WO2015145742A1 - Laser-diode drive circuit and laser device - Google Patents

Laser-diode drive circuit and laser device Download PDF

Info

Publication number
WO2015145742A1
WO2015145742A1 PCT/JP2014/059202 JP2014059202W WO2015145742A1 WO 2015145742 A1 WO2015145742 A1 WO 2015145742A1 JP 2014059202 W JP2014059202 W JP 2014059202W WO 2015145742 A1 WO2015145742 A1 WO 2015145742A1
Authority
WO
WIPO (PCT)
Prior art keywords
laser diode
laser
circuit
voltage
laser diodes
Prior art date
Application number
PCT/JP2014/059202
Other languages
French (fr)
Japanese (ja)
Inventor
隼規 坂本
一郎 福士
章之 門谷
一馬 渡辺
次郎 齊川
直也 石垣
進吾 宇野
廣木 知之
東條 公資
Original Assignee
株式会社島津製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社島津製作所 filed Critical 株式会社島津製作所
Priority to PCT/JP2014/059202 priority Critical patent/WO2015145742A1/en
Publication of WO2015145742A1 publication Critical patent/WO2015145742A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/40Arrangement of two or more semiconductor lasers, not provided for in groups H01S5/02 - H01S5/30
    • H01S5/4018Lasers electrically in series
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/04Processes or apparatus for excitation, e.g. pumping, e.g. by electron beams
    • H01S5/042Electrical excitation ; Circuits therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/06Arrangements for controlling the laser output parameters, e.g. by operating on the active medium
    • H01S5/068Stabilisation of laser output parameters
    • H01S5/06825Protecting the laser, e.g. during switch-on/off, detection of malfunctioning or degradation

