WO2015146112A1 - Time reference terminal, measurement terminal, time synchronization system, and time synchronization method - Google Patents

Time reference terminal, measurement terminal, time synchronization system, and time synchronization method Download PDF

Info

Publication number
WO2015146112A1
WO2015146112A1 PCT/JP2015/001593 JP2015001593W WO2015146112A1 WO 2015146112 A1 WO2015146112 A1 WO 2015146112A1 JP 2015001593 W JP2015001593 W JP 2015001593W WO 2015146112 A1 WO2015146112 A1 WO 2015146112A1
Authority
WO
WIPO (PCT)
Prior art keywords
time
processing
synchronization
terminal
measurement
Prior art date
Application number
PCT/JP2015/001593
Other languages
French (fr)
Japanese (ja)
Inventor
茂樹 篠田
佐々木 康弘
翔平 木下
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Priority to JP2016510016A priority Critical patent/JP6436164B2/en
Publication of WO2015146112A1 publication Critical patent/WO2015146112A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/001Synchronization between nodes
    • H04W56/0015Synchronization between nodes one node acting as a reference for the others

Definitions

  • the present invention relates to a time reference terminal, a measurement terminal, a time synchronization system, and a time synchronization method.
  • Patent Document 1 discloses a method for reducing power consumption for this reason without waiting for a long time to receive a time synchronization signal.
  • Patent Document 2 discloses a technique for detecting and detecting a leaking portion using a correlation method when water, oil, gas, or the like leaks from a specific position of a pipe.
  • the position specifying method using the correlation processing described in Patent Document 2 is based on the premise that the time waveforms acquired between two different points are completely synchronized, and this time waveform is used in actual operation. It is necessary to suppress the synchronization error.
  • sensor terminals are installed outdoors over a wide area and wireless communication is used for measurement data transmission, there is a problem that power consumption increases due to a decrease in synchronization error due to changes in the communication environment and high load operation of the sensor terminals. There is.
  • the present invention was made to solve the above problems.
  • the main object of the present invention is to provide a time reference terminal or the like that can obtain high synchronization accuracy and realize low power consumption without fluctuations in the communication environment and measurement time intervals being a cause of measurement errors. To do.
  • the first aspect of the present invention is to A time reference terminal connected to at least one processing terminal that starts a predetermined process at a process start time that is a predetermined time;
  • An operation start instruction means for transmitting a signal instructing not to start the processing until the processing start time to each of the processing terminals; Synchronous processing is performed with each processing terminal so that the time corresponding to the accuracy of the clock related to each operation of the processing terminal is completed prior to the processing start time in the time from the current time to the processing start time. It is a time reference terminal provided with the synchronous process means to do.
  • the second aspect of the present invention is: A processing terminal connected to a time reference terminal for instructing to start a predetermined process at a processing start time that is a predetermined time; Waiting means waiting for the start of processing until the processing start time; Synchronization processing means for performing synchronization processing with the time reference terminal at the synchronization start time notified from the time reference terminal; It is a processing terminal provided with the processing means which starts a process at a process start time.
  • the third aspect of the present invention is: It is a time synchronization system provided with the time reference terminal described in any of the above, and the processing terminal described in any of the above.
  • the fourth aspect of the present invention is: A time synchronization method performed by a time reference terminal connected to at least one processing terminal that starts predetermined processing at a processing start time that is a predetermined time, A signal indicating that the processing is not started until the processing start time is transmitted to each of the processing terminals; Synchronous processing is performed with each processing terminal so that the time corresponding to the accuracy of the clock related to each operation of the processing terminal is completed prior to the processing start time in the time from the current time to the processing start time. To prepare to This is a time synchronization method.
  • the fifth aspect of the present invention is: A time synchronization method performed by at least one processing terminal connected to a time reference terminal instructing to start a predetermined process at a processing start time that is a predetermined time, Wait for the start of processing until the processing start time, Perform synchronization processing with the time reference terminal at the synchronization start time notified from the time reference terminal, Comprising starting processing at a processing start time; This is a time synchronization method.
  • a change in communication environment and a measurement time interval do not cause measurement errors, so that high synchronization accuracy can be obtained and low power consumption can be realized.
  • each component of each device indicates a functional unit block, not a hardware unit configuration.
  • the hardware of each device includes a CPU (Central Processing Unit) of an arbitrary computer and a memory for loading a program as its components.
  • the hardware components include a storage medium such as a hard disk for storing the program and a network connection interface.
  • the time synchronization system 1 is a system that synchronizes measurement start times between measurement terminals. As shown in FIG. 1, the time reference terminal 20 and a plurality of measurement terminals 10 (10a, 10b, 10c ). One or more time reference terminals 20 exist in the time synchronization system 1. The time reference terminal 20 and the measurement terminals 10a, 10b, and 10c can communicate with each other via the communication network 7.
  • the time reference terminal 20 includes a measurement start time setting unit 100, a measurement interval calculation unit 110, a clock accuracy storage unit 120, a maximum error time calculation unit 130, a synchronization start time setting unit 140, and an operation start instruction unit. 150, a synchronization processing unit 170, a measurement start time storage unit 180, a remaining time setting unit 190, a transmission / reception unit 160, and the like.
  • the measurement start time setting unit 100 prompts a user who is an administrator of the time synchronization system 1 to set the measurement start time.
  • the measurement start time storage unit 180 stores the set measurement start time.
  • the measurement interval calculation unit 110 calculates a measurement interval from an operation start time that is a preset measurement start time and the current time.
  • the clock accuracy storage unit 120 stores clock accuracy information, which is information related to an allowable error (hereinafter referred to as “clock accuracy”) of the clock frequency of each measurement terminal 10a to 10c.
  • the maximum error time calculation unit 130 calculates the maximum error time of each measurement terminal 10a to 10c based on the measurement interval and the clock accuracy information.
  • the synchronization start time setting unit 140 calculates the synchronization start time so that synchronization is performed immediately before the measurement start time based on the measurement start time, the maximum error time, and the synchronization processing time that is the time required for synchronization. .
  • the operation start instruction unit 150 transmits an instruction indicating operation standby to each of the measurement terminals 10a to 10c.
  • the synchronization start time storage unit 141 stores the synchronization start time.
  • the synchronization processing unit 170 performs time synchronization processing with each of the measurement terminals 10a to 10c at the synchronization start time.
  • the remaining time setting unit 190 calculates the remaining time up to the measurement start time from the synchronization processing time and the measurement start time.
  • the remaining time setting unit 190 sets the calculated remaining time in each of the measurement terminals 10a to 10c via wireless communication.
  • the transmission / reception unit 160 performs wireless communication with the measurement terminals 10a to 10c via the communication network 7.
  • the measurement terminals 10a to 10c include a measurement standby unit 200, a synchronization processing unit 210, a measurement processing unit 220, a transmission / reception unit 230, a synchronization start time storage unit 240, a remaining time storage unit 250, and the like.
  • the measurement standby unit 200 turns off the peripheral functions in response to an operation standby instruction from the time reference terminal 20, and maintains the off state until the synchronization start time or the measurement start time.
  • the synchronization processing unit 210 performs time synchronization with the time reference terminal 10 at the synchronization start time.
  • the measurement processing unit 220 performs various measurement processes, for example, measurement of a leakage position of a pipe. Examples of the sensor used for measurement by the measurement processing unit 220 include a vibration sensor, a temperature sensor, and a pressure sensor.
  • the transmission / reception unit 230 performs wireless communication with the time reference terminal 20 via the communication network 7. Note that this may be wired communication.
  • the synchronization start time storage unit 240 is a memory that temporarily stores the synchronization start time.
  • the remaining time storage unit 250 is a memory that temporarily stores the remaining time.
  • time synchronization system operation Each time and each time used in the time synchronization system 1 will be described with reference to operations in time series between the time reference terminal 20 and the measurement terminals 10a to 10c. In FIG. 4, t represents a time axis.
  • the measurement interval 32 to be set in the measurement terminals 10a to 10c is calculated from the measurement start time 30 set in the time reference terminal 20 and the operation start time 31 which is the current time.
  • the clock accuracy of general measuring terminals 10a to 10c is about ⁇ several tens of ppm (parts per million), and assuming that ⁇ 100 ppm, the error time per day is about ⁇ 10 seconds.
  • the measurement interval 32 is set to be longer, the error time becomes longer.
  • the allowable error of the clock frequency is a negative value (for example, the clock accuracy is ⁇ 100 ppm) and the measurement start time is one day later.
  • the actual measurement start time is 10 seconds later than the schedule and exceeds the original measurement start time 30.
  • the maximum absolute value of the negative clock accuracy value (hereinafter referred to as “minimum catalog value”).
  • the maximum error time 33 which is the result of multiplying the measurement interval 32 by the minimum catalog value. For example, if the measurement interval 32 is 24 hours and the minimum catalog value is
  • / 10 6 8.6 seconds. However, “
  • the time obtained by subtracting the maximum error time 33 and the synchronization processing time 34 from the measurement start time 30 is the synchronization start time 35.
  • the synchronization start process 36 is executed before the measurement start time 30 in all the measurement terminals 10a to 10c communicating with the time reference terminal 20, regardless of individual differences in clock accuracy. Thereafter, a remaining time 37, which is a result of subtracting the measurement start time 30 from the time when the synchronization processing time 34 has elapsed from the synchronization start time 35, that is, the synchronization processing completion time, is calculated. Then, the measurement start time 30 at which the measurement terminals 10a to 10c should start the measurement process 38 is the time after the remaining time 37 has elapsed from the synchronization process completion time.
  • step S100 the measurement start time setting unit 100 on the time reference terminal 20 side in FIG. 2 sets the measurement start time. Specifically, the measurement start time setting unit 100 prompts a user such as a system administrator to input and set a measurement start time to be set in the time reference terminal 20. In step S ⁇ b> 110, the measurement start time setting unit 100 stores the set measurement start time 30 in the measurement start time storage unit 180.
  • step S120 the measurement interval calculation unit 110 calculates a measurement interval from the operation start time 31 to the measurement start time 30.
  • the maximum error time calculation unit 130 uses the calculated measurement interval 32 and the clock accuracy information of each measurement terminal 10a to 10c previously stored in the clock accuracy storage unit 120 for each measurement terminal. Calculate the maximum error time.
  • step S140 the synchronization start time setting unit 140 sets the time obtained by subtracting the maximum error time and the time required for the synchronization process from the measurement start time 30 as the synchronization start time 35 to the measurement terminals 10a to 10c via the communication network 7. To send. Further, the synchronization start time setting unit 140 stores the synchronization start time 35 in the synchronization start time storage unit 141.
  • step S141 when the transmission / reception unit 230 on the measurement terminals 10a to 10c side in FIG. 3 receives the synchronization start time 35, the measurement standby unit 200 uses the received synchronization start time 35 as the synchronization start time. Store in the storage unit 240. Thereafter, the measurement standby unit 200 turns off all unnecessary peripheral functions such as the communication function, and puts the measurement terminals 10a to 10c in the measurement standby state.
  • step S160 when it is determined that the measurement standby unit 200 has reached the synchronization start time stored in the synchronization start time storage unit 240 (YES in step S160), in step S170, the synchronization processing unit 210 includes the time reference terminal 20 and The synchronization process is started via the communication network 7. If it is determined in step S160 that it is not the synchronization time (NO in step S160), the process returns to step S150 and the measurement standby state continues. However, when it is not the synchronization time, the process may return to the determination whether the synchronization time is reached (step S160) without returning to step S150.
  • the synchronization processing unit 170 of the time reference terminal 20 transmits a synchronization signal to the measurement terminals 10a to 10c.
  • the synchronization processing unit 210 of the measurement terminals 10a to 10c returns a synchronization signal to the time reference terminal 20.
  • This synchronization signal transmission / reception timing is set by the synchronization start time setting unit 140 to be performed immediately before the measurement start time. Since the synchronization error increases as time elapses, an accurate remaining time can be calculated by performing the synchronization process immediately before the measurement start time 30 in this way.
  • step S171 when the synchronization processing unit 170 in FIG. 2 determines that the synchronization start time stored in the synchronization start time storage unit 141 has come, the measurement terminals 10a to 10c and the communication network 7 Start synchronous processing.
  • step S180 after the synchronization process is completed, the remaining time setting unit 190 calculates a remaining time 37 that is a result of subtracting the measurement start time 30 from the synchronization process completion time of each measurement terminal 10a to 10c. The time 37 is transmitted to each of the measurement terminals 10a to 10c via the communication network 7.
  • step S181 When the transmission / reception unit 230 on the measurement terminal side in FIG. 3 receives the remaining time 37 via the communication network 7 in step S181, the measurement standby unit 200 stores the received remaining time 37 in the remaining time storage unit 250. . Thereafter, in step S190, the measurement standby unit 200 again turns off all unnecessary peripheral functions represented by the communication function, and sets the measurement terminals 10a to 10c to the measurement standby state.
  • step S200 when the measurement processing unit 220 determines that the remaining time stored in the remaining time storage unit 250 has elapsed and has reached the measurement start time 30, the measurement processing unit 220 executes various measurement processes in step S210. To do.
  • the time synchronization system 1 has the highest measurement start time within a range that does not exceed the measurement start time no matter what the measurement start time is set.
  • the closest synchronization start time is automatically set once.
  • the time synchronization system 1 can reduce power consumption for synchronization processing and maintain higher synchronization compared to the case where synchronization processing is performed a plurality of times in a relatively short cycle. Accuracy can be achieved.
  • the time synchronization system (not shown) according to the second embodiment includes a time reference terminal 21 and a plurality of measurement terminals (not shown) for measurement that can communicate with the time reference terminal 21 as in the time synchronization system 1 of FIG. I have.
  • the time reference terminal 21 has the following configuration. Measurement start time setting unit 300, Measurement interval calculator 310, Clock accuracy storage unit 320, Maximum error time calculator 330, Synchronization start time setting unit 340, Synchronization start time storage unit 341, Operation start instruction unit 350, Synchronization processor 370, Clock accuracy measurement unit 371, Measurement start time storage unit 380, A remaining correction time setting unit 390 and a transmission / reception unit 360.
  • the synchronization start time storage unit 341 temporarily stores a reference synchronization start time and an actual measurement synchronization start time that is a time at which each synchronization terminal actually starts the synchronization process.
  • the clock accuracy storage unit 320 stores information on the reference clock accuracy obtained from the catalog value for each measurement terminal and information on the actual clock accuracy obtained as a result of actual measurement.
  • the clock accuracy actual measurement unit 371 acquires the time at which the synchronization processing is actually started at each measurement terminal, and based on the acquired actual measurement time and the synchronization start time stored in the synchronization start time storage unit 341, each measurement Measure the clock accuracy of the device and calculate the measured clock accuracy.
  • the remaining correction time setting unit 390 corrects the time from the completion of the synchronization process to the measurement start time based on the actually measured clock accuracy.
  • step S300 the measurement start time setting unit 300 on the time reference terminal side in FIG. 6 sets a measurement start time to be set in the time reference terminal 21. Specifically, the measurement start time setting unit 300 prompts the user or the like to input and set the measurement start time.
  • step S ⁇ b> 310 the measurement start time setting unit 300 stores the set measurement start time in the measurement start time storage unit 380.
  • step S320 the measurement interval calculation unit 310 calculates a measurement interval from the operation start time to the measurement start time.
  • step S330 the maximum error time calculation unit 330 acquires information indicating the reference clock accuracy from the clock accuracy storage unit 320, and calculates the maximum error time based on the measurement interval and the reference clock accuracy information of each measurement terminal. .
  • step S340 the synchronization start time setting unit 340 transmits a time obtained by subtracting the maximum error time and the time required for the synchronization process from the measurement start time to each measurement terminal via the communication network 7 as the synchronization start time. Further, the synchronization start time setting unit 340 stores the synchronization start time in the synchronization start time storage unit 341.
  • step S341 when each measurement terminal receives the synchronization start time in step S341, the measurement standby unit 200 of the measurement terminal turns off the power of the communication function or the like and puts its own terminal in the measurement standby state (step S350). . If it is determined in step S360 that the measurement standby unit 200 has reached the synchronization start time, the synchronization processing unit 210 performs synchronization processing with the time reference terminal 21 in step S370.
  • step S371 When the synchronization processing between the time reference terminal 21 and each measurement terminal is completed in step S371, the clock accuracy measurement unit 371 in FIG. 6 actually starts the synchronization processing in each measurement terminal in step S372. The obtained time is acquired via the communication network 7.
  • step S373 the clock accuracy measurement unit 371 compares the acquired actual synchronization start time with the reference synchronization start time stored in the synchronization start time storage unit 341, and measures the clock accuracy of each measurement terminal.
  • step S380 the remaining correction time setting unit 390 calculates a remaining correction time by correcting the remaining time from the time immediately after the elapse of the synchronization processing time to the measurement start time according to the measurement result of the clock accuracy.
  • the delay time of a certain measurement terminal is 10 ⁇ s (microseconds) and the remaining time is 10 seconds until the measurement start time
  • 10s ⁇ 10 ⁇ s is set as the corrected remaining time in the measurement terminal.
  • Steps S381 to S410 are the same as steps S181 to S210 in FIG.
  • the time synchronization system (not shown) of the third embodiment includes a time reference terminal 22 and a plurality of measurement terminals 11a to 11c, as in the time synchronization system 1 of FIG.
  • the time reference terminal 22 and the measurement terminals 11a to 11c are connected to be communicable.
  • the time reference terminal 22 has the following configuration. Measurement start time setting section 400, Measurement interval calculation unit 410, Clock accuracy storage unit 420, Maximum error time calculation unit 430, Synchronization start time setting unit 440, Synchronization start time storage unit 441, Operation start instruction unit 450, Synchronization processor 470, Measurement start time storage unit 480, A remaining time setting unit 490 and a transmission / reception unit 460.
  • the synchronization processing unit 470 includes a flag transmission unit 470a, a synchronization signal transmission unit 470b, a communication time setting unit 470c, and the like.
  • the flag transmission unit 470a transmits data (hereinafter referred to as “flag”) as a reception mark to the measurement terminals 11a to 11c at predetermined time intervals a predetermined number of times.
  • the synchronization signal transmission unit 470b transmits a synchronization signal for synchronizing to the measurement terminals 11a to 11c.
  • the communication time setting unit 470c sets the communication time between each of the time reference terminal 22 and the measurement terminals 11a to 11c, and calculates the remaining time until the measurement start time based on the set communication time.
  • the measurement terminals 11a to 11c include a measurement standby unit 500, a synchronization processing unit 510, a measurement processing unit 520, a transmission / reception unit 530, a synchronization start time storage unit 540, a remaining time storage unit 550, and the like.
  • the synchronization processing unit 510 includes an average value calculation unit 510a, a threshold value determination unit 510b, a difference calculation unit 510c, a correction value calculation unit 510d, a synchronization signal transmission unit 510e, and the like.
  • the average value calculation unit 510a obtains a value (hereinafter referred to as “counter value”) obtained by counting clock pulses generated from the timing at which a certain flag is received until the next flag is received, and a plurality of counters are obtained. If there is a value, the average value is calculated.
  • the threshold determination unit 510b determines whether the calculated average value is within a predetermined upper and lower threshold.
  • the difference calculation unit 510c calculates a difference between the counter value of the time reference terminal 22 and the counter values of the measurement terminals 11a to 11c.
  • the correction value calculation unit 510d calculates a correction value of a clock frequency (hereinafter also referred to as “operation clock”) related to the operation of the measurement terminals 11a to 11c based on the calculated difference.
  • the synchronization signal transmission unit 510e transmits a synchronization signal for synchronization from the measurement terminals 11a to 11c to the time reference terminal 22.
  • each part in the time synchronization system of the third embodiment is other than the operation shown in the flowchart of FIG. 5 described in the first embodiment and the flowchart of FIG. 7 described in the second embodiment, and the synchronization operation. Is the same. Therefore, in the following, the synchronization operation in the time synchronization system of the third embodiment will be mainly described, and description of other steps will be omitted.
  • the outline of the synchronization operation in the time synchronization system of the third embodiment will be described (corresponding to steps S170 to S171 in FIG. 5 and steps S370 to S371 in FIG. 7).
  • the synchronization operation in the present embodiment is performed in order to obtain a round-trip communication time of a signal between the time reference terminal 22 and each of the measurement terminals 11a to 11c.
  • the measurement operation can be started.
  • the time reference terminal 22 and the measurement terminals 11a to 11c incorporate a reference oscillator for generating a reference clock.
  • Each terminal generates a reference clock by multiplying a predetermined low frequency generated by a built-in reference oscillator as a source oscillation.
  • the frequency of the reference oscillator changes depending on the individual difference of the CPU, MPU or MCU to be used, and the environmental temperature change. Therefore, the synchronization processing unit 470 corrects the coefficient to be multiplied with the reference clock of the time reference terminal 22 as a reference, and matches the reference clock frequencies of the time reference terminal 22 and the measurement terminals 11a to 11c.
  • the synchronization processing unit 470 obtains an accurate communication time difference between the time reference terminal 22 and each of the measurement terminals 11a to 11c, and corrects the measurement start time of each of the measurement terminals 11a to 11c with this communication time difference.
  • step S600 the flag transmission unit 470a of the time reference terminal 22 in FIG. 8 transmits the flag to the measurement terminals 11a to 11c a predetermined number n times. This is for examining the difference in the clock pulse period between the time reference terminal 22 and the measurement terminals 11a to 11c.
  • the measurement terminals 11a to 11c measure four clock pulses, and the periods are different.
  • the case where the flag interval is 1 second has been described for convenience of explanation.
  • the flag interval is not limited to only 1 second, and the time reference terminal 22 and the measurement terminal can be used at any flag interval. Eleven clock pulses may be counted.
  • step S610 when the average value calculation unit 510a of the measurement terminals 11a to 11c in FIG. 9 receives the flag, the average value calculation unit 510a acquires a counter value in a period between the timing at which the flag was previously received and the timing at which the flag was received this time.
  • the counter value a is 4.
  • the counter value b between the flag 2 and the flag 3 is 5, and the counter value c between the flag 3 and the flag 4 is 5.
  • measurement is performed at intervals of 1 second, but the flag interval is not limited to this.
  • FIG. 13 is a graph showing the relationship between the number n of flag transmissions transmitted by the flag transmission unit 470a and the counter value calculated by the average value calculation unit 510a in the third embodiment.
  • the flag is transmitted four times at regular intervals (see FIG. 12), and the measurement terminals 11a to 11c receive the counter value a between the first and second flags a (four times in FIG. 12).
  • step S630 the threshold determination unit 510b compares the preset upper and lower thresholds with the calculated average value. The comparison with the threshold value is performed in order to check whether there is a large variation in the number of clock pulses between the flags. If the average value is within the upper and lower threshold values, the process proceeds to step S640. As a result of the comparison, if it is outside the upper and lower threshold range, the threshold determination unit 510b transmits a notification to the effect that it is out of the threshold range to the measurement terminal 22. In step S631, the flag transmission unit 470a of the measurement terminal 22 that has received this notification increases the number of flag transmissions by one. This is for obtaining a highly accurate counter value with the smallest possible number of transmissions when the variation in the counter value is predicted to increase. When the process of step S631 ends, the process returns to step S600.
  • step S640 the difference calculation unit 510c calculates the clock frequency of the measurement terminals 11a to 11c based on the average value of the inter-flag counter, and calculates the difference between the clock frequencies of the time reference terminal 22 and the measurement terminals 11a to 11c. calculate.
  • ACLK auxiliary Clock
  • MCLK MasterClock
  • SMCLK SubmainClock
  • ACLK reference clock frequency
  • MCLK ⁇ ⁇ ACLK
  • SMCLK MCLK / ⁇
  • the reference clock frequency value, ⁇ value, and ⁇ value are initialized.
  • each of the above clock frequencies is set in advance in the measurement terminals 11a to 11c.
  • the above clock frequencies may be notified to the measurement terminals 11a to 11c in step S600.
  • step S650 the correction value calculation unit 510d calculates the correction value of the operation clock of the measurement terminals 11a to 11c from the above difference, and corrects the clock frequency by using the calculated correction value.
  • the correction value ⁇ is obtained by the following equation 2.
  • step S660 after the calculation of the correction value in step S650 is completed, the synchronization signal transmission unit 470b of the time reference terminal 22 in FIG. 8 transmits a synchronization signal to the measurement terminals 11a to 11c.
  • step S670 the synchronization signal transmission unit 510e of the measurement terminals 11a to 11c in FIG. 9 returns a synchronization signal to the time reference terminal 22.
  • the synchronization signal transmission / reception timing is set in advance by the synchronization start time setting unit 440 so as to be a close time immediately before the measurement start time.
  • step S680 the communication time setting unit 470c of the time reference terminal 22 in FIG. 8 subtracts the half value obtained by subtracting the internal processing time of the measurement terminals 11a to 11c from the time required for transmission and reception of the synchronization signal in steps S660 and S670. Set to the communication time between the time reference terminal and the measurement terminal.
  • FIG. 14 shows a communication processing operation between the time reference terminal 22 and the measurement terminals 11a and 11b for synchronizing the measurement start time between the measurement terminals.
  • communication processing when only two measuring terminals are used will be described.
  • a rectangular portion (communication time (outward)) indicated by hatching in FIG. 14 indicates the time required for communication from the time reference terminal 22 to the measurement terminals 11a and 11b.
  • White rectangular portions (internal processing) indicate the time required for internal processing in the measurement terminals 11a and 11b.
  • a rectangular portion (communication time (recovery)) represented by a horizontal line indicates a time required for communication from the measurement terminals 11 a and 11 b to the time reference terminal 22. If the communication times between the measurement terminals 11a and 11b and the time reference terminal 22 are different, the operation start instruction from the time reference terminal 22 is delayed, so that the measurement start timing is shifted. Therefore, in this embodiment, the communication time difference ( ⁇ t in FIG. 14) between the measurement terminals 11a and 11b is calculated, and the measurement start timings of the measurement terminals 11a and 11b are individually set.
  • the synchronization signal is transmitted when the t 1, the measuring terminal 11a receives this at t 2. Then the internal processing is performed, the measuring terminal 11a sends back a synchronization signal to the time reference terminal 22 when t 3, time reference terminal 22 receives this at t 4.
  • the communication started from t 1 are transmitted synchronization signals at the timing of t 1 'delayed measurement terminal 11b, the partial communication start delay time and the communication time difference Delta] t, the delay from t 2
  • the sync signal is received at the specified time. Thereafter, the same internal processing is performed, and the measurement terminal 11b returns a synchronization signal to the time reference terminal 22, and the time reference terminal 22 receives this at t 4 ′.
  • step S690 the communication time setting unit 470c corrects the measurement start time based on the communication time difference. Specifically, the measurement start time of the measurement terminal 11b is set to be advanced or the measurement start time of the measurement terminal 11a is set to be delayed by the communication time difference ⁇ t, and the measurement start time between the measurement terminals 11a and 11b is synchronized. .
  • the delay time of the measurement terminal 11a is 0 ⁇ s
  • the delay time of the measurement terminal 11b that is, the communication time difference is 100 ⁇ s
  • the remaining time is 10 seconds until the measurement start time
  • the measurement terminal 11a has 10s
  • the measurement terminal 11b has 10s ⁇ 100 ⁇ s is calculated as the corrected remaining time.
  • the communication time setting unit 470c transmits the calculated remaining time to the remaining time setting unit 490 and prompts to set it as the remaining time.
  • the time reference terminal and the measurement terminals A and B include an MCU.
  • the PC and the time reference terminal are connected by wire, the distance between the time reference terminal and the measurement terminal A is 1.5 m (meters), the distance between the time reference terminal and the measurement terminal B is 0.5 m, and a specific low power wireless is between each Connected with.
  • a reference signal was generated from the signal generator and input to the two measurement terminals A and B.
  • the measurement start command was issued from the time reference terminal.
  • the measurement start time was set individually for each target measurement terminal by shifting by the communication time difference between the two measurement terminals A and B calculated in advance.
  • the reference signal input to the measurement terminals A and B was a frequency of 50 Hz, an amplitude of 1 V pp (peak-to-peak voltage) square wave, and an offset of 1.65 V (volts) was given.
  • the sampling frequency of measurement terminals A and B was 6 kHz.
  • the time synchronization accuracy was measured 10 times for each of two levels of whether or not the reference clock was corrected.
  • the reference clock frequency of the time reference terminal was 10010624 Hz
  • the reference clock frequency of the measurement terminal A before correction was 10061864 Hz
  • the reference clock frequency of the measurement terminal B before correction was 100007978 Hz
  • the corrected reference clock frequency of the measuring terminal A is 10012379 Hz
  • the corrected reference clock frequency of the measuring terminal B is 10013184 Hz.
  • the error from the reference clock of the time reference terminal after correction is 0.02% (percent) at the measurement terminal A (0.51% before correction) and 0.03% at the measurement terminal B (0.69% before correction). )Met.
  • FIG. 15A and 15B show typical examples of reference signal waveforms acquired by the two measuring terminals A and B.
  • FIG. FIG. 15A shows the result when the MCU reference clock is not corrected
  • FIG. 15B shows the result when the MCU reference clock is corrected.
  • the horizontal axis represents time
  • the vertical axis represents voltage.
  • FIG. 15A the rising edges of the pulse waveforms of measurement terminals A and B are shifted, and the pulse widths and waveforms of both are also shifted, but in FIG. 15B, the rising edges of the pulse waveforms of measurement terminals A and B are aligned and the pulse widths are also aligned.
  • the waveforms are almost overlapping. From this result, it was found that when the MCU reference clock is corrected, the synchronization accuracy is improved as compared with the case where the MCU is not corrected.
  • FIG. 16 is a diagram illustrating a configuration of the time reference terminal 24 according to the fourth embodiment.
  • the time reference terminal 24 is connected to at least one processing terminal (not shown in FIG. 16) that starts a predetermined process at a process start time that is a predetermined time.
  • the time reference terminal 24 includes at least an operation start instruction unit 24a and a synchronization processing unit 24c.
  • the operation start instruction unit 24a transmits a signal instructing not to start processing until the processing start time to each processing terminal.
  • the synchronization processing unit 24c corresponds to the clock accuracy related to the operation of each processing terminal in the time (period) from the current time to the processing start time when performing the synchronization processing with each of the processing terminals. The synchronization processing is completed for the time prior to the processing start time.
  • FIG. 17 is a diagram illustrating the configuration of the processing terminals 12a to 12c according to the fifth embodiment.
  • the processing terminals 12a to 12c are connected to a time reference terminal (not shown in FIG. 17) that instructs to start a predetermined process at a processing start time that is a predetermined time.
  • the processing terminals 12a to 12c include at least a standby unit 12d, a synchronization processing unit 12e, and a processing unit 12f.
  • the standby unit 12d waits for the start of processing until the processing start time.
  • the synchronization processing unit 12e performs synchronization processing with the time reference terminal at the synchronization start time notified from the time reference terminal.
  • the processing unit 12f starts the processing at the processing start time.
  • the synchronization processing unit performs the synchronization processing at the time set by the time reference terminal based on the clock accuracy of the processing terminal.
  • High synchronization accuracy can be obtained without generating a measurement error.
  • FIG. 18 is a diagram showing a configuration of the time synchronization system 4 in the sixth embodiment.
  • the time synchronization system 4 includes the function of each part of the time reference terminal 24 described in the fourth embodiment and the function of each part of the processing terminals 12a to 12c described in the fifth embodiment.
  • the mutual synchronization processing units (24c, 12e) perform the synchronization processing at the time set by the time reference terminal 24.
  • the measurement time interval does not cause measurement errors, and high synchronization accuracy can be obtained.
  • a time reference terminal connected to at least one processing terminal that starts a predetermined process at a process start time that is a predetermined time; An operation start instruction means for transmitting a signal instructing not to start the processing until the processing start time to each of the processing terminals; Of the time from the current time to the processing start time, a time corresponding to the accuracy of the clock for each operation of the processing terminal is completed with each of the processing terminals so as to be completed prior to the processing start time.
  • a time reference terminal comprising synchronization processing means for performing synchronization processing.
  • [Appendix 2] Clock accuracy measuring means for measuring the accuracy of the clock at each of the processing terminals;
  • the synchronization processing means is configured so that each of the processing terminals completes prior to the processing start time by a time corresponding to the accuracy of the actually measured clock among the time from the current time to the processing start time. Carrying out the synchronization process between The time reference terminal according to attachment 1.
  • [Appendix 3] When there are a plurality of the processing terminals, Based on the completion time of the synchronization process, a communication time with the time reference terminal for each of the processing terminals is calculated, and a communication time of a certain processing terminal and a communication time with another processing terminal among the plurality of processing terminals.
  • Communication time setting means for correcting the measurement start time of each of the certain processing terminal and the other processing terminal based on the calculated difference.
  • the time reference terminal according to appendix 1 or 2.
  • Appendix 4 A processing terminal connected to a time reference terminal for instructing to start a predetermined process at a processing start time that is a predetermined time; Standby means for waiting for the start of the process until the process start time; Synchronization processing means for performing synchronization processing with the time reference terminal at the synchronization start time notified from the time reference terminal; A processing terminal comprising processing means for starting the processing at the processing start time.
  • the synchronization processing means includes At least one or more flags are received from the time reference terminal at regular time intervals, clock pulses generated between the received flags are counted, and an average value of the count values between the flags is calculated.
  • [Appendix 6] A time reference terminal according to any one of appendices 1 to 3, and the processing terminal;
  • the processing terminal includes the processing terminal described in Appendix 4 or 5.
  • the time reference terminal further comprises flag transmission means for transmitting a flag at a fixed time interval to each of the processing terminals,
  • the flag transmission means transmits the flag again if the determination result is outside the range of the threshold value,
  • the processing terminal is the processing terminal described in Appendix 5, and the difference calculation means calculates the average value from each count value including between the retransmitted flag and the previously transmitted flag.
  • Appendix 8 A time synchronization method performed by a time reference terminal connected to at least one processing terminal that starts predetermined processing at a processing start time that is a predetermined time, A signal indicating that the processing is not started until the processing start time is transmitted to each of the processing terminals; Of the time from the current time to the processing start time, a time corresponding to the accuracy of the clock for each operation of the processing terminal is completed with each of the processing terminals so as to be completed prior to the processing start time. Comprising performing synchronous processing; Time synchronization method.
  • a time synchronization method performed by at least one processing terminal connected to a time reference terminal instructing to start a predetermined process at a processing start time that is a predetermined time, Wait for the start of the process until the process start time, At the synchronization start time notified from the time reference terminal, perform the synchronization process with the time reference terminal, Starting the process at the process start time, Time synchronization method.
  • Performing the synchronization process includes Receive at least one or more flags from the time reference terminal at regular time intervals, count clock pulses generated between the received flags, and calculate an average value of the count values between the flags. , Determining whether the average value is within a predetermined threshold; If the result of the determination is within the threshold range, the difference between the counter value of the clock pulse generated between each of the flags measured by the time reference terminal and the average value is calculated.
  • the time synchronization method according to claim 11, further comprising: [Appendix 13] A time synchronization method performed by the time reference terminal according to any one of appendices 8 to 10, A time synchronization method comprising the time synchronization method performed by the processing terminal described in Appendix 11 or 12.
  • the time reference terminal further includes transmitting a flag to each of the processing terminals at regular time intervals, If the transmission of the flag is outside the range of the threshold value of the determination, the flag is transmitted again, The calculation of the difference by the processing terminal is to calculate the average value from each count value including between the flag transmitted again and the flag transmitted last time.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Synchronisation In Digital Transmission Systems (AREA)
  • Electric Clocks (AREA)
  • Communication Control (AREA)

Abstract

This invention provides a time reference terminal and the like whereby measurement time intervals and variations in a communication environment do not bring about factors that cause measurement error and power consumption is thus reduced. The time reference terminal (24) in this time synchronization system is connected to one or more processing terminals that start prescribed processing at a predetermined processing-start time. Said time reference terminal (24) is provided with an operation-start instruction unit (24a) and a synchronization processing unit (24c). The operation-start instruction unit (24a) transmits, to each of the processing terminals, a signal that instructs the processing terminals to not start processing until the processing-start time. For each processing terminal, the synchronization processing unit (24c) performs a synchronization process so as to synchronize said processing terminal with the time reference terminal (24) such that said synchronization process completes before the processing-start time by the amount of time between the current time and the processing-start time corresponding to the precision of a clock associated with the operations performed by that processing terminal.

