WO2015142029A1 - 3-dimensional cardiac outline reconstruction method - Google Patents

3-dimensional cardiac outline reconstruction method Download PDF

Info

Publication number
WO2015142029A1
WO2015142029A1 PCT/KR2015/002569 KR2015002569W WO2015142029A1 WO 2015142029 A1 WO2015142029 A1 WO 2015142029A1 KR 2015002569 W KR2015002569 W KR 2015002569W WO 2015142029 A1 WO2015142029 A1 WO 2015142029A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
contour
source current
heart
vector
Prior art date
Application number
PCT/KR2015/002569
Other languages
French (fr)
Korean (ko)
Inventor
김기웅
하태훈
권혁찬
이용호
김진목
Original Assignee
한국표준과학연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국표준과학연구원 filed Critical 한국표준과학연구원
Priority to CN201580015416.3A priority Critical patent/CN106132288B/en
Publication of WO2015142029A1 publication Critical patent/WO2015142029A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/242Detecting biomagnetic fields, e.g. magnetic fields produced by bioelectric currents
    • A61B5/243Detecting biomagnetic fields, e.g. magnetic fields produced by bioelectric currents specially adapted for magnetocardiographic [MCG] signals

Definitions

  • the present invention relates to a method for reconstructing a cardiac contour, and to a method for forming a cardiac contour in three dimensions by using multichannel data measured by a cardiac conduction device without the help of an anatomical imaging device such as an MRI device.
  • Magnetocardiography measures heart disease by measuring the magnetic signals generated by the electrical activity of the myocardium through a superconducting quantum interference device (SQUID) sensor, an ultra-sensitive magnetic sensor. It is a device to diagnose non-invasive. Multi-channel data measured by a core map device can be used to localize lesions of heart disease. In particular, localizing the lesion of the heart disease in the three-dimensional cardiac model allows the doctor to intuitively show the information of the lesion.
  • SQUID superconducting quantum interference device
  • anatomical image data measured by a patient's X-ray computed tomography (CT) device or magnetic resonance imaging (MRI) device is required.
  • CT computed tomography
  • MRI magnetic resonance imaging
  • the patient may be exposed to unnecessary radiation exposure or a strong magnetic field.
  • a process of segmenting the heart with anatomical image data is required. The cardiac separation process may be time consuming, although the expert may work manually or use an automated cardiac separation algorithm.
  • the non-adaptive spatial filtering method has a limitation in accurately generating a three-dimensional cardiac model because the estimation of a deep signal source is not accurate.
  • One technical problem to be solved of the present invention is to provide a three-dimensional cardiac visualization or mapping method.
  • the cardiac contour reconstruction method is a method for reconstructing a source current vector obtained using an array-gain constraint minimum-norm with recursively updated gram matrix (AGN-RUG) spatial filter. Obtaining a first contour of the heart from source current power; Obtaining a second contour of the heart by applying a coherence mapping method; And combining the first contour and the second contour to form a third contour of the heart.
  • AGN-RUG array-gain constraint minimum-norm with recursively updated gram matrix
  • obtaining a first contour of the heart comprises: measuring a magnetic signal generated in the myocardium using a cardiac diagram device; Extracting a cardiac magnetic signal of a P-wave and a T-wave interval representing atrial and ventricle from a multi-channel measured cardiac signal; Calculating a magnetic field (leadfield vector) using a horizontally layered volume conductor model approximating the unit source current of the heart and the position information of the core magnetic sensor; And normalizing the leadfield vector to compensate for the size of the signal source over distance.
  • obtaining the first contour of the heart comprises: initializing an arbitrary weight matrix to an identity matrix; Obtaining a gram matrix by combining the leadfield vector with an arbitrary weight matrix; Setting a normalization parameter in the obtained gram matrix in consideration of the signal-to-noise ratio of the measurement signal; Obtaining an array-gain constraint minimum-norm spatial filter by combining the normalized gram matrix and the normalized leadfield vector; Obtaining power of an estimated source current vector using the obtained array gain limit spatial filter and the measured atrial and ventricular signals; Checking whether the power of the obtained source current vector converges to a constant value; Updating the weighted matrix using the estimated source vector when the obtained power of the source current vector does not converge to a constant value; Normalizing the power of the obtained estimated source current vector; And reconstructing the first contour of the atrium and the ventricle by applying the first threshold value set as the signal-to-noise ratio to the power of the normalized source current vector.
  • the step of obtaining a second contour of the heart by applying a coherence mapping method includes: finding points at which the power of the source current vector is greatest in the atria and the ventricles, respectively; Reconstructing signal waveforms (estimated source current vectors) in all source regions by linearly combining the measured core signal and the minimum-size spatial filter of the regression update gram matrix array gain; Fast Fourier transforming the reconstructed signal waveform (estimated source current vector); Obtaining cross-spectrum and auto-spectrum for all source regions in the atria and ventricles using the fast Fourier transformed signal; Combining the obtained inter-spectrum with the self-spectrum to obtain coherence of the atrium and ventricular coherence; Normalizing the coherence of the obtained atrium and ventricles; And reconstructing the second contour of the atrium and the ventricles by applying a second threshold set to the normalized coherence signal-to-noise ratio.
  • the cardiac contour reconstruction method is a method for reconstructing a source current vector obtained using an array-gain constraint minimum-norm with recursively updated gram matrix (AGN-RUG) spatial filter.
  • AGN-RUG array-gain constraint minimum-norm with recursively updated gram matrix
  • deriving the outline of the heart may include measuring a magnetic signal generated in the myocardium using a cardiac diagram device; Extracting a cardiac magnetic signal of a P-wave and a T-wave interval representing atrial and ventricle from a multi-channel measured cardiac signal; Calculating a magnetic field (leadfield vector) using a horizontally layered volume conductor model approximating the unit source current of the heart and the position information of the core magnetic sensor; And normalizing the leadfield vector to compensate for the size of the signal source over distance.
  • the method comprises: initializing an arbitrary weight matrix to a unitary matrix; Obtaining a gram matrix by combining the leadfield vector with an arbitrary weight matrix; Adding a normalization parameter to the obtained gram matrix in consideration of the signal-to-noise ratio of the measurement signal; Obtaining an array-gain constraint minimum-norm spatial filter by combining the normalized gram matrix and the normalized leadfield vector; Obtaining power of an estimated source current vector using the obtained array gain limit spatial filter and the measured atrial and ventricular signals; Checking whether the power of the obtained source current vector converges to a constant value; Updating the weighted matrix using the estimated source vector when the obtained power of the source current vector does not converge to a constant value; Normalizing the power of the obtained estimated source current vector; The method may further include reconstructing the atrium and the ventricles by applying the threshold of the normalized source current vector to a signal-to-noise ratio.
  • Cardiac contour reconstruction method comprises the steps of obtaining the point where the power of the source current vector is the largest in the atrium and ventricles, respectively; Reconstructing the signal waveforms (estimated source current vectors) in all source regions by linearly combining the measured core signal and the minimum size spatial filter of the regression update gram matrix array gain; Fast Fourier transforming the reconstructed signal waveform (estimated source current vector); Obtaining cross-spectrum and auto-spectrum for all source regions in the atria and ventricles using the fast Fourier transformed signal; Combining the obtained inter-spectrum with the self-spectrum to obtain coherence of the atrium and ventricular coherence; Normalizing the coherence of the obtained atrium and ventricles; And reconstructing the atrium and ventricles by applying a threshold set to the normalized coherence signal-to-noise ratio.
  • the recording medium which records the program according to an embodiment of the present invention can execute the above methods on a computer.
  • a core measurement system includes a core measurement sensor including a core sensor and a magnetic shield room and measuring a core signal; And a processor configured to reconstruct the contour of the heart by processing the core diagram signal.
  • the processing unit uses the heart current from the power of the source current vector obtained using an array-gain constraint minimum-norm with recursively updated gram matrix (AGN-RUG) spatial filter. 1 Find the outline.
  • the processor applies a coherence mapping method to obtain a second contour of the heart.
  • the processing unit combines the first contour and the second contour to form a third contour of the heart.
  • the cardiac contour three-dimensional reconstruction method it is possible to reconstruct the heart model using only the MCG data of the patient without the use of CT or MRI apparatus required to obtain an anatomical image.
  • patients can avoid the risk of exposure to unnecessary radiation or strong magnetic fields.
  • the imaging apparatus is not used, the economic burden on the patient can be reduced.
  • cardiac separation is not necessary to make a cardiac model, it can be used to diagnose a patient in real time using an MCG device.
  • FIG. 1 is a flowchart illustrating a 3D heart contour reconstruction method according to an embodiment of the present invention.
  • FIG 2, 3, and 4 are flowcharts illustrating a three-dimensional heart contour reconstruction method according to an embodiment of the present invention.
  • FIG. 5 is a view illustrating a core measurement apparatus according to an embodiment of the present invention.
  • FIG. 6 is a diagram illustrating cardiac waveform extraction from a multi-channel measured core map signal according to an embodiment of the present invention.
  • FIG. 7 is a diagram illustrating a relationship between a source space and a sensor space required for calculating a lead-field vector of a core diagram according to an embodiment of the present invention.
  • FIG. 8 illustrates coherence mapping of the atria in accordance with one embodiment of the present invention.
  • FIG 9 illustrates coherence mapping of the ventricles according to an embodiment of the present invention.
  • FIG. 10 is a diagram illustrating a virtual source space and a virtual heart for numerical simulation according to an embodiment of the present invention.
  • FIG. 11 is a diagram showing the results of numerical simulations according to an embodiment of the present invention.
  • FIG. 12 is a diagram illustrating a cardiac phantom for a model experiment according to an embodiment of the present invention.
  • FIG. 13 is a diagram illustrating a numerical simulation result using the model heart of FIG. 12.
  • 3-D cardiac visualization or mapping methods are useful for magnetocardiography (MCG) clinical applications.
  • MCG magnetocardiography
  • cardiac reconstruction requires additional image modalities.
  • the strength of cardiac activities can be represented by an array-gain constraint minimum-norm with recursively updated gram matrix (AGN-RUG) spatial filter.
  • AGN-RUG array-gain constraint minimum-norm with recursively updated gram matrix
  • Cardiac contour three-dimensional reconstruction method does not use an anatomical image obtained from a CT or MRI device, and generates a three-dimensional heart contour using only the cardiac diagram (MCG) data measured from the patient It is a way.
  • the cardiac first contour of the heart is obtained from the source current power obtained using an array-gain constraint minimum-norm with recursively updated gram matrix (AGN-RUG) spatial filter. Is saved.
  • AGN-RUG array-gain constraint minimum-norm with recursively updated gram matrix
  • a second contour of the heart is obtained by applying a coherence mapping method.
  • the first contour and the second contour are combined to form a third contour of the heart.
  • the magnetic core diagram is a device that can non-invasively measure the magnetic field generated in the myocardium. Because of its excellent time and spatial resolution, cardiac diagrams are very useful in estimating reentrant excitation regions that cause myocardial ischemic regions or cardiac arrhythmia. . Recently, a study has been reported to visualize the recurrent excitatory region of the myocardium on the 3D cardiac surface using cardiac diagram. By visualizing cardiac electric activities on a three-dimensional cardiac model, many clinical applications are possible.
  • adaptive spatial filtering shows high spatial resolution.
  • Adaptive spatial filtering is resistant to noise interferences because it uses measurement geometry and covariance matrix. Spatial filtering is strong for weakly correlated signals, but exhibits large localization errors for strongly correlated signals. The electrical signals of the heart are strongly correlated. Therefore, localizing myocardial current sources with adaptive spatial filtering results in large errors. Therefore, both non-adaptive spatial and adaptive spatial filtering have limitations in reconstructing 3D cardiac models.
  • the spatial filter may derive a result corresponding to the adaptive spatial filter based on the non-adaptive spatial filter. Therefore, the spatial filter can be used to generate a cardiac model more accurately by avoiding problems caused by strongly correlated myocardial signals.
  • FIG. 1 is a flowchart illustrating a 3D heart contour reconstruction method according to an embodiment of the present invention.
  • FIG 2, 3, and 4 are flowcharts illustrating a three-dimensional heart contour reconstruction method according to an embodiment of the present invention.
  • the three-dimensional cardiac contour reconstruction method includes an array-gain constraint minimum-norm with recursively updated gram matrix (AGNN-RUG).
  • AGNN-RUG array-gain constraint minimum-norm with recursively updated gram matrix
  • Obtaining a first contour of the heart is processed as follows.
  • the core diagram signal generated in the myocardium is measured using the core diagram apparatus (S110).
  • the cardiac magnetic signals b a (t) and b v (t) of the P and T wave sections representing the atria and the ventricles are extracted from the cardiac signal measured by the multi-channel (S120).
  • a magnetic field (leadfield vector L (r)) is calculated using the unitary source current of the heart and the horizontally layered volume conductor model approximating the heart and the position information of the core magnetic sensor (S130). In order to compensate for the size of the signal source according to the distance, the leadfield vector is normalized (S140).
  • a method for obtaining an array-gain constraint minimum-norm with recursively updated gram matrix (AGN-RUG) spatial filter is introduced.
  • the arbitrary weight matrix H (r) is initialized to the unitary matrix I (S150).
  • a gram matrix G is obtained by combining the lead field vector L (r) and the arbitrary weight matrix H (r) (S160).
  • a regularization parameter ( ⁇ ) is set in the obtained gram matrix G in consideration of the signal-to-noise ratio of the measurement signal (S170).
  • An array-gain constraint minimum-norm spatial filter is obtained by combining the normalized gram matrix G and the normalized leadfield vector (S180).
  • the estimated source current vector and the estimated source current power are obtained using the obtained array gain limit size filter and the measured atrium and ventricular signals (S191). It is checked whether the obtained power of the estimated source current converges to a constant value (S192). If the obtained power of the estimated source current does not converge to a constant value, the weight matrix is updated using the estimated source current vector (S193). When the obtained power of the estimated source current converges to a constant value, the power of the obtained estimated source current vector is normalized (S194).
  • the first contour of the atrium and the ventricles is reconstructed (195) by applying the normalized estimated source current power with a 1-1 threshold and a 1-2 threshold set to a signal-to-noise ratio.
  • the step of obtaining the second contour of the heart by applying the coherence mapping method is as follows.
  • the estimated source current vector of the heart or the estimated source current of the heart is calculated.
  • the points r a and r v having the largest power of the source current in the atrium and the ventricles are obtained, respectively (S210).
  • a linear combination of the measured cardiac magnetic signal and the regression-update-gram matrix array-restricted minimum-size spatial filter provides a source current signal waveform ( ) Is reconstructed (S220).
  • the source current signal waveform may use the value calculated in S191.
  • the reconstructed source current signal waveform is fast Fourier transformed (S230).
  • Cross-spectrum ( ⁇ aq (f), ⁇ vq (f)) and auto-spectrum ( ⁇ aa ) for all source regions in the atrium and ventricles using the fast Fourier transformed signal f), ⁇ vv (f)) are obtained (S240).
  • the atrial cross-spectrum is cross-correlation between the point where the source current has the greatest power in the atrium and another point.
  • the ventricular cross-spectrum is a cross-correlation between the point where the source current power is largest in the ventricle and another point.
  • the atrial self-spectrum is auto-correlation of the point where the source current has the greatest power in the atrium.
  • the ventricular self-spectrum is auto-correlation of the point where the power of the source current in the ventricle is greatest.
