WO2015137504A1 - Photocurable composition for 3d modeling and method for producing 3d model - Google Patents

Photocurable composition for 3d modeling and method for producing 3d model Download PDF

Info

Publication number
WO2015137504A1
WO2015137504A1 PCT/JP2015/057569 JP2015057569W WO2015137504A1 WO 2015137504 A1 WO2015137504 A1 WO 2015137504A1 JP 2015057569 W JP2015057569 W JP 2015057569W WO 2015137504 A1 WO2015137504 A1 WO 2015137504A1
Authority
WO
WIPO (PCT)
Prior art keywords
modeling
polymerizable compound
photocurable composition
composition
acrylate
Prior art date
Application number
PCT/JP2015/057569
Other languages
French (fr)
Japanese (ja)
Inventor
小俣 猛憲
中村 正樹
Original Assignee
コニカミノルタ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタ株式会社 filed Critical コニカミノルタ株式会社
Priority to JP2016507858A priority Critical patent/JP6399084B2/en
Publication of WO2015137504A1 publication Critical patent/WO2015137504A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/46Polymerisation initiated by wave energy or particle radiation
    • C08F2/48Polymerisation initiated by wave energy or particle radiation by ultraviolet or visible light
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y70/00Materials specially adapted for additive manufacturing
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/26Esters containing oxygen in addition to the carboxy oxygen
    • C08F220/30Esters containing oxygen in addition to the carboxy oxygen containing aromatic rings in the alcohol moiety
    • C08F220/301Esters containing oxygen in addition to the carboxy oxygen containing aromatic rings in the alcohol moiety and one oxygen in the alcohol moiety

Definitions

  • the present invention relates to a photocurable composition for 3D modeling and a method for producing a 3D modeled product.
  • a liquid photocurable composition is irradiated with laser light or ultraviolet light to cure and laminate the irradiated part, or a photocurable composition on a substrate by inkjet.
  • a 3D shaped article having rubber-like properties can be produced by crosslinking a part of a high molecular weight linear polymer obtained by curing the photocurable composition.
  • a 3D model having the same elongation and strength as real rubber is desired.
  • an actinic ray curable ink composition containing a dendrimer having 2 or more and 6 or less functional groups and a monomer having a cyclic structure is used as an ink composition for obtaining a cured product having strength.
  • an ink composition for obtaining a 2D photocured product having strength (scratch resistance)
  • a vinyl ether, diallyl phthalate prepolymer, a cationic polymerization initiator, and a light that exhibits a sensitizing function by light having a wavelength of 400 nm or more discloses an actinic ray curable ink composition for ink jet printing containing a sensitizer.
  • the photocurable composition is cured with light such as laser or UV (ultraviolet rays) in a very short time to obtain a cured product, so that an unnecessary crosslinking reaction occurs and uniform. It is difficult to form a high-molecular-weight polymer having a cross-linked structure, and there is a problem that a shaped rubber having both elongation and strength cannot be obtained.
  • the thickness of the cured product is several hundred times or more compared to a normal 2D cured product that obtains a cured product on the surface of the substrate. Therefore, the strength in the thickness direction, which is not a problem with a 2D cured product, is also important.
  • Patent Document 1 In a 3D model having rubber characteristics, it is important to achieve both the elongation and strength of the model.
  • the ink composition of Patent Document 1 can exhibit curability, it is difficult to grow a high-molecular-weight linear polymer. You can only do things.
  • Patent Document 2 it is considered that bifunctional or higher vinyl ethers are good from the viewpoint of curability and the like, so it is difficult to grow a high molecular weight linear polymer, and such ink is used for 3D modeling.
  • the rubber properties (elongation and elasticity) of the molded product are insufficient.
  • the present invention provides a composition capable of producing a molded article including a rubber material having sufficient rubber properties and the strength of a 3D molded article, particularly the thickness direction, that is, the strength between layers, And it aims at providing the manufacturing method of 3D modeling thing using such a composition.
  • the first of the present invention relates to the following ink composition.
  • a photocurable composition for 3D modeling comprising a monofunctional polymerizable compound, a polyfunctional polymerizable compound, and a photopolymerization initiator, wherein the average number of functional groups of the polyfunctional polymerizable compound is 3 or more,
  • the polyfunctional polymerizable compound includes a compound having 20 or more functional groups.
  • the monofunctional polymerizable compound includes a compound having a cationic polymerizable functional group, and the photopolymerization initiator includes a photoacid generator. object.
  • 2nd of this invention is related with the manufacturing method of the following 3D modeling objects.
  • a method for producing a 3D structure comprising a step of irradiating the composition according to any one of [1] to [6] with actinic rays.
  • a model material including the composition and a support material including a support material composition are used.
  • actinic rays are irradiated onto the liquid composition based on the nth (n is an integer of 2 or more) plane data included in the plurality of plane data, and the n ⁇ 1th cured layer is irradiated with the active ray.
  • a 3D modeling product manufactured using the same has a rubber-like elongation and elasticity, and a 3D modeling photocurable composition for 3D modeling is used.
  • a method for manufacturing a shaped article is provided.
  • FIG. 1 is a schematic diagram showing one embodiment of a 3D modeling system based on the UV-IJ method.
  • FIG. 2 is a flowchart of the 3D modeling method by the UV-IJ method.
  • FIG. 3 is a side view of the process (part 1) of the 3D modeling method by the UV-IJ method.
  • FIG. 4A is a side view of the step (part 2) of the 3D modeling method by the UV-IJ method, and FIG. 4B is a top view thereof.
  • FIG. 5A is a side view of the step (part 3) of the 3D modeling method by the UV-IJ method, and FIG. 5B is a top view thereof.
  • FIG. 5A is a side view of the step (part 3) of the 3D modeling method by the UV-IJ method
  • FIG. 5B is a top view thereof.
  • FIG. 6A is a side view of the step (part 4) of the 3D modeling method by the UV-IJ method, and FIG. 6B is a top view thereof.
  • FIG. 7A is a side view of the process (part 5) of the 3D modeling method by the UV-IJ method, and FIG. 7B is a top view thereof.
  • FIG. 8 is a perspective view of a model material obtained by the 3D modeling method of the present invention.
  • FIG. 9 is a schematic diagram showing one mode of a 3D modeling system based on the SLA method.
  • FIG. 10 is a flowchart of the 3D modeling method by the SLA method.
  • FIG. 11A is a side view of the process (part 1) of the 3D modeling method by the SLA method, and FIG.
  • FIG. 11B is a top view thereof.
  • FIG. 12A is a side view of the step (part 2) of the 3D modeling method by the SLA method, and FIG. 12B is a top view thereof.
  • FIG. 13A is a side view of the step (part 3) of the 3D modeling method by the SLA method, and FIG. 13B is a top view thereof.
  • FIG. 14A is a side view of the step (part 4) of the 3D modeling method by the SLA method, and FIG. 14B is a top view thereof.
  • the photocurable composition for 3D modeling of the present invention includes a monofunctional polymerizable compound, a polyfunctional polymerizable compound, and a photopolymerization initiator.
  • the photocurable composition for 3D modeling of the present invention contains a monofunctional polymerizable compound and a polyfunctional polymerizable compound as the polymerizable compound.
  • Monofunctional polymerizable compound The monofunctional polymerizable compound of the present invention is a polymerizable compound having one polymerizable group in the molecule.
  • the monofunctional polymerizable compound may be a monomer or an oligomer in which several molecules are polymerized.
  • the molecular weight of the monofunctional polymerizable compound By setting the molecular weight of the monofunctional polymerizable compound to 120 to 500, it is possible to improve the ink jetting property when manufacturing a 3D modeled object by the UV-IJ method described later, and to liquid when manufacturing a 3D modeled object by the SLA method. It is possible to prevent convection and increase curability and increase the breaking strength. Further, by setting the molecular weight of the monofunctional polymerizable compound to 160 to 400, it is possible to further improve the ink jetting property and curability.
  • the polymerizable group may be a radical polymerizable functional group or a cationic polymerizable functional group.
  • the radical polymerizable functional group includes a functional group having an ethylene group. Specifically, an ethylene group, a propenyl group, a butenyl group, a vinylphenyl group, a (meth) acryl group, an allyl ether group, a vinyl ether group, One or more functional groups selected from the group consisting of a maleyl group, a maleimide group, a (meth) acrylamide group, an acetylvinyl group, and a vinylamide group may be included.
  • the cationically polymerizable functional group may include one or more functional groups selected from the group consisting of an epoxy group, an oxetane group, a furyl group, and a vinyl ether group.
  • (Meth) acryl means “acryl” and / or “methacryl”, and “(meth) acrylate” means both “acrylate” and “methacrylate”.
  • the radical polymerizable functional group is preferably one or more functional groups selected from the group consisting of (meth) acrylic groups, allyl ether groups, vinyl ether groups and maleimide groups, and (meth) acrylic groups and vinyl ethers.
  • One or more functional groups selected from the group consisting of groups are more preferred, and (meth) acryl groups are more preferred.
  • the cationically polymerizable functional group an epoxy group, an oxetane group and a vinyl ether group are preferable, and a vinyl ether group and an oxetane group are more preferable.
  • Monofunctional polymerizable compounds may be used alone or in combination of a plurality of types.
