WO2015141208A1 - High-frequency heating device - Google Patents

High-frequency heating device Download PDF

Info

Publication number
WO2015141208A1
WO2015141208A1 PCT/JP2015/001436 JP2015001436W WO2015141208A1 WO 2015141208 A1 WO2015141208 A1 WO 2015141208A1 JP 2015001436 W JP2015001436 W JP 2015001436W WO 2015141208 A1 WO2015141208 A1 WO 2015141208A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
heating
heated
determined
internal temperature
Prior art date
Application number
PCT/JP2015/001436
Other languages
French (fr)
Japanese (ja)
Inventor
威彦 安藤
木下 学
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to JP2016508532A priority Critical patent/JP6467645B2/en
Publication of WO2015141208A1 publication Critical patent/WO2015141208A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/64Heating using microwaves
    • H05B6/6447Method of operation or details of the microwave heating apparatus related to the use of detectors or sensors
    • H05B6/645Method of operation or details of the microwave heating apparatus related to the use of detectors or sensors using temperature sensors
    • H05B6/6455Method of operation or details of the microwave heating apparatus related to the use of detectors or sensors using temperature sensors the sensors being infrared detectors

Definitions

  • the present disclosure relates to a high-frequency heating device, particularly a microwave oven that cooks by microwave heating.
  • the microwave oven is used in various applications such as reheating cooked foods and thawing frozen foods.
  • oven heating In addition to microwave heating, oven heating (Oven ⁇ heating), grill heating (Grill heating), and heating using steam in addition to these are performed.
  • Oven heating is a cooking method in which an object to be heated is heated using a grill heater and a convection heater.
  • Grill heating is a cooking method in which an object to be heated is heated using a grill pan coated with a material that generates heat when irradiated with microwaves, and heat generated by the grill pan irradiated with microwaves.
  • the heating chamber becomes high temperature (for example, 150 ° C.) after completion of oven heating or grill heating. Therefore, even if an attempt is made to automatically warm a food to a desired temperature by microwave heating immediately after oven heating or the like, the temperature sensor such as an infrared sensor cannot accurately detect the temperature of the food because the heating chamber is hot. Therefore, heating cannot be completed at a desired temperature.
  • the temperature of the food can be detected more accurately by lowering the temperature in the heating chamber.
  • Patent Document 1 requires a complicated configuration having a mist generator and a decompressor. Therefore, there is still room for improvement in controlling the heating of the object to be heated while accurately detecting the temperature and position of the object to be heated with a simple configuration.
  • An object of the present invention is to provide a high-frequency heating device capable of heating an object.
  • the high-frequency heating device of one aspect according to the present disclosure includes a heating chamber, an operation unit, a high-frequency generation unit, a first temperature detection unit, a second temperature detection unit, and a control unit.
  • the heating chamber accommodates an object to be heated.
  • the operation unit is used to instruct the start of a predetermined heating sequence.
  • the high frequency generator generates a microwave supplied to the heating chamber.
  • the first temperature detection unit has a plurality of infrared detection elements, and detects the temperature for each section by associating the plurality of infrared detection elements with the plurality of sections constituting the temperature detection region in the heating chamber.
  • the second temperature detection unit detects the internal temperature of the heating chamber.
  • the control unit controls the high frequency generation unit to execute the heating sequence based on the temperature information detected by the first and second temperature detection units.
  • control unit determines that the internal temperature is higher than the predetermined temperature.
  • a control part determines the division in which the temperature lower than the temperature of the peripheral part of a temperature detection area
  • the heating of the object to be heated can be performed with a simple configuration while accurately determining the position of the object to be heated. Can be controlled.
  • FIG. 1 is a perspective view illustrating a microwave oven according to an embodiment of the present disclosure.
  • FIG. 2 is a perspective view showing the microwave oven shown in FIG. 1 with the door opened.
  • FIG. 3 is a block diagram showing a main configuration for microwave heating in the microwave oven according to the present embodiment.
  • FIG. 4 is a front view showing the microwave oven according to the present embodiment with the door opened.
  • FIG. 5 is a side view showing the microwave oven according to the present embodiment with the door opened.
  • FIG. 6 is a plan view showing a temperature detection region on the bottom surface of the heating chamber in the microwave oven according to the present embodiment.
  • FIG. 7 is a flowchart of the warming operation in the microwave oven according to the present embodiment.
  • FIG. 8 is a diagram showing a sequence (Sequence) of a warming operation in the microwave oven according to the present embodiment.
  • FIG. 9 is a diagram illustrating an example of a temperature detection result used for mounting position determination.
  • the high-frequency heating device includes a heating chamber, an operation unit, a high-frequency generation unit, a first temperature detection unit, a second temperature detection unit, and a control unit.
  • the heating chamber accommodates an object to be heated.
  • the operation unit is used to instruct the start of a predetermined heating sequence (for example, a warming operation in the present disclosure).
  • the high frequency generator generates a microwave supplied to the heating chamber.
  • the first temperature detection unit has a plurality of infrared detection elements, and detects the temperature for each section by associating the plurality of infrared detection elements with the plurality of sections constituting the temperature detection region in the heating chamber.
  • the second temperature detection unit detects the internal temperature of the heating chamber.
  • the control unit controls the high frequency generation unit to execute the heating sequence based on the temperature information detected by the first and second temperature detection units.
  • the control unit determines that the internal temperature is high if it is equal to or higher than a predetermined temperature.
  • the control unit determines, as the placement position of the object to be heated, a section in which a temperature lower than the temperature of the peripheral portion of the temperature detection region by a first predetermined value or more is detected.
  • the object to be heated is placed in a section where a temperature lower than the first predetermined value than the temperature of the section located in the peripheral portion is detected. It is determined that it is placed.
  • the object to be heated can be heated while accurately determining the mounting position. Since the mist generating mechanism and the pressure reducing mechanism are unnecessary, the heating of the object to be heated can be controlled with a simple configuration.
  • the high-frequency heating device is that, in the first aspect, a plurality of infrared detection elements are two-dimensionally arranged, and simultaneously detect and output temperatures in a plurality of sections. According to this aspect, the temperature of the compartment in the heating chamber can be detected more accurately, and the heating control by the heating sequence when the inside temperature is determined to be high can be performed with higher accuracy.
  • the high-frequency heating device is the first or second aspect, in which the control unit determines the heating time in the warming operation when the internal temperature is determined to be high according to the internal temperature. Control. According to this aspect, by controlling the heating time in consideration of the internal temperature, the heating control by the heating sequence when the internal temperature is determined to be high can be performed with higher accuracy.
  • the high-frequency heating device is that, in the third aspect, the control unit shortens the heating time when the internal temperature is high, and lengthens the heating time when the internal temperature is low. Control to do. According to this aspect, the temperature of the object to be heated after heating can be brought close to the target temperature by reversing the level of the internal temperature and the length of the heating time.
  • the high-frequency heating device is the first temperature detection unit in the heating sequence when the controller determines that the internal temperature is high.
  • the heating time in the heating sequence is controlled on the basis of the temperature change of the mounting position detected by. According to this aspect, the heating control can be performed with higher accuracy by controlling the heating time in consideration of the temperature change of the mounting position.
  • the first temperature detection unit detects the heating time in the heating sequence.
  • the time point when the temperature rise value at the mounting position becomes equal to or greater than the second predetermined value is determined as a reference. According to this aspect, the temperature of the object to be heated can be controlled with higher accuracy by controlling the heating time in consideration of the temperature rise value of the placement position.
  • the high-frequency heating device is the sixth aspect, in which the control unit lowers the second predetermined value when the internal temperature is high and decreases the second predetermined value when the internal temperature is low. Control is performed to increase the predetermined value of 2. According to this aspect, the temperature of the article to be heated after heating can be brought close to the target temperature by setting the inside temperature high and low and the second predetermined value high and low.
  • the high-frequency heating device is based on the temperature of the section in the heating sequence when the controller determines that the internal temperature is high.
  • the heating time in the heating sequence is controlled according to the determination result of whether or not the object to be heated is frozen. According to this aspect, it is possible to accurately perform heating control while accurately determining whether or not it is frozen.
  • the high-frequency heating device is such that, in the eighth aspect, the control unit compares the lowest temperature detected with the temperature of the peripheral portion of the temperature detection region, thereby It is determined whether or not it is frozen. While the lowest temperature detected is likely to change depending on whether or not the object to be heated is frozen, the temperature at the peripheral portion of the temperature detection region is unlikely to change even if the object to be heated is frozen. According to this aspect, it can be determined more accurately whether or not it is frozen.
  • a high-frequency heating device in any one of the first to ninth aspects, further includes a grill heater that heats the heating chamber, and the control unit determines that the internal temperature is high.
  • the high frequency generator is controlled so as not to generate microwaves until a predetermined time has elapsed from the start of the heating sequence.
  • the microwave is supplied after the predetermined time has elapsed from the start of the warming operation, so that the microwave is supplied to the grill heater whose temperature is higher than when the microwave is supplied immediately. Can be prevented, and the reliability of the grill heater can be improved.
  • the high-frequency heating device of the present disclosure is not limited to the configuration of the microwave oven described in the following embodiments.
  • the high-frequency heating device of the present disclosure includes a heating device configured based on a technical idea equivalent to the technical idea described in the following embodiments, for example, a configuration having a function of only microwave heating. It includes a heating device having a heating function such as heat, convection, radiation, and steam.
  • FIG. 1 is a perspective view showing a microwave oven 20 according to an embodiment of the present disclosure.
  • FIG. 2 is a perspective view showing a state where the door of the microwave oven 20 shown in FIG. 1 is opened.
  • the microwave oven 20 according to the embodiment has a function of cooking food that is an object to be heated by a heating method such as heat transfer, convection, and radiation, in addition to microwave heating using a microwave.
  • the microwave oven 20 includes a main body 1 including a heating chamber 5 on which an object to be heated is placed, and a door 2 for opening and closing an opening on the front side of the heating chamber 5. I have.
  • a handle 3 that is used when the door 2 is opened and closed is provided on the front upper portion of the door 2.
  • an operation unit 4 including a touch screen for displaying various information and inputting a user instruction, a start button for instructing the start of cooking, and the like.
  • the user operates the touch screen in the operation unit 4 to input cooking conditions and the like and finally operates the start button, the microwave oven 20 starts various heating sequences.
  • FIG. 3 is a block diagram showing a main configuration for microwave heating in the microwave oven 20.
  • the microwave oven 20 includes an operation unit 4, a control unit 10, a magnetron 11, a waveguide 12, and a temperature detection unit 13.
  • the magnetron 11 is a high frequency generator that generates microwaves.
  • the waveguide 12 is provided below the bottom surface of the heating chamber 5 and guides the microwave generated by the magnetron 11 to a rotating antenna (not shown).
  • the rotating antenna is provided below the center of the bottom of the heating chamber 5 and supplies microwaves into the heating chamber 5 while rotating the antenna having directivity.
  • the microwave oven 20 supplies uniform microwaves (Omnidirectionally uniform ⁇ ⁇ ⁇ heating) for uniformly supplying microwaves in all directions and intensively supplies microwaves in a desired direction according to the control method of the rotating antenna. Locally (intensive) heating can be performed.
  • the temperature detection unit 13 detects the temperature inside the heating chamber 5.
  • the control unit 10 controls the magnetron 11 according to the information input by the operation unit 4 and the temperature information detected by the temperature detection unit 13.
  • the temperature detection unit 13 includes a first temperature detection unit and a second temperature detection unit.
  • the first temperature detection unit is an infrared sensor that detects the temperature of a temperature detection region 30 that is virtually provided on the bottom surface of the heating chamber 5.
  • the second temperature detection unit is a temperature sensor (for example, a thermistor (not shown)) that detects the atmospheric temperature in the heating chamber 5 (hereinafter referred to as the internal temperature).
  • a temperature sensor for example, a thermistor (not shown)
  • the internal temperature detects the atmospheric temperature in the heating chamber 5 (hereinafter referred to as the internal temperature).
  • the microwave oven 20 further includes a temperature sensor (for example, a thermistor (not shown)) for detecting the environmental temperature of the place where the infrared sensor is provided.
  • the temperature information detected by the infrared sensor is calibrated according to the environmental temperature information.
  • the control unit 10 obtains the internal temperature information, the temperature information of the temperature detection region 30, and the environmental temperature information from the temperature detection unit 13.
  • the control unit 10 obtains information such as cooking conditions input in the operation unit 4 from the operation unit 4, and controls and sets the magnetron 11 that generates microwaves according to the temperature information obtained from the temperature detection unit 13.
  • the object to be heated is cooked according to the cooking conditions and the like.
  • the microwave generated by the magnetron 11 is supplied to the inside of the heating chamber 5 through the waveguide 12 and the rotating antenna, and the object to be heated is microwave-heated.
  • the rotating antenna and the waveguide 12 are provided below the bottom surface.
  • the present disclosure is not limited to this configuration, and may be disposed above the top surface of the heating chamber 5 or the like.
  • a plurality of sets of magnetrons 11 and waveguides 12 may be provided.
  • a heating chamber 5 that accommodates an object to be heated inside the main body 1 is divided into five surfaces, that is, a left and right side surface, a top surface, a bottom surface, and a back surface, and a door 2 provided in an opening on the front surface side.
  • the opening side of the heating chamber 5 is defined as the front side
  • the back side is defined as the back side
  • the top side is defined as the upper side
  • the bottom side is defined as the lower side
  • the heating chamber 5 is viewed from the front side.
  • the right side is defined as the right side
  • the left side is defined as the left side.
  • the microwave oven 20 further includes a grill heater (not shown) for heating the inside of the heating chamber 5.
  • the grill heater is installed, for example, on the top surface of the heating chamber 5.
  • the microwave oven 20 further includes a circulation fan for circulating air in the heating chamber 5 and a convection heater (not shown) for heating the air circulated by the circulation fan.
  • Both the circulation fan and the convection heater are provided on the back side of the inner surface of the heating chamber 5.
  • the circulation fan has a function of sucking out air from the heating chamber 5 and sending out air toward the heating chamber 5 through a punching hole (not shown) formed in the inner surface of the heating chamber 5. Thereby, hot air is circulated in the heating chamber 5.
  • the microwave oven 20 is configured such that, in addition to microwave heating, an oven pan used for oven heating and a grill pan used for grill heating are used.
  • the right and left sides of the heating chamber 5 are provided with a plurality of stages (three stages in the embodiment) of supporting projections extending horizontally in the front-rear direction. Yes. Thereby, the dish for mounting a to-be-heated material in the optimal position for cooking can be installed.
  • FIG. 4 is a front view showing the microwave oven 20 with the door 2 opened.
  • FIG. 5 is a side view showing the microwave oven 20 according to the embodiment with the door 2 opened.
  • FIG. 5 shows a state in which a part of the main body 1 is cut away so that the inside of the heating chamber 5 can be seen.
  • the infrared sensor 6 is provided outside the upper part of the right side surface of the heating chamber 5, and the visual field 35 of the infrared sensor 6 covers almost the entire bottom surface of the heating chamber 5.
  • the infrared sensor 6 is composed of a total of 64 infrared detection elements arranged in a matrix of 8 rows and 8 columns.
  • FIG. 6 is a plan view of the bottom surface of the heating chamber 5. As shown in FIG. 6, almost the entire bottom surface of the heating chamber 5 corresponds to the temperature detection region 30.
  • the temperature detection region 30 is a region where the temperature can be detected by the infrared sensor 6 included in the temperature detection unit 13.
  • the infrared sensor 6 when the infrared sensor 6 is operated, the direction of the lens of the infrared sensor 6 is set to a predetermined depression angle so that the visual field 35 shown by a broken line covers the entire temperature detection region 30. .
  • the infrared sensor 6 detects temperature information of an object to be heated placed in the heating chamber 5 through an opening 5a formed in the upper part of the right side surface of the heating chamber 5. To do.
  • the temperature detection region 30 is composed of sections (Detection compartments) 31 arranged in a matrix of 8 rows and 8 columns.
  • the temperature information of each section of the temperature detection region 30 can be detected by associating the 64 infrared detection elements constituting the infrared sensor 6 with each section.
  • the microwave oven 20 is configured to be able to detect all temperatures for 64 sections at once.
  • the entire bottom surface of the heating chamber 5 corresponds to the temperature detection region 30, but not limited to this, for example, only a part of the bottom surface of the heating chamber 5. May be the temperature detection region 30.
  • the infrared sensor 6 is configured to be able to move the field of view 35 in the vertical direction by changing the depression angle around a horizontal rotation axis. In this Embodiment, the infrared sensor 6 moves the visual field 35 according to cooking conditions.
  • the direction of the lens of the infrared sensor 6 is changed so that the entire bottom surface of the heating chamber 5 is the temperature detection region 30. Then, the visual field 35 is adjusted to the entire temperature detection region 30.
  • the temperature detection region 30 is set on the grill pan installed at a predetermined height.
  • the infrared sensor 6 can move the visual field 35 in the vertical direction inside the heating chamber 5 by moving the temperature detection region 30 in the vertical direction according to the cooking conditions.
  • the lens of the infrared sensor 6 is configured to be in a state of being directly below (standby state). Thereby, it is possible to prevent dirt from adhering to the lens surface.
  • the infrared sensor 6 is in a standby state, the entire infrared sensor 6 is configured to be cooled by cooling air. Since the entire infrared sensor 6 is cooled in the standby state, accurate temperature detection is possible at the next temperature detection.
  • the cooling air for cooling the infrared sensor 6 uses cooling air for the magnetron 11 that generates microwaves, and is configured to be blown from below to the infrared sensor 6 by a cooling duct.
  • control unit 10 is configured to stop the operation of the magnetron 11 instantaneously.
