage device 72. The absolute position and orientation of the machine 10 can be determined.
  • the processing device 71 Based on the current position (absolute position) of the transporting machine 10 derived using at least one of the reading device 19 and the range sensor 20, the processing device 71 transports according to a determined route (target route) of the underground mine MI.
  • the transporting machine 10 that travels the drift DR is controlled so that the machine 10 travels.
  • the processing device 71 is, for example, a microcomputer including a CPU. Based on the detection results of the non-contact sensors 17A, 17B, the reading device 19, the range sensor 20, and the like, the processing device 71 is configured to use the electric motors 13A, 13B, the braking system 13BS, the wheels 12A, The steering system 13SS of 12B is controlled. Then, the processing device 71 causes the transport machine 10 to travel according to the target route described above at a predetermined traveling speed and acceleration.
  • the storage device 72 includes at least one of a RAM, a ROM, a flash memory, and a hard disk drive, and is connected to the processing device 71.
  • the storage device 72 stores a computer program and various information necessary for the processing device 71 to autonomously run the transporting machine 10.
  • the communication device 25 is connected to the processing device 71 and performs data communication with at least one of the communication device mounted on the loading machine 30 and the management device 3.
  • the transport machine 10 is an unmanned vehicle and can autonomously travel.
  • the communication device 25 can receive information (including a command signal) transmitted from at least one of the management device 3 and the loading machine 30. Further, the communication device 25 can transmit information detected by the imaging devices 16A and 16B, the peripheral monitoring cameras 17CA and 17CB, the speed sensor 22, the acceleration sensor 23, and the like to at least one of the management device 3 and the loading machine 30.
  • the transporting machine 10 transmits information about the periphery of the transporting machine 10 acquired by at least one of the peripheral monitoring cameras 17CA and 17CB and the non-contact sensors 17A and 17B to the management device 3, and the operator transports based on the peripheral information.
  • the machine 10 can also be remotely controlled. Thus, the transport machine 10 can travel not only autonomously but also by an operator's operation, and can slide and lift the vessel 11.
  • the management device 3 that has acquired the information detected by the speed sensor 22, the acceleration sensor 23, and the like accumulates this information in the storage device 3M, for example, as operation information of the transporting machine 10. Further, when the management device 3 acquires information captured by the peripheral monitoring cameras 17CA and 17CB, the operator operates the transporting machine 10 while visually recognizing an image around the transporting machine 10 captured by the peripheral monitoring cameras 17CA and 17CB. You can also Furthermore, the loading machine 30 which acquired the information regarding the mass of the ore MR of the vessel 11 detected by the mass sensor 18 can also control the loading amount of the ore MR on the vessel 11 based on this information. Next, the loading machine 30 will be described.
  • FIG. 13 is a side view of the loading machine 30 according to the present embodiment.
  • FIG. 14 is a top view of the loading machine 30 according to the present embodiment.
  • FIG. 15 is a front view of the loading machine 30 according to the present embodiment.
  • FIG. 13 shows a state where the loading machine 30 excavates the ore MR of the natural ground RM and conveys the excavated ore MR.
  • the loading machine 30 excavates the natural ground RM of the ore MR in the crosscut CR, and loads the excavated ore MR on the vessel 11 of the transporting machine 10 shown in FIGS.
  • a feeder 31, a support mechanism 32, a traveling device 34, a penetrating member 35, a rotating body 36, and a rock guard 37 are attached to the vehicle body 30 ⁇ / b> B of the loading machine 30.
  • the side on which the penetrating member 35 is attached is the front side of the loading machine 30, and the side opposite to the side on which the penetrating member 35 is attached is the rear side of the loading machine 30. Note that the loading machine 30 may not include the rotating body 36 and the rock guard 37.
  • the feeder 31 loads the ore MR from the natural ground RM, transports it in a direction away from the natural ground RM at the draw point DP, and then discharges it. That is, the feeder 31 conveys the ore MR loaded in front of the loading machine 30 toward the rear, and discharges it from the rear.
  • the feeder 31 uses a transport belt as an endless transport body and rotates the belt around a pair of rollers to transport the ore MR from the loading side 31F to the discharge side 31E.
  • the loading side 31F is the natural ground RM side
  • the discharge side 31E is the opposite side to the loading side 31F. As shown in FIG.
  • the feeder 31 is provided with a pair of guides 31 ⁇ / b> G and 31 ⁇ / b> G on both sides in the width direction W.
  • the pair of guides 31 ⁇ / b> G and 31 ⁇ / b> G suppress the ore MR that is being transported from the feeder 31 from dropping off.
  • the width direction W is a direction orthogonal to the direction F in which the feeder 31 transports the ore MR, and is a direction parallel to the rotation center axis of the pair of rollers provided in the feeder 31.
  • the width direction W of the feeder 31 is also the width direction of the vehicle body 30B.
  • the feeder 31 includes a guide 39 for guiding the ore MR into the vessel 11 of the transporting machine 10 on the discharge side 31E.
  • the feeder 31 swings about the axis of the loading side 31F of the feeder 31 in front of the vehicle body 30B.
  • the feeder 31 can change the angle ⁇ with respect to the ground G.
  • the angle ⁇ is an angle formed between the straight line LC connecting the rotation center axes of the pair of rollers included in the feeder 31 and the ground G.
  • Rotating roller 33 loads ore MR into feeder 31.
  • the rotating roller 33 feeds the ore MR into the feeder 31 while rotating on the loading side 31F of the feeder 31, that is, in front of the feeder 31. For this reason, at the time of excavation of ore, the rotation roller 33 is installed in the loading side 31F of the feeder 31 by the support mechanism 32 provided with the boom 32a and the arm 32b.
  • the rotating roller 33 includes a rotating member 33D that rotates around a predetermined axis Zr and a contact member 33B that is provided on the outer periphery of the rotating member 33D and that excavates in contact with the ore MR.
  • the contact member 33B is a plurality of plate-like members that protrude outward in the radial direction from the rotating member 33D and that are provided at predetermined intervals along the circumferential direction of the rotating member 33D.
  • a plane parallel to the plate surface of the contact member 33B is not orthogonal to the axis Zr.
  • a plane parallel to the plate surface of the contact member 33B is parallel to the axis Zr.
  • the contact member 33B may be bent so that the tip, that is, the end opposite to the rotating member 33D side, bites into the natural ground RM to be excavated.
  • the contact member 33B moves away from the feeder 31 when positioned at the upper U, and approaches the feeder 31 when positioned at the lower D.
  • the plurality of contact members 33B excavate the ore MR from the natural ground RM and send it to the feeder 31. Since the plurality of contact members 33B rotate together with the rotation member 33D, the ore MR can be continuously excavated and fed into the feeder 31.
  • the support mechanism 32 that rotatably supports the rotating roller 33 includes a boom 32a attached to the vehicle body 30B and an arm 32b connected to the boom 32a.
  • the boom 32a is attached to the vehicle body 30B of the loading machine 30 via the shaft 38A, and swings with respect to the vehicle body 30B about the shaft 38A.
  • the arm 32b is connected to, for example, the end of the boom 32a opposite to the vehicle body 30B via the shaft 38B, and swings about the shaft 38B with respect to the boom 32a.
  • the arm 32b is an end opposite to the end connected to the boom 32a, and rotatably supports the rotating roller 33.
  • the boom 32a and the arm 32b may be driven to swing by a hydraulic cylinder as an actuator, or may be driven to swing by an electric motor or a hydraulic motor.
  • the boom 32a swings around the first axis line Za with respect to the vehicle body 30B
  • the arm 32b swings around an axis line Za 'parallel to the first axis line Za.
  • the first axis Za is the central axis of the shaft 38A that connects the boom 32a and the vehicle body 30B
  • the axis Za ′ that is parallel to the first axis Za is the center of the shaft 38B that connects the boom 32a and the arm 32b. Is the axis.
  • the arm 32b may further swing around an axis parallel to the second axis perpendicular to the first axis Za. If it does in this way, since the range which can rotate rotation roller 33 becomes large, the freedom degree of excavation work improves.
  • the boom 32a is a pair of rod-shaped members (first rod-shaped members) provided on both sides in the width direction W of the vehicle body 30B, in this embodiment, on both sides in the width direction W of the feeder 31.
  • the arms 32b are a pair of rod-shaped members (second rod-shaped members) connected to the respective booms 32a. As shown in FIG. 14, the pair of arms 32b supports the rotating roller 33 between them.
  • the pair of booms 32a are connected by beams 32J. Since the rigidity of the support mechanism 32 is improved by such a structure, the excavation efficiency of the ore MR is reduced since the support mechanism 32 can reliably press the rotating roller 33 against the natural ground RM when excavating the ore MR. It is suppressed. Moreover, you may connect a pair of arm 32b with a rod-shaped or plate-shaped member. This is more preferable because the rigidity of the support mechanism 32 is further improved.
  • the rotating roller 33 moves when the boom 32a swings with respect to the vehicle body 30B and the arm 32b swings with respect to the boom 32a.
  • the support mechanism 32 can change the relative positional relationship between the rotation roller 33, the feeder 31, and the vehicle body 30B by moving the rotation roller 33.
  • the support mechanism 32 excavates different positions of the natural ground RM by moving the rotating roller 33, or moves the rotating roller 33 from the natural ground RM toward the feeder 31 to ore MR from the natural ground RM. Can be scraped into the feeder 31 side.
  • the support mechanism 32 uses the rotating roller 33 to scrape the object toward the feeder 31. , The object ahead of the loading machine 30 in the traveling direction can be removed.
  • the rotating roller 33 is rotated by an electric motor 33M attached to the tip of the arm 32b as shown in FIG.
  • the device for driving the rotating roller 33 is not limited to the electric motor 33M, and may be, for example, a hydraulic motor. Further, the location where the electric motor 33M is attached is not limited to the tip of the arm 32b.
  • a traveling device 34 for traveling the vehicle body 30B is attached.
  • the traveling device 34 includes a pair of crawler belts 34C provided on both sides in the width direction of the vehicle body 30B, a pair of drive wheels 34D provided on both sides in the width direction of the vehicle body 30B, and a pair of wheels provided on both sides in the width direction of the vehicle body 30B.
  • a driven wheel 34S a crawler belt 34C is wound around the drive wheel 34D and the driven wheel 34S.
  • Each drive wheel 34D is driven separately and independently.
  • the loading machine 30 includes a traveling electric motor for each drive wheel 34D. With such a structure, the pair of crawler belts 34C and 34C are driven independently.
  • the penetration member 35 is attached to the vehicle body 30B.
  • the penetration member 35 is disposed on the loading side 31F of the feeder 31 of the vehicle body 30B.
  • the penetrating member 35 is a member having a cone shape, and in the present embodiment, has a quadrangular pyramid shape.
  • the shape of the penetrating member 35 is not limited to a quadrangular pyramid shape, and may be a triangular pyramid shape, for example.
  • the penetrating member 35 is attached to the vehicle body 30B so that the top of the cone is in front of the vehicle body 30B. By doing in this way, when the loading machine 30 penetrates into the natural ground RM, the penetration member 35 penetrates into the natural ground RM from the top.
  • the penetrating member 35 penetrates the natural mountain RM from the top of the cone and breaks the natural mountain RM.
  • the traveling device 34 causes the feeder 31 and the vehicle body 30B to which the penetrating member 35 is attached to travel forward, and the feeder 31 is moved to the natural ground RM while operating the feeder 31. Intrude.
  • the upper conveyor belt moves from the loading side 31F toward the discharging side 31E.
  • the loading machine 30 can penetrate deeper into the natural ground RM because the driving force of the feeder 31 can be used for penetration by operating the feeder 31 in this way during penetration.
  • a pair of rotating bodies 36 are provided on both sides in the width direction of the vehicle body 30B, that is, on both sides in the direction orthogonal to the conveying direction of the feeder 31.
  • the pair of rotating bodies 36 is disposed in front of the traveling device 34 and on the loading side 31 ⁇ / b> F of the feeder 31.
  • the rotating body 36 is a structure in which a plurality of blades 36B are provided at predetermined intervals around a drum 36D that rotates around a predetermined axis.
  • the rotating body 36 is driven by, for example, an electric motor.
  • the rotating body 36 may be driven by an electric motor that drives the feeder 31.
  • the driving of the feeder 31 and the driving of the rotating body 36 may be switched by a clutch or the like. For example, when the clutch is engaged, the feeder 31 and the rotator 36 rotate at the same time, and when the clutch is released, only the feeder 31 can rotate.
  • the rotating body 36 rotates in a direction in which the vehicle body 30B of the loading machine 30 is pressed against the ground G when the penetrating member 35 penetrates into the natural ground RM. Specifically, the rotating body 36 rotates so that the blade 36B on the natural mountain RM side is directed upward U from the lower side D, and the blade 36B on the traveling device 34 side is directed downward D from the upper side U. By doing in this way, when the blade 36B on the natural ground RM side contacts the natural ground RM, the rotating body 36 pushes the front of the vehicle body 30B downward D, so that the crawler belt 34C of the traveling device 34 touches the ground G. It is more strongly pressed against.
  • the frictional force between the crawler belt 34C and the ground G increases, so that the traveling device 34 can easily allow the penetration member 35 to penetrate the natural ground RM.
  • a rock guard 37 is provided between the rotating body 36 and the crawler belt 34 ⁇ / b> C of the traveling device 34.
  • the rock guard 37 is attached to the vehicle body 30B.
  • the rock guard 37 protects the traveling device 34 from the ore MR flying from the rotating roller 33 during excavation, or protects the traveling device 34 from rocks or the like existing in the tunnel when the loading machine 30 travels. To do.
  • the rock guard 37 suppresses a decrease in durability of the traveling device 34.
  • the vehicle body 30B includes a fixing device 30F that extends toward the outer side in the width direction of the vehicle body 30B and is pressed against the wall surface CRW of the crosscut CR connected to the draw point DP.
  • a fixing device 30F is provided on each side of the vehicle body 30B in the width direction so as to face each other, but the number and installation locations of the fixing devices 30F are not limited thereto.
  • the fixing device 30F may be provided above the vehicle body 30B.
  • the fixing device 30F includes, for example, a hydraulic cylinder 30FC and a pressing member 30FP provided at the tip of the piston of the hydraulic cylinder 30FC.
  • the fixing device 30F fixes the loading machine 30 in the cross cut CR when the loading machine 30 is excavated and when the ore MR is conveyed. Specifically, the fixing device 30F extends the hydraulic cylinder 30FC and presses the pressing member 30FP against the wall surface CRW, thereby fixing the vehicle body 30B of the loading machine 30 in the crosscut CR via these members. By doing in this way, the reaction force generated when the loading machine 30 excavates the natural ground RM can be received by the cross cut CR via the fixing device 30F. As a result, since the posture of the loading machine 30 is stable, the natural ground RM can be excavated stably.
  • a hydraulic cylinder may be provided between the fixing device 30F and the vehicle body 30B, and after fixing the fixing device 30F to the wall surface CRW of the crosscut CR, the vehicle body may be penetrated using the driving force of the hydraulic cylinder.
  • the fixing device 30F When the fixing device 30F is provided on both sides or above the width direction of the vehicle body 30B, the fixing by the fixing device 30F is released when the loading machine 30 penetrates.
  • the hydraulic cylinder 30FC is contracted, and the pressing member 30FP does not press the wall surface CRW.
  • the fixing device 30F operates to fix the loading machine 30 in the cross cut CR.
  • the traveling device 34 moves the loading machine 30 after the fixing by the fixing device 30F is released. Move.
  • a fixing device 30F is provided behind the vehicle body 30B, that is, on the discharge side 31E of the feeder 31, and is fixed between the reaction force receiver TG protruding from the ground G in the crosscut CR and the vehicle body 30B. You may receive the reaction force mentioned above through the apparatus 30F. At the time of excavation, the reaction force in the front-rear direction of the loading machine 30 is large, but by using such a structure, the reaction force at the time of excavation can be more effectively received. Moreover, the loading machine 30 can also adjust the position of the loading machine 30 at the time of excavation by extending the fixing device 30F. Note that the loading machine 30 may not include the fixing device 30F.
  • the loading machine 30 includes the ore MR between a portion where the ore MR is loaded on the feeder 31 (loading side 31F) and a portion where the ore MR is discharged from the feeder 31 (discharge side 31E).
  • a switching mechanism 80 for switching between discharging and stopping discharging is provided.
  • the switching mechanism 80 includes a support body 81, a lid 82, and a hydraulic cylinder 83 as an actuator that opens and closes the lid 82. As shown in FIG.
  • the support 81 has two leg portions 81 ⁇ / b> R attached at one end to both sides in the width direction of the vehicle body 30 ⁇ / b> B, specifically, both sides in the width direction of the feeder 31, and the two leg portions 81 ⁇ / b> R. It is a gate-shaped member including a connecting portion 81C that connects them at the other end. The ore MR passes through a portion surrounded by the two leg portions 81R and the connecting portion 81C.
  • the lid 82 is a plate-like member, and is provided at a portion surrounded by the two leg portions 81R and the connecting portion 81C.
  • the lid 82 rotates around a predetermined axis Zg existing on the connecting portion 81C side of the support 81.
  • a hydraulic cylinder 83 is provided between the lid 82 and the connecting portion 81 ⁇ / b> C of the support body 81. As the hydraulic cylinder 83 expands and contracts, the lid 82 opens and closes a portion surrounded by the two leg portions 81R and the connecting portion 81C. When the lid 82 is opened, the ore MR passes through a portion surrounded by the two leg portions 81R and the connecting portion 81C.
  • the loading machine 30 includes an information collection device 40.
  • the information collecting device 40 is attached to the loading side 31F of the vehicle body 30B, that is, the front side. More specifically, the part where the information collecting device 40 collects information is attached to the loading side 31F of the vehicle body 30B, that is, facing forward.
  • the information collection device 40 is a device that acquires and outputs three-dimensional spatial data.
  • the information collection device 40 acquires ore information as information relating to the state of the ore MR of the natural ground RM.
  • the ore information is three-dimensional spatial data of the natural ground RM.
  • the information collection device 40 is, for example, a camera, a stereo camera, a laser scanner, a three-dimensional distance sensor, or the like.
  • the part where the information collecting device 40 collects information is a lens in the case of a camera or a stereo camera, and a light receiving part in the case of a laser scanner and a three-dimensional distance sensor.
  • a stereo camera is used as the information collection device 40.
  • the loading machine 30 has three information collection devices 40 attached to the beam 32J of the support mechanism 32. That is, the plurality of information collection devices 40 are installed at a plurality of locations in the width direction of the vehicle body 30B. By doing in this way, even when the imaging target of one information collection device 40 is hidden in the arm 32b, the loading machine 30 can obtain the ore information of the imaging target by the other information collection device 40.
  • the control device included in the loading machine 30 controls the operation of the loading machine 30 using the ore information collected by the information collecting device 40.
  • the control device described above controls at least one of the feeder 31, the rotating roller 33, the support mechanism 32, and the traveling device 34 based on the ore information acquired by the information collecting device 40.
  • the loading machine 30 includes an information collecting device 41 on the discharge side 31E of the vehicle body 30B, that is, on the rear side. More specifically, the part where the information collecting device 41 collects information is attached facing the discharge side 31E of the vehicle body 30B, that is, the rear side.
  • the information collection device 41 is a device that acquires and outputs three-dimensional spatial data, like the information collection device 40 described above.
  • the information collection device 41 acquires load information as information regarding the state of the ore MR loaded on the vessel 11 of the transporting machine 10 illustrated in FIGS. 4 and 5.
  • the cargo information is three-dimensional spatial data of the ore MR.
  • the information collection device 41 is, for example, a camera, a stereo camera, a laser scanner, a three-dimensional distance sensor, or the like, similar to the information collection device 40 described above.
  • the part where the information collecting device 41 collects information is a lens in the case of a camera or a stereo camera, and a light receiving part in the case of a laser scanner and a three-dimensional distance sensor.
  • a stereo camera is used as the information collection device 41.
  • the loading machine 30 has two information collection devices 41 attached to both sides of the feeder 31 in the width direction. That is, the plurality of information collection devices 41 are installed at a plurality of locations in the width direction of the vehicle body 30B. By doing in this way, the loading machine 30 can obtain the ore information of the imaging target by the other information collecting device 41 even when the imaging target of one information collecting device 41 is hidden in the shadow of the mine shaft.
  • the control device provided in the loading machine 30 controls at least one of the loading machine 30 and the transporting machine 10 using the load information collected by the information collecting device 41.
  • the control device described above controls the operation of the rotating roller 33, the feeder 31, the switching mechanism 80, or the like based on the load information acquired by the information collecting device 41, or the position or vessel of the vessel 11 provided in the transport machine 10. 11 movements are controlled.
  • the loading machine 30 changes the conveyance amount of the ore MR or adjusts the position of the vessel 11 according to the state of the ore MR loaded on the vessel 11 of the transporting machine 10. Therefore, for example, the production efficiency of the mine M is improved.
  • FIG. 16 is a view showing a posture when the loading machine 30 according to the present embodiment travels.
  • the angle ⁇ with respect to the feeder 31 ground G is smaller than when the loading machine 30 excavates and conveys the ore MR (see FIG. 13). That is, the straight line LC connecting the rotation center axes of the pair of rollers provided in the feeder 31 is closer to the ground G. If it does in this way, since the loading side 31F of the feeder 31 arrange
  • the support mechanism 32 when the loading machine 30 travels, the support mechanism 32 is folded. Then, the rotating roller 33 moves to a position closer to the feeder 31 as compared with the case where the loading machine 30 excavates and conveys the ore MR (see FIG. 13). For this reason, in the loading machine 30, the rotation roller 33 that exists at a position away from the center of gravity in the front-rear direction of the vehicle body 30B moves to a position closer to the center of gravity. To do. As a result, the loading machine 30 can travel stably.
  • FIG. 17 is an example of a block diagram illustrating a control device 75 provided in the loading machine 30 according to the present embodiment.
  • the control device 75 included in the loading machine 30 controls the feeder 31, the support mechanism 32, the rotating roller 33, the traveling device 34, the rotating body 36, and the switching mechanism 80.
  • the control device 70 includes a processing device 76 and a storage device 77.
  • the processing device 76 includes a front imaging device 40C corresponding to the information collecting device 40, a rear imaging device 41C corresponding to the information collecting device 41, a non-contact sensor 42, a reading device 43, a range sensor 44, a gyro sensor 45, a speed sensor.
  • the non-contact sensor 42, the reading device 43, and the range sensor 44 are attached to the outside of the vehicle body 30B of the loading machine 30.
  • the front imaging device 40C and the rear imaging device 41C include an image sensor such as a CCD or a CMOS, and can acquire an optical image of an object and detect the outer shape of the object.
  • the front imaging device 40C and the rear imaging device 41C include a stereo camera and can acquire three-dimensional outline data of an object.
  • the front imaging device 40C and the rear imaging device 41C output the captured result to the processing device 76.
  • the processing device 76 acquires the detection result of the front imaging device 40C, and obtains the ore information described above based on the detection result. Further, the processing device 76 acquires the detection result of the rear imaging device 41C, and obtains the load information described above based on the detection result.
  • the outer shape of the ore MR of the natural ground RM and the outer shape of the ore MR loaded on the vessel 11 may be detected using at least one of a laser scanner and a three-dimensional distance sensor.
  • the non-contact sensor 42 detects an object existing around the loading machine 30.
  • the non-contact sensor 42 is connected to the processing device 76 and outputs a detection result to the processing device 76.
  • the non-contact sensor 42 outputs the acquired result to the processing device 76.
  • the reading device 43 detects identification information (unique information) of marks provided on the drift DR or the cross cut CR. A plurality of marks are arranged along the drift DR or the crosscut CR.
  • the reading device 43 is connected to the processing device 76 and outputs a detection result to the processing device 76.
  • the mark may be an identifier (code) such as a barcode and a two-dimensional code, or may be an identifier (tag) such as an IC tag or RFID.
  • the information regarding the position (absolute position) where the mark is arranged in the drift DR or the crosscut CR is known information measured in advance.
  • Information regarding the absolute position of the mark is stored in the storage device 77.
  • the processing device 76 Based on the mark detection result (mark identification information) detected by the reading device 43 provided in the loading machine 30 and the storage information of the storage device 77, the processing device 76 uses the drift DR or the crosscut CR. The absolute position of the loading machine 30 can be determined.
  • the range sensor 44 acquires and outputs the physical shape data of the space.
  • the gyro sensor 45 detects the direction (direction change amount) of the loading machine 30 and outputs the detection result to the processing device 76.
  • the speed sensor 46 detects the traveling speed of the loading machine 30 and outputs the detection result to the processing device 76.
  • the acceleration sensor 47 detects the acceleration of the loading machine 30 and outputs the detection result to the processing device 76.
  • the drive control device 48 is, for example, a microcomputer.
  • the drive control device 48 is based on a command from the processing device 76, and includes an electric motor 33M that drives the rotating roller 33 shown in FIG.
  • the operation of the electric motor 50 that swings the arm 32b, the electric motor 51F that drives the feeder 31, the electric motor 51R that rotates the rotating body 36, and the electric motor 86 that drives the hydraulic pump 85 is controlled.
  • the hydraulic pump 85 is a device that supplies hydraulic oil to the hydraulic cylinder 83 provided in the switching mechanism 80, the hydraulic cylinder 87 as an actuator that changes the posture of the feeder 31, and the hydraulic cylinder 30FC of the fixing device 30F.
  • the boom 32a and the arm 32b may be swung by a hydraulic cylinder. In this case, hydraulic oil is supplied from the hydraulic pump 85 to the boom cylinder that swings the boom 32a and the arm cylinder that swings the arm 32b.
  • the electric motor 48L drives one crawler belt 34C shown in FIG. 14, and the electric motor 48R drives the other crawler belt 34C.
  • the electric motor 48L drives one crawler belt 34C shown in FIG. 14, and the electric motor 48R drives the other crawler belt 34C.
  • the loading machine 30 travels by the electric motors 48L and 48R included in the travel device 34, but is not limited thereto.
  • the loading machine 30 may travel by a hydraulic motor that is driven by hydraulic oil discharged from the hydraulic pump 85.
  • the boom 32 a and the arm 32 b of the support mechanism 32, the rotating rotor 33 and the rotating body 36, and the feeder 31 may also be driven by a hydraulic cylinder or a hydraulic motor that is driven by hydraulic oil discharged from the hydraulic pump 85.
  • the range sensor 44 includes a scanning lightwave distance meter that can output physical shape data of a space.
  • the range sensor 44 includes, for example, at least one of a laser range finder, a laser scanner, and a three-dimensional scanner, and can acquire and output three-dimensional spatial data.
  • the range sensor 44 detects at least one of the wall surfaces of the transport machine 10, the drift DR, and the crosscut CR.
  • the range sensor 44 can acquire at least one of the shape data of the transporting machine 10, the shape data of the wall surface of the drift DR or the crosscut CR, and the shape data of the load of the vessel 11 included in the transporting machine 10. is there.
  • the range sensor 44 can detect at least one of a relative position (relative distance and direction) with the transporting machine 10 and a relative position with the wall surface of the drift DR or the crosscut CR. The range sensor 44 outputs the detected information to the processing device 76.
  • information regarding the wall surfaces of the drift DR and the crosscut CR is obtained in advance and stored in the storage device 77. That is, the information regarding the wall surface of the drift DR is known information measured in advance.
  • the information regarding the wall surface of the drift DR includes information regarding each shape of the plurality of portions of the wall surface and information regarding the absolute position of each of the wall surface portions.
  • the storage device 77 stores the relationship between the shapes of the plurality of wall portions and the absolute positions of the wall portions having the shapes.
  • the processing device 76 uses the drift DR wall surface detection result (wall surface shape data) detected by the range sensor 20 provided in the loading machine 30 and the stored information in the storage device 77 to determine whether the drift DR is in the drift DR.
  • the absolute position and orientation of the loading machine 30 can be determined.
  • the processing device 76 Based on the current position (absolute position) of the loading machine 30 derived using at least one of the reading device 43 and the range sensor 44, the processing device 76 follows a determined route (target route) of the underground mine MI. The loading machine 30 that travels in the drift DR or the cross-cut CR is controlled so that the loading machine 30 travels. At this time, the processing device 76 controls the loading machine 30 so as to be arranged at the designated draw point DP.
  • the processing device 76 is a microcomputer including a CPU, for example.
  • the processing device 76 controls the electric motors 48L and 48R included in the traveling device 34 via the drive control device 48 based on the detection results of the front imaging device 40C, the rear imaging device 41C, the non-contact sensor 42, the reading device 43, and the like. . Then, the processing device 76 causes the loading machine 30 to travel at a predetermined traveling speed and acceleration according to the above-described target route.
  • the storage device 77 includes at least one of a RAM, a ROM, a flash memory, and a hard disk drive, and is connected to the processing device 76.
  • the storage device 77 stores a computer program and various information necessary for the processing device 76 to autonomously run the loading machine 30.
  • the communication device 52 is connected to the processing device 76 and performs data communication with at least one of the communication device mounted on the transporting machine 10 and the management device 3.
  • the loading machine 30 is an unmanned vehicle and can autonomously travel.
  • the communication device 52 can receive information (including a command signal) transmitted from at least one of the management device 3 and the transporting machine 10 via the antenna 53. Further, the communication device 52 manages information detected by the front imaging device 40C, the rear imaging device 41C, the non-contact sensor 42, the reading device 43, the range sensor 44, the gyro sensor 45, the speed sensor 46, the acceleration sensor 47, and the like. 3 and at least one of the transporting machines 10 can be transmitted via the antenna 53.
  • the loading machine 30 is not limited to an unmanned vehicle capable of autonomous traveling.
  • the management device 3 acquires an image captured by the front imaging device 40C and displays it on the display device 8 shown in FIG.
  • the management device 3 acquires an image captured by the rear imaging device 41C and displays it on the display device 8 shown in FIG. 6, and the operator excavates and loads the loading machine 30 while visually checking the displayed image.
  • the operation of the vessel 11 of the transporting machine 10 may be controlled by remote control.
  • the management device 3 that has acquired information detected by the speed sensor 46, the acceleration sensor 47, and the like accumulates this information as operation information of the loading machine 30, for example, in the storage device 3M.
  • the management device 3 acquires information captured by the front imaging device 40C or the rear imaging device 41C
  • the operator visually recognizes an image around the loading machine 30 captured by the front imaging device 40C or the rear imaging device 41C.
  • the loading machine 30 can also be operated.
  • the transporting machine 10 that has acquired information on the state of the ore MR of the vessel 11 detected by the rear imaging device 41C controls the loading amount of the ore MR on the vessel 11 or the position of the vessel 11 based on this information. You can also.
  • the loading machine 30 is electric, but the internal combustion engine may be a power source.
  • FIG. 18 is a diagram illustrating an example of the capacitor exchange device EX provided in the mine management system 1 according to the present embodiment.
  • the capacitor exchange device EX is installed in the space SP.
  • a maintenance space MS for maintaining the transporting machine 10 and the loading machine 30 is provided in the space SP.
  • the storage battery exchanging device EX includes a storage battery holding device 90, a pair of guides 91a and 91b installed on both sides thereof, and replacement carts 92a and 92b guided by the respective guides 91a and 91b.
  • the capacitor storage device 90 holds a plurality of replacement capacitors 14.
  • the battery holder 90 has a function as a charger that charges the discharged battery 14.
  • the guide 91a is provided on one side of the battery holding device 90, and the guide 91b is provided on the other side of the battery holding device 90.
  • the guide 91a is two rails that extend from the battery holder 90 toward the entrance / exit SPG of the space SP.
  • the guide 91b is the same as the guide 91a.
  • the carriage 92a is attached to the guide 91a and moves along the guide 91a, and the carriage 92b is attached to the guide 91b and moves along the guide 91b.
  • the transport machine 10 that has entered the space SP in order to replace the storage battery 14 stops between the guide 91a and the guide 91b. At this time, the transporting machine 10 stops with one capacitor 14 facing the guide 91a and the other capacitor 14 facing the guide 91b.
  • the carriage 92 a and the carriage 92 b receive the charged storage battery 14 from the storage battery holder 90 and move toward the transport machine 10.
  • the discharged storage battery 14 mounted on the transporting machine 10 is moved from the transporting machine 10 to the upper part thereof.
  • the carriage 92a and the carriage 92b move to a position where the charged storage battery 14 loaded on each of the carriages 92a and 92b faces the transporting machine 10.
  • the carriage 92 a and the carriage 92 b load the charged storage battery 14 into the transporting machine 10.
  • the carriage 92 a and the carriage 92 b return to the position of the storage battery holding device 90 and move the storage battery 14 collected from the transport machine 10 to the storage battery holding device 90.
  • the capacitor holding device 90 charges the capacitor. In this way, the battery 14 of the transport machine 10 is replaced.
  • the storage battery 14 included in the transporting machine 10 may not be detachable.
  • the battery storage device EX may charge the battery 14 included in the transport machine 10.
  • the loading machine 30 since the transporting machine 10 travels by the capacitor 14, the discharged capacitor 14 is replaced with the charged capacitor 14 using the capacitor replacement device EX in the space SP.
  • the loading machine 30 is supplied with electric power from the power supply cable 5 shown in FIG. 3 and the like, and the rotating roller 33, the feeder 31 and the like operate. Since the loading machine 30 moves in the mine, for example, it travels to move to a different draw point DP. In this case, the loading machine 30 is disconnected from the feeding cable 5. For this reason, the loading machine 30 includes a capacitor for driving the electric motors 48L and 48R for traveling shown in FIG.
  • This accumulator is charged by the electric power supplied from the power supply cable 5 when the loading machine 30 is excavating and transporting the ore MR at the draw point DP.
  • the storage battery 30 is replaced with, for example, the maintenance space MS in the space SP.
  • FIG. 19 is a diagram illustrating a direction in which the transporting machine 10 travels the drift DR of the mine MI in the mine management system 1 according to the present embodiment.
  • a plurality of drifts DR a plurality of outer peripheral paths TR, a plurality of draw points DP, or a plurality of OR paths OP provided in the underground mine MI
  • a code DR a code TR, a code DP, or a code OP
  • the symbols a and b are not attached.
  • a peripheral circuit CD is formed by the drift DR and the outer peripheral path TR.
  • a plurality of drifts DR and a plurality of outer peripheral paths TR are connected to form one peripheral circuit CD.
  • a peripheral circuit CDa is formed by two drifts DRb and DRd and two outer peripheral paths TRa and TRb.
  • a peripheral circuit CDb is formed by the two drifts DRc and DRe and the two outer peripheral paths TRa and TRb.
  • one peripheral circuit CD is formed by the two drifts DR and the two outer peripheral paths TR.
  • one peripheral circuit CD is formed by two drift DRs and two outer peripheral paths TR.
  • the two drift DRs included in one peripheral circuit CD have mutually travelable directions. Is different.
  • One loading machine 30 is arranged in one drift DR.
  • a plurality of loading machines 30 may be arranged in one drift DR.
  • the circumferential circuit CD on which the transport machine 10 travels is formed to include at least one of the ore pass OPa and the ore pass OPb. It is preferable.
  • the circumferential circuit CD on which the transporting machine 10 travels toward the storage battery exchanging apparatus EX installed in the space SP has the orpass OPa and the orpass OPb. It does not have to be included.
  • the management device 3 can arbitrarily generate a peripheral circuit CD for each transport machine 10. For example, the management device 3 may generate the circuit CD according to the state of the transport machine 10.
  • the management apparatus 3 includes the transporting machine 10 that stores the power storage unit EX.
  • the shortest circuit CD from the current position to the space SP can be generated as a replacement of the battery 14.
  • the transporting machine 10 traveling on the drift DR travels on the circuit CD in the same direction.
  • the vehicle travels clockwise around the circuit CD.
  • the transporting machine 10 is loaded with the ore MR from the loading machine 30 at the draw point DP.
  • the transporting machine 10 discharges the loaded ore MR with the ore pass OPa or the ore pass OPb.
  • the transporting machine 10 traveling on the circumferential circuit CDa receives the loading of the ore MR from the loading machine 30 at the draw point DPb connected to the drift DRb.
  • the transporting machine 10 travels along the drift DRb and the outer circumferential path TRa, and discharges the ore MR to the ore pass OPa provided adjacent to the outer circumferential path TRa.
  • the transporting machine 10 that has discharged the ore MR travels on the drift DRd and receives the loading of the ore MR from the loading machine 30 at the draw point DPd connected to the drift DRd.
  • the transporting machine 10 travels along the drift DRd and the outer circumferential path TRb, and discharges the ore MR to the ore pass OPb provided adjacent to the outer circumferential path TRb.
  • the transporting machine 10 traveling on the peripheral circuit CDb receives the loading of the ore MR from the loading machine 30 at the draw point DPc connected to the drift DRc. Thereafter, the transporting machine 10 travels along the drift DRc and the outer circumferential path TRa, and discharges the ore MR to the ore pass OPa provided adjacent to the outer circumferential path TRa.
  • the transporting machine 10 that has discharged the ore MR travels on the drift DRe and receives the loading of the ore MR from the loading machine 30 at the draw point DPe connected to the drift DRe. Thereafter, the transporting machine 10 travels along the drift DRe and the outer circumferential path TRb, and discharges the ore MR to the ore pass OPb provided adjacent to the outer circumferential path TRb.
  • the passing of the transporting machine 10 can be minimized as compared with the case of reciprocating between the draw point DP and the ore pass OP.
  • the circuit CD includes both the OR path OPa and the OR path OPb, the loading and discharging of the ore MR can be performed twice while the transporting machine 10 makes one circuit of the circuit CD.
  • the conveyance amount of the ore MR can be increased.
  • the mine management system 1 can improve cycle time and improve mine productivity.
  • the passing of the transport machine 10 can be suppressed.
  • each drift DR the direction in which the transporting machine 10 or the like travels is determined in one direction (one-way) for each drift DR. That is, each drift DR can travel only in one direction.
  • the traveling direction of the drift DRb included in the circuit CDa is a direction from the ore path OPb toward the ore path OPa. In this case, the transport machine 10 cannot travel on the drift DRb so as to go from the ore pass OPa to the ore pass OPb.
  • the management device 3 prevents the transporting machine 10 from passing another transporting machine or the loading machine 30 in each drift DR. Is generated.
  • the peripheral circuit CD that reversely travels the drift DR in which the traveling direction is determined as one direction as a result of being included in the already generated peripheral circuit CD. Cannot be generated.
  • the management device 3 generates a new peripheral circuit CD using the drift DR included in the already generated peripheral circuit CD, the traveling direction of the new peripheral circuit CD is the already generated peripheral circuit CD. So as to coincide with the traveling direction of the drift DR included in. By doing in this way, the passing of the transport machine 10 in the peripheral circuit CD is reduced or avoided.
  • drift DRs are connected to the outer track TRa provided with the ore pass OPa, and six drift DRs are also connected to the outer route TRb provided with the ore pass OPb. ing. In the direction in which the outer circumferential path TRa extends, the same number (three in this embodiment) of drift DRs are connected to the outer circumferential path TRa in any direction with respect to the ore path OPa. Similarly, in the direction in which the outer peripheral path TRb extends, the same number (three in this embodiment) of drift DRs are connected to the outer peripheral path TRb in any direction with respect to the OR path OPb.
  • the peripheral circuit CD that includes both the ore pass OPa and the ore pass OPb, (1) Pattern 1: Drift DRa, outer periphery TRa, drift DRf, outer periphery TRb, (2) Pattern 2: Drift DRa, outer circumference TRa, drift DRe, outer circumference TRb, (3) Pattern 3: Drift DRa, outer circumference TRa, drift DRd, outer circumference TRb, (4) Pattern 4: drift DRb, outer periphery TRa, drift DRf, outer periphery TRb, (5) Pattern 5: drift DRb, outer periphery TRa, drift DRe, outer periphery TRb, (6) Pattern 6: Drift DRb, outer periphery TRa, drift DRd, outer periphery TRb, (7) Pattern 7: drift DRc, outer periphery TRa, drift DRf, outer periphery TRb, (8) Pattern
  • the transporting machine 10 travels in one direction (for example, clockwise) through the peripheral circuit CD so that the passing of the transporting machine 10 can be minimized and the transporting machine 10
  • the ore MR can be loaded and discharged twice during one round of the circuit CD.
  • the position and the number of OR paths OP provided in the respective outer circumferential paths TR are not limited.
  • the same number of drift DRs in the extending direction of the outer circumferential path TR with respect to the ore path OP. are preferably connected because the number of patterns of the peripheral circuit CD can be increased.
  • a plurality of work modes in which the above-described index is emphasized are defined.
  • a plurality of these operation modes are determined in consideration of the mining cost ($ / t) per unit weight of the ore MR and the mining amount (t / h) of the ore MR per unit time.
  • the production amount priority mode that prioritizes the mining amount (production amount) of the ore MR per unit time
  • the energy saving mode that prioritizes the suppression of the energy consumption of the transporting machine 10 and the loading machine 30, and the underground
  • a reduced maintenance cost mode that prioritizes suppression of maintenance costs for the road surface of the MI, the loading machine 30 and the transporting machine 10 is defined.
  • the production amount priority mode is defined as a production maximum mode that maximizes the mining amount of the ore MR per unit time and a production amount smoothing mode that suppresses fluctuations in the mining amount of the ore MR. It has been.
  • the maximum production amount mode (p1) is a mode in which the loading performance of the loading machine 30 and the transportation performance of the transporting machine 10 are maximized, the vehicle allocation efficiency is improved, and the production amount is maximized.
  • the production amounts are “processing capacity of loading machine 30 [t / h] ⁇ number of loading machines 30 ⁇ loading efficiency” and “processing capacity of transporting machine 10 [t / h] ⁇ number of transporting machines 10 ⁇ It is a function of “transport efficiency (allocation efficiency)”.
  • the production level mode (p2) is a mode that suppresses fluctuations in [t / h]. By suppressing the peak of [t / h] and suppressing fluctuations, it is not necessary to match the equipment and personnel assignment in the subsequent process to the peak.
  • the processing capability (transport capability) of each transport machine 10 is suppressed when the plurality of transport machines 10 can operate normally. Thereby, the production amount in the underground mine MI is suppressed.
  • an abnormality such as a failure of the transporting machine 10 or during maintenance of the transporting machine 10
  • the processing capacity of the transporting machine 10 that can operate normally is increased. Thereby, the fall of a production amount is suppressed and a production amount is equalized.
  • Energy saving mode (e) is a mode that suppresses energy consumption while achieving a target production amount and a target operating time. In the energy saving mode, the energy cost per mining amount is reduced by suppressing the acceleration and deceleration of the transport machine 10 and the operation of the work machine of the loading machine 30.
  • the maintenance cost mode (m1, m2) is a mode in which the maintenance cost is suppressed while achieving the target production amount and the target operation time.
  • the maintenance-saving cost mode (m1) of the road surface of the mine MI for example, the total travel distance (total travel distance) of the transport machine 10 traveling on a specific road surface is reduced, and the transport machine 10 in each of the plurality of drift DRs is reduced. By averaging the number of passes, etc., it is possible to suppress the specific road surface from being significantly deteriorated, thereby reducing the maintenance cost of the road surface.
  • the wear of the members of the loading machine 30 is suppressed by limiting the excavation force, thereby reducing the maintenance cost of the loading machine 30.
  • the load applied to the wheels 12A and 12B is suppressed by limiting the load amount of the vessel 4, thereby reducing the maintenance cost of the transport machine 10.
  • FIG. 20 shows the mining cost ($ / t) per unit weight of the ore MR, the mining amount (t / h) of the ore MR per unit time, and the above-described plurality of operation modes (p1, p2, e, m1). , M2).
  • the horizontal axis represents the mining cost ($ / t) per unit weight of the ore MR.
  • the vertical axis indicates the mining amount (t / h) of the ore MR per unit time.
  • the production maximum mode is indicated by a point p1.
  • the production level mode is indicated by point p2.
  • the energy saving mode is indicated by a point e.
  • the road surface maintenance cost mode is indicated by a point m1.
  • the low maintenance cost mode of the transport machine 10 and the loading machine 30 is indicated by a point m2.
  • the mining cost ($ / t) per unit weight of the ore MR in the production maximum mode p1 and the mining amount (t / h) of the ore MR per unit time are set to 1, respectively.
  • the multiple operation modes (p1, p2, e, m1, m2) take into consideration the mining cost ($ / t) per unit weight of the ore MR and the mining amount (t / h) of the ore MR per unit time. Determined. For each work mode, a target value of “$ / t” and a target value of “t / h” are determined in advance and stored in the storage device 3M. Each point (p1, p2, e, m1, m2) shown in FIG. 20 is plotted based on the target value of “$ / t” and the target value of “t / h”.
  • work modes are selected by an operator (administrator).
  • the administrator operates the input device 9 of the management apparatus 3 so that one work mode is selected from the plurality of work modes described above.
  • the input device 9 generates an input signal corresponding to the selected work mode.
  • the processing device 3C of the management device 3 sets the working mode of the underground mine MI based on the input signal.
  • the target value of “$ / t” and the target value of “t / h” are achieved.
  • the work parameters and the work parameters of the loading machine 30 are determined.
  • the management device 3 sets one work mode from a plurality of work modes based on an input signal from the input device 9, and sets a target of “$ / t” based on the set (selected) work mode.
  • the work parameter of the transport machine 10 and the work parameter of the loading machine 30 are determined so that the value and the target value of “t / h” are achieved.
  • a plurality of operation modes are determined in consideration of the mining cost ($ / t) per unit weight of the ore MR and the mining amount (t / h) of the ore MR per unit time.
  • the work parameters are determined in advance so as to achieve the target value of “$ / t” and the target value of “t / h” corresponding to the selected work mode, and are stored in the storage device 3M. Therefore, the management device 3 achieves the target value of “$ / t” and the target value of “t / h” based on the storage information of the storage device 3M and the set (selected) work mode.
  • the working parameters of the transporting machine 10 and the working parameters of the loading machine 30 can be determined.
  • the management device 3 changes both the work parameter of the transport machine 10 and the work parameter of the load machine 30 based on the determined work parameter of the transport machine 10 and the work parameter of the load machine 30. In the present embodiment, the management device 3 changes the work parameter of the transport machine 10 and the work parameter of the loading machine 30 at the same time.
  • the work parameters include a parameter related to the performance of the loading machine 30, a parameter related to the performance of the transporting machine 10, a parameter related to the number of the transporting machines 10, and a parameter related to the allocation of the transporting machine 10. These parameters are changed.
  • the work parameters of the transporting machine 10 include the traveling speed (vehicle speed) and acceleration (deceleration) of the transporting machine 10 in the underground mine MI, and the loading amount of the ore MR in the vessel 11. Moreover, the work parameters of the transport machine 10 include a dispatch parameter.
  • the vehicle allocation parameter includes a movement path in the tunnel R until the transport machine 10 moves to the loading place LA including the draw point DP and the loading position LP, and a travel path in the tunnel R until the transport machine 10 moves to the ore pass OP. including.
  • the movement path includes nine patterns of the above-described peripheral circuits (1) to (9) and a circular direction (either clockwise or counterclockwise).
  • the dispatch parameter includes selection of an ore pass that directs the transport machine 10 among the ore pass OPa and the ore pass OPb. Further, the dispatch parameter includes selection of a loading place LA that the transport machine 10 is directed to among the plurality of loading places LA. In addition, the dispatch parameter includes the number of times the transport machine 10 passes for one drift.
  • the working parameters of the loading machine 30 include at least one of the traveling speed (vehicle speed) of the loading machine 30 (traveling device 34) in the underground mine MI, the loading speed of the ore MI on the transporting machine 10, and the excavation force.
  • the loading speed includes the speed of the feeder 31 (including the rotational speed of the rotating roller 33).
  • the excavation force includes penetration input by the penetration member 35 and rotation force of the rotating body 34.
  • the work parameters of the loading machine 30 include a dispatch parameter.
  • the dispatch parameter includes the number of loading machines 30 arranged in one drift DR, the selection of the draw point DP that directs the loading machine 30 among the plurality of draw points DP, and the draw point at which the loading machine 30 is located. It includes a movement path in the mine tunnel R from the DP to another draw point DP.
  • the movement path includes nine patterns of the above-described peripheral circuits (1) to (9) and a circular direction (either clockwise or counterclockwise).
  • FIG. 21 is a diagram for explaining an example of work parameters of the transporting machine 10.
  • the horizontal axis represents the transport time (time: h) of the ore MR by the transport machine 10 from the loading place LA to the soil discharging place OP.
  • the vertical axis indicates the power consumption (kilowatt hour: kwh) of the transporting machine 10.
  • the traveling of the transporting machine 10 is performed so that the target value “$ / t” and the target value “t / h” in the maximum production mode (p1) are achieved.
  • Work parameters such as speed, acceleration (deceleration), and load capacity are determined.
  • the transport machine 10 performs work based on the determined work parameters, the target value of “$ / t” and the target value of “t / h” can be obtained in a short transport time as shown by a point p1 in FIG. Can be achieved.
  • the travel speed and acceleration (“acceleration”) of the transport machine 10 are achieved so that the target value “$ / t” and the target value “t / h” in the energy saving mode (e) are achieved. (Deceleration) and work parameters such as loading capacity are determined.
  • the transporting machine 10 performs work based on the determined work parameters, the target value of “$ / t” and the target value of “t / h” with low power consumption as shown by a point e in FIG. Can be achieved.
  • the traveling speed is set to a high value
  • the acceleration and deceleration are also set to high values
  • the loading amount is also set to a high (large) value.
  • power consumption increases as travel speed, acceleration, deceleration, and load capacity increase. That is, in the maximum production amount mode (p1), although a high production amount is achieved, the power consumption is a high value.
  • the traveling speed is set to a low value
  • the acceleration and deceleration are set to low values
  • the loading amount is set to a low (small) value.
  • power consumption can be suppressed.
  • the traveling speed, acceleration, deceleration, and load capacity are lowered, the production amount is lowered. That is, in the energy saving mode (e), although low power consumption is achieved, the production amount is a low value.
  • FIG. 22 is a diagram for explaining an example of work parameters of the transporting machine 10.
  • the horizontal axis represents the transport time (time: h) of the ore MR by the transport machine 10.
  • the vertical axis shows the traveling speed (speed: m / h) of the transport machine 10.
  • a line e illustrated in FIG. 22 is a speed profile of the transport machine 10 in the energy saving mode (e).
  • a speed profile refers to travel speed data associated with an elapsed time from a certain point in time.
  • the maximum value (maximum speed) of the traveling speed of the transporting machine 10 is equal in each of the maximum production mode (p1) and the energy saving mode (e), the transportation in the maximum production mode (p1).
  • the acceleration and deceleration of the machine 10 are larger than the acceleration and deceleration of the transport machine 10 in the energy saving mode (e). Therefore, in the maximum production mode (p1), the time required for the transporting machine 10 to travel a predetermined distance can be short. Therefore, the production amount is high.
  • the acceleration and deceleration of the transport machine 10 in the energy saving mode (e) are smaller than the acceleration and deceleration of the transport machine 10 in the maximum production mode (p1). Therefore, in the energy saving mode (e), although the time required for the transporting machine 10 to travel a predetermined distance becomes long, power consumption is suppressed.
  • FIG. 23 is a diagram for explaining an example of work parameters of the transport machine 10.
  • the horizontal axis represents the tires of the wheels 12A and 12B of the transporting machine 10, the bearings that rotatably support the wheels 12A and 12B, and the road surface of the mine MI that contacts the tires of the wheels 12A and 12B. Indicates the load applied to.
  • the vertical axis indicates the amount of damage to the tires, bearings, and road surface. The amount of damage means the amount of wear or the degree of deterioration. The greater the amount of damage, the shorter the product life.
  • the load applied to the tire, the bearing, and the road surface changes according to the traveling speed, acceleration, deceleration, and load capacity of the transport machine 10.
  • the higher the traveling speed, acceleration, and deceleration the greater the load on the tire, bearing, and road surface.
  • the greater the load the greater the load on the tires, bearings and road surface.
  • the amount of damage increases.
  • the damage amount of the tire and the bearing is increased, the frequency of replacing the tire and the bearing is increased, and the maintenance cost of the transporting machine 10 including the tire and the bearing is increased.
  • the amount of damage on the road surface increases, the frequency of repairing the road surface increases, and the maintenance cost of the road surface increases.
  • the work parameters of the transport machine 10 including the traveling speed, acceleration, deceleration, and loading capacity are set to high values. Thereby, in the maximum production amount mode (p1), a high production amount can be obtained. On the other hand, in the maximum production mode (p1), the amount of damage is large and the maintenance cost is high.
  • the work parameters of the transporting machine 10 including the travel speed, acceleration, deceleration, and load capacity are set to low values. Thereby, in the road surface maintenance-saving cost mode (m1), the amount of road surface damage is suppressed, and the road surface maintenance cost is suppressed. On the other hand, in the road maintenance-saving cost mode (m1), the production amount is low.
  • the work parameters of the transporting machine 10 including the traveling speed, acceleration, deceleration, and load capacity are set to low values. Thereby, in the maintenance-saving cost mode (m2) of the transport machine 10, the damage amount of a tire and a bearing is suppressed, and the maintenance cost of the transport machine 10 is suppressed. On the other hand, in the maintenance cost mode (m2) of the transporting machine 10, the production amount is low.
  • FIG. 24 shows an example of work parameters of the transport machine 10 in the maximum production mode (p1) and the production leveling mode (p2).
  • the operation parameter is set so that the production amount (travel speed, acceleration, deceleration, and loading amount of the transport machine 10 in the drift DR) in each of the four drift DRs is maximized. Is set.
  • the production amount in each of the four drift DRs does not become the maximum, and the traveling of the transporting machine 10 in the drift DR is allowed with a margin for the maximum production capacity in the drift DR.
  • Speed, acceleration, deceleration, loading capacity, etc. are set.
  • the drift DR loading machine 30 When working in the maximum production mode (p1), for some reason, one of the four drift DRs (the drift DR loading machine 30) may become inoperable. . In that case, the reduction amount (variation amount) of the overall production amount of the underground mine MI becomes large.
  • the production of the entire underground mine MI When one of the four drift DRs (loading machine 30 of the drift DR) becomes inoperable when working in the production level mode (p2), the production of the entire underground mine MI The production of the remaining three drifts is increased so that the amount of fluctuation of the amount is suppressed.
  • the production amount in the drift DR does not become the maximum, but with a margin for the maximum production capacity, the traveling speed, acceleration, Deceleration and load capacity are set. Therefore, when one drift DR among the four drifts cannot be operated, the production amount of the remaining three drift DRs is increased, thereby suppressing the fluctuation amount of the production amount of the entire underground mine MI.
  • the work amount of the crusher machine can be leveled in the post-mining process (for example, the crushing process by the crusher machine). If it is not leveled, it is necessary to prepare a crusher machine corresponding to the maximum production capacity. As described above, if one drift DR becomes inoperable, the maximum production capacity cannot be obtained, and the crusher machine will be idle, resulting in waste. By leveling, there is no waste.
  • Production volume also varies depending on vehicle allocation parameters. For example, if a plurality of transporting machines 10 arrive at one OR path OP at a time, a traffic jam occurs, and as a result, the production amount may decrease. Further, if a plurality of transporting machines 10 arrive at one loading place LA at a time, traffic jams may occur, resulting in a decrease in productivity. Therefore, the movement routes of the plurality of transport machines 10 are adjusted so that the occurrence of traffic jams or the like is suppressed, or a plurality of ore passes OP (OPa, OPb) among a plurality of ore passes (for example, ore pass OPa).
  • OPa, OPb a plurality of ore passes
  • Selection of the ore pass OP to which each of the plurality of transporting machines 10 is directed is performed so that the transporting machines 10 are not flooded. Moreover, selection of the loading place LA which each of the several conveyance machine 10 heads is performed so that the several conveyance machine 10 may not rush to one loading place LA.
  • the occurrence of traffic congestion and the like is also suppressed by adjusting the circulation direction (clockwise or counterclockwise). Moreover, the occurrence of traffic jams is also suppressed by adjusting the traveling speed, acceleration, and deceleration of each of the plurality of transporting machines 10.
  • road maintenance costs vary depending on the dispatch parameters. For example, if the transport machine 10 passes through one drift DR many times, the damage amount of the drift DR increases. Therefore, when the road maintenance-saving cost mode (m1) is selected, the transport machine 10 does not pass through one drift DR so that the number of times the transport machine 10 passes through the four drift DRs is averaged. In addition, a dispatch parameter is determined. On the other hand, if the number of passes of the transporting machine 10 is averaged for the four drift DRs, the production amount may decrease. Therefore, when the maximum production mode (p1) is selected, the dispatch parameter is determined without considering the averaging of the number of passes of the transporting machine 10 in order to improve the production amount.
  • the maintenance cost of the transporting machine 10 and the loading machine 30 varies depending on the dispatch parameter. For example, when the vehicle is allocated so that the operating rates of the transporting machine 10 and the loading machine 30 are maximized, the moving distance of the transporting machine 10 and the loading machine 30 becomes long. Therefore, when the maintenance cost mode (m2) of the transporting machine 10 and the loading machine 30 is selected, the vehicle allocation parameter is determined so that the moving distance of the transporting machine 10 and the loading machine 30 is shortened. On the other hand, when the moving distance of the transport machine 10 and the loading machine 30 is shortened, the production amount may be reduced. Therefore, when the production maximum mode (p1) is selected, the vehicle allocation parameter is determined so that the moving distance between the transporting machine 10 and the loading machine 30 is increased in order to improve the production quantity.
  • Table 1 shows the relationship between work parameters, work parameters of the loading machine 30 and work parameters of the transport machine 10.
  • the management system 1 changes both the work parameters of the transport machine 10 and the work parameters of the loading machine 30 based on the selected work mode (p1, p2, e, m1, m2). .
  • the management system 1 changes the work parameters of the transport machine 10 and the work parameters of the loading machine 30 at the same time. For example, when an input signal indicating the energy saving mode (e) is input via the input device 9 for the underground mine MI that is working in the maximum production mode (p1), the management device 3 uses the operation parameters of the transporting machine 10. At the same time as reducing a certain traveling speed, the feeder speed, which is an operation parameter of the loading machine 30, is reduced.
  • the input device 9 is operated by the administrator to set the work mode.
  • the setting of the work mode includes at least one of a new setting, a resetting, and a setting for changing.
  • an input signal indicating the energy saving mode (e) is input to the processing device 3C via the input device 9 for the underground mine MI that is working in the maximum production mode (p1) (step SP1).
  • the processing apparatus 3C sets the work mode of the underground mine MI to the energy saving mode (e) based on the input signal (step SP2).
  • the processing device 3 ⁇ / b> C allows the work parameter of the transport machine 10 to achieve the target value “$ / t” and the target value “t / h” that are determined in advance in accordance with the energy saving mode (e). And the working parameter of the loading machine 30 is determined (step SP3).
  • the management device 3 transmits the work parameters determined by the processing device 3C to the plurality of loading machines 30 and the plurality of transporting machines 10 in the underground mine via the wireless communication device 4 (step SP4).
  • the control device 75 (see FIG. 17 and the like) of the loading machine 30 receives the transmitted work parameter.
  • the control device 75 changes the work parameter used before reception to the received new work parameter.
  • the control device 75 controls the loading machine 30 with the changed new work parameter (step SP5). For example, the feeder 31 that has been driven at the first feeder speed before receiving a new work parameter is changed to a second feeder speed that is slower than the first feeder speed in order to save energy.
  • control device 70 (see FIG. 12 and the like) of the transport machine 10 receives the transmitted work parameter.
  • the control device 70 changes the work parameter used before reception to the received new work parameter.
  • the control device 70 controls the transporting machine 10 with the changed new work parameter. For example, the transport machine 10 that has been driven at the first travel speed before receiving a new work parameter is changed to a second travel speed that is slower than the first travel speed in order to save energy.
  • a plurality of work modes are prepared in advance, and the work mode can be selected according to the request of the administrator. It is possible to work smoothly in a production system that prioritizes various indicators. For example, a mode for reducing costs (energy consumption and maintenance costs) can be set instead of suppressing the production amount according to the demand of the manager.
  • the management system 1 causes the loading machine 30 to perform only excavation and loading of the ore MR, and causes the transporting machine 10 to transport only the ore MR. Separate functions. For this reason, the loading machine 30 can concentrate on excavation work and conveyance work, and the conveyance machine 10 can concentrate on conveyance work. That is, the loading machine 30 may not have the function of transporting the ore MR, and the transporting machine 10 may not have the function of excavating and transporting the ore MR. Since the loading machine 30 can specialize in the function of excavation and conveyance, and the conveyance machine 10 can be specialized in the function of conveyance of the ore MR, each function can be exhibited to the maximum. As a result, the mine management system 1 can improve the productivity of the mine M.
  • both the work parameter of the transporting machine 10 and the work parameter of the loading machine 30 are changed.
  • the situation where the sex is suddenly reduced is avoided.
  • the materials handling machine 10 and the loading machine 30 can work appropriately based on the work mode according to a manager's request.
  • a plurality of operation modes are determined in consideration of the mining cost ($ / t) per unit weight of the ore MR and the mining amount (t / h) of the ore MR per unit time.
  • the work parameters are determined in advance so as to achieve the target value of “$ / t” and the target value of “t / h” corresponding to the selected work mode, and are stored in the storage device 3M. Therefore, the management device 3 achieves the target value of “$ / t” and the target value of “t / h” corresponding to the selected work mode based on the selected work mode and the storage information of the storage device 3M. As such, appropriate working parameters can be determined.
  • work modes related to the road surface such as work modes exclusively related to the transporting machine 10 and the loading machine 30 such as productivity-oriented mode and energy saving mode, and maintenance saving modes. And are prepared. Thereby, high productivity can be obtained, suppressing the cost of the whole mine.
  • the work parameter of the transport machine 10 and the work parameter of the loading machine 30 are changed at the same time in the work mode setting.
  • the work parameters of the transport machine 10 and the work parameters of the loading machine 30 may not be changed at the same time.
  • the work parameter of the loading machine 30 may be changed after the work parameter of the transport machine 10 is changed.
  • the management device 3 changes the work parameters of the transporting machine 10, After the loading operation of the loading machine 30 is completed, the operation parameters of the loading machine 30 may be changed.
  • the control device 70 of the transporting machine 10 and the control device of the loading machine 30. 75 may change the work parameter at the same time or may change the work parameter at different timings.
  • the control device of the loading machine 30 75 may change the work parameter immediately after receiving the command signal, or may change the work parameter after receiving the command signal and completing the loading operation.
  • the control device 70 of the transport machine 10 may change the work parameter immediately after receiving the command signal,
  • the work parameter may be changed after a predetermined time has elapsed after receiving the command signal.
  • the loading machine 30 may perform excavation using a bucket having a cutting edge, or may perform loading.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mining & Mineral Resources (AREA)
  • Business, Economics & Management (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Human Resources & Organizations (AREA)
  • Geology (AREA)
  • Geochemistry & Mineralogy (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Strategic Management (AREA)
  • Economics (AREA)
  • Entrepreneurship & Innovation (AREA)
  • General Business, Economics & Management (AREA)
  • Marketing (AREA)
  • Tourism & Hospitality (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Remote Sensing (AREA)
  • Development Economics (AREA)
  • Quality & Reliability (AREA)
  • Operations Research (AREA)
  • Game Theory and Decision Science (AREA)
  • Educational Administration (AREA)
  • Animal Husbandry (AREA)
  • Primary Health Care (AREA)
  • Agronomy & Crop Science (AREA)
  • Marine Sciences & Fisheries (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)
  • Excavating Of Shafts Or Tunnels (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