  • Examples of the compound having the (meth) acrylic group include methyl (meth) acrylate, ethyl acrylate, propyl acrylate, butyl acrylate, 2-ethylhexyl acrylate, pentyl acrylate, isoamyl acrylate, octyl acrylate, isooctyl (meth) acrylate, Nonyl acrylate, decyl acrylate, isodecyl acrylate, lauryl (meth) acrylate, tridecyl (meth) acrylate, isomyristyl acrylate, isostearyl acrylate, n-stearyl acrylate, cyclohexyl acrylate, benzyl acrylate, phenoxyethyl acrylate, phenoxyethoxyethyl acrylate, Butoxyethyl (meth) acrylate, tetrahydrofurfuryl (meth) a
  • the amount of one or more compounds selected from cyclohexyl acrylate, benzyl acrylate, phenoxyethyl acrylate, and phenoxyethoxyethyl acrylate is 50 with respect to the entire ink.
  • the amount of phenoxyethyl acrylate can be 50% by mass or more based on the entire ink.
  • Compound A is a monofunctional monomer that gives a linear high molecular weight polymer by photopolymerization. Compared with thermal polymerization, the photopolymerization generates a large amount of radicals in a short time, and therefore the radical concentration becomes high. When the radical concentration is high, in addition to the growth reaction of the polymer, graft polymerization by hydrogen abstraction occurs and unnecessary crosslinking occurs, resulting in a decrease in strength as a rubber. In photopolymerization, it is a well-known fact that oxygen inhibition prevents the production of high molecular weight polymers. In Compound A, such a problem is unlikely to occur.
  • the polymer of compound A tends to increase the viscosity of the composition even at a low degree of polymerization, the influence of oxygen inhibition is reduced.
  • a steric hindrance occurs due to the bulky substituent contained in Compound A, and the graft reaction hardly occurs, so that a linear polymer is easily obtained.
  • a 3D model is produced using Compound A, it is considered that a cured product having excellent elongation and strength can be obtained.
  • Examples of the monofunctional polymerizable compound having an allyl ether group include phenyl allyl ether, o-, m-, p-cresol monoallyl ether, biphenyl-2-ol monoallyl ether, biphenyl-4-ol monoallyl ether. Butyl allyl ether, cyclohexyl allyl ether, cyclohexane methanol monoallyl ether and the like.
  • Examples of the monofunctional polymerizable compound having a vinyl ether group include butyl vinyl ether, butyl propenyl ether, butyl butenyl ether, hexyl vinyl ether, ethyl hexyl vinyl ether, phenyl vinyl ether, benzyl vinyl ether, ethyl ethoxy vinyl ether, acetyl ethoxy ethoxy vinyl ether, cyclohexyl vinyl ether. , Adamantyl vinyl ether and the like.
  • Examples of the monofunctional polymerizable compound having a maleimide group include phenylmaleimide, cyclohexylmaleimide, n-hexylmaleimide and the like.
  • Examples of the monofunctional polymerizable compound having an epoxy group include allyl glycidyl ether, 2-ethylhexyl glycidyl ether, phenol (polyethyleneoxy) 5-glycidyl ether, butyl phenyl glycidyl ether, hexahydrophthalic acid glycidyl ester, lauryl glycidyl ether. 1,2-epoxycyclohexane, 1,4-epoxycyclohexane, 1,2-epoxy-4-vinylcyclohexane, norbornene oxide and the like.
  • Examples of the monofunctional polymerizable compound having an oxetane group include 2- (3-oxetanyl) -1-butanol, 3- (2- (2-ethylhexyloxyethyl))-3-ethyloxetane, 3- (2 -Phenoxyethyl) -3-ethyloxetane and the like.
  • polyfunctional polymerizable compound of the present invention is a polymerizable compound having two or more polymerizable groups in the molecule.
  • the average functional group number (a) of the polyfunctional polymerizable functional group is 3 or more.
  • the polyfunctional polymerizable compound may be a monomer, an oligomer, a prepolymer or a dendrimer obtained by polymerizing a plurality of monomers.
  • the number average molecular weight is preferably 10,000 or more and 100,000 or less, and more preferably 10,000 or more and 50,000 or less.
  • strength of the lamination direction of 3D modeling thing can be raised.
  • the number average molecular weight is 100,000 or less, when the composition is ejected from the ink jet, it is possible to prevent a decrease in light emission due to an increase in the viscosity of the ink.
  • the polymerizable group may be a radical polymerizable functional group or a cationic polymerizable functional group.
  • the radical polymerizable functional group includes an ethylene polymerizable group and the like.
  • the cationic polymerizable functional group includes an epoxy group, an oxetane group, a furyl group, a vinyl ether group, and the like.
  • the ethylene polymerizable group refers to a polymerizable group having a property of polymerizing by a carbon-carbon double bond
  • the polyfunctional polymerizable compound includes an ethylene group, a propenyl group, a butenyl group, a vinylphenyl group, ) It may contain one or more functional groups selected from the group consisting of acrylic groups, allyl ether groups, vinyl ether groups, (meth) acrylamide groups, maleyl groups, acetyl vinyl groups, vinyl amide groups and maleimide groups.
  • the polyfunctional polymerizable compound preferably has one or a plurality of functional groups selected from the group consisting of (meth) acrylic groups, allyl ether groups, vinyl ether groups, and maleimide groups, and the obtained 3D shaped article
  • these ethylene polymerizable groups are radical polymerizable functional groups
  • polyfunctional polymerizable compounds having these ethylene polymerizable groups are used in combination with the monofunctional polymerizable compounds having radical polymerizable functional groups. Can be used.
  • the present invention is not limited to the combination of a polyfunctional polymerizable compound having an ethylene polymerizable group and a monofunctional polymerizable compound having a radical polymerizable functional group, and the polyfunctional polymerizable having an ethylene polymerizable group.
  • a monofunctional polymerizable compound having a radical polymerizable functional group and a monofunctional polymerizable compound having a cationic polymerizable functional group may be used in combination.
  • the polyfunctional polymerizable compound preferably has 3 mol or more of the ethylene polymerizable group per 1 mol of the carbon skeleton.
  • the polyfunctional polymerizable compound having a cationic polymerizable functional group preferably has one or more functional groups selected from the group consisting of an epoxy group and a vinyl ether group.
  • the polyfunctional polymerizable compound having a cationic polymerizable functional group can be used in combination with the monofunctional polymerizable compound having a cationic polymerizable functional group.
  • the present invention is not limited to a combination of a polyfunctional polymerizable compound having a cationic polymerizable functional group and a monofunctional polymerizable compound having a cationic polymerizable functional group, and has a cationic polymerizable functional group.
  • a monofunctional polymerizable compound having a radical polymerizable functional group and a monofunctional polymerizable compound having a cationic polymerizable functional group may be used in combination with the polyfunctional polymerizable compound. In these cases, it is preferable that the polyfunctional polymerizable compound has 3 or more moles of cationically polymerizable functional groups per mole of the carbon skeleton.
  • the polyfunctional polymerizable compound contained in the photocurable composition for 3D modeling may be one type or a combination of different types of polyfunctional polymerizable compounds. Among them, it is preferable to use a polyfunctional polymerizable compound having a functional group selected from an acryl group, a methacryl group, a vinyl ether group, an allyl ether group, and an epoxy group because the photopolymerization sensitivity is good.
  • the blending ratio of the polyfunctional polymerizable compound is adjusted so that the average number of functional groups of the polyfunctional polymerizable compound is 3 or more.
  • the average number of functional groups is an average weighted by the mole fraction of the polyfunctional polymerizable compound in the total number of moles of the polyfunctional polymerizable compound of the number of functional groups of each polyfunctional polymerizable compound. That is, if there is only one kind of polyfunctional polymerizable compound contained in the photocurable composition for 3D modeling of the present invention, the average number of functional groups is the number of functional groups of the compound, and the photocurable property for 3D modeling of the present invention.
  • the composition contains a plurality of polyfunctional polymerizable compounds
  • the number of functional groups of each polyfunctional polymerizable compound is multiplied by the mole fraction of the polyfunctional polymerizable compound in the total number of moles of the polyfunctional polymerizable compound. The sum of the values obtained.
  • a compound that is contained only in a very small amount may be excluded from the calculation of the molar fraction because its presence has little influence on the physical properties of the 3D shaped object.
  • a rubber performance is good, that is, a 3D model having both elongation and strength compatible. can get.
  • the reason is not speculative, but I think as follows.
  • the plurality of crosslinking groups contained in the polyfunctional polymerizable compound are located at a very short distance in terms of molecular distance. Since the polymerizable terminal of the linear polymer generated from the monofunctional polymerizable compound approaches there, a plurality of crosslinking points generated in one linear polymer are also located at a short distance from each other. The cross-linking points are cross-linked in a macro manner.
  • the rubber performance of the 3D shaped object may be improved.
  • stacking of 3D modeling objects improved by using the photocurable composition part for 3D modeling containing the polyfunctional polymerizable compound whose average functional group number is 3 or more.
  • the reason is not speculative, but I think as follows. Since the polyfunctional polymerizable compound has a relatively large molecular weight, only part of the polyfunctional polymerizable compound reacts and the other part does not react due to the thickening of the liquid when the n-th layer is irradiated with light. . The unreacted part is eliminated on the surface during photocuring, so that the surface has a polymerizable group.
  • the strength can be further increased. This is considered to be due to the fact that the strength at each of the above-mentioned multiple cross-linking points is further increased. Moreover, it is preferable that a polyfunctional polymerizable compound has 1.0 mol or more of polymerizable groups per number average molecular weight of 500.
  • polyfunctional polymerizable compounds examples include polyfunctional (meth) acrylate compounds, polyfunctional vinyl ether compounds, polyfunctional allyl ether compounds, and polyfunctional epoxy compounds.