  • Atrial coherence and ventricular coherence are obtained by combining the obtained cross-spectrum and self-spectrum (S250).
  • the coherence can be standardized.
  • the second contour of the atrium and the ventricles is reconstructed by applying the normalized coherence to the 2-1 threshold and the 2-2 threshold set to the signal-to-noise ratio (S260).
  • first contour and the second contour are combined with each other to form a third contour of the heart (S300).
  • FIG. 5 is a view illustrating a core measurement apparatus according to an embodiment of the present invention.
  • the core measurement apparatus 100 is installed in a magnetically shielded room 101.
  • the core device 100 includes a 64 channel superconducting quantum interference device (SQUID).
  • the pickup coil is a first order axial gradiometer with a baseline of 70 mm.
  • the noise level of each SQUID sensor 112 is 5 fT rms / Hz 1/2 at 100 Hz and the sampling rate is 500 Hz.
  • the SQUID sensor 112 measures a fine magnetic signal generated in the human body.
  • the SQUID sensor 112 may operate in a cryogenic state below minus 250 degrees. Therefore, the SQUID sensor is installed inside the cooling means 114 to maintain the cryogenic temperature.
  • the cooling means 114 may be disposed inside the dewar 116.
  • the driving circuit 124 drives the core drawing device.
  • the amplifier and filter 118 is disposed inside the magnetic autism chamber.
  • the power supply unit may supply power to the amplifier and the filter 118 and the like.
  • the measured core figure signal is transmitted to the processing unit 122 and signal processed and analyzed (S110).
  • FIG. 6 is a diagram illustrating cardiac waveform extraction from a multi-channel measured core map signal according to an embodiment of the present invention.
  • the P, Q, R, S, and T peaks appear sequentially.
  • the section including the P peak is separated into P waves
  • the section including the Q, R, and S peaks is separated into QRS waves
  • the section containing the T peak is separated into T waves.
  • the P wave (b a (t)) of the heart waveforms is a signal generated in the atrium
  • the QRS wave is a signal generated when the ventricles contract
  • the T wave (b v (t)) occurs when the ventricles relax Is a signal.
  • the start and end portions of the P wave are extracted to generate the atrial model, and the start and end portions of the T wave are extracted to generate the ventricular model (S120).
  • the extracted P wave (a b (t)) and T wave (b v (t)) is given by:
  • n is the number of core sensors and t is the extraction interval of the heart waveform.
  • the superscript T is the transpose of the matrix.
  • FIG. 7 is a diagram illustrating a relationship between a source space and a sensor space required for calculating a lead-field vector of a core diagram according to an embodiment of the present invention.
  • the lead field vector is a magnetic field calculated in the sensor space when the unit current source and the conductor model are known.
  • the source current is an equivalent current dipole (ECD) having a magnitude and a direction.
  • ECD equivalent current dipole
  • the human body can be regarded as a conductor space z ⁇ 0 having a constant electrical conductivity.
  • the conductor model is a horizontally layered conductor model. The planar body model assumes that the plane below (z ⁇ 0) is a conductor and the plane above (z> 0) is an insulator.
  • the source current is in the conductor space.
  • a source space V is selected from the conductor spaces.
  • the heart is in the source space (V).
  • the source space may be a cuboid based on an xyz rectangular coordinate system.
  • the source space may be composed of voxels divided by 10 mm units.
  • the source space may be 150 mm in the x-axis direction, 170 mm in the y-axis direction, and 150 mm in the z-axis direction. Accordingly, the total number of voxels Q may be 3314.
  • a measurement region z> 0 is arranged outside the conductor space.
  • the core sensor 112 may be a SQUID sensor. Location information of the core sensor is already known.
  • the SQUID sensor 112 may include a first order axial gradiometer having a baseline of 70 mm.
  • the spatial filter method can reconstruct the heart model.
  • the total number of sources is Q.
  • the source vector may indicate the magnitude and direction of the source current.
  • the lead field vector l (r) calculated in one direction from one current source may be represented by Equation 2, and the total lead field vector L (r) for the entire current source Q is represented by Equation 3 It may be (S130).
  • the source vectors of the atrium and ventricles are s a (r, t) and s v (r , t).
  • the lead field vector L (r) and the source vector s a (r, t) and s v (r, t) are linearly combined, the magnetic field of the atrium and the ventricle calculated in the sensor space is b a (t) , b v (t)) can be calculated as in Equation 4.
  • V represents the source space
  • Spatial filters are a technology used in sensor arrays for signal transmission and reception.
  • the spatial filter (W T a, T W v) is the weight vector (weight vector). Accordingly, the signal of the source current can be estimated by linearly multiplying the measured magnetic field (core signal) by the spatial filters W T a and W T v . That is, the estimated source current vector of the atrium and the ventricles may be represented by Equation 5.
  • the estimated source current vectors s a (r, t) and s v (r, t) of the atria and the ventricles are included in the total estimated source current vectors s (r, t)
  • the power of the estimated source current vectors is increased.
  • the equations derived to obtain are described without atrial subscript (a) and ventricular subscript (v).
  • the estimated source current vector may be expressed as Equation 6.
  • r is a target source position and r 'is a position other than the target source.
  • a minimum-norm-based spatial filter can be derived by solving the optimization problem under the following constraint.
  • Equation 8 Represents the gain of the sensor array.
  • C (W) is a cost function and represents the sum of the total leakage currents.
  • the cost function C (W) may be expressed as Equation 8.
  • tr ⁇ is the trace of the diagonal components of the matrix
  • ⁇ (r) is the delta function
  • H (r ') is an arbitrary weight matrix
  • the gram matrix of the atrium and the ventricles (Gram matrix, G a , G v ) may be defined as shown in Equation 9 by combining the lead field vector with arbitrary weight matrices of the atria and ventricles.
  • Normalized leadfield vector ( ) May be represented as in Equation 10 (S140).
  • the normalized lead field vector ( ) And the gram matrix G (r) are linearly combined to obtain a spatial filter or weight vector as follows.
  • MV spatial filters are the most popular adaptive spatial filters in the field of bioelectromagnetism.
  • the covariance matrix is an ensemble average of the measured data b (t) as Can be defined as
  • the minimally distributed spatial filter can be derived by solving an optimization problem under the constraint of the following equation.
  • the minimum distributed spatial filter is the normalized lead field vector ( )
  • the covariance matrix (D) can be obtained as follows.
  • Equation 4 Equation 4 to the covariance matrix (D) can be expressed as follows.
  • the arbitrary weight matrix H (r) is the source power matrix. Similar to Therefore, if the weight matrix H (r) is replaced with the source power matrix, it can be expected that the performance of the minimum size spatial filter is similar to the minimum distributed spatial filter.
  • the condition number of a function is a number that indicates how the output value changes due to a small change in the input variable.
  • the actual number of conditions in the gram matrix is very large.
  • the noise component in the gram matrix is a very small value, but when converted to the gram inverse, the small noise value changes significantly. Therefore, calculating the inverse of the gram matrix results in inaccurate results.
  • Applying a regularization method can reduce the gram inverse calculation error by removing noise components. Therefore, the modified minimum spatial gain spatial filter of the atria and the ventricles may be expressed as shown in Equation 15, respectively.
  • ⁇ a and ⁇ v are the normalization parameters of the atria and ventricles, and the normalization parameters are determined by the signal-to-noise ratio of the measured values.
  • Equation 14 Since the source current vectors s a (r, t) and s v (r, t) of the atria and the ventricles are unknown in Equation 14, the source currents are obtained to obtain the weighting matrix H a (r) and H v (r). Vector is estimated source current vector and It can be replaced with (S193).
  • the weight matrix is initialized to the unit matrix (S150).
  • the output value of the minimum gain spatial filter of array gain is obtained from Equation 15 (S180).
  • the source current vector estimated from Equation 5 To obtain (S191).
  • the weight matrix H (r) of Equation 9 is updated with the estimated source current vector.
  • the weight matrix H (r) is recursively updated through the first to fourth processes until the updated weight converges to a constant value (S193).
  • an estimated source current vector may be obtained from Equation 5.
  • the estimated source current power obtained may be normalized by dividing by the maximum magnitude (S194).
  • the first contour of the atrium and the ventricles are reconstructed by applying a first threshold set from the normalized estimated source current power from the signal-to-noise ratio. For example, when the first threshold is set to 0.5, only voxels having a value greater than or equal to the first threshold may be displayed in the source space. The outermost voxels of the voxels above the first threshold may be connected to one another to provide a first contour.
  • the first-first threshold may be set for the atrium, and the first-second threshold may be set for the ventricles.
  • the first contour may be formed with respect to the atrium and the ventricles, respectively.
  • the first threshold values of the atrium and the ventricles may be different.
  • Coherence refers to a phenomenon in which two or more waves interfere with each other in phase.
  • the ion permeability of the cardiomyocyte membrane varies according to the area.
  • myocardial currents show similar action potentials.
  • they show different action potentials. Therefore, by estimating the position of a signal source that matches the maximum signal source of the atrium and the ventricles, the contour can be reconstructed into the atrium and ventricular regions, respectively.
  • FIG. 8 illustrates coherence mapping of the atria in accordance with one embodiment of the present invention.
  • Figure 9 illustrates coherence mapping of the ventricles in accordance with an embodiment of the present invention.
  • the coherence analysis is a representative analysis method showing the correlation between signals according to frequency.
  • the coherence function for two signals of stationary state is a cross spectral density function and a magnetic spectral density ( It can be calculated from the auto spectral density function.
  • the estimated signal waveform (estimated source current vector) in the source region is reconstructed from the product of the spatial filter and the measured magnetic field from equation (5).
  • the time series of the waveform (estimated source current vector) reconstructed at the Q position is Appears.
  • Waveforms (estimated source vectors) at the point where the power of the atria and ventricle source currents are maximum Wow It may be represented as (S210).
  • Reconstructed Time Series Waveform (Estimate Source Vector) May be transformed into S a (f), S v (f), and S q (f) by fast Fourier transforms (S230).
  • the cross-spectrum of the atrium and the ventricles and the auto-spectrum of the Q-th source may be defined as follows (S240).
  • the coherence of the atrium and the ventricles may be represented by Equation 17 as a combination of the cross-spectrum and the self-spectrum (S250).
  • the coherence of the atria is the cross-spectrum ( ⁇ aq (f)) obtained between the atria and all source spaces, respectively, for each self-spectrum ( ⁇ aa (f), ⁇ qq (f)).
  • cochlear cohesion can be standardized as above.
  • Ventricular coherence is the product of the cross-spectrum ( ⁇ vq (f)) obtained between the ventricle and all of the source spaces of each self-spectrum ( ⁇ vv (f), ⁇ qq (f)). It can be normalized by dividing by the square root of.
  • the normalized atrial coherence and ventricular coherence may reconstruct a second contour based on each second threshold determined from a signal-to-noise ratio (S260). For example, when the second threshold is set to 0.5, only voxels having a value greater than or equal to the second threshold may be displayed in the source space. The outermost voxels of the voxels above the second threshold may be connected to one another to provide a second contour.
  • the 2-1 threshold may be set for the atrium, and the 2-2 threshold may be set for the ventricles.
  • the second contour may be formed with respect to the atrium and the ventricles, respectively.
  • the second thresholds of the atrium and the ventricles may be different.
  • the third contour may be reconstructed by combining the first and second contours of the atrium and the ventricles (S300).
  • the reconstruction method may reconstruct a third contour based on each third threshold value after multiplying the normalized coherence by the power of the normalized source current of the atrium and the ventricles.
  • the third contour may be formed with respect to the atria and the ventricles, respectively.
  • the third thresholds of the atrium and the ventricles may be different.
  • FIG. 10 is a diagram illustrating a virtual source space and a virtual heart for numerical simulation according to an embodiment of the present invention.
  • virtual hearts 204 and 206 are located in the virtual source space 202.
  • the virtual heart includes a virtual atrium 204 and a virtual ventricle 206.
  • the virtual source space 202 may be a cuboid based on an xyz rectangular coordinate system. An arbitrary position of the xiphoid in the rectangular coordinate system is defined as a fiducial point.
  • the virtual source space 202 may be composed of voxels divided by 10 mm units.
  • the virtual source space 202 may be 150 mm in the x-axis direction, 170 mm in the y-axis direction, and 150 mm in the z-axis direction. Accordingly, the total number of voxels Q may be 3314.
  • the virtual atria 204 has been assigned 199 voxels, and the virtual ventricle 206 has been assigned 248 voxels.
  • Equivalent current dipoles ECDs
  • ECDs Equivalent current dipoles
  • the equivalent current dipole of the atrium is 0.25 ⁇ Am and the equivalent current dipole of the ventricles is 1 ⁇ Am.
  • the center frequency of the atrial sine wave is 10 Hz
  • the center frequency of the ventricular sine wave is 8 Hz
  • the planar body model was set as the heart model. Different phases of the sine wave were assigned to position to simulate the propagation of the heart's action potentials. In order to show the systole and relaxation of the heart, the phase was sequentially increased by 30 degrees from the cardiac base to the cardiac apex, that is, the y-axis direction. In addition, the phase was sequentially increased by 26 degrees in the transverse plane of the heart, that is, the z-axis direction.
  • FIG. 11 is a diagram showing the results of numerical simulations according to an embodiment of the present invention.
  • the magnetic field generated from the set source model was measured in the sensor space (S110).
  • the power of the atrial and ventricular source currents was obtained by applying the regression update gram matrix array minimum gain spatial filter (S191).
  • the first contour of the atrium and the ventricles was reconstructed by filtering the power of the source current by the 1-1 threshold and the 1-2 threshold set as the signal-to-noise ratio (S195).
  • S195 the signal-to-noise ratio
  • From the reconstructed signal waveforms the coherence between the atria and the ventricles of all source regions was obtained (S250).
  • the coherence was filtered by the 2-1 threshold and the 2-2 threshold set to the signal-to-noise ratio to reconstruct the second contour of the atrium and the ventricles (S260).
  • the first contour and the second contour are combined to reconstruct the third contour of the heart (S300). As a result, the contour of the reconstructed heart almost coincides with the virtual heart contour.
  • FIG. 12 is a diagram illustrating a cardiac phantom for a model experiment according to an embodiment of the present invention.
  • the model heart (a) was made in the form of goose eggs (goose egg). Twelve current dipoles of 10 mm in length are located on 5 mm of the surface of the model heart.
  • the model heart is located in a torso phantom made of fiberglass.
  • the model heart is tilted 45 degrees to the coronal plane and 30 degrees to the sagittal plane.
  • the body model is filled with 0.9% saline solution having an electrical conductivity of about 0.16 S / m.
  • the model heart is located in the virtual source space.
  • the virtual source space is the same as the virtual source space that was used for the numerical simulation. Any position of the xiphoid on the surface of the trunk model b is defined as a fiducial point.
  • an equivalent current dipole ECD was set as the source model.
  • the size of the model cardiac equivalent current dipole is 100 ⁇ Am and the signal shape is a combination of 5 Hz and 10 Hz sine wave.
  • the planar body model was set as the heart model.
  • FIG. 13 is a diagram illustrating a numerical simulation result using the model heart of FIG. 12.
  • the first contour and the second contour of the heart were obtained by the method of matching with the power of the source current as in the numerical simulation.
  • the first contour and the second contour were combined to reconstruct the third contour of the heart.
  • the results indicate that the contour of the reconstructed heart is nearly identical to the model heart contour.
  • the ratio of the normalization parameter is a ratio with respect to the maximum singular value of the gram matrix.
  • the ratio of normalization parameters is small because the signal of the atria is smaller than that of the ventricles.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Cardiology (AREA)
  • Physics & Mathematics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Measurement And Recording Of Electrical Phenomena And Electrical Characteristics Of The Living Body (AREA)
  • Magnetic Resonance Imaging Apparatus (AREA)