A mine management system comprises transportation machinery carries ore and travels from a mining location in an underground mine to a dumping location, loading machinery that mines ore at the mining location and loads the same onto the transportation machinery, and a management device that sets an operation mode in the mine on the basis of an input signal and changes operation parameters of the transportation machinery and the operation parameters of the loading machinery.

Description

鉱山の管理システムMine management system
 本発明は、鉱山の管理システムに関する。 The present invention relates to a mine management system.
 鉱山における採掘方法として、地表から採掘する露天採掘と、地下から採掘する坑内採掘とが知られている。環境に対する負荷の低減及び鉱石の存在部位の深部化等により、近年においては、坑内採掘が採用されるケースが増えている。例えば、特許文献1には、鉱石をバケットで掘削する車両が坑道内に進入して鉱石を掘削した後、掘削した鉱石をバケットに保持した状態で坑道を移動する作業機械が記載されている。 As mining methods in mines, open-pit mining from the surface and underground mining from the underground are known. In recent years, underground mining has been increasingly adopted due to the reduction of environmental burden and the deepening of the presence of ore. For example, Patent Document 1 describes a working machine that moves a tunnel while holding a drilled ore in a bucket after a vehicle that excavates ore with a bucket enters the tunnel and excavates the ore.
米国特許第7899599号明細書US Pat. No. 7,899,599
 鉱山において、様々な指標を基準とする生産体制で作業を行いたいという要望がある。 There is a desire to work in a production system based on various indicators in a mine.
 本発明の態様は、要望に応じた生産体制で円滑に作業を行うことができる鉱山の管理システムを提供することを目的とする。 An object of an aspect of the present invention is to provide a mine management system capable of smoothly performing work in a production system according to a request.
 本発明の態様は、鉱山の坑内の採掘場所から排土場所まで鉱石を積載して走行する運搬機械と、前記採掘場所で前記鉱石を採掘して前記運搬機械に積み込む積込機械と、入力信号に基づいて前記坑内の作業モードを設定して、前記運搬機械の作業パラメータ及び前記積込機械の作業パラメータを変更する管理装置と、を備える鉱山の管理システムを提供する。 Aspects of the present invention include a transport machine that travels by loading ore from a mining site to a discharge site in a mine, a loading machine that mines the ore at the mining site and loads the ore into the transport machine, and an input signal The management system of the mine provided with the management apparatus which sets the operation mode in the said mine based on this and changes the operation parameter of the said transport machine and the operation parameter of the said loading machine is provided.
 本発明の態様によれば、要望に応じた生産体制で円滑に作業を行うことができる。 According to the aspect of the present invention, the work can be smoothly performed in the production system according to the request.
図1は、本実施形態に係る運搬機械及び積込機械が稼働する現場の一例を示す模式図である。 Drawing 1 is a mimetic diagram showing an example of the field where the conveyance machine and loading machine concerning this embodiment operate. 図2は、坑内の一例及び鉱山の採掘システムを示す模式図である。FIG. 2 is a schematic diagram showing an example of a mine and a mining system. 図3は、図2の一部を拡大した図である。FIG. 3 is an enlarged view of a part of FIG. 図4は、積込機械による地山の鉱石の掘削及び運搬機械への鉱石の積込を示す図である。FIG. 4 is a diagram showing excavation of ore from the natural ground by the loading machine and loading of the ore into the transporting machine. 図5は、積込機械による地山の鉱石の掘削及び運搬機械への鉱石の積込を示す図である。FIG. 5 is a diagram illustrating excavation of ore from the natural ground by the loading machine and loading of the ore into the transporting machine. 図6は、鉱山の管理システムが備える管理装置の機能ブロック図の一例である。FIG. 6 is an example of a functional block diagram of a management device provided in the mine management system. 図7は、本実施形態に係る運搬機械の斜視図である。FIG. 7 is a perspective view of the transport machine according to the present embodiment. 図8は、本実施形態に係る運搬機械の側面図である。FIG. 8 is a side view of the transport machine according to the present embodiment. 図9は、本実施形態に係る運搬機械が備えるベッセルの支持構造を示す図である。FIG. 9 is a diagram illustrating a support structure of a vessel provided in the transport machine according to the present embodiment. 図10は、本実施形態に係る運搬機械の上面図である。FIG. 10 is a top view of the transport machine according to the present embodiment. 図11は、本実施形態に係る運搬機械がベッセルを傾斜させた状態を示す図である。FIG. 11 is a diagram illustrating a state where the transport machine according to the present embodiment tilts the vessel. 図12は、運搬機械が備える制御装置を示すブロック図の一例である。FIG. 12 is an example of a block diagram illustrating a control device included in the transport machine. 図13は、本実施形態に係る積込機械の側面図である。FIG. 13 is a side view of the loading machine according to the present embodiment. 図14は、本実施形態に係る積込機械の上面図である。FIG. 14 is a top view of the loading machine according to the present embodiment. 図15は、本実施形態に係る積込機械の正面図である。FIG. 15 is a front view of the loading machine according to the present embodiment. 図16は、本実施形態に係る積込機械が走行するときの姿勢を示す図である。FIG. 16 is a diagram illustrating a posture when the loading machine according to the present embodiment travels. 図17は、本実施形態に係る積込機械が備える制御装置を示すブロック図の一例である。FIG. 17 is an example of a block diagram illustrating a control device included in the loading machine according to the present embodiment. 図18は、本実施形態に係る鉱山の採掘システムが備える蓄電器取扱装置の一例を示す図である。FIG. 18 is a diagram illustrating an example of a capacitor handling device provided in the mining system of the mine according to the present embodiment. 図19は、本実施形態に係る鉱山の採掘システムにおいて、運搬機械が坑内のドリフトを進行する方向を示す図である。FIG. 19 is a diagram illustrating a direction in which the transport machine advances drift in the mine in the mining system according to the present embodiment. 図20は、本実施形態に係る作業モードと鉱山の生産性との関係を示す図である。FIG. 20 is a diagram illustrating the relationship between the work mode and the mine productivity according to the present embodiment. 図21は、本実施形態に係る運搬機械の作業パラメータの一例を説明するための図である。FIG. 21 is a diagram for explaining an example of work parameters of the transport machine according to the present embodiment. 図22は、本実施形態に係る運搬機械の作業パラメータの一例を説明するための図である。FIG. 22 is a diagram for explaining an example of work parameters of the transport machine according to the present embodiment. 図23は、本実施形態に係る運搬機械の作業パラメータの一例を説明するための図である。FIG. 23 is a diagram for explaining an example of work parameters of the transport machine according to the present embodiment. 図24は、本実施形態に係る作業モードと運搬機械の作業パラメータとの関係の一例を説明するための図である。FIG. 24 is a diagram for explaining an example of the relationship between the work mode according to the present embodiment and the work parameters of the transport machine. 図25は、本実施形態に係る管理システムの処理の一例を示すフローチャートである。FIG. 25 is a flowchart illustrating an example of processing of the management system according to the present embodiment.
 以下、本発明に係る実施形態について図面を参照しながら説明するが、本発明はこれに限定されない。以下の説明においては、所定面内の一方向をX軸方向、所定面内においてX軸方向と直交する方向をY軸方向、X軸方向及びY軸方向のそれぞれと直交する方向をZ軸方向として、各部の位置関係を適宜説明する。また、重力の作用方向を下方、重力の作用方向とは反対方向を上方という。 Hereinafter, embodiments according to the present invention will be described with reference to the drawings, but the present invention is not limited thereto. In the following description, one direction in the predetermined plane is the X axis direction, a direction orthogonal to the X axis direction in the predetermined plane is the Y axis direction, and a direction orthogonal to each of the X axis direction and the Y axis direction is the Z axis direction. As follows, the positional relationship of each part is demonstrated suitably. Further, the direction of gravity action is referred to as the downward direction, and the direction opposite to the direction of gravity action is referred to as the upward direction.
 鉱山の生産性は、採掘する鉱石の単位重量当たりの採掘コスト($/t)、及び単位時間当たりの鉱石の採掘量(t/h)を含む。tは採掘量、hは時間、$はコストである。 Mine productivity includes mining cost ($ / t) per unit weight of ore to be mined and mining amount (t / h) per unit time. t is the mining amount, h is the time, and $ is the cost.
<採掘現場の概要>
 図1は、本実施形態に係る運搬機械10及び積込機械30が稼働する現場の一例を示す模式図である。運搬機械10及び積込機械30は、地下から鉱石を採掘する坑内採掘に使用される。運搬機械10は、坑道Rにおいて積荷を運搬する作業機械の一種であり、積込機械30は、運搬機械10に積荷を積み込む作業機械の一種である。本実施形態においては、ブロックケービング工法により鉱石が採掘される。
<Outline of mining site>
FIG. 1 is a schematic diagram illustrating an example of a site where the transport machine 10 and the loading machine 30 according to the present embodiment operate. The transporting machine 10 and the loading machine 30 are used for underground mining for mining ore from underground. The transport machine 10 is a type of work machine that transports a load in the mine shaft R, and the load machine 30 is a type of work machine that loads a load on the transport machine 10. In this embodiment, ore is mined by the block caving method.
 ブロックケービング工法とは、鉱山Mの鉱体(鉱脈)MGに鉱石MRの採掘場所(ドローポイント)DPと、採掘された鉱石MRを搬送するための坑道Rとを設置し、ドローポイントDPの上部をアンダーカットして発破し、鉱石MRを自然崩落させることによって、ドローポイントDPから鉱石MRを採掘する工法をいう。ドローポイントDPは、鉱体MGの内部又は鉱体MGの下方に設置される。ブロックケービング工法は、岩盤又は鉱体の下部をアンダーカットすると脆弱な岩が自然崩壊を始める性質を利用した工法である。鉱体MGの内部又は下方から鉱石MRが採掘されると、崩落が上部まで伝播する。このため、ブロックケービング工法を用いると、鉱体MGの鉱石MRを効率良く採掘することができる。ブロックケービング工法において、ドローポイントDPは複数設けられる場合が多い。 The block caving method is the installation of an ore MR mining site (draw point) DP and a mine channel R for transporting the mined ore MR in the ore body (or vein) MG of the mine M, and the upper part of the draw point DP. Is a method of mining the ore MR from the draw point DP by undercutting and blasting and naturally collapsing the ore MR. The draw point DP is installed inside the ore body MG or below the ore body MG. The block caving method is a method that utilizes the property that a fragile rock starts to naturally collapse when the lower part of the bedrock or ore body is undercut. When the ore MR is mined from inside or below the ore body MG, the collapse propagates to the upper part. For this reason, when the block caving method is used, the ore MR of the ore body MG can be mined efficiently. In the block caving method, a plurality of draw points DP are often provided.
 本実施形態においては、地上に管理装置3が配置される。管理装置3は、地上の管理施設に設置される。管理装置3は、原則として移動を考慮していないものである。管理装置3は、採掘現場を管理する。管理装置3は、無線通信装置4及びアンテナ4Aを備える通信システムを介して、運搬機械10及び積込機械30を含む坑内の作業機械と通信可能である。本実施形態において、運搬機械10及び積込機械30は、無人で稼働する作業機械である。なお、運搬機械10及び積込機械30は、オペレータの操作により稼働する有人の作業機械でもよい。 In this embodiment, the management device 3 is arranged on the ground. The management device 3 is installed in a management facility on the ground. In principle, the management device 3 does not consider movement. The management device 3 manages the mining site. The management device 3 can communicate with work machines in the mine including the transporting machine 10 and the loading machine 30 via a communication system including the wireless communication device 4 and the antenna 4A. In the present embodiment, the transport machine 10 and the loading machine 30 are work machines that operate unattended. The transporting machine 10 and the loading machine 30 may be manned work machines that are operated by an operator's operation.
<坑内について>
 図2は、本実施形態に係る坑内MI及び鉱山の管理システム1の一例を示す模式図である。図3は、図2の一部を拡大した図である。図2及び図3に示すように、鉱脈MGの下方に設置された坑道Rは、第1坑道DRと、第2坑道CRとを含む。坑道Rは、例えば、鉱体MGの内部又は鉱体Mの下方に設置される。坑内MIにおいて、第1坑道DR及び第2坑道CRは、それぞれ複数存在する。第2坑道CRは、それぞれのドローポイントDPと第1坑道DRとを接続する。積込機械30は、第2坑道CRを通ってドローポイントDPに接近することができる。本実施形態において、坑道Rは第3坑道TRを含む。本実施形態において、複数(この例では2本)の第3坑道TRが、複数の第1坑道DRと接続されている。以下の説明において、第1坑道DRを適宜、ドリフトDR、と称し、第2坑道CRを適宜、クロスカットCR、と称し、第3坑道TRを適宜、外周路TR、と称する。
<About the mine>
FIG. 2 is a schematic diagram illustrating an example of the underground mine MI and the mine management system 1 according to the present embodiment. FIG. 3 is an enlarged view of a part of FIG. As shown in FIGS. 2 and 3, the mine shaft R installed below the mine MG includes a first mine shaft DR and a second mine shaft CR. The mine shaft R is installed, for example, inside the ore body MG or below the ore body M. In the underground mine MI, there are a plurality of first and second tunnels DR and CR, respectively. The second tunnel CR connects each draw point DP and the first tunnel DR. The loading machine 30 can approach the draw point DP through the second mine tunnel CR. In the present embodiment, the mine shaft R includes a third mine shaft TR. In the present embodiment, a plurality (two in this example) of third tunnels TR are connected to a plurality of first tunnels DR. In the following description, the first mine shaft DR is appropriately referred to as a drift DR, the second mine shaft CR is appropriately referred to as a cross-cut CR, and the third mine shaft TR is appropriately referred to as an outer periphery TR.
 図2に示すように、坑内MIには、2本の外周路TRが設置されている。クロスカットCRはドローポイントDPによって分断される。それぞれの外周路TRは、ドローポイントDPによって分断されない。1本の外周路TRは、複数のドリフトDRのそれぞれの一端部を接続し、もう1本の外周路TRは、複数のドリフトDRのそれぞれの他端部を接続する。このように、すべてのドリフトDRは、2本の外周路TRと接続されている。本実施形態においては、運搬機械10及び積込機械30は、いずれのドリフトDRであっても一方の外周路TRから進入することができる。図3に示す例において、運搬機械10及び積込機械30は、ドリフトDR内を矢印FCの方向に進行する。 As shown in FIG. 2, two outer circumferential paths TR are installed in the underground mine MI. The cross cut CR is divided by the draw point DP. Each outer periphery TR is not divided by the draw point DP. One outer peripheral path TR connects one end of each of the plurality of drifts DR, and the other outer peripheral path TR connects the other end of each of the plurality of drifts DR. Thus, all the drifts DR are connected to the two outer peripheral paths TR. In the present embodiment, the transport machine 10 and the loading machine 30 can enter from one outer circumferential path TR regardless of which drift DR. In the example illustrated in FIG. 3, the transport machine 10 and the loading machine 30 travel in the direction of the arrow FC in the drift DR.
 図2及び図3に示すように、運搬機械10に対する積込機械30による積込作業が行われる積込位置LPは、クロスカットCR又はその近傍に定められる。以下の説明においては、ドローポイントDP及び積込位置LPを含む領域を適宜、積込場所LA、と称する。 As shown in FIGS. 2 and 3, the loading position LP where the loading operation by the loading machine 30 to the transporting machine 10 is performed is determined at the crosscut CR or in the vicinity thereof. In the following description, an area including the draw point DP and the loading position LP is appropriately referred to as a loading place LA.
 図2に示すように、坑内MIには、運搬機械10によって運搬された積荷としての鉱石MRが排出される排土場所(オアパス)OPが設けられる。運搬機械10は、ドローポイントDP近傍の積込場所LAにおいて積込機械30により積荷としての鉱石MRを積み込まれた後、ドリフトDRを走行して、オアパスOPまで移動する。運搬機械10は、到着したオアパスOPに積荷としての鉱石MRを排出する。 As shown in FIG. 2, the underground mine MI is provided with a soil removal place (or pass) OP from which ore MR as a load transported by the transporting machine 10 is discharged. After the ore MR as a load is loaded by the loading machine 30 at the loading place LA near the draw point DP, the transporting machine 10 travels on the drift DR and moves to the ore pass OP. The transporting machine 10 discharges the ore MR as a load to the arrived orpas OP.
 本実施形態において、運搬機械10は、走行用の電動機と、電動機に電力を供給する蓄電器とを有する。外周路TRには、空間SPが接続されている。空間SPには、運搬機械10に搭載された蓄電器を交換する蓄電器交換装置EXが設置される。 In the present embodiment, the transporting machine 10 includes an electric motor for traveling and a capacitor that supplies electric power to the electric motor. A space SP is connected to the outer circumferential path TR. In the space SP, a capacitor exchange device EX for replacing a capacitor mounted on the transporting machine 10 is installed.
 以下の説明においては、便宜上、運搬機械10が走行する坑道Rの路面とXY平面とが実質的に平行であることとする。なお、実際には、坑道Rの路面は、凹凸を有していたり、上り坂及び下り坂を有していたりする場合が多い。 In the following description, for the sake of convenience, it is assumed that the road surface of the mine shaft R on which the transporting machine 10 travels and the XY plane are substantially parallel. In practice, the road surface of the mine shaft R is often uneven or has an uphill and a downhill.
 図2に示すように、鉱山の管理システム1は、管理装置3と、無線通信用のアンテナ4Aとを有する。管理装置3は、例えば、坑内MIで稼働する運搬機械10及び積込機械30の運行を管理する。運行の管理には、運搬機械10及び積込機械30の配車、運搬機械10及び積込機械30の稼働状態に関する情報(稼働情報)の収集、及びその管理が含まれる。稼働情報は、例えば、運搬機械10及び積込機械30の稼働時間、走行距離、走行速度、蓄電器の残量、異常の有無、異常の箇所、及び積載量が含まれる。稼働情報は、主として運搬機械10及び積込機械30の運転評価、予防保全、及び異常診断に用いられる。したがって、稼働情報は、鉱山Mの生産性向上又は鉱山のオペレーションの改善といったニーズに応えるために有用である。 As shown in FIG. 2, the mine management system 1 includes a management device 3 and an antenna 4A for wireless communication. The management device 3 manages the operation of the transporting machine 10 and the loading machine 30 that operate in the underground mine MI, for example. The management of the operation includes allocation of the transporting machine 10 and the loading machine 30, collection of information (operation information) regarding the operating state of the transporting machine 10 and the loading machine 30, and management thereof. The operation information includes, for example, the operation time of the transporting machine 10 and the loading machine 30, the travel distance, the travel speed, the remaining capacity of the battery, the presence / absence of an abnormality, the location of the abnormality, and the loading capacity. The operation information is mainly used for operation evaluation, preventive maintenance, and abnormality diagnosis of the transport machine 10 and the loading machine 30. Therefore, the operation information is useful in order to meet the needs for improving the productivity of the mine M or improving the operation of the mine.
 管理装置3は、通信装置を備えている。アンテナ4Aを備えた無線通信装置4は、管理装置3の通信装置と接続されている。管理装置3は、通信装置、無線通信装置4及びアンテナ4Aを介して、坑内MIで稼働する運搬機械10及び積込機械30との間で情報を伝達することができる。 The management device 3 includes a communication device. The wireless communication device 4 including the antenna 4A is connected to the communication device of the management device 3. The management device 3 can transmit information between the transport machine 10 and the loading machine 30 operating in the underground mine MI via the communication device, the wireless communication device 4, and the antenna 4A.
 本実施形態において、積込機械30は、走行用の電動機によって走行し、電動機によって掻き込み装置を駆動して鉱石MRを掘削する。図3に示すように、これらの電動機に積込機械30の外部から電力を供給する給電ケーブル5が坑内MIの坑道Rに設けられている。積込機械30は、例えば、積込場所LAに設けられた電力供給装置としての給電用のコネクタ6及び積込機械30からの電力ケーブル7を介して、給電ケーブル5からの電力の供給を受ける。電力供給装置は、ドリフトDR又はクロスカットCRのいずれか一方に設けられていればよい。本実施形態において、積込機械30は、外部から供給される電力によって走行及び掘削の少なくとも一方を行ってもよい。また、積込機械30は、蓄電器を搭載し、この蓄電器から電力の供給を受けて走行及び掘削の少なくとも一方を行ってもよい。また、積込機械30は、蓄電器を搭載し、この蓄電器から電力の供給を受けて走行及び掘削の少なくとも一方を行ってもよい。すなわち、積込機械30は、外部から供給される電力及び蓄電器から供給される電力の少なくとも一方によって、走行及び掘削の少なくとも一方を行う。例えば、積込機械30は、外部から供給される電力によって掘削を行い、蓄電器から供給される電力によって走行することができる。また、積込機械30は、クロスカットCR内を走行する場合は、外部から供給される電力により走行してもよい。本実施形態において、積込機械30は、電動機によって油圧ポンプを駆動して油圧を発生させ、この油圧によって油圧モータを駆動することにより、鉱石MRを掘削してもよい。また、積込機械30は、蓄電器を備え、この蓄電器から供給される電力により走行し、掘削してもよい。 In the present embodiment, the loading machine 30 travels with a traveling motor, and drives the stirrer with the motor to excavate the ore MR. As shown in FIG. 3, a feeding cable 5 that supplies electric power to these electric motors from the outside of the loading machine 30 is provided in the mine channel R of the mine MI. The loading machine 30 is supplied with power from the power feeding cable 5 via, for example, a power feeding connector 6 as a power supply device provided in the loading place LA and a power cable 7 from the loading machine 30. . The electric power supply apparatus should just be provided in any one of drift DR or crosscut CR. In the present embodiment, the loading machine 30 may perform at least one of traveling and excavation with electric power supplied from the outside. Further, the loading machine 30 may be equipped with a capacitor, and may receive at least one of traveling and excavation by receiving power supply from the capacitor. Further, the loading machine 30 may be equipped with a capacitor, and may receive at least one of traveling and excavation by receiving power supply from the capacitor. That is, the loading machine 30 performs at least one of traveling and excavation with at least one of electric power supplied from the outside and electric power supplied from the battery. For example, the loading machine 30 can perform excavation with electric power supplied from the outside and can travel with electric power supplied from the storage battery. Further, when traveling in the crosscut CR, the loading machine 30 may travel with electric power supplied from the outside. In the present embodiment, the loading machine 30 may excavate the ore MR by driving a hydraulic pump with an electric motor to generate hydraulic pressure and driving the hydraulic motor with this hydraulic pressure. Moreover, the loading machine 30 may be provided with an electric storage device, run by electric power supplied from the electric storage device, and excavate.
 給電ケーブル5と積込機械30からの電力ケーブル7との接続は、コネクタ6に限定されるものではない。例えば、坑道R側に設けられ、かつ給電ケーブル5と接続された電極と、積込機械30側からの電力ケーブル7に接続された電極とを電力供給装置として用い、両方の電極を接触させて、給電ケーブル5から積込機械30に電力を供給してもよい。このようにすると、両方の電極の位置決め精度が低くても両者を接触させて電力を積込機械30に供給することができる。本実施形態では、積込機械30は電力で動作するものとしたが、このようなものには限定されない。積込機械30は、例えば、内燃機関によって走行したり鉱石MRを掘削したりするものであってもよい。この場合、積込機械30は、内燃機関によって油圧ポンプを駆動し、油圧ポンプから吐出される作動油によって、例えば、油圧モータ又は油圧シリンダ等を駆動することにより走行したり、鉱石MRを掘削したりしてもよい。 The connection between the power supply cable 5 and the power cable 7 from the loading machine 30 is not limited to the connector 6. For example, an electrode provided on the tunnel R side and connected to the power supply cable 5 and an electrode connected to the power cable 7 from the loading machine 30 side are used as a power supply device, and both electrodes are brought into contact with each other. Alternatively, power may be supplied from the feeding cable 5 to the loading machine 30. If it does in this way, even if the positioning accuracy of both electrodes is low, both can be contacted and electric power can be supplied to loading machine 30. In this embodiment, although the loading machine 30 shall operate | move with electric power, it is not limited to such a thing. The loading machine 30 may be, for example, one that travels by an internal combustion engine or excavates the ore MR. In this case, the loading machine 30 drives a hydraulic pump by an internal combustion engine, and travels by driving a hydraulic motor, a hydraulic cylinder, or the like with hydraulic oil discharged from the hydraulic pump, or excavates the ore MR. Or you may.
<鉱石の掘削及び運搬>
 図4及び図5は、積込機械30による地山RMの鉱石MRの掘削及び運搬機械10への鉱石MRの積込を示す図である。積込場所LAのドローポイントDPにおいて、鉱石MRの地山RMが形成される。図4及び図5に示すように、積込機械30は、積込場所LAのクロスカットCR内に設置されて、先端部が鉱石MRの地山RMに貫入してこれを掘削する。積込機械30は、掘削した鉱石MRを、地山RMとは反対側であって、ドリフトDR内に待機している運搬機械10に積載する。ドリフトDR内には、積込機械30に電力を供給する給電ケーブル5が設けられている。
<Ore excavation and transportation>
4 and 5 are diagrams showing excavation of the ore MR of the natural ground RM by the loading machine 30 and loading of the ore MR into the transporting machine 10. A natural ground RM of the ore MR is formed at the draw point DP of the loading place LA. As shown in FIGS. 4 and 5, the loading machine 30 is installed in the crosscut CR at the loading place LA, and the tip portion penetrates into the natural ground RM of the ore MR to excavate it. The loading machine 30 loads the excavated ore MR on the transporting machine 10 that is on the opposite side of the natural ground RM and is waiting in the drift DR. In the drift DR, a power supply cable 5 for supplying power to the loading machine 30 is provided.
 図4及び図5に示すように、積込機械30は、車体30Bと、搬送装置としてのフィーダー31と、掘削装置としての回転ローラー33と、回転ローラー33を支持する支持機構32と、走行装置34とを含む。回転ローラー33と支持機構32とは、鉱石MRを掘削してフィーダー31に送り込む掻き込み装置として機能する。 As shown in FIGS. 4 and 5, the loading machine 30 includes a vehicle body 30 </ b> B, a feeder 31 as a conveying device, a rotating roller 33 as an excavating device, a support mechanism 32 that supports the rotating roller 33, and a traveling device. 34. The rotating roller 33 and the support mechanism 32 function as a scraping device that excavates the ore MR and sends it to the feeder 31.
 支持機構32は、車体30Bに取り付けられるブーム32aと、これに連結されて揺動し、かつ回転ローラー33を回転可能に支持するアーム32bとを有する。積込機械30の車体30Bは、鉱石MRの地山RMに貫入する貫入部材35と、回転体36と、岩石ガード37とを備える。貫入部材35は、鉱石MRの掘削時に地山RMに貫入する。回転体36は、積込機械30の貫入部材35が地山RMに貫入するときに回転して、貫入を補助する。 The support mechanism 32 includes a boom 32a attached to the vehicle body 30B, and an arm 32b that is connected to and swings and supports the rotating roller 33 so as to be rotatable. The vehicle body 30 </ b> B of the loading machine 30 includes a penetrating member 35 that penetrates into the natural ground RM of the ore MR, a rotating body 36, and a rock guard 37. The penetration member 35 penetrates the natural ground RM when excavating the ore MR. The rotating body 36 rotates when the penetrating member 35 of the loading machine 30 penetrates the natural ground RM, and assists the penetrating.
 運搬機械10は、車体10Bと、ベッセル11とを含む。ベッセル11は、車体10Bに搭載される。ベッセル11は、鉱石MRを積荷として積載する。本実施形態において、ベッセル11は、図4及び図5に示すように、車体10Bの幅方向W、すなわち車軸と平行な方向に移動する。ベッセル11は、運搬機械10の走行時には車体10Bの幅方向中央に設置される。また、ベッセル11は、鉱石MRの積載時において、車体10Bの幅方向外側に移動する。その結果、運搬機械10は、ベッセル11を積込機械30のフィーダー31の下方Dに接近させることができるので、フィーダー31によって搬送された鉱石MRがベッセル11外に落下する可能性を低減し、鉱石MRをベッセル11内に確実に落下させることができる。 The transporting machine 10 includes a vehicle body 10 </ b> B and a vessel 11. The vessel 11 is mounted on the vehicle body 10B. The vessel 11 loads the ore MR as a load. In the present embodiment, the vessel 11 moves in the width direction W of the vehicle body 10B, that is, in a direction parallel to the axle, as shown in FIGS. The vessel 11 is installed at the center in the width direction of the vehicle body 10B when the transporting machine 10 travels. Further, the vessel 11 moves outward in the width direction of the vehicle body 10B when the ore MR is loaded. As a result, since the transporting machine 10 can bring the vessel 11 closer to the lower part D of the feeder 31 of the loading machine 30, the possibility that the ore MR transported by the feeder 31 falls outside the vessel 11, The ore MR can be reliably dropped into the vessel 11.
 本実施形態では、積込機械30は、鉱山Mの坑内MIのドローポイント(採掘場所)DPにおいて鉱石MRを掘削し、そのドローポイントDPで採掘された鉱石MRを運搬機械10に搬送して積み込む。運搬機械10は、ドローポイントDPから坑内MIのオアパス(排土場所)OPまで鉱石MRを積載して走行する。運搬機械10は、オアパスOPまで鉱石MRを運搬した後、オアパスOPに排出する。このとき、積込機械30は、運搬機械10が走行する空間をドリフトDR内に残した状態でクロスカットCRに留まって、ドローポイントDPで鉱石MRを掘削する。そして、積込機械30は、掘削した鉱石MRをドローポイントDPから離れる方向に搬送して、運搬機械10に積み込む。積込機械30は、掘削した鉱石MRを積載した状態では移動しない。運搬機械10は、ドローポイントDPで採掘された鉱石MRを積載し、ドリフトDRを走行して図2に示すオアパスOPまで運搬する。 In this embodiment, the loading machine 30 excavates the ore MR at the draw point (mining place) DP of the mine MI of the mine M, and conveys the ore MR mined at the draw point DP to the transport machine 10 for loading. . The transporting machine 10 travels by loading the ore MR from the draw point DP to the ore pass (sinking place) OP of the mine MI. The transport machine 10 transports the ore MR to the ore pass OP, and then discharges it to the ore pass OP. At this time, the loading machine 30 stays in the crosscut CR while leaving the space in which the transporting machine 10 travels in the drift DR, and excavates the ore MR at the draw point DP. Then, the loading machine 30 conveys the excavated ore MR in a direction away from the draw point DP and loads it on the transporting machine 10. The loading machine 30 does not move in a state where the excavated ore MR is loaded. The transport machine 10 loads the ore MR mined at the draw point DP, travels on the drift DR, and transports it to the ore pass OP shown in FIG.
 このように、本実施形態において、鉱山の管理システム1は、積込機械30には鉱石MRの掘削及び積込のみを行わせ、運搬機械10には鉱石MRの運搬のみを行わせるようにして、両者の機能を分離している。このため、積込機械30は掘削作業及び搬送作業に専念でき、運搬機械10は運搬作業に専念できる。すなわち、積込機械30は鉱石MRを運搬する機能を有していなくてもよく、運搬機械10は鉱石MRの掘削及び搬送する機能を有していなくてもよい。積込機械30は、掘削及び搬送の機能に特化でき、運搬機械10は鉱石MRの運搬の機能に特化できるので、それぞれの機能を最大限発揮させることができる。結果として、鉱山の管理システム1は、鉱山Mの生産性を向上させることができる。 As described above, in this embodiment, the mine management system 1 causes the loading machine 30 to perform only excavation and loading of the ore MR and causes the transport machine 10 to transport only the ore MR. The functions of both are separated. For this reason, the loading machine 30 can concentrate on excavation work and conveyance work, and the conveyance machine 10 can concentrate on conveyance work. That is, the loading machine 30 may not have the function of transporting the ore MR, and the transporting machine 10 may not have the function of excavating and transporting the ore MR. Since the loading machine 30 can specialize in the function of excavation and conveyance, and the conveyance machine 10 can be specialized in the function of conveyance of the ore MR, each function can be exhibited to the maximum. As a result, the mine management system 1 can improve the productivity of the mine M.
<管理装置>
 図6は、本実施形態に係る管理装置3の一例を示す機能ブロック図である。管理装置3は、処理装置3Cと、記憶装置3Mと、入出力部(I/O)3IOとを有する。管理装置3の入出力部3IOに、出力装置としての表示装置8と、入力装置9と、通信装置3Rとが接続されている。管理装置3は、例えば、コンピュータである。処理装置3Cは、例えば、CPU(Central Processing Unit)である。記憶装置3Mは、例えば、RAM(Random Access Memory)、ROM(Read Only Memory)、フラッシュメモリ若しくはハードディスクドライブ等又はこれらを組み合わせたものである。入出力部3IOは、処理装置3Cと、処理装置3Cの外部に接続する表示装置8、入力装置9及び通信装置3Rとの情報の入出力(インターフェース)に用いられる。
<Management device>
FIG. 6 is a functional block diagram illustrating an example of the management apparatus 3 according to the present embodiment. The management device 3 includes a processing device 3C, a storage device 3M, and an input / output unit (I / O) 3IO. A display device 8 as an output device, an input device 9, and a communication device 3R are connected to the input / output unit 3IO of the management device 3. The management device 3 is a computer, for example. The processing device 3C is, for example, a CPU (Central Processing Unit). The storage device 3M is, for example, a RAM (Random Access Memory), a ROM (Read Only Memory), a flash memory, a hard disk drive, or the like, or a combination thereof. The input / output unit 3IO is used for input / output (interface) of information between the processing device 3C and the display device 8, the input device 9, and the communication device 3R connected to the outside of the processing device 3C.
 処理装置3Cは、運搬機械10及び積込機械30の配車並びにこれらの稼働情報の収集等といった管理装置3の処理を実行する。配車及び稼働情報の収集等の処理は、処理装置3Cがそれぞれに対応するコンピュータプログラムを記憶装置3Mから読み込んで実行することにより実現される。 The processing device 3C executes processing of the management device 3 such as allocation of the transporting machine 10 and the loading machine 30 and collection of operation information thereof. Processing such as vehicle allocation and collection of operation information is realized by the processing device 3C reading the corresponding computer program from the storage device 3M and executing it.
 本実施形態において、処理装置3Cは、入力装置9の操作により生成された入力信号に基づいて、坑内MIの作業モードを設定する。管理装置3は、その設定した作業モードに基づいて、運搬機械10の作業パラメータ及び積込機械30の作業パラメータの両方を変更する。 In the present embodiment, the processing device 3C sets the work mode of the underground mine MI based on the input signal generated by the operation of the input device 9. The management device 3 changes both the work parameters of the transport machine 10 and the work parameters of the loading machine 30 based on the set work mode.
 記憶装置3Mは、処理装置3Cに各種の処理を実行させるための各種のコンピュータプログラムを記憶している。本実施形態において、記憶装置3Mが記憶しているコンピュータプログラムは、例えば、運搬機械10及び積込機械30の配車をするためのコンピュータプログラム、運搬機械10及び積込機械30の稼働情報を収集するためのコンピュータプログラム、稼働情報等に基づいて各種解析を実現するコンピュータプログラム等である。 The storage device 3M stores various computer programs for causing the processing device 3C to execute various processes. In the present embodiment, the computer program stored in the storage device 3M collects, for example, a computer program for dispatching the transporting machine 10 and the loading machine 30, and operation information of the transporting machine 10 and the loading machine 30. Computer programs for realizing various kinds of analysis based on computer information, operation information, and the like.
 表示装置8は、例えば、液晶ディスプレイ等であり、運搬機械10及び積込機械30の配車をしたり、稼働情報を収集したりする際に必要な情報を表示する。入力装置9は、例えば、キーボード、タッチパネル又はマウス等であり、運搬機械10及び積込機械30の配車をしたり、これらの稼働情報を収集したりする際に必要な情報を入力する。通信装置3Rは、アンテナ4Aを備えた無線通信装置4と接続されている。前述したように、無線通信装置4及びアンテナ4Aは坑内MIに設置される。通信装置3Rと無線通信装置4とは有線で接続される。通信装置3Rと坑内MIの運搬機械10及び積込機械30とは、例えば、無線LAN(Local Aria Network)によって通信することができる。次に、運搬機械10について、より詳細に説明する。 The display device 8 is, for example, a liquid crystal display or the like, and displays information necessary for dispatching the transporting machine 10 and the loading machine 30 and collecting operation information. The input device 9 is, for example, a keyboard, a touch panel, a mouse, or the like, and inputs information necessary for dispatching the transporting machine 10 and the loading machine 30 and collecting their operation information. The communication device 3R is connected to the wireless communication device 4 including the antenna 4A. As described above, the wireless communication device 4 and the antenna 4A are installed in the underground mine MI. The communication device 3R and the wireless communication device 4 are connected by wire. The communication device 3R and the transport machine 10 and the loading machine 30 in the underground mine MI can communicate with each other by, for example, a wireless LAN (Local Aria Network). Next, the transporting machine 10 will be described in more detail.
<運搬機械>
 図7は、本実施形態に係る運搬機械10の一例を示す斜視図である。図8は、本実施形態に係る運搬機械10の側面図である。運搬機械10は、車体10Bと、ベッセル11と、車輪12A、12Bとを含む。さらに、運搬機械10は、蓄電器としての蓄電器14と、アンテナ15と、撮像装置16A、16Bと、非接触センサ17A、17Bとを有している。車輪12A、12Bは、車体10Bの前後にそれぞれ取り付けられる。本実施形態において、車輪12A、12Bは、図8に示す、車体10B内に搭載された電動機13A、13Bによって駆動される。このように、運搬機械10は、すべての車輪12A、12Bが駆動輪となる。また、本実施形態において、車輪12A、12Bは、それぞれ操舵輪となる。本実施形態において、車輪12A、12Bは、例えば、ソリッドタイヤである。このようにすることで、車輪12A、12Bが小径となるので、運搬機械10の高さが抑制される。運搬機械10は、車輪12Aから車輪12Bの方向及び車輪12Bから車輪12Aの方向のいずれにも走行することができる。車輪12A、12Bは、ソリッドタイヤに限定されるものではなく、例えば、空気入りタイヤ等であってもよい。また、車輪12A、12Bのうち、一方のみが駆動輪であってもよい。
<Transport machine>
FIG. 7 is a perspective view illustrating an example of the transport machine 10 according to the present embodiment. FIG. 8 is a side view of the transport machine 10 according to the present embodiment. The transporting machine 10 includes a vehicle body 10B, a vessel 11, and wheels 12A and 12B. Further, the transporting machine 10 includes a power storage device 14 as a power storage device, an antenna 15, imaging devices 16A and 16B, and non-contact sensors 17A and 17B. The wheels 12A and 12B are attached to the front and rear of the vehicle body 10B, respectively. In the present embodiment, the wheels 12A and 12B are driven by electric motors 13A and 13B mounted in the vehicle body 10B shown in FIG. Thus, in the transporting machine 10, all the wheels 12A and 12B are driving wheels. In the present embodiment, the wheels 12A and 12B are respectively steered wheels. In the present embodiment, the wheels 12A and 12B are, for example, solid tires. By doing in this way, since wheel 12A, 12B becomes a small diameter, the height of the materials handling machine 10 is suppressed. The transporting machine 10 can travel in any of the direction from the wheel 12A to the wheel 12B and the direction from the wheel 12B to the wheel 12A. The wheels 12A and 12B are not limited to solid tires, and may be pneumatic tires, for example. Further, only one of the wheels 12A and 12B may be a drive wheel.
 なお、車輪12A及び車輪12Bの両方が操舵輪として機能可能な場合において、車輪12Aが前輪で車輪12Bが後輪となるように運搬機械10が進行する場合、車輪12A(前輪)だけが操舵され車輪12B(後輪)は操舵されなくてもよいし、車輪12B(後輪)だけが操舵され車輪12A(前輪)は操舵されなくてもよいし、車輪12A(前輪)及び車輪12B(後輪)の両方が操舵されてもよい。車輪12A及び車輪12Bの両方が操舵される場合、車輪12Aと車輪12Bとが同位相方向に操舵されてもよいし、車輪12Aと車輪12Bとが逆位相方向に操舵されてもよい。車輪12Aと車輪12Bとが同位相方向に操舵されることにより、例えば高速旋回時において安定して走行することができる。車輪12Aと車輪12Bとが逆位相方向に操舵されることにより、旋回半径を小さくすることができる。車輪12Bが前輪で車輪12Aが後輪となるように運搬機械10が進行する場合も同様である。 In the case where both the wheel 12A and the wheel 12B can function as steering wheels, when the transport machine 10 advances so that the wheel 12A is the front wheel and the wheel 12B is the rear wheel, only the wheel 12A (front wheel) is steered. The wheel 12B (rear wheel) may not be steered, only the wheel 12B (rear wheel) may be steered and the wheel 12A (front wheel) may not be steered, the wheel 12A (front wheel) and the wheel 12B (rear wheel) ) May be steered. When both the wheel 12A and the wheel 12B are steered, the wheel 12A and the wheel 12B may be steered in the same phase direction, or the wheel 12A and the wheel 12B may be steered in the opposite phase direction. By steering the wheels 12A and 12B in the same phase direction, for example, the vehicle can stably travel during high-speed turning. The turning radius can be reduced by steering the wheel 12A and the wheel 12B in the opposite phase direction. The same applies to the case where the transport machine 10 advances so that the wheel 12B is the front wheel and the wheel 12A is the rear wheel.