  • bifunctional (meth) acrylate compounds as polyfunctional polymerizable compounds include triethylene glycol di (meth) acrylate, tetraethylene glycol di (meth) acrylate, polyethylene glycol di (meth) acrylate, tripropylene glycol di ( (Meth) acrylate, polypropylene glycol di (meth) acrylate, 1,4-butanediol di (meth) acrylate, 1,6-hexanediol di (meth) acrylate, 1,9-nonanediol di (meth) acrylate, neopentyl Glycol di (meth) acrylate, dimethylol-tricyclodecane di (meth) acrylate, bisphenol A PO adduct di (meth) acrylate, hydroxypivalate neopentyl glycol di (meth) acrylate, polytetra Such as Chi glycol di (meth) acrylate.
  • tri- or higher functional (meth) acrylate compounds as polyfunctional polymerizable compounds include trimethylolpropane tri (meth) acrylate, pentaerythritol tri (meth) acrylate, pentaerythritol tetra (meth) acrylate, dipentaerythritol hexa (Meth) acrylate, ditrimethylolpropane tetra (meth) acrylate, glycerin propoxytri (meth) acrylate, pentaerythritol ethoxytetra (meth) acrylate and the like are included.
  • the polyfunctional (meth) acrylate compound as the polyfunctional polymerizable compound may be a modified product.
  • modified products include ethylene oxide-modified (meth) acrylate compounds such as ethylene oxide-modified trimethylolpropane tri (meth) acrylate and ethylene oxide-modified pentaerythritol tetraacrylate; caprolactone such as caprolactone-modified trimethylolpropane tri (meth) acrylate Modified (meth) acrylate compounds; and caprolactam-modified (meth) acrylate compounds such as caprolactam-modified dipentaerythritol hexa (meth) acrylate.
  • bifunctional vinyl ether compound as the polyfunctional polymerizable compound examples include ethylene glycol divinyl ether, diethylene glycol divinyl ether, triethylene glycol divinyl ether, propylene glycol divinyl ether, dipropylene glycol vinyl ether, butylene divinyl ether, dibutylene glycol divinyl ether. And neopentyl glycol divinyl ether, cyclohexanediol divinyl ether, cyclohexane dimethanol divinyl ether, norbornyl dimethanol divinyl ether, isovinyl divinyl ether, divinyl resorcin, and divinyl hydroquinone.
  • trifunctional vinyl ether compound as the polyfunctional polymerizable compound examples include glycerin trivinyl ether, glycerin ethylene oxide adduct trivinyl ether (addition mole number of ethylene oxide 6), trimethylolpropane trivinyl ether, trivinyl ether ethylene oxide adduct trivinyl ether (ethylene oxide). The number of added moles of 3) may be mentioned.
  • Examples of the tetrafunctional or higher functional vinyl ether compound as the polyfunctional polymerizable compound include pentaerythritol trivinyl ether, ditrimethylolpropane hexavinyl ether, and their oxyethylene adducts.
  • bifunctional allyl ether compound as the polyfunctional polymerizable compound examples include trimethylolpropane diallyl ether, glycerol ⁇ , ⁇ ′-diallyl ether, diallyl phthalate, diallyl isophthalate, and the like.
  • trifunctional allyl ether compound as the polyfunctional polymerizable compound examples include pentaerythritol triallyl ether.
  • Examples of the tetrafunctional or higher functional allyl ether compound as the polyfunctional polymerizable compound include diallyl phthalate prepolymer and diallyl isophthalate prepolymer manufactured by Daiso Corporation.
  • bifunctional epoxy compound as the polyfunctional polymerizable compound examples include neopentyl glycol diglycidyl ether and 1,6 hexanediol diglycidyl ether.
  • Examples of the trifunctional epoxy compound as the polyfunctional polymerizable compound include polyglycerol triglycidyl ether.
  • Examples of the tetrafunctional or higher functional epoxy compound as the polyfunctional polymerizable compound include sorbitol polyglycidyl ether and pentaerythritol polyglycidyl ether.
  • the polymerizable compound contained in the photocurable composition for 3D modeling of the present invention includes a monofunctional polymerizable compound and a polyfunctional polymerizable compound.
  • a sufficient proportion of the monofunctional polymerizable compound is 3D. It can contain in the photocurable composition for modeling. As a result, a polymer chain obtained by polymerizing the monofunctional polymerizable compound grown as a linear polymer is formed, and a 3D shaped article having sufficient extensibility as rubber characteristics is obtained.
  • the molar ratio of the monofunctional polymerizable compound (M) and the polyfunctional polymerizable compound (m) to (M) / (m) 99.99 / 0.01 or less, a sufficient ratio can be obtained.
  • a polyfunctional polymerizable compound can be included in the photocurable composition for 3D modeling. Thereby, the bridge
  • the functional group amount of the crosslinking agent the same as when using a bifunctional crosslinking agent that is usually used, the strength of the crosslinked part can be increased while maintaining the molecular weight between the crosslinking points, and the breaking strength and breaking elongation are To rise.
  • the present inventors presume that the cross-linked portion and other portions are formed densely, thereby forming a sea-island structure of a harder portion and a softer portion, so that rubbery physical properties are easily expressed.
  • the photocurable composition for 3D modeling of the present invention contains a photopolymerization initiator.
  • a photo radical initiator can be used as a photo polymerization initiator.
  • a photoacid generator can be used as a photopolymerization initiator.
  • a combination of both a photo radical initiator and a photo acid generator may be used.
  • a photo radical initiator and a photo acid generator can be used in combination.
  • the photo radical initiator includes a cleavage type and a hydrogen abstraction type.
  • the photocurable composition for 3D modeling of the present invention preferably contains at least a cleavage type photopolymerization initiator. That is, the photocurable composition for 3D modeling of the present invention may contain (a) both a cleavage type and a hydrogen abstraction type photopolymerization initiator, and (b) only a cleavage type photopolymerization initiator. May be contained. What is necessary is just to use properly the aspect of a photoinitiator according to the desired effect.
  • the photocurable composition for 3D modeling contains (a) both a cleavage type and a hydrogen abstraction type photopolymerization initiator, it may contain a large amount of a cleavage type initiator as a mass ratio. preferable.
  • the ratio of the hydrogen abstraction type initiator in the photopolymerization initiator is preferably 30% by mass or less, and more preferably 20% by mass or more and 30% by mass or less.
  • the curing rate of the photo-curable composition for 3D modeling increases. .
  • the reason for this is not clear, but it is thought that when cleavage type and hydrogen abstraction type photopolymerization initiators coexist, the hydrogen abstraction type polymerization initiator functions as a sensitizer and thus the polymerization rate is improved. It is done. This is important in the production of 3D objects that require much longer time than ordinary printing.
  • the photocurable composition for 3D modeling contains only (b) a cleavage type photopolymerization initiator (no hydrogen abstraction type initiator), (a) a cleavage type and hydrogen
  • a cleavage type photopolymerization initiator no hydrogen abstraction type initiator
  • the elongation or elasticity of the cured product of the photocurable composition for 3D modeling may be improved as compared with a case where both photopolymerization initiators of the drawing type are contained.
  • the reason for this is not clear, but can be considered as follows.
  • a graft reaction occurs between linear polymers obtained by polymerization of a monofunctional polymerizable compound by a hydrogen abstraction type polymerization initiator, irregular crosslinking may occur. If the cross-linking is regular, a uniform force is applied when the cured product is stretched, so that high stretchability can be maintained.
  • the photocurable composition for 3D modeling may include (a) both types of polymerization initiators of a cleavage type and a hydrogen abstraction type. preferable.
  • the photocurable composition for 3D modeling may include (a) both types of polymerization initiators of a cleavage type and a hydrogen abstraction type. preferable.
  • cleavage type photopolymerization initiators include diethoxyacetophenone, 2-hydroxy-2-methyl-1-phenylpropan-1-one, benzyldimethyl ketal, 1- (4-isopropylphenyl) -2-hydroxy- 2-methylpropan-1-one, 4- (2-hydroxyethoxy) phenyl- (2-hydroxy-2-propyl) ketone, 1-hydroxycyclohexyl-phenylketone, 2-methyl-2-morpholino (4-thiomethyl) Acetophenones such as phenyl) propan-1-one, 2-benzyl-2-dimethylamino-1- (4-morpholinophenyl) -butanone; benzoins such as benzoin, benzoin methyl ether, benzoin isopropyl ether; Acylphosphine oxide systems such as 6-trimethylbenzoindiphenylphosphine oxide; benzyl and methyl Phenylglyoxyester and the like are included.
  • hydrogen abstraction type photopolymerization initiators examples include benzophenones (benzophenone, N, N-diethylbenzophenone, etc.), thioxanthones (2,4-diethylthioxanthone, isopropylthioxanthone, chlorothioxanthone, isopropoxychlorothioxanthone, etc.) And anthraquinones (ethyl anthraquinone, benzanthraquinone, aminoanthraquinone, chloroanthraquinone, etc.), acridines (9-phenylacridine, 1,7-bis (9,9′-acridinyl) heptane, etc.) and the like.
  • Examples of the photoacid generator include known sulfonium salts, ammonium salts, diaryliodonium salts, triarylsulfonium salts, and the like. Specifically, triarylsulfonium hexafluorophosphate salt, iodonium (4-methylphenyl) (4- (2-methylpropyl) phenyl) hexafluorophosphate, triarylsulfonium hexafluoroantimonate, 3-methyl-2-butyl Tenenyltetramethylenesulfonium hexafluoroantimonate and the like are included.