  • a warming operation that is a heating sequence for automatically heating an object to be heated to a desired temperature will be described.
  • the object to be heated suitable for the warming operation cold rice, cooked side dishes, and the like are assumed.
  • the warming operation in the configuration in which the output can be set in three stages so that the temperature of the heated object after heating can be set according to the user's preference will be specifically described.
  • FIG. 7 is a flowchart showing the warming operation in the present embodiment.
  • FIG. 8 is a heating sequence of the warming operation performed according to the flowchart of FIG.
  • FIG. 8 shows the internal temperature of the heating chamber 5, the output of the microwave, the operation of the cooling fan, and the operation of the circulation fan. In the following description, all control, determination, calculation, and the like are performed by the control unit 10.
  • the warming operation is started when the user presses a predetermined button on the operation unit 4.
  • the thermistor (second temperature detection unit) of the temperature detection unit 13 detects the internal temperature of the heating chamber 5.
  • the main heating sequence is started (start of warming operation when the internal temperature is high).
  • the internal temperature is determined to be high when the internal temperature is 100 ° C. to 260 ° C.
  • a normal automatic warming sequence is executed instead of the main heating sequence, but the description thereof is omitted.
  • the operation unit 4 displays an error and notifies the user that “warming operation” cannot be performed.
  • the infrared sensor 6 When the heating sequence is started, the infrared sensor 6 is shifted to a detectable state in step S101. In this detectable state, the temperature of the lens of the infrared sensor 6 rises due to heat from the heating chamber 5.
  • step S102 a cooling fan (not shown) provided outside the heating chamber 5 is operated to cool the infrared sensor 6 in a detectable state. Since the infrared sensor 6 is in a standby state during oven heating before the start of the warming operation, the lens is cold and the substrate is hot.
  • step S103 the circulation fan is stopped. Specifically, the rotational speed of the circulation fan is gradually reduced by gradually decreasing the supply of electric power to the circulation fan that was operating during the oven heating before the warming operation. In this embodiment, the circulation fan is controlled to stop after a predetermined time (for example, 10 seconds) has elapsed.
  • a predetermined time for example, 10 seconds
  • a standby time (Twait time shown in FIG. 8) is provided. Specifically, during a predetermined waiting time, the magnetron 11 is stopped, the cooling fan is continuously operated, and the rotational speed of the circulation fan is gradually reduced to stop. In this embodiment, the Twait time is set to 30 seconds.
  • the period from the start of the warming operation to the lapse of the standby time is referred to as a “pseudo cooking stage”.
  • the internal temperature that was initially high decreases, but in the area where the object to be heated is placed, heat is absorbed by the object to be heated, so the temperature is higher than in other areas. Drops faster.
  • the microwave output setting can be changed according to the finished temperature of the object to be heated until the first predetermined time (for example, 14 seconds) has elapsed in the simulated cooking stage.
  • the result of the output setting is stored in the control unit 10.
  • the detection mask time described later is determined according to the output setting result.
  • the detection mask time determines the minimum time of the microwave heating time performed after the simulated cooking stage. For example, when “weak” is set, the detection mask time may be shortened, and when “strong” is set, the detection mask time may be lengthened. For example, the detection mask time may be 46 seconds for “weak” setting, 52 seconds for medium setting, and 75 seconds for strong setting.
  • the magnetron 11 After the elapse of the standby time in step S104, the magnetron 11 starts to generate microwaves in step S105.
  • the generated microwave is supplied into the heating chamber 5 via the waveguide 12 or the like, and the object to be heated in the heating chamber 5 is microwave-heated.
  • the output of the magnetron 11 is set to 700 W, for example.
  • step S106 temperature detection of the temperature detection region 30 is started. Specifically, the infrared sensor 6 that has been shifted to the detectable state starts temperature detection of the entire temperature detection region 30 (in the present embodiment, the entire bottom surface of the heating chamber 5) from the end of the simulated cooking stage. In the present embodiment, the temperature detection is performed every predetermined time, for example, every second from the end of the simulated cooking stage. These results are stored in the control unit 10.
  • the infrared sensor 6 is cooled by the cooling fan while the lens is directed to the heating chamber 5 in the simulated cooking stage, and the entire temperature (particularly, the lens temperature and the substrate temperature) is made uniform. The Therefore, the temperature detection of the temperature detection region 30 started from step S106 can be performed more accurately.
  • step S107 the placement position is determined. Specifically, using the first temperature detection result in step S106, a point (placement position) where the placement of the object to be heated is estimated in the temperature detection region 30 in the heating chamber 5 is determined.
  • FIG. 9 an example of the first temperature detection result in step S106 is shown in FIG.
  • the detected temperature of the section 31a located at the left front corner of the peripheral edge of the temperature detection region 30 (in this embodiment, the peripheral edge of the bottom surface of the heating chamber 5) is set as the reference temperature, The difference from this reference temperature is displayed.
  • step S107 a section lower than the reference temperature by a predetermined value or more is determined as the placement position.
  • a section that is 8 degrees or more lower than the reference temperature is determined as the placement position (shaded display in FIG. 9).
  • a total of 14 sections are determined as placement positions as sections that are 8 degrees or more lower than the reference temperature.
  • the peripheral part of the temperature detection region 30 is a section (for example, a figure) located in a corner of the temperature detection region 30 (for example, in the vicinity of the corner of the bottom surface of the heating chamber 5) where an object to be heated is hardly placed. Section 31a) shown in FIG.
  • step S107 when there is no section determined to be the placement position, the process proceeds to step S108. If there is one or more sections determined to be the placement position, the process proceeds to step S109.
  • step S108 the step subsequent to step S109 is not performed, and the “warming” operation is terminated after a predetermined time has elapsed.
  • the heating duration when the process proceeds to step S108 is set to the same time as the detection mask time (for example, 46 seconds) when the output setting is weak.
  • step S109 it is determined whether the object to be heated is a small amount or a large amount (hereinafter, this determination is a small amount / large amount determination (Large / small amount judgment)). Called). Specifically, it is determined whether the object to be heated is a small amount or a large amount according to the number of sections determined as the mounting position determined in step S107.
  • a threshold for determining whether the object to be heated is a small amount or a large amount is calculated by the following equation (1).
  • the object to be heated is determined to be large, and otherwise the object to be heated is determined to be small.
  • Threshold value for small / large quantity determination A ⁇ (internal temperature at start of warming operation) + B (1)
  • a and B are constants. The values of A and B can be appropriately set according to the specifications of the microwave oven.
  • A is set to 0.1
  • B is set to 16
  • the internal temperature at the start of the warming operation is set to 150 ° C.
  • the threshold value is “31”.
  • the threshold value is used, as shown in FIG. 9, when there are 14 sections determined to be placement positions, the number of sections determined to be placement positions is smaller than the threshold value (31). Is determined to be “small”.
  • the result of determination in step S109 is stored in the control unit 10.
  • a standby time is provided in step S110. Specifically, the process waits for a predetermined time (T1stscan time shown in FIG. 8) while continuously performing the microwave supply in step S105 and the temperature detection for the temperature detection region 30 in step S106 every predetermined time.
  • T1stscan time shown in FIG. 8
  • the temperature change in the heating chamber 5 is observed every predetermined time while the object to be heated in the heating chamber 5 is heated by the microwave.
  • the T1stscan time is set to 30 seconds.
  • the object to be heated is frozen / normal temperature judgment (Frozen / Normal Judgment). Specifically, it is determined whether the object to be heated is frozen based on the temperature of each section. More specifically, the temperature for refrigeration / room temperature determination is calculated by the following equation (2), and this temperature is compared with the lowest temperature in the temperature detection region 30, so that the object to be heated is frozen. It is determined whether or not it has been done.
  • Temperature for freezing / normal temperature determination C ⁇ (plate temperature) + D (2)
  • C and D in the above formula (2) are constants.
  • the “plate temperature” is the temperature of the section located at the peripheral edge of the temperature detection region 30 at the time when the standby time in step S110 has elapsed.
  • the temperature of the section 31a is used as in the case of step S107.
  • C is set to 0.64
  • D is set to 8
  • the plate temperature is set to 80 ° C.
  • the temperature for freezing / normal temperature determination is 59.2 ° C.
  • the lowest temperature among the temperatures of each compartment is 59.2 ° C. or higher, it is determined as normal temperature, and when it is lower than 59.2 ° C., it is determined as frozen.
  • step S115 The result of freezing / room temperature determination is sent to the control unit 10 and stored therein. If it is determined that the temperature is normal, the process proceeds to step S112. If it is determined that the temperature is frozen, the process proceeds to step S115.
  • a time limit (Time limit: TL) is determined according to the result of the freezing / room temperature determination in step S111.
  • TL is the maximum time for continuously detecting the temperature rise value in steps S113 and S117, which will be described later, after steps S105 and S106 at the end of the pseudo cooking stage.
  • TL is determined in consideration of the above-described small / large determination and output setting in addition to the result of freezing / normal temperature.
  • An exemplary value of TL may be set to about 80 seconds for room temperature and about 140 seconds for freezing.
  • step S116 is determined to be frozen in step S111, the freezing / normal temperature determination is performed again based on the subsequent temperature change. Thereby, the precision of freezing / normal temperature determination can be improved. Specifically, when the following formula (3) is satisfied, it is determined that the temperature is normal.
  • ⁇ T1 is a temperature rise value of the lowest temperature among the temperatures detected by the infrared sensor 6 after the end of the pseudo cooking stage.
  • the temperature rise value from 10 seconds to 50 seconds after the end of the pseudo cooking stage is assumed to be ⁇ T1, for example.
  • the period of ⁇ T1 may be set as appropriate according to the specifications of the microwave oven, and may be set variably according to the output setting, for example.
  • E and F are constants.
  • the constants E and F may also be set as appropriate.
  • step S116 If it is determined in step S116 that the temperature is normal, the process proceeds to step S112. If it is not determined that the temperature is normal, the process proceeds to step S117 while maintaining the refrigeration determination.
  • a temperature rise value is detected. Specifically, it is determined whether or not the temperature rise value at the placement position is equal to or greater than a predetermined value ( ⁇ T2), using the temperature at the end of the pseudo cooking stage as the reference temperature (T1stscan time). More specifically, the control unit 10 determines that a predetermined temperature increase value has been detected when the temperature increase value at at least one point among the plurality of placement positions is equal to or greater than ⁇ T2.
  • ⁇ T2 is determined according to the determination result of freezing / normal temperature, the internal temperature at the start of the warming operation, the output setting, and the like. Specifically, ⁇ T2 is decreased as the room temperature is determined to be higher, the temperature inside the chamber is higher, and the output setting is weaker.
  • An exemplary value of ⁇ T2 may be set to about 21 ° C. at normal temperature and about 25 ° C. for freezing.
  • ⁇ T2 may be set as appropriate.
  • ⁇ T2 in step S113 and step S117 may include the same value.
  • the T1stscan time which is the timing for acquiring the reference temperature, may be controlled to be variable according to the level of the internal temperature detected by the thermistor, for example.
  • step S113 and step S117 If a temperature rise value of ⁇ T2 or more is detected in step S113 and step S117, the process proceeds to step S119. If the temperature rise value is not detected, the process proceeds to step S114 and step S118, respectively.
  • step S114 and step S118 time limit determination is performed. Specifically, it is determined whether or not the TL determined in step S112 and step S115 has elapsed since the end of the pseudo cooking stage.
  • step S113 and step S117 the process returns to step S113 and step S117, and the temperature rise value is detected again. Thereafter, each step is repeated every predetermined time, for example, every second until the result of either the temperature rise value detection in step S113 and step S117 and the time limit determination in step S114 and step S118 becomes YES.
  • step S114 and step S118 determines whether TL has elapsed. If it is determined in step S114 and step S118 that TL has elapsed, the process proceeds to step S119.
  • the sequence of FIG. 8 shows a case where a temperature rise value of a predetermined value or more is detected in step S113 or step S117 when the Tc time has elapsed from the end of the pseudo cooking stage before reaching TL. .
  • P1 stage a period from the end of the pseudo cooking stage to the detection of the temperature rise value or the detection of the time limit.
  • an additional heating time Tp2 is determined in step S119. Specifically, the time (Tp2) for continuing microwave heating from the end of the P1 stage is determined.
  • Tp2 it is determined according to the three parameters of the determination result of refrigeration / normal temperature, the determination result of small amount / large amount, and the output setting.
  • An exemplary value of Tp2 may be set as about 20 seconds, for example.
  • step S120 the operation of the circulation fan is resumed. Specifically, the operation of the circulation fan that has been stopped between the P1 stage from the middle of the pseudo cooking stage is resumed. Thereby, while the object to be heated is additionally heated by the microwave, the air in the heating chamber 5 is circulated by operating the circulation fan, and the temperature in the heating chamber 5 becomes more uniform.
  • the output of the magnetron 11 is controlled to be lowered simultaneously with the resumption of the operation of the circulation fan (for example, from 700 W to 300 W). After step S120, the warming operation ends.
  • a period from the end of the P1 stage to the end of the warming operation is referred to as “P2 stage”.
  • the operation of the circulation fan is resumed when the P1 stage is shifted to the P2 stage, but the circulation fan may be set to be stopped. You may control to maintain the output of the magnetron 11 without reducing.
  • the object to be heated can be heated to a predetermined temperature by microwaves and warmed.
  • the heating sequence shown in FIG. 8 the case where the microwave heating is performed until the time including the additional heating time has been described, but the heating may be terminated when the detection mask time described above has elapsed.
  • the process when the door 2 is opened between the simulated cooking stage and the P1 stage and the warming operation is resumed, the process returns to the first step S101, and the heating sequence is controlled from the beginning.
  • control unit 10 controls to digest the remaining time of the additional heating time set in step S119.
  • the internal temperature is determined to be high when the temperature is equal to or higher than a predetermined temperature (for example, 100 ° C.).
  • the object to be heated is placed in a section where a temperature lower than the temperature of the peripheral portion of the temperature detection region 30 (reference temperature) by a first predetermined value (for example, 8 ° C.) is detected. It is determined that
  • the position is regarded as the placement position of the object to be heated, and local heating is performed in that direction.
  • the temperature difference from the peripheral portion of the temperature detection region 30 that seems to have the smallest temperature change is equal to or greater than the first predetermined value. It is determined that the large section is a position where the object to be heated is placed.
  • heating of an object to be heated can be controlled with a simple configuration.
  • the heating time in the warming operation when the internal temperature is determined to be high is controlled according to the internal temperature.
  • step S109 the small / large quantity determination in step S109, the time limit determination in steps S112 and 115, the freezing / normal temperature determination in step S116, and the additional heating time in step S119 are determined. .
  • the warming operation at the time of high temperature determination can be controlled with higher accuracy.
  • the heating time is set short, and when the internal temperature is low, the heating time is set long. In this way, the temperature of the object to be heated after heating can be brought close to the target temperature.
  • the heating time in the warming operation is controlled based on the temperature change of the placement position during the warming operation when the internal temperature is determined to be high. Specifically, when calculating ⁇ T2 used in detecting the temperature rise value in steps S113 and 117, the temperature change of the placement position is taken into consideration. Thus, heating control can be performed more accurately by controlling the heating time in consideration of the temperature change of the mounting position in the warming operation when the internal temperature is determined to be high.
  • control unit 10 determines when the temperature rise value at the mounting position where the infrared sensor 6 detects the heating time in the warming operation becomes equal to or greater than a second predetermined value ( ⁇ T2) (when the temperature rise value is detected). Decide on a standard. In this way, by controlling the heating time in consideration of the temperature rise value of the placement position, the temperature of the object to be heated can be controlled with higher accuracy.
  • ⁇ T2 is set low when the internal temperature is high, and ⁇ T2 is set high when the internal temperature is low. In this way, the temperature of the object to be heated after heating can be brought close to the target temperature.
  • the reference temperature that serves as a reference for the temperature inside the chamber may be set as appropriate.
  • the reference temperature may be set in a plurality of tables depending on the determination result of freezing / normal temperature or the output setting. .
  • control unit 10 determines whether or not the object to be heated is frozen based on the temperature detected by the infrared sensor 6 in the warming operation when the inside temperature is determined to be high (that is, whether it is frozen or not). It is normal temperature) and the heating time in the warming operation is controlled according to the result.
  • step S111 the temperature for freezing / room temperature determination used in the freezing / room temperature determination is calculated in consideration of the temperature (plate temperature) of the section located at the periphery of the temperature detection region 30. is doing. Thereby, it is possible to accurately determine whether or not it is frozen and to perform accurate heating control.
  • step S111 it is determined whether or not the object to be heated is frozen by comparing the lowest temperature detected with the temperature of the peripheral edge of the temperature detection region 30. While the lowest temperature is likely to change depending on whether or not the object to be heated is frozen, the temperature at the peripheral portion of the temperature detection region is not easily changed even if the object to be heated is frozen. By comparing these two temperatures, it can be determined with higher accuracy whether or not it is frozen.
  • a grill heater for heating the inside of the heating chamber 5 is further provided, and the control unit 10 starts a warming operation when the inside temperature is determined to be high, and then starts a predetermined time (Twait time). During this time, the magnetron 11 is controlled so as not to generate microwaves.
  • microwaves are radiated to the part where the temperature is high, and the temperature at that part is The so-called red spot phenomenon that rises abnormally can be suppressed, and the reliability of the apparatus can be improved.
  • the present invention is not limited to such a case. It may be.
  • the high-frequency heating device of the present disclosure can control the heating of the object to be heated while accurately determining the position and temperature of the object to be heated with a simple configuration.
  • the high-frequency heating device of the present disclosure is useful in, for example, a home microwave oven.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Electric Ovens (AREA)
  • Control Of High-Frequency Heating Circuits (AREA)