 ベッセル11は、車体10Bの上方に搭載されて、車体10Bに支持される。車体10Bには、電動機13A、13Bに電力を供給するための蓄電器14が搭載される。本実施形態において、蓄電器14の外形は、直方体状である。蓄電器14は、車体10Bの前後にそれぞれ1個ずつ搭載される。このようにすることで、運搬機械10は、前後の質量のバランスが均等に近くなるので、安定して走行することができる。蓄電器14は、車体10Bに対して着脱可能に搭載される。蓄電器14から供給される電力によって、運搬機械10が有する電動機13A、13B及び電子機器が作動する。本実施形態においては、運搬機械10は電動としているが、内燃機関が動力源であってもよい。 The vessel 11 is mounted above the vehicle body 10B and supported by the vehicle body 10B. A battery 14 for supplying electric power to the electric motors 13A and 13B is mounted on the vehicle body 10B. In this embodiment, the external shape of the battery 14 is a rectangular parallelepiped shape. One battery 14 is mounted before and after the vehicle body 10B. By doing in this way, since the balance of the mass of front and back becomes close | similar to the conveyance machine 10 equally, it can drive | work stably. The battery 14 is detachably mounted on the vehicle body 10B. The electric motors 13 </ b> A and 13 </ b> B and the electronic device included in the transport machine 10 are operated by the electric power supplied from the battery 14. In the present embodiment, the transport machine 10 is electrically driven, but the internal combustion engine may be a power source.
 車体10Bには、アンテナ15と、撮像装置16A、16Bと、非接触センサ17A、17Bとが取り付けられる。アンテナ15は、図6に示すアンテナ4A及び通信装置3Rを介して、管理装置3と無線通信する。撮像装置16A、16Bは、ベッセル11に積載された積荷、本実施形態では図3及び図4等に示す鉱石MRの状態(荷姿)を撮影する。撮像装置16A、16Bは、例えば、可視光を撮像するカメラであってもよいし、赤外線を撮像する赤外線カメラであってもよい。撮像装置16A、16Bは、それぞれ車体10Bの上面に取り付けられた支持柱16AS、16BSの先端に取り付けられる。このような構造により、それぞれの撮像装置16A、16Bは、ベッセル11の全体を上方から撮像することができるので、ベッセル11に積載された鉱石MRの状態を確実に撮像することができる。 An antenna 15, imaging devices 16A and 16B, and non-contact sensors 17A and 17B are attached to the vehicle body 10B. The antenna 15 wirelessly communicates with the management device 3 via the antenna 4A and the communication device 3R illustrated in FIG. The imaging devices 16A and 16B photograph the load loaded on the vessel 11, that is, the state (packing state) of the ore MR shown in FIGS. 3 and 4 in this embodiment. The imaging devices 16A and 16B may be, for example, cameras that capture visible light or infrared cameras that capture infrared light. The imaging devices 16A and 16B are attached to the tips of support columns 16AS and 16BS attached to the upper surface of the vehicle body 10B, respectively. With such a structure, each of the imaging devices 16 </ b> A and 16 </ b> B can image the entire vessel 11 from above, so that the state of the ore MR loaded on the vessel 11 can be reliably imaged.
 非接触センサ17A、17Bは、車体10Bの前後にそれぞれ取り付けられる。非接触センサ17A、17Bは、運搬機械10の周囲、特に進行方向側に存在する物体を非接触で検出する。非接触センサ17A、17Bは、例えば、レーダー装置が用いられる。非接触センサ17A、17Bは、電波又は超音波等を発射して、物体で反射した電波を受信して、物体との相対的な距離及び方位を検出可能である。非接触センサ17A、17Bは、レーダー装置に限定されるものではない。非接触センサ17A、17Bは、例えば、レーザスキャナー、及び3次元距離センサの少なくとも1つを含んでもよい。 Non-contact sensors 17A and 17B are attached to the front and rear of the vehicle body 10B, respectively. The non-contact sensors 17A and 17B detect an object existing around the transport machine 10, particularly on the traveling direction side, in a non-contact manner. As the non-contact sensors 17A and 17B, for example, radar devices are used. The non-contact sensors 17A and 17B can emit a radio wave or an ultrasonic wave, receive a radio wave reflected by the object, and detect a relative distance and direction from the object. The non-contact sensors 17A and 17B are not limited to radar devices. The non-contact sensors 17A and 17B may include at least one of a laser scanner and a three-dimensional distance sensor, for example.
 運搬機械10は、車体10Bの前後に、それぞれ撮像装置としての周辺監視カメラ17CA、17CBを備えている。周辺監視カメラ17CA、17CBは、車体10Bの周囲、特に前方を撮像して、車体10Bの周囲に存在する物体の形状を検出する。 The transporting machine 10 includes peripheral monitoring cameras 17CA and 17CB as imaging devices before and after the vehicle body 10B. The peripheral monitoring cameras 17CA and 17CB image the periphery of the vehicle body 10B, particularly the front, and detect the shape of an object existing around the vehicle body 10B.
 車体10Bは、前後の間に凹部10BUを有している。凹部10BUは、車輪12Aと車輪12Bとの間に配置される。ベッセル11は、積込機械30によって積荷としての鉱石MRが積み込まれる部材である。ベッセル11の少なくとも一部は、凹部10BUに配置される。 The vehicle body 10B has a recess 10BU between the front and rear. Recess 10BU is arranged between wheel 12A and wheel 12B. The vessel 11 is a member on which ore MR as a load is loaded by the loading machine 30. At least a part of the vessel 11 is disposed in the recess 10BU.
 本実施形態において、車体10Bの前後方向において車体10Bの中心部AXの一方側に配置される車体10Bの一部分と他方側に配置される車体10Bの一部分とは対称(前後対称)である。また、車体10Bの前後方向において車体10Bの中心部AXの一方側に配置されるベッセル11の一部分と他方側に配置されるベッセル11の一部分とは対称(前後対象)である。また、車体10B及びベッセル11は、平面視において、車体10Bの前後方向の中心軸に対して対称(左右対称)である。 In the present embodiment, a part of the vehicle body 10B disposed on one side of the center portion AX of the vehicle body 10B and a part of the vehicle body 10B disposed on the other side in the front-rear direction of the vehicle body 10B are symmetric (front-back symmetry). Further, in the front-rear direction of the vehicle body 10B, a part of the vessel 11 arranged on one side of the center part AX of the vehicle body 10B and a part of the vessel 11 arranged on the other side are symmetrical (front-rear object). Further, the vehicle body 10B and the vessel 11 are symmetric (laterally symmetric) with respect to the central axis in the front-rear direction of the vehicle body 10B in plan view.
 ベッセル11は、底面11Bと、底面11Bと接続する4個の側面11SF、11SR、11SA、11SBとを含む。側面11SA、11SBは、底面11Bから垂直に立ち上がっている。側面11SF、11SRは、底面11Bに対してそれぞれ車輪12A、12B側に傾斜している。底面11Bと、4個の側面11SF、11SR、11SA、11SBとによって凹部11Uが形成される。凹部11Uには、積荷としての鉱石MRが積載される。車体10Bの凹部10BUは、ベッセル11の外形に沿った形状を有する。 The vessel 11 includes a bottom surface 11B and four side surfaces 11SF, 11SR, 11SA, and 11SB connected to the bottom surface 11B. The side surfaces 11SA and 11SB stand up vertically from the bottom surface 11B. The side surfaces 11SF and 11SR are inclined toward the wheels 12A and 12B, respectively, with respect to the bottom surface 11B. A recess 11U is formed by the bottom surface 11B and the four side surfaces 11SF, 11SR, 11SA, and 11SB. Ore MR as a load is loaded in the recess 11U. The recess 10BU of the vehicle body 10B has a shape along the outer shape of the vessel 11.
 図9は、本実施形態に係る運搬機械10が備えるベッセル11の支持構造を示す図である。図10は、本実施形態に係る運搬機械10の上面図である。図11は、本実施形態に係る運搬機械10がベッセルを傾斜させた状態を示す図である。ベッセル11は、テーブル11Tの上面に、ベッセル11を昇降させるアクチュエータとしての油圧シリンダ(ホイストシリンダ)11Cbを介して載置されている。 FIG. 9 is a diagram illustrating a support structure of the vessel 11 provided in the transport machine 10 according to the present embodiment. FIG. 10 is a top view of the transport machine 10 according to the present embodiment. FIG. 11 is a diagram illustrating a state in which the transport machine 10 according to the present embodiment tilts the vessel. The vessel 11 is placed on the upper surface of the table 11T via a hydraulic cylinder (hoist cylinder) 11Cb as an actuator for moving the vessel 11 up and down.
 テーブル11Tは、車体10Bの凹部10BUの上面に設けられた一対の支持体11R、11Rを介して車体10Bに支持されている。支持体11Rは、車体10Bの幅方向に延在する棒状の部材である。それぞれの支持体11R、11Rは、テーブル11Tの車体10Bと対向する部分に設けられた一対の溝11TU、11TUに嵌め合わされている。溝11TU、11TUは、支持体11Rが延在する方向、すなわち、車体10Bの幅方向に向かって設けられている。このような構造により、テーブル11Tは、支持体11R、11Rに沿って移動する。すなわち、テーブル11Tは、運搬機械10の車体10Bの幅方向に向かって移動することができる。 The table 11T is supported by the vehicle body 10B via a pair of support bodies 11R and 11R provided on the upper surface of the recess 10BU of the vehicle body 10B. The support 11R is a rod-like member extending in the width direction of the vehicle body 10B. Each support 11R, 11R is fitted in a pair of grooves 11TU, 11TU provided in a portion of the table 11T facing the vehicle body 10B. The grooves 11TU and 11TU are provided in the direction in which the support 11R extends, that is, in the width direction of the vehicle body 10B. With such a structure, the table 11T moves along the supports 11R and 11R. That is, the table 11T can move in the width direction of the vehicle body 10B of the transporting machine 10.
 テーブル11Tと車体10Bとの間には、テーブル11Tを車体10Bの幅方向に移動させるためのアクチュエータとして、油圧シリンダ(スライド用シリンダ)11Caが取り付けられている。油圧シリンダ11Caが伸縮することにより、テーブル11Tは、車体10Bの幅方向の両側に移動する。テーブル11Tにはベッセル11が取り付けられているので、図10に示すように、ベッセル11も、テーブル11Tとともに車体10Bの幅方向Wの両側に移動することができる。 A hydraulic cylinder (slide cylinder) 11Ca is attached between the table 11T and the vehicle body 10B as an actuator for moving the table 11T in the width direction of the vehicle body 10B. As the hydraulic cylinder 11Ca expands and contracts, the table 11T moves to both sides in the width direction of the vehicle body 10B. Since the vessel 11 is attached to the table 11T, as shown in FIG. 10, the vessel 11 can also move to both sides in the width direction W of the vehicle body 10B together with the table 11T.
 積込機械30から鉱石MRがベッセル11に積載されるときには、図5に示すように、ベッセル11が積込機械30側に移動する。このようにすることで、運搬機械10は、鉱石MRを確実にベッセル11に積載することができる。また、ベッセル11の一方に鉱石MRが偏って積載された場合、運搬機械10は、ベッセル11を車体10Bの幅方向に往復運動させることにより、鉱石MRをベッセル11の全体に分散させ、鉱石MRの偏りを抑制することができる。 When the ore MR is loaded on the vessel 11 from the loading machine 30, the vessel 11 moves to the loading machine 30 side as shown in FIG. By doing in this way, the conveyance machine 10 can load the ore MR on the vessel 11 reliably. Further, when the ore MR is loaded on one side of the vessel 11, the transporting machine 10 reciprocates the vessel 11 in the width direction of the vehicle body 10 </ b> B to disperse the ore MR over the entire vessel 11, and the ore MR. Can be suppressed.
 ベッセル11は、油圧シリンダ11Cbが伸縮することにより昇降する。図11は、油圧シリンダ11Cbが伸びてベッセル11が傾いた状態を示している。ベッセル11は、図11に示すように、車体10Bの幅方向Wの一方側の軸線Zbを中心として揺動する。軸線Zbは、テーブル11Tに含まれており、かつ車体10Bの前後方向と平行である。油圧シリンダ11Cbが伸びると、ベッセル11は、軸線Zbとは反対側が高くなり、車体10Bの凹部10BUから突出する。その結果、ベッセル11が傾斜し、軸線Zb側の蓋11CVが開いて、軸線Zb側から鉱石MRが排出される。油圧シリンダ11Cbが縮むと、ベッセル11は車体10Bの凹部10BUに収まる。蓋11CVは、図示しないリンク機構により、ベッセル11が昇降する動作に連動する。 The vessel 11 moves up and down as the hydraulic cylinder 11Cb expands and contracts. FIG. 11 shows a state where the hydraulic cylinder 11Cb is extended and the vessel 11 is tilted. As shown in FIG. 11, the vessel 11 swings about an axis Zb on one side in the width direction W of the vehicle body 10B. The axis Zb is included in the table 11T and is parallel to the front-rear direction of the vehicle body 10B. When the hydraulic cylinder 11Cb extends, the vessel 11 becomes higher on the side opposite to the axis Zb and protrudes from the recess 10BU of the vehicle body 10B. As a result, the vessel 11 is inclined, the lid 11CV on the axis Zb side is opened, and the ore MR is discharged from the axis Zb side. When the hydraulic cylinder 11Cb contracts, the vessel 11 is received in the recess 10BU of the vehicle body 10B. The lid 11CV is interlocked with the operation in which the vessel 11 moves up and down by a link mechanism (not shown).
 本実施形態では、ベッセル11は車体10Bの幅方向Wの一方側に存在する軸線Zbのみを中心として揺動するが、これに限定されない。例えば、ベッセル11は、車体10Bの一方側の軸線Zbに加え、他方側に存在し、かつ車体10Bの前後方向と平行なもう1つの軸線を中心として揺動してもよい。このようにすれば、運搬機械10は、車体10Bの幅方向Wの両側から鉱石MRを排出することができる。 In the present embodiment, the vessel 11 swings about only the axis Zb existing on one side in the width direction W of the vehicle body 10B, but is not limited to this. For example, the vessel 11 may swing about another axis that is present on the other side and parallel to the longitudinal direction of the vehicle body 10B in addition to the axis Zb on one side of the vehicle body 10B. In this way, the transporting machine 10 can discharge the ore MR from both sides in the width direction W of the vehicle body 10B.
 図12は、運搬機械10が備える制御装置70を示すブロック図の一例である。運搬機械10が備える制御装置70は、運搬機械10の走行及びベッセル11の幅方向における移動及び昇降を制御する。制御装置70は、処理装置71と記憶装置72とを備える。処理装置71には、撮像装置16A、16B、非接触センサ17A、17B、周辺監視カメラ17CA、17CB、質量センサ18、読取装置19、測域センサ20、ジャイロセンサ21、速度センサ22、加速度センサ23、駆動制御装置24、通信装置25及び記憶装置72等が接続されている。 FIG. 12 is an example of a block diagram illustrating the control device 70 provided in the transport machine 10. The control device 70 included in the transport machine 10 controls the travel of the transport machine 10 and the movement and elevation of the vessel 11 in the width direction. The control device 70 includes a processing device 71 and a storage device 72. The processing device 71 includes imaging devices 16A and 16B, non-contact sensors 17A and 17B, peripheral monitoring cameras 17CA and 17CB, a mass sensor 18, a reading device 19, a range sensor 20, a gyro sensor 21, a speed sensor 22, and an acceleration sensor 23. The drive control device 24, the communication device 25, the storage device 72, and the like are connected.
 撮像装置16A、16B及び周辺監視カメラ17CA、17CBは、CCD又はCMOSのような撮像素子を含み、物体の光学像を取得して、その物体の外形を検出可能である。本実施形態において、撮像装置16A、16B及び周辺監視カメラ17CA、17CBの少なくとも一方は、ステレオカメラを含み、物体の3次元の外形データを取得可能である。撮像装置16A、16B及び周辺監視カメラ17CA、17CBは、撮像した結果を処理装置71に出力する。処理装置71は、撮像装置16A、16Bの検出結果を取得し、これに基づいて、ベッセル11における鉱石MRの状態に関する情報を取得する。本実施形態において、ベッセル11に積載された鉱石MRの外形は、レーザスキャナー及び3次元距離センサの少なくとも1つを用いて検出されてもよい。 The imaging devices 16A and 16B and the peripheral monitoring cameras 17CA and 17CB include an image sensor such as a CCD or a CMOS, and can acquire an optical image of an object and detect the outer shape of the object. In the present embodiment, at least one of the imaging devices 16A and 16B and the peripheral monitoring cameras 17CA and 17CB includes a stereo camera, and can acquire three-dimensional outline data of an object. The imaging devices 16A and 16B and the surrounding monitoring cameras 17CA and 17CB output the captured results to the processing device 71. The processing device 71 acquires the detection results of the imaging devices 16A and 16B, and acquires information related to the state of the ore MR in the vessel 11 based on the detection results. In the present embodiment, the outer shape of the ore MR loaded on the vessel 11 may be detected using at least one of a laser scanner and a three-dimensional distance sensor.
 非接触センサ17A、17Bは、処理装置71と接続され、検出結果を処理装置71に出力する。非接触センサ17A、17Bは、取得した結果を処理装置71に出力する。質量センサ18は、ベッセル11及びベッセル11に積載された鉱石MRの質量を検出する。ベッセル11の質量は予め分かっているので、質量センサ18の検出結果からベッセル11の質量を減算すれば、ベッセル11に積載された鉱石MRの質量が得られる。質量センサ18は、処理装置71と接続されており、検出結果を処理装置71に出力する。処理装置71は、質量センサ18の検出結果に基づいて、ベッセル11に積み込まれた鉱石MRの質量及びベッセル11に鉱石MRが積載されているか否かに関する情報を求める。質量センサ18は、例えば、ベッセル11とテーブル11Tとの間に設けられるひずみゲージ式ロードセルでもよいし、油圧シリンダ11Cbの油圧を検出する圧力センサであってもよい。 The non-contact sensors 17A and 17B are connected to the processing device 71 and output the detection result to the processing device 71. The non-contact sensors 17A and 17B output the acquired results to the processing device 71. The mass sensor 18 detects the mass of the vessel 11 and the ore MR loaded on the vessel 11. Since the mass of the vessel 11 is known in advance, the mass of the ore MR loaded on the vessel 11 can be obtained by subtracting the mass of the vessel 11 from the detection result of the mass sensor 18. The mass sensor 18 is connected to the processing device 71 and outputs a detection result to the processing device 71. Based on the detection result of the mass sensor 18, the processing device 71 obtains information on the mass of the ore MR loaded on the vessel 11 and whether or not the ore MR is loaded on the vessel 11. The mass sensor 18 may be, for example, a strain gauge type load cell provided between the vessel 11 and the table 11T, or may be a pressure sensor that detects the hydraulic pressure of the hydraulic cylinder 11Cb.
 読取装置19は、ドリフトDRに設けられたマークの識別情報(固有情報)を検出する。マークは、ドリフトDRに沿って複数配置されている。マークは、バーコード及び2次元コードのような識別子(コード)でもよいし、ICタグ又はRFIDのような識別子(タグ)でもよい。読取装置19は、処理装置71と接続され、検出結果を処理装置71に出力する。 The reading device 19 detects the identification information (unique information) of the mark provided in the drift DR. A plurality of marks are arranged along the drift DR. The mark may be an identifier (code) such as a barcode and a two-dimensional code, or may be an identifier (tag) such as an IC tag or RFID. The reading device 19 is connected to the processing device 71 and outputs a detection result to the processing device 71.
 測域センサ20は、運搬機械10の車体10Bの外側、例えば、前方及び後方に取り付けられて、運搬機械10の周囲における空間の物理的な形状データを取得して出力する。ジャイロセンサ21は、運搬機械10の方位(方位変化量)を検出し、検出結果を処理装置71に出力する。速度センサ22は、運搬機械10の走行速度を検出し、検出結果を処理装置71に出力する。加速度センサ23は、運搬機械10の加速度を検出し、検出結果を処理装置71に出力する。駆動制御装置24は、例えば、マイクロコンピュータである。駆動制御装置24は、処理装置71からの指令に基づき、走行用の電動機13A、13B、制動システム13BS、操舵システム13SS及び油圧ポンプ13Pを駆動する電動機13Cの動作を制御する。油圧ポンプ13Pは、油圧シリンダ11Ca、11Cbに作動油を供給する装置である。本実施形態において、運搬機械10は、走行用の電動機13A、13Bによって走行するが、これに限定されない。例えば、運搬機械10は、油圧ポンプ13Pから吐出される作動油によって駆動する油圧モータによって走行してもよい。制動システム13BS及び操舵システム13SSも、電動であってもよいし、油圧を利用して動作するものであってもよい。 The range sensor 20 is attached to the outside of the vehicle body 10B of the transporting machine 10, for example, forward and rearward, and acquires and outputs physical shape data of the space around the transporting machine 10. The gyro sensor 21 detects the direction (direction change amount) of the transport machine 10 and outputs the detection result to the processing device 71. The speed sensor 22 detects the traveling speed of the transport machine 10 and outputs the detection result to the processing device 71. The acceleration sensor 23 detects the acceleration of the transport machine 10 and outputs the detection result to the processing device 71. The drive control device 24 is, for example, a microcomputer. The drive control device 24 controls the operation of the electric motors 13A and 13B, the braking system 13BS, the steering system 13SS, and the electric motor 13C that drives the hydraulic pump 13P based on a command from the processing device 71. The hydraulic pump 13P is a device that supplies hydraulic oil to the hydraulic cylinders 11Ca and 11Cb. In the present embodiment, the transporting machine 10 travels using the traveling electric motors 13A and 13B, but is not limited thereto. For example, the transporting machine 10 may travel by a hydraulic motor that is driven by hydraulic fluid discharged from the hydraulic pump 13P. The braking system 13BS and the steering system 13SS may also be electric, or may operate using hydraulic pressure.
 本実施形態において、ドリフトDRにおいてマークが配置されている位置(絶対位置)に関する情報は、事前に測定された既知な情報である。マークの絶対位置に関する情報は、記憶装置72に記憶されている。処理装置71は、運搬機械10に設けられている読取装置19で検出したマークの検出結果(マークの識別情報)と、記憶装置72の記憶情報とに基づいて、ドリフトDRにおける運搬機械10の絶対位置を求めることができる。 In this embodiment, the information regarding the position (absolute position) where the mark is arranged in the drift DR is known information measured in advance. Information regarding the absolute position of the mark is stored in the storage device 72. The processing device 71 determines the absolute value of the transport machine 10 in the drift DR based on the mark detection result (mark identification information) detected by the reading device 19 provided in the transport machine 10 and the storage information in the storage device 72. The position can be determined.
 測域センサ20は、空間の物理的な形状データを出力可能な走査型の光波距離計を含む。測域センサ20は、例えば、レーザスキャナー及び3次元距離センサの少なくとも1つを含み、2次元又は3次元の空間データを取得し、出力することができる。測域センサ20は、積込機械30及びドリフトDRの壁面の少なくとも一方を検出する。本実施形態において、測域センサ20は、積込機械30の形状データ、ドリフトDRの壁面の形状データ及びベッセル11の積荷の形状データの少なくとも1つを取得可能である。また、測域センサ20は、積込機械30との相対位置(相対的な距離及び方位)及びドリフトDRの壁面との相対位置の少なくとも一方を検出可能である。測域センサ20は、検出した情報を処理装置71に出力する。 The range sensor 20 includes a scanning lightwave distance meter that can output physical shape data of a space. The range sensor 20 includes, for example, at least one of a laser scanner and a three-dimensional distance sensor, and can acquire and output two-dimensional or three-dimensional spatial data. The range sensor 20 detects at least one of the loading machine 30 and the wall surface of the drift DR. In the present embodiment, the range sensor 20 can acquire at least one of the shape data of the loading machine 30, the shape data of the wall surface of the drift DR, and the shape data of the load of the vessel 11. In addition, the range sensor 20 can detect at least one of a relative position (relative distance and direction) with the loading machine 30 and a relative position with the wall surface of the drift DR. The range sensor 20 outputs the detected information to the processing device 71.
 本実施形態において、ドリフトDRの壁面に関する情報が予め求められており、記憶装置72に記憶されている。すなわち、ドリフトDRの壁面に関する情報は、事前に測定された既知の情報である。ドリフトDRの壁面に関する情報は、壁面の複数の部分におけるそれぞれの形状に関する情報及びそれら壁面の部分それぞれの絶対位置に関する情報を含む。記憶装置72には、壁面の複数の部分の形状と、その形状を有する壁面の部分におけるそれぞれの絶対位置との関係が記憶されている。処理装置71は、運搬機械10に設けられている測域センサ20が検出したドリフトDRの壁面の検出結果(壁面の形状データ)と、記憶装置72の記憶情報とに基づいて、ドリフトDRにおける運搬機械10の絶対位置及び方位を求めることができる。 In this embodiment, information regarding the wall surface of the drift DR is obtained in advance and stored in the storage device 72. That is, the information regarding the wall surface of the drift DR is known information measured in advance. The information regarding the wall surface of the drift DR includes information regarding each shape of the plurality of portions of the wall surface and information regarding the absolute position of each of the wall surface portions. The storage device 72 stores the relationship between the shapes of the plurality of wall portions and the absolute positions of the wall portions having the shapes. The processing device 71 transports in the drift DR based on the detection result (wall shape data) of the drift DR detected by the range sensor 20 provided in the transporting machine 10 and the storage information in the storage device 72. The absolute position and orientation of the machine 10 can be determined.
 処理装置71は、読取装置19及び測域センサ20の少なくとも一方を用いて導出された運搬機械10の現在位置(絶対位置)に基づいて、坑内MIの決められた経路(目標経路)にしたがって運搬機械10が走行するように、ドリフトDRを走行する運搬機械10を制御する。 Based on the current position (absolute position) of the transporting machine 10 derived using at least one of the reading device 19 and the range sensor 20, the processing device 71 transports according to a determined route (target route) of the underground mine MI. The transporting machine 10 that travels the drift DR is controlled so that the machine 10 travels.
 処理装置71は、例えば、CPUを含むマイクロコンピュータである。処理装置71は、非接触センサ17A、17B、読取装置19及び測域センサ20等の検出結果に基づいて、駆動制御装置24を介して走行用の電動機13A、13B、制動システム13BS及び車輪12A、12Bの操舵システム13SSを制御する。そして、処理装置71は、所定の走行速度及び加速度で、前述した目標経路にしたがって運搬機械10を走行させる。 The processing device 71 is, for example, a microcomputer including a CPU. Based on the detection results of the non-contact sensors 17A, 17B, the reading device 19, the range sensor 20, and the like, the processing device 71 is configured to use the electric motors 13A, 13B, the braking system 13BS, the wheels 12A, The steering system 13SS of 12B is controlled. Then, the processing device 71 causes the transport machine 10 to travel according to the target route described above at a predetermined traveling speed and acceleration.
 記憶装置72は、RAM、ROM、フラッシュメモリ及びハードディスクドライブの少なくとも1つを含み、処理装置71と接続される。記憶装置72は、処理装置71が運搬機械10を自律走行させるために必要なコンピュータプログラム及び各種の情報を記憶している。通信装置25は、処理装置71と接続され、積込機械30に搭載された通信装置及び管理装置3の少なくとも一方との間でデータ通信する。 The storage device 72 includes at least one of a RAM, a ROM, a flash memory, and a hard disk drive, and is connected to the processing device 71. The storage device 72 stores a computer program and various information necessary for the processing device 71 to autonomously run the transporting machine 10. The communication device 25 is connected to the processing device 71 and performs data communication with at least one of the communication device mounted on the loading machine 30 and the management device 3.
 本実施形態において、運搬機械10は、無人車両であり、自律走行が可能である。通信装置25は、管理装置3及び積込機械30の少なくとも一方から送信された情報(指令信号を含む)を受信可能である。また、通信装置25は、撮像装置16A、16B、周辺監視カメラ17CA、17CB、速度センサ22及び加速度センサ23等が検出した情報を管理装置3及び積込機械30の少なくとも一方に送信可能である。運搬機械10は、周辺監視カメラ17CA、17CB及び非接触センサ17A、17Bの少なくとも一方が取得した運搬機械10の周辺の情報を管理装置3に送信し、この周辺の情報を基に、オペレータが運搬機械10を遠隔操作することもできる。このように、運搬機械10は、自律走行のみならず、オペレータの操作によっても走行し、ベッセル11をスライド及び昇降させることができる。 In the present embodiment, the transport machine 10 is an unmanned vehicle and can autonomously travel. The communication device 25 can receive information (including a command signal) transmitted from at least one of the management device 3 and the loading machine 30. Further, the communication device 25 can transmit information detected by the imaging devices 16A and 16B, the peripheral monitoring cameras 17CA and 17CB, the speed sensor 22, the acceleration sensor 23, and the like to at least one of the management device 3 and the loading machine 30. The transporting machine 10 transmits information about the periphery of the transporting machine 10 acquired by at least one of the peripheral monitoring cameras 17CA and 17CB and the non-contact sensors 17A and 17B to the management device 3, and the operator transports based on the peripheral information. The machine 10 can also be remotely controlled. Thus, the transport machine 10 can travel not only autonomously but also by an operator's operation, and can slide and lift the vessel 11.
 例えば、速度センサ22及び加速度センサ23等が検出した情報を取得した管理装置3は、この情報を運搬機械10の稼働情報として、例えば、記憶装置3Mに蓄積する。また、周辺監視カメラ17CA、17CBが撮像した情報を管理装置3が取得した場合、オペレータは、周辺監視カメラ17CA、17CBが撮像した運搬機械10の周辺の画像を視認しながら、運搬機械10を操作することもできる。さらに、質量センサ18が検出したベッセル11の鉱石MRの質量に関する情報を取得した積込機械30は、この情報に基づいて、ベッセル11への鉱石MRの積載量を制御することもできる。次に、積込機械30について説明する。 For example, the management device 3 that has acquired the information detected by the speed sensor 22, the acceleration sensor 23, and the like accumulates this information in the storage device 3M, for example, as operation information of the transporting machine 10. Further, when the management device 3 acquires information captured by the peripheral monitoring cameras 17CA and 17CB, the operator operates the transporting machine 10 while visually recognizing an image around the transporting machine 10 captured by the peripheral monitoring cameras 17CA and 17CB. You can also Furthermore, the loading machine 30 which acquired the information regarding the mass of the ore MR of the vessel 11 detected by the mass sensor 18 can also control the loading amount of the ore MR on the vessel 11 based on this information. Next, the loading machine 30 will be described.
<積込機械>
 図13は、本実施形態に係る積込機械30の側面図である。図14は、本実施形態に係る積込機械30の上面図である。図15は、本実施形態に係る積込機械30の正面図である。図13は、積込機械30が地山RMの鉱石MRを掘削し、掘削した鉱石MRを搬送する状態を示している。積込機械30は、クロスカットCR内で鉱石MRの地山RMを掘削し、掘削した鉱石MRを図7及び図8等に示す運搬機械10のベッセル11に積載する。積込機械30の車体30Bには、フィーダー31と、支持機構32と、走行装置34と、貫入部材35と、回転体36と、岩石ガード37とが取り付けられる。貫入部材35が取り付けられている側が積込機械30の前方であり、貫入部材35が取り付けられている側とは反対側が積込機械30の後方である。なお、積込機械30は、回転体36及び岩石ガード37を備えていなくてもよい。
<Loading machine>
FIG. 13 is a side view of the loading machine 30 according to the present embodiment. FIG. 14 is a top view of the loading machine 30 according to the present embodiment. FIG. 15 is a front view of the loading machine 30 according to the present embodiment. FIG. 13 shows a state where the loading machine 30 excavates the ore MR of the natural ground RM and conveys the excavated ore MR. The loading machine 30 excavates the natural ground RM of the ore MR in the crosscut CR, and loads the excavated ore MR on the vessel 11 of the transporting machine 10 shown in FIGS. A feeder 31, a support mechanism 32, a traveling device 34, a penetrating member 35, a rotating body 36, and a rock guard 37 are attached to the vehicle body 30 </ b> B of the loading machine 30. The side on which the penetrating member 35 is attached is the front side of the loading machine 30, and the side opposite to the side on which the penetrating member 35 is attached is the rear side of the loading machine 30. Note that the loading machine 30 may not include the rotating body 36 and the rock guard 37.
 フィーダー31は、地山RMから鉱石MRを積み込んで、ドローポイントDPの地山RMから離れる方向に搬送した後、排出する。すなわち、フィーダー31は、積込機械30の前方で積み込まれた鉱石MRを後方に向かって搬送し、後方から排出する。フィーダー31は、例えば、無端の搬送体として搬送ベルトを用い、これを一対のローラーに掛け回して回転させることにより、積込側31Fから排出側31Eに鉱石MRを搬送する。積込側31Fは、地山RM側であり、排出側31Eは積込側31Fとは反対側である。図14に示すように、フィーダー31は、幅方向Wの両側に、一対のガイド31G、31Gが設けられている。一対のガイド31G、31Gは、フィーダー31から搬送途中の鉱石MRが脱落することを抑制する。幅方向Wは、フィーダー31が鉱石MRを搬送する方向Fと直交する方向であり、フィーダー31が備える一対のローラーの回転中心軸と平行な方向である。フィーダー31の幅方向Wは、車体30Bの幅方向でもある。フィーダー31は、排出側31Eに、鉱石MRを運搬機械10のベッセル11内に導くためのガイド39を備えている。フィーダー31は、車体30Bの前方、すなわちフィーダー31の積込側31Fの軸線を中心として揺動する。フィーダー31は、地面Gに対する角度αを変更することができる。角度αは、フィーダー31が備える一対のローラーの回転中心軸を結ぶ直線LCと、地面Gとのなす角度である。 The feeder 31 loads the ore MR from the natural ground RM, transports it in a direction away from the natural ground RM at the draw point DP, and then discharges it. That is, the feeder 31 conveys the ore MR loaded in front of the loading machine 30 toward the rear, and discharges it from the rear. For example, the feeder 31 uses a transport belt as an endless transport body and rotates the belt around a pair of rollers to transport the ore MR from the loading side 31F to the discharge side 31E. The loading side 31F is the natural ground RM side, and the discharge side 31E is the opposite side to the loading side 31F. As shown in FIG. 14, the feeder 31 is provided with a pair of guides 31 </ b> G and 31 </ b> G on both sides in the width direction W. The pair of guides 31 </ b> G and 31 </ b> G suppress the ore MR that is being transported from the feeder 31 from dropping off. The width direction W is a direction orthogonal to the direction F in which the feeder 31 transports the ore MR, and is a direction parallel to the rotation center axis of the pair of rollers provided in the feeder 31. The width direction W of the feeder 31 is also the width direction of the vehicle body 30B. The feeder 31 includes a guide 39 for guiding the ore MR into the vessel 11 of the transporting machine 10 on the discharge side 31E. The feeder 31 swings about the axis of the loading side 31F of the feeder 31 in front of the vehicle body 30B. The feeder 31 can change the angle α with respect to the ground G. The angle α is an angle formed between the straight line LC connecting the rotation center axes of the pair of rollers included in the feeder 31 and the ground G.
 フィーダー31に鉱石MRを積み込むのは、回転ローラー33である。回転ローラー33は、フィーダー31の積込側31F、すなわちフィーダー31の前方で回転しながら鉱石MRをフィーダー31に送り込む。このため、鉱石の掘削時において、回転ローラー33は、ブーム32aとアーム32bとを備える支持機構32によってフィーダー31の積込側31Fに設置される。回転ローラー33は、所定の軸線Zrの周りを回転する回転部材33D及び回転部材33Dの外周部に設けられて鉱石MRと接触して掘削する接触部材33Bとを有する。本実施形態において、接触部材33Bは、回転部材33Dからその径方向外側に突出し、かつ回転部材33Dの周方向に沿って所定の間隔で設けられた複数の板状部材である。接触部材33Bの板面と平行な平面は、軸線Zrとは直交しない。本実施形態において、接触部材33Bの板面と平行な平面は、軸線Zrと平行になっている。接触部材33Bは、先端部、すなわち回転部材33D側とは反対側の端部が、掘削対象である地山RMに食い込むように曲げられていてもよい。 Rotating roller 33 loads ore MR into feeder 31. The rotating roller 33 feeds the ore MR into the feeder 31 while rotating on the loading side 31F of the feeder 31, that is, in front of the feeder 31. For this reason, at the time of excavation of ore, the rotation roller 33 is installed in the loading side 31F of the feeder 31 by the support mechanism 32 provided with the boom 32a and the arm 32b. The rotating roller 33 includes a rotating member 33D that rotates around a predetermined axis Zr and a contact member 33B that is provided on the outer periphery of the rotating member 33D and that excavates in contact with the ore MR. In the present embodiment, the contact member 33B is a plurality of plate-like members that protrude outward in the radial direction from the rotating member 33D and that are provided at predetermined intervals along the circumferential direction of the rotating member 33D. A plane parallel to the plate surface of the contact member 33B is not orthogonal to the axis Zr. In the present embodiment, a plane parallel to the plate surface of the contact member 33B is parallel to the axis Zr. The contact member 33B may be bent so that the tip, that is, the end opposite to the rotating member 33D side, bites into the natural ground RM to be excavated.
 回転ローラー33が回転することにより、接触部材33Bは、上方Uに位置する場合にフィーダー31から遠ざかり、下方Dに位置する場合にフィーダー31に近づく。この動きによって、複数の接触部材33Bは、地山RMから鉱石MRを掘削してフィーダー31に送り込む。複数の接触部材33Bは、回転部材33Dとともに回転しているので、連続して鉱石MRを掘削して、フィーダー31に送り込むことができる。 When the rotating roller 33 rotates, the contact member 33B moves away from the feeder 31 when positioned at the upper U, and approaches the feeder 31 when positioned at the lower D. By this movement, the plurality of contact members 33B excavate the ore MR from the natural ground RM and send it to the feeder 31. Since the plurality of contact members 33B rotate together with the rotation member 33D, the ore MR can be continuously excavated and fed into the feeder 31.
 回転ローラー33を回転可能に支持する支持機構32は、車体30Bに取り付けられるブーム32aと、ブーム32aに連結されるアーム32bとを有する。ブーム32aは、例えば、シャフト38Aを介して積込機械30の車体30Bに取り付けられて、シャフト38Aを中心として車体30Bに対して揺動する。アーム32bは、例えば、シャフト38Bを介してブーム32aの車体30Bとは反対側の端部と連結されて、ブーム32aに対してシャフト38Bを中心として揺動する。アーム32bは、ブーム32aと連結されている端部とは反対側の端部で、回転ローラー33を回転可能に支持する。ブーム32a及びアーム32bは、例えば、アクチュエータとしての油圧シリンダによって駆動されて揺動してもよいし、電動機又は油圧モータによって駆動されて揺動してもよい。 The support mechanism 32 that rotatably supports the rotating roller 33 includes a boom 32a attached to the vehicle body 30B and an arm 32b connected to the boom 32a. For example, the boom 32a is attached to the vehicle body 30B of the loading machine 30 via the shaft 38A, and swings with respect to the vehicle body 30B about the shaft 38A. The arm 32b is connected to, for example, the end of the boom 32a opposite to the vehicle body 30B via the shaft 38B, and swings about the shaft 38B with respect to the boom 32a. The arm 32b is an end opposite to the end connected to the boom 32a, and rotatably supports the rotating roller 33. For example, the boom 32a and the arm 32b may be driven to swing by a hydraulic cylinder as an actuator, or may be driven to swing by an electric motor or a hydraulic motor.
 ブーム32aは、車体30Bに対して第1の軸線Zaの周りを揺動し、アーム32bは、第1の軸線Zaと平行な軸線Za’の周りを揺動する。第1の軸線Zaは、ブーム32aと車体30Bとを連結するシャフト38Aの中心軸であり、第1の軸線Zaと平行な軸線Za’は、ブーム32aとアーム32bとを連結するシャフト38Bの中心軸である。本実施形態において、アーム32bは、さらに、第1の軸線Zaと直交する第2の軸線と平行な軸線の周りを揺動してもよい。このようにすると、回転ローラー33が移動できる範囲が大きくなるので、掘削作業の自由度が向上する。 The boom 32a swings around the first axis line Za with respect to the vehicle body 30B, and the arm 32b swings around an axis line Za 'parallel to the first axis line Za. The first axis Za is the central axis of the shaft 38A that connects the boom 32a and the vehicle body 30B, and the axis Za ′ that is parallel to the first axis Za is the center of the shaft 38B that connects the boom 32a and the arm 32b. Is the axis. In the present embodiment, the arm 32b may further swing around an axis parallel to the second axis perpendicular to the first axis Za. If it does in this way, since the range which can rotate rotation roller 33 becomes large, the freedom degree of excavation work improves.
 ブーム32aは、車体30Bの幅方向Wの両側、本実施形態においてはフィーダー31の幅方向Wの両側に設けられた一対の棒状部材(第1棒状部材)である。アーム32bは、それぞれのブーム32aに連結された一対の棒状部材(第2棒状部材)である。図14に示すように、一対のアーム32bは、両者の間に回転ローラー33を支持している。本実施形態において、一対のブーム32aは、梁32Jによって連結されている。このような構造により、支持機構32の剛性が向上するので、鉱石MRの掘削時には、支持機構32が回転ローラー33を確実に地山RMに押し付けることができるので、鉱石MRの掘削効率の低下が抑制される。また、一対のアーム32bを棒状又は板状の部材で連結してもよい。このようにすれば、支持機構32の剛性がさらに向上するのでより好ましい。 The boom 32a is a pair of rod-shaped members (first rod-shaped members) provided on both sides in the width direction W of the vehicle body 30B, in this embodiment, on both sides in the width direction W of the feeder 31. The arms 32b are a pair of rod-shaped members (second rod-shaped members) connected to the respective booms 32a. As shown in FIG. 14, the pair of arms 32b supports the rotating roller 33 between them. In the present embodiment, the pair of booms 32a are connected by beams 32J. Since the rigidity of the support mechanism 32 is improved by such a structure, the excavation efficiency of the ore MR is reduced since the support mechanism 32 can reliably press the rotating roller 33 against the natural ground RM when excavating the ore MR. It is suppressed. Moreover, you may connect a pair of arm 32b with a rod-shaped or plate-shaped member. This is more preferable because the rigidity of the support mechanism 32 is further improved.