  • photoacid generators include Bayer: UVI-6990, Daicel Cytec: Uvacure 1591, Ciba Specialty Chemicals: CGI-552, Ir250, Asahi Denka Kogyo: SP-150, 152, 170, 172, CP-77, Sun Apro: CPI-100P, CPI-101A, CPI-200K, CPI-210S, etc. can be used.
  • the photocurable composition for 3D modeling of the present invention may contain a sensitizer.
  • a sensitizer what expresses a sensitization function with the light of a wavelength of 400 nm or more can be used, for example.
  • Examples of such sensitizers include anthracene such as 9,10-dibutoxyanthracene, 9,10-diethoxyanthracene, 9,10-dipropoxyanthracene, and 9,10-bis (2-ethylhexyloxy) anthracene. Derivatives and the like are included.
  • examples of commercially available products include Kawasaki Kasei Kogyo: DBA, DEA and the like.
  • the content of the photopolymerization initiator in the photocurable composition for 3D modeling is preferably 0.01% by mass to 10% by mass, although it depends on the type of actinic ray or actinic ray curable compound.
  • the photocurable composition for 3D modeling may further contain a photopolymerization initiator auxiliary agent, a polymerization inhibitor, or the like, if necessary.
  • the photopolymerization initiator assistant may be a tertiary amine compound, preferably an aromatic tertiary amine compound.
  • aromatic tertiary amine compounds include N, N-dimethylaniline, N, N-diethylaniline, N, N-dimethyl-p-toluidine, N, N-dimethylamino-p-benzoic acid ethyl ester, N, N-dimethylamino-p-benzoic acid isoamyl ethyl ester, N, N-dihydroxyethylaniline, triethylamine, N, N-dimethylhexylamine and the like are included.
  • N, N-dimethylamino-p-benzoic acid ethyl ester and N, N-dimethylamino-p-benzoic acid isoamyl ethyl ester are preferred. Only 1 type of these compounds may be contained in the photocurable composition for 3D modeling, and 2 or more types may be contained.
  • polymerization inhibitors include (alkyl) phenol, hydroquinone, catechol, resorcin, p-methoxyphenol, t-butylcatechol, t-butylhydroquinone, pyrogallol, 1,1-picrylhydrazyl, phenothiazine, p-benzoquinone , Nitrosobenzene, 2,5-di-t-butyl-p-benzoquinone, dithiobenzoyl disulfide, picric acid, cuperone, aluminum N-nitrosophenylhydroxylamine, tri-p-nitrophenylmethyl, N- (3-oxyanilino- 1,3-dimethylbutylidene) aniline oxide, dibutylcresol, cyclohexanone oxime cresol, guaiacol, o-isopropylphenol, butyraloxime, methyl ethyl ketoxime, cyclohexanone oxime
  • the photocurable composition for 3D modeling may further contain a peeling accelerator in order to facilitate the peeling between the cured product and the cured product of the support agent described below.
  • the peeling accelerator is preferably contained in an amount of 0.01% by mass to 3.0% by mass with respect to the total mass of the ink. If it is less than 0.01% by mass, the releasability from the substrate is lowered, and if it exceeds 3.0% by mass, the droplets of the photocurable composition for 3D modeling before curing can be easily combined, and ink bleeding It can be a cause.
  • the release accelerator examples include silicon surfactants, fluorine surfactants, and higher fatty acid esters such as stearyl sebacate, and silicon surfactants are preferable.
  • the peeling accelerator may be contained in either the photocurable composition for 3D modeling or the composition for support material described below, but it is more preferable to contain it in both.
  • the viscosity at 25 ° C. of the photocurable composition for 3D modeling is from the viewpoint of ejection properties from the nozzle of an inkjet head. 150 mPa ⁇ s or less is preferable. This is because ink jetting cannot be used when the viscosity is high.
  • the viscosity of the photocurable composition for 3D modeling can be measured with a rotational viscometer.
  • cured material of the photocurable composition for 3D modeling is less than 25 degreeC. This is to impart stretchability and resilience to stress, such as a rubber-like substance, to the cured product.
  • the glass transition temperature of the cured product of the photocurable composition for 3D modeling is preferably 5 ° C. or less, preferably 0 ° C. or less, and more preferably less than ⁇ 25 ° C. preferable.
  • the photocurable composition for 3D modeling of the present invention can be used for 3D modeling by UV-IJ (ultra-violet inkjet) method or SLA (stereolithography) method. Used for manufacturing.
  • UV-IJ ultraviolet-violet inkjet
  • SLA stereolithography
  • a photocurable composition for 3D modeling is applied to a substrate using an inkjet, and the photocurable composition for 3D modeling that has landed on the substrate is irradiated with actinic rays and cured. Then, 3D modeling thing is manufactured by repeating application and hardening.
  • the liquid photocurable composition for 3D modeling is irradiated with an actinic ray to cure the irradiated photocurable composition for 3D modeling. Thereafter, the cured photocurable composition for 3D modeling is lowered by a thickness of one layer, and then the active layer is irradiated again to cure the layer thereon.
  • the photo-curable composition for 3D modeling can be used as or included in a “model material” for producing a 3D model in the UV-IJ method or a composition cured in the SLA method.
  • the manufacturing method of the 3D modeling object of this invention includes the process of irradiating actinic light to the above-mentioned 3D modeling photocurable composition.
  • the photocurable composition for 3D modeling of the present invention can be cured by irradiation with actinic rays.
  • the actinic ray is not particularly limited, but ultraviolet rays or electron beams can be preferably used in the UV-IJ method, and laser light can be preferably used in the SLA method.
  • examples of the active light irradiation part include a fluorescent tube (low pressure mercury lamp, germicidal lamp), a cold cathode tube, an ultraviolet laser, and an operating pressure of several hundred Pa to 1 MPa.
  • Low pressure, medium pressure, high pressure mercury lamp, metal halide lamp, LED (light emitting diode) and the like are included.
  • ultraviolet irradiation means for irradiating ultraviolet rays having an illuminance of 100 mW / cm 2 or more specifically, high-pressure mercury lamps, metal halide lamps and LEDs are preferable, and LEDs are more preferable from the viewpoint of low power consumption.
  • a 395 nm, water-cooled LED manufactured by Phoseon Technology can be used.
  • examples of the active light irradiation unit include electron beam irradiation means such as a scanning method, a curtain beam method, and a broad beam method. From the viewpoint of processing capability, a curtain beam type electron beam irradiation means is preferable.
  • Examples of electron beam irradiation means include “Curetron EBC-200-20-30” manufactured by Nissin High Voltage Co., Ltd., “Min-EB” manufactured by AIT Co., Ltd., and the like.
  • the acceleration voltage for electron beam irradiation is preferably 30 to 250 kV and more preferably 30 to 100 kV in order to perform sufficient curing.
  • the electron beam irradiation amount is preferably 30 to 100 kGy, and more preferably 30 to 60 kGy.
  • an ultraviolet laser such as a semiconductor excited solid laser, an Ar laser, or a He—Cd laser can be used.
  • the support material is ejected with an ink jet to form a space portion of the 3D object
  • the model material is ejected with an ink jet to form a 3D object.
  • the support material and the model material may be discharged simultaneously, or the support material may be discharged first and then the model material may be discharged.
  • the nth film including at least one of the support material and the model material ejected by the ink jet is cured to form the nth cured layer, and the similarly ejected n + 1th film is cured thereon, the n + 1th film Since the film is cured by adhering to the n-th cured layer, the film is cured while adhering in the stacking direction. After all the hardened layers are formed in this way, the target 3D object can be obtained by removing the hardened material of the support material.
  • the support material composition is not particularly limited, it is preferably a heat-meltable one or a photo-curable one whose water-soluble or water-swellable product is water-swellable. Moreover, it is preferable that the hardened
  • heat-meltable materials include paraffin wax, microcrystalline wax, carnauba wax, ester wax, amide wax, and PEG 20000.
  • What is photocurable and the cured product is water-soluble or water-swellable is, for example, a water-soluble compound (water-soluble monomer) having a photopolymerizable functional group (carbon-carbon unsaturated group, etc.)
  • a photo-curable resin composition mainly composed of a photocleavable initiator and water, but is not particularly limited.
  • the support material may further contain a water-soluble polymer.
  • water-soluble monomers contained in the support material include water-soluble (meth) acrylate, polyoxyethylene diacrylate, polyoxypropylene diacrylate, achloroyl morpholine, hydroxyalkyl acrylate; water-soluble acrylamides such as acrylamide, N, N-dimethylacrylamide, N-hydroxyethylacrylamide and the like are included.
  • water-soluble polymer contained in the support material include polyethylene glycol, polypropylene glycol, polyvinyl alcohol and the like.
  • the photocleavable initiator contained in the support material include 1- [4- (2-hydroxyethoxy) phenyl] -2-methyl-1-propan-1-one, but are not particularly limited.
  • An example of a specific manufacturing method using the UV-IJ method is based on the first plane data included in the plurality of plane data representing the arrangement of the model material and the support material in each layer of the 3D modeled object, and the model material and the support material A step of ejecting at least one of the nozzles of the inkjet head onto a substrate to form a first film, photocuring the first film to form a first cured layer, and Based on the nth (n is an integer of 2 or more) plane data included in the plane data, at least one of the model material and the support material is ejected from the nozzle of the inkjet head onto the (n-1) th cured layer.