Abstract

When the start of a heating operation is indicated by an operation unit, if the in-chamber temperature detected by a second temperature detection unit is greater than or equal to a prescribed temperature, a control unit in this high-frequency heating device determines the detected temperature to be a high temperature. During heating operations in which a high temperature has been determined, the control unit determines, as a placement position in which an object to be heated is placed, those of the sections detected by a first temperature detection unit which have a temperature at least a prescribed value lower than the temperature of the periphery of the temperature detection region. The control unit controls to perform a heating operation on the determined placement position. Thus, this simple configuration enables controlling heating of an object to be heated while accurately determining the position and temperature of the object to be heated.

Description

高周波加熱装置High frequency heating device
 本開示は、高周波加熱装置、特にマイクロ波加熱により調理する電子レンジに関する。 The present disclosure relates to a high-frequency heating device, particularly a microwave oven that cooks by microwave heating.
 マイクロ波加熱により被加熱物を内部から加熱することができるため、電子レンジは、調理済み食品の再加熱、冷凍食品の解凍等のいろいろな用途で用いられている。 Since the object to be heated can be heated from the inside by microwave heating, the microwave oven is used in various applications such as reheating cooked foods and thawing frozen foods.
 従来の電子レンジにおいては、マイクロ波加熱の他に、オーブン加熱(Oven heating)、および、グリル加熱(Grill heating)、並びに、これらに加えてスチーム(Steam)を併用した加熱を行うものがある。 In some conventional microwave ovens, in addition to microwave heating, oven heating (Oven 加熱 heating), grill heating (Grill heating), and heating using steam in addition to these are performed.
 オーブン加熱は、グリルヒータ(Grill heater)とコンベクションヒータ(Convection heater)とを用いて、被加熱物を加熱する調理方法である。グリル加熱とは、マイクロ波が照射されると熱を発する材料が塗布されたグリル皿を用い、マイクロ波が照射されたグリル皿が発する熱により、被加熱物を加熱する調理方法である。 Oven heating is a cooking method in which an object to be heated is heated using a grill heater and a convection heater. Grill heating is a cooking method in which an object to be heated is heated using a grill pan coated with a material that generates heat when irradiated with microwaves, and heat generated by the grill pan irradiated with microwaves.
 このような複数機能を備えた電子レンジにおいて、オーブン加熱またはグリル加熱の終了後、加熱室内は高温となる(例えば150℃)。従って、オーブン加熱等の直後に、マイクロ波加熱により自動的に所望温度まで食品を温めようとしても、加熱室内が高温のため、赤外線センサ等の温度センサが食品の温度を正確に検出できない。そのため、所望の温度で加熱を終了させることができない。 In such a microwave oven having a plurality of functions, the heating chamber becomes high temperature (for example, 150 ° C.) after completion of oven heating or grill heating. Therefore, even if an attempt is made to automatically warm a food to a desired temperature by microwave heating immediately after oven heating or the like, the temperature sensor such as an infrared sensor cannot accurately detect the temperature of the food because the heating chamber is hot. Therefore, heating cannot be completed at a desired temperature.
 この問題を解決するため、加熱室内が高温の時に、蒸発潜熱を利用して加熱室内をすばやく冷却しようとする調理器が提案されている(例えば、特許文献1参照)。この調理器は、加熱室内にミストを放出するとともに加熱室内を減圧することで、ミストの蒸発を生じさせるものである。 In order to solve this problem, there has been proposed a cooker that uses the latent heat of evaporation to quickly cool the heating chamber when the heating chamber is hot (see, for example, Patent Document 1). This cooker emits mist into the heating chamber and decompresses the heating chamber to cause evaporation of the mist.
 特許文献1の調理器によれば、加熱室内の温度を下げることにより、食品の温度をより正確に検出することができる。 According to the cooker of Patent Document 1, the temperature of the food can be detected more accurately by lowering the temperature in the heating chamber.
特開2009-109027号公報JP 2009-109027 A
 しかしながら、特許文献1の調理器は、ミスト発生装置および減圧装置を有する複雑な構成を必要とする。したがって、簡単な構成で、被加熱物の温度や位置等を精度良く検出しながら被加熱物の加熱を制御することに未だ改善の余地がある。 However, the cooker of Patent Document 1 requires a complicated configuration having a mist generator and a decompressor. Therefore, there is still room for improvement in controlling the heating of the object to be heated while accurately detecting the temperature and position of the object to be heated with a simple configuration.
 本開示は、上記従来の課題を解決するもので、加熱室内が高温の場合にマイクロ波加熱の開始が指示されても、簡単な構成で、被加熱物の位置を精度良く判定しながら被加熱物を加熱することができる高周波加熱装置を提供することを目的とする。 The present disclosure solves the above-described conventional problem, and even when the start of microwave heating is instructed when the heating chamber is at a high temperature, the heating target is accurately determined and the position of the heating target is accurately determined. An object of the present invention is to provide a high-frequency heating device capable of heating an object.
 本開示に係る一態様の高周波加熱装置は、加熱室と、操作部と、高周波発生部と、第1の温度検出部と、第2の温度検出部と、制御部とを備える。加熱室は、被加熱物を収容する。操作部は、所定の加熱シーケンスの開始を指示するために用いられる。高周波発生部は、加熱室に供給されるマイクロ波を発生させる。 The high-frequency heating device of one aspect according to the present disclosure includes a heating chamber, an operation unit, a high-frequency generation unit, a first temperature detection unit, a second temperature detection unit, and a control unit. The heating chamber accommodates an object to be heated. The operation unit is used to instruct the start of a predetermined heating sequence. The high frequency generator generates a microwave supplied to the heating chamber.
 第1の温度検出部は、複数の赤外線検出素子を有し、加熱室内の温度検出領域を構成する複数の区画に複数の赤外線検出素子をそれぞれ対応させることにより、区画ごとに温度を検出する。第2の温度検出部は、加熱室の庫内温度を検出する。制御部は、第1および第2の温度検出部により検出された温度情報に基づいて、加熱シーケンスを実行するように高周波発生部を制御する。 The first temperature detection unit has a plurality of infrared detection elements, and detects the temperature for each section by associating the plurality of infrared detection elements with the plurality of sections constituting the temperature detection region in the heating chamber. The second temperature detection unit detects the internal temperature of the heating chamber. The control unit controls the high frequency generation unit to execute the heating sequence based on the temperature information detected by the first and second temperature detection units.
 特に、制御部は、操作部により当該加熱シーケンスの開始が指示された時に、庫内温度が所定温度以上であれば高温と判定する。制御部は、高温と判定した場合の当該加熱シーケンスにおいて、温度検出領域の周縁部の温度よりも第1の所定値以上低い温度が検出された区画を被加熱物の載置位置と判定する。 Particularly, when the start of the heating sequence is instructed by the operation unit, the control unit determines that the internal temperature is higher than the predetermined temperature. A control part determines the division in which the temperature lower than the temperature of the peripheral part of a temperature detection area | region more than 1st predetermined value was detected as the mounting position of a to-be-heated object in the said heating sequence at the time of determining with high temperature.
 本開示の高周波加熱装置によれば、加熱室内が高温の場合にマイクロ波加熱の開始が指示されても、簡単な構成で、被加熱物の位置を精度良く判定しながら、被加熱物の加熱を制御することができる。 According to the high-frequency heating device of the present disclosure, even if the start of microwave heating is instructed when the heating chamber is at a high temperature, the heating of the object to be heated can be performed with a simple configuration while accurately determining the position of the object to be heated. Can be controlled.
図1は、本開示の実施の形態に係る電子レンジを示す斜視図である。FIG. 1 is a perspective view illustrating a microwave oven according to an embodiment of the present disclosure. 図2は、図1に示した電子レンジを、ドアが開いた状態で示す斜視図である。FIG. 2 is a perspective view showing the microwave oven shown in FIG. 1 with the door opened. 図3は、本実施の形態に係る電子レンジにおけるマイクロ波加熱のための主要な構成を示すブロック図である。FIG. 3 is a block diagram showing a main configuration for microwave heating in the microwave oven according to the present embodiment. 図4は、本実施の形態に係る電子レンジを、ドアが開いた状態で示す正面図である。FIG. 4 is a front view showing the microwave oven according to the present embodiment with the door opened. 図5は、本実施の形態に係る電子レンジを、ドアが開いた状態で示す側面図である。FIG. 5 is a side view showing the microwave oven according to the present embodiment with the door opened. 図6は、本実施の形態に係る電子レンジにおける加熱室の底面上の温度検出領域を示す平面図である。FIG. 6 is a plan view showing a temperature detection region on the bottom surface of the heating chamber in the microwave oven according to the present embodiment. 図7は、本実施の形態に係る電子レンジにおける温め動作のフローチャートである。FIG. 7 is a flowchart of the warming operation in the microwave oven according to the present embodiment. 図8は、本実施の形態に係る電子レンジにおける温め動作のシーケンス(Sequence)を示す図である。FIG. 8 is a diagram showing a sequence (Sequence) of a warming operation in the microwave oven according to the present embodiment. 図9は、載置位置判定に用いられる温度検出結果の一例を示す図である。FIG. 9 is a diagram illustrating an example of a temperature detection result used for mounting position determination.
 本開示の第1の態様に係る高周波加熱装置は、加熱室と、操作部と、高周波発生部と、第1の温度検出部と、第2の温度検出部と、制御部とを備える。加熱室は、被加熱物を収容する。操作部は、所定の加熱シーケンス(例えば、本開示における温め動作)の開始を指示するために用いられる。高周波発生部は、加熱室に供給されるマイクロ波を発生させる。 The high-frequency heating device according to the first aspect of the present disclosure includes a heating chamber, an operation unit, a high-frequency generation unit, a first temperature detection unit, a second temperature detection unit, and a control unit. The heating chamber accommodates an object to be heated. The operation unit is used to instruct the start of a predetermined heating sequence (for example, a warming operation in the present disclosure). The high frequency generator generates a microwave supplied to the heating chamber.
 第1の温度検出部は、複数の赤外線検出素子を有し、加熱室内の温度検出領域を構成する複数の区画に複数の赤外線検出素子をそれぞれ対応させることにより、区画ごとに温度を検出する。第2の温度検出部は、加熱室の庫内温度を検出する。制御部は、第1および第2の温度検出部により検出された温度情報に基づいて、加熱シーケンスを実行するように高周波発生部を制御する。 The first temperature detection unit has a plurality of infrared detection elements, and detects the temperature for each section by associating the plurality of infrared detection elements with the plurality of sections constituting the temperature detection region in the heating chamber. The second temperature detection unit detects the internal temperature of the heating chamber. The control unit controls the high frequency generation unit to execute the heating sequence based on the temperature information detected by the first and second temperature detection units.
 特に、制御部は、操作部により加熱シーケンスの開始が指示された時に、庫内温度が所定温度以上であれば高温と判定する。制御部は、高温と判定した場合の温め動作において、温度検出領域の周縁部の温度よりも第1の所定値以上低い温度が検出された区画を被加熱物の載置位置と判定する。 Particularly, when the start of the heating sequence is instructed by the operation unit, the control unit determines that the internal temperature is high if it is equal to or higher than a predetermined temperature. In the warming operation when it is determined that the temperature is high, the control unit determines, as the placement position of the object to be heated, a section in which a temperature lower than the temperature of the peripheral portion of the temperature detection region by a first predetermined value or more is detected.
 本態様によれば、加熱室内が高温の場合に温め動作が開始された場合に、周縁部に位置する区画の温度よりも第1の所定値以上低い温度が検出された区画に被加熱物が載置されていると判定する。 According to this aspect, when the heating operation is started when the heating chamber is at a high temperature, the object to be heated is placed in a section where a temperature lower than the first predetermined value than the temperature of the section located in the peripheral portion is detected. It is determined that it is placed.
 これにより、加熱室内が高温であっても、精度良く載置位置を判定しながら、被加熱物を加熱することができる。ミスト発生機構や減圧機構が不要であるため、簡単な構成で被加熱物の加熱を制御することができる。 Thereby, even if the heating chamber is hot, the object to be heated can be heated while accurately determining the mounting position. Since the mist generating mechanism and the pressure reducing mechanism are unnecessary, the heating of the object to be heated can be controlled with a simple configuration.
 本開示の第2の態様に係る高周波加熱装置は、第1の態様において、複数の赤外線検出素子が、2次元状に配列され、複数の区画における温度を同時に検出して出力する。本態様によれば、加熱室内の区画の温度をより正確に検出することができ、庫内温度が高温と判定した時の加熱シーケンスによる加熱制御をより精度良く行うことができる。 The high-frequency heating device according to the second aspect of the present disclosure is that, in the first aspect, a plurality of infrared detection elements are two-dimensionally arranged, and simultaneously detect and output temperatures in a plurality of sections. According to this aspect, the temperature of the compartment in the heating chamber can be detected more accurately, and the heating control by the heating sequence when the inside temperature is determined to be high can be performed with higher accuracy.
 本開示の第3の態様に係る高周波加熱装置は、第1又は第2の態様において、制御部が、庫内温度が高温と判定した場合の温め動作における加熱時間を、庫内温度に応じて制御する。本態様によれば、庫内温度を考慮して加熱時間を制御することにより、庫内温度が高温と判定した場合の加熱シーケンスによる加熱制御をより精度良く行うことができる。 The high-frequency heating device according to the third aspect of the present disclosure is the first or second aspect, in which the control unit determines the heating time in the warming operation when the internal temperature is determined to be high according to the internal temperature. Control. According to this aspect, by controlling the heating time in consideration of the internal temperature, the heating control by the heating sequence when the internal temperature is determined to be high can be performed with higher accuracy.
 本開示の第4の態様に係る高周波加熱装置は、第3の態様において、制御部が、庫内温度が高い場合には加熱時間を短くし、庫内温度が低い場合には加熱時間を長くするように制御する。本態様によれば、庫内温度の高低と加熱時間の長短を逆に設定することで、加熱後の被加熱物の温度を目標温度に近づけることができる。 The high-frequency heating device according to the fourth aspect of the present disclosure is that, in the third aspect, the control unit shortens the heating time when the internal temperature is high, and lengthens the heating time when the internal temperature is low. Control to do. According to this aspect, the temperature of the object to be heated after heating can be brought close to the target temperature by reversing the level of the internal temperature and the length of the heating time.
 本開示の第5の態様に係る高周波加熱装置は、第1から第4のいずれか1つの態様において、制御部が、庫内温度が高温と判定した場合、加熱シーケンスにおける第1の温度検出部が検出する載置位置の温度変化に基づいて加熱シーケンスにおける加熱時間を制御する。本態様によれば、載置位置の温度変化を考慮して加熱時間を制御することにより、加熱制御をより精度良く行うことができる。 In any one of the first to fourth aspects, the high-frequency heating device according to the fifth aspect of the present disclosure is the first temperature detection unit in the heating sequence when the controller determines that the internal temperature is high. The heating time in the heating sequence is controlled on the basis of the temperature change of the mounting position detected by. According to this aspect, the heating control can be performed with higher accuracy by controlling the heating time in consideration of the temperature change of the mounting position.
 本開示の第6の態様に係る高周波加熱装置は、第5の態様において、制御部が、庫内温度が高温と判定した場合、加熱シーケンスにおける加熱時間を、第1の温度検出部が検出する載置位置の温度上昇値が第2の所定値以上となった時点を基準として決定する。本態様によれば、載置位置の温度上昇値を考慮して加熱時間を制御することにより、被加熱物の温度をより精度良く制御することができる。 In the high-frequency heating device according to the sixth aspect of the present disclosure, in the fifth aspect, when the control unit determines that the internal temperature is high, the first temperature detection unit detects the heating time in the heating sequence. The time point when the temperature rise value at the mounting position becomes equal to or greater than the second predetermined value is determined as a reference. According to this aspect, the temperature of the object to be heated can be controlled with higher accuracy by controlling the heating time in consideration of the temperature rise value of the placement position.
 本開示の第7の態様に係る高周波加熱装置は、第6の態様において、制御部が、庫内温度が高い場合には第2の所定値を低くし、庫内温度が低い場合には第2の所定値を高くするよう制御する。本態様によれば、庫内温度の高低と第2の所定値の高低を逆に設定することで、加熱後の被加熱物の温度を目標温度に近づけることができる。 The high-frequency heating device according to a seventh aspect of the present disclosure is the sixth aspect, in which the control unit lowers the second predetermined value when the internal temperature is high and decreases the second predetermined value when the internal temperature is low. Control is performed to increase the predetermined value of 2. According to this aspect, the temperature of the article to be heated after heating can be brought close to the target temperature by setting the inside temperature high and low and the second predetermined value high and low.
 本開示の第8の態様に係る高周波加熱装置は、第1から第7のいずれか1つの態様において、制御部が、庫内温度が高温と判定した場合、加熱シーケンスにおける区画の温度に基づいた、被加熱物が冷凍されているか否かの判定結果に応じて、加熱シーケンスにおける加熱時間を制御する。本態様によれば、冷凍されているか否かを精度良く判定しつつ、加熱制御を精度良く行うことができる。 In any one of the first to seventh aspects, the high-frequency heating device according to the eighth aspect of the present disclosure is based on the temperature of the section in the heating sequence when the controller determines that the internal temperature is high. The heating time in the heating sequence is controlled according to the determination result of whether or not the object to be heated is frozen. According to this aspect, it is possible to accurately perform heating control while accurately determining whether or not it is frozen.
 本開示の第9の態様に係る高周波加熱装置は、第8の態様において、制御部が、検出される最も低い温度と、温度検出領域の周縁部の温度とを比較することにより被加熱物が冷凍されているか否かを判定する。検出される最も低い温度は被加熱物が冷凍されているか否かにより変化しやすい一方で、温度検出領域の周縁部の温度は被加熱物が冷凍されていても変化しにくい。本態様によれば、冷凍されているか否かの判定をより精度良く行うことができる。 In the eighth aspect, the high-frequency heating device according to the ninth aspect of the present disclosure is such that, in the eighth aspect, the control unit compares the lowest temperature detected with the temperature of the peripheral portion of the temperature detection region, thereby It is determined whether or not it is frozen. While the lowest temperature detected is likely to change depending on whether or not the object to be heated is frozen, the temperature at the peripheral portion of the temperature detection region is unlikely to change even if the object to be heated is frozen. According to this aspect, it can be determined more accurately whether or not it is frozen.
 本開示の第10の態様に係る高周波加熱装置は、第1から第9のいずれか1つの態様において、加熱室内を加熱するグリルヒータをさらに備え、制御部が、庫内温度が高温と判定した場合、加熱シーケンスの開始から、所定時間が経過するまでマイクロ波を発生させないように高周波発生部を制御する。 A high-frequency heating device according to a tenth aspect of the present disclosure, in any one of the first to ninth aspects, further includes a grill heater that heats the heating chamber, and the control unit determines that the internal temperature is high. In this case, the high frequency generator is controlled so as not to generate microwaves until a predetermined time has elapsed from the start of the heating sequence.