Abstract

The present invention provides a cardiac outline reconstruction method and a magneto cardiogram measuring system. The cardiac outline reconstruction method comprises the steps of: obtaining a first cardiac outline from power of source current vector (source current power) obtained using an array-gain constraint minimum-norm with recursively updated gram matrix; AGMN-RUG) spatial filter; obtaining a second cardiac outline by applying a coherence mapping method; and configuring a third cardiac outline by coupling the first cardiac outline and the second cardiac outline with each other.

Description

3차원 심장 윤곽 재구성 방법3D heart contour reconstruction method
본 발명은 심장 윤곽 재구성 방법에 관한 것으로, MRI 장치와 같은 해부학적 영상 장치의 도움 없이 심자도 장치로 측정한 다채널 데이터를 이용하여 심장 윤곽을 3차원으로 형성하는 방법에 관한 것이다.The present invention relates to a method for reconstructing a cardiac contour, and to a method for forming a cardiac contour in three dimensions by using multichannel data measured by a cardiac conduction device without the help of an anatomical imaging device such as an MRI device.
심자도(Magnetocardiography; MCG)는 초고감도 자기센서인 초전도양자간섭장치 (Superconducting Quantum Interference Device; SQUID) 센서를 통해 심근(myocardium)의 전기활동(electric activity)에 의해 발생되는 자기 신호를 측정하여 심장질환을 비침습적으로 진단하는 장치이다. 심자도 장치로 측정한 다채널 데이터를 이용하면 심장질환의 병소를 국지화 할 수 있다. 특히, 3차원 심장모형에 심장질환의 병소를 국지화하면 의사에게 병소의 정보를 직관적으로 보여줄 수 있다. Magnetocardiography (MCG) measures heart disease by measuring the magnetic signals generated by the electrical activity of the myocardium through a superconducting quantum interference device (SQUID) sensor, an ultra-sensitive magnetic sensor. It is a device to diagnose non-invasive. Multi-channel data measured by a core map device can be used to localize lesions of heart disease. In particular, localizing the lesion of the heart disease in the three-dimensional cardiac model allows the doctor to intuitively show the information of the lesion.
하지만 상기 3차원 심장모형을 얻기 위해서는 환자의 엑스선 컴퓨터단층촬영 (X-ray computed tomography; CT)장치 또는 자기공명영상(magnetic resonance imaging; MRI)장치로 측정한 해부학적 영상데이터가 필요하다. 상기 해부학적 영상 데이터를 얻기 위하여, 환자는 불필요한 방사선 피폭이나 강한 자기장에 노출될 수 있다. 또한, 심장모형을 얻기 위해서는 해부학적 영상데이터로 심장을 분리(segmentation)해내는 과정이 필요하다. 상기 심장분리과정은 전문가가 수동으로 작업하거나 또는 자동화된 심장분리 알고리즘을 사용할 수 있지만, 많은 시간이 소요된다.However, in order to obtain the 3D heart model, anatomical image data measured by a patient's X-ray computed tomography (CT) device or magnetic resonance imaging (MRI) device is required. In order to obtain the anatomical image data, the patient may be exposed to unnecessary radiation exposure or a strong magnetic field. In addition, in order to obtain a heart model, a process of segmenting the heart with anatomical image data is required. The cardiac separation process may be time consuming, although the expert may work manually or use an automated cardiac separation algorithm.
Kenji Nakai 등에 의한 미국공개특허 제2008-0033312호는 비적응 공간 필터링(non-adaptive spatial filtering) 방법 중 하나인 최소크기추정법(minimum norm estimation)에 티코노프 정규화(Tikhonov regularization) 방법을 적용하여 전류 밀도를 추정한 후 이를 바탕으로 3차원 심장 윤곽을 생성하는 방법을 보고하였다. U.S. Patent Publication No. 2008-0033312 by Kenji Nakai et al. Applies a Tikhonov regularization method to a minimum norm estimation method, one of non-adaptive spatial filtering methods, to provide current density. After estimating, we reported a method of generating three-dimensional heart contours based on this.
하지만, 비적응 공간 필터링 방법은 깊이 있는 신호원에 대한 추정이 정확하지 않기 때문에, 3차원 심장 모형을 정확하게 생성하는데 한계가 있다.However, the non-adaptive spatial filtering method has a limitation in accurately generating a three-dimensional cardiac model because the estimation of a deep signal source is not accurate.
본 발명의 해결하고자 하는 일 기술적 과제는 3차원 심장 시각화 또는 매핑 방법(3-D cardiac visualization or mapping method)을 제공하는 것이다.One technical problem to be solved of the present invention is to provide a three-dimensional cardiac visualization or mapping method.
본 발명의 일 실시예에 따른 심장 윤곽 재구성 방법은 회귀갱신그램행렬 배열이득제한최소크기(array-gain constraint minimum-norm with recursively updated gram matrix; AGMN-RUG) 공간필터를 이용하여 구한 소스전류벡터의 파워(source current power)로부터 심장의 제1 윤곽을 구하는 단계; 결맞음 매핑(coherence mapping) 방법을 적용하여 심장의 제2 윤곽을 구하는 단계; 및 상기 제1 윤곽과 상기 제2 윤곽을 상호 결합하여 심장의 제3 윤곽을 구성하는 단계를 포함한다.The cardiac contour reconstruction method according to an embodiment of the present invention is a method for reconstructing a source current vector obtained using an array-gain constraint minimum-norm with recursively updated gram matrix (AGN-RUG) spatial filter. Obtaining a first contour of the heart from source current power; Obtaining a second contour of the heart by applying a coherence mapping method; And combining the first contour and the second contour to form a third contour of the heart.
본 발명의 일 실시예에 있어서, 심장의 제1 윤곽을 구하는 단계는: 심자도 장치를 이용하여 심근에서 발생된 자기 신호를 측정하는 단계; 다채널로 측정된 심자도 신호에서 심방과 심실을 나타내는 P파와 T파 구간의 심장 자기 신호를 추출하는 단계; 심장의 단위 소스전류 및 심장을 근사화한 평면체적도체모델 (horizontally layered volume conductor model)과 심자도 센서의 위치정보를 이용하여 자기장(리드필드 벡터)를 계산하는 단계; 및 거리에 따른 신호원의 크기를 보상하기 위하여 상기 리드필드 벡터를 규격화(normalization)하는 단계를 포함할 수 있다.In one embodiment of the present invention, obtaining a first contour of the heart comprises: measuring a magnetic signal generated in the myocardium using a cardiac diagram device; Extracting a cardiac magnetic signal of a P-wave and a T-wave interval representing atrial and ventricle from a multi-channel measured cardiac signal; Calculating a magnetic field (leadfield vector) using a horizontally layered volume conductor model approximating the unit source current of the heart and the position information of the core magnetic sensor; And normalizing the leadfield vector to compensate for the size of the signal source over distance.
본 발명의 일 실시예에 있어서, 심장의 제1 윤곽을 구하는 단계는: 임의의 가중치행렬을 단위 행렬로 초기화하는 단계; 상기 리드필드 벡터와 임의의 가중치행렬을 조합하여 그램행렬을 구하는 단계; 상기 구해진 그램행렬에 측정신호의 신호 대 잡음비를 고려하여 정규화 매개변수(regularization parameter)를 설정하는 단계; 상기 정규화된 그램행렬과 규격화된 리드필드 벡터를 조합하여 배열이득제한최소크기 공간필터(array-gain constraint minimum-norm spatial filter)를 구하는 단계; 상기 구해진 배열이득제한최소크기 공간필터와 측정된 심방과 심실 신호를 이용하여 추정 소스전류 벡터의 파워를 구하는 단계; 상기 구해진 소스전류 벡터의 파워가 일정한 값으로 수렴하는지 확인하는 단계; 상기 구해진 소스전류 벡터의 파워가 일정한 값으로 수렴하지 않는 경우 가중치행렬을 추정 소스벡터를 이용하여 갱신하는 단계; 상기 구해진 추정 소스 전류 벡터의 파워를 규격화하는 단계; 및 규격화된 소스전류벡터의 파워를 신호 대 잡음비로 설정된 제1 임계값을 적용하여 심방과 심실의 제1 윤곽을 재구성하는 단계들 중에서 적어도 하나를 더 포함할 수 있다.In one embodiment of the present invention, obtaining the first contour of the heart comprises: initializing an arbitrary weight matrix to an identity matrix; Obtaining a gram matrix by combining the leadfield vector with an arbitrary weight matrix; Setting a normalization parameter in the obtained gram matrix in consideration of the signal-to-noise ratio of the measurement signal; Obtaining an array-gain constraint minimum-norm spatial filter by combining the normalized gram matrix and the normalized leadfield vector; Obtaining power of an estimated source current vector using the obtained array gain limit spatial filter and the measured atrial and ventricular signals; Checking whether the power of the obtained source current vector converges to a constant value; Updating the weighted matrix using the estimated source vector when the obtained power of the source current vector does not converge to a constant value; Normalizing the power of the obtained estimated source current vector; And reconstructing the first contour of the atrium and the ventricle by applying the first threshold value set as the signal-to-noise ratio to the power of the normalized source current vector.
본 발명의 일 실시예에 있어서, 결맞음 매핑(coherence mapping) 방법을 적용하여 심장의 제2 윤곽을 구하는 단계는: 심방과 심실에서 소스전류벡터의 파워가 가장 큰 지점을 각각 구하는 단계; 측정된 심자도 신호와 회귀갱신그램행렬 배열이득제한최소크기 공간필터를 선형 결합하여 모든 소스영역에서 신호파형(추정 소스전류 벡터)을 재구성하는 단계; 상기 재구성된 신호파형(추정 소스전류 벡터)을 고속 퓨리에 변환(fast Fourier transform)하는 단계; 상기 고속 퓨리에 변환된 신호를 이용하여 심방과 심실에서 모든 소스영역에 대한 상호-스펙트럼(cross-spectrum)과 자기-스펙트럼(auto-spectrum)을 구하는 단계; 상기 구해진 상호-스펙트럼과 자기-스펙트럼을 조합하여 심방의 결맞음과 심실의 결맞음을 구하는 단계; 상기 구해진 심방과 심실의 결맞음을 규격화하는 단계; 및 상기 규격화된 결맞음을 신호 대 잡음비로 설정된 제2 임계값을 적용하여 심방과 심실의 제2 윤곽을 재구성하는 단계들 중에서 적어도 하나를 포함할 수 있다.In one embodiment of the present invention, the step of obtaining a second contour of the heart by applying a coherence mapping method includes: finding points at which the power of the source current vector is greatest in the atria and the ventricles, respectively; Reconstructing signal waveforms (estimated source current vectors) in all source regions by linearly combining the measured core signal and the minimum-size spatial filter of the regression update gram matrix array gain; Fast Fourier transforming the reconstructed signal waveform (estimated source current vector); Obtaining cross-spectrum and auto-spectrum for all source regions in the atria and ventricles using the fast Fourier transformed signal; Combining the obtained inter-spectrum with the self-spectrum to obtain coherence of the atrium and ventricular coherence; Normalizing the coherence of the obtained atrium and ventricles; And reconstructing the second contour of the atrium and the ventricles by applying a second threshold set to the normalized coherence signal-to-noise ratio.
본 발명의 일 실시예에 따른 심장 윤곽 재구성 방법은 회귀갱신그램행렬 배열이득제한최소크기(array-gain constraint minimum-norm with recursively updated gram matrix; AGMN-RUG) 공간필터를 이용하여 구한 소스전류벡터의 파워(source current power)로부터 심장의 윤곽을 구한다.The cardiac contour reconstruction method according to an embodiment of the present invention is a method for reconstructing a source current vector obtained using an array-gain constraint minimum-norm with recursively updated gram matrix (AGN-RUG) spatial filter. The heart is outlined from the source current power.
본 발명의 일 실시예에 있어서, 심장의 윤곽을 구하는 단계는 심자도 장치를 이용하여 심근에서 발생된 자기 신호를 측정하는 단계; 다채널로 측정된 심자도 신호에서 심방과 심실을 나타내는 P파와 T파 구간의 심장 자기 신호를 추출하는 단계; 심장의 단위 소스전류 및 심장을 근사화한 평면체적도체모델 (horizontally layered volume conductor model)과 심자도 센서의 위치정보를 이용하여 자기장(리드필드 벡터)를 계산하는 단계; 및 거리에 따른 신호원의 크기를 보상하기 위하여 상기 리드필드 벡터를 규격화(normalization)하는 단계를 포함할 수 있다.In one embodiment of the present invention, deriving the outline of the heart may include measuring a magnetic signal generated in the myocardium using a cardiac diagram device; Extracting a cardiac magnetic signal of a P-wave and a T-wave interval representing atrial and ventricle from a multi-channel measured cardiac signal; Calculating a magnetic field (leadfield vector) using a horizontally layered volume conductor model approximating the unit source current of the heart and the position information of the core magnetic sensor; And normalizing the leadfield vector to compensate for the size of the signal source over distance.
본 발명의 일 실시예에 있어서, 임의의 가중치행렬을 단위 행렬로 초기화하는 단계; 상기 리드필드 벡터와 임의의 가중치행렬을 조합하여 그램행렬을 구하는 단계; 상기 구해진 그램행렬에 측정신호의 신호 대 잡음비를 고려하여 정규화 매개변수(regularization parameter)를 추가하는 단계; 상기 정규화된 그램행렬과 규격화된 리드필드 벡터를 조합하여 배열이득제한최소크기 공간필터(array-gain constraint minimum-norm spatial filter)를 구하는 단계; 상기 구해진 배열이득제한최소크기 공간필터와 측정된 심방과 심실 신호를 이용하여 추정 소스전류 벡터의 파워를 구하는 단계; 상기 구해진 소스전류 벡터의 파워가 일정한 값으로 수렴하는지 확인하는 단계; 상기 구해진 소스전류 벡터의 파워가 일정한 값으로 수렴하지 않는 경우 가중치행렬을 추정 소스벡터를 이용하여 갱신하는 단계; 상기 구해진 추정 소스 전류 벡터의 파워를 규격화하는 단계; 규격화된 소스전류벡터의 파워를 신호 대 잡음비로 설정된 임계값을 적용하여 심방과 심실의 윤곽을 재구성하는 단계를 더 포함할 수 있다.In one embodiment of the present invention, the method comprises: initializing an arbitrary weight matrix to a unitary matrix; Obtaining a gram matrix by combining the leadfield vector with an arbitrary weight matrix; Adding a normalization parameter to the obtained gram matrix in consideration of the signal-to-noise ratio of the measurement signal; Obtaining an array-gain constraint minimum-norm spatial filter by combining the normalized gram matrix and the normalized leadfield vector; Obtaining power of an estimated source current vector using the obtained array gain limit spatial filter and the measured atrial and ventricular signals; Checking whether the power of the obtained source current vector converges to a constant value; Updating the weighted matrix using the estimated source vector when the obtained power of the source current vector does not converge to a constant value; Normalizing the power of the obtained estimated source current vector; The method may further include reconstructing the atrium and the ventricles by applying the threshold of the normalized source current vector to a signal-to-noise ratio.
본 발명의 일 실시예에 따른 심장 윤곽 재구성 방법은 심방과 심실에서 소스전류벡터의 파워가 가장 큰 지점을 각각 구하는 단계; 측정된 심자도 신호와 회귀갱신그램행렬 배열이득제한최소크기 공간필터를 선형결합하여 모든 소스영역에서 신호파형(추정 소스전류 벡터)을 재구성하는 단계; 상기 재구성된 신호파형(추정 소스전류 벡터)을 고속 퓨리에 변환(fast Fourier transform)하는 단계; 상기 고속 퓨리에 변환된 신호를 이용하여 심방과 심실에서 모든 소스영역에 대한 상호-스펙트럼(cross-spectrum)과 자기-스펙트럼(auto-spectrum)을 구하는 단계; 상기 구해진 상호-스펙트럼과 자기-스펙트럼을 조합하여 심방의 결맞음과 심실의 결맞음을 구하는 단계; 상기 구해진 심방과 심실의 결맞음을 규격화하는 단계; 및 상기 규격화된 결맞음을 신호 대 잡음비로 설정된 임계값을 적용하여 심방과 심실의 윤곽을 재구성하는 단계를 포함한다.Cardiac contour reconstruction method according to an embodiment of the present invention comprises the steps of obtaining the point where the power of the source current vector is the largest in the atrium and ventricles, respectively; Reconstructing the signal waveforms (estimated source current vectors) in all source regions by linearly combining the measured core signal and the minimum size spatial filter of the regression update gram matrix array gain; Fast Fourier transforming the reconstructed signal waveform (estimated source current vector); Obtaining cross-spectrum and auto-spectrum for all source regions in the atria and ventricles using the fast Fourier transformed signal; Combining the obtained inter-spectrum with the self-spectrum to obtain coherence of the atrium and ventricular coherence; Normalizing the coherence of the obtained atrium and ventricles; And reconstructing the atrium and ventricles by applying a threshold set to the normalized coherence signal-to-noise ratio.