  • Forming an n-th film photo-curing the n-th film to form an n-th cured layer, and forming at least one of the n-th film and the n-th cured layer. Done more than once, that Further comprising the step of removing the support member.
  • the specific manufacturing method based on the UV-IJ method includes a step of converting CAD (Computer Aided Design) data into STL (Stereo Lithography) data which is 3D modeling data, and the plurality of planes based on the STL data. You may further have the process of producing data. Further, STL data obtained by a method such as purchase or a plurality of plane data may be used.
  • CAD Computer Aided Design
  • STL Step Lithography
  • FIG. 1 shows an outline of an example of a 3D modeling system based on the UV-IJ method.
  • the 3D modeling system based on the UV-IJ method shown in FIG. 1 includes a stage made of a base material on which an inkjet unit 1 is provided with driving means (not shown) for driving up and down (in the drawing Z direction) and a 3D modeling object is disposed.
  • 11 and an inkjet device 12 that discharges a model material or a support material, which is arranged on a rail (not shown) so as to be movable in the left-right direction (XY direction in the drawing).
  • the inkjet device 12 includes an inkjet head 13 for a model material, an inkjet head 14 for a support material, a film thickness adjusting roller 15, and a light source 16.
  • Each of the model material inkjet head 13 and the support material inkjet head 14 has a nozzle for ejection.
  • the model material inkjet head 13 communicates with a pump 13b and a photocurable composition tank 13c through a pipe 13a.
  • a model material containing the photocurable composition for 3D modeling of the present invention can be placed in the photocurable composition tank 13c.
  • the support-use inkjet head 14 communicates with the pump 14b and the photocurable composition tank 14c via the pipe 14a.
  • a support material can be placed in the photocurable composition tank 14c.
  • the 3D modeling system based on the UV-IJ method further includes an arithmetic control unit 2, an input device 4 for inputting 3D modeling data such as CAD data, and STL data converted from CAD data.
  • Output device 5 that outputs slice data obtained from STL data
  • display device 6 that displays STL data, virtual 3D objects, etc., and various information necessary for manufacturing 3D objects, such as lots
  • a storage device 3 for associating and recording the number, the CAD data number, the STL data number, the number of the photocurable composition set including the model material and the support material, and the like.
  • the calculation control unit 2 calculates STL data based on CAD data, and a photocurable composition set control for sending information to select a photocurable composition set suitable for a desired 3D model.
  • Means 25 and light source control means 26 for sending information to irradiate light to cure the discharged photocurable composition.
  • the arithmetic control unit 2 may be configured by an arithmetic device used in a normal computer system such as a CPU.
  • Examples of the input device 4 include pointing devices such as a keyboard and a mouse.
  • Examples of the output device 5 include a printer.
  • Examples of the display device 6 include an image display device such as a liquid crystal display and a monitor.
  • step S101 for example, CAD data is input.
  • step S102 the CAD data is converted into STL data as 3D modeling data. It should be noted that a virtual 3D structure formed from the STL data is displayed on the output device 5 to check whether a desired shape is formed. If the desired shape is not formed, the STL data is corrected. May be.
  • step S103 the virtual 3D structure is finely divided into a plurality of lamellar layers in the Z direction of FIG. 3, and arrangement data of the model material in each layer is obtained.
  • support material arrangement data for supporting or fixing the model material is also created.
  • the arrangement data of the model material and the arrangement data of the support material are combined for each same layer to obtain “first plane data D1, second plane data D2,... Xth plane data DX” in the present invention.
  • step S105 an optimal photocurable composition set is prepared based on the data of the virtual 3D structure and the plurality of plane data.
  • step S108 based on the first plane data D1, the driving means is operated to align the relative positions of the stage and the inkjet apparatus.
  • step S110 the position of the ink jet is controlled based on the first plane data D1, and the model material (Ma) and the support material (S) are placed at appropriate positions on the stage. At least one of them is ejected from the nozzle of the inkjet head to form the first film.
  • the amount of droplets ejected from each nozzle is preferably 1 pl to 70 pl, more preferably 2 to 50 pl, although it depends on the resolution of the image.
  • step S112 the first film is photocured by irradiating actinic rays to obtain a first cured layer.
  • the thickness of the first hardened layer is uniform, and if not uniform, the thick portion is polished to make the thickness of the first hardened layer uniform.
  • the thickness of each cured layer after curing is preferably about 1 to 25 ⁇ m.
  • Irradiation with actinic rays is performed within 10 seconds, preferably within 0.001 second to 5 seconds, more preferably within 0.01 second to 2 seconds after the photocurable composition droplet for 3D modeling is deposited on the recording medium. Do. This is because adjacent photo-curable composition droplets for 3D modeling are prevented from coalescing.
  • the irradiation with actinic rays is preferably performed after discharging the photocurable composition for 3D modeling for one layer.
  • step S114 it is determined whether there are more layers to be formed. If there are more layers to be formed, the process returns to step S108, and the position of the stage 11 is moved downward (Z direction) by the thickness of one hardened layer, as shown in FIG. Thereafter, an nth hardened layer is formed on the (n-1) th hardened layer in steps S110 and S112. Then, as shown in FIGS. 6 and 7, the steps S108, S110, S112, and S114 are repeated until a final layer (Xth cured layer) is stacked, and a plurality of layers are stacked. If there are no more layers to be formed in step S114, the process proceeds to step S116.
  • step S116 the support material is removed.
  • the support material is removed by swelling with water.
  • the support material may be removed from the model material by performing another removal step, for example, spraying high-pressure water on the support material.
  • a 3D structure M as shown in FIG. 8 can be produced.
  • the number of inkjet heads for the model material is not limited to one.
  • two inkjet heads may be provided for a model material, model materials having different physical properties may be simultaneously ejected from the nozzles of each inkjet head, and the model materials may be mixed to form a composite material.
  • Manufacturing method of 3D modeling object by SLA method The manufacturing method of 3D modeling object by SLA method is active in the process of preparing the above-mentioned liquid photocurable composition for 3D modeling, and this photocurable composition for 3D modeling. And a step of photocuring by irradiating light.
  • the above-described liquid photocurable composition for 3D modeling is submerged in a stage that can be moved up and down, and a 3D modeling photocurable composition is irradiated with actinic rays to form a model. Let each layer harden. After curing one layer, lower the table by the thickness of one cured layer and irradiate actinic rays again to cure the layer above it to produce the desired 3D object. Can do.
  • An example of a specific manufacturing method based on the SLA method is a liquid photocurable composition for 3D modeling of the present invention based on first plane data included in a plurality of plane data representing the shape of each layer of a 3D modeled object.
  • the liquid composition is formed on the basis of the step of irradiating an object with actinic rays to form the first cured layer and the nth plane data (n is an integer of 2 or more) included in the plurality of plane data. Irradiating actinic rays to form an nth cured layer on the (n-1) th cured layer, and performing the nth cured layer at least once.
  • the specific manufacturing method by the SLA method further includes a step of converting CAD data into STL data, which is 3D modeling data, and a step of creating the plurality of plane data based on the STL data. Also good. Further, STL data obtained by a method such as purchase or a plurality of plane data may be used.
  • 3D modeling system and apparatus by SLA method An example of a system and apparatus for manufacturing a 3D modeled object by the SLA method using the photocurable composition for 3D modeling of the present invention will be described below.
  • a table is submerged in a liquid photocurable composition for 3D modeling, and an actinic ray is irradiated to the photocurable composition for 3D modeling on the table for manufacturing. To make a 3D model.
  • FIG. 9 shows an outline of an example of a 3D modeling system based on the SLA method.
  • the configuration other than the SLA unit 31 and the calculation control unit 32 is the same as in FIG.
  • the 3D modeling system based on the SLA method shown in FIG. 9 is driven up and down (in the Z direction in the drawing) with a container 33 containing a liquid photocurable composition set containing the photocurable composition for 3D modeling of the present invention. It has a stage 34 provided with driving means (not shown) and on which a 3D object is arranged, and an optical system for irradiating actinic rays arranged above the stage in the gravity direction.
  • the configuration of the optical system is not particularly limited as long as it can irradiate actinic rays while scanning on the stage. Scanning means (not shown).
  • the arithmetic control unit 32 includes an input device 4 for inputting 3D modeling data such as CAD data, an STL data converted from CAD data, and an output device 5 that outputs slice data obtained from the STL data.
  • Display device 6 for displaying STL data, virtual 3D objects, etc., and various information necessary for manufacturing 3D objects, such as lot number, CAD data number, STL data number, 3D modeling light of the present invention
  • a storage device 3 for recording the number of the photocurable composition set including the curable composition in association with each other.
  • the calculation control unit 32 includes an STL calculation unit 41 that calculates STL data based on CAD data, a stage control unit 42 that moves the stage up and down according to the height of the layer to be cured, and an irradiation of active rays according to the STL data.
  • SLA control means 43 for sending information for scanning points
  • light source control means 44 for sending information for light irradiation to cure the photocurable composition for 3D modeling.
  • step S121 for example, CAD data is input.
  • step S122 the CAD data is converted into STL data as 3D modeling data.
  • a virtual 3D structure (virtual model material) formed from the STL data is displayed on the output device 5 to check whether a desired shape is formed. If the desired shape is not formed, the STL is displayed. Modifications may be made to the data.
  • step S123 the virtual 3D structure is finely divided into a plurality of lamellar layers in the Z direction of FIG. 3 in the same manner as in FIG. 3, and “first plane data D1, second plane data D2,. Xth plane data DX ”is obtained.