 支持機構32は、ブーム32aが車体30Bに対して揺動し、アーム32bがブーム32aに対して揺動することにより、回転ローラー33が移動する。支持機構32は、回転ローラー33を移動させることにより、回転ローラー33とフィーダー31及び車体30Bとの相対的な位置関係を変更することができる。また、支持機構32は、回転ローラー33を移動させることによって、地山RMの異なる位置を掘削したり、回転ローラー33を地山RMからフィーダー31に向かって移動させることにより地山RMから鉱石MRをフィーダー31側に掻き込んだりすることができる。また、例えば、積込機械30の走行中、前方に物体が存在して走行の妨げとなっている場合において、支持機構32は、回転ローラー33を用いて物体をフィーダー31に向かって掻き込んでからフィーダー31に送り込むことにより、積込機械30の進行方向前方の物体を取り除くこともできる。 In the support mechanism 32, the rotating roller 33 moves when the boom 32a swings with respect to the vehicle body 30B and the arm 32b swings with respect to the boom 32a. The support mechanism 32 can change the relative positional relationship between the rotation roller 33, the feeder 31, and the vehicle body 30B by moving the rotation roller 33. Further, the support mechanism 32 excavates different positions of the natural ground RM by moving the rotating roller 33, or moves the rotating roller 33 from the natural ground RM toward the feeder 31 to ore MR from the natural ground RM. Can be scraped into the feeder 31 side. In addition, for example, when the loading machine 30 is traveling, an object is present in the front and is obstructing the traveling, the support mechanism 32 uses the rotating roller 33 to scrape the object toward the feeder 31. , The object ahead of the loading machine 30 in the traveling direction can be removed.
 本実施形態において、回転ローラー33は、図14に示すように、アーム32bの先端部に取り付けられた電動機33Mによって回転する。回転ローラー33を駆動させる装置は電動機33Mに限定されるものではなく、例えば、油圧モータであってもよい。また、電動機33Mが取り付けられる箇所はアーム32bの先端部に限定されるものではない。 In the present embodiment, the rotating roller 33 is rotated by an electric motor 33M attached to the tip of the arm 32b as shown in FIG. The device for driving the rotating roller 33 is not limited to the electric motor 33M, and may be, for example, a hydraulic motor. Further, the location where the electric motor 33M is attached is not limited to the tip of the arm 32b.
 車体30Bには、これを走行させる走行装置34が取り付けられている。走行装置34は、車体30Bの幅方向両側に設けられた一対の履帯34Cと、車体30Bの幅方向両側に設けられた一対の駆動輪34Dと、車体30Bの幅方向両側に設けられた一対の従動輪34Sとを含む。駆動輪34Dと従動輪34Sとに履帯34Cが掛け回されている。それぞれの駆動輪34Dは、別個に独立して駆動される。本実施形態において、積込機械30は、それぞれの駆動輪34Dに走行用の電動機を備えている。このような構造により、一対の履帯34C、34Cは、別個独立に駆動される。 A traveling device 34 for traveling the vehicle body 30B is attached. The traveling device 34 includes a pair of crawler belts 34C provided on both sides in the width direction of the vehicle body 30B, a pair of drive wheels 34D provided on both sides in the width direction of the vehicle body 30B, and a pair of wheels provided on both sides in the width direction of the vehicle body 30B. And a driven wheel 34S. A crawler belt 34C is wound around the drive wheel 34D and the driven wheel 34S. Each drive wheel 34D is driven separately and independently. In the present embodiment, the loading machine 30 includes a traveling electric motor for each drive wheel 34D. With such a structure, the pair of crawler belts 34C and 34C are driven independently.
 車体30Bには、貫入部材35が取り付けられる。貫入部材35は、車体30Bのフィーダー31の積込側31Fに配置される。貫入部材35は、錐体の形状をした部材であり、本実施形態では四角錐の形状である。貫入部材35の形状は、四角錐の形状に限定されるものではなく、例えば、三角錐の形状であってもよい。貫入部材35は、錐体の頂部が車体30Bの前方になるように、車体30Bに取り付けられる。このようにすることで、積込機械30が地山RMに貫入するときには、貫入部材35が頂部から地山RMに貫入する。 The penetration member 35 is attached to the vehicle body 30B. The penetration member 35 is disposed on the loading side 31F of the feeder 31 of the vehicle body 30B. The penetrating member 35 is a member having a cone shape, and in the present embodiment, has a quadrangular pyramid shape. The shape of the penetrating member 35 is not limited to a quadrangular pyramid shape, and may be a triangular pyramid shape, for example. The penetrating member 35 is attached to the vehicle body 30B so that the top of the cone is in front of the vehicle body 30B. By doing in this way, when the loading machine 30 penetrates into the natural ground RM, the penetration member 35 penetrates into the natural ground RM from the top.
 貫入部材35は、積込機械30の掘削時において、錐体の頂部から地山RMに貫入して、地山RMを突き崩す。貫入部材35が地山RMに貫入する場合、走行装置34は、フィーダー31及び貫入部材35が取り付けられた車体30Bを前方に走行させ、かつフィーダー31を動作させながら貫入部材35を地山RMに貫入させる。このとき、フィーダー31は、上方の搬送ベルトが積込側31Fから排出側31Eに向かって移動する。積込機械30は、貫入時において、このようにフィーダー31を動作させることで、フィーダー31の駆動力を貫入に利用できるので、地山RMにより深く貫入することができる。 When the loading machine 30 is excavated, the penetrating member 35 penetrates the natural mountain RM from the top of the cone and breaks the natural mountain RM. When the penetrating member 35 penetrates into the natural ground RM, the traveling device 34 causes the feeder 31 and the vehicle body 30B to which the penetrating member 35 is attached to travel forward, and the feeder 31 is moved to the natural ground RM while operating the feeder 31. Intrude. At this time, in the feeder 31, the upper conveyor belt moves from the loading side 31F toward the discharging side 31E. The loading machine 30 can penetrate deeper into the natural ground RM because the driving force of the feeder 31 can be used for penetration by operating the feeder 31 in this way during penetration.
 車体30Bの幅方向両側、すなわち、フィーダー31の搬送方向と直交する方向における両側には、一対の回転体36が設けられる。一対の回転体36は、走行装置34の前方であってフィーダー31の積込側31Fに配置される。回転体36は、所定の軸線周りを回転するドラム36Dの周囲に複数の羽根36Bが所定の間隔で設けられた構造体である。回転体36は、例えば、電動機によって駆動される。回転体36は、フィーダー31を駆動する電動機によって駆動されてもよい。この場合、フィーダー31の駆動と回転体36の駆動とをクラッチ等で切り替えられるようにしてもよい。例えば、クラッチを係合させた場合にはフィーダー31と回転体36とが同時に回転し、クラッチを開放するとフィーダー31のみが回転するようにすることができる。 A pair of rotating bodies 36 are provided on both sides in the width direction of the vehicle body 30B, that is, on both sides in the direction orthogonal to the conveying direction of the feeder 31. The pair of rotating bodies 36 is disposed in front of the traveling device 34 and on the loading side 31 </ b> F of the feeder 31. The rotating body 36 is a structure in which a plurality of blades 36B are provided at predetermined intervals around a drum 36D that rotates around a predetermined axis. The rotating body 36 is driven by, for example, an electric motor. The rotating body 36 may be driven by an electric motor that drives the feeder 31. In this case, the driving of the feeder 31 and the driving of the rotating body 36 may be switched by a clutch or the like. For example, when the clutch is engaged, the feeder 31 and the rotator 36 rotate at the same time, and when the clutch is released, only the feeder 31 can rotate.
 回転体36は、貫入部材35が地山RMに貫入するときには、積込機械30の車体30Bを地面Gに押し付ける方向に回転する。具体的には、回転体36は、地山RM側の羽根36Bが下方Dから上方Uに向かうように、また、走行装置34側の羽根36Bが上方Uから下方Dに向かうように回転する。このようにすることで、回転体36は、地山RM側の羽根36Bが地山RMに接触すると、車体30Bの前方を下方Dに向かって押し下げるので、走行装置34の履帯34Cが地面Gに対してより強く押し付けられる。その結果、履帯34Cと地面Gとの間の摩擦力が増加するので、走行装置34は、貫入部材35を地山RMに貫入させやすくなる。積込機械30の地山RMへの貫入が終了し、回転ローラー33による掘削及びフィーダー31による積み込みが開始されるときには、回転体36の回転は停止する。 The rotating body 36 rotates in a direction in which the vehicle body 30B of the loading machine 30 is pressed against the ground G when the penetrating member 35 penetrates into the natural ground RM. Specifically, the rotating body 36 rotates so that the blade 36B on the natural mountain RM side is directed upward U from the lower side D, and the blade 36B on the traveling device 34 side is directed downward D from the upper side U. By doing in this way, when the blade 36B on the natural ground RM side contacts the natural ground RM, the rotating body 36 pushes the front of the vehicle body 30B downward D, so that the crawler belt 34C of the traveling device 34 touches the ground G. It is more strongly pressed against. As a result, the frictional force between the crawler belt 34C and the ground G increases, so that the traveling device 34 can easily allow the penetration member 35 to penetrate the natural ground RM. When the penetration of the loading machine 30 into the natural ground RM is completed and excavation by the rotating roller 33 and loading by the feeder 31 are started, the rotation of the rotating body 36 is stopped.
 回転体36と走行装置34の履帯34Cとの間には、岩石ガード37が設けられる。本実施形態において、岩石ガード37は、車体30Bに取り付けられている。岩石ガード37は、例えば、掘削中に回転ローラー33から飛来する鉱石MRから走行装置34を保護したり、積込機械30の走行時において坑道内に存在する岩石等から走行装置34を保護したりする。岩石ガード37によって、走行装置34の耐久性低下が抑制される。 A rock guard 37 is provided between the rotating body 36 and the crawler belt 34 </ b> C of the traveling device 34. In the present embodiment, the rock guard 37 is attached to the vehicle body 30B. For example, the rock guard 37 protects the traveling device 34 from the ore MR flying from the rotating roller 33 during excavation, or protects the traveling device 34 from rocks or the like existing in the tunnel when the loading machine 30 travels. To do. The rock guard 37 suppresses a decrease in durability of the traveling device 34.
 本実施形態において、車体30Bは、車体30Bの幅方向外側に向かって伸びて、ドローポイントDPにつながるクロスカットCRの壁面CRWに押し付けられる固定装置30Fを有する。本実施形態では、固定装置30Fを車体30Bの幅方向両側にそれぞれ1個ずつ、対向するように設けてあるが、固定装置30Fの数及び設置箇所はこれに限定されるものではない。例えば、固定装置30Fは、車体30Bの上方に設けられていてもよい。本実施形態において、固定装置30Fは、例えば、油圧シリンダ30FCと、油圧シリンダ30FCのピストンの先端に設けられた押付部材30FPとを有する。積込機械30の掘削時及び鉱石MRの搬送時において、固定装置30Fは、積込機械30をクロスカットCR内に固定する。具体的には、固定装置30Fは、油圧シリンダ30FCを伸ばして押付部材30FPを壁面CRWに押し付けることにより、これらを介してクロスカットCR内に積込機械30の車体30Bを固定する。このようにすることで、積込機械30が地山RMを掘削するときに発生する反力は、固定装置30Fを介してクロスカットCRが受けることができる。その結果、積込機械30は、姿勢が安定するので、安定して地山RMを掘削することができる。固定装置30Fと車体30Bとの間に油圧シリンダを設け、固定装置30FをクロスカットCRの壁面CRWに固定した後に、油圧シリンダの駆動力を利用して車体を貫入させてもよい。 In the present embodiment, the vehicle body 30B includes a fixing device 30F that extends toward the outer side in the width direction of the vehicle body 30B and is pressed against the wall surface CRW of the crosscut CR connected to the draw point DP. In the present embodiment, one fixing device 30F is provided on each side of the vehicle body 30B in the width direction so as to face each other, but the number and installation locations of the fixing devices 30F are not limited thereto. For example, the fixing device 30F may be provided above the vehicle body 30B. In the present embodiment, the fixing device 30F includes, for example, a hydraulic cylinder 30FC and a pressing member 30FP provided at the tip of the piston of the hydraulic cylinder 30FC. The fixing device 30F fixes the loading machine 30 in the cross cut CR when the loading machine 30 is excavated and when the ore MR is conveyed. Specifically, the fixing device 30F extends the hydraulic cylinder 30FC and presses the pressing member 30FP against the wall surface CRW, thereby fixing the vehicle body 30B of the loading machine 30 in the crosscut CR via these members. By doing in this way, the reaction force generated when the loading machine 30 excavates the natural ground RM can be received by the cross cut CR via the fixing device 30F. As a result, since the posture of the loading machine 30 is stable, the natural ground RM can be excavated stably. A hydraulic cylinder may be provided between the fixing device 30F and the vehicle body 30B, and after fixing the fixing device 30F to the wall surface CRW of the crosscut CR, the vehicle body may be penetrated using the driving force of the hydraulic cylinder.
 車体30Bの幅方向両側又は上方に固定装置30Fを設ける場合、積込機械30の貫入時には、固定装置30Fによる固定は解除される。本実施形態では、油圧シリンダ30FCが縮んだ状態となり、押付部材30FPが壁面CRWを押さないようになる。積込機械30の掘削時において、固定装置30Fが動作して、積込機械30をクロスカットCR内に固定する。掘削中、積込機械30が地山RMに対してさらに貫入したり、地山RMから遠ざかったりする場合には、固定装置30Fによる固定が解除された後に、走行装置34が積込機械30を移動させる。 When the fixing device 30F is provided on both sides or above the width direction of the vehicle body 30B, the fixing by the fixing device 30F is released when the loading machine 30 penetrates. In the present embodiment, the hydraulic cylinder 30FC is contracted, and the pressing member 30FP does not press the wall surface CRW. During excavation of the loading machine 30, the fixing device 30F operates to fix the loading machine 30 in the cross cut CR. During excavation, when the loading machine 30 further penetrates the natural ground RM or moves away from the natural ground RM, the traveling device 34 moves the loading machine 30 after the fixing by the fixing device 30F is released. Move.
 図13に示すように、固定装置30Fを車体30Bの後方、すなわち、フィーダー31の排出側31Eに設け、クロスカットCR内の地面Gから突出させた反力受けTGと車体30Bとの間に固定装置30Fを介在させて、前述した反力を受けてもよい。掘削時においては、積込機械30の前後方向の反力が大きいが、このような構造にすることにより、より効果的に掘削時の反力を受けることができる。また、積込機械30は、固定装置30Fを伸ばすことにより、掘削時における積込機械30の位置の調整をすることもできる。なお、積込機械30は、固定装置30Fを備えていなくてもよい。 As shown in FIG. 13, a fixing device 30F is provided behind the vehicle body 30B, that is, on the discharge side 31E of the feeder 31, and is fixed between the reaction force receiver TG protruding from the ground G in the crosscut CR and the vehicle body 30B. You may receive the reaction force mentioned above through the apparatus 30F. At the time of excavation, the reaction force in the front-rear direction of the loading machine 30 is large, but by using such a structure, the reaction force at the time of excavation can be more effectively received. Moreover, the loading machine 30 can also adjust the position of the loading machine 30 at the time of excavation by extending the fixing device 30F. Note that the loading machine 30 may not include the fixing device 30F.
 本実施形態において、積込機械30は、フィーダー31に鉱石MRが積み込まれる部分(積込側31F)と、フィーダー31から鉱石MRが排出される部分(排出側31E)との間に、鉱石MRの排出と排出の停止とを切り替える切替機構80が設けられる。切替機構80は、支持体81と、蓋82と、蓋82を開閉するアクチュエータとしての油圧シリンダ83とを含む。支持体81は、図15に示すように、一端部が車体30Bの幅方向両側、具体的にはフィーダー31の幅方向両側に取り付けられる2本の脚部81Rと、2本の脚部81Rの他端部でこれらを連結する連結部81Cとを含む、門型の部材である。2本の脚部81Rと連結部81Cとで囲まれる部分を、鉱石MRが通過する。 In the present embodiment, the loading machine 30 includes the ore MR between a portion where the ore MR is loaded on the feeder 31 (loading side 31F) and a portion where the ore MR is discharged from the feeder 31 (discharge side 31E). A switching mechanism 80 for switching between discharging and stopping discharging is provided. The switching mechanism 80 includes a support body 81, a lid 82, and a hydraulic cylinder 83 as an actuator that opens and closes the lid 82. As shown in FIG. 15, the support 81 has two leg portions 81 </ b> R attached at one end to both sides in the width direction of the vehicle body 30 </ b> B, specifically, both sides in the width direction of the feeder 31, and the two leg portions 81 </ b> R. It is a gate-shaped member including a connecting portion 81C that connects them at the other end. The ore MR passes through a portion surrounded by the two leg portions 81R and the connecting portion 81C.
 蓋82は、板状の部材であり、2本の脚部81Rと連結部81Cとで囲まれる部分に設けられる。蓋82は、支持体81の連結部81C側に存在する所定の軸線Zg周りを回動する。蓋82と支持体81の連結部81Cとの間には、油圧シリンダ83が設けられる。油圧シリンダ83が伸縮することにより、蓋82は、2本の脚部81Rと連結部81Cとで囲まれる部分を開閉する。蓋82が開くことによって、2本の脚部81Rと連結部81Cとで囲まれる部分を鉱石MRが通過する。蓋82が閉じることによって、鉱石MRは、2本の脚部81Rと連結部81Cとで囲まれる部分を通過しない。このようにすることで、積込機械30は、フィーダー31からの鉱石MRの排出量を調整することができる。 The lid 82 is a plate-like member, and is provided at a portion surrounded by the two leg portions 81R and the connecting portion 81C. The lid 82 rotates around a predetermined axis Zg existing on the connecting portion 81C side of the support 81. A hydraulic cylinder 83 is provided between the lid 82 and the connecting portion 81 </ b> C of the support body 81. As the hydraulic cylinder 83 expands and contracts, the lid 82 opens and closes a portion surrounded by the two leg portions 81R and the connecting portion 81C. When the lid 82 is opened, the ore MR passes through a portion surrounded by the two leg portions 81R and the connecting portion 81C. When the lid 82 is closed, the ore MR does not pass through the portion surrounded by the two leg portions 81R and the connecting portion 81C. By doing in this way, the loading machine 30 can adjust the discharge | emission amount of the ore MR from the feeder 31. FIG.
 本実施形態において、積込機械30は、情報収集装置40を備える。情報収集装置40は、車体30Bの積込側31F、すなわち前方に取り付けられる。より具体的には、情報収集装置40が情報を収集する部分が、車体30Bの積込側31F、すなわち前方を向いて取り付けられる。情報収集装置40は、3次元の空間データを取得し、出力する装置である。情報収集装置40は、地山RMの鉱石MRの状態に関する情報としての鉱石情報を取得する。鉱石情報は、地山RMの3次元の空間データである。 In this embodiment, the loading machine 30 includes an information collection device 40. The information collecting device 40 is attached to the loading side 31F of the vehicle body 30B, that is, the front side. More specifically, the part where the information collecting device 40 collects information is attached to the loading side 31F of the vehicle body 30B, that is, facing forward. The information collection device 40 is a device that acquires and outputs three-dimensional spatial data. The information collection device 40 acquires ore information as information relating to the state of the ore MR of the natural ground RM. The ore information is three-dimensional spatial data of the natural ground RM.
 情報収集装置40は、例えばカメラ、ステレオカメラ、レーザスキャナー又は3次元距離センサ等である。情報収集装置40が情報を収集する部分は、カメラ又はステレオカメラの場合はレンズ、レーザスキャナー及び3次元距離センサの場合は受光部である。本実施形態において、情報収集装置40としては、ステレオカメラが用いられる。本実施形態において、積込機械30は、3個の情報収集装置40を支持機構32の梁32Jに取り付けている。すなわち、複数の情報収集装置40は、車体30Bの幅方向において複数箇所に設置される。このようにすることで、積込機械30は、1つの情報収集装置40の撮像対象がアーム32bに隠れる場合でも、他の情報収集装置40によって撮像対象の鉱石情報を得ることができる。 The information collection device 40 is, for example, a camera, a stereo camera, a laser scanner, a three-dimensional distance sensor, or the like. The part where the information collecting device 40 collects information is a lens in the case of a camera or a stereo camera, and a light receiving part in the case of a laser scanner and a three-dimensional distance sensor. In the present embodiment, a stereo camera is used as the information collection device 40. In the present embodiment, the loading machine 30 has three information collection devices 40 attached to the beam 32J of the support mechanism 32. That is, the plurality of information collection devices 40 are installed at a plurality of locations in the width direction of the vehicle body 30B. By doing in this way, even when the imaging target of one information collection device 40 is hidden in the arm 32b, the loading machine 30 can obtain the ore information of the imaging target by the other information collection device 40.
 本実施形態において、積込機械30が備える制御装置は、情報収集装置40が収集した鉱石情報を用いて積込機械30の動作を制御する。例えば、前述した制御装置は、情報収集装置40が取得した鉱石情報に基づいて、フィーダー31、回転ローラー33、支持機構32及び走行装置34の少なくとも1つを制御する。このようにすることで、積込機械30は、地山RM及び鉱石MRの状態に応じて柔軟に動作することができるので、例えば、鉱山Mの生産効率が向上する。 In the present embodiment, the control device included in the loading machine 30 controls the operation of the loading machine 30 using the ore information collected by the information collecting device 40. For example, the control device described above controls at least one of the feeder 31, the rotating roller 33, the support mechanism 32, and the traveling device 34 based on the ore information acquired by the information collecting device 40. By doing in this way, since the loading machine 30 can operate | move flexibly according to the state of the natural ground RM and the ore MR, the production efficiency of the mine M improves, for example.
 本実施形態において、積込機械30は、車体30Bの排出側31E、すなわち後方に情報収集装置41を備える。より具体的には情報収集装置41が情報を収集する部分が、車体30Bの排出側31E、すなわち後方を向いて取り付けられる。情報収集装置41は、前述した情報収集装置40と同様に、3次元の空間データを取得し、出力する装置である。情報収集装置41は、図4及び図5に示す運搬機械10のベッセル11に積載された鉱石MRの状態に関する情報としての積荷情報を取得する。積荷情報は、鉱石MRの3次元の空間データである。 In this embodiment, the loading machine 30 includes an information collecting device 41 on the discharge side 31E of the vehicle body 30B, that is, on the rear side. More specifically, the part where the information collecting device 41 collects information is attached facing the discharge side 31E of the vehicle body 30B, that is, the rear side. The information collection device 41 is a device that acquires and outputs three-dimensional spatial data, like the information collection device 40 described above. The information collection device 41 acquires load information as information regarding the state of the ore MR loaded on the vessel 11 of the transporting machine 10 illustrated in FIGS. 4 and 5. The cargo information is three-dimensional spatial data of the ore MR.
 情報収集装置41は、前述した情報収集装置40と同様に、例えばカメラ、ステレオカメラ、レーザスキャナー又は3次元距離センサ等である。情報収集装置41が情報を収集する部分は、カメラ又はステレオカメラの場合はレンズ、レーザスキャナー及び3次元距離センサの場合は受光部である。本実施形態において、情報収集装置41としては、ステレオカメラが用いられる。本実施形態において、積込機械30は、2個の情報収集装置41をフィーダー31の幅方向両側に取り付けている。すなわち、複数の情報収集装置41は、車体30Bの幅方向において複数箇所に設置される。このようにすることで、積込機械30は、1つの情報収集装置41の撮像対象が坑道の影等に隠れる場合でも、他の情報収集装置41によって撮像対象の鉱石情報を得ることができる。 The information collection device 41 is, for example, a camera, a stereo camera, a laser scanner, a three-dimensional distance sensor, or the like, similar to the information collection device 40 described above. The part where the information collecting device 41 collects information is a lens in the case of a camera or a stereo camera, and a light receiving part in the case of a laser scanner and a three-dimensional distance sensor. In the present embodiment, a stereo camera is used as the information collection device 41. In the present embodiment, the loading machine 30 has two information collection devices 41 attached to both sides of the feeder 31 in the width direction. That is, the plurality of information collection devices 41 are installed at a plurality of locations in the width direction of the vehicle body 30B. By doing in this way, the loading machine 30 can obtain the ore information of the imaging target by the other information collecting device 41 even when the imaging target of one information collecting device 41 is hidden in the shadow of the mine shaft.
 本実施形態において、積込機械30が備える制御装置は、情報収集装置41が収集した積荷情報を用いて積込機械30及び運搬機械10の少なくとも一方を制御する。例えば、前述した制御装置は、情報収集装置41が取得した積荷情報に基づいて、回転ローラー33、フィーダー31又は切替機構80等の動作を制御したり、運搬機械10が備えるベッセル11の位置又はベッセル11の運動を制御したりする。このようにすることで、積込機械30は、運搬機械10のベッセル11に積載された鉱石MRの状態に応じて、鉱石MRの搬送量を変更したり、ベッセル11の位置を調整したりすることができるので、例えば、鉱山Mの生産効率が向上する。 In the present embodiment, the control device provided in the loading machine 30 controls at least one of the loading machine 30 and the transporting machine 10 using the load information collected by the information collecting device 41. For example, the control device described above controls the operation of the rotating roller 33, the feeder 31, the switching mechanism 80, or the like based on the load information acquired by the information collecting device 41, or the position or vessel of the vessel 11 provided in the transport machine 10. 11 movements are controlled. By doing in this way, the loading machine 30 changes the conveyance amount of the ore MR or adjusts the position of the vessel 11 according to the state of the ore MR loaded on the vessel 11 of the transporting machine 10. Therefore, for example, the production efficiency of the mine M is improved.
 図16は、本実施形態に係る積込機械30が走行するときの姿勢を示す図である。積込機械30が走行する場合、フィーダー31地面Gに対する角度αは、積込機械30が鉱石MRを掘削及び搬送する場合(図13参照)と比較して小さくなる。すなわち、フィーダー31が備える一対のローラーの回転中心軸を結ぶ直線LCは、地面Gに対してより平行に近くなる。このようにすると、積込機械30の前方、すなわち進行方向側に配置されるフィーダー31の積込側31Fが地面と離れるので、積込機械30の走行時にフィーダー31と地面Gとが干渉する可能性を低減できる。 FIG. 16 is a view showing a posture when the loading machine 30 according to the present embodiment travels. When the loading machine 30 travels, the angle α with respect to the feeder 31 ground G is smaller than when the loading machine 30 excavates and conveys the ore MR (see FIG. 13). That is, the straight line LC connecting the rotation center axes of the pair of rollers provided in the feeder 31 is closer to the ground G. If it does in this way, since the loading side 31F of the feeder 31 arrange | positioned ahead of the loading machine 30, ie, the advancing direction side, leaves | separates from the ground, the feeder 31 and the ground G may interfere when the loading machine 30 travels. Can be reduced.
 図16に示すように、積込機械30が走行する場合、支持機構32は折り畳まれる。そして、回転ローラー33は、積込機械30が鉱石MRを掘削及び搬送する場合(図13参照)と比較して、よりフィーダー31に近い位置に移動する。このため、積込機械30は、重心から車体30Bの前後方向に離れた位置に存在していた回転ローラー33が、より重心に近い位置に移動することになるので、前後の質量のバランスが向上する。その結果、積込機械30は、安定して走行することができる。 As shown in FIG. 16, when the loading machine 30 travels, the support mechanism 32 is folded. Then, the rotating roller 33 moves to a position closer to the feeder 31 as compared with the case where the loading machine 30 excavates and conveys the ore MR (see FIG. 13). For this reason, in the loading machine 30, the rotation roller 33 that exists at a position away from the center of gravity in the front-rear direction of the vehicle body 30B moves to a position closer to the center of gravity. To do. As a result, the loading machine 30 can travel stably.
 図17は、本実施形態に係る積込機械30が備える制御装置75を示すブロック図の一例である。積込機械30が備える制御装置75は、フィーダー31、支持機構32、回転ローラー33、走行装置34、回転体36及び切替機構80を制御する。制御装置70は、処理装置76と記憶装置77とを備える。処理装置76には、情報収集装置40に対応する前方撮像装置40C、情報収集装置41に対応する後方撮像装置41C、非接触センサ42、読取装置43、測域センサ44、ジャイロセンサ45、速度センサ46、加速度センサ47、駆動制御装置48、通信装置52及び記憶装置77等が接続されている。非接触センサ42、読取装置43、測域センサ44は、積込機械30の車体30Bの外部に取り付けられる。 FIG. 17 is an example of a block diagram illustrating a control device 75 provided in the loading machine 30 according to the present embodiment. The control device 75 included in the loading machine 30 controls the feeder 31, the support mechanism 32, the rotating roller 33, the traveling device 34, the rotating body 36, and the switching mechanism 80. The control device 70 includes a processing device 76 and a storage device 77. The processing device 76 includes a front imaging device 40C corresponding to the information collecting device 40, a rear imaging device 41C corresponding to the information collecting device 41, a non-contact sensor 42, a reading device 43, a range sensor 44, a gyro sensor 45, a speed sensor. 46, an acceleration sensor 47, a drive control device 48, a communication device 52, a storage device 77, and the like are connected. The non-contact sensor 42, the reading device 43, and the range sensor 44 are attached to the outside of the vehicle body 30B of the loading machine 30.
 前方撮像装置40C及び後方撮像装置41Cは、CCD又はCMOSのような撮像素子を含み、物体の光学像を取得して、その物体の外形を検出可能である。本実施形態において、前方撮像装置40C及び後方撮像装置41Cは、ステレオカメラを含み、物体の3次元の外形データを取得可能である。前方撮像装置40C及び後方撮像装置41Cは、撮像した結果を処理装置76に出力する。処理装置76は、前方撮像装置40Cの検出結果を取得し、これに基づいて前述した鉱石情報を得る。また、処理装置76は、後方撮像装置41Cの検出結果を取得し、これに基づいて前述した積荷情報を得る。本実施形態において、地山RMの鉱石MRの外形及びベッセル11に積載された鉱石MRの外形は、レーザスキャナー及び3次元距離センサの少なくとも1つを用いて検出されてもよい。 The front imaging device 40C and the rear imaging device 41C include an image sensor such as a CCD or a CMOS, and can acquire an optical image of an object and detect the outer shape of the object. In the present embodiment, the front imaging device 40C and the rear imaging device 41C include a stereo camera and can acquire three-dimensional outline data of an object. The front imaging device 40C and the rear imaging device 41C output the captured result to the processing device 76. The processing device 76 acquires the detection result of the front imaging device 40C, and obtains the ore information described above based on the detection result. Further, the processing device 76 acquires the detection result of the rear imaging device 41C, and obtains the load information described above based on the detection result. In the present embodiment, the outer shape of the ore MR of the natural ground RM and the outer shape of the ore MR loaded on the vessel 11 may be detected using at least one of a laser scanner and a three-dimensional distance sensor.
 非接触センサ42は、積込機械30の周囲に存在する物体を検出する。非接触センサ42は、処理装置76と接続され、検出結果を処理装置76に出力する。非接触センサ42は、取得した結果を処理装置76に出力する。読取装置43は、ドリフトDR又はクロスカットCRに設けられたマークの識別情報(固有情報)を検出する。マークは、ドリフトDR又はクロスカットCRに沿って複数配置されている。読取装置43は、処理装置76と接続され、検出結果を処理装置76に出力する。マークは、バーコード及び2次元コードのような識別子(コード)でもよいし、ICタグ又はRFIDのような識別子(タグ)でもよい。 The non-contact sensor 42 detects an object existing around the loading machine 30. The non-contact sensor 42 is connected to the processing device 76 and outputs a detection result to the processing device 76. The non-contact sensor 42 outputs the acquired result to the processing device 76. The reading device 43 detects identification information (unique information) of marks provided on the drift DR or the cross cut CR. A plurality of marks are arranged along the drift DR or the crosscut CR. The reading device 43 is connected to the processing device 76 and outputs a detection result to the processing device 76. The mark may be an identifier (code) such as a barcode and a two-dimensional code, or may be an identifier (tag) such as an IC tag or RFID.
 本実施形態において、ドリフトDR又はクロスカットCRにおいてマークが配置されている位置(絶対位置)に関する情報は、事前に測定された既知な情報である。マークの絶対位置に関する情報は、記憶装置77に記憶されている。処理装置76は、積込機械30に設けられている読取装置43で検出したマークの検出結果(マークの識別情報)と、記憶装置77の記憶情報とに基づいて、ドリフトDR又はクロスカットCRにおける積込機械30の絶対位置を求めることができる。 In the present embodiment, the information regarding the position (absolute position) where the mark is arranged in the drift DR or the crosscut CR is known information measured in advance. Information regarding the absolute position of the mark is stored in the storage device 77. Based on the mark detection result (mark identification information) detected by the reading device 43 provided in the loading machine 30 and the storage information of the storage device 77, the processing device 76 uses the drift DR or the crosscut CR. The absolute position of the loading machine 30 can be determined.
 測域センサ44は、空間の物理的な形状データを取得して出力する。ジャイロセンサ45は、積込機械30の方位(方位変化量)を検出し、検出結果を処理装置76に出力する。速度センサ46は、積込機械30の走行速度を検出し、検出結果を処理装置76に出力する。加速度センサ47は、積込機械30の加速度を検出し、検出結果を処理装置76に出力する。駆動制御装置48は、例えば、マイクロコンピュータである。駆動制御装置48は、処理装置76からの指令に基づき、図13に示す回転ローラー33を駆動する電動機33M、走行装置34が備える電動機48L、48R、支持機構32のブーム32aを揺動させる電動機49、アーム32bを揺動させる電動機50、フィーダー31を駆動する電動機51F、回転体36を回転させる電動機51R、油圧ポンプ85を駆動する電動機86の動作を制御する。油圧ポンプ85は、切替機構80が備える油圧シリンダ83、フィーダー31の姿勢を変更するアクチュエータとしての油圧シリンダ87及び固定装置30Fの油圧シリンダ30FCに作動油を供給する装置である。ブーム32a及びアーム32bは、油圧シリンダによって揺動させられてもよい。この場合、ブーム32aを揺動させるブームシリンダ及びアーム32bを揺動させるアームシリンダには、油圧ポンプ85から作動油が供給される。電動機48Lは、図14に示す一方の履帯34Cを駆動し、電動機48Rは、他方の履帯34Cを駆動する。電動機48Lは、図14に示す一方の履帯34Cを駆動し、電動機48Rは、他方の履帯34Cを駆動する。 The range sensor 44 acquires and outputs the physical shape data of the space. The gyro sensor 45 detects the direction (direction change amount) of the loading machine 30 and outputs the detection result to the processing device 76. The speed sensor 46 detects the traveling speed of the loading machine 30 and outputs the detection result to the processing device 76. The acceleration sensor 47 detects the acceleration of the loading machine 30 and outputs the detection result to the processing device 76. The drive control device 48 is, for example, a microcomputer. The drive control device 48 is based on a command from the processing device 76, and includes an electric motor 33M that drives the rotating roller 33 shown in FIG. The operation of the electric motor 50 that swings the arm 32b, the electric motor 51F that drives the feeder 31, the electric motor 51R that rotates the rotating body 36, and the electric motor 86 that drives the hydraulic pump 85 is controlled. The hydraulic pump 85 is a device that supplies hydraulic oil to the hydraulic cylinder 83 provided in the switching mechanism 80, the hydraulic cylinder 87 as an actuator that changes the posture of the feeder 31, and the hydraulic cylinder 30FC of the fixing device 30F. The boom 32a and the arm 32b may be swung by a hydraulic cylinder. In this case, hydraulic oil is supplied from the hydraulic pump 85 to the boom cylinder that swings the boom 32a and the arm cylinder that swings the arm 32b. The electric motor 48L drives one crawler belt 34C shown in FIG. 14, and the electric motor 48R drives the other crawler belt 34C. The electric motor 48L drives one crawler belt 34C shown in FIG. 14, and the electric motor 48R drives the other crawler belt 34C.
 本実施形態において、積込機械30は、走行装置34が備える電動機48L、48Rによって走行するが、これに限定されない。例えば、積込機械30は、油圧ポンプ85から吐出される作動油によって駆動する油圧モータによって走行してもよい。また、支持機構32のブーム32a及びアーム32b、回転ローター33及び回転体36並びにフィーダー31も、油圧ポンプ85から吐出される作動油によって駆動する油圧シリンダ又は油圧モータによって駆動されてもよい。 In the present embodiment, the loading machine 30 travels by the electric motors 48L and 48R included in the travel device 34, but is not limited thereto. For example, the loading machine 30 may travel by a hydraulic motor that is driven by hydraulic oil discharged from the hydraulic pump 85. Further, the boom 32 a and the arm 32 b of the support mechanism 32, the rotating rotor 33 and the rotating body 36, and the feeder 31 may also be driven by a hydraulic cylinder or a hydraulic motor that is driven by hydraulic oil discharged from the hydraulic pump 85.
 測域センサ44は、空間の物理的な形状データを出力可能な走査型の光波距離計を含む。測域センサ44は、例えば、レーザレンジファインダ、レーザスキャナー及び3次元スキャナの少なくとも1つを含み、3次元の空間データを取得し、出力することができる。測域センサ44は、運搬機械10、ドリフトDR及びクロスカットCRの壁面の少なくとも1つを検出する。本実施形態において、測域センサ44は、運搬機械10の形状データ、ドリフトDR又はクロスカットCRの壁面の形状データ及び運搬機械10が備えるベッセル11の積荷の形状データの少なくとも1つを取得可能である。また、測域センサ44は、運搬機械10との相対位置(相対的な距離及び方位)及びドリフトDR又はクロスカットCRの壁面との相対位置の少なくとも一方を検出可能である。測域センサ44は、検出した情報を処理装置76に出力する。 The range sensor 44 includes a scanning lightwave distance meter that can output physical shape data of a space. The range sensor 44 includes, for example, at least one of a laser range finder, a laser scanner, and a three-dimensional scanner, and can acquire and output three-dimensional spatial data. The range sensor 44 detects at least one of the wall surfaces of the transport machine 10, the drift DR, and the crosscut CR. In the present embodiment, the range sensor 44 can acquire at least one of the shape data of the transporting machine 10, the shape data of the wall surface of the drift DR or the crosscut CR, and the shape data of the load of the vessel 11 included in the transporting machine 10. is there. In addition, the range sensor 44 can detect at least one of a relative position (relative distance and direction) with the transporting machine 10 and a relative position with the wall surface of the drift DR or the crosscut CR. The range sensor 44 outputs the detected information to the processing device 76.
 本実施形態において、ドリフトDR及びクロスカットCRの壁面に関する情報が予め求められており、記憶装置77に記憶されている。すなわち、ドリフトDRの壁面に関する情報は、事前に測定された既知の情報である。ドリフトDRの壁面に関する情報は、壁面の複数の部分におけるそれぞれの形状に関する情報及びそれら壁面の部分それぞれの絶対位置に関する情報を含む。記憶装置77には、壁面の複数の部分の形状と、その形状を有する壁面の部分におけるそれぞれの絶対位置との関係が記憶されている。処理装置76は、積込機械30に設けられている測域センサ20が検出したドリフトDRの壁面の検出結果(壁面の形状データ)と、記憶装置77の記憶情報とに基づいて、ドリフトDRにおける積込機械30の絶対位置及び方位を求めることができる。 In this embodiment, information regarding the wall surfaces of the drift DR and the crosscut CR is obtained in advance and stored in the storage device 77. That is, the information regarding the wall surface of the drift DR is known information measured in advance. The information regarding the wall surface of the drift DR includes information regarding each shape of the plurality of portions of the wall surface and information regarding the absolute position of each of the wall surface portions. The storage device 77 stores the relationship between the shapes of the plurality of wall portions and the absolute positions of the wall portions having the shapes. The processing device 76 uses the drift DR wall surface detection result (wall surface shape data) detected by the range sensor 20 provided in the loading machine 30 and the stored information in the storage device 77 to determine whether the drift DR is in the drift DR. The absolute position and orientation of the loading machine 30 can be determined.
 処理装置76は、読取装置43及び測域センサ44の少なくとも一方を用いて導出された積込機械30の現在位置(絶対位置)に基づいて、坑内MIの決められた経路(目標経路)にしたがって積込機械30が走行するように、ドリフトDR又はクロスカットCRを走行する積込機械30を制御する。このとき、処理装置76は、積込機械30が指定されたドローポイントDPに配置されるように、これを制御する。 Based on the current position (absolute position) of the loading machine 30 derived using at least one of the reading device 43 and the range sensor 44, the processing device 76 follows a determined route (target route) of the underground mine MI. The loading machine 30 that travels in the drift DR or the cross-cut CR is controlled so that the loading machine 30 travels. At this time, the processing device 76 controls the loading machine 30 so as to be arranged at the designated draw point DP.