Description

時刻参照端末、計測端末、時刻同期システムおよび時刻同期方法Time reference terminal, measurement terminal, time synchronization system, and time synchronization method
 本発明は、時刻参照端末、計測端末、時刻同期システムおよび時刻同期方法に関する。 The present invention relates to a time reference terminal, a measurement terminal, a time synchronization system, and a time synchronization method.
 センサネットワークなどで利用される、センシング機能と通信機能を搭載する計測端末は、各々の計測端末間における時刻の同期に高い精度を要する。また、これらの計測端末は、商用電源が確保しにくい場所に設置されることも多いので、電力量に制限があり、バッテリ駆動が要求される。これに対して、特許文献1には、時刻同期信号を受信するために長い時間待機する必要なく、そのため消費電力量を低く抑える方法が開示されている。 A measurement terminal equipped with a sensing function and a communication function used in a sensor network or the like requires high accuracy in time synchronization between the measurement terminals. In addition, since these measurement terminals are often installed in places where it is difficult to secure commercial power, the amount of power is limited and battery driving is required. On the other hand, Patent Document 1 discloses a method for reducing power consumption for this reason without waiting for a long time to receive a time synchronization signal.
 また、特許文献2には、水、油およびガス等が配管の特定位置から漏れている際に、漏れている個所を、相関方式を利用して感知し、検出する手法が開示されている。 Further, Patent Document 2 discloses a technique for detecting and detecting a leaking portion using a correlation method when water, oil, gas, or the like leaks from a specific position of a pipe.
特開2006-74326号公報JP 2006-74326 A 特開昭58-208636号公報JP 58-208636 A
 各計測端末がバッテリ駆動を利用して無線通信するセンサネットワークでは、当該各計測端末の長期間動作のために、低電力で各計測端末間を時刻同期する必要がある。例えば、特許文献1に記載の時刻同期方法では、低電力に時刻同期を実現するために、時間管理された端末間において周期的に時刻同期処理を行うことにより、消費電力量の高い無線通信を実行する頻度を抑制する。しかし、計測端末に搭載するクロック精度によりカウント時間には誤差が発生する。このため、リファレンス端末が、同期時刻と実際に計測する計測時刻との間隔を長くすると計測開始時間の誤差が大きくなり、同期時刻と計測時刻との間隔を短くすると計測開始時刻を超過してしまうという問題がある。 In a sensor network in which each measurement terminal performs wireless communication using battery drive, it is necessary to synchronize the measurement terminals with low power for long-term operation of each measurement terminal. For example, in the time synchronization method described in Patent Document 1, in order to achieve time synchronization with low power, wireless communication with high power consumption is performed by periodically performing time synchronization processing between time-managed terminals. Suppress the frequency of execution. However, an error occurs in the count time due to the clock accuracy mounted on the measurement terminal. For this reason, if the reference terminal increases the interval between the synchronization time and the actual measurement time, the measurement start time error increases, and if the interval between the synchronization time and the measurement time is shortened, the measurement start time is exceeded. There is a problem.
 また、特許文献2に記載の相関処理を用いた位置特定手法は、異なる2点間で取得する時間波形が完全に同期されていることが前提となっており、実際の運用においてはこの時間波形の同期誤差を抑制する必要がある。しかし、屋外で広範囲に亘りセンサ端末を設置して、計測データ送信に無線通信を使用する場合、通信環境の変動による同期誤差の低下や、センサ端末の高負荷動作により電力消費が高くなるという問題がある。 Further, the position specifying method using the correlation processing described in Patent Document 2 is based on the premise that the time waveforms acquired between two different points are completely synchronized, and this time waveform is used in actual operation. It is necessary to suppress the synchronization error. However, when sensor terminals are installed outdoors over a wide area and wireless communication is used for measurement data transmission, there is a problem that power consumption increases due to a decrease in synchronization error due to changes in the communication environment and high load operation of the sensor terminals. There is.
 本発明は、上記の問題点を解決するべくなされた。本発明は、通信環境の変動や計測の時間間隔が計測誤差の発生要因とならず、高い同期精度を得られ、且つ、低い消費電力を実現する時刻参照端末等を提供することを主たる目的とする。 The present invention was made to solve the above problems. The main object of the present invention is to provide a time reference terminal or the like that can obtain high synchronization accuracy and realize low power consumption without fluctuations in the communication environment and measurement time intervals being a cause of measurement errors. To do.
 上記課題を解決するため、本発明の第1の観点は、
 所定の処理を、予め定められた時刻である処理開始時刻に開始する少なくとも1つ以上の処理端末と接続された時刻参照端末であって、
 処理開始時刻まで処理を開始しないことを指示する信号を、処理端末の各々に送信する動作開始指示手段と、
 現在時刻から処理開始時刻に至る時間のうち、処理端末の各々の動作に関するクロックの精度に相当する時間分、処理開始時刻に先立って完了するよう、処理端末の各々との間で同期処理を実施する同期処理手段とを備える、時刻参照端末である。
In order to solve the above problems, the first aspect of the present invention is to
A time reference terminal connected to at least one processing terminal that starts a predetermined process at a process start time that is a predetermined time;
An operation start instruction means for transmitting a signal instructing not to start the processing until the processing start time to each of the processing terminals;
Synchronous processing is performed with each processing terminal so that the time corresponding to the accuracy of the clock related to each operation of the processing terminal is completed prior to the processing start time in the time from the current time to the processing start time. It is a time reference terminal provided with the synchronous process means to do.
 本発明の第2の観点は、
 所定の処理を、予め定められた時刻である処理開始時刻に開始するよう指示する時刻参照端末と接続された処理端末であって、
 処理開始時刻まで処理の開始を待つ待機手段と、
 時刻参照端末から通知される同期開始時刻に、時刻参照端末との同期処理を実施する同期処理手段と、
 処理開始時刻に、処理を開始する処理手段
とを備える、処理端末である。
The second aspect of the present invention is:
A processing terminal connected to a time reference terminal for instructing to start a predetermined process at a processing start time that is a predetermined time;
Waiting means waiting for the start of processing until the processing start time;
Synchronization processing means for performing synchronization processing with the time reference terminal at the synchronization start time notified from the time reference terminal;
It is a processing terminal provided with the processing means which starts a process at a process start time.
 本発明の第3の観点は、
 上記のいずれかに記載された時刻参照端末と、上記のいずれかに記載された処理端末を備える時刻同期システムである。
The third aspect of the present invention is:
It is a time synchronization system provided with the time reference terminal described in any of the above, and the processing terminal described in any of the above.
 本発明の第4の観点は、
 所定の処理を、予め定められた時刻である処理開始時刻に開始する少なくとも1つ以上の処理端末と接続された時刻参照端末が行う時刻同期方法であって、
 処理開始時刻まで処理を開始しないことを指示する信号を、処理端末の各々に送信し、
 現在時刻から処理開始時刻に至る時間のうち、処理端末の各々の動作に関するクロックの精度に相当する時間分、処理開始時刻に先立って完了するよう、処理端末の各々との間で同期処理を実施することを備える、
時刻同期方法である。
The fourth aspect of the present invention is:
A time synchronization method performed by a time reference terminal connected to at least one processing terminal that starts predetermined processing at a processing start time that is a predetermined time,
A signal indicating that the processing is not started until the processing start time is transmitted to each of the processing terminals;
Synchronous processing is performed with each processing terminal so that the time corresponding to the accuracy of the clock related to each operation of the processing terminal is completed prior to the processing start time in the time from the current time to the processing start time. To prepare to
This is a time synchronization method.
 本発明の第5の観点は、
 所定の処理を、予め定められた時刻である処理開始時刻に開始するよう指示する時刻参照端末と接続された少なくとも1つ以上の処理端末が行う時刻同期方法であって、
 処理開始時刻まで処理の開始を待ち、
 時刻参照端末から通知される同期開始時刻に、時刻参照端末との同期処理を実施し、
 処理開始時刻に、処理を開始することを備える、
時刻同期方法である。
The fifth aspect of the present invention is:
A time synchronization method performed by at least one processing terminal connected to a time reference terminal instructing to start a predetermined process at a processing start time that is a predetermined time,
Wait for the start of processing until the processing start time,
Perform synchronization processing with the time reference terminal at the synchronization start time notified from the time reference terminal,
Comprising starting processing at a processing start time;
This is a time synchronization method.
 本発明の時刻参照端末等によると、通信環境の変動や計測の時間間隔が計測誤差の発生要因とならず、高い同期精度を得られ、且つ、低い消費電力を実現することができる。 According to the time reference terminal or the like of the present invention, a change in communication environment and a measurement time interval do not cause measurement errors, so that high synchronization accuracy can be obtained and low power consumption can be realized.
本発明の第一の実施形態に係る時刻同期システムの構成を示す図である。It is a figure which shows the structure of the time synchronization system which concerns on 1st embodiment of this invention. 第一の実施形態における時刻参照端末の機能構成の一例を示す図である。It is a figure which shows an example of a function structure of the time reference terminal in 1st embodiment. 第一の実施形態における計測端末の機能構成の一例を示す図である。It is a figure which shows an example of a function structure of the measurement terminal in 1st embodiment. 第一の実施形態における時刻参照端末および計測端末の時間の概念を説明するための図である。It is a figure for demonstrating the concept of the time of the time reference terminal and measurement terminal in 1st embodiment. 第一の実施形態に係る時刻同期システムの動作をフロー図である。It is a flowchart of operation | movement of the time synchronization system which concerns on 1st embodiment. 本発明の第二の実施形態に係る時刻同期システムの構成を示す図である。It is a figure which shows the structure of the time synchronization system which concerns on 2nd embodiment of this invention. 第二の実施形態に係る時刻同期処理の動作を示すフロー図である。It is a flowchart which shows operation | movement of the time synchronous process which concerns on 2nd embodiment. 本発明の第三の実施形態に係る時刻同期システムの時刻参照端末の内部構成図である。It is an internal block diagram of the time reference terminal of the time synchronization system which concerns on 3rd embodiment of this invention. 第三の実施形態に係る時刻同期システムの計測端末の内部構成図である。It is an internal block diagram of the measuring terminal of the time synchronization system which concerns on 3rd embodiment. 第三の実施形態に係る時刻同期処理の動作を示すフロー図である。It is a flowchart which shows operation | movement of the time synchronous process which concerns on 3rd embodiment. 第三の実施形態におけるフラグ間のクロックパルスの概念を示す図である。It is a figure which shows the concept of the clock pulse between flags in 3rd embodiment. 第三の実施形態におけるフラグ間のカウンタ値の概念を示す図である。It is a figure which shows the concept of the counter value between flags in 3rd embodiment. 第三の実施形態におけるフラグ送信回数とカウンタ値との関係を示すグラフ図である。It is a graph which shows the relationship between the frequency | count of flag transmission in 3rd embodiment, and a counter value. 第三の実施形態における時刻参照端末と各計測端末との通信処理を時系列で示すグラフ図である。It is a graph which shows the communication processing of the time reference terminal and each measurement terminal in 3rd embodiment in time series. クロック補正なしの同期誤差を示すグラフ図である。It is a graph which shows the synchronization error without clock correction. クロック補正ありの同期誤差を示すグラフ図である。It is a graph which shows the synchronization error with a clock correction. 本発明の第四の実施形態に係る時刻参照端末の構成を示す図である。It is a figure which shows the structure of the time reference terminal which concerns on 4th embodiment of this invention. 本発明の第五の実施形態に係る処理端末の構成を示す図である。It is a figure which shows the structure of the processing terminal which concerns on 5th embodiment of this invention. 本発明の第六の実施形態に係る時刻同期システムの構成を示す図である。It is a figure which shows the structure of the time synchronization system which concerns on 6th embodiment of this invention.
 次に図面を参照して、本発明の実施形態を説明する。以下の図面の記載において、同一又は類似の部分には同一又は類似の符号を付している。ただし、図面は模式的なものであることに留意すべきである。更に以下に記載される実施形態は一例であり、その本質を同一とする範囲において適宜変更可能であることに留意すべきである。 Next, an embodiment of the present invention will be described with reference to the drawings. In the following description of the drawings, the same or similar parts are denoted by the same or similar reference numerals. However, it should be noted that the drawings are schematic. Furthermore, it should be noted that the embodiment described below is an example, and can be appropriately changed within the scope of the same essence.
 また、以下の実施形態の説明において、各装置の各構成要素は、ハードウェア単位の構成ではなく、機能単位のブロックを示している。各装置のハードウェアは、その構成要素として、任意のコンピュータのCPU(Central Processing Unit)と、プログラムをロードするためのメモリを含む。更にハードウェアによる構成要素は、プログラムを格納するためのハードディスクなどの記憶メディアと、ネットワーク接続用インタフェースを含む。 Further, in the following description of the embodiments, each component of each device indicates a functional unit block, not a hardware unit configuration. The hardware of each device includes a CPU (Central Processing Unit) of an arbitrary computer and a memory for loading a program as its components. Further, the hardware components include a storage medium such as a hard disk for storing the program and a network connection interface.
 上記の各構成要素をメインとした、ハードウェア、ソフトウエア、またはこれらの任意の組合せによって各装置は実現される。そして、その実現方法等には様々な変形例がある。例えば、CPUの他に、MPU(Micro-processing unit)やMCU(Micro Controller Unit)が使用されてもよい。
<第一の実施形態>
(時刻同期システム)
 第一の実施形態に係る時刻同期システム1は、計測端末間の計測開始時刻の同期をとるシステムであり、図1に示すように、時刻参照端末20および複数の計測端末10(10a、10b、10c…)を備えている。時刻参照端末20は、時刻同期システム1内に1つ以上存在する。時刻参照端末20と計測端末10a、10bおよび10cは、通信網7を介して互いに通信することができる。尚、多くの場合、計測端末10a~10cと通信網7の間の通信は無線で行われ、この無線通信の際に、計測端末10a~10cは多くの電力を消費する。
(時刻参照端末)
 時刻参照端末20は、図2に示すように、計測開始時刻設定部100、計測間隔算出部110、クロック精度記憶部120、最大誤差時間算出部130、同期開始時刻設定部140、動作開始指示部150、同期処理部170、計測開始時刻記憶部180、残時間設定部190および送受信部160等を備えている。
Each device is realized by hardware, software, or an arbitrary combination of these components. There are various modifications to the implementation method and the like. For example, in addition to the CPU, an MPU (Micro-processing unit) or MCU (Micro Controller Unit) may be used.
<First embodiment>
(Time synchronization system)
The time synchronization system 1 according to the first embodiment is a system that synchronizes measurement start times between measurement terminals. As shown in FIG. 1, the time reference terminal 20 and a plurality of measurement terminals 10 (10a, 10b, 10c ...). One or more time reference terminals 20 exist in the time synchronization system 1. The time reference terminal 20 and the measurement terminals 10a, 10b, and 10c can communicate with each other via the communication network 7. In many cases, communication between the measurement terminals 10a to 10c and the communication network 7 is performed wirelessly, and the measurement terminals 10a to 10c consume a large amount of power during the wireless communication.
(Time reference terminal)
As shown in FIG. 2, the time reference terminal 20 includes a measurement start time setting unit 100, a measurement interval calculation unit 110, a clock accuracy storage unit 120, a maximum error time calculation unit 130, a synchronization start time setting unit 140, and an operation start instruction unit. 150, a synchronization processing unit 170, a measurement start time storage unit 180, a remaining time setting unit 190, a transmission / reception unit 160, and the like.
 計測開始時刻設定部100は、時刻同期システム1の管理者等であるユーザに、計測開始時刻の設定を促す。計測開始時刻記憶部180は、設定された計測開始時刻を記憶する。計測間隔算出部110は、予め設定された計測開始時刻および現在時刻である動作開始時刻から、計測間隔を算出する。クロック精度記憶部120は、各計測端末10a~10cのクロック周波数の許容誤差(以下「クロック精度」と記載)に関する情報であるクロック精度情報を記憶する。最大誤差時間算出部130は、計測間隔とクロック精度情報とを基に、各計測端末10a~10cの最大誤差時間を算出する。 The measurement start time setting unit 100 prompts a user who is an administrator of the time synchronization system 1 to set the measurement start time. The measurement start time storage unit 180 stores the set measurement start time. The measurement interval calculation unit 110 calculates a measurement interval from an operation start time that is a preset measurement start time and the current time. The clock accuracy storage unit 120 stores clock accuracy information, which is information related to an allowable error (hereinafter referred to as “clock accuracy”) of the clock frequency of each measurement terminal 10a to 10c. The maximum error time calculation unit 130 calculates the maximum error time of each measurement terminal 10a to 10c based on the measurement interval and the clock accuracy information.
 同期開始時刻設定部140は、計測開始時刻、最大誤差時間および同期に必要とされる時間である同期処理時間を基に、計測開始時刻の直前に同期を行うように、同期開始時刻を算出する。動作開始指示部150は、各計測端末10a~10cに動作待機を示す指示を送信する。同期開始時刻記憶部141は、同期開始時刻を記憶する。同期処理部170は、同期開始時刻に、各計測端末10a~10cとの間で時刻同期処理を行う。残時間設定部190は、同期処理時間と計測開始時刻とから、計測開始時刻までの残時間を算出する。残時間設定部190は、算出された残時間を、無線通信を介して、各計測端末10a~10cに設定する。送受信部160は、通信網7を介して計測端末10a~10cと無線通信する。
(計測端末)
 計測端末10a~10cは、図3に示すように、計測待機部200、同期処理部210、計測処理部220、送受信部230、同期開始時刻記憶部240および残時間記憶部250等を備えている。計測待機部200は、時刻参照端末20からの動作待機指示により周辺機能の電源をオフにし、同期開始時刻もしくは計測開始時刻までオフ状態を維持する。同期処理部210は、同期開始時刻において、時刻参照端末10との時刻同期を行う。計測処理部220は、様々な計測処理、例えば配管の漏洩位置の計測等を行う。計測処理部220の計測に用いるセンサは、例えば振動センサ、温度センサ、圧力センサなどがある。送受信部230は、通信網7を介して、時刻参照端末20と無線通信を行う。尚、これは有線通信であっても構わない。同期開始時刻記憶部240は、同期開始時刻を一時記憶するメモリである。残時間記憶部250は、残時間を一時記憶するメモリである。
The synchronization start time setting unit 140 calculates the synchronization start time so that synchronization is performed immediately before the measurement start time based on the measurement start time, the maximum error time, and the synchronization processing time that is the time required for synchronization. . The operation start instruction unit 150 transmits an instruction indicating operation standby to each of the measurement terminals 10a to 10c. The synchronization start time storage unit 141 stores the synchronization start time. The synchronization processing unit 170 performs time synchronization processing with each of the measurement terminals 10a to 10c at the synchronization start time. The remaining time setting unit 190 calculates the remaining time up to the measurement start time from the synchronization processing time and the measurement start time. The remaining time setting unit 190 sets the calculated remaining time in each of the measurement terminals 10a to 10c via wireless communication. The transmission / reception unit 160 performs wireless communication with the measurement terminals 10a to 10c via the communication network 7.