  • step S125 an optimal photocurable composition set is prepared based on the data of the virtual 3D structure and the plurality of plane data, and the container 33 is filled with the photocurable composition set.
  • step S1208 based on the first plane data D1, the driving means and the scanning means are operated to perform relative alignment between the stage 34 and the irradiation point of the actinic ray.
  • the light source control means 44 sends information to the light source 35 so as to stop the irradiation of the actinic ray.
  • step S132 as shown in FIG. 11, scanning is performed while irradiating actinic rays, and the photopolymerized composition on the stage 34 is cured to form a first cured layer.
  • step S134 it is determined whether there are more layers to be formed. If there are more layers to be formed, the process returns to step S128 prior to the formation of the second layer, and as shown in FIG. 12, the stage 34 is moved downward (Z direction) by the thickness of one hardened layer. ). Thereafter, in step S132, the nth hardened layer is formed on the n-1st hardened layer. Then, as shown in FIGS. 13 and 14, the steps S128 and S132 are repeated until a final layer (Xth cured layer) is stacked, and a plurality of layers are stacked. In step S134, if there are no more layers to be formed, the process ends.
  • a 3D structure M as shown in FIG. 8 can be produced.
  • Example 1 Preparation of 3D modeling photocurable composition 1 The following components were mixed and dissolved to prepare 3D modeling photocurable composition 1.
  • Composition of photocurable composition 1 for 3D modeling Phenoxyethyl acrylate (Kyoeisha Chemical Company Light Acrylate PO-A) 91.02 g 7.38 g of trimethylolpropane triacrylate (SR351, manufactured by Sartomer) TEMPO (2,2,6,6-tetramethylpiperidinyl-N-oxyl) 0.10 g DAROCURE TPO (phosphine oxide photopolymerization initiator, manufactured by BASF) 1.50 g
  • Example 2 Preparation of photocurable composition 2 for 3D modeling The following components were mixed and dissolved to prepare a photocurable composition 2 for 3D modeling.
  • Composition of photocurable composition 2 for 3D modeling Phenoxyethyl acrylate (Kyoeisha Chemical Co., Ltd. Light Acrylate PO-A) 98.38 g 0.02 g of trimethylolpropane triacrylate (SR351, manufactured by Sartomer) TEMPO (2,2,6,6-tetramethylpiperidinyl-N-oxyl) 0.10 g DAROCURE TPO (phosphine oxide photopolymerization initiator, manufactured by BASF) 1.50 g
  • Example 3 Preparation of 3D modeling photocurable composition 3 The following components were mixed and dissolved to prepare 3D modeling photocurable composition 3.
  • Composition of 3D modeling photocurable composition 3 Phenoxyethyl acrylate (Kyoeisha Chemical Co., Ltd. light acrylate PO-A) 86.77 g 11.63 g of trimethylolpropane triacrylate (SR351 manufactured by Sartomer) TEMPO (2,2,6,6-tetramethylpiperidinyl-N-oxyl) 0.10 g DAROCURE TPO (phosphine oxide photopolymerization initiator, manufactured by BASF) 1.50 g
  • Example 4 Preparation of photocurable composition 4 for 3D modeling The following components were mixed and dissolved to prepare a photocurable composition 4 for 3D modeling.
  • Composition of photocurable composition 4 for 3D modeling Phenoxyethyl acrylate (Kyoeisha Chemical Light Acrylate PO-A) 89.59g Trimethylolpropane triacrylate (SR351, Sartomer) 8.81 g TEMPO (2,2,6,6-tetramethylpiperidinyl-N-oxyl) 0.10 g DAROCURE TPO (phosphine oxide photopolymerization initiator, manufactured by BASF) 1.50 g
  • 3D modeling photocurable composition 5 Preparation of 3D modeling photocurable composition 5 The following components were mixed and dissolved to prepare 3D modeling photocurable composition 5.
  • Composition of photocurable composition 5 for 3D modeling Isostearyl acrylate (Osaka Organic Chemical Co., Ltd. ISTA) 93.89 g Trimethylolpropane triacrylate (SR351 manufactured by Sartomer) 4.51 g TEMPO (2,2,6,6-tetramethylpiperidinyl-N-oxyl) 0.10 g DAROCURE TPO (phosphine oxide photopolymerization initiator, manufactured by BASF) 1.50 g
  • 3D modeling photocurable composition 6 The following components were mixed and dissolved to prepare 3D modeling photocurable composition 6.
  • Composition of photocurable composition 6 for 3D modeling 91.95 g of phenoxyethyl acrylate (Kyoeisha Chemical Co., Ltd. light acrylate PO-A) Pentaerythritol triallyl ether (Daiso Neoleol P-30) 6.45 g TEMPO (2,2,6,6-tetramethylpiperidinyl-N-oxyl) 0.10 g DAROCURE TPO (phosphine oxide photopolymerization initiator, manufactured by BASF) 1.50 g
  • Example 7 Preparation of 3D modeling photocurable composition 7 The following components were mixed and dissolved to prepare 3D modeling photocurable composition 7.
  • Composition of photocurable composition 7 for 3D modeling Phenoxyethyl acrylate (Kyoeisha Chemical Light Acrylate PO-A) 89.75 g Pentaerythritol tetraacrylate (SR295, manufactured by Sartomer) 8.65 g TEMPO (2,2,6,6-tetramethylpiperidinyl-N-oxyl) 0.10 g DAROCURE TPO (phosphine oxide photopolymerization initiator, manufactured by BASF) 1.50 g
  • Example 8 Preparation of photocurable composition 8 for 3D modeling The following components were mixed and dissolved to prepare a photocurable composition 8 for 3D modeling.
  • Composition of photocurable composition 8 for 3D modeling 91.42 g of phenoxyethyl acrylate (Kyoeisha Chemical Co., Ltd. light acrylate PO-A) Pentaerythritol tetraacrylate (SR295 manufactured by Sartomer) 6.98 g TEMPO (2,2,6,6-tetramethylpiperidinyl-N-oxyl) 0.10 g DAROCURE TPO (phosphine oxide photopolymerization initiator, manufactured by BASF) 1.50 g
  • Example 9 Preparation of 3D modeling photocurable composition 9 The following components were mixed and dissolved to prepare 3D modeling photocurable composition 9.
  • [Composition of photocurable composition 9 for 3D modeling] Phenoxyethyl acrylate (Kyoeisha Chemical Co., Ltd. Light Acrylate PO-A) 90.02 g Dipentaerythritol hexaacrylate (Shin-Nakamura Chemical A-DPH) 8.38g TEMPO (2,2,6,6-tetramethylpiperidinyl-N-oxyl) 0.10 g DAROCURE TPO (phosphine oxide photopolymerization initiator, manufactured by BASF) 1.50 g
  • 3D modeling photocurable composition 10 The following components were mixed and dissolved to prepare 3D modeling photocurable composition 10.
  • Composition of 3D modeling photocurable composition 10 91.35 g of phenoxyethyl acrylate (Kyoeisha Chemical Co., Ltd. light acrylate PO-A) Dipentaerythritol hexaacrylate (A-DPH manufactured by Shin-Nakamura Chemical Co., Ltd.) 7.05 g TEMPO (2,2,6,6-tetramethylpiperidinyl-N-oxyl) 0.10 g DAROCURE TPO (phosphine oxide photopolymerization initiator, manufactured by BASF) 1.50 g
  • 3D modeling photocurable composition 11 The following components were mixed and dissolved to prepare 3D modeling photocurable composition 11.
  • Phenoxyethyl acrylate (Kyoeisha Chemical Company Light Acrylate PO-A) 87.14 g 11.26 g of dipentaerythritol pentaacrylate hexamethylene diisocyanate urethane prepolymer (UA-510H, manufactured by Shin-Nakamura Chemical Co., Ltd.)
  • TEMPO 2,2,6,6-tetramethylpiperidinyl-N-oxyl
  • DAROCURE TPO phosphine oxide photopolymerization initiator, manufactured by BASF
  • Example 12 Preparation of 3D modeling photocurable composition 12 The following components were mixed and dissolved to prepare 3D modeling photocurable composition 12.
  • Composition of photocurable composition 12 for 3D modeling Phenoxyethyl acrylate (Kyoeisha Chemical Light Acrylate PO-A) 89.75 g Dipentaerythritol pentaacrylate hexamethylene diisocyanate urethane prepolymer (UA-510H, manufactured by Shin-Nakamura Chemical Co., Ltd.) 8.65 g TEMPO (2,2,6,6-tetramethylpiperidinyl-N-oxyl) 0.10 g DAROCURE TPO (phosphine oxide photopolymerization initiator, manufactured by BASF) 1.50 g
  • Example 15 Preparation of 3D modeling photocurable composition 15 The following components were mixed and dissolved to prepare 3D modeling photocurable composition 15. For 8KX-077, only the solid content after removing the solvent was added. [Composition of 3D modeling photocurable composition 15] 92.34 g of phenoxyethyl acrylate (Kyoeisha Chemical Co., Ltd.
  • 3D modeling photocurable composition 16 The following components were mixed and dissolved to prepare 3D modeling photocurable composition 16.