본 발명의 일 실시예에 따른 프로그램을 기록한 기록매체는 위의 방법들을 컴퓨터에서 실행시킬 수 있다.The recording medium which records the program according to an embodiment of the present invention can execute the above methods on a computer.
본 발명의 일 실시예에 따른 심자도 측정 시스템은 심자도 센서 및 자기차폐실을 포함하고 심자도 신호를 측정하는 심자도 측정 장치; 및 상기 심자도 신호를 처리하여 심장의 윤곽을 재구성하는 처리부를 포함한다. 상기 처리부는 회귀갱신그램행렬 배열이득제한최소크기(array-gain constraint minimum-norm with recursively updated gram matrix; AGMN-RUG) 공간필터를 이용하여 구한 소스전류벡터의 파워(source current power)로부터 심장의 제1 윤곽을 구한다. 상기 처리부는 결맞음 매핑(coherence mapping) 방법을 적용하여 심장의 제2 윤곽을 구한다. 상기 처리부는 상기 제1 윤곽과 상기 제2 윤곽을 상호 결합하여 심장의 제3 윤곽을 구성한다.A core measurement system according to an embodiment of the present invention includes a core measurement sensor including a core sensor and a magnetic shield room and measuring a core signal; And a processor configured to reconstruct the contour of the heart by processing the core diagram signal. The processing unit uses the heart current from the power of the source current vector obtained using an array-gain constraint minimum-norm with recursively updated gram matrix (AGN-RUG) spatial filter. 1 Find the outline. The processor applies a coherence mapping method to obtain a second contour of the heart. The processing unit combines the first contour and the second contour to form a third contour of the heart.
본 발명의 일 실시예에 따른 심장 윤곽 3차원 재구성 방법은, 해부학적 영상을 얻기 위해 필요한 CT나 MRI 장치의 사용 없이 환자의 MCG 데이터만을 이용해 심장모형을 재구성하는 것이 가능하다. 따라서 환자는 불필요한 방사선 피폭이나 강한 자기장에 노출되는 위험으로부터 피할 수 있다. 또한, 상기 영상장치를 사용하지 않을 경우 환자의 경제적인 부담도 줄일 수 있다. 추가적으로, 심장모형을 만들기 위한 심장분리과정이 필요하지 않기 때문에 MCG 장치를 사용하여 실시간으로 환자를 진단하는데 활용될 수 있다.In the cardiac contour three-dimensional reconstruction method according to an embodiment of the present invention, it is possible to reconstruct the heart model using only the MCG data of the patient without the use of CT or MRI apparatus required to obtain an anatomical image. Thus, patients can avoid the risk of exposure to unnecessary radiation or strong magnetic fields. In addition, if the imaging apparatus is not used, the economic burden on the patient can be reduced. In addition, since cardiac separation is not necessary to make a cardiac model, it can be used to diagnose a patient in real time using an MCG device.
도 1은 본 발명의 일 실시예에 따른 3차원 심장 윤곽 재구성 방법을 설명하는 흐름도이다. 1 is a flowchart illustrating a 3D heart contour reconstruction method according to an embodiment of the present invention.
도 2, 도 3, 및 도 4는 본 발명의 일 실시예에 따른 3차원 심장 윤곽 재구성 방법을 설명하는 흐름도이다. 2, 3, and 4 are flowcharts illustrating a three-dimensional heart contour reconstruction method according to an embodiment of the present invention.
도 5는 본 발명의 일 실시예에 따른 심자도 측정 장치를 설명하는 도면이다.5 is a view illustrating a core measurement apparatus according to an embodiment of the present invention.
도 6은 본 발명의 일 실시예에 따른 다채널로 측정된 심자도 신호에서 심장파형 추출을 나타내는 도면이다.FIG. 6 is a diagram illustrating cardiac waveform extraction from a multi-channel measured core map signal according to an embodiment of the present invention.
도 7은 본 발명의 일 실시예에 따른 심자도의 리드필드벡터(lead-field vector) 계산에 필요한 소스 공간과 센서 공간의 관계를 나타내는 도면이다.7 is a diagram illustrating a relationship between a source space and a sensor space required for calculating a lead-field vector of a core diagram according to an embodiment of the present invention.
도 8은 본 발명의 일 실시예에 따른 심방의 결맞음 매핑을 나타내는 도면이다. 8 illustrates coherence mapping of the atria in accordance with one embodiment of the present invention.
도 9는 본 발명의 일 실시예에 따른 심실의 결맞음 매핑을 나타내는 도면이다. 9 illustrates coherence mapping of the ventricles according to an embodiment of the present invention.
도 10은 본 발명의 일 실시예에 따른 수치 시뮬레이션을 위한 가상 소스 공간 및 가상 심장을 나타내는 도면이다. 10 is a diagram illustrating a virtual source space and a virtual heart for numerical simulation according to an embodiment of the present invention.
도 11은 본 발명의 일 실시예에 따른 수치 시뮬레이션의 결과를 나타내는 도면이다. 11 is a diagram showing the results of numerical simulations according to an embodiment of the present invention.
도 12는 본 발명의 일 실시예에 따른 모형 실험을 위한 모형 심장(cardiac phantom)을 나타내는 도면이다.12 is a diagram illustrating a cardiac phantom for a model experiment according to an embodiment of the present invention.
도 13은 도 12의 모형 심장을 이용한 수치 시뮬레이션 결과를 나타내는 도면이다.FIG. 13 is a diagram illustrating a numerical simulation result using the model heart of FIG. 12.
도 14는 신호 대 잡음비에 따른 정규화 매개변수의 비율을 나타내는 도면이다.14 shows the ratio of normalization parameters to signal to noise ratios.
3차원 심장 시각화 또는 매핑 방법(3-D cardiac visualization or mapping method)은 심자도(magnetocardiography;MCG) 임상적 응용(clinical applications)에 도움이 된다. 그러나, 심장 재구성(cardiac reconstruction)은 추가적인 영상 양식(image modalities)을 요구한다. 우리는 추가적인 영상 기술 없이 MCG 측정 데이터만을 사용하여 3차원 심장 윤곽 재구성 방법을 제안한다. 심장 윤곽은 공간 필터링(spatial filtering) 방법과 결맞음 매핑(coherence mapping) 방법의 조합에 의하여 재구성될 수 있다.3-D cardiac visualization or mapping methods are useful for magnetocardiography (MCG) clinical applications. However, cardiac reconstruction requires additional image modalities. We propose a three-dimensional cardiac contour reconstruction method using only MCG measurement data without additional imaging techniques. Cardiac contours can be reconstructed by a combination of spatial filtering and coherence mapping methods.
심장 활동성의 세기(The strength of cardiac activities)는 회귀갱신그램행렬 배열이득제한최소크기(array-gain constraint minimum-norm with recursively updated gram matrix; AGMN-RUG) 공간 필터에 의하여 표시될 수 있다.The strength of cardiac activities can be represented by an array-gain constraint minimum-norm with recursively updated gram matrix (AGN-RUG) spatial filter.
또한, 심방의 최대 소스 점과 모든 소스 점 사이의 결맞음과 심실의 최대 소스점과 모든 소스 점 사이의 결맞음은 결맞음 매핑 방법에 의하여 비교되었다.In addition, the coherence between the maximum source point of the atrium and all the source points and the coherence between the maximum source point of the ventricles and all the source points were compared by coherence mapping.
수치 시뮬레이션과 인체 모형 실험(phantom experiments)은 원래의 모양과 재구성된 구성을 비교하여 3차원 심장 윤곽 재구성의 효율성을 증명하였다. Numerical simulations and phantom experiments demonstrated the effectiveness of three-dimensional cardiac contour reconstruction by comparing the original shape with the reconstructed composition.
본 발명의 일 실시예에 따른 심장 윤곽 3차원 재구성 방법은 CT 또는 MRI 장치로부터 얻은 해부학적 영상을 사용하지 않고, 환자로부터 측정된 심자도 (MCG) 데이터만을 사용하여 심장 윤곽을 3차원으로 생성하는 방법이다. 구체적으로 회귀갱신그램행렬 배열이득제한최소크기(array-gain constraint minimum-norm with recursively updated gram matrix; AGMN-RUG) 공간필터를 이용하여 구한 소스전류 파워(source current power)로부터 심장의 제1 윤곽이 구해진다. 또한, 결맞음 매핑(coherence mapping) 방법을 적용하여 심장의 제2 윤곽이 구해진다. 마지막으로 제1 윤곽과 제2 윤곽을 상호 결합하여 심장의 제3 윤곽이 구성된다.Cardiac contour three-dimensional reconstruction method according to an embodiment of the present invention does not use an anatomical image obtained from a CT or MRI device, and generates a three-dimensional heart contour using only the cardiac diagram (MCG) data measured from the patient It is a way. Specifically, the cardiac first contour of the heart is obtained from the source current power obtained using an array-gain constraint minimum-norm with recursively updated gram matrix (AGN-RUG) spatial filter. Is saved. In addition, a second contour of the heart is obtained by applying a coherence mapping method. Finally, the first contour and the second contour are combined to form a third contour of the heart.
심자도(MCG)는 심근에서 발생된 자기장을 비침습적으로 측정할 수 있는 장치이다. 심자도는 시간 및 공간 분해능(time and spatial resolution)이 뛰어나기 때문에 심근허혈 영역(myocardial ischemic regions) 또는 심부정맥(cardiac arrhythmia)의 원인이 되는 회귀성 흥분 영역(reentrant excitation regions)을 추정하는데 아주 유용하다. 최근 심자도를 이용하여 심근의 회귀성 흥분 영역을 3차원 심장 표면에 가시화시키는 연구가 보고되었다. 심장 전기 활동(cardiac electric activities)을 3차원 심장 모형에 가시화하면 임상적으로 많은 응용이 가능하다.The magnetic core diagram (MCG) is a device that can non-invasively measure the magnetic field generated in the myocardium. Because of its excellent time and spatial resolution, cardiac diagrams are very useful in estimating reentrant excitation regions that cause myocardial ischemic regions or cardiac arrhythmia. . Recently, a study has been reported to visualize the recurrent excitatory region of the myocardium on the 3D cardiac surface using cardiac diagram. By visualizing cardiac electric activities on a three-dimensional cardiac model, many clinical applications are possible.
그러나 통상적으로 3차원 심장 모형을 얻기 위해서는 몇 가지 단점이 존재한다. 첫째, 엑스선 컴퓨터 단층 촬영(CT) 또는 자기공명영상(MRI) 등과 같은 해부학적 영상 장치들로부터 복잡한 분할(segmentation) 과정이 요구된다. 최근 다수의 연구 그룹이 수동 분할과정의 단점을 극복한 자동 분할 방법을 제안하였다. 하지만, 여전히 해부학적 영상 취득과정이 반드시 필요하다. 둘째로, 해부학적 영상정보를 얻을 때 환자는 엑스선이나 높은 자기장에 노출되며, 이러한 노출은 잠재적인 위험을 초래할 수 있다. 마지막으로 해부학적 영상정보를 얻기 위해 환자는 비싼 비용을 지불해야 된다.In general, however, there are some drawbacks to obtaining a three-dimensional heart model. First, complex segmentation processes are required from anatomical imaging devices such as X-ray computed tomography (CT) or magnetic resonance imaging (MRI). Recently, many research groups have proposed an automatic segmentation method that overcomes the disadvantages of the manual segmentation process. However, anatomical image acquisition is still essential. Second, when obtaining anatomical imaging information, the patient is exposed to X-rays or high magnetic fields, which can pose a potential risk. Finally, in order to obtain anatomical image information, the patient has to pay a high cost.
상기 3차원 심장 모형 획득과정의 단점을 극복하기 위하여, 심자도 측정 데이터만을 사용하여 3차원 심장 모형을 생성하는 방법이 제안되었다. 일본의 나카이(Nakai) 그룹은 비적응 공간 필터링(non-adaptive spatial filtering) 방법 중 하나인 최소크기추정법(minimum norm estimation)에 티코노프 정규화(Tikhonov regularization) 방법을 적용하여 전류 밀도를 추정한 후 이를 바탕으로 3차원 심장 윤곽을 생성하는 방법을 보고하였다. 하지만, 비적응 공간 필터링 방법은 깊이 있는 신호원에 대한 추정이 정확하지 않는다. 따라서, 비적응 공간 필터링 방법은 3차원 심장 모형을 정확하게 생성하는데 한계가 있다. In order to overcome the shortcomings of the process of acquiring the 3D heart model, a method of generating a 3D heart model using only core measurement data has been proposed. The Nakai group of Japan estimates the current density by applying the Tikhonov regularization method to the minimum norm estimation method, which is one of non-adaptive spatial filtering methods. We have reported a method for generating three-dimensional cardiac contours. However, the non-adaptive spatial filtering method is not accurate in estimating the depth of the signal source. Therefore, the non-adaptive spatial filtering method has a limitation in generating a three-dimensional heart model accurately.
비적응 공간 필터링에 비하여, 적응(adaptive) 공간 필터링은 높은 공간 분해능을 보여준다. 적응 공간 필터링은 측정대상의 기하학적 형태(measurement geometry)와 공분산행렬(covariance matrix)를 이용하기 때문에 노이즈 간섭(noise interferences)에 강하다. 공간 필터링은 약하게 상관된(correlated) 신호에는 강하지만, 강하게 상관된 신호에 대해서는 큰 국지화(localization) 오차를 나타낸다. 심장의 전기신호는 강하게 상관되어있다. 따라서, 적응 공간 필터링으로 심근전류원을 국지화하면 큰 오차가 나타난다. 따라서 비적응 공간 필터링과 적응 공간 필터링 모두 3차원 심장 모형을 재구성하는데 한계점이 있다. Compared to non-adaptive spatial filtering, adaptive spatial filtering shows high spatial resolution. Adaptive spatial filtering is resistant to noise interferences because it uses measurement geometry and covariance matrix. Spatial filtering is strong for weakly correlated signals, but exhibits large localization errors for strongly correlated signals. The electrical signals of the heart are strongly correlated. Therefore, localizing myocardial current sources with adaptive spatial filtering results in large errors. Therefore, both non-adaptive spatial and adaptive spatial filtering have limitations in reconstructing 3D cardiac models.
최근 공간해상도를 높인 회귀갱신그램행렬 배열이득제한최소크기 공간필터가 제안되었다. 상기 공간필터는 비적응 공간필터를 기반으로 적응 공간필터에 상응하는 결과를 도출할 수 있다. 따라서 상기 공간필터를 사용하면 강하게 상관된 심근 신호에서 발생된 문제를 회피함으로써 더 정확하게 심장 모형을 생성할 수 있다. Recently, a minimum-size spatial filter with limited regression-gram matrix array gain with spatial resolution has been proposed. The spatial filter may derive a result corresponding to the adaptive spatial filter based on the non-adaptive spatial filter. Therefore, the spatial filter can be used to generate a cardiac model more accurately by avoiding problems caused by strongly correlated myocardial signals.
또한 우리는 심장 모형을 더 정확하게 생성하기 위해 결맞음 매핑 방법을 추가적으로 적용하였다. 심방과 심실에서 생성된 전기신호는 각각의 영역에서 서로 상관된 파형을 보여준다. 따라서 재생성된 심장파형의 비슷함을 비교함으로써 심방과 심실의 더 정확한 모형을 재구성할 수 있다. We also applied a coherence mapping method to generate the heart model more accurately. Electrical signals generated from the atria and ventricles show correlated waveforms in each region. Thus, by comparing the similarities of regenerated heart waveforms, a more accurate model of the atria and ventricles can be reconstructed.
이하, 첨부된 도면을 참조로 본 발명의 바람직한 실시예들에 대하여 보다 상세히 설명한다. 이하의 도면들에서 동일한 참조부호는 동일한 구성요소를 지칭하며, 도면상에서 각 구성요소의 크기는 설명의 명료성과 편의상 과장되어 있을 수 있다.Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings. In the drawings, like reference numerals refer to like elements, and the size of each element in the drawings may be exaggerated for clarity and convenience of description.
도 1은 본 발명의 일 실시예에 따른 3차원 심장 윤곽 재구성 방법을 설명하는 흐름도이다. 1 is a flowchart illustrating a 3D heart contour reconstruction method according to an embodiment of the present invention.
도 2, 도 3, 및 도 4는 본 발명의 일 실시예에 따른 3차원 심장 윤곽 재구성 방법을 설명하는 흐름도이다. 2, 3, and 4 are flowcharts illustrating a three-dimensional heart contour reconstruction method according to an embodiment of the present invention.
도 1, 도 2,도 3, 및 도 4를 참조하면, 3차원 심장 윤곽 재구성 방법은 회귀갱신그램행렬 배열이득제한최소크기(array-gain constraint minimum-norm with recursively updated gram matrix; AGMN-RUG) 공간필터를 이용하여 구한 소스전류 파워(source current power)로부터 심장의 제1 윤곽을 구하는 단계(S100); 결맞음 매핑(coherence mapping) 방법을 적용하여 심장의 제2 윤곽을 구하는 단계(S200); 및 상기 제1 윤곽과 상기 제2 윤곽을 상호 결합하여 심장의 제3 윤곽을 구성하는 단계(S300)를 포함한다.1, 2, 3, and 4, the three-dimensional cardiac contour reconstruction method includes an array-gain constraint minimum-norm with recursively updated gram matrix (AGNN-RUG). Obtaining a first contour of the heart from a source current power obtained by using a spatial filter (S100); Obtaining a second contour of the heart by applying a coherence mapping method (S200); And combining the first contour and the second contour to form a third contour of the heart (S300).