 本態様によれば、マイクロ波の供給は温め動作の開始から所定時間経過後とすることで、マイクロ波の供給をすぐに行った場合に比べて、温度が高くなっているグリルヒータにマイクロ波が集中することを抑制し、グリルヒータの信頼性を向上させることができる。 According to this aspect, the microwave is supplied after the predetermined time has elapsed from the start of the warming operation, so that the microwave is supplied to the grill heater whose temperature is higher than when the microwave is supplied immediately. Can be prevented, and the reliability of the grill heater can be improved.
 以下、本開示の高周波加熱装置に係る実施の形態としてマイクロ波加熱を行う電子レンジについて、添付の図面を参照しながら説明する。 Hereinafter, a microwave oven that performs microwave heating as an embodiment of the high-frequency heating device of the present disclosure will be described with reference to the accompanying drawings.
 なお、本開示の高周波加熱装置は、以下の実施の形態に記載した電子レンジの構成に限定されるものではない。本開示の高周波加熱装置は、以下の実施の形態において説明する技術的思想と同等の技術的思想に基づいて構成される加熱装置、例えば、マイクロ波加熱のみの機能を有する構成の他に、伝熱、対流、輻射、スチーム等の加熱機能を有する加熱装置を含む。 Note that the high-frequency heating device of the present disclosure is not limited to the configuration of the microwave oven described in the following embodiments. The high-frequency heating device of the present disclosure includes a heating device configured based on a technical idea equivalent to the technical idea described in the following embodiments, for example, a configuration having a function of only microwave heating. It includes a heating device having a heating function such as heat, convection, radiation, and steam.
 図1は本開示の実施の形態に係る電子レンジ20を示す斜視図である。図2は図1に示した電子レンジ20のドアを開いた状態を示す斜視図である。実施の形態の電子レンジ20は、マイクロ波を用いるマイクロ波加熱の他に、伝熱、対流および輻射等の加熱方法により被加熱物である食品を調理する機能を有している。 FIG. 1 is a perspective view showing a microwave oven 20 according to an embodiment of the present disclosure. FIG. 2 is a perspective view showing a state where the door of the microwave oven 20 shown in FIG. 1 is opened. The microwave oven 20 according to the embodiment has a function of cooking food that is an object to be heated by a heating method such as heat transfer, convection, and radiation, in addition to microwave heating using a microwave.
 図1および図2に示すように、電子レンジ20は、被加熱物が載置される加熱室5を備えた本体1と、加熱室5の前面側の開口を開閉するためのドア2とを備えている。ドア2の前面上部にはドア2の開閉時に用いられる把手3が設けられている。 As shown in FIGS. 1 and 2, the microwave oven 20 includes a main body 1 including a heating chamber 5 on which an object to be heated is placed, and a door 2 for opening and closing an opening on the front side of the heating chamber 5. I have. A handle 3 that is used when the door 2 is opened and closed is provided on the front upper portion of the door 2.
 ドア2の前面には、さまざまな情報を表示し、使用者の指示を入力するタッチ画面、および、調理の開始を指示するためのスタートボタン等を備えた操作部4が設けられている。使用者が操作部4におけるタッチ画面を操作して、調理条件等を入力し、最後にスタートボタンを操作すると、電子レンジ20は各種加熱シーケンスを開始する。 On the front surface of the door 2, there is provided an operation unit 4 including a touch screen for displaying various information and inputting a user instruction, a start button for instructing the start of cooking, and the like. When the user operates the touch screen in the operation unit 4 to input cooking conditions and the like and finally operates the start button, the microwave oven 20 starts various heating sequences.
 図3は、電子レンジ20におけるマイクロ波加熱のための主要な構成を示すブロック図である。図3に示すように、電子レンジ20は、操作部4と制御部10とマグネトロン11と導波管12と温度検出部13を含んでいる。 FIG. 3 is a block diagram showing a main configuration for microwave heating in the microwave oven 20. As shown in FIG. 3, the microwave oven 20 includes an operation unit 4, a control unit 10, a magnetron 11, a waveguide 12, and a temperature detection unit 13.
 使用者は、操作部4により調理条件等の情報を入力する。マグネトロン11は、マイクロ波を発生する高周波発生部である。導波管12は、加熱室5の底面の下方に設けられ、マグネトロン11により発生されたマイクロ波を、回転アンテナ(図示せず)に導く。回転アンテナは、加熱室5の底面の中央付近の下方に設けられ、指向性を有するアンテナを回転させながら、加熱室5内にマイクロ波を供給する。 The user inputs information such as cooking conditions through the operation unit 4. The magnetron 11 is a high frequency generator that generates microwaves. The waveguide 12 is provided below the bottom surface of the heating chamber 5 and guides the microwave generated by the magnetron 11 to a rotating antenna (not shown). The rotating antenna is provided below the center of the bottom of the heating chamber 5 and supplies microwaves into the heating chamber 5 while rotating the antenna having directivity.
 本実施の形態の電子レンジ20は、回転アンテナの制御方法に応じて、全方向に均一にマイクロ波を供給する均一加熱(Omnidirectionally uniform heating)と、所望の方向に集中的にマイクロ波を供給する局所加熱(Locally intensive heating)とを行うことができる。 The microwave oven 20 according to the present embodiment supplies uniform microwaves (Omnidirectionally uniform 供給 す る heating) for uniformly supplying microwaves in all directions and intensively supplies microwaves in a desired direction according to the control method of the rotating antenna. Locally (intensive) heating can be performed.
 温度検出部13は、加熱室5の内部の温度を検出する。制御部10は、操作部4により入力された情報と、温度検出部13が検出する温度情報とに応じて、マグネトロン11を制御する。 The temperature detection unit 13 detects the temperature inside the heating chamber 5. The control unit 10 controls the magnetron 11 according to the information input by the operation unit 4 and the temperature information detected by the temperature detection unit 13.
 実施の形態において、温度検出部13は、第1の温度検出部と第2の温度検出部とを備える。第1の温度検出部は、後述するように、加熱室5の底面上に仮想的に設けられた温度検出領域(Temperature detectable area)30の温度を検出する赤外線センサである。 In the embodiment, the temperature detection unit 13 includes a first temperature detection unit and a second temperature detection unit. As will be described later, the first temperature detection unit is an infrared sensor that detects the temperature of a temperature detection region 30 that is virtually provided on the bottom surface of the heating chamber 5.
 第2の温度検出部は、加熱室5内の雰囲気温度(以下、庫内温度という)を検出する温度センサ(例えば、サーミスタ(図示せず))である。 The second temperature detection unit is a temperature sensor (for example, a thermistor (not shown)) that detects the atmospheric temperature in the heating chamber 5 (hereinafter referred to as the internal temperature).
 電子レンジ20は、赤外線センサが設けられている場所の環境温度を検出するための温度センサ(例えば、サーミスタ(図示せず))をさらに備える。この環境温度情報に応じて、赤外線センサに検出された温度情報が較正される。このように、制御部10は、温度検出部13から、庫内温度情報、温度検出領域30の温度情報、および、環境温度情報を入手する。 The microwave oven 20 further includes a temperature sensor (for example, a thermistor (not shown)) for detecting the environmental temperature of the place where the infrared sensor is provided. The temperature information detected by the infrared sensor is calibrated according to the environmental temperature information. As described above, the control unit 10 obtains the internal temperature information, the temperature information of the temperature detection region 30, and the environmental temperature information from the temperature detection unit 13.
 制御部10は、操作部4において入力された調理条件等の情報を操作部4から入手し、温度検出部13から入手した温度情報に応じて、マイクロ波を発生するマグネトロン11を制御し、設定された調理条件等に従って被加熱物を調理する。 The control unit 10 obtains information such as cooking conditions input in the operation unit 4 from the operation unit 4, and controls and sets the magnetron 11 that generates microwaves according to the temperature information obtained from the temperature detection unit 13. The object to be heated is cooked according to the cooking conditions and the like.
 マグネトロン11により発生されたマイクロ波は、導波管12と回転アンテナとを介して加熱室5の内部に供給され、被加熱物をマイクロ波加熱する。 The microwave generated by the magnetron 11 is supplied to the inside of the heating chamber 5 through the waveguide 12 and the rotating antenna, and the object to be heated is microwave-heated.
 実施の形態においては、回転アンテナおよび導波管12は底面の下方に設けられている。しかしながら、本開示はこの構成に限定されるものではなく、加熱室5の天面の上方等に配設してもよい。また、マグネトロン11と導波管12との組を複数個設けてもよい。 In the embodiment, the rotating antenna and the waveguide 12 are provided below the bottom surface. However, the present disclosure is not limited to this configuration, and may be disposed above the top surface of the heating chamber 5 or the like. A plurality of sets of magnetrons 11 and waveguides 12 may be provided.
 本体1の内部において被加熱物を収納する加熱室5は、左右側面、天面、底面、奥面の5面と、前面側の開口に設けられたドア2とで区画されて構成されている。以下、本実施の形態において、加熱室5の開口側を前面側、奥面側を背面側、天面側を上側、底面側を下側と定義し、加熱室5を前面側から見て、右側の側面を右側面、左側の側面を左側面と定義する。 A heating chamber 5 that accommodates an object to be heated inside the main body 1 is divided into five surfaces, that is, a left and right side surface, a top surface, a bottom surface, and a back surface, and a door 2 provided in an opening on the front surface side. . Hereinafter, in the present embodiment, the opening side of the heating chamber 5 is defined as the front side, the back side is defined as the back side, the top side is defined as the upper side, the bottom side is defined as the lower side, and the heating chamber 5 is viewed from the front side. The right side is defined as the right side, and the left side is defined as the left side.
 電子レンジ20は、加熱室5内を加熱するためのグリルヒータ(図示せず)をさらに備える。グリルヒータは、例えば、加熱室5の天面に設置される。 The microwave oven 20 further includes a grill heater (not shown) for heating the inside of the heating chamber 5. The grill heater is installed, for example, on the top surface of the heating chamber 5.
 電子レンジ20はさらに、加熱室5内にて空気を循環させるための循環ファンと、循環ファンによって循環される空気を加熱するためのコンベクションヒータ(図示せず)とを備える。 The microwave oven 20 further includes a circulation fan for circulating air in the heating chamber 5 and a convection heater (not shown) for heating the air circulated by the circulation fan.
 循環ファンおよびコンベクションヒータはともに、加熱室5の奥面の背面側に設けられている。循環ファンは、加熱室5の奥面に形成されたパンチング(Punching)穴(図示せず)を介して、加熱室5から空気を吸い出すとともに加熱室5に向けて空気を送り出す機能を有する。これにより、加熱室5内で熱風を循環させる。 Both the circulation fan and the convection heater are provided on the back side of the inner surface of the heating chamber 5. The circulation fan has a function of sucking out air from the heating chamber 5 and sending out air toward the heating chamber 5 through a punching hole (not shown) formed in the inner surface of the heating chamber 5. Thereby, hot air is circulated in the heating chamber 5.
 電子レンジ20においては、マイクロ波加熱の他に、オーブン加熱で用いられるオーブン皿と、グリル加熱に用いられるグリル皿とが用いられるように構成されている。グリル皿およびオーブン皿を支持するために、加熱室5の右側面と左側面とには、前後方向に水平に延在する支持突起が、複数段(実施の形態においては3段)設けられている。これにより、調理に最適な位置に被加熱物を載置するための皿を設置可能である。 The microwave oven 20 is configured such that, in addition to microwave heating, an oven pan used for oven heating and a grill pan used for grill heating are used. In order to support the grill dish and the oven dish, the right and left sides of the heating chamber 5 are provided with a plurality of stages (three stages in the embodiment) of supporting projections extending horizontally in the front-rear direction. Yes. Thereby, the dish for mounting a to-be-heated material in the optimal position for cooking can be installed.
 図4は、電子レンジ20を、ドア2を開いた状態で示す正面図である。図5は実施の形態の電子レンジ20を、ドア2が開いた状態で示す側面図である。図5は、加熱室5の内部が見えるように、本体1の一部を切り欠いた状態で示している。 FIG. 4 is a front view showing the microwave oven 20 with the door 2 opened. FIG. 5 is a side view showing the microwave oven 20 according to the embodiment with the door 2 opened. FIG. 5 shows a state in which a part of the main body 1 is cut away so that the inside of the heating chamber 5 can be seen.
 図4、図5に示すように、赤外線センサ6は、加熱室5の右側面上部の外側に設けられ、赤外線センサ6の視野35は、加熱室5の底面のほぼ全体をカバーしている。赤外線センサ6は、8行8列のマトリクス状に配列された合計64個の赤外線検出素子により構成されている。 As shown in FIGS. 4 and 5, the infrared sensor 6 is provided outside the upper part of the right side surface of the heating chamber 5, and the visual field 35 of the infrared sensor 6 covers almost the entire bottom surface of the heating chamber 5. The infrared sensor 6 is composed of a total of 64 infrared detection elements arranged in a matrix of 8 rows and 8 columns.
 図6は、加熱室5の底面の平面図である。図6に示すように、加熱室5の底面のほぼ全体が温度検出領域30に相当する。温度検出領域30は、温度検出部13に含まれた赤外線センサ6により温度検出が可能な領域である。 FIG. 6 is a plan view of the bottom surface of the heating chamber 5. As shown in FIG. 6, almost the entire bottom surface of the heating chamber 5 corresponds to the temperature detection region 30. The temperature detection region 30 is a region where the temperature can be detected by the infrared sensor 6 included in the temperature detection unit 13.
 図4、図5に示すように、赤外線センサ6の作動時には、破線で示す視野35が温度検出領域30の全体をカバーするように、赤外線センサ6のレンズの向きが所定の俯角に設定される。この状態(以下、検出可能状態という)において、赤外線センサ6は、加熱室5の右側面の上部に形成された開口5aを通して、加熱室5内に載置された被加熱物の温度情報を検出する。 As shown in FIGS. 4 and 5, when the infrared sensor 6 is operated, the direction of the lens of the infrared sensor 6 is set to a predetermined depression angle so that the visual field 35 shown by a broken line covers the entire temperature detection region 30. . In this state (hereinafter, referred to as a detectable state), the infrared sensor 6 detects temperature information of an object to be heated placed in the heating chamber 5 through an opening 5a formed in the upper part of the right side surface of the heating chamber 5. To do.
 温度検出領域30は、8行8列のマトリクス状に配列された区画(Detection compartment)31により構成されている。温度検出領域30の各区画の温度情報は、赤外線センサ6を構成する64個の赤外線検出素子をそれぞれ各区画に対応づけすることにより検出可能である。 The temperature detection region 30 is composed of sections (Detection compartments) 31 arranged in a matrix of 8 rows and 8 columns. The temperature information of each section of the temperature detection region 30 can be detected by associating the 64 infrared detection elements constituting the infrared sensor 6 with each section.
 すなわち、電子レンジ20は、64個の区画に対するすべての温度検出を一度に行うことができるように構成されている。 That is, the microwave oven 20 is configured to be able to detect all temperatures for 64 sections at once.
 なお、図6に示すように、本実施の形態では、加熱室5の底面のほぼ全体が温度検出領域30に相当しているが、これに限らず、例えば、加熱室5の底面の一部分のみを温度検出領域30としてもよい。 As shown in FIG. 6, in the present embodiment, almost the entire bottom surface of the heating chamber 5 corresponds to the temperature detection region 30, but not limited to this, for example, only a part of the bottom surface of the heating chamber 5. May be the temperature detection region 30.
 赤外線センサ6は、水平な回転軸を中心にしてその俯角を変更することで、その視野35を上下方向に移動可能となるように構成されている。本実施の形態では、赤外線センサ6は、調理条件に応じて視野35を移動させる。 The infrared sensor 6 is configured to be able to move the field of view 35 in the vertical direction by changing the depression angle around a horizontal rotation axis. In this Embodiment, the infrared sensor 6 moves the visual field 35 according to cooking conditions.
 例えば、加熱室5の底面に載置された被加熱物をマイクロ波加熱する調理条件においては、加熱室5の底面全体を温度検出領域30とするために、赤外線センサ6のレンズの向きを変更し、視野35を温度検出領域30の全体に合わせる。グリルヒータを使用すると同時にグリル加熱を行う調理条件においては、所定の高さに設置されたグリル皿の上に温度検出領域30が設定される。 For example, in a cooking condition in which the object to be heated placed on the bottom surface of the heating chamber 5 is heated by microwaves, the direction of the lens of the infrared sensor 6 is changed so that the entire bottom surface of the heating chamber 5 is the temperature detection region 30. Then, the visual field 35 is adjusted to the entire temperature detection region 30. Under cooking conditions in which grill heating is performed simultaneously with the use of the grill heater, the temperature detection region 30 is set on the grill pan installed at a predetermined height.
 このように、実施の形態における赤外線センサ6は、調理条件に応じて温度検出領域30を上下方向に移動させることにより、視野35を加熱室5の内部において上下方向に移動させることができる。 As described above, the infrared sensor 6 according to the embodiment can move the visual field 35 in the vertical direction inside the heating chamber 5 by moving the temperature detection region 30 in the vertical direction according to the cooking conditions.
 赤外線センサ6が温度検出を行っていない場合、赤外線センサ6のレンズは真下に向けた状態(待機状態)となるように構成されている。これにより、レンズ表面に汚れが付着することを防止できる。赤外線センサ6が待機状態にある場合、赤外線センサ6の全体が冷却風により冷却されるよう構成されている。待機状態では赤外線センサ6の全体が冷却されるため、次の温度検出時には、正確な温度検出が可能となる。 When the temperature of the infrared sensor 6 is not detected, the lens of the infrared sensor 6 is configured to be in a state of being directly below (standby state). Thereby, it is possible to prevent dirt from adhering to the lens surface. When the infrared sensor 6 is in a standby state, the entire infrared sensor 6 is configured to be cooled by cooling air. Since the entire infrared sensor 6 is cooled in the standby state, accurate temperature detection is possible at the next temperature detection.
 なお、赤外線センサ6を冷却する冷却風は、マイクロ波を発生するマグネトロン11のための冷却風を利用しており、冷却ダクトにより赤外線センサ6に対して下方から吹き付けるように構成されている。 The cooling air for cooling the infrared sensor 6 uses cooling air for the magnetron 11 that generates microwaves, and is configured to be blown from below to the infrared sensor 6 by a cooling duct.
 なお、温度検出部13に含まれるサーミスタおよび赤外線センサが、異常な温度を検出した場合には、制御部10は瞬時にマグネトロン11の動作を停止するよう構成されている。 Note that, when the thermistor and the infrared sensor included in the temperature detection unit 13 detect an abnormal temperature, the control unit 10 is configured to stop the operation of the magnetron 11 instantaneously.
 [温め動作]
 次に、上記のように構成された電子レンジ20において、被加熱物を所望の温度まで自動的に加熱する加熱シーケンスである温め動作について説明する。温め動作に適した被加熱物の具体的な例として、冷めたご飯、調理済みのおかず等が想定される。
[Warming operation]
Next, in the microwave oven 20 configured as described above, a warming operation that is a heating sequence for automatically heating an object to be heated to a desired temperature will be described. As specific examples of the object to be heated suitable for the warming operation, cold rice, cooked side dishes, and the like are assumed.
 以下、加熱後の被加熱物の温度が使用者の好みに応じて設定できるように、3段階(弱・中・強)の出力設定が可能な構成における温め動作を具体的に説明する。 Hereinafter, the warming operation in the configuration in which the output can be set in three stages (weak, medium, and strong) so that the temperature of the heated object after heating can be set according to the user's preference will be specifically described.
 図7は、本実施の形態における温め動作を示すフローチャートである。図8は、図7のフローチャートに従って行われる温め動作の加熱シーケンスである。図8において、加熱室5の庫内温度、マイクロ波の出力、冷却ファンの作動および循環ファンの作動を示す。なお、以下の説明において、すべての制御、判定、計算等は、制御部10により行われる。 FIG. 7 is a flowchart showing the warming operation in the present embodiment. FIG. 8 is a heating sequence of the warming operation performed according to the flowchart of FIG. FIG. 8 shows the internal temperature of the heating chamber 5, the output of the microwave, the operation of the cooling fan, and the operation of the circulation fan. In the following description, all control, determination, calculation, and the like are performed by the control unit 10.
 電子レンジ20において、温め動作は、使用者が操作部4の所定のボタンを押下することにより開始される。 In the microwave oven 20, the warming operation is started when the user presses a predetermined button on the operation unit 4.
 使用者が温め動作の開始を指示した場合、まず、温度検出部13のサーミスタ(第2の温度検出部)が加熱室5の庫内温度を検出する。その庫内温度が高温と判定された場合に、本加熱シーケンスが開始される(庫内温度の高温時における温め動作の開始)。 When the user instructs the start of the warming operation, first, the thermistor (second temperature detection unit) of the temperature detection unit 13 detects the internal temperature of the heating chamber 5. When the internal temperature is determined to be high, the main heating sequence is started (start of warming operation when the internal temperature is high).