Definitions

  • the present invention relates to a laser diode drive circuit and a laser device.
  • Laser diodes are known to have a relatively short life among components that constitute laser devices such as optical elements and electronic components. Further, it is known that the lifetime of the laser diode becomes shorter as the operating temperature becomes higher. For this reason, in a laser device using a laser diode, the life of the laser device depends on the life of the laser diode.
  • Patent Document 1 a plurality of laser diodes are connected in parallel to obtain a high-intensity laser beam output.
  • the light receiving means detects that one of the laser diodes has failed, the drive current of the failed laser diode is turned off.
  • the drive current of the laser diode that has not failed is increased, and the output of the entire laser diode is kept constant. This extends the life of the laser device.
  • Patent Document 2 a plurality of laser diodes are connected in series to obtain a high-intensity laser beam output.
  • a laser diode in which a plurality of laser diodes are connected in series for each arbitrary group and disposed at a place where heat dissipation is easy a large output is obtained by increasing the drive current.
  • a small output can be obtained by reducing the drive current, but heat generation is reduced. For this reason, since the nonuniformity of the operating temperature of the plurality of laser diodes can be suppressed, the lifetimes of the laser diodes are averaged, and the lifetime of the laser device is extended.
  • the pumping light source device described in Patent Document 3 includes a pumping light source circuit in which a plurality of laser diodes are connected in series, and each laser diode is connected in parallel with a bypass circuit having a larger voltage drop than the laser diode. And a failure detection circuit that detects a failure of the laser diode based on a change in the voltage drop across the entire excitation light source circuit.
  • Patent Document 1 it is necessary to detect the output by light receiving means such as a photodiode for the output from all the laser diodes. For this reason, the arrangement of the light receiving means increases costs and adjustment labor, and increases the output loss in the light receiving means.
  • Patent Document 2 if the laser diode breaks down quickly due to variations in the life of the laser diode, useless power is supplied to the failed laser diode, and the amount of heat generation increases. Further, due to the heat generated by the failed laser diode, the temperature of other non-failed laser diodes may increase.
  • Patent Document 3 only a failure of the laser diode is detected, and the life of the laser diode cannot be extended.
  • a laser diode driving circuit includes a plurality of laser diodes connected in series, a variable voltage source applied to both ends of the plurality of laser diodes, and the plurality of laser diodes.
  • a plurality of bypass circuits provided corresponding to the laser diodes, connected to both ends of each laser diode, for detecting a failure of the laser diode and bypassing the laser diode; and the laser diodes from the plurality of bypass circuits
  • a power supply voltage control circuit for reducing the voltage value of the variable voltage source in the event of failure.
  • the laser device includes a laser diode drive circuit, a combining unit that combines laser beams output from each of the plurality of laser diodes, and a converging unit that converges the laser beam combined by the combining unit. .
  • the present invention it is possible to provide a laser diode driving circuit and a laser device capable of reducing the cost and reducing unnecessary heat generation and extending the life of the laser diode and the laser device.
  • FIG. 1 is a diagram showing a configuration of a laser apparatus including a laser diode drive circuit according to an embodiment of the present invention.
  • FIG. 2 is a diagram showing details of a short-circuit failure detection circuit and a bypass circuit in the laser diode drive circuit of Example 1 according to the embodiment of the present invention.
  • FIG. 3 is a diagram showing details of a short failure detection circuit, an open failure detection circuit, and a bypass circuit in the laser diode drive circuit according to the second embodiment of the present invention.
  • FIG. 4 is a diagram showing an example in which the laser drive voltage is lowered when the laser diode fails in the laser diode drive circuit according to the embodiment of the present invention.
  • a laser apparatus includes a laser diode drive circuit, and as shown in FIG. 1, lasers output from each of a plurality of laser diodes 11a to 11c connected in series for emitting excitation light.
  • the light is synthesized at the multiplexing unit 18 and irradiated onto the processing target 21 to process the processing target 21.
  • the laser beam synthesized by the multiplexing unit 18 passes through the optical fiber 19, is converged by the converging lens 20 (corresponding to the converging unit of the present invention), and is irradiated onto the workpiece 21.
  • the laser diode drive circuit is configured as follows.
  • the positive electrode of the variable voltage source 10 is connected to the anode of the laser diode 11a via the resistor R1, and the negative electrode of the variable voltage source 10 is grounded.
  • One end of an N-type MOSFET 13 is connected to the cathode of the laser diode 11c, and the other end of the MOSFET 13 is grounded.
  • the MOSFET 13 supplies a constant current to the plurality of laser diodes 11a to 11c.
  • a bypass circuit 12a is connected to both ends of the laser diode 11a. When a failure occurs in the laser diode 11a, the bypass circuit 12a bypasses the current without passing through the laser diode 11a and outputs a first failure detection signal indicating that the failure of the laser diode 11a is detected to the monitor circuit 15 To do.
  • a bypass circuit 12b is connected to both ends of the laser diode 11b. When a failure occurs in the laser diode 11b, the bypass circuit 12b bypasses the current without passing through the laser diode 11b and outputs a second failure detection signal indicating that the failure of the laser diode 11b is detected to the monitor circuit 15 To do.
  • a bypass circuit 12c is connected to both ends of the laser diode 11c.
  • the bypass circuit 12c when a failure occurs in the laser diode 11c, bypasses the current without passing through the laser diode 11c and outputs a third failure detection signal indicating that the failure of the laser diode 11c is detected to the monitor circuit 15 To do.
  • the monitor circuit 15 is connected to the bypass circuits 12a to 12c, monitors the failure detection signals sent from the bypass circuits 12a to 12c, and sends the number of failure detection signals, that is, the number of failed laser diodes to the microcomputer 17. Output.
  • the monitor circuit 15 is an operational amplifier that detects a voltage value generated by a current flowing through the bypass circuit 12.
  • the microcomputer 17 supplies a voltage value corresponding to the number of failed laser diodes sent from the monitor circuit 15, that is, a voltage value obtained by multiplying the forward drop voltage VF of the laser diode by the number of failed laser diodes to the power supply voltage. Output to the control circuit 14.
  • the power supply voltage control circuit 14 lowers the voltage of the variable voltage source 10 by a voltage value obtained by multiplying the forward drop voltage VF of the laser diode sent from the microcomputer 17 by the number of failed laser diodes.
  • the current control circuit 16 controls the constant current of the MOSFET 13 according to the number of failed laser diodes sent from the microcomputer 17.
  • the current control circuit 16 is a circuit that allows a constant current to flow by a method for controlling the magnitude of the base current flowing through the transistor or a method for controlling the magnitude of the gate voltage of the FET.
  • FIG. 2 is a diagram showing details of a short circuit failure detection circuit and a bypass circuit in the laser diode drive circuit of Example 1 according to the embodiment of the present invention.
  • FIG. 2 the configurations of the short-circuit failure detection circuit and the bypass circuit for the laser diode 11a are shown, but the configurations of the short-circuit failure detection circuit and the bypass circuit for the laser diodes 11b and 11c are the same.
  • the anode of the diode 22 is connected to the anode of the laser diode 11 a, and the cathode of the diode 22 is connected to the non-inverting input terminal (+ terminal) of the comparator 23.
  • the cathode of the laser diode 11 a is connected to the inverting input terminal ( ⁇ terminal) of the comparator 23.
  • the diode 22 and the comparator 23 constitute a short failure detection circuit that detects a short (short circuit) failure of the laser diode 11a.
  • the output terminal of the comparator 23 is connected to the gate G of the P-type MOSFET Q1 and the monitor circuit 15.
  • the source S of the MOSFET Q1 is connected to the anode of the laser diode 11a and the anode of the diode 22.
  • the drain D of the MOSFET Q1 is connected to the cathode of the laser diode 11a.
  • the MOSFET Q1 bypasses the current without going through the laser diode 11a when the laser diode 11a fails.
  • a current flows through the path of the variable voltage source 10 ⁇ the resistor R 1 ⁇ the laser diode 11 a ⁇ the laser diode 11 b ⁇ the laser diode 11 c ⁇ the MOSFET 13.
  • the forward drop voltage of the laser diode is 2V and the forward drop voltage of the diode is 0.6V
  • the + terminal voltage of the comparator 23 is about 1.4V larger than the ⁇ terminal voltage
  • the output of the comparator 23 is H level.
  • the MOSFET Q1 in the bypass circuit 12a is turned off, so that no current flows in the bypass circuit 12a.
  • the forward voltage drop of the laser diode 11a is approximately 0V, which is smaller than the forward voltage drop (eg, 0.6V) of the diode 22.
  • the output of the comparator 23 becomes L level and the MOSFET Q1 of the bypass circuit 12a is turned on, so that a current flows through the bypass circuit 12a.
  • the L level output from the comparator 23 is output to the monitor circuit 15 as a short circuit failure detection signal of the laser diode 11 a, and the short circuit failure detection signal is sent to the microcomputer 17. Therefore, the failure of the laser diode 11a can be detected.
  • the second embodiment shown in FIG. 3 is characterized in that an open failure detection circuit 31 is further provided to the first embodiment shown in FIG.
  • the short failure detection circuit 30 is substantially the same as the configuration shown in FIG. 2 except that the output terminal of the comparator 23 is connected to the AND circuit 34.
  • the open failure detection circuit 31 includes a differential amplifier circuit 32 and a comparator 33.
  • the differential amplifier circuit 32 amplifies the voltage across the laser diode 11 a and outputs the amplified voltage to the inverting input terminal of the comparator 33.
  • the comparator 33 outputs an H level to the AND circuit 34 when the voltage output from the differential amplifier circuit 32 is equal to or higher than the voltage Vset applied to the non-inverting terminal, and the voltage output from the differential amplifier circuit 32 is When the voltage is lower than the voltage Vset, the L level is output to the AND circuit 34.
  • the voltage Vset is set to a voltage at which the comparator 33 becomes H level when the laser diode 11a is short-circuited and the comparator 33 is L level when the laser diode 11a is open-failed.
  • the comparator 33 outputs the L level to the AND circuit 34, so that the MOSFET Q1 is turned on and a current flows through the bypass circuit 12a.
  • the microcomputer 17 can detect that the laser diode 11a has failed.
  • the L level is output from the comparator 23 to the AND circuit 34 as described in the first embodiment, so that the L level is output from the AND circuit 34 to the MOSFET Q1.
  • the MOSFET Q1 is turned on and a current flows through the bypass circuit 12a.
  • the output of the comparator 23 in the short failure detection circuit 30 becomes H level as described above.
  • the comparator 33 since the voltage from the differential amplifier circuit 32 is smaller than the voltage Vset, the comparator 33 outputs the H level to the AND circuit 34. For this reason, the MOSFET Q1 is turned off, and no current flows through the bypass circuit 12a.
  • the bypass circuit 12b bypasses the current without passing through the laser diode 11b, and the monitor circuit 15 detects that the laser diode 11b has failed and outputs it to the microcomputer 17. To do.
  • the microcomputer 17 outputs the forward effect voltage VF of the laser diode 11b to the power supply voltage control circuit 14.
  • the power supply voltage control circuit 14 lowers the voltage of the variable voltage source 10 by the forward effect voltage VF of the laser diode 11b sent from the microcomputer 17.
  • the power supply voltage control circuit 14 reduces the power supply voltage decrease Vdc of the laser diode 11a to 11c when the laser diodes 11a to 11c fail, to be smaller than the forward drop voltage VF of the laser diodes 11a to 11c. It may be set to a value. That is, the reduction amount Vdc of the power supply voltage of the laser diode at the time of failure is set to the minimum value in consideration of the variation in the forward voltage drop VF.
  • variable DCDC converter can be used for the power supply voltage control circuit 14.
  • the voltage value of the variable voltage source 10 is determined by the microcomputer 17 so that the extra voltage applied to the MOSFET 13 is minimized.
  • the variable DCDC converter instead of the variable DCDC converter, one having a different output voltage of the DCDC converter according to the number of failures of the laser diode can be used.
  • the forward voltage drop of the bypass circuits 12a to 12c caused by the current bypassed by the bypass circuits 12a to 12c is smaller than the forward voltage drop (VF, for example, 2V) of the laser diodes 11a to 11c, for example, 10 mV. .
  • the voltage drop across the bypass circuits 12a-12c may be greater than 10 mV.
  • the number of laser diodes is three, but the number of laser diodes may be two or more.
  • variable voltage source 10 applied to both ends of the plurality of laser diodes 11a to 11c connected in series and the plurality of laser diodes 11a to 11c are connected.
  • a plurality of bypass circuits 12a to 12c provided correspondingly and connected to both ends of each of the laser diodes 11a to 11c to detect a failure of the laser diodes 11a to 11c and to bypass the laser diodes 11a to 11c;
  • a power supply voltage control circuit 14 for reducing the voltage value of the variable voltage source 10 according to the number of laser diode failures from the bypass circuits 12a to 12c.
  • the power supply voltage of the variable voltage source 10 is, for example, Vcc
  • the number of failed laser diodes is n
  • the forward drop voltage of the laser diode is VF
  • the power supply voltage is set according to the number n of failed laser diodes, for example: Decrease by Vcc- (n ⁇ VF).
  • the laser diode drive circuit of the present invention is not limited to the laser processing apparatus described above, and can be applied to, for example, a laser illumination apparatus.
  • the present invention is applicable to high-power laser devices such as laser processing devices and laser illumination devices.