심장의 제1 윤곽을 구하는 단계(S100)는 다음과 같이 처리된다. 심자도 장치를 이용하여 심근에서 발생된 심자도 신호가 측정된다(S110). 다채널로 측정된 심자도 신호에서 심방과 심실을 나타내는 P파와 T파 구간의 심장 자기 신호(ba(t),bv(t))가 추출된다(S120). 심장의 단위 소스전류 및 심장을 근사화한 평면체적도체모델 (horizontally layered volume conductor model)과 심자도 센서의 위치정보를 이용하여 자기장(리드필드 벡터;L(r))가 계산된다(S130). 거리에 따른 신호원의 크기를 보상하기 위하여 상기 리드필드 벡터가 규격화(normalization)된다(S140). Obtaining a first contour of the heart (S100) is processed as follows. The core diagram signal generated in the myocardium is measured using the core diagram apparatus (S110). The cardiac magnetic signals b a (t) and b v (t) of the P and T wave sections representing the atria and the ventricles are extracted from the cardiac signal measured by the multi-channel (S120). A magnetic field (leadfield vector L (r)) is calculated using the unitary source current of the heart and the horizontally layered volume conductor model approximating the heart and the position information of the core magnetic sensor (S130). In order to compensate for the size of the signal source according to the distance, the leadfield vector is normalized (S140).
회귀갱신그램행렬 배열이득제한최소크기(array-gain constraint minimum-norm with recursively updated gram matrix; AGMN-RUG) 공간필터가 구해지는 방법이 소개된다. 임의의 가중치행렬(H(r))는 단위 행렬(I)로 초기화된다(S150). 상기 리드필드 벡터(L(r))와 임의의 가중치행렬(H(r))을 조합하여 그램행렬(G)이 구해진다(S160). 상기 구해진 그램행렬(G)에 측정신호의 신호 대 잡음비를 고려하여 정규화 매개변수(regularization parameter;λ)가 설정된다(S170). A method for obtaining an array-gain constraint minimum-norm with recursively updated gram matrix (AGN-RUG) spatial filter is introduced. The arbitrary weight matrix H (r) is initialized to the unitary matrix I (S150). A gram matrix G is obtained by combining the lead field vector L (r) and the arbitrary weight matrix H (r) (S160). A regularization parameter (λ) is set in the obtained gram matrix G in consideration of the signal-to-noise ratio of the measurement signal (S170).
정규화(regularization)된 그램행렬(G)과 규격화된 리드필드 벡터를 조합하여 배열이득제한최소크기 공간필터(array-gain constraint minimum-norm spatial filter)가 구해진다(S180). 상기 구해진 배열이득제한최소크기 공간필터와 측정된 심방과 심실 신호를 이용하여 추정 소스전류 벡터 및 추정 소스 전류의 파워가 구해진다(S191). 상기 구해진 추정 소스전류의 파워가 일정한 값으로 수렴하는지 확인된다(S192). 상기 구해진 추정 소스전류의 파워가 일정한 값으로 수렴하지 않는 경우 가중치 행렬은 상기 추정 소스전류 벡터를 이용하여 갱신된다(S193). 상기 구해진 추정 소스전류의 파워가 일정한 값으로 수렴하는 경우 상기 구해진 추정 소스 전류 벡터의 파워는 규격화(normalization)된다(S194). 규격화된 추정 소스전류의 파워를 신호 대 잡음비로 설정된 제1-1 임계값과 제1-2 임계값을 적용하여 심방과 심실의 제1 윤곽은 재구성된다(195).An array-gain constraint minimum-norm spatial filter is obtained by combining the normalized gram matrix G and the normalized leadfield vector (S180). The estimated source current vector and the estimated source current power are obtained using the obtained array gain limit size filter and the measured atrium and ventricular signals (S191). It is checked whether the obtained power of the estimated source current converges to a constant value (S192). If the obtained power of the estimated source current does not converge to a constant value, the weight matrix is updated using the estimated source current vector (S193). When the obtained power of the estimated source current converges to a constant value, the power of the obtained estimated source current vector is normalized (S194). The first contour of the atrium and the ventricles is reconstructed (195) by applying the normalized estimated source current power with a 1-1 threshold and a 1-2 threshold set to a signal-to-noise ratio.
결맞음 매핑(coherence mapping) 방법을 적용하여 심장의 제2 윤곽을 구하는 단계는 다음과 같다.The step of obtaining the second contour of the heart by applying the coherence mapping method is as follows.
위에서 설명한 방법 또는 다른 방법으로, 심장의 추정 소스전류 벡터 또는 심장의 추정 소스전류의 파워가 계산된다. 심방과 심실에서 소스전류의 파워가 가장 큰 지점(ra, rv)이 각각 구해진다(S210). 측정된 심장 자기 신호와 회귀갱신그램행렬 배열이득제한최소크기 공간필터를 선형 결합하여 모든 소스영역에서 소스전류신호파형(
Figure PCTKR2015002569-appb-I000001
)이 재구성된다(S220). 본 발명의 변형된 실시예에 따르면, 상기 소스전류신호파형은 S191에서 계산된 값을 사용할 수 있다.
By the method described above or another method, the estimated source current vector of the heart or the estimated source current of the heart is calculated. The points r a and r v having the largest power of the source current in the atrium and the ventricles are obtained, respectively (S210). A linear combination of the measured cardiac magnetic signal and the regression-update-gram matrix array-restricted minimum-size spatial filter provides a source current signal waveform (
Figure PCTKR2015002569-appb-I000001
) Is reconstructed (S220). According to a modified embodiment of the present invention, the source current signal waveform may use the value calculated in S191.
상기 재구성된 소스전류 신호파형은 고속 퓨리에 변환(fast Fourier transform)된다(S230). 상기 고속 퓨리에 변환된 신호를 이용하여 심방과 심실에서 모든 소스영역에 대한 상호-스펙트럼(cross-spectrum; Γaq(f),Γvq(f))과 자기-스펙트럼(auto-spectrum;Γaa(f),Γvv(f))이 구해진다(S240). 상기 심방 상호-스펙트럼은 심방에 소스전류의 파워가 가장 큰 지점과 다른 지점 사이의 상호 상관(cross-correlation)이다. 상기 심실 상호-스펙트럼은 심실에 소스전류의 파워가 가장 큰 지점과 다른 지점 사이의 상호 상관(cross-correlation)이다. The reconstructed source current signal waveform is fast Fourier transformed (S230). Cross-spectrum (Γ aq (f), Γ vq (f)) and auto-spectrum (Γ aa ) for all source regions in the atrium and ventricles using the fast Fourier transformed signal f), Γ vv (f)) are obtained (S240). The atrial cross-spectrum is cross-correlation between the point where the source current has the greatest power in the atrium and another point. The ventricular cross-spectrum is a cross-correlation between the point where the source current power is largest in the ventricle and another point.
상기 심방 자기-스펙트럼은 심방에 소스전류의 파워가 가장 큰 지점의 자기-상관(auto-correlation)이다. 상기 심실 자기-스펙트럼은 심실에 소스전류의 파워가 가장 큰 지점의 자기-상관(auto-correlation)이다. The atrial self-spectrum is auto-correlation of the point where the source current has the greatest power in the atrium. The ventricular self-spectrum is auto-correlation of the point where the power of the source current in the ventricle is greatest.
상기 구해진 상호-스펙트럼과 자기-스펙트럼을 조합하여 심방의 결맞음과 심실의 결맞음(Cohaq(f),Cohvq(f))이 구해진다(S250). 상기 결맞음은 규격화될 수 있다. 상기 규격화된 결맞음을 신호 대 잡음비로 설정된 제2-1 임계값과 제2-2 임계값을 적용하여 심방과 심실의 제2 윤곽은 재구성된다(S260).Atrial coherence and ventricular coherence (Coh aq (f), Coh vq (f)) are obtained by combining the obtained cross-spectrum and self-spectrum (S250). The coherence can be standardized. The second contour of the atrium and the ventricles is reconstructed by applying the normalized coherence to the 2-1 threshold and the 2-2 threshold set to the signal-to-noise ratio (S260).
이어서, 상기 제1 윤곽과 상기 제2 윤곽은 상호 결합되어 심장의 제3 윤곽을 구성한다(S300).Subsequently, the first contour and the second contour are combined with each other to form a third contour of the heart (S300).
도5는 본 발명의 일 실시예에 따른 심자도 측정 장치를 설명하는 도면이다.5 is a view illustrating a core measurement apparatus according to an embodiment of the present invention.
도5를 참조하면, 심자도 측정 장치(100)는 자기차폐실(magnetically shielded room;101)내에 설치된다. 상기 심자도 장치(100)는 64채널의 초전도양자간섭소자(Superconducting Quantum Interference Device, SQUID)를 포함한다. 픽업 코일(pickup coil)은 70 mm의 베이스라인(baseline)을 가지는 1차 권선형 미분계(1st order axial gradiometer)이다. 각 SQUID 센서(112)의 노이즈 레벨은 100 Hz에서 5 fTrms/Hz1/2 이고 샘플링률(sampling rate)은 500 Hz이다. 상기 SQUID 센서(112)는 인체에서 발생하는 미세한 자기신호를 측정한다. 상기 SQUID 센서(112)는 영하 250도 이하의 극저온 상태에서 작동할 수 있다. 따라서 상기 SQUID 센서는 극저온을 유지시키는 냉각 수단(114) 내부에 설치된다. 상기 냉각 수단(114)은 듀어(dewar,116)내부에 배치될 수 있다.Referring to FIG. 5, the core measurement apparatus 100 is installed in a magnetically shielded room 101. The core device 100 includes a 64 channel superconducting quantum interference device (SQUID). The pickup coil is a first order axial gradiometer with a baseline of 70 mm. The noise level of each SQUID sensor 112 is 5 fT rms / Hz 1/2 at 100 Hz and the sampling rate is 500 Hz. The SQUID sensor 112 measures a fine magnetic signal generated in the human body. The SQUID sensor 112 may operate in a cryogenic state below minus 250 degrees. Therefore, the SQUID sensor is installed inside the cooling means 114 to maintain the cryogenic temperature. The cooling means 114 may be disposed inside the dewar 116.
구동회로(124)는 상기 심자도 장치를 구동한다. 증폭기 및 필터(118)는 자기자폐실 내부에 배치된다. 전원부는 증폭기 및 필터(118)에 등에 전력을 공급할 수 있다. 측정된 심자도 신호는 처리부(122)로 전송되어 신호처리 된 후 분석된다(S110).The driving circuit 124 drives the core drawing device. The amplifier and filter 118 is disposed inside the magnetic autism chamber. The power supply unit may supply power to the amplifier and the filter 118 and the like. The measured core figure signal is transmitted to the processing unit 122 and signal processed and analyzed (S110).
도6은 본 발명의 일 실시예에 따른 다채널로 측정된 심자도 신호에서 심장파형 추출을 나타내는 도면이다.FIG. 6 is a diagram illustrating cardiac waveform extraction from a multi-channel measured core map signal according to an embodiment of the present invention.
도6을 참조하면, 측정된 심자도 신호에서 상기 심장파형은 P, Q, R, S, T 피크가 순차적으로 나타난다. P 피크를 포함하는 구간은 P 파로 분리되고, Q, R, S 피크를 포함하는 구간은 QRS 파로 분리되고, T 피크를 포함하는 구간은 T 파로 분리된다. 상기 심장파형 중 P 파(ba(t)) 신호는 심방에서 발생된 신호이고, QRS 파는 심실이 수축할 때 발생된 신호이고, T 파(bv(t))는 심실이 이완할 때 발생된 신호이다.Referring to FIG. 6, in the measured cardiac signal, the P, Q, R, S, and T peaks appear sequentially. The section including the P peak is separated into P waves, the section including the Q, R, and S peaks is separated into QRS waves, and the section containing the T peak is separated into T waves. The P wave (b a (t)) of the heart waveforms is a signal generated in the atrium, the QRS wave is a signal generated when the ventricles contract, and the T wave (b v (t)) occurs when the ventricles relax Is a signal.
본 발명에서 심방모형을 생성하기 위해서 P 파의 시작과 끝 부분을 추출하고, 심실모형을 생성하기 위해서 T 파의 시작과 끝 부분을 추출한다(S120). 추출된 P 파(ba(t))와 T 파(bv(t))는 다음과 같이 주어진다.In the present invention, the start and end portions of the P wave are extracted to generate the atrial model, and the start and end portions of the T wave are extracted to generate the ventricular model (S120). The extracted P wave (a b (t)) and T wave (b v (t)) is given by:
[수학식 1][Equation 1]
Figure PCTKR2015002569-appb-I000002
Figure PCTKR2015002569-appb-I000002
여기서 n은 심자도 센서의 개수이고, t는 심장 파형의 추출 구간이다. 윗 첨자 T는 행렬의 전치(transpose)이다. Where n is the number of core sensors and t is the extraction interval of the heart waveform. The superscript T is the transpose of the matrix.
도 7은 본 발명의 일 실시예에 따른 심자도의 리드필드벡터(lead-field vector) 계산에 필요한 소스 공간과 센서 공간의 관계를 나타내는 도면이다.7 is a diagram illustrating a relationship between a source space and a sensor space required for calculating a lead-field vector of a core diagram according to an embodiment of the present invention.
도 7을 참조하면, 리드필드벡터는 단위 소스전류(unit current source)와 도체모델(conductor model)을 알고 있을 때, 센서 공간에서 계산된 자기장이다. 상기 소스전류는 크기와 방향을 가지는 등가전류쌍극자(equivalent current dipole; ECD)가 사용된다. 인체는 일정한 전기 전도도를 가지는 도체 공간(z<0)으로 간주될 수 있다. 상기 도체모델은 평면도체모델(horizontally layered conductor model)이 사용된다. 평면도체모델은 평면 아래(z<0)는 도전체로 가정하고 평면 위(z>0)는 절연체로 가정한다. 상기 소스전류는 도체 공간 내에 존재한다. 또한 상기 도체 공간 중에서 소스 공간(V)이 선택된다. 심장은 상기 소스 공간(V) 내에 존재한다.Referring to FIG. 7, the lead field vector is a magnetic field calculated in the sensor space when the unit current source and the conductor model are known. The source current is an equivalent current dipole (ECD) having a magnitude and a direction. The human body can be regarded as a conductor space z <0 having a constant electrical conductivity. The conductor model is a horizontally layered conductor model. The planar body model assumes that the plane below (z <0) is a conductor and the plane above (z> 0) is an insulator. The source current is in the conductor space. In addition, a source space V is selected from the conductor spaces. The heart is in the source space (V).
상기 소스 공간은 xyz 직각 좌표계를 기준으로 직육면체일 수 있다. 상기 소스 공간은 10 mm 단위로 분할된 복셀(voxels)로 구성될 수 있다. 상기 소스 공간은 x축 방향으로 150 mm이고, y축 방향으로 170 mm이고, z축 방향으로 150 mm일 수 있다. 이에 따라, 총 복셀의 개수(Q)는 3314개 일 수 있다.The source space may be a cuboid based on an xyz rectangular coordinate system. The source space may be composed of voxels divided by 10 mm units. The source space may be 150 mm in the x-axis direction, 170 mm in the y-axis direction, and 150 mm in the z-axis direction. Accordingly, the total number of voxels Q may be 3314.
상기 도체 공간의 외부에는 측정 영역(z>0)이 배치된다. 상기 측정 영역에 복수의 심자도 센서(112)가 배치되는 센서 공간이 배치될 수 있다. 상기 심자도 센서(112)는 SQUID 센서일 수 있다. 상기 심자도 센서의 위치 정보는 이미 알고 있다. 상기 SQUID 센서(112)는 70 mm의 베이스라인(baseline)을 가지는 1차 권선형 미분계(1st order axial gradiometer)를 포함할 수 있다. Outside the conductor space, a measurement region z> 0 is arranged. A sensor space in which the plurality of core sensor 112 may be disposed in the measurement area. The core sensor 112 may be a SQUID sensor. Location information of the core sensor is already known. The SQUID sensor 112 may include a first order axial gradiometer having a baseline of 70 mm.
공간 필터의 출력 파워는 심근 전기 활성(mycocardial electric activity)의 크기를 추정할 수 있기 때문에, 공간 필터 방법은 심장 모형을 재구성할 수 있다. 소스 벡터는 위치 r=(x,y,z) 및 시간 t 에서 이산 체적 공간(discrete volume space) V에서 s(r,t)로 정의된다. 소스들의 총 개수는 Q 이다. 상기 소스 벡터는 소스 전류의 크기와 방향을 나타낼 수 있다.Since the output power of the spatial filter can estimate the magnitude of mycocardial electric activity, the spatial filter method can reconstruct the heart model. The source vector is defined as s (r, t) in discrete volume space V at position r = (x, y, z) and time t. The total number of sources is Q. The source vector may indicate the magnitude and direction of the source current.
하나의 전류원으로부터 세 방향으로 계산된 리드필드벡터(l(r))는 수학식 2와 같이 나타낼 수 있고, 전체 전류원 Q에 대한 총 리드필드벡터(L(r))는 수학식 3과 같이 나타낼 수 있다(S130). The lead field vector l (r) calculated in one direction from one current source may be represented by Equation 2, and the total lead field vector L (r) for the entire current source Q is represented by Equation 3 It may be (S130).
[수학식 2][Equation 2]
Figure PCTKR2015002569-appb-I000003