 処理装置76は、例えば、CPUを含むマイクロコンピュータである。処理装置76は、前方撮像装置40C、後方撮像装置41C、非接触センサ42、読取装置43等の検出結果に基づいて、駆動制御装置48を介して走行装置34が備える電動機48L、48Rを制御する。そして、処理装置76は、所定の走行速度及び加速度で、前述した目標経路にしたがって積込機械30を走行させる。 The processing device 76 is a microcomputer including a CPU, for example. The processing device 76 controls the electric motors 48L and 48R included in the traveling device 34 via the drive control device 48 based on the detection results of the front imaging device 40C, the rear imaging device 41C, the non-contact sensor 42, the reading device 43, and the like. . Then, the processing device 76 causes the loading machine 30 to travel at a predetermined traveling speed and acceleration according to the above-described target route.
 記憶装置77は、RAM、ROM、フラッシュメモリ及びハードディスクドライブの少なくとも1つを含み、処理装置76と接続される。記憶装置77は、処理装置76が積込機械30を自律走行させるために必要なコンピュータプログラム及び各種の情報を記憶している。通信装置52は、処理装置76と接続され、運搬機械10に搭載された通信装置及び管理装置3の少なくとも一方との間でデータ通信する。 The storage device 77 includes at least one of a RAM, a ROM, a flash memory, and a hard disk drive, and is connected to the processing device 76. The storage device 77 stores a computer program and various information necessary for the processing device 76 to autonomously run the loading machine 30. The communication device 52 is connected to the processing device 76 and performs data communication with at least one of the communication device mounted on the transporting machine 10 and the management device 3.
 本実施形態において、積込機械30は、無人車両であり、自律走行が可能である。通信装置52は、管理装置3及び運搬機械10の少なくとも一方から送信された情報(指令信号を含む)を、アンテナ53を介して受信可能である。また、通信装置52は、前方撮像装置40C、後方撮像装置41C、非接触センサ42、読取装置43、測域センサ44、ジャイロセンサ45、速度センサ46及び加速度センサ47等が検出した情報を管理装置3及び運搬機械10の少なくとも一方に、アンテナ53を介して送信可能である。積込機械30は、自律走行が可能な無人車両に限定されない。例えば、管理装置3が、前方撮像装置40Cが撮像した画像を取得して図6に示す表示装置8に表示し、オペレータは、表示された画像を視認しながら積込機械30の掘削、積込及び走行を遠隔操作により制御してもよい。また、管理装置3が、後方撮像装置41Cが撮像した画像を取得して図6に示す表示装置8に表示し、オペレータは、表示された画像を視認しながら積込機械30の掘削及び積込並びに運搬機械10のベッセル11の動作を遠隔操作により制御してもよい。 In the present embodiment, the loading machine 30 is an unmanned vehicle and can autonomously travel. The communication device 52 can receive information (including a command signal) transmitted from at least one of the management device 3 and the transporting machine 10 via the antenna 53. Further, the communication device 52 manages information detected by the front imaging device 40C, the rear imaging device 41C, the non-contact sensor 42, the reading device 43, the range sensor 44, the gyro sensor 45, the speed sensor 46, the acceleration sensor 47, and the like. 3 and at least one of the transporting machines 10 can be transmitted via the antenna 53. The loading machine 30 is not limited to an unmanned vehicle capable of autonomous traveling. For example, the management device 3 acquires an image captured by the front imaging device 40C and displays it on the display device 8 shown in FIG. 6, and the operator excavates and loads the loading machine 30 while viewing the displayed image. And traveling may be controlled by remote control. Further, the management device 3 acquires an image captured by the rear imaging device 41C and displays it on the display device 8 shown in FIG. 6, and the operator excavates and loads the loading machine 30 while visually checking the displayed image. In addition, the operation of the vessel 11 of the transporting machine 10 may be controlled by remote control.
 例えば、速度センサ46及び加速度センサ47等が検出した情報を取得した管理装置3は、この情報を積込機械30の稼働情報として、例えば、記憶装置3Mに蓄積する。また、前方撮像装置40C又は後方撮像装置41Cが撮像した情報を管理装置3が取得した場合、オペレータは、前方撮像装置40C又は後方撮像装置41Cが撮像した積込機械30の周辺の画像を視認しながら、積込機械30を操作することもできる。さらに、後方撮像装置41Cが検出したベッセル11の鉱石MRの状態に関する情報を取得した運搬機械10は、この情報に基づいて、ベッセル11への鉱石MRの積載量又はベッセル11の位置を制御することもできる。本実施形態において、積込機械30は、電動であるが、内燃機関が動力源であってもよい。 For example, the management device 3 that has acquired information detected by the speed sensor 46, the acceleration sensor 47, and the like accumulates this information as operation information of the loading machine 30, for example, in the storage device 3M. When the management device 3 acquires information captured by the front imaging device 40C or the rear imaging device 41C, the operator visually recognizes an image around the loading machine 30 captured by the front imaging device 40C or the rear imaging device 41C. However, the loading machine 30 can also be operated. Furthermore, the transporting machine 10 that has acquired information on the state of the ore MR of the vessel 11 detected by the rear imaging device 41C controls the loading amount of the ore MR on the vessel 11 or the position of the vessel 11 based on this information. You can also. In the present embodiment, the loading machine 30 is electric, but the internal combustion engine may be a power source.
 図18は、本実施形態に係る鉱山の管理システム1が備える蓄電器交換装置EXの一例を示す図である。蓄電器交換装置EXは、空間SP内に設置されている。本実施形態において、空間SPには、運搬機械10及び積込機械30を整備するための整備スペースMSが設けられている。蓄電器交換装置EXは、蓄電器保持装置90と、この両側に設置された一対のガイド91a、91bと、それぞれのガイド91a、91bに案内される交換用の台車92a、92bとを備える。蓄電器保持装置90は、交換用の蓄電器14を複数保持している。蓄電器保持装置90は、放電された蓄電器14を充電する充電器としての機能を有している。ガイド91aは蓄電器保持装置90の一方に設けられ、ガイド91bは蓄電器保持装置90の他方に設けられる。ガイド91aは、蓄電器保持装置90から空間SPの出入口SPGに向かって延在した2本のレールである。ガイド91bもガイド91aと同様である。台車92aは、ガイド91aに取り付けられて、ガイド91aに沿って移動し、台車92bは、ガイド91bに取り付けられて、ガイド91bに沿って移動する。 FIG. 18 is a diagram illustrating an example of the capacitor exchange device EX provided in the mine management system 1 according to the present embodiment. The capacitor exchange device EX is installed in the space SP. In the present embodiment, a maintenance space MS for maintaining the transporting machine 10 and the loading machine 30 is provided in the space SP. The storage battery exchanging device EX includes a storage battery holding device 90, a pair of guides 91a and 91b installed on both sides thereof, and replacement carts 92a and 92b guided by the respective guides 91a and 91b. The capacitor storage device 90 holds a plurality of replacement capacitors 14. The battery holder 90 has a function as a charger that charges the discharged battery 14. The guide 91a is provided on one side of the battery holding device 90, and the guide 91b is provided on the other side of the battery holding device 90. The guide 91a is two rails that extend from the battery holder 90 toward the entrance / exit SPG of the space SP. The guide 91b is the same as the guide 91a. The carriage 92a is attached to the guide 91a and moves along the guide 91a, and the carriage 92b is attached to the guide 91b and moves along the guide 91b.
 蓄電器14を交換するために空間SPに進入した運搬機械10は、ガイド91aとガイド91bとの間に停車する。このとき、運搬機械10は、一方の蓄電器14をガイド91aに向けて、他方の蓄電器14をガイド91bに向けて停車する。台車92a及び台車92bは、充電済みの蓄電池14を蓄電器保持装置90から受け取り、運搬機械10に向かって移動する。台車92a及び台車92bは、運搬機械10と対向する位置に移動したら、運搬機械10に搭載されている放電された蓄電器14を運搬機械10から自身の上部に移動させる。次に、台車92a及び台車92bは、それぞれに積載されている充電済みの蓄電器14が運搬機械10と対向する位置まで移動する。その後、台車92a及び台車92bは、充電済みの蓄電池14を運搬機械10に積み込む。台車92a及び台車92bは、蓄電器保持装置90の位置まで戻り、運搬機械10から回収した蓄電器14を蓄電器保持装置90に移動させる。蓄電器保持装置90は、この蓄電器を充電する。このようにして、運搬機械10の蓄電器14が交換される。 The transport machine 10 that has entered the space SP in order to replace the storage battery 14 stops between the guide 91a and the guide 91b. At this time, the transporting machine 10 stops with one capacitor 14 facing the guide 91a and the other capacitor 14 facing the guide 91b. The carriage 92 a and the carriage 92 b receive the charged storage battery 14 from the storage battery holder 90 and move toward the transport machine 10. When the trolley 92a and the trolley 92b move to a position facing the transporting machine 10, the discharged storage battery 14 mounted on the transporting machine 10 is moved from the transporting machine 10 to the upper part thereof. Next, the carriage 92a and the carriage 92b move to a position where the charged storage battery 14 loaded on each of the carriages 92a and 92b faces the transporting machine 10. Thereafter, the carriage 92 a and the carriage 92 b load the charged storage battery 14 into the transporting machine 10. The carriage 92 a and the carriage 92 b return to the position of the storage battery holding device 90 and move the storage battery 14 collected from the transport machine 10 to the storage battery holding device 90. The capacitor holding device 90 charges the capacitor. In this way, the battery 14 of the transport machine 10 is replaced.
 運搬機械10が備える蓄電器14は、着脱可能でなくてもよい。この場合、蓄電器取扱装置EXは、運搬機械10が備える蓄電器14を充電するものであってもよい。 The storage battery 14 included in the transporting machine 10 may not be detachable. In this case, the battery storage device EX may charge the battery 14 included in the transport machine 10.
 本実施形態において、運搬機械10は蓄電器14によって走行するため、空間SP内の蓄電器交換装置EXを用いて放電された蓄電器14が充電済みの蓄電器14と交換される。積込機械30は、前述したように、図3等に示す給電ケーブル5から電力を供給されて回転ローラー33及びフィーダー31等が動作する。積込機械30は、自身が坑内を移動するため、例えば、異なるドローポイントDPに移動するために走行するが、この場合、給電ケーブル5から切り離される。このため、積込機械30は、図17に示す走行用の電動機48L、48Rを駆動するための蓄電器を備えている。この蓄電器は、積込機械30がドローポイントDPで掘削及び鉱石MRを搬送しているときに、給電ケーブル5から供給される電力によって充電される。積込機械30の蓄電器は、例えば、使用により性能が許容値よりも低下したような場合に、例えば、空間SP内の整備スペースMSで交換される。 In the present embodiment, since the transporting machine 10 travels by the capacitor 14, the discharged capacitor 14 is replaced with the charged capacitor 14 using the capacitor replacement device EX in the space SP. As described above, the loading machine 30 is supplied with electric power from the power supply cable 5 shown in FIG. 3 and the like, and the rotating roller 33, the feeder 31 and the like operate. Since the loading machine 30 moves in the mine, for example, it travels to move to a different draw point DP. In this case, the loading machine 30 is disconnected from the feeding cable 5. For this reason, the loading machine 30 includes a capacitor for driving the electric motors 48L and 48R for traveling shown in FIG. This accumulator is charged by the electric power supplied from the power supply cable 5 when the loading machine 30 is excavating and transporting the ore MR at the draw point DP. For example, when the performance of the loading machine 30 is lower than an allowable value due to use, the storage battery 30 is replaced with, for example, the maintenance space MS in the space SP.
<運搬機械が走行する経路>
 図19は、本実施形態に係る鉱山の管理システム1において、運搬機械10が坑内MIのドリフトDRを進行する方向を示す図である。以下の説明において、坑内MIに設けられた複数のドリフトDR、複数の外周路TR、複数のドローポイントDP又は複数のオアパスOPを区別する場合には、符号DR、符号TR、符号DP又は符号OPに符号a、b等を付す。複数のドリフトDR、複数の外周路TR、複数のドローポイントDP及び複数のオアパスOPを区別しない場合、符号a、b等は付さない。
<Route that transport machine travels>
FIG. 19 is a diagram illustrating a direction in which the transporting machine 10 travels the drift DR of the mine MI in the mine management system 1 according to the present embodiment. In the following description, when distinguishing a plurality of drifts DR, a plurality of outer peripheral paths TR, a plurality of draw points DP, or a plurality of OR paths OP provided in the underground mine MI, a code DR, a code TR, a code DP, or a code OP Are a and b. When the plurality of drifts DR, the plurality of outer peripheral paths TR, the plurality of draw points DP, and the plurality of OR paths OP are not distinguished, the symbols a and b are not attached.
 図19に示す鉱山の採掘システム1では、坑内に、6本のドリフトDRa、DRb、DRc、DRd、DRe、DRfと2本の外周路TRa、TRbとが形成されている。本実施形態において、ドリフトDRと、外周路TRとで周回路CDが形成される。具体的には、複数本のドリフトDRと、複数本の外周路TRとが接続されて、1つの周回路CDが形成される。例えば、2本のドリフトDRb、DRdと2本の外周路TRa、TRbとで周回路CDaが形成される。また、2本のドリフトDRc、DReと2本の外周路TRa、TRbとで周回路CDbが形成される。このように、本実施形態では、2本のドリフトDRと、2本の外周路TRとで、1つの周回路CDが形成される。この場合、1つの周回路CDは、2本のドリフトDRと、2本の外周路TRとによって形成されるが、1つの周回路CDが有する2本のドリフトDRは、走行可能な方向が互いに異なっている。 In the mining system 1 of the mine shown in FIG. 19, six drifts DRa, DRb, DRc, DRd, DRe, DRf and two outer circumferential paths TRa, TRb are formed in the mine. In the present embodiment, a peripheral circuit CD is formed by the drift DR and the outer peripheral path TR. Specifically, a plurality of drifts DR and a plurality of outer peripheral paths TR are connected to form one peripheral circuit CD. For example, a peripheral circuit CDa is formed by two drifts DRb and DRd and two outer peripheral paths TRa and TRb. Further, a peripheral circuit CDb is formed by the two drifts DRc and DRe and the two outer peripheral paths TRa and TRb. Thus, in the present embodiment, one peripheral circuit CD is formed by the two drifts DR and the two outer peripheral paths TR. In this case, one peripheral circuit CD is formed by two drift DRs and two outer peripheral paths TR. However, the two drift DRs included in one peripheral circuit CD have mutually travelable directions. Is different.
 1本のドリフトDRに1台の積込機械30が配置される。なお、生産量を増大するために、1本のドリフトDRに複数台の積込機械30が配置されてもよい。 One loading machine 30 is arranged in one drift DR. In order to increase the production amount, a plurality of loading machines 30 may be arranged in one drift DR.
 運搬機械10がドローポイントDPで採掘された鉱石MRを積載し、オアパスOPで排出する場合、この運搬機械10が走行する周回路CDは、オアパスOPa及びオアパスOPbの少なくとも一方を含むように形成されることが好ましい。鉱石MRを積載せず、図7及び図8に示す蓄電器14を交換するため、空間SPに設置された蓄電器交換装置EXに向かう運搬機械10が走行する周回路CDは、オアパスOPa及びオアパスOPbを含まなくてもよい。管理装置3は、運搬機械10毎に、周回路CDを任意に生成することができる。例えば、管理装置3は、運搬機械10の状態に応じて周回路CDを生成してもよい。一例として、管理装置3は、運搬機械10が備える蓄電器14の容量が所定の閾値を下回り、かつ運搬機械10がベッセル11に鉱石MRを積載していな場合は、運搬機械10が蓄電器交換装置EXで蓄電器14を交換するものとして、現在位置から空間SPまでの最短の周回路CDを生成することができる。 When the transport machine 10 loads the ore MR mined at the draw point DP and discharges it with the ore pass OP, the circumferential circuit CD on which the transport machine 10 travels is formed to include at least one of the ore pass OPa and the ore pass OPb. It is preferable. In order to replace the storage battery 14 shown in FIG. 7 and FIG. 8 without loading the ore MR, the circumferential circuit CD on which the transporting machine 10 travels toward the storage battery exchanging apparatus EX installed in the space SP has the orpass OPa and the orpass OPb. It does not have to be included. The management device 3 can arbitrarily generate a peripheral circuit CD for each transport machine 10. For example, the management device 3 may generate the circuit CD according to the state of the transport machine 10. As an example, when the capacity of the storage battery 14 included in the transporting machine 10 falls below a predetermined threshold value and the transporting machine 10 does not load the ore MR on the vessel 11, the management apparatus 3 includes the transporting machine 10 that stores the power storage unit EX. Thus, the shortest circuit CD from the current position to the space SP can be generated as a replacement of the battery 14.
 ドリフトDRを走行する運搬機械10は、周回路CDを同一方向に走行する。本実施形態では、周回路CDを右回りに走行する。その過程で、運搬機械10は、ドローポイントDPで積込機械30から鉱石MRを積載される。そして、運搬機械10は、積載された鉱石MRをオアパスOPa又はオアパスOPbで排出する。例えば、周回路CDaを走行する運搬機械10は、ドリフトDRbにつながっているドローポイントDPbで、積込機械30から鉱石MRの積載を受ける。その後、運搬機械10は、ドリフトDRb及び外周路TRaを走行し、外周路TRaに隣接して設けられたオアパスOPaに鉱石MRを排出する。鉱石MRを排出した運搬機械10は、ドリフトDRdを走行して、ドリフトDRdにつながっているドローポイントDPdで、積込機械30から鉱石MRの積載を受ける。その後、運搬機械10は、ドリフトDRd及び外周路TRbを走行し、外周路TRbに隣接して設けられたオアパスOPbに鉱石MRを排出する。 The transporting machine 10 traveling on the drift DR travels on the circuit CD in the same direction. In the present embodiment, the vehicle travels clockwise around the circuit CD. In the process, the transporting machine 10 is loaded with the ore MR from the loading machine 30 at the draw point DP. Then, the transporting machine 10 discharges the loaded ore MR with the ore pass OPa or the ore pass OPb. For example, the transporting machine 10 traveling on the circumferential circuit CDa receives the loading of the ore MR from the loading machine 30 at the draw point DPb connected to the drift DRb. Thereafter, the transporting machine 10 travels along the drift DRb and the outer circumferential path TRa, and discharges the ore MR to the ore pass OPa provided adjacent to the outer circumferential path TRa. The transporting machine 10 that has discharged the ore MR travels on the drift DRd and receives the loading of the ore MR from the loading machine 30 at the draw point DPd connected to the drift DRd. Thereafter, the transporting machine 10 travels along the drift DRd and the outer circumferential path TRb, and discharges the ore MR to the ore pass OPb provided adjacent to the outer circumferential path TRb.
 周回路CDbを走行する運搬機械10は、ドリフトDRcにつながっているドローポイントDPcで、積込機械30から鉱石MRの積載を受ける。その後、運搬機械10は、ドリフトDRc及び外周路TRaを走行し、外周路TRaに隣接して設けられたオアパスOPaに鉱石MRを排出する。鉱石MRを排出した運搬機械10は、ドリフトDReを走行して、ドリフトDReにつながっているドローポイントDPeで、積込機械30から鉱石MRの積載を受ける。その後、運搬機械10は、ドリフトDRe及び外周路TRbを走行し、外周路TRbに隣接して設けられたオアパスOPbに鉱石MRを排出する。 The transporting machine 10 traveling on the peripheral circuit CDb receives the loading of the ore MR from the loading machine 30 at the draw point DPc connected to the drift DRc. Thereafter, the transporting machine 10 travels along the drift DRc and the outer circumferential path TRa, and discharges the ore MR to the ore pass OPa provided adjacent to the outer circumferential path TRa. The transporting machine 10 that has discharged the ore MR travels on the drift DRe and receives the loading of the ore MR from the loading machine 30 at the draw point DPe connected to the drift DRe. Thereafter, the transporting machine 10 travels along the drift DRe and the outer circumferential path TRb, and discharges the ore MR to the ore pass OPb provided adjacent to the outer circumferential path TRb.
 このように、運搬機械10が周回路CDを一方向に走行することにより、ドローポイントDPからオアパスOPの間を往復する場合と比較して、運搬機械10のすれ違いを最小限に抑制できる。また、周回路CDがオアパスOPaとオアパスOPbとの両方を含むようにすると、運搬機械10が周回路CDを1周する間に鉱石MRの積込と排出とを2回行うことができるので、鉱石MRの搬送量を大きくすることができる。その結果、鉱山の管理システム1は、サイクルタイムを改善し、鉱山の生産性を向上させることができる。また、運搬機械10が周回路CDを一方向に走行することにより、運搬機械10のすれ違いを抑制できるので、すれ違いに要する箇所を少なくすることができ、また、すれ違いが不要であればすれ違いに要する箇所を設けなくてもよい。その結果、坑道の幅を無闇に大きくする必要がなくなるので、坑道を掘削する手間、時間及び費用を抑制できる。 As described above, when the transporting machine 10 travels in one direction on the circuit CD, the passing of the transporting machine 10 can be minimized as compared with the case of reciprocating between the draw point DP and the ore pass OP. In addition, if the circuit CD includes both the OR path OPa and the OR path OPb, the loading and discharging of the ore MR can be performed twice while the transporting machine 10 makes one circuit of the circuit CD. The conveyance amount of the ore MR can be increased. As a result, the mine management system 1 can improve cycle time and improve mine productivity. In addition, since the transport machine 10 travels the circuit CD in one direction, the passing of the transport machine 10 can be suppressed. Therefore, the number of places required for the passing can be reduced, and if the passing is unnecessary, the passing is necessary. It is not necessary to provide a location. As a result, since it is not necessary to increase the width of the mine shaft without darkness, labor, time and cost for excavating the mine shaft can be suppressed.
 本実施形態において、それぞれのドリフトDRにおいて、運搬機械10等が走行する方向は、ドリフトDR毎に一方の方向(一方通行)に決められている。すなわち、それぞれのドリフトDRは、一方向のみ走行可能である。運搬機械10等が周回路CDを右回りに走行する場合、例えば、周回路CDaに含まれるドリフトDRbの走行方向は、オアパスOPbからオアパスOPaに向かう方向である。この場合、運搬機械10は、オアパスOPaからオアパスOPbに向かうようにドリフトDRbを走行することはできない。 In this embodiment, in each drift DR, the direction in which the transporting machine 10 or the like travels is determined in one direction (one-way) for each drift DR. That is, each drift DR can travel only in one direction. When the transport machine 10 or the like travels clockwise around the circuit CD, for example, the traveling direction of the drift DRb included in the circuit CDa is a direction from the ore path OPb toward the ore path OPa. In this case, the transport machine 10 cannot travel on the drift DRb so as to go from the ore pass OPa to the ore pass OPb.
 運搬機械10等が周回路CDを一方向に走行する場合、管理装置3は、それぞれのドリフトDRにおいて、運搬機械10が他の運搬機械又は積込機械30とすれ違わないように、周回路CDを生成する。例えば、管理装置3は、周回路CDを生成する場合、既に生成されている周回路CDに含まれる結果、走行する方向が一方向に定められているドリフトDRを逆走するような周回路CDは生成することができない。管理装置3は、既に生成されている周回路CDに含まれるドリフトDRを用いて、新たな周回路CDを生成する場合、新たな周回路CDの走行方向が、既に生成されている周回路CDに含まれるドリフトDRの走行方向と一致するようにする。このようにすることで、周回路CDでの運搬機械10のすれ違いが低減又は回避される。 When the transporting machine 10 or the like travels around the circuit CD in one direction, the management device 3 prevents the transporting machine 10 from passing another transporting machine or the loading machine 30 in each drift DR. Is generated. For example, when the management device 3 generates the peripheral circuit CD, the peripheral circuit CD that reversely travels the drift DR in which the traveling direction is determined as one direction as a result of being included in the already generated peripheral circuit CD. Cannot be generated. When the management device 3 generates a new peripheral circuit CD using the drift DR included in the already generated peripheral circuit CD, the traveling direction of the new peripheral circuit CD is the already generated peripheral circuit CD. So as to coincide with the traveling direction of the drift DR included in. By doing in this way, the passing of the transport machine 10 in the peripheral circuit CD is reduced or avoided.
 鉱山の管理システム1において、オアパスOPaが設けられている外周路TRaには6本のドリフトDRが接続されており、オアパスOPbが設けられている外周路TRbにも6本のドリフトDRが接続されている。外周路TRaが延びる方向において、オアパスOPaを基準としていずれの方向においても同数(本実施形態では3本)のドリフトDRが外周路TRaに接続されている。同様に、外周路TRbが延びる方向において、オアパスOPbを基準としていずれの方向においても同数(本実施形態では3本)のドリフトDRが外周路TRbに接続されている。このようなドリフトDR及び外周路TRを有する鉱山の管理システム1において、オアパスOPaとオアパスOPbとの両方を含むようにする周回路CDは、
(1)パターン1:ドリフトDRa、外周路TRa、ドリフトDRf、外周路TRb、
(2)パターン2:ドリフトDRa、外周路TRa、ドリフトDRe、外周路TRb、
(3)パターン3:ドリフトDRa、外周路TRa、ドリフトDRd、外周路TRb、
(4)パターン4:ドリフトDRb、外周路TRa、ドリフトDRf、外周路TRb、
(5)パターン5:ドリフトDRb、外周路TRa、ドリフトDRe、外周路TRb、
(6)パターン6:ドリフトDRb、外周路TRa、ドリフトDRd、外周路TRb、
(7)パターン7:ドリフトDRc、外周路TRa、ドリフトDRf、外周路TRb、
(8)パターン8:ドリフトDRc、外周路TRa、ドリフトDRe、外周路TRb、
(9)パターン9:ドリフトDRc、外周路TRa、ドリフトDRd、外周路TRb、
の9パターンある。
In the mine management system 1, six drift DRs are connected to the outer track TRa provided with the ore pass OPa, and six drift DRs are also connected to the outer route TRb provided with the ore pass OPb. ing. In the direction in which the outer circumferential path TRa extends, the same number (three in this embodiment) of drift DRs are connected to the outer circumferential path TRa in any direction with respect to the ore path OPa. Similarly, in the direction in which the outer peripheral path TRb extends, the same number (three in this embodiment) of drift DRs are connected to the outer peripheral path TRb in any direction with respect to the OR path OPb. In such a mine management system 1 having the drift DR and the outer track TR, the peripheral circuit CD that includes both the ore pass OPa and the ore pass OPb,
(1) Pattern 1: Drift DRa, outer periphery TRa, drift DRf, outer periphery TRb,
(2) Pattern 2: Drift DRa, outer circumference TRa, drift DRe, outer circumference TRb,
(3) Pattern 3: Drift DRa, outer circumference TRa, drift DRd, outer circumference TRb,
(4) Pattern 4: drift DRb, outer periphery TRa, drift DRf, outer periphery TRb,
(5) Pattern 5: drift DRb, outer periphery TRa, drift DRe, outer periphery TRb,
(6) Pattern 6: Drift DRb, outer periphery TRa, drift DRd, outer periphery TRb,
(7) Pattern 7: drift DRc, outer periphery TRa, drift DRf, outer periphery TRb,
(8) Pattern 8: drift DRc, outer periphery TRa, drift DRe, outer periphery TRb,
(9) Pattern 9: drift DRc, outer periphery TRa, drift DRd, outer periphery TRb,
There are 9 patterns.
 鉱山の管理システム1において、運搬機械10が、これらの周回路CDをいずれも一方向(例えば右回り)に走行することにより、運搬機械10のすれ違いを最小限に抑制でき、かつ運搬機械10が周回路CDを1周する間に鉱石MRの積込と排出とを2回行うことができるようになる。本実施形態において、それぞれの外周路TRに設けられるオアパスOPの位置及び数は限定されるものではない。一対の外周路TRに複数のドリフトDRが接続され、かつそれぞれの外周路TRに1個ずつオアパスOPが設けられている場合、オアパスOPを基準として外周路TRが延びる方向にそれぞれ同数のドリフトDRが接続されるようにすると、周回路CDのパターンを多くできるので好ましい。 In the mine management system 1, the transporting machine 10 travels in one direction (for example, clockwise) through the peripheral circuit CD so that the passing of the transporting machine 10 can be minimized and the transporting machine 10 The ore MR can be loaded and discharged twice during one round of the circuit CD. In the present embodiment, the position and the number of OR paths OP provided in the respective outer circumferential paths TR are not limited. When a plurality of drifts DR are connected to a pair of outer circumferential paths TR and one ore path OP is provided for each outer circumferential path TR, the same number of drift DRs in the extending direction of the outer circumferential path TR with respect to the ore path OP. Are preferably connected because the number of patterns of the peripheral circuit CD can be increased.
<坑内の作業モードの設定>
 次に、本実施形態に係る管理システム1による鉱山Mの管理方法について説明する。鉱山においては、様々な指標を基準とする生産体制で作業を行いたいという要望がある。例えば、単位時間当たりの鉱石MRの採掘量(生産量)の指標を重視して作業を行いたい場合がある。運搬機械10及び積込機械30のエネルギー消費量の指標を重視して作業を行いたい場合がある。坑内MIの路面、積込機械30、及び運搬機械10のメンテナンス費用の指標を重視して作業を行いたい場合がある。
<Setting the working mode in the mine>
Next, the management method of the mine M by the management system 1 according to the present embodiment will be described. In the mine, there is a demand to work in a production system based on various indicators. For example, there is a case where it is desired to perform work with an emphasis on the index of the mining amount (production amount) of the ore MR per unit time. There is a case where it is desired to work with an emphasis on the energy consumption index of the transporting machine 10 and the loading machine 30. There is a case where it is desired to work with emphasis on the maintenance cost index of the road surface of the mine MI, the loading machine 30 and the transporting machine 10.
 本実施形態においては、上述の指標を重視する作業モードが複数定められている。それら作業モードは、鉱石MRの単位重量当たりの採掘コスト($/t)、及び単位時間当たりの鉱石MRの採掘量(t/h)を考慮して複数定められている。 In the present embodiment, a plurality of work modes in which the above-described index is emphasized are defined. A plurality of these operation modes are determined in consideration of the mining cost ($ / t) per unit weight of the ore MR and the mining amount (t / h) of the ore MR per unit time.
 本実施形態においては、単位時間当たりの鉱石MRの採掘量(生産量)を優先する生産量重視モードと、運搬機械10及び積込機械30のエネルギー消費量の抑制を優先する省エネルギーモードと、坑内MIの路面、積込機械30、及び運搬機械10のメンテナンス費用の抑制を優先する省メンテナンス費モードとが定められている。 In the present embodiment, the production amount priority mode that prioritizes the mining amount (production amount) of the ore MR per unit time, the energy saving mode that prioritizes the suppression of the energy consumption of the transporting machine 10 and the loading machine 30, and the underground A reduced maintenance cost mode that prioritizes suppression of maintenance costs for the road surface of the MI, the loading machine 30 and the transporting machine 10 is defined.
 また、本実施形態においては、生産量重視モードとして、単位時間当たりの鉱石MRの採掘量を最大にする生産量最大モードと、鉱石MRの採掘量の変動を抑制する生産量平滑モードとが定められている。 In the present embodiment, the production amount priority mode is defined as a production maximum mode that maximizes the mining amount of the ore MR per unit time and a production amount smoothing mode that suppresses fluctuations in the mining amount of the ore MR. It has been.
 すなわち、本実施形態においては、
(p1)生産量最大モード(生産量重視モード)、
(p2)生産量平準モード(生産量重視モード)、
(e)省エネルギーモード、
(m1)路面の省メンテナンス費モード、
(m2)運搬機械10及び積込機械30の省メンテナンス費モード、
の5つの作業モードが用意されている。
That is, in this embodiment,
(P1) Production maximum mode (production priority mode),
(P2) Production volume leveling mode (production volume priority mode),
(E) Energy saving mode,
(M1) Road maintenance cost saving mode,
(M2) The maintenance cost mode of the transporting machine 10 and the loading machine 30;
There are five working modes.
 生産量最大モード(p1)は、積込機械30の積込性能及び運搬機械10の運搬性能を最大にするとともに、配車効率を向上させて、生産量を最大化するモードである。生産量は、「積込機械30の処理能力[t/h]×積込機械30の台数×積込効率」、及び「運搬機械10の処理能力[t/h]×運搬機械10の台数×運搬効率(配車効率)」の関数である。 The maximum production amount mode (p1) is a mode in which the loading performance of the loading machine 30 and the transportation performance of the transporting machine 10 are maximized, the vehicle allocation efficiency is improved, and the production amount is maximized. The production amounts are “processing capacity of loading machine 30 [t / h] × number of loading machines 30 × loading efficiency” and “processing capacity of transporting machine 10 [t / h] × number of transporting machines 10 × It is a function of “transport efficiency (allocation efficiency)”.
 生産量平準モード(p2)は、[t/h]の変動を抑制するモードである。[t/h]のピークを抑えて変動を抑制することにより、後工程の設備及び人員配置をピークに合わせる必要が無くなる。生産量平準モード(p2)においては、複数の運搬機械10が正常に稼働可能な正常時において、それぞれの運搬機械10の処理能力(運搬能力)が抑制される。これにより、坑内MIにおける生産量は抑制される。運搬機械10の故障のような異常時又は運搬機械10のメンテナンス時において、正常に稼動可能な運搬機械10が減少した場合、正常に稼動可能な運搬機械10の処理能力が高められる。これにより、生産量の低下が抑制され、生産量が平準化される。 The production level mode (p2) is a mode that suppresses fluctuations in [t / h]. By suppressing the peak of [t / h] and suppressing fluctuations, it is not necessary to match the equipment and personnel assignment in the subsequent process to the peak. In the production level mode (p2), the processing capability (transport capability) of each transport machine 10 is suppressed when the plurality of transport machines 10 can operate normally. Thereby, the production amount in the underground mine MI is suppressed. In the case of an abnormality such as a failure of the transporting machine 10 or during maintenance of the transporting machine 10, when the number of transporting machines 10 that can operate normally decreases, the processing capacity of the transporting machine 10 that can operate normally is increased. Thereby, the fall of a production amount is suppressed and a production amount is equalized.
 省エネルギーモード(e)は、目標の生産量及び目標の稼動時間を達成しつつ、エネルギー消費量を抑制するモードである。省エネルギーモードにおいては、運搬機械10の加速度及び減速度の抑制、積込機械30の作業機の動作の抑制等により、採掘量当たりのエネルギーコストの抑制を図る。 Energy saving mode (e) is a mode that suppresses energy consumption while achieving a target production amount and a target operating time. In the energy saving mode, the energy cost per mining amount is reduced by suppressing the acceleration and deceleration of the transport machine 10 and the operation of the work machine of the loading machine 30.
 省メンテナンス費モード(m1、m2)は、目標の生産量及び目標の稼動時間を達成しつつ、メンテナンス費を抑制するモードである。坑内MIの路面の省メンテナンス費モード(m1)においては、例えば、特定の路面を走行する運搬機械10の総走行距離(のべ走行距離)の低減、複数のドリフトDRのそれぞれにおける運搬機械10の通過回数の平均化等により、特定の路面が著しく劣化することを抑制して、路面のメンテナンス費の抑制を図る。積込機械30の省メンテナンス費モード(m2)においては、例えば、掘削力の制限により、積込機械30の部材の摩耗を抑制して、積込機械30のメンテナンス費の抑制を図る。運搬機械10の省メンテナンス費モード(m2)においては、例えば、ベッセル4の積載量の制限により、車輪12A、12Bにかかる負荷を抑制して、運搬機械10のメンテナンス費の抑制を図る。 The maintenance cost mode (m1, m2) is a mode in which the maintenance cost is suppressed while achieving the target production amount and the target operation time. In the maintenance-saving cost mode (m1) of the road surface of the mine MI, for example, the total travel distance (total travel distance) of the transport machine 10 traveling on a specific road surface is reduced, and the transport machine 10 in each of the plurality of drift DRs is reduced. By averaging the number of passes, etc., it is possible to suppress the specific road surface from being significantly deteriorated, thereby reducing the maintenance cost of the road surface. In the maintenance-saving cost mode (m2) of the loading machine 30, for example, the wear of the members of the loading machine 30 is suppressed by limiting the excavation force, thereby reducing the maintenance cost of the loading machine 30. In the maintenance-saving cost mode (m2) of the transport machine 10, for example, the load applied to the wheels 12A and 12B is suppressed by limiting the load amount of the vessel 4, thereby reducing the maintenance cost of the transport machine 10.
 図20は、鉱石MRの単位重量当たりの採掘コスト($/t)と、単位時間当たりの鉱石MRの採掘量(t/h)と、上述の複数の作業モード(p1、p2、e、m1、m2)との関係の一例を示す図である。 FIG. 20 shows the mining cost ($ / t) per unit weight of the ore MR, the mining amount (t / h) of the ore MR per unit time, and the above-described plurality of operation modes (p1, p2, e, m1). , M2).
 図20に示すグラフにおいて、横軸は、鉱石MRの単位重量当たりの採掘コスト($/t)を示す。縦軸は、単位時間当たりの鉱石MRの採掘量(t/h)を示す。 In the graph shown in FIG. 20, the horizontal axis represents the mining cost ($ / t) per unit weight of the ore MR. The vertical axis indicates the mining amount (t / h) of the ore MR per unit time.
 図20に示すグラフにおいて、生産量最大モードを点p1で示す。生産量平準モードを点p2で示す。省エネルギーモードを点eで示す。路面の省メンテナンス費モードを点m1で示す。運搬機械10及び積込機械30の省メンテナンス費モードを点m2で示す。図20において、生産量最大モードp1の鉱石MRの単位重量当たりの採掘コスト($/t)、及び単位時間当たりの鉱石MRの採掘量(t/h)をそれぞれ1とする。 In the graph shown in FIG. 20, the production maximum mode is indicated by a point p1. The production level mode is indicated by point p2. The energy saving mode is indicated by a point e. The road surface maintenance cost mode is indicated by a point m1. The low maintenance cost mode of the transport machine 10 and the loading machine 30 is indicated by a point m2. In FIG. 20, the mining cost ($ / t) per unit weight of the ore MR in the production maximum mode p1 and the mining amount (t / h) of the ore MR per unit time are set to 1, respectively.
 複数の作業モード(p1、p2、e、m1、m2)は、鉱石MRの単位重量当たりの採掘コスト($/t)及び単位時間当たりの鉱石MRの採掘量(t/h)を考慮して定められる。各作業モードについて、「$/t」の目標値、及び「t/h」の目標値が予め決定され、記憶装置3Mに記憶されている。図20に示すそれぞれの点(p1、p2、e、m1、m2)は、「$/t」の目標値及び「t/h」の目標値に基づいてプロットされている。 The multiple operation modes (p1, p2, e, m1, m2) take into consideration the mining cost ($ / t) per unit weight of the ore MR and the mining amount (t / h) of the ore MR per unit time. Determined. For each work mode, a target value of “$ / t” and a target value of “t / h” are determined in advance and stored in the storage device 3M. Each point (p1, p2, e, m1, m2) shown in FIG. 20 is plotted based on the target value of “$ / t” and the target value of “t / h”.
 これらの作業モードは、オペレータ(管理者)により選択される。管理者は、上述の複数の作業モードのうち、1つの作業モードが選択されるように、管理装置3の入力装置9を操作する。入力装置9は、選択された作業モードに応じた入力信号を生成する。管理装置3の処理装置3Cは、その入力信号に基づいて、坑内MIの作業モードを設定する。 These work modes are selected by an operator (administrator). The administrator operates the input device 9 of the management apparatus 3 so that one work mode is selected from the plurality of work modes described above. The input device 9 generates an input signal corresponding to the selected work mode. The processing device 3C of the management device 3 sets the working mode of the underground mine MI based on the input signal.
 本実施形態においては、5つの作業モードのうち、選択された作業モードに基づいて、「$/t」の目標値及び「t/h」の目標値が達成されるように、運搬機械10の作業パラメータ、及び積込機械30の作業パラメータが決定される。管理装置3は、入力装置9からの入力信号に基づいて、複数の作業モードから1つの作業モードを設定するとともに、その設定(選択)された作業モードに基づいて、「$/t」の目標値及び「t/h」の目標値が達成されるように、運搬機械10の作業パラメータ及び積込機械30の作業パラメータを決定する。 In this embodiment, based on the selected work mode among the five work modes, the target value of “$ / t” and the target value of “t / h” are achieved. The work parameters and the work parameters of the loading machine 30 are determined. The management device 3 sets one work mode from a plurality of work modes based on an input signal from the input device 9, and sets a target of “$ / t” based on the set (selected) work mode. The work parameter of the transport machine 10 and the work parameter of the loading machine 30 are determined so that the value and the target value of “t / h” are achieved.