(Measurement terminal)
As shown in FIG. 3, the measurement terminals 10a to 10c include a measurement standby unit 200, a synchronization processing unit 210, a measurement processing unit 220, a transmission / reception unit 230, a synchronization start time storage unit 240, a remaining time storage unit 250, and the like. . The measurement standby unit 200 turns off the peripheral functions in response to an operation standby instruction from the time reference terminal 20, and maintains the off state until the synchronization start time or the measurement start time. The synchronization processing unit 210 performs time synchronization with the time reference terminal 10 at the synchronization start time. The measurement processing unit 220 performs various measurement processes, for example, measurement of a leakage position of a pipe. Examples of the sensor used for measurement by the measurement processing unit 220 include a vibration sensor, a temperature sensor, and a pressure sensor. The transmission / reception unit 230 performs wireless communication with the time reference terminal 20 via the communication network 7. Note that this may be wired communication. The synchronization start time storage unit 240 is a memory that temporarily stores the synchronization start time. The remaining time storage unit 250 is a memory that temporarily stores the remaining time.
 尚、上述した各部は図示しないコンピュータのCPU等に格納されている。または図示しないROM(Read Only Memory)やRAM(Random Access Memory)に格納されて、適宜CPUが演算処理を行うことでこれらの処理は実行される。
(時刻同期システムの動作)
 時刻同期システム1にて使用される各時刻および各時間等を、時刻参照端末20および計測端末10a~10c間の時系列に沿った動作を参照しながら説明する。図4において、tは時間軸を表す。
Note that the above-described units are stored in a CPU or the like of a computer (not shown). Alternatively, it is stored in a ROM (Read Only Memory) or a RAM (Random Access Memory) (not shown), and these processes are executed by the CPU appropriately performing arithmetic processing.
(Time synchronization system operation)
Each time and each time used in the time synchronization system 1 will be described with reference to operations in time series between the time reference terminal 20 and the measurement terminals 10a to 10c. In FIG. 4, t represents a time axis.
 まず、図4に示すように、時刻参照端末20に設定された計測開始時刻30と現在時刻である動作開始時刻31とから、計測端末10a~10cに設定すべき計測間隔32が算出される。 First, as shown in FIG. 4, the measurement interval 32 to be set in the measurement terminals 10a to 10c is calculated from the measurement start time 30 set in the time reference terminal 20 and the operation start time 31 which is the current time.
 ここで、一般的な計測端末10a~10cのクロック精度は±数十ppm(パーツパーミリオン)程度であり、仮に±100ppmとすると1日の誤差時間は約±10秒となる。当然、計測間隔32が、より長い設定となれば、誤差時間も大きくなる。例えば、クロック周波数の許容誤差が負値(例えばクロック精度が-100ppm)であり、且つ、計測開始を予定している時刻が一日後の場合を考える。この場合、実際の計測開始時刻は、予定より10秒遅くなり、本来の計測開始時刻30を超過することになる。 Here, the clock accuracy of general measuring terminals 10a to 10c is about ± several tens of ppm (parts per million), and assuming that ± 100 ppm, the error time per day is about ± 10 seconds. Naturally, if the measurement interval 32 is set to be longer, the error time becomes longer. For example, consider a case where the allowable error of the clock frequency is a negative value (for example, the clock accuracy is −100 ppm) and the measurement start time is one day later. In this case, the actual measurement start time is 10 seconds later than the schedule and exceeds the original measurement start time 30.
 よって、本実施形態では、各計測端末10a~10cの製品カタログに記載されている精度情報(以下「カタログ値」と記載)のうち、クロック精度の負値の最大絶対値(以下「最小カタログ値」と記載)を得て、これを基に、計測間隔32に最小カタログ値を乗じた結果である最大誤差時間33を算出する。例えば、計測間隔32が24時間、最小カタログ値が|-100ppm|であると、24時間×60分×60秒×|-100ppm|/10=8.6秒となる。但し、「| |」は絶対値を表し、「/」は除算を表す。ここで、計測開始時刻30から最大誤差時間33と同期処理時間34を減算した時刻が同期開始時刻35となる。 Therefore, in the present embodiment, of the accuracy information (hereinafter referred to as “catalog value”) described in the product catalog of each measurement terminal 10a to 10c, the maximum absolute value of the negative clock accuracy value (hereinafter referred to as “minimum catalog value”). Based on this, the maximum error time 33, which is the result of multiplying the measurement interval 32 by the minimum catalog value, is calculated. For example, if the measurement interval 32 is 24 hours and the minimum catalog value is | −100 ppm |, 24 hours × 60 minutes × 60 seconds × | −100 ppm | / 10 6 = 8.6 seconds. However, “||” represents an absolute value, and “/” represents division. Here, the time obtained by subtracting the maximum error time 33 and the synchronization processing time 34 from the measurement start time 30 is the synchronization start time 35.
 これにより、時刻参照端末20と通信する全ての計測端末10a~10cにおいて、クロック精度の個体差によらず、計測開始時刻30より前に同期開始処理36が実行される。その後、同期開始時刻35から同期処理時間34が経過した時刻、すなわち同期処理完了時刻から、計測開始時刻30を減じた結果である残時間37が算出される。そして、同期処理完了時刻から残時間37経過後が、計測端末10a~10cが計測処理38を開始すべき計測開始時刻30となる。 Thus, the synchronization start process 36 is executed before the measurement start time 30 in all the measurement terminals 10a to 10c communicating with the time reference terminal 20, regardless of individual differences in clock accuracy. Thereafter, a remaining time 37, which is a result of subtracting the measurement start time 30 from the time when the synchronization processing time 34 has elapsed from the synchronization start time 35, that is, the synchronization processing completion time, is calculated. Then, the measurement start time 30 at which the measurement terminals 10a to 10c should start the measurement process 38 is the time after the remaining time 37 has elapsed from the synchronization process completion time.
 次に、本実施形態に係る時刻同期システム1の各部の動作を、図5のフロー図を用いて説明する。 Next, the operation of each part of the time synchronization system 1 according to the present embodiment will be described with reference to the flowchart of FIG.
 (a)ステップS100において、図2の時刻参照端末20側の計測開始時刻設定部100は、計測開始時刻を設定する。具体的には、計測開始時刻設定部100は、システム管理者等のユーザ等に対し、時刻参照端末20に設定すべき計測開始時刻の入力および設定を促す。ステップS110において、計測開始時刻設定部100は、設定された計測開始時刻30を計測開始時刻記憶部180に格納する。 (A) In step S100, the measurement start time setting unit 100 on the time reference terminal 20 side in FIG. 2 sets the measurement start time. Specifically, the measurement start time setting unit 100 prompts a user such as a system administrator to input and set a measurement start time to be set in the time reference terminal 20. In step S <b> 110, the measurement start time setting unit 100 stores the set measurement start time 30 in the measurement start time storage unit 180.
 (b)ステップS120において、計測間隔算出部110は、動作開始時刻31から計測開始時刻30までの計測間隔を算出する。ステップS130において、最大誤差時間算出部130は、算出された計測間隔32と、予めクロック精度記憶部120に保持していた各計測端末10a~10cのクロック精度情報とを用いて、計測端末毎の最大誤差時間を算出する。ステップS140において、同期開始時刻設定部140は、計測開始時刻30から、最大誤差時間および同期処理に要する時間を減算した時刻を、同期開始時刻35として、計測端末10a~10cに通信網7を介して送信する。更に、同期開始時刻設定部140は、同期開始時刻35を同期開始時刻記憶部141に格納する。 (B) In step S120, the measurement interval calculation unit 110 calculates a measurement interval from the operation start time 31 to the measurement start time 30. In step S130, the maximum error time calculation unit 130 uses the calculated measurement interval 32 and the clock accuracy information of each measurement terminal 10a to 10c previously stored in the clock accuracy storage unit 120 for each measurement terminal. Calculate the maximum error time. In step S140, the synchronization start time setting unit 140 sets the time obtained by subtracting the maximum error time and the time required for the synchronization process from the measurement start time 30 as the synchronization start time 35 to the measurement terminals 10a to 10c via the communication network 7. To send. Further, the synchronization start time setting unit 140 stores the synchronization start time 35 in the synchronization start time storage unit 141.
 (c)次にステップS141において、図3の計測端末10a~10c側の送受信部230が送信された同期開始時刻35を受信すると、計測待機部200は、受信した同期開始時刻35を同期開始時刻記憶部240に格納する。その後、計測待機部200は、通信機能を代表とする、不要な全ての周辺機能の電源をオフとし、計測端末10a~10cを計測待機状態とする。 (C) Next, in step S141, when the transmission / reception unit 230 on the measurement terminals 10a to 10c side in FIG. 3 receives the synchronization start time 35, the measurement standby unit 200 uses the received synchronization start time 35 as the synchronization start time. Store in the storage unit 240. Thereafter, the measurement standby unit 200 turns off all unnecessary peripheral functions such as the communication function, and puts the measurement terminals 10a to 10c in the measurement standby state.
 ステップS160において、計測待機部200が同期開始時刻記憶部240に格納される同期開始時刻になったと判断する場合(ステップS160でYES)、ステップS170において、同期処理部210が時刻参照端末20と、通信網7を介して、同期処理を開始する。ステップS160において、同期時刻ではないと判断する場合(ステップS160でNO)、ステップS150に戻り、計測待機状態が継続する。ただし、同期時刻でない場合、ステップS150に戻らず、同期時刻になるかの判定(ステップS160)に戻ってもよい。 In step S160, when it is determined that the measurement standby unit 200 has reached the synchronization start time stored in the synchronization start time storage unit 240 (YES in step S160), in step S170, the synchronization processing unit 210 includes the time reference terminal 20 and The synchronization process is started via the communication network 7. If it is determined in step S160 that it is not the synchronization time (NO in step S160), the process returns to step S150 and the measurement standby state continues. However, when it is not the synchronization time, the process may return to the determination whether the synchronization time is reached (step S160) without returning to step S150.
 具体的には、時刻参照端末20の同期処理部170は、計測端末10a~10cに同期信号を送信する。これに応じて、計測端末10a~10cの同期処理部210は、時刻参照端末20に同期信号を返信する。この同期信号送受信のタイミングは、同期開始時刻設定部140により計測開始時刻の直前に行うよう設定されている。同期誤差は、時間経過につれて大きくなるので、このように計測開始時刻30の直前に同期処理を行うことで、正確な残時間を算出することができるようになる。 Specifically, the synchronization processing unit 170 of the time reference terminal 20 transmits a synchronization signal to the measurement terminals 10a to 10c. In response to this, the synchronization processing unit 210 of the measurement terminals 10a to 10c returns a synchronization signal to the time reference terminal 20. This synchronization signal transmission / reception timing is set by the synchronization start time setting unit 140 to be performed immediately before the measurement start time. Since the synchronization error increases as time elapses, an accurate remaining time can be calculated by performing the synchronization process immediately before the measurement start time 30 in this way.
 (d)ステップS171において、図2の同期処理部170は、同期開始時刻記憶部141に格納されている同期開始時刻になったと判断すると、計測端末10a~10cと、通信網7を介して、同期処理を開始する。ステップS180において、同期処理完了後、残時間設定部190は、各計測端末10a~10cの同期処理完了時刻から、計測開始時刻30を減じた結果である残時間37を各々算出し、この各残時間37を、通信網7を介して、各計測端末10a~10cに送信する。 (D) In step S171, when the synchronization processing unit 170 in FIG. 2 determines that the synchronization start time stored in the synchronization start time storage unit 141 has come, the measurement terminals 10a to 10c and the communication network 7 Start synchronous processing. In step S180, after the synchronization process is completed, the remaining time setting unit 190 calculates a remaining time 37 that is a result of subtracting the measurement start time 30 from the synchronization process completion time of each measurement terminal 10a to 10c. The time 37 is transmitted to each of the measurement terminals 10a to 10c via the communication network 7.
 (e)ステップS181において図3の計測端末側の送受信部230が通信網7を介して残時間37を受信すると、計測待機部200は、受信した残時間37を残時間記憶部250に格納する。その後、ステップS190において、計測待機部200は、再度、通信機能を代表とする不要な全ての周辺機能の電源をオフとして、計測端末10a~10cを計測待機状態とする。ステップS200において、計測処理部220が、残時間記憶部250に格納される残時間が経過し、計測開始時刻30になったと判断すると、ステップS210において、計測処理部220が様々な計測処理を実行する。 (E) When the transmission / reception unit 230 on the measurement terminal side in FIG. 3 receives the remaining time 37 via the communication network 7 in step S181, the measurement standby unit 200 stores the received remaining time 37 in the remaining time storage unit 250. . Thereafter, in step S190, the measurement standby unit 200 again turns off all unnecessary peripheral functions represented by the communication function, and sets the measurement terminals 10a to 10c to the measurement standby state. In step S200, when the measurement processing unit 220 determines that the remaining time stored in the remaining time storage unit 250 has elapsed and has reached the measurement start time 30, the measurement processing unit 220 executes various measurement processes in step S210. To do.
 以上記載したように、本発明の第一の実施形態によれば、時刻同期システム1は、どのような計測開始時刻を設定しても、計測開始時刻を超過しない範囲で、計測開始時刻に最も近い同期開始時刻を自動的に1回設定する。これにより、時刻同期システム1は、比較的短い周期で複数回の同期処理を行う場合と比較し、同期精度を維持するために同期処理にかかる消費電力を削減することができると共に、より高い同期精度を実現することができる。
<第二の実施形態>
(時刻同期システム)
 第二の実施形態に係る時刻同期システム(図示しない)は、図1の時刻同期システム1と同様に、時刻参照端末21と、これと通信可能な、計測のための図示しない複数の計測端末を備えている。
As described above, according to the first embodiment of the present invention, the time synchronization system 1 has the highest measurement start time within a range that does not exceed the measurement start time no matter what the measurement start time is set. The closest synchronization start time is automatically set once. As a result, the time synchronization system 1 can reduce power consumption for synchronization processing and maintain higher synchronization compared to the case where synchronization processing is performed a plurality of times in a relatively short cycle. Accuracy can be achieved.
<Second Embodiment>
(Time synchronization system)
The time synchronization system (not shown) according to the second embodiment includes a time reference terminal 21 and a plurality of measurement terminals (not shown) for measurement that can communicate with the time reference terminal 21 as in the time synchronization system 1 of FIG. I have.
 時刻参照端末21は、図6に示すように、以下の構成を備える。
計測開始時刻設定部300、
計測間隔算出部310、
クロック精度記憶部320、
最大誤差時間算出部330、
同期開始時刻設定部340、
同期開始時刻記憶部341、
動作開始指示部350、
同期処理部370、
クロック精度実測部371、
計測開始時刻記憶部380、
補正残時間設定部390および
送受信部360。
As shown in FIG. 6, the time reference terminal 21 has the following configuration.
Measurement start time setting unit 300,
Measurement interval calculator 310,
Clock accuracy storage unit 320,
Maximum error time calculator 330,
Synchronization start time setting unit 340,
Synchronization start time storage unit 341,
Operation start instruction unit 350,
Synchronization processor 370,
Clock accuracy measurement unit 371,
Measurement start time storage unit 380,
A remaining correction time setting unit 390 and a transmission / reception unit 360.
 同期開始時刻記憶部341は、基準となる同期開始時刻と、各計測端末にて実際に同期処理が開始された時刻である実測同期開始時刻を一時記憶する。クロック精度記憶部320は、計測端末毎のカタログ値から得られる基準クロック精度の情報、および実際に測定された結果得られる実測クロック精度の情報を記憶する。 The synchronization start time storage unit 341 temporarily stores a reference synchronization start time and an actual measurement synchronization start time that is a time at which each synchronization terminal actually starts the synchronization process. The clock accuracy storage unit 320 stores information on the reference clock accuracy obtained from the catalog value for each measurement terminal and information on the actual clock accuracy obtained as a result of actual measurement.
 クロック精度実測部371は、各計測端末にて実際に同期処理が開始された時刻を取得し、取得した実測時刻と、同期開始時刻記憶部341に格納される同期開始時刻を基に、各計測装置のクロック精度の実測を行い、実測クロック精度を算出する。補正残時間設定部390は、同期処理完了後から計測開始時刻までの時間を、実測クロック精度を基に補正する。 The clock accuracy actual measurement unit 371 acquires the time at which the synchronization processing is actually started at each measurement terminal, and based on the acquired actual measurement time and the synchronization start time stored in the synchronization start time storage unit 341, each measurement Measure the clock accuracy of the device and calculate the measured clock accuracy. The remaining correction time setting unit 390 corrects the time from the completion of the synchronization process to the measurement start time based on the actually measured clock accuracy.
 尚、他の各部については第一の実施形態と同様であるため説明を割愛する。 In addition, since it is the same as that of 1st embodiment about other each part, description is omitted.
 次に、第二の実施形態に係る時刻同期システムの各部の動作を、図7のフロー図を用いて説明する。
(a)ステップS300においては、図6の時刻参照端末側の計測開始時刻設定部300は、時刻参照端末21に設定すべき計測開始時刻を設定する。具体的には、計測開始時刻設定部300は、ユーザ等に対し、計測開始時刻の入力および設定を促す。ステップS310において、計測開始時刻設定部300は、設定された計測開始時刻を計測開始時刻記憶部380に格納する。
(b)ステップS320において、計測間隔算出部310は、動作開始時刻から計測開始時刻までの計測間隔を算出する。ステップS330においては、最大誤差時間算出部330は、クロック精度記憶部320から基準クロック精度を表す情報を取得し、計測間隔と各計測端末の基準クロック精度情報とを基に最大誤差時間を算出する。ステップS340において、同期開始時刻設定部340は、計測開始時刻から、最大誤差時間および同期処理に要する時間を減算した時刻を、同期開始時刻として、各計測端末に通信網7を介して送信する。更に同期開始時刻設定部340は、同期開始時刻を、同期開始時刻記憶部341に格納する。
(c)次にステップS341において、各計測端末が同期開始時刻を受信すると、計測端末の計測待機部200は、通信機能等の電源をオフとし、自端末を計測待機状態とする(ステップS350)。ステップS360において、計測待機部200が同期開始時刻になったと判断すると、ステップS370において、同期処理部210は、時刻参照端末21との間で同期処理を行う。
(d)ステップS371において時刻参照端末21と各計測端末の間での同期処理が完了すると、ステップS372において、図6のクロック精度実測部371は、各計測端末にて実際に同期処理が開始された時刻を、通信網7を介して、取得する。ステップS373においては、クロック精度実測部371は、取得した実測同期開始時刻と、同期開始時刻記憶部341に格納される基準同期開始時刻とを比較し、各計測端末のクロック精度の測定を行う。ステップS380において、補正残時間設定部390は、同期処理時間経過直後の時刻から計測開始時刻までの残時間を、クロック精度の測定結果に応じて補正した、補正残時間を算出する。
Next, the operation of each part of the time synchronization system according to the second embodiment will be described with reference to the flowchart of FIG.