Figure PCTKR2015002569-appb-I000003
[수학식 3][Equation 3]
Figure PCTKR2015002569-appb-I000004
Figure PCTKR2015002569-appb-I000004
위치 r=(x,y,z)에서 시간이 t 일 때, 소스벡터를 s(r,t)로 정의하면, 심방과 심실의 소스벡터는 각각 sa(r,t)와 sv(r,t)로 나타낼 수 있다. 상기 리드필드벡터(L(r))와 소스벡터(sa(r,t), sv(r,t))를 선형 결합하면 센서 공간에서 계산된 심방과 심실의 자기장(ba(t), bv(t))을 수학식 4와 같이 계산할 수 있다. If the time vector at position r = (x, y, z) is t, and you define the source vector as s (r, t), the source vectors of the atrium and ventricles are s a (r, t) and s v (r , t). When the lead field vector L (r) and the source vector s a (r, t) and s v (r, t) are linearly combined, the magnetic field of the atrium and the ventricle calculated in the sensor space is b a (t) , b v (t)) can be calculated as in Equation 4.
[수학식 4][Equation 4]
Figure PCTKR2015002569-appb-I000005
Figure PCTKR2015002569-appb-I000005
여기서, V는 소스 공간을 나타낸다. Where V represents the source space.
공간필터는 신호전송 및 수신을 위한 센서 어레이(sensor array)에 사용되는 기술이다. 상기 공간필터(WT a,WT v)는 가중치 벡터(weight vector)이다. 따라서, 측정된 자기장(심자도 신호)에 선형적으로 상기 공간필터(WT a,WT v)를 곱해줌으로써 소스전류의 신호를 추정할 수 있다. 즉, 상기 심방과 심실의 추정 소스전류 벡터는 수학식 5와 같이 나타낼 수 있다.Spatial filters are a technology used in sensor arrays for signal transmission and reception. The spatial filter (W T a, T W v) is the weight vector (weight vector). Accordingly, the signal of the source current can be estimated by linearly multiplying the measured magnetic field (core signal) by the spatial filters W T a and W T v . That is, the estimated source current vector of the atrium and the ventricles may be represented by Equation 5.
[수학식 5][Equation 5]
Figure PCTKR2015002569-appb-I000006
Figure PCTKR2015002569-appb-I000006
상기 심방과 심실의 추정 소스전류 벡터(sa(r,t),sv(r,t))는 전체 추정 소스전류 벡터 s(r,t)에 포함되기 때문에, 추정 소스전류 벡터의 파워를 구하기 위해 일반적으로 유도되는 수학식에서는 심방 첨자(a)와 심실 첨자(v)로 표기하지 않고 설명한다. 상기 수학식 4와 수학식 5를 결합하면 추정 소스전류 벡터는 수학식 6과 같이 표현될 수 있다.Since the estimated source current vectors s a (r, t) and s v (r, t) of the atria and the ventricles are included in the total estimated source current vectors s (r, t), the power of the estimated source current vectors is increased. In general, the equations derived to obtain are described without atrial subscript (a) and ventricular subscript (v). Combining Equations 4 and 5, the estimated source current vector may be expressed as Equation 6.
[수학식 6][Equation 6]
Figure PCTKR2015002569-appb-I000007
Figure PCTKR2015002569-appb-I000007
여기서, r은 목표소스 위치이고, r'는 목표소스 이외의 위치이다.Here, r is a target source position and r 'is a position other than the target source.
Figure PCTKR2015002569-appb-I000008
는 빔 응답(beam response)이고, 공간필터의 목표소스 위치가 아닌 다른 소스에서 발생된 왜곡된 누설전류(misleading leakage current)의 이득(gain)을 나타낸다.
Figure PCTKR2015002569-appb-I000008
Is a beam response and represents the gain of misleading leakage current generated from a source other than the target source position of the spatial filter.
이상적인 공간필터를 설계하기 위해서는 상기 빔 응답의 이득이 최소화되어야 한다. 따라서 최소크기기반(minimum-norm-based) 공간필터는 아래식의 제약을 조건으로 최적화 문제를 풀어 유도할 수 있다.In order to design an ideal spatial filter, the gain of the beam response should be minimized. Therefore, a minimum-norm-based spatial filter can be derived by solving the optimization problem under the following constraint.
[수학식 7][Equation 7]
Figure PCTKR2015002569-appb-I000009
Figure PCTKR2015002569-appb-I000009
Figure PCTKR2015002569-appb-I000010
은 센서 어레이의 이득을 나타낸다. 수학식 7에서 C(W)는 비용함수(cost function)이고 전체 누설전류의 총합을 나타낸다. 상기 비용함수 C(W)는 수학식 8과 같이 나타낼 수 있다.
Figure PCTKR2015002569-appb-I000010
Represents the gain of the sensor array. In Equation 7, C (W) is a cost function and represents the sum of the total leakage currents. The cost function C (W) may be expressed as Equation 8.
[수학식 8][Equation 8]
Figure PCTKR2015002569-appb-I000011
Figure PCTKR2015002569-appb-I000011
tr{}은 행렬의 대각 성분의 합(trace)이고, δ(r)은 델타 함수, H(r')는 임의의 가중치행렬이다.tr {} is the trace of the diagonal components of the matrix, δ (r) is the delta function and H (r ') is an arbitrary weight matrix.
심방과 심실의 그램행렬(Gram matrix, Ga, Gv)은 상기 리드필드벡터와 심방과 심실의 임의의 가중치행렬을 결합하여 수학식 9와 같이 각각 정의할 수 있다.The gram matrix of the atrium and the ventricles (Gram matrix, G a , G v ) may be defined as shown in Equation 9 by combining the lead field vector with arbitrary weight matrices of the atria and ventricles.
[수학식 9][Equation 9]
Figure PCTKR2015002569-appb-I000012
Figure PCTKR2015002569-appb-I000012
같은 크기를 가지는 소스전류에 대해, SQUID 센서에서 등가전류쌍극자의 거리가 가까운 경우 리드필드벡터의 크기는 크다. 반면 센서에서 먼 경우 리드필드벡터의 크기는 작다. 따라서 각각의 위치에 대한 리드필드벡터를 규격화(normalization)하면 멀리 있는 소스의 크기를 상대적으로 증가시킬 수 있다. 규격화된 리드필드벡터(
Figure PCTKR2015002569-appb-I000013
)는 수학식 10과 같이 나타낼 수 있다(S140).
For source currents having the same magnitude, the lead field vector has a large magnitude when the equivalent current dipole is close in the SQUID sensor. On the other hand, the lead field vector is small when it is far from the sensor. Therefore, normalizing the lead field vector for each position can relatively increase the size of the distant source. Normalized leadfield vector (
Figure PCTKR2015002569-appb-I000013
) May be represented as in Equation 10 (S140).
[수학식 10][Equation 10]
Figure PCTKR2015002569-appb-I000014
Figure PCTKR2015002569-appb-I000014
상기 규격화된 리드필드벡터(
Figure PCTKR2015002569-appb-I000015
)와 상기 그램행렬(G(r))을 선형 결합하면 공간필터 또는 가중 벡터를 아래와 같이 구할 수 있다.
The normalized lead field vector (
Figure PCTKR2015002569-appb-I000015
) And the gram matrix G (r) are linearly combined to obtain a spatial filter or weight vector as follows.
[수학식 11][Equation 11]
Figure PCTKR2015002569-appb-I000016
Figure PCTKR2015002569-appb-I000016
최소분산(minimum variance;MV) 공간필터는 생체전자기(bioelectromagnetism) 분야에서 가장 많이 사용되는 적응공간필터이다. 공분산행렬은 측정데이터(b(t))의 앙상블 평균(ensemble average)으로 다음과 같이
Figure PCTKR2015002569-appb-I000017
로 정의할 수 있다.
Minimal variance (MV) spatial filters are the most popular adaptive spatial filters in the field of bioelectromagnetism. The covariance matrix is an ensemble average of the measured data b (t) as
Figure PCTKR2015002569-appb-I000017
Can be defined as
상기 최소분산 공간필터는 아래식의 제약을 조건으로 최적화 문제를 풀어 유도할 수 있다.The minimally distributed spatial filter can be derived by solving an optimization problem under the constraint of the following equation.
[수학식 12][Equation 12]
Figure PCTKR2015002569-appb-I000018
Figure PCTKR2015002569-appb-I000018
최소분산 공간필터는 상기 규격화된 리드필드벡터(
Figure PCTKR2015002569-appb-I000019
)와 상기 공분산행렬(D)의 선형 결합으로 아래와 같이 구할 수 있다.
The minimum distributed spatial filter is the normalized lead field vector (
Figure PCTKR2015002569-appb-I000019
) And the covariance matrix (D) can be obtained as follows.
[수학식 13][Equation 13]
Figure PCTKR2015002569-appb-I000020
Figure PCTKR2015002569-appb-I000020
수학식 11과 13의 유일한 차이점은 그램행렬과 공분산행렬이다. 상기 공분산행렬(D)에 수학식 4를 적용하면 아래와 같이 나타낼 수 있다.The only differences between Equations 11 and 13 are the gram matrix and the covariance matrix. Applying Equation 4 to the covariance matrix (D) can be expressed as follows.
[수학식 14][Equation 14]
Figure PCTKR2015002569-appb-I000021
Figure PCTKR2015002569-appb-I000021
수학식 9와 14를 비교해 보면, 임의의 가중치행렬 (H(r))이 소스 파워행렬
Figure PCTKR2015002569-appb-I000022
과 유사함을 보여준다. 따라서 상기 가중치행렬(H(r))을 소스 파워행렬로 대체하면, 최소크기 공간필터의 성능이 최소분산 공간필터와 유사함을 기대할 수 있다.
Comparing Equations 9 and 14, the arbitrary weight matrix H (r) is the source power matrix.
Figure PCTKR2015002569-appb-I000022
Similar to Therefore, if the weight matrix H (r) is replaced with the source power matrix, it can be expected that the performance of the minimum size spatial filter is similar to the minimum distributed spatial filter.
더 정확한 결과를 얻기 위해서 그램 행렬에 노이즈 영향을 고려해야 한다. 함수의 조건수(condition number)는 입력변수의 작은 변화에 따른 출력값이 얼마나 변하는가를 나타내는 수이다. 실제 활용하는데 있어 그램 행렬의 조건수는 아주 크다. 구체적으로, 그램 행렬에서 노이즈 성분은 아주 작은 값이지만 그램 역행열로 변환되면 작은 노이즈값이 크게 변한다. 따라서, 그램 행렬의 역행렬을 계산하면 부정확한 결과가 초래된다. 정규화 방법(regularization method)을 적용하면 노이즈 성분을 제거함으로써 그램 역행렬 계산 에러를 줄일 수 있다. 따라서 심방과 심실의 수정된 배열이득제한최소크기 공간필터는 수학식 15와 같이 각각 표현할 수 있다.To get more accurate results, we need to consider the effect of noise on the gram matrix. The condition number of a function is a number that indicates how the output value changes due to a small change in the input variable. The actual number of conditions in the gram matrix is very large. Specifically, the noise component in the gram matrix is a very small value, but when converted to the gram inverse, the small noise value changes significantly. Therefore, calculating the inverse of the gram matrix results in inaccurate results. Applying a regularization method can reduce the gram inverse calculation error by removing noise components. Therefore, the modified minimum spatial gain spatial filter of the atria and the ventricles may be expressed as shown in Equation 15, respectively.
[수학식 15][Equation 15]
Figure PCTKR2015002569-appb-I000023
Figure PCTKR2015002569-appb-I000023
여기서 λa와 λv는 심방과 심실의 정규화 매개변수(regularization parameter)이고, 상기 정규화 매개변수는 측정값의 신호 대 잡음비로 정해진다. Where λ a and λ v are the normalization parameters of the atria and ventricles, and the normalization parameters are determined by the signal-to-noise ratio of the measured values.
수학식 14에서 심방과 심실의 소스전류 벡터 sa(r,t)와 sv(r,t)는 알 수 없기 때문에 가중치행렬 Ha(r)과 Hv(r)을 구하기 위해 상기 소스전류 벡터는 추정 소스전류 벡터
Figure PCTKR2015002569-appb-I000024
Figure PCTKR2015002569-appb-I000025
로 대체할 수 있다(S193).
Since the source current vectors s a (r, t) and s v (r, t) of the atria and the ventricles are unknown in Equation 14, the source currents are obtained to obtain the weighting matrix H a (r) and H v (r). Vector is estimated source current vector
Figure PCTKR2015002569-appb-I000024
and
Figure PCTKR2015002569-appb-I000025
It can be replaced with (S193).
최적의 가중치행렬(H(r))을 구하기 위해 아래의 과정이 필요하다. 첫째, 가중치행렬을 단위행렬로 초기화한다(S150). 둘째, 수학식 15로부터 배열이득제한최소크기 공간필터의 출력값을 구한다(S180). 셋째, 수학식 5로부터 추정된 소스전류벡터(
Figure PCTKR2015002569-appb-I000026
,
Figure PCTKR2015002569-appb-I000027
)를 구한다(S191). 넷째 수학식 9의 가중치행렬(H(r))은 추정된 소스전류 벡터로 업데이트된다. 상기 가중치행렬(H(r))은 업데이트된 가중치가 일정한 값에 수렴할 때 까지 상기 첫째부터 넷째까지의 과정을 통해 회귀적으로 가중치행렬(H(r))은 업데이트된다(S193). 최종적으로 상기 업데이트가 완료되면 수학식 5로부터 추정 소스전류벡터가 구해질 수 있다.
The following process is required to find the optimal weight matrix H (r). First, the weight matrix is initialized to the unit matrix (S150). Second, the output value of the minimum gain spatial filter of array gain is obtained from Equation 15 (S180). Third, the source current vector estimated from Equation 5
Figure PCTKR2015002569-appb-I000026
,
Figure PCTKR2015002569-appb-I000027
To obtain (S191). Fourth, the weight matrix H (r) of Equation 9 is updated with the estimated source current vector. The weight matrix H (r) is recursively updated through the first to fourth processes until the updated weight converges to a constant value (S193). Finally, when the update is completed, an estimated source current vector may be obtained from Equation 5.
상기 추정 소스전류 벡터(
Figure PCTKR2015002569-appb-I000028
,)로부터 각각의 소스의 파워, 즉
Figure PCTKR2015002569-appb-I000030
Figure PCTKR2015002569-appb-I000031
를 구할 수 있다. 구해진 추정 소스 전류 파워는 최대 크기로 나누어 줌으로써 규격화(normalization)할 수 있다(S194).
The estimated source current vector (
Figure PCTKR2015002569-appb-I000028
, Power of each source,
Figure PCTKR2015002569-appb-I000030
Wow
Figure PCTKR2015002569-appb-I000031
Can be obtained. The estimated source current power obtained may be normalized by dividing by the maximum magnitude (S194).
상기 규격화된 추정 소스전류의 파워를 신호 대 잡음비로부터 설정한 제1 임계값(threshold)을 적용하여 심방과 심실의 제1 윤곽을 각각 재구성한다. 예를 들어, 제1 임계값이 0.5로 설정된 경우, 상기 제1 임계값 이상의 값을 가지는 복셀들만이 소스 공간에 표시될 수 있다. 제1 임계값 이상의 복셀들의 최외곽 복셀은 서로 연결되어 제1 윤곽을 제공할 수 있다. 제1-1 임계값은 심방에 대하여 설정되고, 제1-2 임계값은 심실에 대하여 설정될 수 있다.The first contour of the atrium and the ventricles are reconstructed by applying a first threshold set from the normalized estimated source current power from the signal-to-noise ratio. For example, when the first threshold is set to 0.5, only voxels having a value greater than or equal to the first threshold may be displayed in the source space. The outermost voxels of the voxels above the first threshold may be connected to one another to provide a first contour. The first-first threshold may be set for the atrium, and the first-second threshold may be set for the ventricles.
제1 윤곽은 심방 및 심실에 대하여 각각 형성될 수 있다. 상기 심방과 심실의 제1 임계값들은 서로 다를 수 있다.The first contour may be formed with respect to the atrium and the ventricles, respectively. The first threshold values of the atrium and the ventricles may be different.
[결맞음(coherence) 매핑][Coherence Mapping]
심근전류소스의 파워를 계산할 때 생리적 노이즈, 예를 들어 호흡이나 소화작용 등은 소스전류의 파워를 계산하는데 잘못된 영향을 미칠 수 있다. 따라서 더 정확한 심장모형을 생성하기 위해서 결맞음 매핑(coherence mapping) 방법을 추가로 적용할 수 있다. 결맞음은 두 개 이상의 파동이 위상에 따라 서로 간섭을 하는 현상을 의미한다. 심장의 경우, 영역에 따라 심근세포막의 이온투과율이 다르다. 따라서 근접 영역의 경우 심근 전류는 유사한 활동전위를 나타낸다. 하지만 먼 영역의 경우 상이한 활동전위(action potential)를 보여준다. 따라서 심방과 심실의 최대 신호원과 결맞는 신호원의 위치를 추정하면 심방과 심실의 영역으로 각각 윤곽을 재구성 할 수 있다.When calculating the power of a myocardial current source, physiological noise, such as breathing or digestion, may have a false influence on calculating the power of the source current. Therefore, coherence mapping can be further applied to create a more accurate heart model. Coherence refers to a phenomenon in which two or more waves interfere with each other in phase. In the case of the heart, the ion permeability of the cardiomyocyte membrane varies according to the area. Thus, in the proximal region, myocardial currents show similar action potentials. However, in the distant realms, they show different action potentials. Therefore, by estimating the position of a signal source that matches the maximum signal source of the atrium and the ventricles, the contour can be reconstructed into the atrium and ventricular regions, respectively.
도8은 본 발명의 일 실시예에 따른 심방의 결맞음 매핑을 나타내는 도면이다.8 illustrates coherence mapping of the atria in accordance with one embodiment of the present invention.