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Semiconductor Lasers (AREA)

Abstract

A laser-diode drive circuit in which a variable voltage source (10) is imparted to both ends of a plurality of laser diodes (11a-11c) which are connected in series. A plurality of bypass circuits (12a-12c) are provided so as to correspond to the plurality of laser diodes (11a-11c), are connected to both ends of each of the laser diodes (11a-11c), detect a fault in the laser diodes (11a-11c), and bypass the laser diodes (11a-11c). A power source and voltage control circuit (14) decreases the voltage value of the voltage source when a fault occurs in the laser diodes (11a-11c) from the plurality of bypass circuits.

Description

レーザダイオードの駆動回路及びレーザ装置Laser diode drive circuit and laser device
 本発明は、レーザダイオードの駆動回路及びレーザ装置に関する。 The present invention relates to a laser diode drive circuit and a laser device.
 レーザダイオードは、光学素子、電子部品等のレーザ装置を構成する部品の中で比較的寿命が短いことが知られている。また、レーザダイオードは、動作温度が高くなるにつれて、寿命が短くなることが知られている。このため、レーザダイオードを使用したレーザ装置では、レーザダイオードの寿命にレーザ装置の寿命が左右される。 Laser diodes are known to have a relatively short life among components that constitute laser devices such as optical elements and electronic components. Further, it is known that the lifetime of the laser diode becomes shorter as the operating temperature becomes higher. For this reason, in a laser device using a laser diode, the life of the laser device depends on the life of the laser diode.
 複数のレーザダイオードを並列又は直列に接続することにより、高輝度のレーザビーム出力を得る方法においては、レーザダイオードを長寿命化させる手法が提案されている。 In a method of obtaining a high-luminance laser beam output by connecting a plurality of laser diodes in parallel or in series, a method for extending the life of the laser diode has been proposed.
 特許文献1では、複数のレーザダイオードを並列に接続し、高輝度のレーザビーム出力を得ている。いずれか1つのレーザダイオードが故障したことを受光手段が検知すると、故障したレーザダイオードの駆動電流をオフさせる。また、故障していないレーザダイオードの駆動電流を増やし、レーザダイオード全体の出力を一定に保持している。このため、レーザ装置の寿命が延びる。 In Patent Document 1, a plurality of laser diodes are connected in parallel to obtain a high-intensity laser beam output. When the light receiving means detects that one of the laser diodes has failed, the drive current of the failed laser diode is turned off. In addition, the drive current of the laser diode that has not failed is increased, and the output of the entire laser diode is kept constant. This extends the life of the laser device.
 特許文献2では、複数のレーザダイオードを直列に接続し、高輝度のレーザビーム出力を得ている。複数のレーザダイオードを任意のグループごとに直列に接続し、放熱がしやすい場所に配置されたレーザダイオードにおいては、駆動電流を大きくすることで大きな出力を得る。一方、放熱しにくい場所に配置されたレーザダイオードにおいては、駆動電流を小さくすることで小さい出力が得られるが、発熱が小さくなる。このため、複数のレーザダイオードの動作温度のムラが抑えられるため、レーザダイオードの寿命が平均化され、レーザ装置の寿命が延びる。 In Patent Document 2, a plurality of laser diodes are connected in series to obtain a high-intensity laser beam output. In a laser diode in which a plurality of laser diodes are connected in series for each arbitrary group and disposed at a place where heat dissipation is easy, a large output is obtained by increasing the drive current. On the other hand, in a laser diode arranged in a place where it is difficult to dissipate heat, a small output can be obtained by reducing the drive current, but heat generation is reduced. For this reason, since the nonuniformity of the operating temperature of the plurality of laser diodes can be suppressed, the lifetimes of the laser diodes are averaged, and the lifetime of the laser device is extended.
 特許文献3に記載された励起光源装置は、複数のレーザダイオードが直列に接続されると共に、それぞれのレーザダイオードが、レーザダイオードよりも降下電圧が大きいバイパス回路と並列に接続されている励起光源回路と、励起光源回路全体での降下電圧の変化に基づいてレーザダイオードの故障を検出する故障検出回路とを備えている。 The pumping light source device described in Patent Document 3 includes a pumping light source circuit in which a plurality of laser diodes are connected in series, and each laser diode is connected in parallel with a bypass circuit having a larger voltage drop than the laser diode. And a failure detection circuit that detects a failure of the laser diode based on a change in the voltage drop across the entire excitation light source circuit.
特開2004-214225号公報JP 2004-214225 A 特開2013-8950号公報JP 2013-8950 A 特開2011-199079号公報JP 2011-199079 A
 しかしながら、特許文献1では、全てのレーザダイオードからの出力に対して、フォトダイオードなどの受光手段により出力を検知する必要がある。このため、受光手段を配置することによりコスト、調整手間が増加し、また、受光手段における出力損失が大きくなる。 However, in Patent Document 1, it is necessary to detect the output by light receiving means such as a photodiode for the output from all the laser diodes. For this reason, the arrangement of the light receiving means increases costs and adjustment labor, and increases the output loss in the light receiving means.
 また、特許文献2では、レーザダイオードの寿命バラツキにより、レーザダイオードが早く故障してしまった場合には、故障したレーザダイオードに無駄な電力を投入することになり、発熱量が増加してしまう。また、故障したレーザダイオードの発熱により、他の故障していないレーザダイオードの温度が上昇するおそれがあった。 Also, in Patent Document 2, if the laser diode breaks down quickly due to variations in the life of the laser diode, useless power is supplied to the failed laser diode, and the amount of heat generation increases. Further, due to the heat generated by the failed laser diode, the temperature of other non-failed laser diodes may increase.
 また、特許文献3では、レーザダイオードの故障を検出するのみであり、レーザダイオードの長寿命化を図ることはできなかった。 In Patent Document 3, only a failure of the laser diode is detected, and the life of the laser diode cannot be extended.
 本発明は、コストを低減し且つ無駄な発熱を減らしてレーザダイオード及びレーザ装置の長寿命化を図ることができるレーザダイオードの駆動回路及びレーザ装置を提供することを目的とする。 It is an object of the present invention to provide a laser diode drive circuit and a laser device that can reduce the cost and reduce unnecessary heat generation to extend the life of the laser diode and the laser device.
 上記の課題を解決するために、本発明に係るレーザダイオードの駆動回路は、直列に接続された複数のレーザダイオードと、前記複数のレーザダイオードの両端に印加される可変電圧源と、前記複数のレーザダイオードに対応して設けられ、各々のレーザダイオードの両端に接続され、前記レーザダイオードの故障を検出するとともに前記レーザダイオードをバイパスさせる複数のバイパス回路と、前記複数のバイパス回路からの前記レーザダイオードの故障時に前記可変電圧源の電圧値を低下させる電源電圧制御回路とを備える。 In order to solve the above problems, a laser diode driving circuit according to the present invention includes a plurality of laser diodes connected in series, a variable voltage source applied to both ends of the plurality of laser diodes, and the plurality of laser diodes. A plurality of bypass circuits provided corresponding to the laser diodes, connected to both ends of each laser diode, for detecting a failure of the laser diode and bypassing the laser diode; and the laser diodes from the plurality of bypass circuits And a power supply voltage control circuit for reducing the voltage value of the variable voltage source in the event of failure.
 レーザ装置は、レーザダイオードの駆動回路と、前記複数のレーザダイオードの各々から出力されるレーザ光を合成する合波部と、前記合波部で合成されたレーザ光を収束する収束部とを備える。 The laser device includes a laser diode drive circuit, a combining unit that combines laser beams output from each of the plurality of laser diodes, and a converging unit that converges the laser beam combined by the combining unit. .