  • Composition of 3D modeling photocurable composition 16 92.61 g of phenoxyethyl acrylate (Kyoeisha Chemical Co., Ltd. Light Acrylate PO-A) Multi-branched polyacrylate (star-501, Osaka Organic Chemical Co., Ltd., functional group number 20-99, molecular weight 16000) 5.79 g TEMPO (2,2,6,6-tetramethylpiperidinyl-N-oxyl) 0.10 g DAROCURE TPO (phosphine oxide photopolymerization initiator, manufactured by BASF) 1.50 g
  • 3D modeling photocurable composition 17 Preparation of 3D modeling photocurable composition 17 The following components were mixed and dissolved to prepare 3D modeling photocurable composition 17. The molar ratio of 1,6 hexanediol diacrylate to pentaerythritol tetraacrylate was 1: 1. [Composition of 3D modeling photocurable composition 17] 91.18 g of phenoxyethyl acrylate (Kyoeisha Chemical Co., Ltd.
  • composition of 3D modeling photocurable composition 18 Phenoxyethyl acrylate (Kyoeisha Chemical Light acrylate PO-A) 93.39 g 1,6 hexanediol diacrylate (A-HD-N, manufactured by Shin-Nakamura Chemical Co., Ltd.) 1.41 g Dipentaerythritol hexaacrylate (Shin-Nakamura Chemical A-DPH) 3.60 g TEMPO (2,2,6,6-tetramethylpiperidinyl-N-oxyl) 0.10 g DAROCURE TPO (phosphine oxide photopolymerization initiator, manufactured by BASF) 1.50 g
  • 3D modeling photocurable composition 19 Preparation of 3D modeling photocurable composition 19 The following components were mixed and dissolved to prepare 3D modeling photocurable composition 19. The molar ratio of trimethylolpropane triacrylate to dipentaerythritol hexaacrylate was 1: 2. [Composition of 3D modeling photocurable composition 19] 92.42g phenoxyethyl acrylate (Kyoeisha Chemical Co., Ltd.
  • 3D modeling photocurable composition 20 Preparation of 3D modeling photocurable composition 20 The following components were mixed and dissolved to prepare 3D modeling photocurable composition 20.
  • Composition of photocurable composition 20 for 3D modeling 2-ethylhexyloxetane (OXT-212 manufactured by Toa Gosei Co., Ltd.) 91.68 g Glycerol polyglycidyl ether (EX-314 manufactured by Nagase ChemteX Corporation) 5.79 g 0.03 g of 2-methylaminoethanol CPI-100P (Photo acid generator, San Apro) 2.50g
  • 3D modeling photocurable composition 21 Preparation of 3D modeling photocurable composition 21 The following components were mixed and dissolved to prepare 3D modeling photocurable composition 21.
  • Composition of 3D modeling photocurable composition 21 2-ethylhexyloxetane (OXT-212 manufactured by Toa Gosei Co., Ltd.) 93.89 g Pentaerythritol polyglycidyl ether (EX-411 manufactured by Nagase ChemteX Corporation) 4.51 g 0.03 g of 2-methylaminoethanol CPI-100P (Photo acid generator, San Apro) 2.50g
  • 3D modeling photocurable composition 22 Preparation of 3D modeling photocurable composition 22 The following components were mixed and dissolved to prepare 3D modeling photocurable composition 22.
  • Composition of 3D modeling photocurable composition 22 Cyclohexyl vinyl ether (CHVE manufactured by Nippon Carbide Industries Co., Ltd.) 89.46g Trimethylolpropane trivinyl ether 5.34 g 0.03 g of 2-methylaminoethanol CPI-100P (Photo acid generator, San Apro) 2.50g
  • 3D modeling photocurable composition 23 The following components were mixed and dissolved to prepare 3D modeling photocurable composition 23.
  • Composition of 3D modeling photocurable composition 23 Phenoxyethyl acrylate (Kyoeisha Chemical Company Light Acrylate PO-A) 91.02 g 7.38 g of trimethylolpropane triacrylate (SR351, manufactured by Sartomer) TEMPO (2,2,6,6-tetramethylpiperidinyl-N-oxyl) 0.10 g DAROCURE TPO (phosphine oxide photopolymerization initiator, manufactured by BASF) 1.50 g
  • 3D modeling photocurable composition 24 Preparation of 3D modeling photocurable composition 24 The following components were mixed and dissolved to prepare 3D modeling photocurable composition 24.
  • Composition of photocurable composition 24 for 3D modeling 92.67 g of phenoxyethyl acrylate (Kyoeisha Chemical Co., Ltd. light acrylate PO-A) 1,6 hexanediol diacrylate (A-HD-N manufactured by Shin-Nakamura Chemical Co., Ltd.) 5.73 g TEMPO (2,2,6,6-tetramethylpiperidinyl-N-oxyl) 0.10 g DAROCURE TPO (phosphine oxide photopolymerization initiator, manufactured by BASF) 1.50 g
  • 3D modeling photocurable composition 26 The following components were mixed and dissolved to prepare 3D modeling photocurable composition 26.
  • Composition of 3D modeling photocurable composition 26 Phenoxyethyl acrylate (Kyoeisha Chemical Company Light Acrylate PO-A) 85.38 g Trimethylolpropane triacrylate (SR351, manufactured by Sartomer) 13.02 g TEMPO (2,2,6,6-tetramethylpiperidinyl-N-oxyl) 0.10 g DAROCURE TPO (phosphine oxide photopolymerization initiator, manufactured by BASF) 1.50 g
  • the photocurable compositions 1 to 22 and 24 to 26 for 3D modeling of each example and comparative example were loaded into a UV curable printer equipped with a piezo head 512L manufactured by Konica Minolta IJ.
  • the head temperature was set to “75 ° C. or lower and the ink viscosity becomes 10 mPa ⁇ s”, or “75 ° C.” when the ink viscosity exceeds 10 mPa ⁇ s even at 75 ° C.
  • the photocurable composition 23 for 3D modeling is put into the bat of an optical modeling machine perfect desktop manufactured by Envision Tech Co., Ltd., and the length (X direction) 80 mm ⁇ width (Y direction) 10 mm ⁇ thickness (Z direction) 1 mm XY direction
  • a sample for measuring physical properties and a sample for measuring physical properties in the Z direction having a length (X direction) of 10 mm ⁇ width (Y direction) of 1 mm ⁇ thickness (Z direction) of 80 mm were prepared.
  • Elongation at break is 200% or more.
  • Elongation at break is 150% or more and less than 200%.
  • Elongation at break is 100% or more and less than 150%.
  • X Elongation at break is less than 100%.
  • Breaking strength is 3 MPa or more.
  • Breaking strength is 1 MPa or more and less than 3 MPa.
  • X Breaking strength is less than 1 MPa.
  • the photocurable compositions 1 to 22 and 24 to 26 for 3D modeling were loaded into a UV curable printer equipped with a piezo head 512L manufactured by Konica Minolta IJ.
  • the head temperature was set to “75 ° C. or lower and the ink viscosity becomes 10 mPa ⁇ s”, or “75 ° C.” when the ink viscosity exceeds 10 mPa ⁇ s even at 75 ° C.
  • 1 L of ink was continuously ejected for 60 minutes under the conditions of a droplet amount of 42 pl and a frequency of 8 kHz.
  • the number of missing nozzles was counted to evaluate ink emission. Evaluation of ink emission was performed according to the following criteria.
  • One or more missing nozzles occurred and less than 3% of the total.
  • 10% or more of missing nozzles occurred.
  • M monofunctional polymerizable compound
  • m polyfunctional polymerizable compound
  • the molecular weight of the polyfunctional polymerizable compound is 10,000 or more and 100,000 or less, or when the polyfunctional polymerizable compound contains a compound having 20 or more functional groups, the elongation at break and the breaking strength are improved. .
  • the photocurable composition for 3D modeling of the present invention has photocurability, and the cured product has elongation and elasticity like rubber. Therefore, unique characteristics can be imparted to the image or 3D structure obtained from the ink composition of the present invention.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Polymerisation Methods In General (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)

Abstract

A photocurable composition for 3D modeling, which contains a monofunctional polymerizable compound, a polyfunctional polymerizable compound and a photopolymerization initiator, and wherein: the polyfunctional polymerizable compound has an average number of functional groups of 3 or more; and the monofunctional polymerizable compound (M) and the polyfunctional polymerizable compound (m) are contained at a molar ratio (M)/(m) of from 92/8 to 99.99/0.01. A method for producing a 3D model using this photocurable composition for 3D modeling. A model containing a rubber material that achieves a good balance between sufficient rubber characteristics and 3D model strength, particularly strength in the thickness direction, namely interlayer strength is able to be produced by means of this photocurable composition for 3D modeling and this method for producing a 3D model.

Description

3D造形用光硬化性組成物および3D造形物の製造方法Photocurable composition for 3D modeling and method for producing 3D modeling
 本発明は、3D造形用光硬化性組成物および3D造形物の製造方法に関する。 The present invention relates to a photocurable composition for 3D modeling and a method for producing a 3D modeled product.
 近年、3D造形物を製造する方法として、液体状の光硬化性組成物にレーザー光や紫外線を照射してその照射部分を硬化・積層させる方法や、インクジェットにより基材上に光硬化性組成物を着弾させ、着弾した光硬化性組成物に紫外線を照射して硬化させる方法が広く知られている。3D造形物は、製造が比較的容易であるため、最終製品を製造する前の、試作品として用いることができる。 In recent years, as a method for producing a 3D shaped object, a liquid photocurable composition is irradiated with laser light or ultraviolet light to cure and laminate the irradiated part, or a photocurable composition on a substrate by inkjet. There is a widely known method of landing and curing the landed photocurable composition by irradiating with ultraviolet rays. Since the 3D model is relatively easy to manufacture, it can be used as a prototype before the final product is manufactured.