도9는 본 발명의 일 실시예에 따른 심실의 결맞음 매핑을 나타내는 도면이다.Figure 9 illustrates coherence mapping of the ventricles in accordance with an embodiment of the present invention.
도8 및 도 9를 참조하면, 결맞음 분석은 주파수에 따른 신호간의 상관성을 나타내는 대표적인 분석법으로써 정상상태(stationary state) 두 신호에 대한 결맞음 함수는 상호 스펙트럼 밀도(cross spectral density)함수와 자기 스펙트럼 밀도(auto spectral density)함수로부터 계산할 수 있다.8 and 9, the coherence analysis is a representative analysis method showing the correlation between signals according to frequency. The coherence function for two signals of stationary state is a cross spectral density function and a magnetic spectral density ( It can be calculated from the auto spectral density function.
소스 영역에서 추정된 신호파형(추정 소스전류 벡터)은 수학식 5로부터 공간필터와 측정된 자기장의 곱으로부터 재구성된다. Q번째 위치에서 재구성된 파형(추정 소스전류 벡터)의 시계열(time series)은
Figure PCTKR2015002569-appb-I000032
로 나타난다. 심방과 심실의 소스전류의 파워가 최대인 지점에서의 파형(추정 소스벡터)은 각각
Figure PCTKR2015002569-appb-I000033
Figure PCTKR2015002569-appb-I000034
로 나타낼 수 있다(S210). 재구성된 시계열 파형(추정 소스벡터)
Figure PCTKR2015002569-appb-I000035
,
Figure PCTKR2015002569-appb-I000036
,
Figure PCTKR2015002569-appb-I000037
는 고속 퓨리에 변환(fast Fourier transforms)에 의하여 Sa(f), Sv(f), Sq(f)로 변환될 수 있다(S230).
The estimated signal waveform (estimated source current vector) in the source region is reconstructed from the product of the spatial filter and the measured magnetic field from equation (5). The time series of the waveform (estimated source current vector) reconstructed at the Q position is
Figure PCTKR2015002569-appb-I000032
Appears. Waveforms (estimated source vectors) at the point where the power of the atria and ventricle source currents are maximum
Figure PCTKR2015002569-appb-I000033
Wow
Figure PCTKR2015002569-appb-I000034
It may be represented as (S210). Reconstructed Time Series Waveform (Estimate Source Vector)
Figure PCTKR2015002569-appb-I000035
,
Figure PCTKR2015002569-appb-I000036
,
Figure PCTKR2015002569-appb-I000037
May be transformed into S a (f), S v (f), and S q (f) by fast Fourier transforms (S230).
심방과 심실의 상호-스펙트럼(cross-spectrum) 및 Q번째 소스의 자기-스펙트럼(auto-spectrum)은 아래와 같이 정의할 수 있다(S240).The cross-spectrum of the atrium and the ventricles and the auto-spectrum of the Q-th source may be defined as follows (S240).
[수학식 16][Equation 16]
Figure PCTKR2015002569-appb-I000038
Figure PCTKR2015002569-appb-I000038
여기서 <>는 평균을 의미하고, 윗첨자 *는 공액 복소수(complex conjugate)를 나타낸다.Where <> means an average and the superscript * indicates a complex conjugate.
심방과 심실의 결맞음은 상기 상호-스펙트럼과 자기-스펙트럼의 조합으로 수학식 17과 같이 나타낼 수 있다(S250).The coherence of the atrium and the ventricles may be represented by Equation 17 as a combination of the cross-spectrum and the self-spectrum (S250).
[수학식 17][Equation 17]
Figure PCTKR2015002569-appb-I000039
Figure PCTKR2015002569-appb-I000039
구체적으로, 심방의 결맞음(Cohaq(f))은 심방과 모든 소스 공간 사이에서 구한 상호-스펙트럼(Γaq(f))을 각각의 자기-스펙트럼(Γaa(f),Γqq(f) )의 곱의 제곱근으로 나누어 줌으로써 규격화할 수 있다. 마찬가지로 심실의 결맞음(Cohvq(f))도 상기 심방과 같이 규격화 할 수 있다. 심실의 결맞음(Cohvq(f))은 심실과 모든 소스 공간 사이에서 구한 상호-스펙트럼(Γvq(f))을 각각의 자기-스펙트럼(Γvv(f),Γqq(f))의 곱의 제곱근으로 나누어 줌으로써 규격화할 수 있다.Specifically, the coherence of the atria (Coh aq (f)) is the cross-spectrum (Γ aq (f)) obtained between the atria and all source spaces, respectively, for each self-spectrum (Γ aa (f), Γ qq (f)). Can be normalized by dividing by the square root of the product of Similarly, cochlear cohesion (Coh vq (f)) can be standardized as above. Ventricular coherence (Coh vq (f)) is the product of the cross-spectrum (Γ vq (f)) obtained between the ventricle and all of the source spaces of each self-spectrum (Γ vv (f), Γ qq (f)). It can be normalized by dividing by the square root of.
상기 규격화된 심방 결맞음 및 심실 결맞음은 신호 대 잡음비로부터 정해진 각각의 제2 임계값을 기준으로 제2 윤곽을 재구성할 수 있다(S260). 예를 들어, 제2 임계값이 0.5로 설정된 경우, 상기 제2 임계값 이상의 값을 가지는 복셀들만이 소스 공간에 표시될 수 있다. 제2 임계값 이상의 복셀들의 최외곽 복셀은 서로 연결되어 제2 윤곽을 제공할 수 있다. 제2-1 임계값은 심방에 대하여 설정되고, 제2-2 임계값은 심실에 대하여 설정될 수 있다.The normalized atrial coherence and ventricular coherence may reconstruct a second contour based on each second threshold determined from a signal-to-noise ratio (S260). For example, when the second threshold is set to 0.5, only voxels having a value greater than or equal to the second threshold may be displayed in the source space. The outermost voxels of the voxels above the second threshold may be connected to one another to provide a second contour. The 2-1 threshold may be set for the atrium, and the 2-2 threshold may be set for the ventricles.
제2 윤곽은 심방 및 심실에 대하여 각각 형성될 수 있다. 상기 심방과 심실의 제2 임계값들은 서로 다를 수 있다.The second contour may be formed with respect to the atrium and the ventricles, respectively. The second thresholds of the atrium and the ventricles may be different.
심방과 심실의 제1 윤곽과 제2 윤곽을 결합하여 제3 윤곽을 재구성 할 수 있다(S300). 상기 재구성 방법은 심방과 심실의 상기 규격화된 소스전류의 파워와 상기 규격화된 결맞음을 곱해준 후 각각의 제3 임계값을 기준으로 제3 윤곽을 재구성할 수 있다. 제3 윤곽은 심방 및 심실에 대하여 각각 형성될 수 있다. 상기 심방과 심실의 제3 임계값들은 서로 다를 수 있다.The third contour may be reconstructed by combining the first and second contours of the atrium and the ventricles (S300). The reconstruction method may reconstruct a third contour based on each third threshold value after multiplying the normalized coherence by the power of the normalized source current of the atrium and the ventricles. The third contour may be formed with respect to the atria and the ventricles, respectively. The third thresholds of the atrium and the ventricles may be different.
이하, 본 발명의 유효성을 증명하기 위한 수치 시뮬레이션(numerical simulation)과 모형 실험(phantom experiment) 및 수치 시뮬레이션과 모형 실험의 결과가 설명된다. Hereinafter, the results of numerical simulation and phantom experiment and numerical simulation and model experiment for demonstrating the effectiveness of the present invention will be described.
도 10은 본 발명의 일 실시예에 따른 수치 시뮬레이션을 위한 가상 소스 공간 및 가상 심장을 나타내는 도면이다. 10 is a diagram illustrating a virtual source space and a virtual heart for numerical simulation according to an embodiment of the present invention.
도10을 참조하면, 가상 심장(204,206)은 가상 소스 공간(202) 내에 위치한다. 상기 가상 심장은 가상 심방(204)과 가상 심실(206)을 포함한다.Referring to FIG. 10, virtual hearts 204 and 206 are located in the virtual source space 202. The virtual heart includes a virtual atrium 204 and a virtual ventricle 206.
상기 가상 소스 공간(202)은 xyz 직각 좌표계를 기준으로 직육면체일 수 있다. 상기 직각 좌표계에서 임의의 명치(xiphoid)위치가 원점(fiducial point)으로 정해진다. 상기 가상 소스 공간(202)은 10 mm 단위로 분할된 복셀(voxels)로 구성될 수 있다. 상기 가상 소스 공간(202)은 x축 방향으로 150 mm이고, y축 방향으로 170 mm이고, z축 방향으로 150 mm일 수 있다. 이에 따라, 총 복셀의 개수(Q)는 3314개 일 수 있다.The virtual source space 202 may be a cuboid based on an xyz rectangular coordinate system. An arbitrary position of the xiphoid in the rectangular coordinate system is defined as a fiducial point. The virtual source space 202 may be composed of voxels divided by 10 mm units. The virtual source space 202 may be 150 mm in the x-axis direction, 170 mm in the y-axis direction, and 150 mm in the z-axis direction. Accordingly, the total number of voxels Q may be 3314.
상기 가상 심방(204)에는 199개의 복셀이 할당되었고, 상기 가상 심실(206)에는 248개의 복셀이 할당되었다. 상기 가상 심장(204,206)에는 등가전류쌍극자(ECD)가 소스모델로 설정되었고, 신호의 형태는 사인파(sine wave)이다. 상기 심방의 등가전류쌍극자의 크기는 0.25 μAm이고, 심실의 등가전류쌍극자의 크기는 1 μAm이다. 그리고 신호 대 잡음비 20 dB의 가우시안 백색 잡음(Gaussian white noise)이 추가되었다. The virtual atria 204 has been assigned 199 voxels, and the virtual ventricle 206 has been assigned 248 voxels. Equivalent current dipoles (ECDs) are set in the virtual heart 204 and 206 as a source model, and the signal is a sine wave. The equivalent current dipole of the atrium is 0.25 μAm and the equivalent current dipole of the ventricles is 1 μAm. Gaussian white noise with a signal-to-noise ratio of 20 dB was added.
상기 심방 사인파의 중심주파수는 10 Hz이고, 심실 사인파의 중심주파수는 8 Hz이다. 또한 평면도체모델이 심장의 도체모델로 설정되었다. 심장의 활동 전위가 전파되는 것을 모사하기 위해 위치에 따라 사인파의 다른 위상이 할당되었다. 심장의 수축(systole)과 이완(diastole)을 나타내기 위해 심저(cardiac base)부터 심첨(cardiac apex), 즉 y축 방향으로 위상이 30 도씩 순차적으로 증가되었다. 또한 심장의 가로면(transverse plane), 즉 z축 방향으로 위상이 26 도씩 순차적으로 증가되었다. The center frequency of the atrial sine wave is 10 Hz, and the center frequency of the ventricular sine wave is 8 Hz. In addition, the planar body model was set as the heart model. Different phases of the sine wave were assigned to position to simulate the propagation of the heart's action potentials. In order to show the systole and relaxation of the heart, the phase was sequentially increased by 30 degrees from the cardiac base to the cardiac apex, that is, the y-axis direction. In addition, the phase was sequentially increased by 26 degrees in the transverse plane of the heart, that is, the z-axis direction.
도11은 본 발명의 일 실시예에 따른 수치 시뮬레이션의 결과를 나타내는 도면이다. 11 is a diagram showing the results of numerical simulations according to an embodiment of the present invention.
도 11을 참조하면, 설정된 소스모델로부터 생성된 자기장을 센서 공간에서 측정하였다(S110). 상기 회귀갱신그램행렬 배열이득제한최소크기 공간필터를 적용하여 심방과 심실 소스전류의 파워를 구하였다(S191). 상기 소스전류의 파워를 신호 대 잡음비로 설정된 제1-1 임계값과 제1-2 임계값으로 필터링하여 심방과 심실의 제1 윤곽을 재구성하였다(S195). 상기 재구성된 신호파형으로부터 모든 소스영역에 대한 심방과 심실의 결맞음을 구하였다(S250). 상기 결맞음을 신호 대 잡음비로 설정된 제2-1 임계값과 제2-2 임계값으로 필터링하여 심방과 심실의 제2 윤곽을 재구성하였다(S260). 마지막으로 상기 제1 윤곽과 제2 윤곽을 결합하여 심장의 제3 윤곽을 재구성하였다(S300). 그 결과, 상기 재구성된 심장의 윤곽이 가상의 심장 윤곽과 거의 일치함을 나타낸다.Referring to FIG. 11, the magnetic field generated from the set source model was measured in the sensor space (S110). The power of the atrial and ventricular source currents was obtained by applying the regression update gram matrix array minimum gain spatial filter (S191). The first contour of the atrium and the ventricles was reconstructed by filtering the power of the source current by the 1-1 threshold and the 1-2 threshold set as the signal-to-noise ratio (S195). From the reconstructed signal waveforms, the coherence between the atria and the ventricles of all source regions was obtained (S250). The coherence was filtered by the 2-1 threshold and the 2-2 threshold set to the signal-to-noise ratio to reconstruct the second contour of the atrium and the ventricles (S260). Finally, the first contour and the second contour are combined to reconstruct the third contour of the heart (S300). As a result, the contour of the reconstructed heart almost coincides with the virtual heart contour.
도 12는 본 발명의 일 실시예에 따른 모형 실험을 위한 모형 심장(cardiac phantom)을 나타내는 도면이다.12 is a diagram illustrating a cardiac phantom for a model experiment according to an embodiment of the present invention.
도 12를 참조하면, 상기 모형심장(a)은 거위알(goose egg) 형태로 제작되었다. 길이 10 mm의 12개 전류 쌍극자가 상기 모형심장의 표면 5 mm 상에 위치한다. 상기 모형심장은 유리섬유(fiberglass)로 제작된 몸통모형(torso phantom)내에 위치한다. 상기 모형심장은 관상면(coronal plane)으로 45도 기울어지고, 사상면(sagittal plane)으로 30도 기울어진다. 상기 몸통모형내에 전기전도도(conductivity)가 약 0.16 S/m인 0.9 % 생리식염수(saline solution)를 채운다.Referring to Figure 12, the model heart (a) was made in the form of goose eggs (goose egg). Twelve current dipoles of 10 mm in length are located on 5 mm of the surface of the model heart. The model heart is located in a torso phantom made of fiberglass. The model heart is tilted 45 degrees to the coronal plane and 30 degrees to the sagittal plane. The body model is filled with 0.9% saline solution having an electrical conductivity of about 0.16 S / m.
상기 모형 심장은 가상 소스 공간 내에 위치한다. 상기 가상 소스 공간은 상기 수치 시뮬레이션에 사용되었던 가상 소스 공간과 동일하다. 상기 몸통모형(b)의 표면에서 임의의 명치(xiphoid)위치가 원점(fiducial point)으로 정해진다. 상기 모형 심장에는 등가전류쌍극자(ECD)가 소스모델로 설정되었다. 상기 모형 심장 등가전류쌍극자의 크기는 100 μAm이고, 신호의 형태는 5 Hz와 10 Hz 사인파(sine wave) 조합이다. 또한 평면도체모델이 심장의 도체모델로 설정되었다.The model heart is located in the virtual source space. The virtual source space is the same as the virtual source space that was used for the numerical simulation. Any position of the xiphoid on the surface of the trunk model b is defined as a fiducial point. In the model heart, an equivalent current dipole (ECD) was set as the source model. The size of the model cardiac equivalent current dipole is 100 μAm and the signal shape is a combination of 5 Hz and 10 Hz sine wave. In addition, the planar body model was set as the heart model.
도 13은 도 12의 모형 심장을 이용한 수치 시뮬레이션 결과를 나타내는 도면이다.FIG. 13 is a diagram illustrating a numerical simulation result using the model heart of FIG. 12.
도 13을 참조하면, 상기 수치 시뮬레이션과 마찬가지로 소스전류의 파워와 결맞 음매핑 방법으로 심장의 제1 윤곽과 제2 윤곽을 구하였다. 상기 제1 윤곽과 제2 윤곽을 결합하여 심장의 제3 윤곽을 재구성하였다. 그 결과, 상기 재구성된 심장의 윤곽이 모형 심장 윤곽과 거의 일치함을 나타낸다.Referring to FIG. 13, the first contour and the second contour of the heart were obtained by the method of matching with the power of the source current as in the numerical simulation. The first contour and the second contour were combined to reconstruct the third contour of the heart. The results indicate that the contour of the reconstructed heart is nearly identical to the model heart contour.
도 14는 신호 대 잡음비에 따른 정규화 매개변수의 비율을 나타내는 도면이다. 14 shows the ratio of normalization parameters to signal to noise ratios.
도 14를 참조하면, 정규화 매개변수의 비율은 상기 그램행렬의 최대특이값(maximum singular value)에 대한 비율이다. 신호대 잡음비가 클수록 정규화 매개변수의 비율이 작아진다. 또한 심방의 신호가 심실의 신호보다 작기 때문에 정규화 매개변수의 비율이 작게 나타낸다. Referring to FIG. 14, the ratio of the normalization parameter is a ratio with respect to the maximum singular value of the gram matrix. The higher the signal-to-noise ratio, the smaller the ratio of normalization parameters. In addition, the ratio of normalization parameters is small because the signal of the atria is smaller than that of the ventricles.
본 발명은 도면에 도시된 실시예를 참고로 설명되었으나 이는 예시적인 것에 불과하며, 본 기술 분야의 통상의 지식을 가진 자라면 이로부터 다양한 변형 및 균등한 다른 실시예가 가능하다는 점을 이해할 것이다. 따라서 본 발명의 진정한 기술적 보호 범위는 첨부된 특허청구범위의 기술적 사상에 의하여 정해져야 할 것이다.Although the present invention has been described with reference to the embodiments shown in the drawings, this is merely exemplary, and it will be understood by those skilled in the art that various modifications and equivalent other embodiments are possible. Therefore, the true technical protection scope of the present invention will be defined by the technical spirit of the appended claims.