(A) In step S300, the measurement start time setting unit 300 on the time reference terminal side in FIG. 6 sets a measurement start time to be set in the time reference terminal 21. Specifically, the measurement start time setting unit 300 prompts the user or the like to input and set the measurement start time. In step S <b> 310, the measurement start time setting unit 300 stores the set measurement start time in the measurement start time storage unit 380.
(B) In step S320, the measurement interval calculation unit 310 calculates a measurement interval from the operation start time to the measurement start time. In step S330, the maximum error time calculation unit 330 acquires information indicating the reference clock accuracy from the clock accuracy storage unit 320, and calculates the maximum error time based on the measurement interval and the reference clock accuracy information of each measurement terminal. . In step S340, the synchronization start time setting unit 340 transmits a time obtained by subtracting the maximum error time and the time required for the synchronization process from the measurement start time to each measurement terminal via the communication network 7 as the synchronization start time. Further, the synchronization start time setting unit 340 stores the synchronization start time in the synchronization start time storage unit 341.
(C) Next, when each measurement terminal receives the synchronization start time in step S341, the measurement standby unit 200 of the measurement terminal turns off the power of the communication function or the like and puts its own terminal in the measurement standby state (step S350). . If it is determined in step S360 that the measurement standby unit 200 has reached the synchronization start time, the synchronization processing unit 210 performs synchronization processing with the time reference terminal 21 in step S370.
(D) When the synchronization processing between the time reference terminal 21 and each measurement terminal is completed in step S371, the clock accuracy measurement unit 371 in FIG. 6 actually starts the synchronization processing in each measurement terminal in step S372. The obtained time is acquired via the communication network 7. In step S373, the clock accuracy measurement unit 371 compares the acquired actual synchronization start time with the reference synchronization start time stored in the synchronization start time storage unit 341, and measures the clock accuracy of each measurement terminal. In step S380, the remaining correction time setting unit 390 calculates a remaining correction time by correcting the remaining time from the time immediately after the elapse of the synchronization processing time to the measurement start time according to the measurement result of the clock accuracy.
 例えば、ある計測端末の遅延時間が10μs(マイクロ秒)で、計測開始時刻まで残時間が10sなら、その計測端末に10s-10μsを、補正した残時間として設定する。 For example, if the delay time of a certain measurement terminal is 10 μs (microseconds) and the remaining time is 10 seconds until the measurement start time, 10s−10 μs is set as the corrected remaining time in the measurement terminal.
 尚、ステップS381~S410は、図5のステップS181~S210と同様であるため説明を割愛する。 Steps S381 to S410 are the same as steps S181 to S210 in FIG.
 以上説明したように、本発明の第二の実施形態によると、同期処理後から計測開始時刻までの残時間を、各計測端末装置固有の実測したクロック精度で補正することにより、より高い同期精度を得ることができる。ひいては、本実施形態によれば、より正確に時刻同期処理を行うことができる。
<第三の実施形態>
 第三の実施形態の時刻同期システム(図示せず)は、図1の時刻同期システム1と同様に、時刻参照端末22および複数の計測端末11a~11cを備えている。時刻参照端末22と各計測端末11a~11cは通信可能に接続されている。
As described above, according to the second embodiment of the present invention, the remaining time from the synchronization processing to the measurement start time is corrected with the actually measured clock accuracy unique to each measurement terminal device, thereby achieving higher synchronization accuracy. Can be obtained. As a result, according to this embodiment, time synchronization processing can be performed more accurately.
<Third embodiment>
The time synchronization system (not shown) of the third embodiment includes a time reference terminal 22 and a plurality of measurement terminals 11a to 11c, as in the time synchronization system 1 of FIG. The time reference terminal 22 and the measurement terminals 11a to 11c are connected to be communicable.
 時刻参照端末22は、図8に示すように、以下の構成を備える。
計測開始時刻設定部400、
計測間隔算出部410、
クロック精度記憶部420、
最大誤差時間算出部430、
同期開始時刻設定部440、
同期開始時刻記憶部441、
動作開始指示部450、
同期処理部470、
計測開始時刻記憶部480、
残時間設定部490および
送受信部460。
As shown in FIG. 8, the time reference terminal 22 has the following configuration.
Measurement start time setting section 400,
Measurement interval calculation unit 410,
Clock accuracy storage unit 420,
Maximum error time calculation unit 430,
Synchronization start time setting unit 440,
Synchronization start time storage unit 441,
Operation start instruction unit 450,
Synchronization processor 470,
Measurement start time storage unit 480,
A remaining time setting unit 490 and a transmission / reception unit 460.
 同期処理部470は、フラグ送信部470a、同期信号送信部470bおよび通信時間設定部470c等を備えている。 The synchronization processing unit 470 includes a flag transmission unit 470a, a synchronization signal transmission unit 470b, a communication time setting unit 470c, and the like.
 フラグ送信部470aは、計測端末11a~11cに一定の時間間隔で受信の目印となるデータ(以下「フラグ」と記載する)を所定回数送信する。同期信号送信部470bは、計測端末11a~11cに同期をとるための同期信号を送信する。通信時間設定部470cは、時刻参照端末22と計測端末11a~11cの各々の間の通信時間を設定し、設定された通信時間を基に、計測開始時刻までの残時間を算出する。 The flag transmission unit 470a transmits data (hereinafter referred to as “flag”) as a reception mark to the measurement terminals 11a to 11c at predetermined time intervals a predetermined number of times. The synchronization signal transmission unit 470b transmits a synchronization signal for synchronizing to the measurement terminals 11a to 11c. The communication time setting unit 470c sets the communication time between each of the time reference terminal 22 and the measurement terminals 11a to 11c, and calculates the remaining time until the measurement start time based on the set communication time.
 計測端末11a~11cは、図9に示すように、計測待機部500、同期処理部510、計測処理部520、送受信部530、同期開始時刻記憶部540および残時間記憶部550等を備えている。同期処理部510は、平均値算出部510a、閾値判定部510b、差分算出部510c、補正値算出部510dおよび同期信号送信部510e等を備えている。 As shown in FIG. 9, the measurement terminals 11a to 11c include a measurement standby unit 500, a synchronization processing unit 510, a measurement processing unit 520, a transmission / reception unit 530, a synchronization start time storage unit 540, a remaining time storage unit 550, and the like. . The synchronization processing unit 510 includes an average value calculation unit 510a, a threshold value determination unit 510b, a difference calculation unit 510c, a correction value calculation unit 510d, a synchronization signal transmission unit 510e, and the like.
 平均値算出部510aは、あるフラグを受信したタイミングから、次のフラグを受信するまでの間に発生するクロックパルスをカウントした値(以下「カウンタ値」と記載する)を取得し、複数のカウンタ値がある場合は、その平均値を算出する。閾値判定部510bは、算出された平均値が、所定の上下限閾値内であるかを判定する。差分算出部510cは、時刻参照端末22のカウンタ値と計測端末11a~11cのカウンタ値の差分を算出する。補正値算出部510dは、算出された差分を基に、計測端末11a~11cの動作に関するクロック周波数(以下、「動作クロック」とも記載)の補正値を算出する。ここでカウンタ値と動作クロックとは、逆数関係を有しており、各実施形態を例に説明する本発明において、係る動作クロックの単位は「秒」に基づくヘルツ(Hz)には限定されない。同期信号送信部510eは、計測端末11a~11cから時刻参照端末22に対し、同期をとるための同期信号を送信する。 The average value calculation unit 510a obtains a value (hereinafter referred to as “counter value”) obtained by counting clock pulses generated from the timing at which a certain flag is received until the next flag is received, and a plurality of counters are obtained. If there is a value, the average value is calculated. The threshold determination unit 510b determines whether the calculated average value is within a predetermined upper and lower threshold. The difference calculation unit 510c calculates a difference between the counter value of the time reference terminal 22 and the counter values of the measurement terminals 11a to 11c. The correction value calculation unit 510d calculates a correction value of a clock frequency (hereinafter also referred to as “operation clock”) related to the operation of the measurement terminals 11a to 11c based on the calculated difference. Here, the counter value and the operation clock have a reciprocal relationship, and in the present invention described by taking each embodiment as an example, the unit of the operation clock is not limited to hertz (Hz) based on “seconds”. The synchronization signal transmission unit 510e transmits a synchronization signal for synchronization from the measurement terminals 11a to 11c to the time reference terminal 22.
 尚、他の各部は第一および第二の実施形態と同様であるため説明を省略する。 In addition, since each other part is the same as that of 1st and 2nd embodiment, description is abbreviate | omitted.
 次に第三の実施形態の時刻同期システムにおける各部の動作は、第一の実施形態で説明した図5のフローチャートおよび第二の実施形態で説明した図7のフローチャートに示す動作と、同期動作以外は、同様である。よって、以下においては、第三の実施形態の時刻同期システムにおける同期動作について主に説明を行ない、他のステップについては説明を省略する。 Next, the operation of each part in the time synchronization system of the third embodiment is other than the operation shown in the flowchart of FIG. 5 described in the first embodiment and the flowchart of FIG. 7 described in the second embodiment, and the synchronization operation. Is the same. Therefore, in the following, the synchronization operation in the time synchronization system of the third embodiment will be mainly described, and description of other steps will be omitted.
 先ず、第三の実施形態の時刻同期システムにおける同期動作の概要について説明する(図5のステップS170~S171および図7のステップS370~S371に該当)。尚、本実施形態における同期動作とは、時刻参照端末22と各計測端末11a~11cとの間の信号の往復通信時間を得るために行われる。計測動作開始の直前近くに、時刻参照端末22と各計測端末の間の通信時間の差を得て、この差を用い計測動作迄の残時間を補正することで、各計測端末11a~11cが同時に計測動作を開始できるようになる。 First, the outline of the synchronization operation in the time synchronization system of the third embodiment will be described (corresponding to steps S170 to S171 in FIG. 5 and steps S370 to S371 in FIG. 7). Note that the synchronization operation in the present embodiment is performed in order to obtain a round-trip communication time of a signal between the time reference terminal 22 and each of the measurement terminals 11a to 11c. By obtaining a difference in communication time between the time reference terminal 22 and each measurement terminal immediately before the start of the measurement operation, and correcting the remaining time until the measurement operation using this difference, each measurement terminal 11a to 11c At the same time, the measurement operation can be started.
 図8および図9には図示しないが、時刻参照端末22および計測端末11a~11cは、基準クロックを生成するための基準オシレータを内蔵する。各端末は、内蔵されている基準オシレータが発振する所定の低周波を源振として逓倍することによって、基準クロックを生成する。基準クロックを生成する際、当該基準オシレータの周波数は、使用するCPU、MPUまたはMCUの個体差、環境温度変化により値が変化する。そこで、同期処理部470は、時刻参照端末22の基準クロックを基準に逓倍する係数を補正し、時刻参照端末22と各計測端末11a~11cの基準クロック周波数を一致させる。これにより、同期処理部470は、時刻参照端末22と各計測端末11a~11c間の正確な通信時間差を得て、この通信時間差にて各計測端末11a~11cの計測開始時刻を補正する。 Although not shown in FIGS. 8 and 9, the time reference terminal 22 and the measurement terminals 11a to 11c incorporate a reference oscillator for generating a reference clock. Each terminal generates a reference clock by multiplying a predetermined low frequency generated by a built-in reference oscillator as a source oscillation. When generating the reference clock, the frequency of the reference oscillator changes depending on the individual difference of the CPU, MPU or MCU to be used, and the environmental temperature change. Therefore, the synchronization processing unit 470 corrects the coefficient to be multiplied with the reference clock of the time reference terminal 22 as a reference, and matches the reference clock frequencies of the time reference terminal 22 and the measurement terminals 11a to 11c. Thus, the synchronization processing unit 470 obtains an accurate communication time difference between the time reference terminal 22 and each of the measurement terminals 11a to 11c, and corrects the measurement start time of each of the measurement terminals 11a to 11c with this communication time difference.
 以下に同期動作について図10のフロー図を用いてより詳細に説明する。尚、他のステップは第一および第二の実施形態と同様であるため説明を省略する。 Hereinafter, the synchronization operation will be described in more detail with reference to the flowchart of FIG. Since other steps are the same as those in the first and second embodiments, description thereof will be omitted.
 (a)まずステップS600において、図8の時刻参照端末22のフラグ送信部470aは、計測端末11a~11cにフラグを所定数n回送信する。尚、これは時刻参照端末22と計測端末11a~11cとの間でのクロックパルスの周期の違いを調べるためである。 (A) First, in step S600, the flag transmission unit 470a of the time reference terminal 22 in FIG. 8 transmits the flag to the measurement terminals 11a to 11c a predetermined number n times. This is for examining the difference in the clock pulse period between the time reference terminal 22 and the measurement terminals 11a to 11c.
 図11に示す例では、時刻参照端末22において、1秒間に5回のクロックパルスが計測される一方、計測端末11a~11cでは4回のクロックパルスが計測されており、周期に違いがある。尚、図11のクロック周波数では説明の便宜上フラグ間隔が1秒の場合について説明しているが、フラグ間隔は1秒の場合のみに限定されず、任意のフラグ間隔において時刻参照端末22と計測端末11のクロックパルスをカウントするようにしても構わない。 In the example shown in FIG. 11, while the time reference terminal 22 measures five clock pulses per second, the measurement terminals 11a to 11c measure four clock pulses, and the periods are different. 11, the case where the flag interval is 1 second has been described for convenience of explanation. However, the flag interval is not limited to only 1 second, and the time reference terminal 22 and the measurement terminal can be used at any flag interval. Eleven clock pulses may be counted.
 (b)ステップS610において、図9の計測端末11a~11cの平均値算出部510aは、フラグを受信すると、フラグを前回受信したタイミングと今回受信したタイミングとの期間におけるカウンタ値を取得する。 (B) In step S610, when the average value calculation unit 510a of the measurement terminals 11a to 11c in FIG. 9 receives the flag, the average value calculation unit 510a acquires a counter value in a period between the timing at which the flag was previously received and the timing at which the flag was received this time.
 例えば図12に示すように、フラグ1からフラグ2を受信するまでに4回クロックパルスが発生していると、カウンタ値aは4となる。同様にフラグ2とフラグ3間のカウンタ値bは5、フラグ3とフラグ4間のカウンタ値cは5となる。尚、図11では説明の便宜上1秒間隔で計測を行っているが、フラグ間隔はこれに限定されるものではない。 For example, as shown in FIG. 12, if the clock pulse is generated four times before the flag 1 is received from the flag 2, the counter value a is 4. Similarly, the counter value b between the flag 2 and the flag 3 is 5, and the counter value c between the flag 3 and the flag 4 is 5. In FIG. 11, for convenience of explanation, measurement is performed at intervals of 1 second, but the flag interval is not limited to this.
 図13は、第3の実施形態における、フラグ送信部470aが送信するフラグ送信回数nと平均値算出部510aが算出するカウンタ値との関係を示すグラフである。図13において、時刻参照端末22が、計測端末11a~11cに対し、2回(n=2)から6回(n=6)までの送信回数に亘って、フラグを送信したとする。この場合、n=4では、一定間隔でフラグが4回送信され(図12参照)、計測端末11a~11cは、1回目と2回目とのフラグ間のカウンタ値a(図12では4回)、2回目と3回目とのフラグ間のカウンタ値b(図12では5回)、3回目と4回目とのフラグ間のカウンタ値c(図12では5回)を取得する。次に、ステップS620において、平均値算出部510aは、受信したn回分のカウンタ値の平均値を算出する。例えば、平均値算出部510aは、図13に破線で示されたn=4の場合、3回分のカウンタ値a、bおよびcの平均値を算出する。 FIG. 13 is a graph showing the relationship between the number n of flag transmissions transmitted by the flag transmission unit 470a and the counter value calculated by the average value calculation unit 510a in the third embodiment. In FIG. 13, it is assumed that the time reference terminal 22 transmits a flag to the measurement terminals 11a to 11c over the number of transmissions from 2 (n = 2) to 6 (n = 6). In this case, when n = 4, the flag is transmitted four times at regular intervals (see FIG. 12), and the measurement terminals 11a to 11c receive the counter value a between the first and second flags a (four times in FIG. 12). The counter value b between the second and third flags (five times in FIG. 12) and the counter value c between the third and fourth flags (five times in FIG. 12) are acquired. Next, in step S620, the average value calculation unit 510a calculates the average value of the received n counter values. For example, when n = 4 indicated by a broken line in FIG. 13, the average value calculation unit 510a calculates the average value of the counter values a, b, and c for three times.
 (c)次にステップS630において、閾値判定部510bは、予め設定した上下限閾値と算出された平均値を比較する。この閾値との比較は各フラグ間のクロックパルス数に大きなばらつきがないかを調べるために行われる。ここで平均値が上下限閾値内であったらステップS640へ進む。尚、比較の結果、上下限閾値範囲外であれば、閾値判定部510bは、閾値範囲外である旨の通知を計測端末22に送信する。ステップS631において、この通知を受けた計測端末22のフラグ送信部470aは、フラグの送信回数を1回増加させる。これは、カウンタ値のばらつきが大きくなると予測される場合に、なるべく少ない送信回数で高精度なカウンタ値を得るためである。ステップS631の処理が終了すると、処理はステップS600へ戻される。 (C) Next, in step S630, the threshold determination unit 510b compares the preset upper and lower thresholds with the calculated average value. The comparison with the threshold value is performed in order to check whether there is a large variation in the number of clock pulses between the flags. If the average value is within the upper and lower threshold values, the process proceeds to step S640. As a result of the comparison, if it is outside the upper and lower threshold range, the threshold determination unit 510b transmits a notification to the effect that it is out of the threshold range to the measurement terminal 22. In step S631, the flag transmission unit 470a of the measurement terminal 22 that has received this notification increases the number of flag transmissions by one. This is for obtaining a highly accurate counter value with the smallest possible number of transmissions when the variation in the counter value is predicted to increase. When the process of step S631 ends, the process returns to step S600.