 本実施形態においては、作業モードは、鉱石MRの単位重量当たりの採掘コスト($/t)、及び単位時間当たりの鉱石MRの採掘量(t/h)を考慮して複数定められている。作業パラメータは、選択された作業モードに対応した「$/t」の目標値及び「t/h」の目標値が達成されるように予め決定され、記憶装置3Mに記憶されている。したがって、管理装置3は、記憶装置3Mの記憶情報と設定(選択)された作業モードとに基づいて、「$/t」の目標値及び「t/h」の目標値が達成されるように、運搬機械10の作業パラメータ及び積込機械30の作業パラメータを決定することができる。管理装置3は、その決定した運搬機械10の作業パラメータ及び積込機械30の作業パラメータに基づいて、運搬機械10の作業パラメータ及び積込機械30の作業パラメータの両方を変更する。本実施形態において、管理装置3は、運搬機械10の作業パラメータ及び積込機械30の作業パラメータを同時に変更する。 In the present embodiment, a plurality of operation modes are determined in consideration of the mining cost ($ / t) per unit weight of the ore MR and the mining amount (t / h) of the ore MR per unit time. The work parameters are determined in advance so as to achieve the target value of “$ / t” and the target value of “t / h” corresponding to the selected work mode, and are stored in the storage device 3M. Therefore, the management device 3 achieves the target value of “$ / t” and the target value of “t / h” based on the storage information of the storage device 3M and the set (selected) work mode. The working parameters of the transporting machine 10 and the working parameters of the loading machine 30 can be determined. The management device 3 changes both the work parameter of the transport machine 10 and the work parameter of the load machine 30 based on the determined work parameter of the transport machine 10 and the work parameter of the load machine 30. In the present embodiment, the management device 3 changes the work parameter of the transport machine 10 and the work parameter of the loading machine 30 at the same time.
 作業パラメータは、積込機械30の性能に関するパラメータ、運搬機械10の性能に関するパラメータ、運搬機械10の台数に関するパラメータ、及び運搬機械10の配車に関するパラメータを含む。これらパラメータが変更される。 The work parameters include a parameter related to the performance of the loading machine 30, a parameter related to the performance of the transporting machine 10, a parameter related to the number of the transporting machines 10, and a parameter related to the allocation of the transporting machine 10. These parameters are changed.
 運搬機械10の作業パラメータは、坑内MIにおける運搬機械10の走行速度(車速)、加速度(減速度)、及びベッセル11における鉱石MRの積載量を含む。また、運搬機械10の作業パラメータは、配車パラメータを含む。配車パラメータは、運搬機械10がドローポイントDP及び積込位置LPを含む積込場所LAに移動するまでの坑道Rにおける移動経路、及び運搬機械10がオアパスOPに移動するまでの坑道Rにおける移動経路を含む。移動経路は、上述の(1)~(9)の周回路の9パターン、及び周回方向(右回り又は左回りのいずれか一方向)を含む。また、配車パラメータは、複数のオアパスOPa及びオアパスOPbのうち、運搬機械10を向かわせるオアパスの選択を含む。また、配車パラメータは、複数の積込場所LAのうち、運搬機械10を向かわせる積込場所LAの選択を含む。また、配車パラメータは、1つのドリフトについて運搬機械10が通過する回数を含む。 The work parameters of the transporting machine 10 include the traveling speed (vehicle speed) and acceleration (deceleration) of the transporting machine 10 in the underground mine MI, and the loading amount of the ore MR in the vessel 11. Moreover, the work parameters of the transport machine 10 include a dispatch parameter. The vehicle allocation parameter includes a movement path in the tunnel R until the transport machine 10 moves to the loading place LA including the draw point DP and the loading position LP, and a travel path in the tunnel R until the transport machine 10 moves to the ore pass OP. including. The movement path includes nine patterns of the above-described peripheral circuits (1) to (9) and a circular direction (either clockwise or counterclockwise). In addition, the dispatch parameter includes selection of an ore pass that directs the transport machine 10 among the ore pass OPa and the ore pass OPb. Further, the dispatch parameter includes selection of a loading place LA that the transport machine 10 is directed to among the plurality of loading places LA. In addition, the dispatch parameter includes the number of times the transport machine 10 passes for one drift.
 積込機械30の作業パラメータは、坑内MIにおける積込機械30(走行装置34)の走行速度(車速)、運搬機械10に対する鉱石MIの積み込み速度、及び掘削力の少なくとも一つを含む。積み込み速度は、フィーダー31の速度(回転ローラー33の回転速度を含む)を含む。掘削力は、貫入部材35による貫入力、及び回転体34の回転力を含む。また、積込機械30の作業パラメータは、配車パラメータを含む。配車パラメータは、1本のドリフトDRに配置される積込機械30の台数、複数のドローポイントDPのうち、積込機械30を向かわせるドローポイントDPの選択、及び積込機械30があるドローポイントDPから別のドローポイントDPに移動するまでの坑道Rにおける移動経路を含む。移動経路は、上述の(1)~(9)の周回路の9パターン、及び周回方向(右回り又は左回りのいずれか一方向)を含む。 The working parameters of the loading machine 30 include at least one of the traveling speed (vehicle speed) of the loading machine 30 (traveling device 34) in the underground mine MI, the loading speed of the ore MI on the transporting machine 10, and the excavation force. The loading speed includes the speed of the feeder 31 (including the rotational speed of the rotating roller 33). The excavation force includes penetration input by the penetration member 35 and rotation force of the rotating body 34. Further, the work parameters of the loading machine 30 include a dispatch parameter. The dispatch parameter includes the number of loading machines 30 arranged in one drift DR, the selection of the draw point DP that directs the loading machine 30 among the plurality of draw points DP, and the draw point at which the loading machine 30 is located. It includes a movement path in the mine tunnel R from the DP to another draw point DP. The movement path includes nine patterns of the above-described peripheral circuits (1) to (9) and a circular direction (either clockwise or counterclockwise).
 図21は、運搬機械10の作業パラメータの一例を説明するための図である。図21に示すグラフにおいて、横軸は、積込場所LAから排土場所OPまでの運搬機械10による鉱石MRの運搬時間(時間:h)を示す。縦軸は、運搬機械10の消費電力(キロワットアワー:kwh)を示す。 FIG. 21 is a diagram for explaining an example of work parameters of the transporting machine 10. In the graph shown in FIG. 21, the horizontal axis represents the transport time (time: h) of the ore MR by the transport machine 10 from the loading place LA to the soil discharging place OP. The vertical axis indicates the power consumption (kilowatt hour: kwh) of the transporting machine 10.
 生産量最大モード(p1)が選択された場合、生産量最大モード(p1)における「$/t」の目標値及び「t/h」の目標値が達成されるように、運搬機械10の走行速度、加速度(減速度)、及び積載量などの作業パラメータが決定される。その決定された作業パラメータに基づいて運搬機械10が作業を行うことによって、図21の点p1で示すように、短い運搬時間で「$/t」の目標値及び「t/h」の目標値を達成することができる。 When the maximum production mode (p1) is selected, the traveling of the transporting machine 10 is performed so that the target value “$ / t” and the target value “t / h” in the maximum production mode (p1) are achieved. Work parameters such as speed, acceleration (deceleration), and load capacity are determined. When the transport machine 10 performs work based on the determined work parameters, the target value of “$ / t” and the target value of “t / h” can be obtained in a short transport time as shown by a point p1 in FIG. Can be achieved.
 省エネルギーモード(e)が選択された場合、省エネルギーモード(e)における「$/t」の目標値及び「t/h」の目標値が達成されるように、運搬機械10の走行速度、加速度(減速度)、及び積載量などの作業パラメータが決定される。その決定された作業パラメータに基づいて運搬機械10が作業を行うことによって、図21の点eで示すように、低い消費電力で「$/t」の目標値及び「t/h」の目標値を達成することができる。 When the energy saving mode (e) is selected, the travel speed and acceleration (“acceleration”) of the transport machine 10 are achieved so that the target value “$ / t” and the target value “t / h” in the energy saving mode (e) are achieved. (Deceleration) and work parameters such as loading capacity are determined. When the transporting machine 10 performs work based on the determined work parameters, the target value of “$ / t” and the target value of “t / h” with low power consumption as shown by a point e in FIG. Can be achieved.
 生産量最大モード(p1)においては、走行速度が高い値に設定され、加速度及び減速度も高い値に設定され、積載量も高い(多い)値に設定される。これにより、高い生産量が得られる。一方、走行速度、加速度、減速度、及び積載量が高まると、消費電力は大きくなる。すなわち、生産量最大モード(p1)においては、高い生産量が達成されるものの、消費電力は高い値となる。 In the maximum production mode (p1), the traveling speed is set to a high value, the acceleration and deceleration are also set to high values, and the loading amount is also set to a high (large) value. Thereby, a high production amount is obtained. On the other hand, power consumption increases as travel speed, acceleration, deceleration, and load capacity increase. That is, in the maximum production amount mode (p1), although a high production amount is achieved, the power consumption is a high value.
 省エネルギーモード(e)においては、走行速度が低い値に設定され、加速度及び減速度も低い値に設定され、積載量も低い(少ない)値に設定される。これにより、消費電力を抑制することができる。一方、走行速度、加速度、減速度、及び積載量が低くなると、生産量は低くなる。すなわち、省エネルギーモード(e)においては、低い消費電力が達成されるものの、生産量は低い値となる。 In the energy saving mode (e), the traveling speed is set to a low value, the acceleration and deceleration are set to low values, and the loading amount is set to a low (small) value. Thereby, power consumption can be suppressed. On the other hand, when the traveling speed, acceleration, deceleration, and load capacity are lowered, the production amount is lowered. That is, in the energy saving mode (e), although low power consumption is achieved, the production amount is a low value.
 図22は、運搬機械10の作業パラメータの一例を説明するための図である。図22に示すグラフにおいて、横軸は、運搬機械10による鉱石MRの運搬時間(時間:h)を示す。縦軸は、運搬機械10の走行速度(時速:m/h)を示す。 FIG. 22 is a diagram for explaining an example of work parameters of the transporting machine 10. In the graph shown in FIG. 22, the horizontal axis represents the transport time (time: h) of the ore MR by the transport machine 10. The vertical axis shows the traveling speed (speed: m / h) of the transport machine 10.
 図22に示すラインp1は、生産量最大モード(p1)における運搬機械10の速度プロファイルである。図22に示すラインeは、省エネルギーモード(e)における運搬機械10の速度プロファイルである。速度プロファイルとは、ある時点からの経過時間に対応付けられた走行速度データをいう。 22 is a speed profile of the transport machine 10 in the maximum production mode (p1). A line e illustrated in FIG. 22 is a speed profile of the transport machine 10 in the energy saving mode (e). A speed profile refers to travel speed data associated with an elapsed time from a certain point in time.
 図22に示すように、生産量最大モード(p1)及び省エネルギーモード(e)のそれぞれにおいて、運搬機械10の走行速度の最大値(最高速度)は等しいものの、生産量最大モード(p1)における運搬機械10の加速度及び減速度は、省エネルギーモード(e)における運搬機械10の加速度及び減速度よりも大きい。そのため、生産量最大モード(p1)においては、運搬機械10が所定の距離を走行するのに要する時間は短くて済む。したがって、生産量は高くなる。省エネルギーモード(e)における運搬機械10の加速度及び減速度は、生産量最大モード(p1)における運搬機械10の加速度及び減速度よりも小さい。そのため、省エネルギーモード(e)においては、運搬機械10が所定の距離を走行するのに要する時間は長くなってしまうものの、消費電力は抑制される。 As shown in FIG. 22, although the maximum value (maximum speed) of the traveling speed of the transporting machine 10 is equal in each of the maximum production mode (p1) and the energy saving mode (e), the transportation in the maximum production mode (p1). The acceleration and deceleration of the machine 10 are larger than the acceleration and deceleration of the transport machine 10 in the energy saving mode (e). Therefore, in the maximum production mode (p1), the time required for the transporting machine 10 to travel a predetermined distance can be short. Therefore, the production amount is high. The acceleration and deceleration of the transport machine 10 in the energy saving mode (e) are smaller than the acceleration and deceleration of the transport machine 10 in the maximum production mode (p1). Therefore, in the energy saving mode (e), although the time required for the transporting machine 10 to travel a predetermined distance becomes long, power consumption is suppressed.
 図23は、運搬機械10の作業パラメータの一例を説明するための図である。図23に示すグラフにおいて、横軸は、運搬機械10の車輪12A、12Bのタイヤ、車輪12A、12Bを回転可能に支持するベアリング、及び車輪12A、12Bのタイヤと接触する坑内MIの路面のそれぞれにかかる負荷を示す。縦軸は、それらタイヤ、ベアリング、及び路面の被害量を示す。被害量とは、摩耗量又は劣化の度合いを意味する。被害量が大きいほど、製品寿命が短くなった状態を意味する。 FIG. 23 is a diagram for explaining an example of work parameters of the transport machine 10. In the graph shown in FIG. 23, the horizontal axis represents the tires of the wheels 12A and 12B of the transporting machine 10, the bearings that rotatably support the wheels 12A and 12B, and the road surface of the mine MI that contacts the tires of the wheels 12A and 12B. Indicates the load applied to. The vertical axis indicates the amount of damage to the tires, bearings, and road surface. The amount of damage means the amount of wear or the degree of deterioration. The greater the amount of damage, the shorter the product life.
 タイヤ、ベアリング、及び路面にかかる負荷は、運搬機械10の走行速度、加速度、減速度、及び積載量に応じて変化する。走行速度、加速度、及び減速度が高いほど、タイヤ、ベアリング、及び路面にかかる負荷は大きくなる。また、積載量が多いほど、タイヤ、ベアリング、及び路面にかかる負荷は大きくなる。負荷が大きくなると、被害量が増大する。タイヤ及びベアリングの被害量が増大すると、タイヤ及びベアリングを交換する頻度が高くなり、タイヤ及びベアリングを含む運搬機械10のメンテナンス費が高くなる。路面の被害量が大きくなると、路面を補修する頻度が高くなり、路面のメンテナンス費が高くなる。 The load applied to the tire, the bearing, and the road surface changes according to the traveling speed, acceleration, deceleration, and load capacity of the transport machine 10. The higher the traveling speed, acceleration, and deceleration, the greater the load on the tire, bearing, and road surface. Also, the greater the load, the greater the load on the tires, bearings and road surface. As the load increases, the amount of damage increases. When the damage amount of the tire and the bearing is increased, the frequency of replacing the tire and the bearing is increased, and the maintenance cost of the transporting machine 10 including the tire and the bearing is increased. When the amount of damage on the road surface increases, the frequency of repairing the road surface increases, and the maintenance cost of the road surface increases.
 生産量最大モード(p1)が選択された場合、走行速度、加速度、減速度、及び積載量を含む運搬機械10の作業パラメータは、高い値に設定される。これにより、生産量最大モード(p1)においては、高い生産量が得られる。一方、生産量最大モード(p1)においては、被害量が大きくなり、メンテナンス費は高くなる。 When the maximum production mode (p1) is selected, the work parameters of the transport machine 10 including the traveling speed, acceleration, deceleration, and loading capacity are set to high values. Thereby, in the maximum production amount mode (p1), a high production amount can be obtained. On the other hand, in the maximum production mode (p1), the amount of damage is large and the maintenance cost is high.
 路面の省メンテナンス費モード(m1)が選択された場合、走行速度、加速度、減速度、及び積載量を含む運搬機械10の作業パラメータは、低い値に設定される。これにより、路面の省メンテナンス費モード(m1)においては、路面の被害量が抑制され、路面のメンテナンス費が抑制される。一方、路面の省メンテナンス費モード(m1)においては、生産量は低くなる。 When the road surface maintenance cost mode (m1) is selected, the work parameters of the transporting machine 10 including the travel speed, acceleration, deceleration, and load capacity are set to low values. Thereby, in the road surface maintenance-saving cost mode (m1), the amount of road surface damage is suppressed, and the road surface maintenance cost is suppressed. On the other hand, in the road maintenance-saving cost mode (m1), the production amount is low.
 運搬機械10の省メンテナンス費モード(m2)が選択された場合、走行速度、加速度、減速度、及び積載量を含む運搬機械10の作業パラメータは、低い値に設定される。これにより、運搬機械10の省メンテナンス費モード(m2)においては、タイヤ及びベアリングの被害量が抑制され、運搬機械10のメンテナンス費が抑制される。一方、運搬機械10の省メンテナンス費モード(m2)においては、生産量は低くなる。 When the maintenance cost mode (m2) of the transporting machine 10 is selected, the work parameters of the transporting machine 10 including the traveling speed, acceleration, deceleration, and load capacity are set to low values. Thereby, in the maintenance-saving cost mode (m2) of the transport machine 10, the damage amount of a tire and a bearing is suppressed, and the maintenance cost of the transport machine 10 is suppressed. On the other hand, in the maintenance cost mode (m2) of the transporting machine 10, the production amount is low.
 図24は、生産量最大モード(p1)及び生産量平準モード(p2)における運搬機械10の作業パラメータの一例を示す。生産量最大モード(p1)では、例えば、4つのドリフトDRのそれぞれにおける生産量(ドリフトDRにおける運搬機械10の走行速度、加速度、減速度、及び積載量)が最大になるように、作業パラメータが設定される。 FIG. 24 shows an example of work parameters of the transport machine 10 in the maximum production mode (p1) and the production leveling mode (p2). In the maximum production amount mode (p1), for example, the operation parameter is set so that the production amount (travel speed, acceleration, deceleration, and loading amount of the transport machine 10 in the drift DR) in each of the four drift DRs is maximized. Is set.
 生産量平準モード(p2)では、例えば、4つのドリフトDRのそれぞれにおける生産量が最大とはならず、ドリフトDRにおける最大生産能力に対して余裕を持たせて、ドリフトDRにおける運搬機械10の走行速度、加速度、減速度、及び積載量などが設定される。 In the production amount leveling mode (p2), for example, the production amount in each of the four drift DRs does not become the maximum, and the traveling of the transporting machine 10 in the drift DR is allowed with a margin for the maximum production capacity in the drift DR. Speed, acceleration, deceleration, loading capacity, etc. are set.
 生産量最大モード(p1)で作業しているときに、何らかの原因で、4つのドリフトDRのうち、1つのドリフトDR(そのドリフトDRの積込機械30)が稼動不可能になる可能性がある。その場合、坑内MI全体の生産量の減少量(変動量)は大きくなる。 When working in the maximum production mode (p1), for some reason, one of the four drift DRs (the drift DR loading machine 30) may become inoperable. . In that case, the reduction amount (variation amount) of the overall production amount of the underground mine MI becomes large.
 生産量平準モード(p2)で作業しているときに、4つのドリフトDRのうち、1つのドリフトDR(そのドリフトDRの積込機械30)が稼動不可能になった場合、坑内MI全体の生産量の変動量が抑制されるように、残り3つのドリフトの生産量が上昇される。上述のように、生産量平準モード(p2)では、ドリフトDRにおける生産量は最大とはならず、最大生産能力に対して余裕を持たせて、ドリフトDRにおける運搬機械10の走行速度、加速度、減速度、及び積載量などが設定される。そのため、4つのドリフトのうち、1つのドリフトDRが稼動不可能となった場合、残り3つのドリフトDRの生産量が上昇されることによって、坑内MI全体の生産量の変動量が抑制される。 When one of the four drift DRs (loading machine 30 of the drift DR) becomes inoperable when working in the production level mode (p2), the production of the entire underground mine MI The production of the remaining three drifts is increased so that the amount of fluctuation of the amount is suppressed. As described above, in the production level mode (p2), the production amount in the drift DR does not become the maximum, but with a margin for the maximum production capacity, the traveling speed, acceleration, Deceleration and load capacity are set. Therefore, when one drift DR among the four drifts cannot be operated, the production amount of the remaining three drift DRs is increased, thereby suppressing the fluctuation amount of the production amount of the entire underground mine MI.
 生産量が平準化されることにより、採掘の後工程(例えばクラッシャー機による粉砕工程)において、クラッシャー機の仕事量を平準化できる。平準化されていないと、最大生産能力に対応したクラッシャー機を用意する必要がある。上述のように、1つのドリフトDRが稼動不可能になると、最大生産能力の生産量が得られず、クラッシャー機は遊んでしまうこととなり、無駄が生じる。平準化されることにより、無駄が生じなくて済む。 By leveling the production amount, the work amount of the crusher machine can be leveled in the post-mining process (for example, the crushing process by the crusher machine). If it is not leveled, it is necessary to prepare a crusher machine corresponding to the maximum production capacity. As described above, if one drift DR becomes inoperable, the maximum production capacity cannot be obtained, and the crusher machine will be idle, resulting in waste. By leveling, there is no waste.
 配車パラメータによっても、生産量が変動する。例えば、1つのオアパスOPに複数の運搬機械10が一度に到着してしまうと、渋滞を引き起こし、その結果、生産量が低下する可能性がある。また、1つの積込場所LAに複数の運搬機械10が一度に到着してしまうと、渋滞を引き起こし、その結果、生産性が低下する可能性がある。そこで、渋滞などの発生が抑制されるように、複数の運搬機械10それぞれの移動経路が調整されたり、複数のオアパスOP(OPa、OPb)のうち、1つのオアパス(例えばオアパスOPa)に複数の運搬機械10が殺到したりしないように、複数の運搬機械10のそれぞれが向かうオアパスOPの選択が実行される。また、1つの積込場所LAに複数の運搬機械10が殺到しないように、複数の運搬機械10のそれぞれが向かう積込場所LAの選択が実行される。また、周回方向(右回り又は左回り)が調整されることによっても、渋滞などの発生が抑制される。また、複数の運搬機械10それぞれの走行速度、加速度、及び減速度が調整されることによっても、渋滞などの発生が抑制される。 ∙ Production volume also varies depending on vehicle allocation parameters. For example, if a plurality of transporting machines 10 arrive at one OR path OP at a time, a traffic jam occurs, and as a result, the production amount may decrease. Further, if a plurality of transporting machines 10 arrive at one loading place LA at a time, traffic jams may occur, resulting in a decrease in productivity. Therefore, the movement routes of the plurality of transport machines 10 are adjusted so that the occurrence of traffic jams or the like is suppressed, or a plurality of ore passes OP (OPa, OPb) among a plurality of ore passes (for example, ore pass OPa). Selection of the ore pass OP to which each of the plurality of transporting machines 10 is directed is performed so that the transporting machines 10 are not flooded. Moreover, selection of the loading place LA which each of the several conveyance machine 10 heads is performed so that the several conveyance machine 10 may not rush to one loading place LA. In addition, the occurrence of traffic congestion and the like is also suppressed by adjusting the circulation direction (clockwise or counterclockwise). Moreover, the occurrence of traffic jams is also suppressed by adjusting the traveling speed, acceleration, and deceleration of each of the plurality of transporting machines 10.
 また、配車パラメータによって、路面のメンテナンス費が変動する。例えば、1つのドリフトDRを運搬機械10が何回も通過すると、そのドリフトDRの被害量が大きくなる。そのため、路面の省メンテナンス費モード(m1)が選択された場合、1つのドリフトDRに運搬機械10が集中して通過せず、4つのドリフトDRについて運搬機械10の通過回数が平均化されるように、配車パラメータが決定される。一方、4つのドリフトDRについて運搬機械10の通過回数が平均化されると、生産量が低下する可能性がある。そのため、生産量最大モード(p1)が選択された場合、生産量向上のために、運搬機械10の通過回数の平均化を考慮することなく、配車パラメータが決定される。 Also, road maintenance costs vary depending on the dispatch parameters. For example, if the transport machine 10 passes through one drift DR many times, the damage amount of the drift DR increases. Therefore, when the road maintenance-saving cost mode (m1) is selected, the transport machine 10 does not pass through one drift DR so that the number of times the transport machine 10 passes through the four drift DRs is averaged. In addition, a dispatch parameter is determined. On the other hand, if the number of passes of the transporting machine 10 is averaged for the four drift DRs, the production amount may decrease. Therefore, when the maximum production mode (p1) is selected, the dispatch parameter is determined without considering the averaging of the number of passes of the transporting machine 10 in order to improve the production amount.
 また、配車パラメータによって、運搬機械10及び積込機械30のメンテナンス費が変動する。例えば、運搬機械10及び積込機械30の稼動率が最大になるように配車が行われると、運搬機械10及び積込機械30の移動距離が長くなる。そのため、運搬機械10及び積込機械30の省メンテナンス費モード(m2)が選択された場合、運搬機械10及び積込機械30の移動距離が短くなるように、配車パラメータが決定される。一方、運搬機械10及び積込機械30の移動距離が短くなると、生産量が低下する可能性がある。そのため、生産量最大モード(p1)が選択された場合、生産量向上のために、運搬機械10及び積込機械30の移動距離が長くなるように、配車パラメータが決定される。 Also, the maintenance cost of the transporting machine 10 and the loading machine 30 varies depending on the dispatch parameter. For example, when the vehicle is allocated so that the operating rates of the transporting machine 10 and the loading machine 30 are maximized, the moving distance of the transporting machine 10 and the loading machine 30 becomes long. Therefore, when the maintenance cost mode (m2) of the transporting machine 10 and the loading machine 30 is selected, the vehicle allocation parameter is determined so that the moving distance of the transporting machine 10 and the loading machine 30 is shortened. On the other hand, when the moving distance of the transport machine 10 and the loading machine 30 is shortened, the production amount may be reduced. Therefore, when the production maximum mode (p1) is selected, the vehicle allocation parameter is determined so that the moving distance between the transporting machine 10 and the loading machine 30 is increased in order to improve the production quantity.
 表1は、作業パラメータと、積込機械30の作業パラメータ及び運搬機械10の作業パラメータとの関係を示す。 Table 1 shows the relationship between work parameters, work parameters of the loading machine 30 and work parameters of the transport machine 10.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 本実施形態において、管理システム1は、選択された作業モード(p1、p2、e、m1、m2)に基づいて、運搬機械10の作業パラメータと積込機械30の作業パラメータとの両方を変更する。本実施形態において、管理システム1は、運搬機械10の作業パラメータと積込機械30の作業パラメータとを同時に変更する。例えば、生産量最大モード(p1)で作業中の坑内MIについて、入力装置9を介して省エネルギーモード(e)を示す入力信号が入力された場合、管理装置3は、運搬機械10の作業パラメータである走行速度を低減すると同時に、積込機械30の作業パラメータであるフィーダー速度を低減する。 In the present embodiment, the management system 1 changes both the work parameters of the transport machine 10 and the work parameters of the loading machine 30 based on the selected work mode (p1, p2, e, m1, m2). . In the present embodiment, the management system 1 changes the work parameters of the transport machine 10 and the work parameters of the loading machine 30 at the same time. For example, when an input signal indicating the energy saving mode (e) is input via the input device 9 for the underground mine MI that is working in the maximum production mode (p1), the management device 3 uses the operation parameters of the transporting machine 10. At the same time as reducing a certain traveling speed, the feeder speed, which is an operation parameter of the loading machine 30, is reduced.
 次に、本実施形態に係る作業モードの設定及び作業パラメータの変更の手順の一例について、図25のフローチャートを参照して説明する。 Next, an example of the procedure for setting the work mode and changing the work parameters according to the present embodiment will be described with reference to the flowchart of FIG.
 作業モードの設定のために、管理者により入力装置9が操作される。作業モードの設定は、新規設定、再設定、及び変更のための設定の少なくとも一つを含む。例えば、生産量最大モード(p1)で作業中の坑内MIについて、入力装置9を介して、省エネルギーモード(e)を示す入力信号が処理装置3Cに入力される(ステップSP1)。 The input device 9 is operated by the administrator to set the work mode. The setting of the work mode includes at least one of a new setting, a resetting, and a setting for changing. For example, an input signal indicating the energy saving mode (e) is input to the processing device 3C via the input device 9 for the underground mine MI that is working in the maximum production mode (p1) (step SP1).
 処理装置3Cは、入力信号に基づいて、坑内MIの作業モードを、省エネルギーモード(e)に設定する(ステップSP2)。 The processing apparatus 3C sets the work mode of the underground mine MI to the energy saving mode (e) based on the input signal (step SP2).
 処理装置3Cは、省エネルギーモード(e)に対応して事前に決定されている「$/t」の目標値及び「t/h」の目標値が達成されるように、運搬機械10の作業パラメータ及び積込機械30の作業パラメータを決定する(ステップSP3)。 The processing device 3 </ b> C allows the work parameter of the transport machine 10 to achieve the target value “$ / t” and the target value “t / h” that are determined in advance in accordance with the energy saving mode (e). And the working parameter of the loading machine 30 is determined (step SP3).
 管理装置3は、処理装置3Cで決定された作業パラメータを、無線通信装置4を介して、坑内MIの複数の積込機械30及び複数の運搬機械10のそれぞれに一斉送信する(ステップSP4)。 The management device 3 transmits the work parameters determined by the processing device 3C to the plurality of loading machines 30 and the plurality of transporting machines 10 in the underground mine via the wireless communication device 4 (step SP4).
 積込機械30の制御装置75(図17等参照)は、送信された作業パラメータを受信する。制御装置75は、受信前に使用していた作業パラメータを、受信した新規の作業パラメータに変更する。制御装置75は、その変更された新規の作業パラメータで積込機械30を制御する(ステップSP5)。例えば、新規の作業パラメータの受信前においては第1のフィーダー速度で駆動していたフィーダー31が、省エネルギーのために、第1のフィーダー速度よりも遅い第2のフィーダー速度に変更される。 The control device 75 (see FIG. 17 and the like) of the loading machine 30 receives the transmitted work parameter. The control device 75 changes the work parameter used before reception to the received new work parameter. The control device 75 controls the loading machine 30 with the changed new work parameter (step SP5). For example, the feeder 31 that has been driven at the first feeder speed before receiving a new work parameter is changed to a second feeder speed that is slower than the first feeder speed in order to save energy.
 同様に、運搬機械10の制御装置70(図12等参照)は、送信された作業パラメータを受信する。制御装置70は、受信前に使用していた作業パラメータを、受信した新規の作業パラメータに変更する。制御装置70は、その変更された新規の作業パラメータで運搬機械10を制御する。例えば、新規の作業パラメータの受信前においては第1の走行速度で駆動していた運搬機械10は、省エネルギーのために、第1の走行速度よりも遅い第2の走行速度に変更される。 Similarly, the control device 70 (see FIG. 12 and the like) of the transport machine 10 receives the transmitted work parameter. The control device 70 changes the work parameter used before reception to the received new work parameter. The control device 70 controls the transporting machine 10 with the changed new work parameter. For example, the transport machine 10 that has been driven at the first travel speed before receiving a new work parameter is changed to a second travel speed that is slower than the first travel speed in order to save energy.
 以上説明したように、本実施形態によれば、複数の作業モードを事前に用意しておき、管理者の要望に応じて作業モードが選択できるようにしたので、その要望に応じて、鉱山において様々な指標を優先した生産体制で円滑に作業を行うことができる。例えば、管理者の要望に応じて、生産量を抑えるかわりに、費用(エネルギー消費量やメンテナンスコスト)を低減するモードを設定することができる。 As described above, according to the present embodiment, a plurality of work modes are prepared in advance, and the work mode can be selected according to the request of the administrator. It is possible to work smoothly in a production system that prioritizes various indicators. For example, a mode for reducing costs (energy consumption and maintenance costs) can be set instead of suppressing the production amount according to the demand of the manager.
 上述のように、本実施形態において、管理システム1は、積込機械30に鉱石MRの掘削及び積込のみを行わせ、運搬機械10に鉱石MRの運搬のみを行わせるようにして、両者の機能を分離している。このため、積込機械30は掘削作業及び搬送作業に専念でき、運搬機械10は運搬作業に専念できる。すなわち、積込機械30は鉱石MRを運搬する機能を有していなくてもよく、運搬機械10は鉱石MRの掘削及び搬送する機能を有していなくてもよい。積込機械30は、掘削及び搬送の機能に特化でき、運搬機械10は鉱石MRの運搬の機能に特化できるので、それぞれの機能を最大限発揮させることができる。結果として、鉱山の管理システム1は、鉱山Mの生産性を向上させることができる。 As described above, in the present embodiment, the management system 1 causes the loading machine 30 to perform only excavation and loading of the ore MR, and causes the transporting machine 10 to transport only the ore MR. Separate functions. For this reason, the loading machine 30 can concentrate on excavation work and conveyance work, and the conveyance machine 10 can concentrate on conveyance work. That is, the loading machine 30 may not have the function of transporting the ore MR, and the transporting machine 10 may not have the function of excavating and transporting the ore MR. Since the loading machine 30 can specialize in the function of excavation and conveyance, and the conveyance machine 10 can be specialized in the function of conveyance of the ore MR, each function can be exhibited to the maximum. As a result, the mine management system 1 can improve the productivity of the mine M.
 それら機能が分離されている運搬機械10及び積込機械30について、作業モードを設定する場合、運搬機械10の作業パラメータと積込機械30の作業パラメータとの両方を変更するようにしたので、生産性が急激に低下してしまう事態が回避される。また、運搬機械10及び積込機械30は、管理者の要望に応じた作業モードに基づいて適切に作業することができる。 When the work mode is set for the transporting machine 10 and the loading machine 30 whose functions are separated, both the work parameter of the transporting machine 10 and the work parameter of the loading machine 30 are changed. The situation where the sex is suddenly reduced is avoided. Moreover, the materials handling machine 10 and the loading machine 30 can work appropriately based on the work mode according to a manager's request.
 また、本実施形態においては、作業モードは、鉱石MRの単位重量当たりの採掘コスト($/t)、及び単位時間当たりの鉱石MRの採掘量(t/h)を考慮して複数定められている。作業パラメータは、選択された作業モードに対応した「$/t」の目標値及び「t/h」の目標値が達成されるように予め決定され、記憶装置3Mに記憶されている。したがって、管理装置3は、選択された作業モード及び記憶装置3Mの記憶情報に基づいて、選択された作業モードに対応した「$/t」の目標値及び「t/h」の目標値が達成されるように、適切な作業パラメータを決定することができる。 In the present embodiment, a plurality of operation modes are determined in consideration of the mining cost ($ / t) per unit weight of the ore MR and the mining amount (t / h) of the ore MR per unit time. Yes. The work parameters are determined in advance so as to achieve the target value of “$ / t” and the target value of “t / h” corresponding to the selected work mode, and are stored in the storage device 3M. Therefore, the management device 3 achieves the target value of “$ / t” and the target value of “t / h” corresponding to the selected work mode based on the selected work mode and the storage information of the storage device 3M. As such, appropriate working parameters can be determined.
 また、本実施形態においては、作業パラメータとして、生産性重視モード及び省エネルギーモードといった、専ら運搬機械10及び積込機械30に関わる作業モードと、省メンテナンスモードといった、路面(インフラ)にも関わる作業モードとが用意される。これにより、鉱山全体のコストを抑制しつつ、高い生産性を得ることができる。 Further, in the present embodiment, as work parameters, work modes related to the road surface (infrastructure) such as work modes exclusively related to the transporting machine 10 and the loading machine 30 such as productivity-oriented mode and energy saving mode, and maintenance saving modes. And are prepared. Thereby, high productivity can be obtained, suppressing the cost of the whole mine.
 なお、上述の実施形態においては、作業モードの設定において、運搬機械10の作業パラメータと積込機械30の作業パラメータとが同時に変更されることとした。運搬機械10の作業パラメータと積込機械30の作業パラメータとは同時に変更されなくてもよい。例えば、運搬機械10の作業パラメータが変更された後、積込機械30の作業パラメータが変更されてもよい。例えば、積込機械30が積荷の積込作業を行っているときに、積込機械30の作業パラメータが変更されてしまうと、積込作業の効率が低下する可能性がある。そのため、積込機械30が積荷の積込作業を行っているときに、作業パラメータの設定のために入力装置9が操作された場合、管理装置3は、運搬機械10の作業パラメータを変更し、積込機械30の積込作業が完了した後、積込機械30の作業パラメータを変更してもよい。 In the above-described embodiment, the work parameter of the transport machine 10 and the work parameter of the loading machine 30 are changed at the same time in the work mode setting. The work parameters of the transport machine 10 and the work parameters of the loading machine 30 may not be changed at the same time. For example, the work parameter of the loading machine 30 may be changed after the work parameter of the transport machine 10 is changed. For example, when the loading machine 30 is performing the loading operation of the load, if the operation parameters of the loading machine 30 are changed, the efficiency of the loading operation may be reduced. Therefore, when the input device 9 is operated to set work parameters when the loading machine 30 is performing loading work, the management device 3 changes the work parameters of the transporting machine 10, After the loading operation of the loading machine 30 is completed, the operation parameters of the loading machine 30 may be changed.
 また、管理装置3から、運搬機械10及び積込機械30のそれぞれに、作業パラメータを変更するための指令信号が同時に送信された場合、運搬機械10の制御装置70及び積込機械30の制御装置75は、同時に作業パラメータを変更してもよいし、異なるタイミングで作業パラメータを変更してもよい。例えば、積込機械30が積荷の積込作業を行っているときに、管理装置3から積込機械30に作業パラメータを変更するための指令信号が送信された場合、積込機械30の制御装置75は、指令信号を受信した後、直ちに作業パラメータを変更してもよいし、指令信号を受信して積込作業が終了した後、作業パラメータを変更してもよい。管理装置3から運搬機械10に作業パラメータを変更するための指令信号が送信された場合、運搬機械10の制御装置70は、指令信号を受信した後、直ちに作業パラメータを変更してもよいし、指令信号を受信してから所定時間が経過した後、作業パラメータを変更してもよい。 Further, when a command signal for changing work parameters is simultaneously transmitted from the management device 3 to each of the transporting machine 10 and the loading machine 30, the control device 70 of the transporting machine 10 and the control device of the loading machine 30. 75 may change the work parameter at the same time or may change the work parameter at different timings. For example, when the loading machine 30 is performing the loading operation of the load, when a command signal for changing the work parameter is transmitted from the management device 3 to the loading machine 30, the control device of the loading machine 30 75 may change the work parameter immediately after receiving the command signal, or may change the work parameter after receiving the command signal and completing the loading operation. When the command signal for changing the work parameter is transmitted from the management device 3 to the transport machine 10, the control device 70 of the transport machine 10 may change the work parameter immediately after receiving the command signal, The work parameter may be changed after a predetermined time has elapsed after receiving the command signal.
 なお、上述の実施形態においては、積込機械30の掘削装置として回転ローラー33が使用される例について説明した。積込機械30は、刃先を有するバケットを用いて掘削を行ってもよいし、積込を行ってもよい。 In the above-described embodiment, the example in which the rotating roller 33 is used as the excavator of the loading machine 30 has been described. The loading machine 30 may perform excavation using a bucket having a cutting edge, or may perform loading.
 なお、前述した構成要素には、当業者が容易に想定できるもの、実質的に同一のもの、いわゆる均等の範囲のものが含まれる。さらに、前述した構成要素は適宜組み合わせることが可能である。さらに、本実施形態の要旨を逸脱しない範囲で構成要素の種々の省略、置換又は変更を行うことができる。 Note that the above-described constituent elements include those that can be easily assumed by those skilled in the art, those that are substantially the same, and those in a so-called equivalent range. Furthermore, the above-described components can be appropriately combined. Furthermore, various omissions, substitutions, or changes of components can be made without departing from the scope of the present embodiment.
1 管理システム
3 管理装置
3C 処理装置
3M 記憶装置
5 給電ケーブル
10 運搬機械
10B 車体
11 ベッセル
12A、12B 車輪
14 蓄電器
24 駆動制御装置
30 積込機械
30B 車体
31 フィーダー
32 支持機構
33 回転ローラー
34 走行装置
35 貫入部材
36 回転体
40、41 情報収集装置
48 駆動制御装置
70、75 制御装置
71、76 処理装置
72、77 記憶装置
80 切替機構
90 蓄電器保持装置
CR クロスカット(第2坑道)
CD、CDa、CDb 周回路
DP、DPa、DPb、DPc、DPe ドローポイント(採掘場所)
DR、DRa、DRb、DRc、DRd、DRe、DRf ドリフト(第1坑道)
EX 蓄電器交換装置
OP、OPa、OPb オアパス(排土場所)
RM 地山
TR、TRa、TRb 外周路(第3坑道)
DESCRIPTION OF SYMBOLS 1 Management system 3 Management apparatus 3C Processing apparatus 3M Storage apparatus 5 Power supply cable 10 Transport machine 10B Car body 11 Vessel 12A, 12B Wheel 14 Capacitor 24 Drive control apparatus 30 Loading machine 30B Car body 31 Feeder 32 Support mechanism 33 Rotating roller 34 Traveling apparatus 35 Penetration member 36 Rotating body 40, 41 Information collecting device 48 Drive control device 70, 75 Control device 71, 76 Processing device 72, 77 Storage device 80 Switching mechanism 90 Capacitor holding device CR Cross cut (second tunnel)
CD, CDa, CDb Peripheral circuit DP, DPa, DPb, DPc, DPe Draw point
DR, DRa, DRb, DRc, DRd, DRe, DRf Drift (1st tunnel)
EX Capacitor exchange device OP, OPa, OPb ORPASS
RM Ground mountain TR, TRa, TRb Peripheral road (3rd tunnel)