 本発明によれば、コストを低減し且つ無駄な発熱を減らしてレーザダイオード及びレーザ装置の長寿命化を図ることができるレーザダイオードの駆動回路及びレーザ装置を提供することができる。 According to the present invention, it is possible to provide a laser diode driving circuit and a laser device capable of reducing the cost and reducing unnecessary heat generation and extending the life of the laser diode and the laser device.
図1は本発明の実施形態に係るレーザダイオードの駆動回路を含むレーザ装置の構成を示す図である。FIG. 1 is a diagram showing a configuration of a laser apparatus including a laser diode drive circuit according to an embodiment of the present invention. 図2は本発明の実施形態に係る実施例1のレーザダイオードの駆動回路内のショート故障検知回路及びバイパス回路の詳細を示す図である。FIG. 2 is a diagram showing details of a short-circuit failure detection circuit and a bypass circuit in the laser diode drive circuit of Example 1 according to the embodiment of the present invention. 図3は本発明の実施形態に係る実施例2のレーザダイオードの駆動回路内のショート故障検知回路、オープン故障検知回路及びバイパス回路の詳細を示す図である。FIG. 3 is a diagram showing details of a short failure detection circuit, an open failure detection circuit, and a bypass circuit in the laser diode drive circuit according to the second embodiment of the present invention. 図4は本発明の実施形態に係るレーザダイオードの駆動回路においてレーザダイオードが故障したときにレーザ駆動電圧を下げる例を示す図である。FIG. 4 is a diagram showing an example in which the laser drive voltage is lowered when the laser diode fails in the laser diode drive circuit according to the embodiment of the present invention.
 以下、本発明の実施形態に係るレーザダイオードの駆動回路及びレーザ装置が、レーザ加工装置に適用される場合について、図面を参照しながら詳細に説明される。 Hereinafter, a case where a laser diode drive circuit and a laser apparatus according to an embodiment of the present invention are applied to a laser processing apparatus will be described in detail with reference to the drawings.
 本発明の実施形態に係るレーザ装置は、レーザダイオードの駆動回路を含み、図1に示すように、励起光を出射する直列に接続された複数のレーザダイオード11a~11cの各々から出力されるレーザ光を合波部18で合成して加工対象物21に照射し該加工対象物21を加工する。合波部18で合成されたレーザ光は、光ファイバ19を通り、収束レンズ20(本発明の収束部に対応)で収束されて加工対象物21に照射される。 A laser apparatus according to an embodiment of the present invention includes a laser diode drive circuit, and as shown in FIG. 1, lasers output from each of a plurality of laser diodes 11a to 11c connected in series for emitting excitation light. The light is synthesized at the multiplexing unit 18 and irradiated onto the processing target 21 to process the processing target 21. The laser beam synthesized by the multiplexing unit 18 passes through the optical fiber 19, is converged by the converging lens 20 (corresponding to the converging unit of the present invention), and is irradiated onto the workpiece 21.
 レーザダイオードの駆動回路は、以下のように構成される。レーザダイオード11aのアノードには抵抗R1を介して可変電圧源10の正極が接続され、可変電圧源10の負極は接地されている。 The laser diode drive circuit is configured as follows. The positive electrode of the variable voltage source 10 is connected to the anode of the laser diode 11a via the resistor R1, and the negative electrode of the variable voltage source 10 is grounded.
 レーザダイオード11cのカソードにはN型のMOSFET13の一端が接続され、MOSFET13の他端は接地されている。MOSFET13は、複数のレーザダイオード11a~11cに定電流を流す。 One end of an N-type MOSFET 13 is connected to the cathode of the laser diode 11c, and the other end of the MOSFET 13 is grounded. The MOSFET 13 supplies a constant current to the plurality of laser diodes 11a to 11c.
 レーザダイオード11aの両端にはバイパス回路12aが接続されている。バイパス回路12aは、レーザダイオード11aに故障が発生したときに、レーザダイオード11aを介さずに電流をバイパスさせ且つレーザダイオード11aの故障を検知したことを示す第1故障検知信号をモニタ回路15に出力する。 A bypass circuit 12a is connected to both ends of the laser diode 11a. When a failure occurs in the laser diode 11a, the bypass circuit 12a bypasses the current without passing through the laser diode 11a and outputs a first failure detection signal indicating that the failure of the laser diode 11a is detected to the monitor circuit 15 To do.
 レーザダイオード11bの両端にはバイパス回路12bが接続されている。バイパス回路12bは、レーザダイオード11bに故障が発生したときに、レーザダイオード11bを介さずに電流をバイパスさせ且つレーザダイオード11bの故障を検知したことを示す第2故障検知信号をモニタ回路15に出力する。 A bypass circuit 12b is connected to both ends of the laser diode 11b. When a failure occurs in the laser diode 11b, the bypass circuit 12b bypasses the current without passing through the laser diode 11b and outputs a second failure detection signal indicating that the failure of the laser diode 11b is detected to the monitor circuit 15 To do.
 レーザダイオード11cの両端にはバイパス回路12cが接続されている。バイパス回路12cは、レーザダイオード11cに故障が発生したときに、レーザダイオード11cを介さずに電流をバイパスさせ且つレーザダイオード11cの故障を検知したことを示す第3故障検知信号をモニタ回路15に出力する。 A bypass circuit 12c is connected to both ends of the laser diode 11c. The bypass circuit 12c, when a failure occurs in the laser diode 11c, bypasses the current without passing through the laser diode 11c and outputs a third failure detection signal indicating that the failure of the laser diode 11c is detected to the monitor circuit 15 To do.
 モニタ回路15は、バイパス回路12a~12cに接続され、バイパス回路12a~12cから送られてくる故障検知信号をモニタし、故障検知信号の数、即ち、故障したレーザダイオードの数をマイクロコンピュータ17に出力する。モニタ回路15は、バイパス回路12に流れる電流により発生する電圧値を検出するオペアンプなどである。 The monitor circuit 15 is connected to the bypass circuits 12a to 12c, monitors the failure detection signals sent from the bypass circuits 12a to 12c, and sends the number of failure detection signals, that is, the number of failed laser diodes to the microcomputer 17. Output. The monitor circuit 15 is an operational amplifier that detects a voltage value generated by a current flowing through the bypass circuit 12.
 マイクロコンピュータ17は、モニタ回路15から送られてくる故障したレーザダイオードの数に対応する電圧値、即ちレーザダイオードの順方向降下電圧VFに、故障したレーザダイオードの数を乗じた電圧値を電源電圧制御回路14に出力する。電源電圧制御回路14は、マイクロコンピュータ17から送られてくるレーザダイオードの順方向降下電圧VFに、故障したレーザダイオードの数を乗じた電圧値だけ可変電圧源10の電圧を下げる。 The microcomputer 17 supplies a voltage value corresponding to the number of failed laser diodes sent from the monitor circuit 15, that is, a voltage value obtained by multiplying the forward drop voltage VF of the laser diode by the number of failed laser diodes to the power supply voltage. Output to the control circuit 14. The power supply voltage control circuit 14 lowers the voltage of the variable voltage source 10 by a voltage value obtained by multiplying the forward drop voltage VF of the laser diode sent from the microcomputer 17 by the number of failed laser diodes.
 電流制御回路16は、マイクロコンピュータ17から送られてくる故障したレーザダイオードの数に応じて、MOSFET13の定電流を制御する。電流制御回路16は、トランジスタに流すベース電流の大小を制御する方式や、FETのゲート電圧の大小を制御する方式により、一定電流を流す回路である。 The current control circuit 16 controls the constant current of the MOSFET 13 according to the number of failed laser diodes sent from the microcomputer 17. The current control circuit 16 is a circuit that allows a constant current to flow by a method for controlling the magnitude of the base current flowing through the transistor or a method for controlling the magnitude of the gate voltage of the FET.
 図2は本発明の実施形態に係る実施例1のレーザダイオードの駆動回路内のショート故障検知回路及びバイパス回路の詳細を示す図である。図2では、レーザダイオード11aについてのショート故障検知回路及びバイパス回路の構成を示したが、レーザダイオード11b,11cについてのショート故障検知回路及びバイパス回路の構成も同様である。 FIG. 2 is a diagram showing details of a short circuit failure detection circuit and a bypass circuit in the laser diode drive circuit of Example 1 according to the embodiment of the present invention. In FIG. 2, the configurations of the short-circuit failure detection circuit and the bypass circuit for the laser diode 11a are shown, but the configurations of the short-circuit failure detection circuit and the bypass circuit for the laser diodes 11b and 11c are the same.