 例えば、係るカウンタ値のばらつきが小さい時は、なるべく少ないフラグ送信回数にすることにより、電力消費の大きい無線通信を最小限にする。反対に、ばらつきが大きい時は、カウンタ値の平均処理と許容判定処理により、バラつきを抑えた高精度なカウンタ値を得るようにする。これにより、一定精度を保ちつつ、電力消費の少ない時刻同期ができる。 For example, when the variation of the counter value is small, wireless communication with high power consumption is minimized by setting the number of flag transmissions as small as possible. On the other hand, when the variation is large, a highly accurate counter value with reduced variation is obtained by the counter value averaging process and the tolerance determination process. As a result, time synchronization with low power consumption can be performed while maintaining constant accuracy.
 (d)ステップS640において、差分算出部510cは、フラグ間カウンタの平均値を基に計測端末11a~11cのクロック周波数を算出し、時刻参照端末22と計測端末11a~11cのクロック周波数の差分を算出する。 (D) In step S640, the difference calculation unit 510c calculates the clock frequency of the measurement terminals 11a to 11c based on the average value of the inter-flag counter, and calculates the difference between the clock frequencies of the time reference terminal 22 and the measurement terminals 11a to 11c. calculate.
 一例を示すと、マイクロコントローラの基準クロックであるACLK(AuxiliaryClock)、MCLK(MasterClock)およびSMCLK(SubmainClock)を基に、時刻参照端末22のマスタークロックの周波数と、計測端末11a~11cのマスタークロックの周波数との差分を算出する。ここでACLK=リファレンスクロック周波数、MCLK=α×ACLK、SMCLK=MCLK/βとし、リファレンスクロック周波数の値、α値、β値を初期設定しておく。 As an example, based on the ACLK (Auxiliary Clock), MCLK (MasterClock), and SMCLK (SubmainClock), which are the reference clocks of the microcontroller, the frequency of the master clock of the time reference terminal 22 and the master clock of the measurement terminals 11a to 11c The difference with the frequency is calculated. Here, ACLK = reference clock frequency, MCLK = α × ACLK, SMCLK = MCLK / β, and the reference clock frequency value, α value, and β value are initialized.
 時刻参照端末22のマスタークロックの周波数と、計測端末11a~11cのマスタークロックの周波数差は、
 ΔfMCLK=MCLKGW×(1-SMCLKIF/SMCLKGW)…(式1)
 により求めることができる。尚、GWは時刻参照端末22を、IFは計測端末11a~11cを示す。
The frequency difference between the master clock frequency of the time reference terminal 22 and the master clock of the measurement terminals 11a to 11c is:
Δf MCLK = MCLK GW × (1-SMCLK IF / SMCLK GW ) (Expression 1)
It can ask for. Note that GW indicates the time reference terminal 22, and IF indicates the measurement terminals 11a to 11c.
 尚、上記の各クロック周波数は、予め計測端末11a~11cに設定されている。又は上記の各クロック周波数は、ステップS600で計測端末11a~11cに通知してもよい。 Note that each of the above clock frequencies is set in advance in the measurement terminals 11a to 11c. Alternatively, the above clock frequencies may be notified to the measurement terminals 11a to 11c in step S600.
 (e)ステップS650において、補正値算出部510dは、上記の差分から、計測端末11a~11cの動作クロックの補正値を算出し、この算出された補正値を用いて、クロック周波数を補正する。一例を示すと、補正値γを、下記の式2によって求める。 (E) In step S650, the correction value calculation unit 510d calculates the correction value of the operation clock of the measurement terminals 11a to 11c from the above difference, and corrects the clock frequency by using the calculated correction value. As an example, the correction value γ is obtained by the following equation 2.
 γ=ΔfMCLK/ACLKGW…(式2)
 更に、この補正値γを用いて、補正後の計測端末11a~11cのクロック周波数を、下記の式3によって求める。
γ = Δf MCLK / ACLK GW (Expression 2)
Further, using the correction value γ, the corrected clock frequencies of the measurement terminals 11a to 11c are obtained by the following Equation 3.
 MCLKIF=(α+γ)×ACLK…(式3) MCLK IF = (α + γ) × ACLK (Expression 3)
 ここで具体例として、時刻参照端末22および計測端末11a~11c共通で、リファレンスクロック周波数=32.768kHz(キロヘルツ)、α=610、β=2と初期設定する。時刻参照端末22における各基準クロック周波数を、ACLKGW=32.768kHz、MCLKGW=20.021248MHz(メガヘルツ)、SMCLKGW=10.010624MHzと設定する。計測端末11a~11cにおけるサブメインクロック周波数を、SMCLKIF=10.079278MHzと設定する。この場合、マスタークロックの周波数差(差分)は式1よりΔfMCLK=-137308Hzと算出され、補正値γは式2よりγ=-4と算出される。更にこの補正値を式3に代入し、補正後のクロック周波数は、MCLKIF=606となる。 Here, as a specific example, the time reference terminal 22 and the measurement terminals 11a to 11c are common, and the initial setting is as follows: reference clock frequency = 32.768 kHz (kilohertz), α = 610, and β = 2. The respective reference clock frequencies in the time reference terminal 22 are set as ACLK GW = 32.768 kHz, MCLK GW = 20.021248 MHz (megahertz), and SMCLK GW = 10.010624 MHz. The sub main clock frequency in the measurement terminals 11a to 11c is set as SMCLK IF = 10.079278 MHz. In this case, the frequency difference (difference) of the master clock is calculated as Δf MCLK = −137308 Hz from Equation 1, and the correction value γ is calculated as γ = −4 from Equation 2. Further, this correction value is substituted into Equation 3, and the corrected clock frequency is MCLK IF = 606.
 (f)ステップS660において、ステップS650における補正値の算出が終了した後に、図8の時刻参照端末22の同期信号送信部470bは、計測端末11a~11cに同期信号を送信する。これに対しステップS670において、図9の計測端末11a~11cの同期信号送信部510eは、時刻参照端末22に同期信号を返信する。ただし、この同期信号送受信のタイミングは、同期開始時刻設定部440により計測開始時刻の直前に僅差の時間となるよう予め設定されているものとする。 (F) In step S660, after the calculation of the correction value in step S650 is completed, the synchronization signal transmission unit 470b of the time reference terminal 22 in FIG. 8 transmits a synchronization signal to the measurement terminals 11a to 11c. On the other hand, in step S670, the synchronization signal transmission unit 510e of the measurement terminals 11a to 11c in FIG. 9 returns a synchronization signal to the time reference terminal 22. However, it is assumed that the synchronization signal transmission / reception timing is set in advance by the synchronization start time setting unit 440 so as to be a close time immediately before the measurement start time.
 (g)ステップS680において、図8の時刻参照端末22の通信時間設定部470cは、ステップS660およびS670の同期信号の送受信にかかる時間から計測端末11a~11cの内部処理時間を減算した半値を、時刻参照端末と計測端末の通信時間に設定する。 (G) In step S680, the communication time setting unit 470c of the time reference terminal 22 in FIG. 8 subtracts the half value obtained by subtracting the internal processing time of the measurement terminals 11a to 11c from the time required for transmission and reception of the synchronization signal in steps S660 and S670. Set to the communication time between the time reference terminal and the measurement terminal.
 図14を用いて第三の実施形態における通信時間設定処理の一例について説明する。図14に計測端末間の計測開始時刻を同期するための時刻参照端末22と計測端末11a、11bの通信処理動作を示す。尚、説明の簡略のため計測端末を2つのみ使用した場合の通信処理を説明する。 An example of the communication time setting process in the third embodiment will be described with reference to FIG. FIG. 14 shows a communication processing operation between the time reference terminal 22 and the measurement terminals 11a and 11b for synchronizing the measurement start time between the measurement terminals. For simplification of explanation, communication processing when only two measuring terminals are used will be described.
 図14に示す斜線で表された矩形部(通信時間(往))は、時刻参照端末22から計測端末11a、11bへの通信に要する時間を示す。白い矩形部(内部処理)は、計測端末11a、11bでの内部処理に要する時間を示す。横線で表された矩形部(通信時間(復))は、計測端末11a、11bから時刻参照端末22への通信に要する時間を示す。各計測端末11a、11bと時刻参照端末22との間の通信時間が異なると、時刻参照端末22からの動作開始指示が遅延するので計測開始タイミングがずれる。そこで、本実施形態では、各計測端末11a、11bの通信時間差(図14上のΔt)を算出し、計測端末11a、11bの計測開始タイミングを個別に設定する。 A rectangular portion (communication time (outward)) indicated by hatching in FIG. 14 indicates the time required for communication from the time reference terminal 22 to the measurement terminals 11a and 11b. White rectangular portions (internal processing) indicate the time required for internal processing in the measurement terminals 11a and 11b. A rectangular portion (communication time (recovery)) represented by a horizontal line indicates a time required for communication from the measurement terminals 11 a and 11 b to the time reference terminal 22. If the communication times between the measurement terminals 11a and 11b and the time reference terminal 22 are different, the operation start instruction from the time reference terminal 22 is delayed, so that the measurement start timing is shifted. Therefore, in this embodiment, the communication time difference (Δt in FIG. 14) between the measurement terminals 11a and 11b is calculated, and the measurement start timings of the measurement terminals 11a and 11b are individually set.
 時刻参照端末22から計測端末11aに対し、tの時に同期信号が送信され、計測端末11aはこれをtにて受信する。その後内部処理が行われ、計測端末11aはtの時に時刻参照端末22に対し同期信号を返信し、時刻参照端末22はtでこれを受信する。しかしながら、別の計測端末11bにおいては、tより通信開始が遅延したt´のタイミングにおいて同期信号が送信され、計測端末11bは、通信開始遅延時間や通信時間差Δtの分、tより遅延した時刻で同期信号を受信する。その後同じ内部処理が行われ、計測端末11bは時刻参照端末22に対し同期信号を返信し、時刻参照端末22はこれをt´で受信する。 To measure the terminal 11a from time reference terminal 22, the synchronization signal is transmitted when the t 1, the measuring terminal 11a receives this at t 2. Then the internal processing is performed, the measuring terminal 11a sends back a synchronization signal to the time reference terminal 22 when t 3, time reference terminal 22 receives this at t 4. However, in another investigation terminal 11b, the communication started from t 1 are transmitted synchronization signals at the timing of t 1 'delayed measurement terminal 11b, the partial communication start delay time and the communication time difference Delta] t, the delay from t 2 The sync signal is received at the specified time. Thereafter, the same internal processing is performed, and the measurement terminal 11b returns a synchronization signal to the time reference terminal 22, and the time reference terminal 22 receives this at t 4 ′.
 このため、計測端末11a、11bの各々の片道の通信時間tIFa、tIFbは、以下に示す式の通りになる。 For this reason, the one-way communication times t IFa and t IFb of the measurement terminals 11a and 11b are given by the following equations.
 ・計測端末11a: tIFa={(t-t)-(t-t)}/2
 ・計測端末11b: tIFb={(t´-t´)-(t-t)}/2
 尚、この際に計測端末11a、11bの通信時間差Δtは、
 Δt=tIFb-tIFaとなる。
Measurement terminal 11a: t IFa = {(t 4 -t 1 )-(t 3 -t 2 )} / 2
Measurement terminal 11b: t IFb = {(t 4 '-t 1 ')-(t 3 -t 2 )} / 2
At this time, the communication time difference Δt between the measurement terminals 11a and 11b is
Δt = t IFb −t IFa
 (h)ステップS690において、通信時間設定部470cは、上記の通信時間差を基に計測開始時刻を補正する。具体的には、通信時間差Δtの分、計測端末11bの計測開始時刻を早める、または計測端末11aの計測開始時刻を遅延させるように設定し、計測端末11a、11b間の計測開始時刻を同期させる。 (H) In step S690, the communication time setting unit 470c corrects the measurement start time based on the communication time difference. Specifically, the measurement start time of the measurement terminal 11b is set to be advanced or the measurement start time of the measurement terminal 11a is set to be delayed by the communication time difference Δt, and the measurement start time between the measurement terminals 11a and 11b is synchronized. .
 例えば、計測端末11aの遅延時間が0μs、計測端末11bの遅延時間、即ち通信時間差が100μsで、計測開始時刻まで残時間が10sなら、計測端末11aには10sを、計測端末11bには10s-100μsを、補正した残時間として算出する。また、通信時間設定部470cは、算出された残時間を残時間設定部490に送信し、残時間として設定するように促す。
(実施例)
 以下に、本発明の第三の実施形態に係る時刻同期システムを用いて、2つの計測端末を用いて行われた計測開始時刻同期の実験およびその結果について説明する。時刻同期システムの単純な構成として、動作制御およびデータ取得用パソコン(以下、「PC」と記載する)、時刻参照端末1台、計測端末AおよびBの2台を使用した。時刻参照端末および計測端末A、BはMCUを備える。PCと時刻参照端末は有線で接続し、時刻参照端末と計測端末A間の距離1.5m(メートル)、時刻参照端末と計測端末Bの距離を0.5mとし、各間は特定小電力無線で接続した。計測端末A、Bと時刻参照端末の開始時刻の同期精度を計測するため、シグナルジェネレータから基準信号を発生し2台の計測端末A、Bに入力した。計測開始の指令は時刻参照端末から行った。計測開始時刻は、予め算出した2つの計測端末A、Bの通信時間差の分ずらして対象の計測端末毎に個別に設定した。
For example, if the delay time of the measurement terminal 11a is 0 μs, the delay time of the measurement terminal 11b, that is, the communication time difference is 100 μs, and the remaining time is 10 seconds until the measurement start time, the measurement terminal 11a has 10s and the measurement terminal 11b has 10s− 100 μs is calculated as the corrected remaining time. In addition, the communication time setting unit 470c transmits the calculated remaining time to the remaining time setting unit 490 and prompts to set it as the remaining time.
(Example)
Below, the experiment of the measurement start time synchronization performed using two measurement terminals using the time synchronization system which concerns on 3rd embodiment of this invention, and its result are demonstrated. As a simple configuration of the time synchronization system, two computers were used: an operation control and data acquisition personal computer (hereinafter referred to as “PC”), one time reference terminal, and measurement terminals A and B. The time reference terminal and the measurement terminals A and B include an MCU. The PC and the time reference terminal are connected by wire, the distance between the time reference terminal and the measurement terminal A is 1.5 m (meters), the distance between the time reference terminal and the measurement terminal B is 0.5 m, and a specific low power wireless is between each Connected with. In order to measure the synchronization accuracy of the start times of the measurement terminals A and B and the time reference terminal, a reference signal was generated from the signal generator and input to the two measurement terminals A and B. The measurement start command was issued from the time reference terminal. The measurement start time was set individually for each target measurement terminal by shifting by the communication time difference between the two measurement terminals A and B calculated in advance.
 計測条件としては、計測端末A、Bに入力する基準信号は、周波数50Hz、振幅1Vpp(ピーク間電圧)方形波とし、1.65V(ボルト)のオフセットを与えた。計測端末A、Bのサンプリング周波数は6kHzとした。また、MCU基準クロックの補正効果を確認するため、基準クロックの補正有無の2水準で時刻同期精度を各10回計測した。 As the measurement conditions, the reference signal input to the measurement terminals A and B was a frequency of 50 Hz, an amplitude of 1 V pp (peak-to-peak voltage) square wave, and an offset of 1.65 V (volts) was given. The sampling frequency of measurement terminals A and B was 6 kHz. In addition, in order to confirm the correction effect of the MCU reference clock, the time synchronization accuracy was measured 10 times for each of two levels of whether or not the reference clock was corrected.
 補正前、時刻参照端末の基準クロック周波数は10010624Hz、補正前の計測端末Aの基準クロック周波数は10061864Hz、補正前の計測端末Bの基準クロック周波数は10079278Hzであった。しかし、補正後の計測端末Aの基準クロック周波数は10012379Hz、補正後の計測端末Bの基準クロック周波数は10013184Hzとなり、補正の効果が表れた。尚、補正後の時刻参照端末の基準クロックとの誤差は計測端末Aで0.02%(パーセント)(補正前0.51%)、計測端末Bで0.03%(補正前0.69%)であった。 Before correction, the reference clock frequency of the time reference terminal was 10010624 Hz, the reference clock frequency of the measurement terminal A before correction was 10061864 Hz, and the reference clock frequency of the measurement terminal B before correction was 100007978 Hz. However, the corrected reference clock frequency of the measuring terminal A is 10012379 Hz, and the corrected reference clock frequency of the measuring terminal B is 10013184 Hz. The error from the reference clock of the time reference terminal after correction is 0.02% (percent) at the measurement terminal A (0.51% before correction) and 0.03% at the measurement terminal B (0.69% before correction). )Met.
 図15Aおよび図15Bに2つの計測端末A、Bで取得した基準信号波形の代表例を示す。図15AはMCU基準クロックを補正しない場合、図15BはMCU基準クロックを補正した場合の結果を示している。横軸が時間、縦軸が電圧を示す。図15Aでは、計測端末A、Bのパルス波形の立ち上がりエッジがずれ、両者のパルス幅も波形もずれているが、図15Bでは計測端末A、Bのパルス波形の立ち上がりエッジが揃い、パルス幅も波形もほぼ重なっている。この結果から、MCU基準クロックを補正した場合、補正しない場合と比較して同期精度が向上することがわかった。 15A and 15B show typical examples of reference signal waveforms acquired by the two measuring terminals A and B. FIG. FIG. 15A shows the result when the MCU reference clock is not corrected, and FIG. 15B shows the result when the MCU reference clock is corrected. The horizontal axis represents time, and the vertical axis represents voltage. In FIG. 15A, the rising edges of the pulse waveforms of measurement terminals A and B are shifted, and the pulse widths and waveforms of both are also shifted, but in FIG. 15B, the rising edges of the pulse waveforms of measurement terminals A and B are aligned and the pulse widths are also aligned. The waveforms are almost overlapping. From this result, it was found that when the MCU reference clock is corrected, the synchronization accuracy is improved as compared with the case where the MCU is not corrected.
 以上に記載したように、本発明の第三の実施形態によれば、時刻参照端末と各計測端末で、一定時間をカウントする動作クロック数が補正される。また、算出するカウンタ値に上下限閾値による判定処理を設け、閾値外であればフラグ送信回数を1つずつ増やすことで、最少のフラグ送信回数で高いクロック精度を維持する。これにより、同期処理に伴う電力消費が少なくすることができ、又、高精度のクロック同期を実現することができる。
<第四の実施形態>
 図16は、第四の実施形態に係る時刻参照端末24の構成を示す図である。時刻参照端末24は、所定の処理を予め定められた時刻である処理開始時刻に開始する少なくとも1つ以上の処理端末(図16には不図示)と接続される。時刻参照端末24は、動作開始指示部24aおよび同期処理部24cを少なくとも備える。
As described above, according to the third embodiment of the present invention, the number of operation clocks for counting a predetermined time is corrected in the time reference terminal and each measurement terminal. In addition, determination processing based on the upper and lower thresholds is provided for the counter value to be calculated, and if it is outside the threshold, the number of flag transmissions is increased by one, thereby maintaining high clock accuracy with the minimum number of flag transmissions. As a result, power consumption associated with the synchronization processing can be reduced, and high-accuracy clock synchronization can be realized.
<Fourth embodiment>
FIG. 16 is a diagram illustrating a configuration of the time reference terminal 24 according to the fourth embodiment. The time reference terminal 24 is connected to at least one processing terminal (not shown in FIG. 16) that starts a predetermined process at a process start time that is a predetermined time. The time reference terminal 24 includes at least an operation start instruction unit 24a and a synchronization processing unit 24c.