Claims (5)

  1.  鉱山の坑内の採掘場所から排土場所まで鉱石を積載して走行する運搬機械と、
     前記採掘場所で前記鉱石を採掘して前記運搬機械に積み込む積込機械と、
     入力信号に基づいて前記坑内の作業モードを設定して、前記運搬機械の作業パラメータ及び前記積込機械の作業パラメータを変更する管理装置と、
    を備える鉱山の管理システム。
    A transport machine that loads and travels ore from the mining site to the earthing site in the mine,
    A loading machine for mining the ore at the mining site and loading it on the transporting machine;
    A management device that sets a work mode in the mine based on an input signal and changes a work parameter of the transport machine and a work parameter of the loading machine,
    Mine management system with
  2.  前記作業モードは、前記鉱石の単位重量当たりの採掘コスト、及び単位時間当たりの前記鉱石の採掘量を考慮して複数定められ、
     前記管理装置は、前記入力信号に基づいて、複数の前記作業モードから1つの作業モードを設定する請求項1に記載の鉱山の管理システム。
    A plurality of the operation modes are determined in consideration of the mining cost per unit weight of the ore and the mining amount of the ore per unit time,
    The mine management system according to claim 1, wherein the management device sets one work mode from the plurality of work modes based on the input signal.
  3.  前記作業モードは、単位時間当たりの前記鉱石の生産量を優先する生産量重視モードと、前記運搬機械及び前記積込機械のエネルギー消費量の抑制を優先する省エネルギーモードと、前記坑内の路面、前記積込機械、及び前記運搬機械のメンテナンス費用の抑制を優先する省メンテナンス費モードと、を含む請求項1又は請求項2に記載の鉱山の管理システム。 The work mode includes a production amount priority mode that prioritizes the production amount of the ore per unit time, an energy saving mode that prioritizes suppression of energy consumption of the transporting machine and the loading machine, a road surface in the mine, The mine management system according to claim 1, further comprising: a loading machine, and a maintenance-saving cost mode that prioritizes suppression of maintenance costs of the transporting machine.
  4.  前記運搬機械の作業パラメータは、前記坑内における前記運搬機械の走行速度、加速度、前記鉱石の積載量、前記積込場所又は前記排土場所に移動するまでの移動経路、及び複数の積込場所及び排土場所のうち前記運搬機械が向かう積込場所及び排土場所の選択の少なくとも一つを含む請求項1から請求項3のいずれか一項に記載の鉱山の管理システム。 The working parameters of the transporting machine are: traveling speed of the transporting machine in the mine, acceleration, loading amount of the ore, a movement route to move to the loading place or the earthing place, and a plurality of loading places, The mine management system according to any one of claims 1 to 3, comprising at least one of a loading place and an earthing place to which the transporting machine is directed among the earthing places.
  5.  前記積込機械の作業パラメータは、前記坑内における前記積込機械の走行速度、前記運搬機械に対する前記鉱石の積み込み速度、及び掘削力の少なくとも一つを含む請求項1から請求項4のいずれか一項に記載の鉱山の管理システム。 The working parameter of the loading machine includes at least one of a traveling speed of the loading machine in the mine, a loading speed of the ore to the transporting machine, and an excavation force. The mine management system described in the section.
PCT/JP2015/053429 2014-03-31 2015-02-06 Mine management system WO2015151583A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US15/300,375 US10240457B2 (en) 2014-03-31 2015-02-06 Mine management system
JP2016511425A JP6416882B2 (en) 2014-03-31 2015-02-06 Mine management system
CA2944404A CA2944404C (en) 2014-03-31 2015-02-06 Mine management system
AU2015241937A AU2015241937B2 (en) 2014-03-31 2015-02-06 Mine management system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014074559 2014-03-31
JP2014-074559 2014-03-31