 加熱室5内が高温である要因としては主に、グリルヒータ、循環ファンおよびコンベクションヒータを用いるオーブン加熱の終了直後であることが想定される。本実施の形態では、庫内温度が100℃から260℃の場合に高温と判定する。庫内温度が100℃以下の場合には、本加熱シーケンスではなく通常の自動温めのシーケンスが実行されるが、その説明は省略する。 It is assumed that the reason why the inside of the heating chamber 5 is hot is immediately after the end of the oven heating using the grill heater, the circulation fan, and the convection heater. In the present embodiment, the internal temperature is determined to be high when the internal temperature is 100 ° C. to 260 ° C. When the internal temperature is 100 ° C. or lower, a normal automatic warming sequence is executed instead of the main heating sequence, but the description thereof is omitted.
 庫内温度が260℃を超える場合には、操作部4がエラー表示を行い、「温め動作」ができないことを使用者に報知する。なお、100℃から260℃という庫内温度の範囲は電子レンジの使用等に応じて適宜変更してもよい。 When the internal temperature exceeds 260 ° C., the operation unit 4 displays an error and notifies the user that “warming operation” cannot be performed. In addition, you may change suitably the range of the internal temperature of 100 to 260 degreeC according to the use etc. of a microwave oven.
 当該加熱シーケンスが開始されると、ステップS101において、赤外線センサ6を検出可能状態に移行させる。この検出可能状態において、加熱室5内からの熱により赤外線センサ6のレンズの温度は上昇する。 When the heating sequence is started, the infrared sensor 6 is shifted to a detectable state in step S101. In this detectable state, the temperature of the lens of the infrared sensor 6 rises due to heat from the heating chamber 5.
 そこで、ステップS102において、加熱室5の外側に設けられた冷却ファン(図示せず)を作動させ、検出可能状態にある赤外線センサ6を冷却する。赤外線センサ6は、温め動作開始の前のオーブン加熱時には待機状態にあるため、レンズは冷たく、基板は熱くなっている。 Therefore, in step S102, a cooling fan (not shown) provided outside the heating chamber 5 is operated to cool the infrared sensor 6 in a detectable state. Since the infrared sensor 6 is in a standby state during oven heating before the start of the warming operation, the lens is cold and the substrate is hot.
 このような状態で、赤外線センサ6を検出可能状態に移行させると、レンズが急激に熱くなり、レンズと基板の温度差が大きくなる。これを防ぐため、ステップS102においてレンズおよび基板を含めた赤外線センサ6全体を冷却する。これにより、レンズおよび基板の温度をより均一にすることができ、被加熱物の温度をより正確に検出することができる。 In such a state, when the infrared sensor 6 is shifted to a detectable state, the lens suddenly becomes hot and the temperature difference between the lens and the substrate increases. In order to prevent this, the entire infrared sensor 6 including the lens and the substrate is cooled in step S102. Thereby, the temperature of a lens and a board | substrate can be made more uniform, and the temperature of a to-be-heated object can be detected more correctly.
 ステップS103において循環ファンを停止させる。具体的には、温め動作前のオーブン加熱時に作動していた循環ファンへの電力の供給を徐々に減少させることで、循環ファンの回転数を徐々に小さくする。本実施の形態では、循環ファンを所定時間(例えば、10秒)経過後に停止するように制御している。 In step S103, the circulation fan is stopped. Specifically, the rotational speed of the circulation fan is gradually reduced by gradually decreasing the supply of electric power to the circulation fan that was operating during the oven heating before the warming operation. In this embodiment, the circulation fan is controlled to stop after a predetermined time (for example, 10 seconds) has elapsed.
 ステップS104において待機時間(図8に示すTwait時間)を設ける。具体的には、所定の待機時間の間、マグネトロン11を停止させ、冷却ファンを作動させ続けるとともに循環ファンの回転数を徐々に小さくして停止させる。本実施の形態では、Twait時間は30秒に設定される。 In step S104, a standby time (Twait time shown in FIG. 8) is provided. Specifically, during a predetermined waiting time, the magnetron 11 is stopped, the cooling fan is continuously operated, and the rotational speed of the circulation fan is gradually reduced to stop. In this embodiment, the Twait time is set to 30 seconds.
 本実施の形態では、温め動作の開始から待機時間経過までの期間を「擬似調理ステージ」とする。擬似調理ステージにおいては、当初高温であった庫内温度は低下していくが、被加熱物が載置される領域では、被加熱物により熱が吸収されるため、他の領域に比べて温度がより早く低下する。 In this embodiment, the period from the start of the warming operation to the lapse of the standby time is referred to as a “pseudo cooking stage”. In the simulated cooking stage, the internal temperature that was initially high decreases, but in the area where the object to be heated is placed, heat is absorbed by the object to be heated, so the temperature is higher than in other areas. Drops faster.
 本実施の形態では、擬似調理ステージにおける最初の所定時間(例えば14秒)経過まで、被加熱物の仕上がり温度に応じたマイクロ波の出力設定が変更可能である。出力設定の結果は制御部10で記憶される。 In the present embodiment, the microwave output setting can be changed according to the finished temperature of the object to be heated until the first predetermined time (for example, 14 seconds) has elapsed in the simulated cooking stage. The result of the output setting is stored in the control unit 10.
 出力設定の結果に応じて、後述する検出マスク時間が決定される。検出マスク時間とは、擬似調理ステージ後に行うマイクロ波加熱時間の最小時間を定めるものである。例えば、「弱」設定の場合には検出マスク時間を短くし、「強」設定の場合には検出マスク時間を長くするようにしてもよい。検出マスク時間は例えば、「弱」設定の場合に46秒、中設定の場合に52秒、強設定の場合に75秒としてもよい。 The detection mask time described later is determined according to the output setting result. The detection mask time determines the minimum time of the microwave heating time performed after the simulated cooking stage. For example, when “weak” is set, the detection mask time may be shortened, and when “strong” is set, the detection mask time may be lengthened. For example, the detection mask time may be 46 seconds for “weak” setting, 52 seconds for medium setting, and 75 seconds for strong setting.
 ステップS104における待機時間の経過後、ステップS105において、マグネトロン11がマイクロ波を発生し始める。発生されたマイクロ波は、導波管12等を経由して加熱室5内に供給され、加熱室5内の被加熱物をマイクロ波加熱する。本実施の形態では、マグネトロン11の出力は例えば700Wに設定されている。 After the elapse of the standby time in step S104, the magnetron 11 starts to generate microwaves in step S105. The generated microwave is supplied into the heating chamber 5 via the waveguide 12 or the like, and the object to be heated in the heating chamber 5 is microwave-heated. In the present embodiment, the output of the magnetron 11 is set to 700 W, for example.
 ステップS106において、温度検出領域30の温度検出を開始する。具体的には、検出可能状態に移行済みの赤外線センサ6が、擬似調理ステージの終了時から温度検出領域30の全体(本実施の形態では加熱室5底面の全体)の温度検出を開始する。本実施の形態では、当該温度検出は、擬似調理ステージの終了時から所定時間毎、例えば、1秒毎に行われる。これらの結果は制御部10で記憶される。 In step S106, temperature detection of the temperature detection region 30 is started. Specifically, the infrared sensor 6 that has been shifted to the detectable state starts temperature detection of the entire temperature detection region 30 (in the present embodiment, the entire bottom surface of the heating chamber 5) from the end of the simulated cooking stage. In the present embodiment, the temperature detection is performed every predetermined time, for example, every second from the end of the simulated cooking stage. These results are stored in the control unit 10.
 前述したように、赤外線センサ6は、擬似調理ステージにおいてレンズが加熱室5に向けられた状態のまま冷却ファンにより冷却されて、全体の温度(特にレンズの温度と基板の温度)が均一化される。よって、ステップS106から開始される温度検出領域30の温度検出をより正確に行うことができる。 As described above, the infrared sensor 6 is cooled by the cooling fan while the lens is directed to the heating chamber 5 in the simulated cooking stage, and the entire temperature (particularly, the lens temperature and the substrate temperature) is made uniform. The Therefore, the temperature detection of the temperature detection region 30 started from step S106 can be performed more accurately.
 ステップS107において、載置位置の判定が行われる。具体的には、ステップS106による最初の温度検出結果を利用して、加熱室5内の温度検出領域30において被加熱物の載置が推定されるポイント(載置位置)を判定する。 In step S107, the placement position is determined. Specifically, using the first temperature detection result in step S106, a point (placement position) where the placement of the object to be heated is estimated in the temperature detection region 30 in the heating chamber 5 is determined.
 これに関して、ステップS106における最初の温度検出結果の一例を図9に示す。図9において、温度検出領域30の周縁部(本実施の形態では加熱室5の底面の周縁部)の左前面の隅に位置する区画31aの検出温度を基準温度として、他の区画の温度とこの基準温度との差分が表示されている。 In this regard, an example of the first temperature detection result in step S106 is shown in FIG. In FIG. 9, the detected temperature of the section 31a located at the left front corner of the peripheral edge of the temperature detection region 30 (in this embodiment, the peripheral edge of the bottom surface of the heating chamber 5) is set as the reference temperature, The difference from this reference temperature is displayed.
 ステップS107では、基準温度よりも所定値以上低い区画を載置位置と判定している。図9に示す例では、基準温度よりも8度以上低い区画を載置位置と判定している(図9における網掛け表示)。これにより、基準温度よりも8度以上低い区画として合計14個の区画が載置位置と判定されている。 In step S107, a section lower than the reference temperature by a predetermined value or more is determined as the placement position. In the example shown in FIG. 9, a section that is 8 degrees or more lower than the reference temperature is determined as the placement position (shaded display in FIG. 9). As a result, a total of 14 sections are determined as placement positions as sections that are 8 degrees or more lower than the reference temperature.
 一般的に、被加熱物が載置された区画では、被加熱物によって熱が吸収されるため、その温度は下がりやすい。一方、温度検出領域30の周縁部(例えば加熱室5内の周縁部)は被加熱物があまり載置されないので、被加熱物による温度変化は生じにくい。 Generally, in a section where an object to be heated is placed, heat is absorbed by the object to be heated, so that the temperature tends to decrease. On the other hand, since the object to be heated is not placed so much at the peripheral part of the temperature detection region 30 (for example, the peripheral part in the heating chamber 5), the temperature change due to the object to be heated hardly occurs.
 このような特性を利用して、温度検出領域30の周縁部の温度よりも所定値以上低くなっている区画を被加熱物の載置位置と推定する。これにより、被加熱物の載置を精度良く判定することができる。なお、温度検出領域30の周縁部とは、温度検出領域30の隅(例えば加熱室5の底面の隅の近傍)に位置する、被加熱物が載置されることが殆どない区画(例えば図9に示す区画31a)をいう。 Using such characteristics, a section that is lower than the temperature at the peripheral edge of the temperature detection region 30 by a predetermined value or more is estimated as the placement position of the object to be heated. Thereby, the placement of the object to be heated can be accurately determined. In addition, the peripheral part of the temperature detection region 30 is a section (for example, a figure) located in a corner of the temperature detection region 30 (for example, in the vicinity of the corner of the bottom surface of the heating chamber 5) where an object to be heated is hardly placed. Section 31a) shown in FIG.
 ステップS107において、載置位置と判定された区画がない場合には、ステップS108に移行する。載置位置と判定された区画が1つ以上ある場合には、ステップS109に移行する。ステップS108に移行すると、ステップS109以降に続くステップを行わず、所定時間経過後に当該「温め」動作を終了する。本実施の形態では、ステップS108に移行した場合の加熱継続時間が、出力設定が弱の場合の検出マスク時間(例えば、46秒)と同じ時間に設定される。 In step S107, when there is no section determined to be the placement position, the process proceeds to step S108. If there is one or more sections determined to be the placement position, the process proceeds to step S109. When the process proceeds to step S108, the step subsequent to step S109 is not performed, and the “warming” operation is terminated after a predetermined time has elapsed. In the present embodiment, the heating duration when the process proceeds to step S108 is set to the same time as the detection mask time (for example, 46 seconds) when the output setting is weak.
 載置位置と判定された区画が1つ以上ある場合には、ステップS109において、被加熱物が少量か大量かの判定を行う(以下、この判定を少量/大量判定(Large / small amount judgment)という)。具体的には、ステップS107で判定した載置位置と判定された区画の数に応じて、被加熱物が少量か大量かを判定する。 If there is one or more sections determined to be the mounting position, in step S109, it is determined whether the object to be heated is a small amount or a large amount (hereinafter, this determination is a small amount / large amount determination (Large / small amount judgment)). Called). Specifically, it is determined whether the object to be heated is a small amount or a large amount according to the number of sections determined as the mounting position determined in step S107.
 より具体的には、以下の式(1)により、被加熱物が少量か大量かを判定するための閾値を算出する。この閾値以上、載置位置と判定された区画の数がある場合には被加熱物は大量と判定し、そうでない場合には被加熱物は少量と判定する。 More specifically, a threshold for determining whether the object to be heated is a small amount or a large amount is calculated by the following equation (1). When the number of sections determined to be the mounting position is equal to or greater than this threshold, the object to be heated is determined to be large, and otherwise the object to be heated is determined to be small.
  少量/大量判定のための閾値
    =A×(温め動作開始時の庫内温度)+B     …(1)
 上記式(1)では、この閾値を算出する際に、温め動作の開始時の加熱室5の庫内温度を使用する。上記式(1)においてA、Bは定数である。A、Bの値は電子レンジの仕様に応じて適宜設定することができる。
Threshold value for small / large quantity determination = A × (internal temperature at start of warming operation) + B (1)
In the above equation (1), when calculating this threshold value, the internal temperature of the heating chamber 5 at the start of the warming operation is used. In the above formula (1), A and B are constants. The values of A and B can be appropriately set according to the specifications of the microwave oven.
 本実施の形態では、例えば、Aは0.1に、Bは16に、温め動作開始時の庫内温度は150℃に設定される。この場合の閾値は「31」となる。この閾値を用いると、図9に示すように、載置位置と判定された区画が14個ある場合、載置位置と判定された区画の数が閾値(31)よりも小さいため、被加熱物は「少量」と判定される。ステップS109における判定の結果は制御部10で記憶される。 In this embodiment, for example, A is set to 0.1, B is set to 16, and the internal temperature at the start of the warming operation is set to 150 ° C. In this case, the threshold value is “31”. When this threshold value is used, as shown in FIG. 9, when there are 14 sections determined to be placement positions, the number of sections determined to be placement positions is smaller than the threshold value (31). Is determined to be “small”. The result of determination in step S109 is stored in the control unit 10.
 ステップS110において待機時間を設ける。具体的には、ステップS105におけるマイクロ波の供給およびステップS106における温度検出領域30に対する所定時間毎の温度検出を継続して行いながら、所定時間待機する(図8に示すT1stscan時間)。 A standby time is provided in step S110. Specifically, the process waits for a predetermined time (T1stscan time shown in FIG. 8) while continuously performing the microwave supply in step S105 and the temperature detection for the temperature detection region 30 in step S106 every predetermined time.
 これにより、加熱室5内の被加熱物をマイクロ波により加熱しつつ、加熱室5内の温度変化を所定時間毎に観察する。本実施の形態では、T1stscan時間は30秒に設定される。 Thus, the temperature change in the heating chamber 5 is observed every predetermined time while the object to be heated in the heating chamber 5 is heated by the microwave. In the present embodiment, the T1stscan time is set to 30 seconds.
 待機時間が経過すると、ステップS111において、被加熱物の冷凍/常温判定(Frozen / Normal Judgment)を行う。具体的には、各区画の温度に基づいて、被加熱物が冷凍されているか否かを判定する。より具体的には、以下の式(2)により、冷凍/常温判定用の温度を算出するとともに、この温度と、温度検出領域30における最も低い温度とを比較することで、被加熱物が冷凍されているか否かを判定する。 When the standby time has elapsed, in step S111, the object to be heated is frozen / normal temperature judgment (Frozen / Normal Judgment). Specifically, it is determined whether the object to be heated is frozen based on the temperature of each section. More specifically, the temperature for refrigeration / room temperature determination is calculated by the following equation (2), and this temperature is compared with the lowest temperature in the temperature detection region 30, so that the object to be heated is frozen. It is determined whether or not it has been done.
  冷凍/常温判定用の温度=C×(プレート温度)+D  …(2)
 ここで、上記式(2)のC、Dは定数である。上記式(2)において、「プレート温度(Plate temperature)」とは、ステップS110における待機時間の経過時点において、温度検出領域30の周縁部に位置する区画の温度である。ステップS111における冷凍/常温判定のための基準温度として、ステップS107の場合と同様に区画31aの温度が利用される。
Temperature for freezing / normal temperature determination = C × (plate temperature) + D (2)
Here, C and D in the above formula (2) are constants. In the above formula (2), the “plate temperature” is the temperature of the section located at the peripheral edge of the temperature detection region 30 at the time when the standby time in step S110 has elapsed. As the reference temperature for the freezing / normal temperature determination in step S111, the temperature of the section 31a is used as in the case of step S107.
 本実施の形態では、Cは0.64、Dは8、プレート温度は80℃に設定される。この場合、冷凍/常温判定用の温度は、59.2℃となる。この温度を基準として、各区画の温度の中で最も低い温度が59.2℃以上の場合には常温と判定し、59.2℃よりも低い場合には冷凍と判定する。 In the present embodiment, C is set to 0.64, D is set to 8, and the plate temperature is set to 80 ° C. In this case, the temperature for freezing / normal temperature determination is 59.2 ° C. On the basis of this temperature, when the lowest temperature among the temperatures of each compartment is 59.2 ° C. or higher, it is determined as normal temperature, and when it is lower than 59.2 ° C., it is determined as frozen.
 冷凍/常温判定の結果は制御部10に送られて記憶される。常温と判定した場合には、ステップS112に移行し、冷凍と判定した場合にはステップS115に移行する。 The result of freezing / room temperature determination is sent to the control unit 10 and stored therein. If it is determined that the temperature is normal, the process proceeds to step S112. If it is determined that the temperature is frozen, the process proceeds to step S115.
 ステップS112およびステップS115では、ステップS111の冷凍/常温判定の結果に応じて、タイムリミット(Time limit: TL)を決定する。TLとは、擬似調理ステージの終了時点であるステップS105、106以降、後述するステップS113、117の温度上昇値の検出を継続して行う最大時間である。 In step S112 and step S115, a time limit (Time limit: TL) is determined according to the result of the freezing / room temperature determination in step S111. TL is the maximum time for continuously detecting the temperature rise value in steps S113 and S117, which will be described later, after steps S105 and S106 at the end of the pseudo cooking stage.
 本実施の形態では、TLは、冷凍/常温の結果の他に、前述した少量/大量判定および出力設定を考慮して決定される。TLの例示的な値としては、常温の場合には80秒程度、冷凍の場合には140秒程度と設定してもよい。 In the present embodiment, TL is determined in consideration of the above-described small / large determination and output setting in addition to the result of freezing / normal temperature. An exemplary value of TL may be set to about 80 seconds for room temperature and about 140 seconds for freezing.
 なお、ステップS115に移行して冷凍判定時のTLを決定した後、ステップS116において、冷凍/常温判定が再度行われる。本ステップS116は、ステップS111において冷凍と判定されたものの、その後の温度変化に基づいて冷凍/常温判定を再度行うものである。これにより、冷凍/常温判定の精度を向上させることができる。具体的には、以下の式(3)を満たす場合には、常温であると判定し直す。 In addition, after moving to step S115 and determining TL at the time of refrigeration determination, refrigeration / normal temperature determination is performed again at step S116. Although this step S116 is determined to be frozen in step S111, the freezing / normal temperature determination is performed again based on the subsequent temperature change. Thereby, the precision of freezing / normal temperature determination can be improved. Specifically, when the following formula (3) is satisfied, it is determined that the temperature is normal.
  ΔT1≧E×(温め動作開始時の庫内温度)+F    …(3)
 上記式(3)において、ΔT1とは、擬似調理ステージ終了後における赤外線センサ6が検出する温度のうち、最も低い温度の温度上昇値である。本実施の形態では、擬似調理ステージ終了から例えば10秒後から50秒後までの温度上昇値をΔT1とする。
ΔT1 ≧ E × (internal temperature at the start of warming operation) + F (3)