 動作開始指示部24aは、処理開始時刻まで処理を開始しないことを指示する信号を処理端末の各々に送信する。同期処理部24cは、処理端末の各々との間で同期処理を実施するに際して、現在時刻から処理開始時刻までに至る時間(期間)のうち、個々の処理端末の動作に関するクロックの精度に相当する時間分だけ、当該同期処理を、処理開始時刻に先立って完了する。 The operation start instruction unit 24a transmits a signal instructing not to start processing until the processing start time to each processing terminal. The synchronization processing unit 24c corresponds to the clock accuracy related to the operation of each processing terminal in the time (period) from the current time to the processing start time when performing the synchronization processing with each of the processing terminals. The synchronization processing is completed for the time prior to the processing start time.
 本発明の第四の実施形態によると、同期処理部が、複数の処理端末の各々のクロック精度を基に同期処理を行うため、通信環境の変動や計測の時間間隔による計測誤差が発生しない。これにより、高いクロック同期精度を得ることができる。更に、本実施形態によれば、同期を一度のみとすることができるので、消費電力を低く抑えることができる。
<第五の実施形態>
 図17は、第五の実施形態の処理端末12a~12cの構成を示す図である。処理端末12a~12cは、所定の処理を予め定められた時刻である処理開始時刻に開始するよう指示する時刻参照端末(図17には不図示)と接続されている。処理端末12a~12cは、待機部12d、同期処理部12eおよび処理部12fを少なくとも備える。
According to the fourth embodiment of the present invention, since the synchronization processing unit performs the synchronization processing based on the clock accuracy of each of the plurality of processing terminals, measurement errors due to fluctuations in the communication environment and measurement time intervals do not occur. As a result, high clock synchronization accuracy can be obtained. Furthermore, according to the present embodiment, since synchronization can be performed only once, power consumption can be suppressed low.
<Fifth embodiment>
FIG. 17 is a diagram illustrating the configuration of the processing terminals 12a to 12c according to the fifth embodiment. The processing terminals 12a to 12c are connected to a time reference terminal (not shown in FIG. 17) that instructs to start a predetermined process at a processing start time that is a predetermined time. The processing terminals 12a to 12c include at least a standby unit 12d, a synchronization processing unit 12e, and a processing unit 12f.
 待機部12dは、処理開始時刻まで処理の開始を待つ。同期処理部12eは、時刻参照端末から通知される同期開始時刻に、時刻参照端末との同期処理を実施する。処理部12fは、処理開始時刻に、当該処理を開始する。 The standby unit 12d waits for the start of processing until the processing start time. The synchronization processing unit 12e performs synchronization processing with the time reference terminal at the synchronization start time notified from the time reference terminal. The processing unit 12f starts the processing at the processing start time.
 本発明の第五の実施形態によると、同期処理部が、処理端末のクロック精度を基に時刻参照端末が設定した時刻に同期処理を行うので、通信環境の変動や計測の時間間隔を原因とする計測誤差を発生させず、高い同期精度を得られる。更に、本実施形態によれば、同期を一度のみとすることができるので、消費電力を低く抑えることができる。
<第六の実施形態>
 図18は、第六の実施形態における時刻同期システム4の構成を示す図である。時刻同期システム4は、第四の実施形態に記載された時刻参照端末24の各部の機能と、第五の実施形態に記載された処理端末12a~12cの各部の機能を含む。
According to the fifth embodiment of the present invention, the synchronization processing unit performs the synchronization processing at the time set by the time reference terminal based on the clock accuracy of the processing terminal. High synchronization accuracy can be obtained without generating a measurement error. Furthermore, according to the present embodiment, since synchronization can be performed only once, power consumption can be suppressed low.
<Sixth embodiment>
FIG. 18 is a diagram showing a configuration of the time synchronization system 4 in the sixth embodiment. The time synchronization system 4 includes the function of each part of the time reference terminal 24 described in the fourth embodiment and the function of each part of the processing terminals 12a to 12c described in the fifth embodiment.
 第六の実施形態によると、処理端末12a~12cのクロック精度を基に、時刻参照端末24が設定した時刻に互いの同期処理部(24c、12e)が同期処理を行うため、通信環境の変動や計測の時間間隔が計測誤差発生の要因とならず、高い同期精度を得られる。 According to the sixth embodiment, based on the clock accuracy of the processing terminals 12a to 12c, the mutual synchronization processing units (24c, 12e) perform the synchronization processing at the time set by the time reference terminal 24. In addition, the measurement time interval does not cause measurement errors, and high synchronization accuracy can be obtained.
 上記の各実施形態及び各変形例の一部又は全部は、以下に示す付記のようにも特定され得る。但し、各実施形態及び各変形例が以下の記載に限定されるものではない。
[付記1]
 所定の処理を、予め定められた時刻である処理開始時刻に開始する少なくとも1つ以上の処理端末と接続された時刻参照端末であって、
 前記処理開始時刻まで前記処理を開始しないことを指示する信号を、前記処理端末の各々に送信する動作開始指示手段と、
 現在時刻から前記処理開始時刻に至る時間のうち、前記処理端末の各々の動作に関するクロックの精度に相当する時間分、前記処理開始時刻に先立って完了するよう、前記処理端末の各々との間で同期処理を実施する同期処理手段とを備える、時刻参照端末。
[付記2]
 前記クロックの精度を、前記処理端末の各々にて実測するクロック精度実測手段を更に備え、
 前記同期処理手段は、現在時刻から前記処理開始時刻に至る時間のうち、前記実測されたクロックの精度に相当する時間分、前記処理開始時刻に先立って完了するよう、前記処理端末の各々との間で前記同期処理を実施する、
付記1に記載の時刻参照端末。
[付記3]
 前記処理端末が複数ある場合に、
 前記同期処理の完了時間を基に、前記処理端末毎の前記時刻参照端末との通信時間を算出し、前記複数の処理端末の内、ある処理端末の通信時間と別の処理端末との通信時間の差を算出し、前記算出された差を基に、前記ある処理端末と前記別の処理端末の各々の計測開始時間を補正する通信時間設定手段を更に備える、
付記1又は2に記載の時刻参照端末。
[付記4]
 所定の処理を、予め定められた時刻である処理開始時刻に開始するよう指示する時刻参照端末と接続された処理端末であって、
 前記処理開始時刻まで前記処理の開始を待つ待機手段と、
 前記時刻参照端末から通知される同期開始時刻に、前記時刻参照端末との同期処理を実施する同期処理手段と、
 前記処理開始時刻に、前記処理を開始する処理手段
とを備える、処理端末。
[付記5]
 前記同期処理手段は、
 前記時刻参照端末から少なくとも1つ以上のフラグを一定の時間間隔で受信し、受信した前記フラグ間の各々に発生するクロックパルスをカウントし、前記フラグ間における各々のカウント値の平均値を算出する平均値算出手段と、
 前記平均値が所定の閾値の範囲内であるか判定する判定手段と、
 前記判定の結果閾値の範囲内であれば、前記時刻参照端末で計測された前記フラグ間における各々で発生したクロックパルスのカウンタ値と、前記平均値との差分を算出する差分算出手段と、
 前記差分を基に、自端末の動作に関するクロックの補正値を算出し、前記補正値を基に自端末のクロック周波数を補正する補正値算出手段
とを更に備える、付記4に記載の処理端末。
[付記6]
 付記1乃至3のいずれか1項に記載された時刻参照端末と、前記処理端末を備え、
 前記処理端末は付記4又は5に記載された処理端末を備える、
時刻同期システム。
[付記7]
 前記時刻参照端末は、前記処理端末の各々に一定の時間間隔でフラグを送信するフラグ送信手段を更に備え、
 前記フラグ送信手段は、前記判定の結果閾値の範囲外であれば、前記フラグを再度送信し、
 前記処理端末は付記5に記載された処理端末であり、前記差分算出手段は、前記再度送信されたフラグと前回送信されたフラグとの間を含めた、各々のカウント値から前記平均値を算出する、
付記6に記載の時刻同期システム。
[付記8]
 所定の処理を、予め定められた時刻である処理開始時刻に開始する少なくとも1つ以上の処理端末と接続された時刻参照端末が行う時刻同期方法であって、
 前記処理開始時刻まで前記処理を開始しないことを指示する信号を、前記処理端末の各々に送信し、
 現在時刻から前記処理開始時刻に至る時間のうち、前記処理端末の各々の動作に関するクロックの精度に相当する時間分、前記処理開始時刻に先立って完了するよう、前記処理端末の各々との間で同期処理を実施することを備える、
時刻同期方法。
[付記9]
 前記クロックの精度を、前記処理端末の各々にて実測することを更に備え、
 前記同期処理を実施することは、現在時刻から前記処理開始時刻に至る時間のうち前記実測されたクロックの精度に相当する時間分、前記処理開始時刻に先立って完了するよう、前記処理端末の各々との間で前記同期処理を実施する、
付記8に記載の時刻同期方法。
[付記10]
 前記処理端末が複数ある場合に、
 前記同期処理の完了時間を基に、前記処理端末毎の前記時刻参照端末との通信時間を算出し、前記複数の処理端末の内、ある処理端末の通信時間と別の処理端末との通信時間の差を算出し、前記算出された差を基に、前記ある処理端末と前記別の処理端末の各々の計測開始時間を補正することを更に備える、
付記8又は9に記載の時刻同期方法。
[付記11]
 所定の処理を、予め定められた時刻である処理開始時刻に開始するよう指示する時刻参照端末と接続された少なくとも1つ以上の処理端末が行う時刻同期方法であって、
 前記処理開始時刻まで前記処理の開始を待ち、
 前記時刻参照端末から通知される同期開始時刻に、前記時刻参照端末との同期処理を実施し、
 前記処理開始時刻に、前記処理を開始することを備える、
時刻同期方法。
[付記12]
 前記同期処理を実施することは、
 前記時刻参照端末から少なくとも1つ以上のフラグを一定の時間間隔で受信し、受信した前記フラグ間の各々に発生するクロックパルスをカウントし、前記フラグ間における各々のカウント値の平均値を算出し、
 前記平均値が所定の閾値の範囲内であるか判定し、
 前記判定の結果閾値の範囲内であれば、前記時刻参照端末で計測された前記フラグ間における各々で発生したクロックパルスのカウンタ値と、前記平均値との差分を算出し、
 前記差分を基に、自端末の動作に関するクロックの補正値を算出し、前記補正値を基に自端末のクロック周波数を補正すること、
を更に備える、付記11に記載の時刻同期方法。
[付記13]
 付記8乃至10のいずれか1項に記載された時刻参照端末が行う時刻同期方法と、
 付記11又は12に記載された処理端末が行う時刻同期方法を備える、時刻同期方法。
[付記14]
 前記時刻参照端末は、前記処理端末の各々に一定の時間間隔でフラグを送信することを更に備え、
 前記フラグを送信することは、前記判定の結果閾値の範囲外であれば、前記フラグを再度送信し、
 前記処理端末が前記差分を算出することは、前記再度送信されたフラグと前回送信されたフラグとの間を含めた、各々のカウント値から前記平均値を算出する、
付記13に記載の時刻同期方法。
A part or all of each of the above embodiments and modifications may be specified as in the following supplementary notes. However, each embodiment and each modification are not limited to the following description.
[Appendix 1]
A time reference terminal connected to at least one processing terminal that starts a predetermined process at a process start time that is a predetermined time;
An operation start instruction means for transmitting a signal instructing not to start the processing until the processing start time to each of the processing terminals;
Of the time from the current time to the processing start time, a time corresponding to the accuracy of the clock for each operation of the processing terminal is completed with each of the processing terminals so as to be completed prior to the processing start time. A time reference terminal comprising synchronization processing means for performing synchronization processing.
[Appendix 2]
Clock accuracy measuring means for measuring the accuracy of the clock at each of the processing terminals;
The synchronization processing means is configured so that each of the processing terminals completes prior to the processing start time by a time corresponding to the accuracy of the actually measured clock among the time from the current time to the processing start time. Carrying out the synchronization process between
The time reference terminal according to attachment 1.
[Appendix 3]
When there are a plurality of the processing terminals,
Based on the completion time of the synchronization process, a communication time with the time reference terminal for each of the processing terminals is calculated, and a communication time of a certain processing terminal and a communication time with another processing terminal among the plurality of processing terminals. Communication time setting means for correcting the measurement start time of each of the certain processing terminal and the other processing terminal based on the calculated difference.
The time reference terminal according to appendix 1 or 2.
[Appendix 4]
A processing terminal connected to a time reference terminal for instructing to start a predetermined process at a processing start time that is a predetermined time;
Standby means for waiting for the start of the process until the process start time;
Synchronization processing means for performing synchronization processing with the time reference terminal at the synchronization start time notified from the time reference terminal;
A processing terminal comprising processing means for starting the processing at the processing start time.
[Appendix 5]
The synchronization processing means includes
At least one or more flags are received from the time reference terminal at regular time intervals, clock pulses generated between the received flags are counted, and an average value of the count values between the flags is calculated. An average value calculating means;
Determining means for determining whether the average value is within a predetermined threshold range;
If the result of the determination is within a threshold range, a difference calculating means for calculating a difference between the counter value of the clock pulse generated between each of the flags measured by the time reference terminal and the average value;
The processing terminal according to appendix 4, further comprising: a correction value calculating unit that calculates a correction value of a clock related to the operation of the terminal based on the difference and corrects a clock frequency of the terminal based on the correction value.
[Appendix 6]
A time reference terminal according to any one of appendices 1 to 3, and the processing terminal;
The processing terminal includes the processing terminal described in Appendix 4 or 5.
Time synchronization system.
[Appendix 7]
The time reference terminal further comprises flag transmission means for transmitting a flag at a fixed time interval to each of the processing terminals,
The flag transmission means transmits the flag again if the determination result is outside the range of the threshold value,
The processing terminal is the processing terminal described in Appendix 5, and the difference calculation means calculates the average value from each count value including between the retransmitted flag and the previously transmitted flag. To
The time synchronization system according to appendix 6.
[Appendix 8]
A time synchronization method performed by a time reference terminal connected to at least one processing terminal that starts predetermined processing at a processing start time that is a predetermined time,
A signal indicating that the processing is not started until the processing start time is transmitted to each of the processing terminals;
Of the time from the current time to the processing start time, a time corresponding to the accuracy of the clock for each operation of the processing terminal is completed with each of the processing terminals so as to be completed prior to the processing start time. Comprising performing synchronous processing;
Time synchronization method.
[Appendix 9]
Further comprising measuring the accuracy of the clock at each of the processing terminals;
Each of the processing terminals is configured to complete the synchronization processing prior to the processing start time for a time corresponding to the accuracy of the actually measured clock among the time from the current time to the processing start time. The synchronization process is performed with
The time synchronization method according to attachment 8.
[Appendix 10]
When there are a plurality of the processing terminals,
Based on the completion time of the synchronization process, a communication time with the time reference terminal for each of the processing terminals is calculated, and a communication time of a certain processing terminal and a communication time with another processing terminal among the plurality of processing terminals. Further comprising correcting the measurement start times of the certain processing terminal and the other processing terminal based on the calculated difference,
The time synchronization method according to appendix 8 or 9.
[Appendix 11]
A time synchronization method performed by at least one processing terminal connected to a time reference terminal instructing to start a predetermined process at a processing start time that is a predetermined time,
Wait for the start of the process until the process start time,
At the synchronization start time notified from the time reference terminal, perform the synchronization process with the time reference terminal,
Starting the process at the process start time,
Time synchronization method.
[Appendix 12]
Performing the synchronization process includes
Receive at least one or more flags from the time reference terminal at regular time intervals, count clock pulses generated between the received flags, and calculate an average value of the count values between the flags. ,
Determining whether the average value is within a predetermined threshold;
If the result of the determination is within the threshold range, the difference between the counter value of the clock pulse generated between each of the flags measured by the time reference terminal and the average value is calculated.
Calculating a correction value of a clock related to the operation of the terminal based on the difference, and correcting the clock frequency of the terminal based on the correction value;
The time synchronization method according to claim 11, further comprising:
[Appendix 13]
A time synchronization method performed by the time reference terminal according to any one of appendices 8 to 10,
A time synchronization method comprising the time synchronization method performed by the processing terminal described in Appendix 11 or 12.
[Appendix 14]
The time reference terminal further includes transmitting a flag to each of the processing terminals at regular time intervals,
If the transmission of the flag is outside the range of the threshold value of the determination, the flag is transmitted again,
The calculation of the difference by the processing terminal is to calculate the average value from each count value including between the flag transmitted again and the flag transmitted last time.
The time synchronization method according to attachment 13.
 以上、上述した実施形態を模範的な例として本発明を説明した。しかしながら、本発明は、上述した実施形態には限定されない。即ち、本発明は、本発明のスコープ内において、当業者が理解し得る様々な態様を適用することができる。 The present invention has been described above using the above-described embodiment as an exemplary example. However, the present invention is not limited to the above-described embodiment. That is, the present invention can apply various modes that can be understood by those skilled in the art within the scope of the present invention.
 この出願は2014年3月28日に出願された日本出願特願2014-067363を基礎とする優先権を主張し、その開示の全てをここに取り込む。
This application claims the priority on the basis of Japanese application Japanese Patent Application No. 2014-067363 for which it applied on March 28, 2014, and takes in those the indications of all here.
 1  時刻同期システム
 20、21、22  時刻参照端末
 10a、10b、10c、11a、11b、11c  計測端末
 100、300、400  計測開始時刻設定部
 110、310、410  計測間隔算出部
 120、320、420  クロック精度記憶部
 130、330、430  最大誤差時間算出部
 140、340、440  同期開始時刻設定部
 150、350、450  動作開始指示部
 160、360、460  送受信部
 170、370、470  同期処理部
 180、380、480  計測開始時刻記憶部
 190、490  残時間設定部
 390  補正残時間設定部
 200、500  計測待機部
 210、510  同期処理部
 220、520  計測処理部
 230、530  送受信部
 240、540  同期開始時刻記憶部
 250、550  残時間記憶部
1 Time synchronization system 20, 21, 22 Time reference terminal 10a, 10b, 10c, 11a, 11b, 11c Measurement terminal 100, 300, 400 Measurement start time setting unit 110, 310, 410 Measurement interval calculation unit 120, 320, 420 Clock Accuracy storage unit 130, 330, 430 Maximum error time calculation unit 140, 340, 440 Synchronization start time setting unit 150, 350, 450 Operation start instruction unit 160, 360, 460 Transmission / reception unit 170, 370, 470 Synchronization processing unit 180, 380 480 Measurement start time storage unit 190, 490 Remaining time setting unit 390 Correction remaining time setting unit 200, 500 Measurement standby unit 210, 510 Synchronization processing unit 220, 520 Measurement processing unit 230, 530 Transmission / reception unit 240, 540 Synchronization start time storage Part 250, 550 When remaining Storage unit