Publications (1)

Publication Number Publication Date
WO2015151583A1 true WO2015151583A1 (en) 2015-10-08

Family

ID=54239923

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/053429 WO2015151583A1 (en) 2014-03-31 2015-02-06 Mine management system

Country Status (5)

Country Link
US (1) US10240457B2 (en)
JP (1) JP6416882B2 (en)
AU (1) AU2015241937B2 (en)
CA (1) CA2944404C (en)
WO (1) WO2015151583A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020052835A (en) * 2018-09-27 2020-04-02 日立建機株式会社 Road surface management system

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180108094A1 (en) * 2016-10-14 2018-04-19 Caterpillar Inc. Operating methods and systems for underground mining
WO2018191602A1 (en) * 2017-04-13 2018-10-18 Joy Global Underground Mining Llc System and method for measuring and aligning roof bolts
JP6824856B2 (en) * 2017-09-29 2021-02-03 株式会社小松製作所 Display control device and display control method
US10995615B2 (en) * 2018-07-03 2021-05-04 Caterpillar Inc. Method for optimizing mining production
US11718504B2 (en) 2019-05-28 2023-08-08 His Majesty The King In Right Of Canada, As Represented By The Minister Of Natural Resources Inertial analyzer for vertical mining conveyances and method thereof
CN110456745B (en) * 2019-07-29 2022-08-23 湖南大学 Full-automatic underground mining transportation system

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007144255A (en) * 2005-11-24 2007-06-14 Komatsu Ltd Crusher
JP2011220104A (en) * 2011-05-12 2011-11-04 Komatsu Ltd Moving body management device

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FI115414B (en) 2003-07-03 2005-04-29 Sandvik Tamrock Oy Arrangement for monitoring the location of a mine vehicle in a mine
US8090491B2 (en) * 2005-07-26 2012-01-03 Macdonald Dettwiler & Associates Inc. Guidance, navigation, and control system for a vehicle
US8099217B2 (en) 2007-08-31 2012-01-17 Caterpillar Inc. Performance-based haulage management system
WO2010043967A1 (en) * 2008-10-17 2010-04-22 Frank Wegner Donnelly Rail conveyance system for mining
US8868302B2 (en) 2010-11-30 2014-10-21 Caterpillar Inc. System for autonomous path planning and machine control
US8583361B2 (en) * 2011-08-24 2013-11-12 Modular Mining Systems, Inc. Guided maneuvering of a mining vehicle to a target destination
SE537371C2 (en) * 2011-11-18 2015-04-14 Atlas Copco Rock Drills Ab Method and apparatus for operating a mining and / or construction machine
US10502727B2 (en) * 2012-02-28 2019-12-10 CiDRA Corporate Services LLP Acoustic monitoring of block caving
JP6261157B2 (en) * 2012-03-15 2018-01-17 株式会社小松製作所 Mining machine operation management system and mining machine operation management method
JP5913603B2 (en) * 2012-09-21 2016-04-27 日立建機株式会社 Self-propelled mining machine operation management device
WO2014206471A1 (en) * 2013-06-27 2014-12-31 Sandvik Mining And Construction Oy Arrangement for controlling percussive drilling process
WO2015106799A1 (en) * 2014-01-14 2015-07-23 Sandvik Mining And Construction Oy Mine vehicle, mine control system and mapping method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007144255A (en) * 2005-11-24 2007-06-14 Komatsu Ltd Crusher
JP2011220104A (en) * 2011-05-12 2011-11-04 Komatsu Ltd Moving body management device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020052835A (en) * 2018-09-27 2020-04-02 日立建機株式会社 Road surface management system

Also Published As

Publication number Publication date
CA2944404C (en) 2018-12-04
JPWO2015151583A1 (en) 2017-04-13
JP6416882B2 (en) 2018-10-31
AU2015241937B2 (en) 2018-02-08
US20170138193A1 (en) 2017-05-18
US10240457B2 (en) 2019-03-26
AU2015241937A1 (en) 2016-10-20
CA2944404A1 (en) 2015-10-08

Similar Documents

Publication Publication Date Title
JP6416882B2 (en) Mine management system
JP6321935B2 (en) Mining system
WO2015046609A1 (en) Transport machine
WO2015046598A1 (en) Transportation machine
EP3040236A1 (en) Transport machine and management system
JP6297807B2 (en) Mine management system
JP6359817B2 (en) Mine management system
WO2015151734A1 (en) Mine management system
JP2015068142A (en) Loader
WO2015046612A1 (en) Loading machine
WO2015046597A1 (en) Loading machine
WO2015046590A1 (en) Loading machine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15773762

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016511425

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2944404

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 15300375

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2015241937

Country of ref document: AU

Date of ref document: 20150206

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 15773762

Country of ref document: EP

Kind code of ref document: A1