Claims (10)

  1. 회귀갱신그램행렬 배열이득제한최소크기(array-gain constraint minimum-norm with recursively updated gram matrix; AGMN-RUG) 공간필터를 이용하여 구한 소스전류벡터의 파워(source current power)로부터 심장의 제1 윤곽을 구하는 단계;
    결맞음 매핑(coherence mapping) 방법을 적용하여 심장의 제2 윤곽을 구하는 단계; 및
    상기 제1 윤곽과 상기 제2 윤곽을 상호 결합하여 심장의 제3 윤곽을 구성하는 단계를 포함하는 것을 특징으로 하는 심장 윤곽 재구성 방법.

    The first contour of the heart is derived from the source current power obtained using an array-gain constraint minimum-norm with recursively updated gram matrix (AGN-RUG) spatial filter. Obtaining;
    Obtaining a second contour of the heart by applying a coherence mapping method; And
    Combining the first contour and the second contour to form a third contour of the heart.

  2. 제1 항에 있어서,
    심장의 제1 윤곽을 구하는 단계는:
    심자도 장치를 이용하여 심근에서 발생된 자기 신호를 측정하는 단계;
    다채널로 측정된 심자도 신호에서 심방과 심실을 나타내는 P파와 T파 구간의 심장 자기 신호를 추출하는 단계;
    심장의 단위 소스전류 및 심장을 근사화한 평면체적도체모델 (horizontally layered volume conductor model)과 심자도 센서의 위치정보를 이용하여 자기장(리드필드 벡터)를 계산하는 단계; 및
    거리에 따른 신호원의 크기를 보상하기 위하여 상기 리드필드 벡터를 규격화(normalization)하는 단계를 포함하는 것을 특징으로 하는 심장 윤곽 재구성 방법.
    The method of claim 1,
    Determining the first contour of the heart is:
    Measuring a magnetic signal generated in the myocardium using a core diagram apparatus;
    Extracting a cardiac magnetic signal of a P-wave and a T-wave interval representing atrial and ventricle from a multi-channel measured core signal;
    Calculating a magnetic field (leadfield vector) using a horizontally layered volume conductor model approximating the unit source current of the heart and the position information of the core magnetic sensor; And
    Normalizing the leadfield vector to compensate for the size of the signal source over distance.
  3. 제2 항에 있어서,
    심장의 제1 윤곽을 구하는 단계는:
    임의의 가중치행렬을 단위 행렬로 초기화하는 단계;
    상기 리드필드 벡터와 임의의 가중치행렬을 조합하여 그램행렬을 구하는 단계;
    상기 구해진 그램행렬에 측정신호의 신호 대 잡음비를 고려하여 정규화 매개변수(regularization parameter)를 설정하는 단계;
    상기 정규화된 그램행렬과 규격화된 리드필드 벡터를 조합하여 배열이득제한최소크기 공간필터(array-gain constraint minimum-norm spatial filter)를 구하는 단계;
    상기 구해진 배열이득제한최소크기 공간필터와 측정된 심방과 심실 신호를 이용하여 추정 소스전류 벡터의 파워를 구하는 단계;
    상기 구해진 소스전류 벡터의 파워가 일정한 값으로 수렴하는지 확인하는 단계;
    상기 구해진 소스전류 벡터의 파워가 일정한 값으로 수렴하지 않는 경우 가중치행렬을 추정 소스벡터를 이용하여 갱신하는 단계;
    상기 구해진 추정 소스 전류 벡터의 파워를 규격화하는 단계; 및
    규격화된 소스전류벡터의 파워를 신호 대 잡음비로 설정된 제1 임계값을 적용하여 심방과 심실의 제1 윤곽을 재구성하는 단계들 중에서 적어도 하나를 더 포함하는 것을 특징으로 하는 심장 윤곽 재구성 방법.
    The method of claim 2,
    Determining the first contour of the heart is:
    Initializing an arbitrary weight matrix to an identity matrix;
    Obtaining a gram matrix by combining the leadfield vector with an arbitrary weight matrix;
    Setting a normalization parameter in the obtained gram matrix in consideration of the signal-to-noise ratio of the measurement signal;
    Obtaining an array-gain constraint minimum-norm spatial filter by combining the normalized gram matrix and the normalized leadfield vector;
    Obtaining power of an estimated source current vector using the obtained array gain limit spatial filter and the measured atrial and ventricular signals;
    Checking whether the power of the obtained source current vector converges to a constant value;
    Updating the weighted matrix using the estimated source vector when the obtained power of the source current vector does not converge to a constant value;
    Normalizing the power of the obtained estimated source current vector; And
    And reconstructing the first contour of the atrium and the ventricle by applying the power of the normalized source current vector to a first threshold set to a signal-to-noise ratio.
  4. 제1 항에 있어서,
    결맞음 매핑(coherence mapping) 방법을 적용하여 심장의 제2 윤곽을 구하는 단계는:
    심방과 심실에서 소스전류벡터의 파워가 가장 큰 지점을 각각 구하는 단계;
    측정된 심자도 신호와 회귀갱신그램행렬 배열이득제한최소크기 공간필터를 선형 결합하여 모든 소스영역에서 신호파형(추정 소스전류 벡터)을 재구성하는 단계;
    상기 재구성된 신호파형(추정 소스전류 벡터)을 고속 퓨리에 변환(fast Fourier transform)하는 단계;
    상기 고속 퓨리에 변환된 신호를 이용하여 심방과 심실에서 모든 소스영역에 대한 상호-스펙트럼(cross-spectrum)과 자기-스펙트럼(auto-spectrum)을 구하는 단계;
    상기 구해진 상호-스펙트럼과 자기-스펙트럼을 조합하여 심방의 결맞음과 심실의 결맞음을 구하는 단계;
    상기 구해진 심방과 심실의 결맞음을 규격화하는 단계; 및
    상기 규격화된 결맞음을 신호 대 잡음비로 설정된 제2 임계값을 적용하여 심방과 심실의 제2 윤곽을 재구성하는 단계들 중에서 적어도 하나를 포함하는 것을 특징으로 하는 심장 윤곽 재구성 방법.
    The method of claim 1,
    Applying the coherence mapping method to find the second contour of the heart:
    Obtaining points where the power of the source current vector is greatest in the atria and the ventricles, respectively;
    Reconstructing signal waveforms (estimated source current vectors) in all source regions by linearly combining the measured core signal and the minimum-size spatial filter of the regression update gram matrix array gain;
    Fast Fourier transforming the reconstructed signal waveform (estimated source current vector);
    Obtaining cross-spectrum and auto-spectrum for all source regions in the atria and ventricles using the fast Fourier transformed signal;
    Combining the obtained inter-spectrum with the self-spectrum to obtain coherence of the atrium and ventricular coherence;
    Normalizing the coherence of the obtained atrium and ventricles; And
    And reconstructing the second contour of the atrium and the ventricles by applying a second threshold set to the normalized coherence to a signal-to-noise ratio.
  5. 회귀갱신그램행렬 배열이득제한최소크기(array-gain constraint minimum-norm with recursively updated gram matrix; AGMN-RUG) 공간필터를 이용하여 구한 소스전류벡터의 파워(source current power)로부터 심장의 윤곽을 구하는 단계를 포함하는 것을 특징으로 하는 심장 윤곽 재구성 방법.Determining the heart from the source current power obtained using an array-gain constraint minimum-norm with recursively updated gram matrix (AGN-RUG) spatial filter Cardiac contour reconstruction method comprising a.
  6. 제5 항에 있어서,
    심장의 윤곽을 구하는 단계는:
    다채널로 측정된 심자도 신호에서 심방과 심실을 나타내는 P파와 T파 구간의 심장 자기 신호를 추출하는 단계;
    심장의 단위 소스전류 및 심장을 근사화한 평면체적도체모델 (horizontally layered volume conductor model)과 심자도 센서의 위치정보를 이용하여 자기장(리드필드 벡터)를 계산하는 단계; 및
    거리에 따른 신호원의 크기를 보상하기 위하여 상기 리드필드 벡터를 규격화(normalization)하는 단계를 포함하는 것을 특징으로 하는 심장 윤곽 재구성 방법.
    The method of claim 5,
    The steps to delineating the heart are:
    Extracting a cardiac magnetic signal of a P-wave and a T-wave interval representing atrial and ventricle from a multi-channel measured core signal;
    Calculating a magnetic field (leadfield vector) using a horizontally layered volume conductor model approximating the unit source current of the heart and the position information of the core magnetic sensor; And
    Normalizing the leadfield vector to compensate for the size of the signal source over distance.
  7. 제6 항에 있어서,
    임의의 가중치행렬을 단위 행렬로 초기화하는 단계;
    상기 리드필드 벡터와 임의의 가중치행렬을 조합하여 그램행렬을 구하는 단계;
    상기 구해진 그램행렬에 측정신호의 신호 대 잡음비를 고려하여 정규화 매개변수(regularization parameter)를 추가하는 단계;
    상기 정규화된 그램행렬과 규격화된 리드필드 벡터를 조합하여 배열이득제한최소크기 공간필터(array-gain constraint minimum-norm spatial filter)를 구하는 단계;
    상기 구해진 배열이득제한최소크기 공간필터와 측정된 심방과 심실 신호를 이용하여 추정 소스전류 벡터의 파워를 구하는 단계;
    상기 구해진 소스전류 벡터의 파워가 일정한 값으로 수렴하는지 확인하는 단계;
    상기 구해진 소스전류 벡터의 파워가 일정한 값으로 수렴하지 않는 경우 가중치행렬을 추정 소스벡터를 이용하여 갱신하는 단계;
    상기 구해진 추정 소스 전류 벡터의 파워를 규격화하는 단계;
    규격화된 소스전류벡터의 파워를 신호 대 잡음비로 설정된 임계값을 적용하여 심방과 심실의 윤곽을 재구성하는 단계를 더 포함하는 것을 특징으로 하는 심장 윤곽 재구성 방법.
    The method of claim 6,
    Initializing an arbitrary weight matrix to an identity matrix;
    Obtaining a gram matrix by combining the leadfield vector with an arbitrary weight matrix;
    Adding a normalization parameter to the obtained gram matrix in consideration of the signal-to-noise ratio of the measurement signal;
    Obtaining an array-gain constraint minimum-norm spatial filter by combining the normalized gram matrix and the normalized leadfield vector;
    Obtaining power of an estimated source current vector using the obtained array gain limit spatial filter and the measured atrial and ventricular signals;
    Checking whether the power of the obtained source current vector converges to a constant value;
    Updating the weighted matrix using the estimated source vector when the obtained power of the source current vector does not converge to a constant value;
    Normalizing the power of the obtained estimated source current vector;
    And reconstructing the contours of the atrium and ventricles by applying the threshold of the normalized source current vector to the signal-to-noise ratio.
  8. 심방과 심실에서 추정 소스전류벡터의 파워가 가장 큰 지점을 각각 구하는 단계;
    측정된 심자도 신호와 회귀갱신그램행렬 배열이득제한최소크기 공간필터를 선형결합하여 모든 소스영역에서 신호파형(추정 소스전류 벡터)을 재구성하는 단계;
    상기 재구성된 신호파형(추정 소스전류 벡터)을 고속 퓨리에 변환(fast Fourier transform)하는 단계;
    상기 고속 퓨리에 변환된 신호를 이용하여 심방과 심실에서 모든 소스영역에 대한 상호-스펙트럼(cross-spectrum)과 자기-스펙트럼(auto-spectrum)을 구하는 단계;
    상기 구해진 상호-스펙트럼과 자기-스펙트럼을 조합하여 심방의 결맞음과 심실의 결맞음을 구하는 단계;
    상기 구해진 심방과 심실의 결맞음을 규격화하는 단계; 및
    상기 규격화된 결맞음을 신호 대 잡음비로 설정된 임계값을 적용하여 심방과 심실의 윤곽을 재구성하는 단계를 포함하는 것을 특징으로 하는 심장 윤곽 재구성 방법.
    Obtaining points where the power of the estimated source current vector is greatest in the atria and the ventricles, respectively;
    Reconstructing the signal waveforms (estimated source current vectors) in all source regions by linearly combining the measured core signal and the minimum size spatial filter of the regression update gram matrix array gain;
    Fast Fourier transforming the reconstructed signal waveform (estimated source current vector);
    Obtaining cross-spectrum and auto-spectrum for all source regions in the atria and ventricles using the fast Fourier transformed signal;
    Combining the obtained inter-spectrum with the self-spectrum to obtain coherence of the atrium and ventricular coherence;
    Normalizing the coherence of the obtained atrium and ventricles; And
    Reconstructing the contours of the atria and ventricles by applying a threshold set to the normalized coherence signal-to-noise ratio.
  9. 제1 항 내지 제8 항 중에서 어느 한 항의 방법을 컴퓨터에서 실행시키기 위한 프로그램을 기록한 기록매체.A recording medium on which a program for executing the method of any one of claims 1 to 8 is recorded on a computer.
  10. 심자도 센서 및 자기차폐실을 포함하고 심자도 신호를 측정하는 심자도 측정 장치; 및
    상기 심자도 신호를 처리하여 심장의 윤곽을 재구성하는 처리부를 포함하고,
    상기 처리부는:
    회귀갱신그램행렬 배열이득제한최소크기(array-gain constraint minimum-norm with recursively updated gram matrix; AGMN-RUG) 공간필터를 이용하여 구한 소스전류벡터의 파워(source current power)로부터 심장의 제1 윤곽을 구하고,
    결맞음 매핑(coherence mapping) 방법을 적용하여 심장의 제2 윤곽을 구하고, 그리고
    상기 제1 윤곽과 상기 제2 윤곽을 상호 결합하여 심장의 제3 윤곽을 구성하는 것을 특징으로 하는 심자도 측정 시스템.
    A core measuring apparatus including a core measuring sensor and a magnetic shield room and measuring a core measuring signal; And
    The core also includes a processor for processing a signal to reconstruct the outline of the heart,
    The processing unit:
    The first contour of the heart is derived from the source current power obtained using an array-gain constraint minimum-norm with recursively updated gram matrix (AGN-RUG) spatial filter. Finding,
    Applying a coherence mapping method to find the second contour of the heart, and
    And the first contour and the second contour to mutually constitute a third contour of the heart.
PCT/KR2015/002569 2014-03-21 2015-03-17 3-dimensional cardiac outline reconstruction method WO2015142029A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201580015416.3A CN106132288B (en) 2014-03-21 2015-03-17 Three-dimensional cardiac profile reconstructing method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020140033636A KR101525485B1 (en) 2014-03-21 2014-03-21 Three-dimensional Reconstruction of a Cardiac Outline by Magnetocardiography
KR10-2014-0033636 2014-03-21

Publications (1)

Publication Number Publication Date
WO2015142029A1 true WO2015142029A1 (en) 2015-09-24

Family

ID=53505268

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2015/002569 WO2015142029A1 (en) 2014-03-21 2015-03-17 3-dimensional cardiac outline reconstruction method

Country Status (3)

Country Link
KR (1) KR101525485B1 (en)
CN (1) CN106132288B (en)
WO (1) WO2015142029A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2771797C2 (en) * 2018-11-08 2022-05-12 Байосенс Вебстер (Изрэйл) Лтд. Iterative coherent mapping of electrophysiological activation of heart, including effect of re-entry
CN115985505A (en) * 2023-01-19 2023-04-18 北京未磁科技有限公司 Multidimensional fusion myocardial ischemia auxiliary diagnosis model and construction method thereof

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108470209B (en) * 2018-03-27 2021-06-04 北京工业大学 Convolutional neural network visualization method based on gram matrix regularization
CN109579693A (en) * 2018-11-26 2019-04-05 中国科学院上海光学精密机械研究所 A kind of image processing method optimal based on degree of mutual coherence
CN116965822B (en) * 2023-09-25 2023-12-29 合肥工业大学 Magnetocardiogram color space circle diagram generation and wave band time identification method and storage medium

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100562099B1 (en) * 2003-08-28 2006-03-17 한국전기연구원 Method for detecting feature parameter and duration using multi-channel signal of magnetocardiography
JP2012157696A (en) * 2011-01-31 2012-08-23 Seiko Epson Corp Magnetocardiogram system, and method for creating magnetocardiogram image
JP2013066708A (en) * 2011-09-22 2013-04-18 Seiko Epson Corp Noise elimination of mcg measurement
KR20130045613A (en) * 2011-10-26 2013-05-06 한국표준과학연구원 Noninvasive mapping method of myocardial electric activity

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100562099B1 (en) * 2003-08-28 2006-03-17 한국전기연구원 Method for detecting feature parameter and duration using multi-channel signal of magnetocardiography
JP2012157696A (en) * 2011-01-31 2012-08-23 Seiko Epson Corp Magnetocardiogram system, and method for creating magnetocardiogram image
JP2013066708A (en) * 2011-09-22 2013-04-18 Seiko Epson Corp Noise elimination of mcg measurement
KR20130045613A (en) * 2011-10-26 2013-05-06 한국표준과학연구원 Noninvasive mapping method of myocardial electric activity

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2771797C2 (en) * 2018-11-08 2022-05-12 Байосенс Вебстер (Изрэйл) Лтд. Iterative coherent mapping of electrophysiological activation of heart, including effect of re-entry
RU2772201C2 (en) * 2018-11-08 2022-05-18 Байосенс Вебстер (Изрэйл) Лтд. Iterative coherent mapping of electrophysiological activation of heart, including scar effects
CN115985505A (en) * 2023-01-19 2023-04-18 北京未磁科技有限公司 Multidimensional fusion myocardial ischemia auxiliary diagnosis model and construction method thereof
CN115985505B (en) * 2023-01-19 2023-12-12 北京未磁科技有限公司 Multidimensional fusion myocardial ischemia auxiliary diagnosis model and construction method thereof

Also Published As

Publication number Publication date
KR101525485B1 (en) 2015-06-03
CN106132288A (en) 2016-11-16
CN106132288B (en) 2019-04-26

Similar Documents

Publication Publication Date Title
US10201288B2 (en) Multi-electrode mapping system
US8553956B2 (en) 3D current reconstruction from 2D dense MCG images
KR101310747B1 (en) Noninvasive mapping method of myocardial electric activity
US9125581B2 (en) Continuous modeling for dipole localization from 2D MCG images with unknown depth
Chinchapatnam et al. Model-based imaging of cardiac apparent conductivity and local conduction velocity for diagnosis and planning of therapy
CN108324263B (en) Noninvasive cardiac electrophysiology inversion method based on low-rank sparse constraint
Pullan et al. The inverse problem of electrocardiography
US4961428A (en) Non-invasive method and apparatus for describing the electrical activity of the surface of an interior organ
CN111493819A (en) System and method for characterizing electrical properties of the heart from medical images and body surface potentials
US20160338611A1 (en) Systems, Components, Devices and Methods for Cardiac Mapping Using Numerical Reconstruction of Cardiac Action Potentials
US9089274B2 (en) Denoise MCG measurements
WO2015142029A1 (en) 3-dimensional cardiac outline reconstruction method
CN110811596B (en) Noninvasive cardiac potential reconstruction method based on low rank and sparse constraint and non-local total variation
CN110393522B (en) Non-invasive heart electrophysiological inversion method based on total variation constraint of graph
Ha et al. Three-dimensional reconstruction of a cardiac outline by magnetocardiography
Yadan et al. An expert review of the inverse problem in electrocardiographic imaging for the non-invasive identification of atrial fibrillation drivers
JP3809454B2 (en) Cardiac magnetic field diagnostic apparatus and operating method thereof
Kim et al. Independent component analysis for synthetic aperture magnetometry in magnetocardiography
De Melis et al. Single and distributed dipole models analysis of cardiac source activation using mcg signals
Bhat et al. A Study of Imaging the Cardiac Activation Sequences in Electrocardiology
Fang et al. Non-Invasive Locating Of Premature Ventricular Contraction Origin With Low Rank/Tv Regularization
Lunttila et al. Regularization in cardiac source imaging
Tao Advanced Source Reconstruction and Volume Conductor Modeling for Fetal Magnetocardiography
Zhou et al. Imaging of cardiac electrical excitation conduction
De Melis et al. Discussion of Source Reconstruction Models Using 3D MCG Data

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15765517

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15765517

Country of ref document: EP

Kind code of ref document: A1