 レーザダイオード11aのアノードには、ダイオード22のアノードが接続され、ダイオード22のカソードはコンパレータ23の非反転入力端子(+端子)に接続されている。レーザダイオード11aのカソードは、コンパレータ23の反転入力端子(-端子)に接続されている。ダイオード22とコンパレータ23とでレーザダイオード11aのショート(短絡)故障を検出するショート故障検知回路を構成する。 The anode of the diode 22 is connected to the anode of the laser diode 11 a, and the cathode of the diode 22 is connected to the non-inverting input terminal (+ terminal) of the comparator 23. The cathode of the laser diode 11 a is connected to the inverting input terminal (− terminal) of the comparator 23. The diode 22 and the comparator 23 constitute a short failure detection circuit that detects a short (short circuit) failure of the laser diode 11a.
 コンパレータ23の出力端子は、P型のMOSFETQ1のゲートGとモニタ回路15とに接続されている。MOSFETQ1のソースSは、レーザダイオード11aのアノードとダイオード22のアノードとに接続されている。MOSFETQ1のドレインDは、レーザダイオード11aのカソードに接続されている。MOSFETQ1は、レーザダイオード11aが故障したときにレーザダイオード11aを介さずに電流をパイバスさせる。 The output terminal of the comparator 23 is connected to the gate G of the P-type MOSFET Q1 and the monitor circuit 15. The source S of the MOSFET Q1 is connected to the anode of the laser diode 11a and the anode of the diode 22. The drain D of the MOSFET Q1 is connected to the cathode of the laser diode 11a. The MOSFET Q1 bypasses the current without going through the laser diode 11a when the laser diode 11a fails.
 次に、このように構成される実施形態の実施例1のレーザダイオードの駆動回路の動作を図2を参照しながら詳細に説明する。 Next, the operation of the laser diode drive circuit of Example 1 of the embodiment configured as described above will be described in detail with reference to FIG.
 まず、通常の状態では、可変電圧源10→抵抗R1→レーザダイオード11a→レーザダイオード11b→レーザダイオード11c→MOSFET13の経路で電流が流れる。レーザダイオードの順方向降下電圧を2V、ダイオードの順方向降下電圧を0.6Vとすると、コンパレータ23の+端子電圧は-端子電圧よりも約1.4V大きくなり、コンパレータ23の出力はHレベルとなる。このとき、バイパス回路12a内のMOSFETQ1はオフとなるため、バイパス回路12aには電流は流れない。 First, in a normal state, a current flows through the path of the variable voltage source 10 → the resistor R 1 → the laser diode 11 a → the laser diode 11 b → the laser diode 11 c → the MOSFET 13. If the forward drop voltage of the laser diode is 2V and the forward drop voltage of the diode is 0.6V, the + terminal voltage of the comparator 23 is about 1.4V larger than the − terminal voltage, and the output of the comparator 23 is H level. Become. At this time, the MOSFET Q1 in the bypass circuit 12a is turned off, so that no current flows in the bypass circuit 12a.
 一方、レーザダイオード11aがショート故障した場合には、レーザダイオード11aの順方向降下電圧が略0Vとなり、ダイオード22の順方向降下電圧(例えば0.6V)よりも小さくなる。このとき、コンパレータ23の出力はLレベルとなり、バイパス回路12aのMOSFETQ1はオンするので、バイパス回路12aに電流が流れる。 On the other hand, when the laser diode 11a is short-circuited, the forward voltage drop of the laser diode 11a is approximately 0V, which is smaller than the forward voltage drop (eg, 0.6V) of the diode 22. At this time, the output of the comparator 23 becomes L level and the MOSFET Q1 of the bypass circuit 12a is turned on, so that a current flows through the bypass circuit 12a.
 また、コンパレータ23から出力されるLレベルは、レーザダイオード11aのショート故障検知信号としてモニタ回路15に出力され、ショート故障検知信号はマイクロコンピュータ17に送られる。従って、レーザダイオード11aの故障を検知することができる。  Further, the L level output from the comparator 23 is output to the monitor circuit 15 as a short circuit failure detection signal of the laser diode 11 a, and the short circuit failure detection signal is sent to the microcomputer 17. Therefore, the failure of the laser diode 11a can be detected. *
 次に、図3を参照しながら、実施例2のレーザダイオードの駆動回路内のショート故障検知回路、オープン故障検知回路及びバイパス回路の構成を説明する。図3に示す実施例2では、図2に示す実施例1に対して、さらに、オープン故障検知回路31を備えたことを特徴とする。ショート故障検知回路30は、図2に示す構成と略同じであるが、コンパレータ23の出力端子がアンド回路34に接続されている点が異なる。 Next, the configuration of the short failure detection circuit, the open failure detection circuit, and the bypass circuit in the laser diode drive circuit of Example 2 will be described with reference to FIG. The second embodiment shown in FIG. 3 is characterized in that an open failure detection circuit 31 is further provided to the first embodiment shown in FIG. The short failure detection circuit 30 is substantially the same as the configuration shown in FIG. 2 except that the output terminal of the comparator 23 is connected to the AND circuit 34.
 オープン故障検知回路31は、差動増幅回路32、コンパレータ33とを備える。差動増幅回路32は、レーザダイオード11aの端子間電圧を増幅してコンパレータ33の反転入力端子に出力する。 The open failure detection circuit 31 includes a differential amplifier circuit 32 and a comparator 33. The differential amplifier circuit 32 amplifies the voltage across the laser diode 11 a and outputs the amplified voltage to the inverting input terminal of the comparator 33.
 コンパレータ33は、差動増幅回路32から出力される電圧が非反転端子に印加される電圧Vset以上であるときにHレベルをアンド回路34に出力し、差動増幅回路32から出力される電圧が電圧Vset未満であるときにLレベルをアンド回路34に出力する。電圧Vsetは、レーザダイオード11aがショート故障した時に、コンパレータ33がHレベルとなり、且つレーザダイオード11aがオープン故障した時に、コンパレータ33がLレベルとなる電圧に設定される。 The comparator 33 outputs an H level to the AND circuit 34 when the voltage output from the differential amplifier circuit 32 is equal to or higher than the voltage Vset applied to the non-inverting terminal, and the voltage output from the differential amplifier circuit 32 is When the voltage is lower than the voltage Vset, the L level is output to the AND circuit 34. The voltage Vset is set to a voltage at which the comparator 33 becomes H level when the laser diode 11a is short-circuited and the comparator 33 is L level when the laser diode 11a is open-failed.
 次に、図3に示すショート故障検知回路、オープン故障検知回路及びバイパス回路の動作を説明する。 Next, the operation of the short failure detection circuit, the open failure detection circuit, and the bypass circuit shown in FIG. 3 will be described.
 まず、レーザダイオード11aがオープン故障した場合には、レーザダイオード11aの両端電圧はレーザダイオードの順方向降下電圧よりも大きい電圧となり、差動増幅回路32からコンパレータ33の反転入力端子に出力される電圧は、電圧Vsetよりも大きくなる。このため、コンパレータ33はLレベルをアンド回路34に出力するので、MOSFETQ1がオンしてバイパス回路12aに電流が流れる。 First, when the laser diode 11a has an open failure, the voltage across the laser diode 11a becomes larger than the forward drop voltage of the laser diode, and the voltage output from the differential amplifier circuit 32 to the inverting input terminal of the comparator 33. Becomes larger than the voltage Vset. Therefore, the comparator 33 outputs the L level to the AND circuit 34, so that the MOSFET Q1 is turned on and a current flows through the bypass circuit 12a.
 また、アンド回路34からのLレベルがオープン故障検知信号としてモニタ回路15に出力されるので、マイクロコンピュータ17はレーザダイオード11aがオープン故障したことを検知することができる。 Since the L level from the AND circuit 34 is output to the monitor circuit 15 as an open failure detection signal, the microcomputer 17 can detect that the laser diode 11a has failed.
 また、レーザダイオード11aがショート故障した場合には、実施例1で説明したように、コンパレータ23からLレベルがアンド回路34に出力されるので、アンド回路34からLレベルがMOSFETQ1に出力されて、MOSFETQ1がオンしてバイパス回路12aに電流が流れる。 Further, when the laser diode 11a is short-circuited, the L level is output from the comparator 23 to the AND circuit 34 as described in the first embodiment, so that the L level is output from the AND circuit 34 to the MOSFET Q1. The MOSFET Q1 is turned on and a current flows through the bypass circuit 12a.