In the above formula (3), ΔT1 is a temperature rise value of the lowest temperature among the temperatures detected by the infrared sensor 6 after the end of the pseudo cooking stage. In the present embodiment, the temperature rise value from 10 seconds to 50 seconds after the end of the pseudo cooking stage is assumed to be ΔT1, for example.
 ただし、ΔT1の期間は、電子レンジの仕様等に応じて適宜設定してもよく、例えば、出力設定に応じて可変に設定することもできる。なお、上記式(3)のE、Fは定数である。定数E、Fも適宜設定してよい。 However, the period of ΔT1 may be set as appropriate according to the specifications of the microwave oven, and may be set variably according to the output setting, for example. In the above formula (3), E and F are constants. The constants E and F may also be set as appropriate.
 ステップS116において常温であると判定された場合には、ステップS112に移行する。常温であると判定されなかった場合には、冷凍判定を維持したまま、ステップS117に移行する。 If it is determined in step S116 that the temperature is normal, the process proceeds to step S112. If it is not determined that the temperature is normal, the process proceeds to step S117 while maintaining the refrigeration determination.
 次に、ステップS113およびステップS117において、温度上昇値の検出を行う。具体的には、擬似調理ステージ終了時から所定時間経過時(T1stscan時間)の温度を基準温度として、載置位置における温度上昇値が所定値(ΔT2)以上かどうかを判定する。より具体的には、複数の載置位置のうち、少なくとも1つのポイントにおける温度上昇値がΔT2以上になった場合に、制御部10が所定の温度上昇値を検出したと判定する。 Next, in step S113 and step S117, a temperature rise value is detected. Specifically, it is determined whether or not the temperature rise value at the placement position is equal to or greater than a predetermined value (ΔT2), using the temperature at the end of the pseudo cooking stage as the reference temperature (T1stscan time). More specifically, the control unit 10 determines that a predetermined temperature increase value has been detected when the temperature increase value at at least one point among the plurality of placement positions is equal to or greater than ΔT2.
 本実施の形態では、ΔT2については、冷凍/常温の判定結果、温め動作開始時の庫内温度および出力設定等に応じて定めている。具体的には、常温と判定され、庫内温度が高く、出力設定が弱い場合ほど、ΔT2を小さくしている。ΔT2の例示的な値として、常温の場合には21℃程度、冷凍の場合には25℃程度と設定してもよい。 In this embodiment, ΔT2 is determined according to the determination result of freezing / normal temperature, the internal temperature at the start of the warming operation, the output setting, and the like. Specifically, ΔT2 is decreased as the room temperature is determined to be higher, the temperature inside the chamber is higher, and the output setting is weaker. An exemplary value of ΔT2 may be set to about 21 ° C. at normal temperature and about 25 ° C. for freezing.
 ΔT2の値は適宜設定してもよく、例えばステップS113とステップS117におけるΔT2が同じ値を含んでもよい。なお、基準温度を取得するタイミングであるT1stscan時間については、例えば、サーミスタが検出する庫内温度の高低に応じて可変であるように制御してもよい。 The value of ΔT2 may be set as appropriate. For example, ΔT2 in step S113 and step S117 may include the same value. Note that the T1stscan time, which is the timing for acquiring the reference temperature, may be controlled to be variable according to the level of the internal temperature detected by the thermistor, for example.
 ステップS113およびステップS117でΔT2以上の温度上昇値が検出された場合には、ステップS119に移行する。温度上昇値が検出されない場合には、ステップS114およびステップS118にそれぞれ移行する。 If a temperature rise value of ΔT2 or more is detected in step S113 and step S117, the process proceeds to step S119. If the temperature rise value is not detected, the process proceeds to step S114 and step S118, respectively.
 ステップS114およびステップS118では、タイムリミット判定が行われる。具体的には、擬似調理ステージ終了時から、ステップS112およびステップS115で決定されたTLが経過したかどうかを判定する。 In step S114 and step S118, time limit determination is performed. Specifically, it is determined whether or not the TL determined in step S112 and step S115 has elapsed since the end of the pseudo cooking stage.
 TLが経過していないと判定された場合には、ステップS113およびステップS117にそれぞれ戻り、再度、温度上昇値の検出が行われる。その後、ステップS113およびステップS117における温度上昇値の検出とステップS114およびステップS118におけるタイムリミット判定のいずれかの結果がYESとなるまで、各ステップが所定時間毎に、例えば1秒毎に繰り返される。 If it is determined that the TL has not elapsed, the process returns to step S113 and step S117, and the temperature rise value is detected again. Thereafter, each step is repeated every predetermined time, for example, every second until the result of either the temperature rise value detection in step S113 and step S117 and the time limit determination in step S114 and step S118 becomes YES.
 一方、ステップS114およびステップS118において、TLを経過していると判定された場合には、ステップS119に移行する。なお、図8のシーケンスには、TLに到達する前に、擬似調理ステージ終了からTc時間経過時において、ステップS113あるいはステップS117において所定値以上の温度上昇値が検出された場合が示されている。 On the other hand, if it is determined in step S114 and step S118 that TL has elapsed, the process proceeds to step S119. Note that the sequence of FIG. 8 shows a case where a temperature rise value of a predetermined value or more is detected in step S113 or step S117 when the Tc time has elapsed from the end of the pseudo cooking stage before reaching TL. .
 本実施の形態では、擬似調理ステージ終了時から温度上昇値の検出又はタイムリミット到達の検出までの期間を「P1ステージ」と称する。 In the present embodiment, a period from the end of the pseudo cooking stage to the detection of the temperature rise value or the detection of the time limit is referred to as “P1 stage”.
 P1ステージが終了すると、ステップS119において、追加加熱時間Tp2が決定される。具体的には、P1ステージ終了時点からマイクロ波加熱を継続する時間(Tp2)を決定する。本実施の形態では、Tp2を決定する際に、冷凍/常温の判定結果、少量/大量の判定結果および出力設定の3つのパラメータに応じて決定している。Tp2の例示的な値としては例えば、20秒程度として設定してもよい。 When the P1 stage is completed, an additional heating time Tp2 is determined in step S119. Specifically, the time (Tp2) for continuing microwave heating from the end of the P1 stage is determined. In the present embodiment, when Tp2 is determined, it is determined according to the three parameters of the determination result of refrigeration / normal temperature, the determination result of small amount / large amount, and the output setting. An exemplary value of Tp2 may be set as about 20 seconds, for example.
 ステップS120において、循環ファンの作動が再開される。具体的には、擬似調理ステージの途中からP1ステージの間において停止していた循環ファンの作動を再開させる。これにより、マイクロ波により被加熱物が追加的に加熱される間、循環ファンが作動することで加熱室5内の空気が循環され、加熱室5内の温度がより均一になる。 In step S120, the operation of the circulation fan is resumed. Specifically, the operation of the circulation fan that has been stopped between the P1 stage from the middle of the pseudo cooking stage is resumed. Thereby, while the object to be heated is additionally heated by the microwave, the air in the heating chamber 5 is circulated by operating the circulation fan, and the temperature in the heating chamber 5 becomes more uniform.
 本実施の形態では、循環ファンの作動再開と同時に、マグネトロン11の出力を下げるように制御される(例えば、700Wから300Wに)。ステップS120の後、温め動作が終了する。 In this embodiment, the output of the magnetron 11 is controlled to be lowered simultaneously with the resumption of the operation of the circulation fan (for example, from 700 W to 300 W). After step S120, the warming operation ends.
 本実施の形態では、P1ステージ終了時から温め動作の終了までの期間を「P2ステージ」と称する。本実施の形態では、P1ステージからP2ステージに移行した際に循環ファンの作動を再開したが、循環ファンが停止したままに設定してもよい。マグネトロン11の出力を下げずに維持するように制御してもよい。 In this embodiment, a period from the end of the P1 stage to the end of the warming operation is referred to as “P2 stage”. In the present embodiment, the operation of the circulation fan is resumed when the P1 stage is shifted to the P2 stage, but the circulation fan may be set to be stopped. You may control to maintain the output of the magnetron 11 without reducing.
 以上のように、温め動作を行うことで、被加熱物を所定の温度までマイクロ波により加熱して温めることができる。図8に示す加熱シーケンスでは、追加加熱時間を含む時間までマイクロ波加熱が行われた場合について説明したが、前述した検出マスク時間の経過時に加熱を終了する場合であってもよい。 As described above, by performing the warming operation, the object to be heated can be heated to a predetermined temperature by microwaves and warmed. In the heating sequence shown in FIG. 8, the case where the microwave heating is performed until the time including the additional heating time has been described, but the heating may be terminated when the detection mask time described above has elapsed.
 なお、上記温め動作の途中に使用者がドア2を開ける等により、運転が一旦停止し、その後、再開した場合についても適宜設定することができる。 It should be noted that it is possible to appropriately set the case where the operation is temporarily stopped and then restarted by the user opening the door 2 during the warming operation.
 本実施の形態では、擬似調理ステージおよびP1ステージの間にドア2が開けられ、温め動作を再開する場合には、最初のステップS101に戻り、当該加熱シーケンスを最初からやり直すように制御される。 In the present embodiment, when the door 2 is opened between the simulated cooking stage and the P1 stage and the warming operation is resumed, the process returns to the first step S101, and the heating sequence is controlled from the beginning.
 P2ステージの間にドア2が開かれ、温め動作を再開する場合には、ドア2が開けられた時点から運転を再開する。すなわち、ステップS119で設定された追加加熱時間の残りの時間を消化するように制御部10が制御する。 When the door 2 is opened during the P2 stage and the warming operation is resumed, the operation is resumed from the time when the door 2 is opened. That is, the control unit 10 controls to digest the remaining time of the additional heating time set in step S119.
 上述したように、本実施の形態では、操作部4により温め動作の開始が指示された時に、庫内温度が、所定温度(例えば100℃)以上の場合に高温と判定する。 As described above, in the present embodiment, when the start of the warming operation is instructed by the operation unit 4, the internal temperature is determined to be high when the temperature is equal to or higher than a predetermined temperature (for example, 100 ° C.).
 高温と判定した場合の温め動作において、温度検出領域30の周縁部の温度(基準温度)よりも第1の所定値(例えば8℃)以上低い温度が検出された区画に被加熱物が載置されていると判定する。 In the warming operation when it is determined that the temperature is high, the object to be heated is placed in a section where a temperature lower than the temperature of the peripheral portion of the temperature detection region 30 (reference temperature) by a first predetermined value (for example, 8 ° C.) is detected. It is determined that
 その位置が被加熱物の載置位置とみなされ、その方向に対して局所加熱が行われる。このように、加熱室5内が高温の場合に温め動作が開始された場合に、最も温度の変化が少ないと思われる温度検出領域30の周縁部との温度差が、第1の所定値以上大きい区画を被加熱物が載置される位置であると判定する。 The position is regarded as the placement position of the object to be heated, and local heating is performed in that direction. As described above, when the heating operation is started when the inside of the heating chamber 5 is at a high temperature, the temperature difference from the peripheral portion of the temperature detection region 30 that seems to have the smallest temperature change is equal to or greater than the first predetermined value. It is determined that the large section is a position where the object to be heated is placed.
 これにより、加熱室5内が高温であっても、精度良く載置位置を判定しながら、被加熱物の加熱を制御することができる。本実施の形態によれば、ミスト発生機構や減圧機構が不要であるため、簡単な構成で被加熱物の加熱を制御することができる。 Thereby, even if the inside of the heating chamber 5 is high temperature, it is possible to control the heating of the object to be heated while accurately determining the mounting position. According to the present embodiment, since a mist generation mechanism and a pressure reduction mechanism are not required, heating of an object to be heated can be controlled with a simple configuration.
 本実施の形態においては、庫内温度に応じて、庫内温度が高温と判定した場合の温め動作における加熱時間が制御される。 In the present embodiment, the heating time in the warming operation when the internal temperature is determined to be high is controlled according to the internal temperature.
 具体的には、庫内温度に応じて、ステップS109の少量/大量判定、ステップS112、115におけるタイムリミット判定、ステップS116における冷凍/常温判定、および、ステップS119における追加加熱時間の決定が行われる。 Specifically, depending on the internal temperature, the small / large quantity determination in step S109, the time limit determination in steps S112 and 115, the freezing / normal temperature determination in step S116, and the additional heating time in step S119 are determined. .
 このように、庫内温度を考慮して加熱時間を制御することにより、高温判定時の温め動作をより精度良く制御することができる。特に、庫内温度が高い場合には加熱時間を短く設定され、庫内温度が低い場合には加熱時間を長く設定される。このようにして、加熱後の被加熱物の温度を目標温度に近づけることができる。 As described above, by controlling the heating time in consideration of the inside temperature, the warming operation at the time of high temperature determination can be controlled with higher accuracy. In particular, when the internal temperature is high, the heating time is set short, and when the internal temperature is low, the heating time is set long. In this way, the temperature of the object to be heated after heating can be brought close to the target temperature.
 本実施の形態においては、庫内温度が高温と判定された場合の温め動作中の載置位置の温度変化に基づいて、温め動作における加熱時間が制御される。具体的には、ステップS113、117における温度上昇値の検出で用いるΔT2を算出する際に、載置位置の温度変化を考慮して算出している。このように、庫内温度が高温と判定した場合の温め動作における載置位置の温度変化を考慮して加熱時間を制御することにより、加熱制御をより精度良く行うことができる。 In the present embodiment, the heating time in the warming operation is controlled based on the temperature change of the placement position during the warming operation when the internal temperature is determined to be high. Specifically, when calculating ΔT2 used in detecting the temperature rise value in steps S113 and 117, the temperature change of the placement position is taken into consideration. Thus, heating control can be performed more accurately by controlling the heating time in consideration of the temperature change of the mounting position in the warming operation when the internal temperature is determined to be high.
 特に、制御部10は、温め動作における加熱時間を赤外線センサ6が検出する載置位置の温度上昇値が第2の所定値(ΔT2)以上となった時点(温度上昇値を検出した時点)を基準に決定する。このように、載置位置の温度上昇値を考慮して加熱時間を制御することにより、被加熱物の温度をより精度良く制御することができる。 In particular, the control unit 10 determines when the temperature rise value at the mounting position where the infrared sensor 6 detects the heating time in the warming operation becomes equal to or greater than a second predetermined value (ΔT2) (when the temperature rise value is detected). Decide on a standard. In this way, by controlling the heating time in consideration of the temperature rise value of the placement position, the temperature of the object to be heated can be controlled with higher accuracy.
 本実施の形態おいては、庫内温度が高い場合にはΔT2が低く設定され、庫内温度が低い場合にはΔT2が高く設定される。このようにして、加熱後の被加熱物の温度を目標温度に近づけることができる。なお、ここでの庫内温度の高低の基準となる基準温度は適宜設定してもよく、例えば、冷凍/常温の判定結果や出力設定に応じて複数のテーブルに分かれて設定されていてもよい。 In this embodiment, ΔT2 is set low when the internal temperature is high, and ΔT2 is set high when the internal temperature is low. In this way, the temperature of the object to be heated after heating can be brought close to the target temperature. Note that the reference temperature that serves as a reference for the temperature inside the chamber may be set as appropriate. For example, the reference temperature may be set in a plurality of tables depending on the determination result of freezing / normal temperature or the output setting. .
 本実施の形態においては、制御部10は、庫内温度が高温と判定した場合の温め動作における赤外線センサ6が検出する温度に基づいて被加熱物が冷凍されているか否か(すなわち、冷凍か常温か)を判定し、その結果に応じて当該温め動作における加熱時間を制御する。 In the present embodiment, the control unit 10 determines whether or not the object to be heated is frozen based on the temperature detected by the infrared sensor 6 in the warming operation when the inside temperature is determined to be high (that is, whether it is frozen or not). It is normal temperature) and the heating time in the warming operation is controlled according to the result.
 具体的には、ステップS111において、冷凍/常温判定で用いる冷凍/常温判定用の温度を算出する際に、温度検出領域30の周縁部に位置する区画の温度(プレート温度)を考慮して算出している。これにより、冷凍されているか否かを精度良く判定し、精度の良い加熱制御を行うことができる。 Specifically, in step S111, the temperature for freezing / room temperature determination used in the freezing / room temperature determination is calculated in consideration of the temperature (plate temperature) of the section located at the periphery of the temperature detection region 30. is doing. Thereby, it is possible to accurately determine whether or not it is frozen and to perform accurate heating control.
 特に、ステップS111において、検出される最も低い温度と、温度検出領域30の周縁部の温度とを比較することにより被加熱物が冷凍されているか否かが判定される。最も低い温度は被加熱物が冷凍されているか否かにより変化しやすい一方で、温度検出領域の周縁部の温度は被加熱物が冷凍されていても変化しにくい。このような2つの温度を比較することで、冷凍されているか否かの判定をより精度良く行うことができる。 In particular, in step S111, it is determined whether or not the object to be heated is frozen by comparing the lowest temperature detected with the temperature of the peripheral edge of the temperature detection region 30. While the lowest temperature is likely to change depending on whether or not the object to be heated is frozen, the temperature at the peripheral portion of the temperature detection region is not easily changed even if the object to be heated is frozen. By comparing these two temperatures, it can be determined with higher accuracy whether or not it is frozen.
 本実施の形態においては、加熱室5内を加熱するグリルヒータをさらに備え、制御部10は、庫内温度が高温と判定した場合の温め動作を開始してから、所定時間(Twait時間)の間、マイクロ波を発生させないようにマグネトロン11を制御する。 In the present embodiment, a grill heater for heating the inside of the heating chamber 5 is further provided, and the control unit 10 starts a warming operation when the inside temperature is determined to be high, and then starts a predetermined time (Twait time). During this time, the magnetron 11 is controlled so as not to generate microwaves.
 温め動作の開始から所定時間経過後にマイクロ波の供給を開始することで、マイクロ波をすぐに供給する場合に比べて、温度が高くなっている箇所にマイクロ波が照射され、その箇所の温度が異常に上昇する、いわゆるレッドスポット現象を抑制し、装置の信頼性を向上させることができる。 By starting the supply of microwaves after a predetermined time has elapsed since the start of the warming operation, compared to the case where microwaves are supplied immediately, microwaves are radiated to the part where the temperature is high, and the temperature at that part is The so-called red spot phenomenon that rises abnormally can be suppressed, and the reliability of the apparatus can be improved.
 なお、本実施の形態では、擬似調理ステージの開始時に赤外線センサ6を検出可能状態に移行させる場合ついて説明したが、このような場合に限らず、例えば、擬似調理ステージの終了直前に移行させるようにしてもよい。 In the present embodiment, the case where the infrared sensor 6 is shifted to the detectable state at the start of the simulated cooking stage has been described. However, the present invention is not limited to such a case. It may be.
 なお、上記様々な実施形態のうちの任意の実施形態を適宜組み合わせることにより、それぞれの有する効果を奏するようにすることができる。 It should be noted that, by appropriately combining arbitrary embodiments of the above-described various embodiments, the effects possessed by them can be produced.
 本開示の高周波加熱装置は、簡単な構成で被加熱物の位置や温度を精度良く判定しながら、被加熱物への加熱を制御することができる。本開示の高周波加熱装置は、例えば、家庭用の電子レンジにおいて有用である。 The high-frequency heating device of the present disclosure can control the heating of the object to be heated while accurately determining the position and temperature of the object to be heated with a simple configuration. The high-frequency heating device of the present disclosure is useful in, for example, a home microwave oven.
 1 本体
 2 ドア
 3 把手
 4 操作部
 5 加熱室
 6 赤外線センサ
 10 制御部
 11 マグネトロン
 12 導波管
 13 温度検出部
 20 電子レンジ
 31 区画
 30 温度検出領域
 35 視野
DESCRIPTION OF SYMBOLS 1 Main body 2 Door 3 Handle 4 Operation part 5 Heating chamber 6 Infrared sensor 10 Control part 11 Magnetron 12 Waveguide 13 Temperature detection part 20 Microwave oven 31 Section 30 Temperature detection area 35 View field