Claims (10)

  1.  所定の処理を、予め定められた時刻である処理開始時刻に開始する少なくとも1つ以上の処理端末と接続された時刻参照端末であって、
     前記処理開始時刻まで前記処理を開始しないことを指示する信号を、前記処理端末の各々に送信する動作開始指示手段と、
     現在時刻から前記処理開始時刻に至る時間のうち、前記処理端末の各々の動作に関するクロックの精度に相当する時間分、前記処理開始時刻に先立って完了するよう、前記処理端末の各々との間で同期処理を実施する同期処理手段とを備える、時刻参照端末。
    A time reference terminal connected to at least one processing terminal that starts a predetermined process at a process start time that is a predetermined time;
    An operation start instruction means for transmitting a signal instructing not to start the processing until the processing start time to each of the processing terminals;
    Of the time from the current time to the processing start time, a time corresponding to the accuracy of the clock for each operation of the processing terminal is completed with each of the processing terminals so as to be completed prior to the processing start time. A time reference terminal comprising synchronization processing means for performing synchronization processing.
  2.  前記クロックの精度を、前記処理端末の各々にて実測するクロック精度実測手段を更に備え、
     前記同期処理手段は、現在時刻から前記処理開始時刻に至る時間のうち、前記実測されたクロックの精度に相当する時間分、前記処理開始時刻に先立って完了するよう、前記処理端末の各々との間で前記同期処理を実施する、
    請求項1に記載の時刻参照端末。
    Clock accuracy measuring means for measuring the accuracy of the clock at each of the processing terminals;
    The synchronization processing means is configured so that each of the processing terminals completes prior to the processing start time by a time corresponding to the accuracy of the actually measured clock among the time from the current time to the processing start time. Carrying out the synchronization process between
    The time reference terminal according to claim 1.
  3.  前記処理端末が複数ある場合に、
     前記同期処理の完了時間を基に、前記処理端末毎の前記時刻参照端末との通信時間を算出し、前記複数の処理端末の内、ある処理端末の通信時間と別の処理端末との通信時間の差を算出し、前記算出された差を基に、前記ある処理端末と前記別の処理端末の各々の計測開始時間を補正する通信時間設定手段を更に備える、
    請求項1又は2に記載の時刻参照端末。
    When there are a plurality of the processing terminals,
    Based on the completion time of the synchronization process, a communication time with the time reference terminal for each of the processing terminals is calculated, and a communication time of a certain processing terminal and a communication time with another processing terminal among the plurality of processing terminals. Communication time setting means for correcting the measurement start time of each of the certain processing terminal and the other processing terminal based on the calculated difference.
    The time reference terminal according to claim 1 or 2.
  4.  所定の処理を、予め定められた時刻である処理開始時刻に開始するよう指示する時刻参照端末と接続された処理端末であって、
     前記処理開始時刻まで前記処理の開始を待つ待機手段と、
     前記時刻参照端末から通知される同期開始時刻に、前記時刻参照端末との同期処理を実施する同期処理手段と、
     前記処理開始時刻に、前記処理を開始する処理手段
    とを備える、処理端末。
    A processing terminal connected to a time reference terminal for instructing to start a predetermined process at a processing start time that is a predetermined time;
    Standby means for waiting for the start of the process until the process start time;
    Synchronization processing means for performing synchronization processing with the time reference terminal at the synchronization start time notified from the time reference terminal;
    A processing terminal comprising processing means for starting the processing at the processing start time.
  5.  前記同期処理手段は、
     前記時刻参照端末から少なくとも1つ以上のフラグを一定の時間間隔で受信し、受信した前記フラグ間の各々に発生するクロックパルスをカウントし、前記フラグ間における各々のカウント値の平均値を算出する平均値算出手段と、
     前記平均値が所定の閾値の範囲内であるか判定する判定手段と、
     前記判定の結果閾値の範囲内であれば、前記時刻参照端末で計測された前記フラグ間における各々で発生したクロックパルスのカウンタ値と、前記平均値との差分を算出する差分算出手段と、
     前記差分を基に、自端末の動作に関するクロックの補正値を算出し、前記補正値を基に自端末のクロック周波数を補正する補正値算出手段
    とを更に備える、請求項4に記載の処理端末。
    The synchronization processing means includes
    At least one or more flags are received from the time reference terminal at regular time intervals, clock pulses generated between the received flags are counted, and an average value of the count values between the flags is calculated. An average value calculating means;
    Determining means for determining whether the average value is within a predetermined threshold range;
    If the result of the determination is within a threshold range, a difference calculating means for calculating a difference between the counter value of the clock pulse generated between each of the flags measured by the time reference terminal and the average value;
    5. The processing terminal according to claim 4, further comprising: a correction value calculating unit that calculates a correction value of a clock related to the operation of the terminal based on the difference, and corrects a clock frequency of the terminal based on the correction value. .
  6.  請求項1乃至3のいずれか1項に記載された時刻参照端末と、前記処理端末を備え、
     前記処理端末は請求項4又は5に記載された処理端末を備える、
    時刻同期システム。
    A time reference terminal according to any one of claims 1 to 3, and the processing terminal,
    The processing terminal includes the processing terminal according to claim 4 or 5.
    Time synchronization system.
  7.  前記時刻参照端末は、前記処理端末の各々に一定の時間間隔でフラグを送信するフラグ送信手段を更に備え、
     前記フラグ送信手段は、前記判定の結果閾値の範囲外であれば、前記フラグを再度送信し、
     前記処理端末は請求項5に記載された処理端末であり、前記差分算出手段は、前記再度送信されたフラグと前回送信されたフラグとの間を含めた、各々のカウント値から前記平均値を算出する、
    請求項6に記載の時刻同期システム。
    The time reference terminal further comprises flag transmission means for transmitting a flag at a fixed time interval to each of the processing terminals,
    The flag transmission means transmits the flag again if the determination result is outside the range of the threshold value,
    The processing terminal is a processing terminal according to claim 5, wherein the difference calculation means calculates the average value from each count value including between the flag transmitted again and the flag transmitted last time. calculate,
    The time synchronization system according to claim 6.
  8.  所定の処理を、予め定められた時刻である処理開始時刻に開始する少なくとも1つ以上の処理端末と接続された時刻参照端末が行う時刻同期方法であって、
     前記処理開始時刻まで前記処理を開始しないことを指示する信号を、前記処理端末の各々に送信し、
     現在時刻から前記処理開始時刻に至る時間のうち、前記処理端末の各々の動作に関するクロックの精度に相当する時間分、前記処理開始時刻に先立って完了するよう、前記処理端末の各々との間で同期処理を実施することを備える、
    時刻同期方法。
    A time synchronization method performed by a time reference terminal connected to at least one processing terminal that starts predetermined processing at a processing start time that is a predetermined time,
    A signal indicating that the processing is not started until the processing start time is transmitted to each of the processing terminals;
    Of the time from the current time to the processing start time, a time corresponding to the accuracy of the clock for each operation of the processing terminal is completed with each of the processing terminals so as to be completed prior to the processing start time. Comprising performing synchronous processing;
    Time synchronization method.
  9.  前記クロックの精度を、前記処理端末の各々にて実測することを更に備え、
     前記同期処理を実施することは、現在時刻から前記処理開始時刻に至る時間のうち前記実測されたクロックの精度に相当する時間分、前記処理開始時刻に先立って完了するよう、前記処理端末の各々との間で前記同期処理を実施する、
    請求項8に記載の時刻同期方法。
    Further comprising measuring the accuracy of the clock at each of the processing terminals;
    Each of the processing terminals is configured to complete the synchronization processing prior to the processing start time for a time corresponding to the accuracy of the actually measured clock among the time from the current time to the processing start time. The synchronization process is performed with
    The time synchronization method according to claim 8.
  10.  所定の処理を、予め定められた時刻である処理開始時刻に開始するよう指示する時刻参照端末と接続された少なくとも1つ以上の処理端末が行う時刻同期方法であって、
     前記処理開始時刻まで前記処理の開始を待ち、
     前記時刻参照端末から通知される同期開始時刻に、前記時刻参照端末との同期処理を実施し、
     前記処理開始時刻に、前記処理を開始することを備える、
    時刻同期方法。
    A time synchronization method performed by at least one processing terminal connected to a time reference terminal instructing to start a predetermined process at a processing start time that is a predetermined time,
    Wait for the start of the process until the process start time,
    At the synchronization start time notified from the time reference terminal, perform the synchronization process with the time reference terminal,
    Starting the process at the process start time,
    Time synchronization method.
PCT/JP2015/001593 2014-03-28 2015-03-20 Time reference terminal, measurement terminal, time synchronization system, and time synchronization method WO2015146112A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016510016A JP6436164B2 (en) 2014-03-28 2015-03-20 Time reference terminal, measurement terminal, time synchronization system, and time synchronization method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014067363 2014-03-28
JP2014-067363 2014-03-28