 なお、レーザダイオード11aが故障していない場合には、ショート故障検知回路30内のコンパレータ23の出力は、前述したようにHレベルとなる。一方、差動増幅回路32からの電圧は、電圧Vsetよりも小さいので、コンパレータ33は、Hレベルをアンド回路34に出力する。このため、MOSFETQ1はオフとなり、バイパス回路12aには電流は流れない。 If the laser diode 11a is not broken, the output of the comparator 23 in the short failure detection circuit 30 becomes H level as described above. On the other hand, since the voltage from the differential amplifier circuit 32 is smaller than the voltage Vset, the comparator 33 outputs the H level to the AND circuit 34. For this reason, the MOSFET Q1 is turned off, and no current flows through the bypass circuit 12a.
 次に、図4を参照しながら、レーザダイオードが故障したときにレーザ駆動電圧を下げる具体例を説明する。 Next, a specific example of lowering the laser drive voltage when a laser diode fails will be described with reference to FIG.
 例えば、レーザダイオード11bが故障した場合には、バイパス回路12bがレーザダイオード11bを介さずに電流をバイパスさせ、モニタ回路15は、レーザダイオード11bが故障したことを検知して、マイクロコンピュータ17に出力する。 For example, when the laser diode 11b fails, the bypass circuit 12b bypasses the current without passing through the laser diode 11b, and the monitor circuit 15 detects that the laser diode 11b has failed and outputs it to the microcomputer 17. To do.
 マイクロコンピュータ17は、レーザダイオード11bの順方向効果電圧VFを電源電圧制御回路14に出力する。電源電圧制御回路14は、マイクロコンピュータ17から送られてくるレーザダイオード11bの順方向効果電圧VFだけ、可変電圧源10の電圧を下げる。 The microcomputer 17 outputs the forward effect voltage VF of the laser diode 11b to the power supply voltage control circuit 14. The power supply voltage control circuit 14 lowers the voltage of the variable voltage source 10 by the forward effect voltage VF of the laser diode 11b sent from the microcomputer 17.
 従って、図4に示すように、レーザダイオード11bが故障した場合、レーザ駆動に用いる電圧源の電圧値を下げることができ、MOSFET13に印加される電圧が増加しない。この結果、レーザ装置の発熱が減り、レーザ装置の長寿命化を図ることができる。 Therefore, as shown in FIG. 4, when the laser diode 11b fails, the voltage value of the voltage source used for laser driving can be lowered, and the voltage applied to the MOSFET 13 does not increase. As a result, heat generation of the laser device is reduced, and the life of the laser device can be extended.
 また、電源電圧制御回路14は、図4に示すように、レーザダイオード11a~11cの故障時のレーザダイオードの電源電圧の減少量Vdcを、レーザダイオード11a~11cの順方向降下電圧VFよりも小さい値に設定しても良い。即ち、故障時のレーザダイオードの電源電圧の減少量Vdcは、順方向降下電圧VFのバラツキを考慮して最小値にする。 Further, as shown in FIG. 4, the power supply voltage control circuit 14 reduces the power supply voltage decrease Vdc of the laser diode 11a to 11c when the laser diodes 11a to 11c fail, to be smaller than the forward drop voltage VF of the laser diodes 11a to 11c. It may be set to a value. That is, the reduction amount Vdc of the power supply voltage of the laser diode at the time of failure is set to the minimum value in consideration of the variation in the forward voltage drop VF.
 また、電源電圧制御回路14に例えば、可変DCDCコンバータを用いることができる。可変DCDCコンバータの設定可能な電圧値が離散的である場合、MOSFET13に印加される余分な電圧が最も小さくなるように、マイクロコンピュータ17により可変電圧源10の電圧値を決定する。あるいは、可変DCDCコンバータに代えて、レーザダイオードの故障数に応じて、DCDCコンバータの出力電圧が異なるものを使用することもできる。 Further, for example, a variable DCDC converter can be used for the power supply voltage control circuit 14. When the settable voltage value of the variable DCDC converter is discrete, the voltage value of the variable voltage source 10 is determined by the microcomputer 17 so that the extra voltage applied to the MOSFET 13 is minimized. Alternatively, instead of the variable DCDC converter, one having a different output voltage of the DCDC converter according to the number of failures of the laser diode can be used.
 さらに、バイパス回路12a~12cにバイパスされた電流により生ずるバイパス回路12a~12cの順方向降下電圧は、レーザダイオード11a~11cの順方向降下電圧(VF例えば2V)に比べて小さく、例えば10mVとする。バイパス回路12a~12cの電圧降下は10mVより大きくてよい。 Further, the forward voltage drop of the bypass circuits 12a to 12c caused by the current bypassed by the bypass circuits 12a to 12c is smaller than the forward voltage drop (VF, for example, 2V) of the laser diodes 11a to 11c, for example, 10 mV. . The voltage drop across the bypass circuits 12a-12c may be greater than 10 mV.
 また、実施形態では、レーザダイオードの数は3つとしたが、レーザダイオードは、2つ以上であれば良い。 In the embodiment, the number of laser diodes is three, but the number of laser diodes may be two or more.
 このように実施形態のレーザダイオードの駆動回路及びレーザ装置によれば、直列に接続された複数のレーザダイオード11a~11cの両端に印加される可変電圧源10と、複数のレーザダイオード11a~11cに対応して設けられ、各々のレーザダイオード11a~11cの両端に接続され、前記レーザダイオード11a~11cの故障を検出するとともにレーザダイオード11a~11cをバイパスさせる複数のバイパス回路12a~12cと、前記複数のバイパス回路12a~12cからのレーザダイオードの故障の数に応じて、前記可変電圧源10の電圧値を低下させる電源電圧制御回路14とが備えられる。 As described above, according to the laser diode driving circuit and the laser apparatus of the embodiment, the variable voltage source 10 applied to both ends of the plurality of laser diodes 11a to 11c connected in series and the plurality of laser diodes 11a to 11c are connected. A plurality of bypass circuits 12a to 12c provided correspondingly and connected to both ends of each of the laser diodes 11a to 11c to detect a failure of the laser diodes 11a to 11c and to bypass the laser diodes 11a to 11c; And a power supply voltage control circuit 14 for reducing the voltage value of the variable voltage source 10 according to the number of laser diode failures from the bypass circuits 12a to 12c.
 可変電圧源10の初期の電源電圧を例えばVcc、故障したレーザダイオードの数をn、レーザダイオードの順方向降下電圧をVFとすると、故障したレーザダイオードの数nに応じて、電源電圧を例えば、Vcc-(n×VF)だけ下げる。 If the initial power supply voltage of the variable voltage source 10 is, for example, Vcc, the number of failed laser diodes is n, and the forward drop voltage of the laser diode is VF, the power supply voltage is set according to the number n of failed laser diodes, for example: Decrease by Vcc- (n × VF).
 これにより、レーザダイオード故障時のトランジスタなどの電流制御素子に印加される電圧VCEの増加分をVFよりも小さく抑えられ、レーザダイオード故障時の電流制御素子の発熱を抑制することができる。また、レーザダイオードが故障した場合にもレーザ装置の長寿命化を図ることができる。 Thereby, an increase in voltage VCE applied to a current control element such as a transistor at the time of failure of the laser diode can be suppressed to be smaller than VF, and heat generation of the current control element at the time of laser diode failure can be suppressed. Further, the life of the laser device can be extended even when the laser diode fails.
 また、受光手段素子を設けないので、コストを低減できる。また、故障したレーザダイオードに流れる電流をバイパスさせることで、無駄な発熱を減らし、他のレーザダイオードの寿命を長くすることができる。 Also, since no light receiving element is provided, the cost can be reduced. Further, by bypassing the current flowing through the failed laser diode, useless heat generation can be reduced and the life of other laser diodes can be extended.
 なお、本発明のレーザダイオードの駆動回路は、前記したレーザ加工装置へ適用されるのに留まらず、例えば、レーザ照明装置への適用も可能である。 The laser diode drive circuit of the present invention is not limited to the laser processing apparatus described above, and can be applied to, for example, a laser illumination apparatus.
 本発明は、レーザ加工装置、レーザ照明装置等の高出力レーザ装置に適用可能である。 The present invention is applicable to high-power laser devices such as laser processing devices and laser illumination devices.