Claims (10)

  1.  被加熱物を収容する加熱室と、
     所定の加熱シーケンスの開始を指示する操作部と、
     前記加熱室に供給されるマイクロ波を発生させる高周波発生部と、
     複数の赤外線検出素子を有し、前記被加熱物の温度を検出する第1の温度検出部と、
     前記加熱室の庫内温度を検出する第2の温度検出部と、
     前記第1および第2の温度検出部により検出された温度情報に基づいて、前記加熱シーケンスを実行するように前記高周波発生部を制御する制御部と、
    を備え、
     前記第1の温度検出部は、前記加熱室内の温度検出領域を構成する複数の区画に、前記複数の赤外線検出素子をそれぞれ対応させることにより、前記区画ごとに温度を検出し、
     前記制御部は、前記操作部により前記加熱シーケンスの開始が指示された時に、前記庫内温度が所定温度以上であれば高温と判定し、
     前記制御部は、高温と判定した場合の前記加熱シーケンスにおいて、前記温度検出領域の周縁部の温度よりも第1の所定値以上低い温度が検出された前記区画を前記被加熱物の載置位置と判定するように構成された高周波加熱装置。
    A heating chamber for storing an object to be heated;
    An operation unit for instructing the start of a predetermined heating sequence;
    A high frequency generator for generating microwaves to be supplied to the heating chamber;
    A first temperature detection unit having a plurality of infrared detection elements and detecting the temperature of the object to be heated;
    A second temperature detection unit for detecting the internal temperature of the heating chamber;
    Based on the temperature information detected by the first and second temperature detection units, a control unit that controls the high frequency generation unit to execute the heating sequence;
    With
    The first temperature detection unit detects the temperature for each of the sections by causing the plurality of infrared detection elements to correspond to the plurality of sections constituting the temperature detection region in the heating chamber,
    The controller determines that the internal temperature is high if the internal temperature is equal to or higher than a predetermined temperature when the operation unit is instructed to start the heating sequence.
    In the heating sequence in the case where the controller determines that the temperature is high, the position where the object to be heated is placed in the section in which the temperature lower than the temperature of the peripheral portion of the temperature detection region by a first predetermined value or more is detected. A high-frequency heating device configured to determine
  2.  前記複数の赤外線検出素子は、2次元状に配列され、前記複数の区画における各温度を同時に検出して出力する請求項1に記載の高周波加熱装置。 The high-frequency heating device according to claim 1, wherein the plurality of infrared detection elements are two-dimensionally arranged and simultaneously detect and output temperatures in the plurality of sections.
  3.  前記制御部は、前記庫内温度が高温と判定した場合の前記加熱シーケンスにおける加熱時間を、前記庫内温度に応じて制御する請求項1に記載の高周波加熱装置。 The high-frequency heating device according to claim 1, wherein the control unit controls a heating time in the heating sequence when the internal temperature is determined to be high according to the internal temperature.
  4.  前記制御部は、前記庫内温度が高い場合には前記加熱時間を短くし、前記庫内温度が低い場合には前記加熱時間を長くするように制御する請求項3に記載の高周波加熱装置。 The high-frequency heating device according to claim 3, wherein the control unit controls the heating time to be shortened when the internal temperature is high and the heating time is lengthened when the internal temperature is low.
  5.  前記制御部は、前記庫内温度が高温と判定した場合の前記加熱シーケンスにおける前記第1の温度検出部が検出する前記載置位置の温度変化に基づいて前記加熱シーケンスにおける加熱時間を制御する請求項1に記載の高周波加熱装置。 The said control part controls the heating time in the said heating sequence based on the temperature change of the said mounting position which the said 1st temperature detection part in the said heating sequence detects when the said internal temperature is high temperature. Item 2. The high-frequency heating device according to Item 1.
  6.  前記制御部は、前記庫内温度が高温と判定した場合の前記加熱シーケンスにおける前記加熱時間を、前記第1の温度検出部が検出する前記載置位置の温度上昇値が第2の所定値以上となった時点を基準に決定する請求項5に記載の高周波加熱装置。 The controller is configured to detect a heating time in the heating sequence when the internal temperature is determined to be high as the first temperature detector detects a temperature rise value at the mounting position equal to or greater than a second predetermined value. The high-frequency heating device according to claim 5, wherein the high-frequency heating device is determined based on a point in time when
  7.  前記制御部は、前記庫内温度が高い場合には前記第2の所定値を低くし、前記庫内温度が低い場合には前記第2の所定値を高くするよう制御する請求項6に記載の高周波加熱装置。 The said control part is controlled so that said 2nd predetermined value may be made low when the said internal temperature is high, and said 2nd predetermined value is made high when the said internal temperature is low. High frequency heating device.
  8.  前記制御部は、前記庫内温度が高温と判定した場合の前記加熱シーケンスにおける前記区画の温度に基づいた、前記被加熱物が冷凍されているか否かの判定結果に応じて、前記加熱シーケンスにおける加熱時間を制御する請求項1に記載の高周波加熱装置。 The control unit determines whether the object to be heated is frozen based on the temperature of the section in the heating sequence when the internal temperature is determined to be high. The high frequency heating device according to claim 1, wherein the heating time is controlled.
  9.  前記制御部は、検出される最も低い温度と、前記温度検出領域の周縁部の温度とを比較することにより、前記被加熱物が冷凍されているか否かを判定する請求項8に記載の高周波加熱装置。 The high frequency according to claim 8, wherein the control unit determines whether or not the object to be heated is frozen by comparing the lowest detected temperature with the temperature of the peripheral portion of the temperature detection region. Heating device.
  10.  前記加熱室内を加熱するグリルヒータをさらに備え、
     前記制御部は、前記庫内温度が高温と判定した場合、前記加熱シーケンスの開始から、所定時間が経過するまでマイクロ波を発生させないように前記高周波発生部を制御する請求項1に記載の高周波加熱装置。
    A grill heater for heating the heating chamber;
    2. The high frequency according to claim 1, wherein when the internal temperature is determined to be high, the control unit controls the high frequency generation unit so as not to generate a microwave until a predetermined time elapses from the start of the heating sequence. Heating device.
PCT/JP2015/001436 2014-03-18 2015-03-16 High-frequency heating device WO2015141208A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016508532A JP6467645B2 (en) 2014-03-18 2015-03-16 High frequency heating device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014055350 2014-03-18
JP2014-055350 2014-03-18