Publications (1)

Publication Number Publication Date
WO2015146112A1 true WO2015146112A1 (en) 2015-10-01

Family

ID=54194662

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/001593 WO2015146112A1 (en) 2014-03-28 2015-03-20 Time reference terminal, measurement terminal, time synchronization system, and time synchronization method

Country Status (2)

Country Link
JP (1) JP6436164B2 (en)
WO (1) WO2015146112A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3477898A4 (en) * 2016-06-23 2019-05-01 Nec Corporation Log information creation device, log information creation method, recording medium having log information creation program recorded therein, and information processing system
US11549822B2 (en) 2017-10-05 2023-01-10 Robert Bosch Gmbh Device and method for monitoring a sensor clock signal

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004029037A (en) * 2003-09-29 2004-01-29 Hakusan Kogyo Kk Time generation apparatus and method thereof
JP2008097096A (en) * 2006-10-06 2008-04-24 Yamaha Corp Server device and communication session establishment method
WO2013145492A1 (en) * 2012-03-30 2013-10-03 日本電気株式会社 Leak detection method, water leakage detection method, leak detection device, and water leakage detection device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004029037A (en) * 2003-09-29 2004-01-29 Hakusan Kogyo Kk Time generation apparatus and method thereof
JP2008097096A (en) * 2006-10-06 2008-04-24 Yamaha Corp Server device and communication session establishment method
WO2013145492A1 (en) * 2012-03-30 2013-10-03 日本電気株式会社 Leak detection method, water leakage detection method, leak detection device, and water leakage detection device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3477898A4 (en) * 2016-06-23 2019-05-01 Nec Corporation Log information creation device, log information creation method, recording medium having log information creation program recorded therein, and information processing system
US11336510B2 (en) 2016-06-23 2022-05-17 Nec Corporation Information processing system, information processing method, and non-transitory recording medium
US11549822B2 (en) 2017-10-05 2023-01-10 Robert Bosch Gmbh Device and method for monitoring a sensor clock signal

Also Published As

Publication number Publication date
JPWO2015146112A1 (en) 2017-04-13
JP6436164B2 (en) 2018-12-12

Similar Documents

Publication Publication Date Title
JP6436164B2 (en) Time reference terminal, measurement terminal, time synchronization system, and time synchronization method
JP2015056039A (en) Controller, control system and control method
JP2012141178A (en) Partial discharge detecting system
JP2012233841A (en) Sensor device and sensor system
JP5166869B2 (en) Clock jitter measurement
JP6605863B2 (en) Electronic device, method, program, and protection system
JP6165600B2 (en) Phase estimation device, signal generation device, synchronization system, and signal processing device
JP6707209B1 (en) Time synchronization system, master device, slave device and program
JP2013195211A (en) Ultrasonic sensor and calibration method of the same
JP2002368670A (en) Radio communication equipment and method for estimating reception timing therefor
US10422809B2 (en) Electronic apparatus and program
WO2017183232A1 (en) Control device, control system, control method, and program
US20170350994A1 (en) Radiation imaging apparatus and method of controlling same
US9807689B2 (en) Communication device, method and communication system
JP2018163044A (en) Periodic signal measurement device, periodic signal measurement method, and sampling period determination method
JP2015210135A (en) Electric power measurement device
JP2013207917A (en) Power control support program, power control support device, and power control support method
JP5315947B2 (en) Pulse rate calculation program, pulse rate calculation device, pulse rate calculation method, and portable terminal device
JP2011106856A (en) Electric characteristic measuring device and electric characteristic measuring method
JP2016080397A (en) User detection method, user detection device, and image forming apparatus
JP2017020852A (en) Embedded device
KR20150141055A (en) Method for time synchronization of watt-hour meter time synchronization system
JP2017184349A (en) Demand control system, and demand controller for use therein, watthour meter interface device, demand control method, and time limit synchronization system
JP5483469B2 (en) Power measurement system, power measurement method, and power measurement program
JP5991795B2 (en) Bipolar signal frequency measuring method and apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15769612

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016510016

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase
122 Ep: pct application non-entry in european phase

Ref document number: 15769612

Country of ref document: EP

Kind code of ref document: A1