Claims (4)

  1.  直列に接続された複数のレーザダイオードと、
     前記複数のレーザダイオードの両端に印加される可変電圧源と、
     前記複数のレーザダイオードに対応して設けられ、各々のレーザダイオードの両端に接続され、前記レーザダイオードの故障を検出するとともに前記レーザダイオードをバイパスさせる複数のバイパス回路と、
     前記複数のバイパス回路からの前記レーザダイオードの故障時に前記可変電圧源の電圧値を低下させる電源電圧制御回路と、
    を備えるレーザダイオードの駆動回路。
    A plurality of laser diodes connected in series;
    A variable voltage source applied across the plurality of laser diodes;
    A plurality of bypass circuits provided corresponding to the plurality of laser diodes, connected to both ends of each laser diode, and detecting a failure of the laser diode and bypassing the laser diode;
    A power supply voltage control circuit for lowering the voltage value of the variable voltage source when the laser diode fails from the plurality of bypass circuits;
    A laser diode drive circuit comprising:
  2.  前記電源電圧制御回路は、前記複数のバイパス回路からの前記レーザダイオードの故障の数に前記レーザダイオードの順方向降下電圧を乗算した値に基づき前記電圧源の電圧値を低下させる請求項1記載のレーザダイオードの駆動回路。 The power supply voltage control circuit reduces the voltage value of the voltage source based on a value obtained by multiplying the number of failures of the laser diode from the plurality of bypass circuits by a forward drop voltage of the laser diode. Laser diode drive circuit.
  3.  前記電源電圧制御回路は、前記レーザダイオードの故障時のレーザダイオードの電源電圧の減少量は、前記レーザダイオードの順方向降下電圧よりも小さい請求項1又は2記載のレーザダイオードの駆動回路。 3. The laser diode drive circuit according to claim 1, wherein the power supply voltage control circuit is configured such that a reduction amount of the power supply voltage of the laser diode when the laser diode fails is smaller than a forward drop voltage of the laser diode.
  4.  請求項1乃至3のいずれか1項記載のレーザダイオードの駆動回路と、
     前記複数のレーザダイオードの各々から出力されるレーザ光を合成する合波部と、
     前記合波部で合成されたレーザ光を収束する収束部と、
    を備えるレーザ加工装置。
    A laser diode drive circuit according to any one of claims 1 to 3,
    A multiplexing unit that combines laser beams output from each of the plurality of laser diodes;
    A converging unit for converging the laser beam synthesized in the multiplexing unit;
    A laser processing apparatus comprising:
PCT/JP2014/059202 2014-03-28 2014-03-28 Laser-diode drive circuit and laser device WO2015145742A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/059202 WO2015145742A1 (en) 2014-03-28 2014-03-28 Laser-diode drive circuit and laser device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/059202 WO2015145742A1 (en) 2014-03-28 2014-03-28 Laser-diode drive circuit and laser device