Publications (1)

Publication Number Publication Date
WO2015141208A1 true WO2015141208A1 (en) 2015-09-24

Family

ID=54144191

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/001436 WO2015141208A1 (en) 2014-03-18 2015-03-16 High-frequency heating device

Country Status (2)

Country Link
JP (1) JP6467645B2 (en)
WO (1) WO2015141208A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017203739A1 (en) * 2016-05-23 2017-11-30 シャープ株式会社 Heating cooker
JP2018138860A (en) * 2017-02-24 2018-09-06 パナソニックIpマネジメント株式会社 Heating cooker and reheating method in the same
WO2020170784A1 (en) * 2019-02-22 2020-08-27 パナソニックIpマネジメント株式会社 High frequency heating apparatus

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03286925A (en) * 1990-03-30 1991-12-17 Toshiba Corp Cooking device
JPH04273916A (en) * 1991-02-28 1992-09-30 Hitachi Home Tec Ltd Cooking oven
JP2003161444A (en) * 2001-11-22 2003-06-06 Hitachi Hometec Ltd High frequency heating system
JP3589230B2 (en) * 2002-04-15 2004-11-17 松下電器産業株式会社 Cooking equipment
JP3681931B2 (en) * 1999-08-25 2005-08-10 株式会社東芝 microwave
JP3761167B2 (en) * 2002-06-05 2006-03-29 松下電器産業株式会社 Heating control method for high-frequency heating device and high-frequency heating device
JP3762580B2 (en) * 1999-08-12 2006-04-05 株式会社東芝 Cooker
JP2007303718A (en) * 2006-05-10 2007-11-22 Toshiba Corp Heating cooker
JP2013113489A (en) * 2011-11-29 2013-06-10 Panasonic Corp High frequency heating device

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03286925A (en) * 1990-03-30 1991-12-17 Toshiba Corp Cooking device
JPH04273916A (en) * 1991-02-28 1992-09-30 Hitachi Home Tec Ltd Cooking oven
JP3762580B2 (en) * 1999-08-12 2006-04-05 株式会社東芝 Cooker
JP3681931B2 (en) * 1999-08-25 2005-08-10 株式会社東芝 microwave
JP2003161444A (en) * 2001-11-22 2003-06-06 Hitachi Hometec Ltd High frequency heating system
JP3589230B2 (en) * 2002-04-15 2004-11-17 松下電器産業株式会社 Cooking equipment
JP3761167B2 (en) * 2002-06-05 2006-03-29 松下電器産業株式会社 Heating control method for high-frequency heating device and high-frequency heating device
JP2007303718A (en) * 2006-05-10 2007-11-22 Toshiba Corp Heating cooker
JP2013113489A (en) * 2011-11-29 2013-06-10 Panasonic Corp High frequency heating device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017203739A1 (en) * 2016-05-23 2017-11-30 シャープ株式会社 Heating cooker
JPWO2017203739A1 (en) * 2016-05-23 2019-03-22 シャープ株式会社 Cooker
JP2018138860A (en) * 2017-02-24 2018-09-06 パナソニックIpマネジメント株式会社 Heating cooker and reheating method in the same
WO2020170784A1 (en) * 2019-02-22 2020-08-27 パナソニックIpマネジメント株式会社 High frequency heating apparatus

Also Published As

Publication number Publication date
JPWO2015141208A1 (en) 2017-04-06
JP6467645B2 (en) 2019-02-13

Similar Documents

Publication Publication Date Title
US20230038969A1 (en) Cooking apparatus and control method thereof
EP3345452B1 (en) Multi-functional rf capacitive heating food preparation device
US11026535B2 (en) Oven with machine learning based algorithm selection strategy
KR102318160B1 (en) Cocking apparatus and controlling method thereof
US20090078291A1 (en) Cooking apparatus and method of controlling steam cleaning thereof
US20100193507A1 (en) Speedcooking oven
KR20030074709A (en) Thermal/convection oven including halogen lamps
JP6467645B2 (en) High frequency heating device
CA2988304A1 (en) Cooking apparatus
JP3761167B2 (en) Heating control method for high-frequency heating device and high-frequency heating device
JP5731315B2 (en) Cooker
US20180352615A1 (en) Cooking apparatus
CN110199155B (en) Heating cooker and reheating method in heating cooker
US10728962B2 (en) RF oven energy application control
JP5012448B2 (en) Microwave oven with grill heater
EP4033154A1 (en) Oven and method for controlling the same
JP2009250492A (en) Heating cooker
JP2009019797A (en) Cooling device and its program
JP2002093569A (en) Microwave heating method
KR101365880B1 (en) Cooker and method for cooking thereof
JP6264609B2 (en) High frequency heating device
US20220243926A1 (en) Oven and method for controlling the same
JP2017009178A (en) Heating cooker
JPH10267284A (en) Heating cooker
JP2009198070A (en) Heating cooker

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15764644

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016508532

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15764644

Country of ref document: EP

Kind code of ref document: A1