Publications (1)

Publication Number Publication Date
WO2015145742A1 true WO2015145742A1 (en) 2015-10-01

Family

ID=54194329

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/059202 WO2015145742A1 (en) 2014-03-28 2014-03-28 Laser-diode drive circuit and laser device

Country Status (1)

Country Link
WO (1) WO2015145742A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3247173A3 (en) * 2016-05-17 2018-01-24 Rohm Co., Ltd. Integrated circuit for driving a light emitting element
CN112119549A (en) * 2018-05-18 2020-12-22 松下知识产权经营株式会社 Direct diode laser type laser oscillation device and method for diagnosing failure of laser oscillation device
US20220006259A1 (en) * 2018-11-16 2022-01-06 Sony Semiconductor Solutions Corporation Detection circuit, driving circuit, and light emitting device
US20220006258A1 (en) * 2018-11-27 2022-01-06 Sony Semiconductor Solutions Corporation Drive device and light emitting device
US11996673B2 (en) * 2018-11-27 2024-05-28 Sony Semiconductor Solutions Corporation Drive device and light emitting device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005057036A (en) * 2003-08-04 2005-03-03 Laserfront Technologies Inc Fault detection method of laser diode, semiconductor laser equipment and semiconductor laser excitation solid-state laser equipment
JP4274244B2 (en) * 2004-12-08 2009-06-03 三菱電機株式会社 Laser diode pumped solid state laser oscillator and laser diode control method in the oscillator
JP2009134933A (en) * 2007-11-29 2009-06-18 Mitsubishi Electric Corp Led lighting device, and headlight for vehicle
JP2011060563A (en) * 2009-09-10 2011-03-24 Shindengen Electric Mfg Co Ltd Led lighting device and led lighting method
JP2012231181A (en) * 2012-08-01 2012-11-22 Casio Comput Co Ltd Semiconductor light source device, method of controlling semiconductor light source and projection device
JP2014017463A (en) * 2012-06-11 2014-01-30 Koito Mfg Co Ltd Light source control device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005057036A (en) * 2003-08-04 2005-03-03 Laserfront Technologies Inc Fault detection method of laser diode, semiconductor laser equipment and semiconductor laser excitation solid-state laser equipment
JP4274244B2 (en) * 2004-12-08 2009-06-03 三菱電機株式会社 Laser diode pumped solid state laser oscillator and laser diode control method in the oscillator
JP2009134933A (en) * 2007-11-29 2009-06-18 Mitsubishi Electric Corp Led lighting device, and headlight for vehicle
JP2011060563A (en) * 2009-09-10 2011-03-24 Shindengen Electric Mfg Co Ltd Led lighting device and led lighting method
JP2014017463A (en) * 2012-06-11 2014-01-30 Koito Mfg Co Ltd Light source control device
JP2012231181A (en) * 2012-08-01 2012-11-22 Casio Comput Co Ltd Semiconductor light source device, method of controlling semiconductor light source and projection device

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3247173A3 (en) * 2016-05-17 2018-01-24 Rohm Co., Ltd. Integrated circuit for driving a light emitting element
US10360969B2 (en) 2016-05-17 2019-07-23 Rohm Co., Ltd. Light emitting element driving semiconductor integrated circuit, light emitting element driving device, light emitting device, and vehicle
CN112119549A (en) * 2018-05-18 2020-12-22 松下知识产权经营株式会社 Direct diode laser type laser oscillation device and method for diagnosing failure of laser oscillation device
EP3796490A4 (en) * 2018-05-18 2021-06-30 Panasonic Intellectual Property Management Co., Ltd. Laser oscillation device for direct-diode laser method and failure diagnosis method for laser oscillation device
US20220006259A1 (en) * 2018-11-16 2022-01-06 Sony Semiconductor Solutions Corporation Detection circuit, driving circuit, and light emitting device
US11962124B2 (en) * 2018-11-16 2024-04-16 Sony Semiconductor Solutions Corporation Detection circuit, driving circuit, and light emitting device
US20220006258A1 (en) * 2018-11-27 2022-01-06 Sony Semiconductor Solutions Corporation Drive device and light emitting device
US11996673B2 (en) * 2018-11-27 2024-05-28 Sony Semiconductor Solutions Corporation Drive device and light emitting device

Similar Documents

Publication Publication Date Title
JP5636241B2 (en) LED drive device
KR100905844B1 (en) Apparatus for driving light emitting element
US8144111B2 (en) Light emitting diode driving circuit having voltage detection
US10152926B2 (en) Driving circuit for light emitting element, light emitting device using same, and display apparatus
JP5947035B2 (en) LED driving device and lighting apparatus
US10511144B2 (en) Semiconductor light-emitting device
JP2010287601A (en) Light emitting element drive unit
US9210781B2 (en) Light source device and projector
KR20110123547A (en) Lighting driving apparatus
WO2015145742A1 (en) Laser-diode drive circuit and laser device
US9603227B2 (en) Semiconductor light source driving apparatus
US10763642B2 (en) Driver circuit and processing device
JP2007236095A (en) Power supply for led and light irradiation apparatus
JP2020047957A (en) Semiconductor laser drive circuit
JP5054236B1 (en) LED lighting device
JP2016021506A (en) Laser light source controller and laser pointer
JP6772637B2 (en) Semiconductor light emitting element drive circuit
JP2018093231A (en) Semiconductor laser drive circuit
CN108886234B (en) Laser light source module and method for determining fault laser diode
JP5426255B2 (en) Light source control circuit, light source control method, light source device
JP2012253876A (en) Load driving device
JP5214047B1 (en) LED lighting device
JP2010283740A (en) Photo mos relay drive circuit, and semiconductor test device using the same
JP2020198244A (en) Led driving device and display apparatus, and control apparatus for the led driving device
JP6245364B2 (en) Semiconductor laser device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14886980

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 14886980

Country of ref document: EP

Kind code of ref document: A1