 光硬化性組成物が硬化してなる高分子量の線状ポリマーの一部を架橋させることで、ゴム状の性質をもった3D造形物を製造することができる。このゴム状の材料を用いた3D造形物からなる試作品について、最終製品の性状を試作段階でも確認するため、本物のゴムと同等の伸びと強度を持った3D造形物が望まれている。 A 3D shaped article having rubber-like properties can be produced by crosslinking a part of a high molecular weight linear polymer obtained by curing the photocurable composition. In order to confirm the properties of the final product of a prototype made of a 3D model using this rubber-like material even at the prototype stage, a 3D model having the same elongation and strength as real rubber is desired.
 2D光硬化物では、強度を有する硬化物を得るためのインク組成物として、官能基数が2以上6以下であるデンドリマーと、環状構造を有するモノマーとを含む活性光線硬化型インク組成物が特許文献1に記載されている。また、強度(耐スクラッチ性)を有する2D光硬化物を得るためのインク組成物として、ビニルエーテル、ジアリルフタレートのプレポリマー、カチオン重合開始剤および400nm以上の波長の光により増感機能を発現する増感剤を含有する活性光線硬化型インクジェット印刷用インク組成物が特許文献2に記載されている。 In the 2D photocured product, an actinic ray curable ink composition containing a dendrimer having 2 or more and 6 or less functional groups and a monomer having a cyclic structure is used as an ink composition for obtaining a cured product having strength. 1. In addition, as an ink composition for obtaining a 2D photocured product having strength (scratch resistance), a vinyl ether, diallyl phthalate prepolymer, a cationic polymerization initiator, and a light that exhibits a sensitizing function by light having a wavelength of 400 nm or more. Patent Document 2 discloses an actinic ray curable ink composition for ink jet printing containing a sensitizer.
特開2009-114235号公報JP 2009-114235 A 特開2008-280460号公報JP 2008-280460 A
 しかし、上記した3D造形物の製造方法では、光硬化性組成物をレーザーまたはUV(紫外線)などの光で極めて短い時間で硬化させて硬化物を得るため、不必要な架橋反応が起こり、均一な架橋構造を有する高分子量のポリマーを形成することが難しく、伸びと強度を両立した造形ゴムが得られない問題がある。 However, in the above-described 3D model manufacturing method, the photocurable composition is cured with light such as laser or UV (ultraviolet rays) in a very short time to obtain a cured product, so that an unnecessary crosslinking reaction occurs and uniform. It is difficult to form a high-molecular-weight polymer having a cross-linked structure, and there is a problem that a shaped rubber having both elongation and strength cannot be obtained.
 また、複数の層を積層して製造する3D造形物では、基材表面に硬化物を得る通常の2Dの硬化物と比べて、硬化物の厚さが数百倍以上となる。そのため、2Dの硬化物では問題にならない厚み方向の強度も重要である。 Moreover, in the 3D shaped object manufactured by laminating a plurality of layers, the thickness of the cured product is several hundred times or more compared to a normal 2D cured product that obtains a cured product on the surface of the substrate. Therefore, the strength in the thickness direction, which is not a problem with a 2D cured product, is also important.
 ゴムの特性を有する3D造形物では、造形物の伸びと強度を両立させることが重要である。しかし、特許文献1のインク組成物は、硬化性を出すことはできるものの、高分子量の線状ポリマーを成長させることが難しく、これをそのまま用いて3D造形物を作っても、伸びが低い造形物しかできない。また、特許文献2でも、硬化性等の観点から二官能以上のビニルエーテルがよいとされているため、高分子量の線状ポリマーを成長させることが難しく、このようなインクを3D造形用に用いても、造形物のゴム特性(伸びと弾性)は不十分である。 In a 3D model having rubber characteristics, it is important to achieve both the elongation and strength of the model. However, although the ink composition of Patent Document 1 can exhibit curability, it is difficult to grow a high-molecular-weight linear polymer. You can only do things. Also in Patent Document 2, it is considered that bifunctional or higher vinyl ethers are good from the viewpoint of curability and the like, so it is difficult to grow a high molecular weight linear polymer, and such ink is used for 3D modeling. However, the rubber properties (elongation and elasticity) of the molded product are insufficient.
 上記の課題に鑑み、本発明は、十分なゴム特性と、3D造形物の強度、特に厚み方向すなわち層間の強度とを兼ね備えたゴム材料を含む造形物を製造することができるような組成物、およびそのような組成物を用いた3D造形物の製造方法を提供することをその目的とする。 In view of the above problems, the present invention provides a composition capable of producing a molded article including a rubber material having sufficient rubber properties and the strength of a 3D molded article, particularly the thickness direction, that is, the strength between layers, And it aims at providing the manufacturing method of 3D modeling thing using such a composition.
 本発明の第一は、以下のインク組成物に関する。
[1] 単官能重合性化合物、多官能重合性化合物および光重合開始剤を含む3D造形用光硬化性組成物であって、前記多官能重合性化合物の平均官能基数は3以上であり、前記単官能重合性化合物(M)と前記多官能重合性化合物(m)とを(M)/(m)=92/8~99.99/0.01のモル比で含む、組成物。
[2] 前記多官能重合性化合物の平均官能基数をaとしたとき、前記単官能重合性化合物(M)と前記多官能重合性化合物(m)とを(M)/(m)=(100-8×2/a)/(8×2/a)~99.99/0.01のモル比で含む、[1]に記載の組成物。
[3] 前記多官能重合性化合物は分子量が10,000以上100,000以下である化合物を含む、[1]または[2]に記載の組成物。
[4] 前記多官能重合性化合物は官能基数が20以上である化合物を含む、[3]に記載の組成物。
[5] 前記単官能重合性化合物は、ラジカル重合性の官能基を有する化合物を含み、前記光重合開始剤は光ラジカル開始剤を含む、[1]~[4]のいずれかに記載の組成物。
[6] 前記単官能重合性化合物は、カチオン重合性の官能基を有する化合物を含み、前記光重合開始剤は光酸発生剤を含む、[1]~[4]のいずれかに記載の組成物。
The first of the present invention relates to the following ink composition.
[1] A photocurable composition for 3D modeling comprising a monofunctional polymerizable compound, a polyfunctional polymerizable compound, and a photopolymerization initiator, wherein the average number of functional groups of the polyfunctional polymerizable compound is 3 or more, A composition comprising the monofunctional polymerizable compound (M) and the polyfunctional polymerizable compound (m) in a molar ratio of (M) / (m) = 92/8 to 99.99 / 0.01.
[2] When the average functional group number of the polyfunctional polymerizable compound is a, the monofunctional polymerizable compound (M) and the polyfunctional polymerizable compound (m) are (M) / (m) = (100 The composition according to [1], comprising a molar ratio of −8 × 2 / a) / (8 × 2 / a) to 99.99 / 0.01.
[3] The composition according to [1] or [2], wherein the polyfunctional polymerizable compound includes a compound having a molecular weight of 10,000 or more and 100,000 or less.
[4] The composition according to [3], wherein the polyfunctional polymerizable compound includes a compound having 20 or more functional groups.
[5] The composition according to any one of [1] to [4], wherein the monofunctional polymerizable compound includes a compound having a radical polymerizable functional group, and the photopolymerization initiator includes a photoradical initiator. object.
[6] The composition according to any one of [1] to [4], wherein the monofunctional polymerizable compound includes a compound having a cationic polymerizable functional group, and the photopolymerization initiator includes a photoacid generator. object.
 本発明の第二は、以下の3D造形物の製造方法に関する。
[7] [1]~[6]のいずれかに記載の組成物に活性光線を照射する工程を含む、3D造形物の製造方法。
[8] 前記組成物を含むモデル材と、サポート材組成物を含むサポート材と、を用いる、[7]に記載の3D造形物の製造方法。
[9] 3D造形物の各層におけるモデル材およびサポート材の配置を表す複数の平面データに含まれる第1の平面データに基づいて、前記モデル材および前記サポート材の少なくともいずれか一方をインクジェットヘッドのノズルから基材上に吐出して第1の膜を形成し、該第1の膜を光硬化させて第1の硬化層を形成する工程と、該複数の平面データに含まれる第n(nは2以上の整数)の平面データに基づいて、前記モデル材および前記サポート材の少なくともいずれか一方をインクジェットヘッドのノズルから第n-1の硬化層上に吐出して第nの膜を形成し、該第nの膜を光硬化させて第nの硬化層を形成する工程とを有し、該第nの膜を形成し第nの硬化層を形成する工程を少なくとも1回以上行い、その後、サポート材を除去する工程をさらに有する、[8]に記載の3D造形物の製造方法。
[10] 3D造形物の各層の形状を表す複数の平面データに含まれる第1の平面データに基づいて、液体状の前記組成物に活性光線を照射して第1の硬化層を形成する工程と、該複数の平面データに含まれる第n(nは2以上の整数)の平面データに基づいて、該液体状の組成物に活性光線を照射して第n-1の硬化層上に第nの硬化層を形成する工程とを有し、該第nの硬化層を形成する工程を少なくとも1回以上行う、[7]に記載の3D造形物の製造方法。
2nd of this invention is related with the manufacturing method of the following 3D modeling objects.
[7] A method for producing a 3D structure, comprising a step of irradiating the composition according to any one of [1] to [6] with actinic rays.
[8] The method for producing a 3D structure according to [7], wherein a model material including the composition and a support material including a support material composition are used.
[9] Based on the first plane data included in the plurality of plane data representing the arrangement of the model material and the support material in each layer of the 3D modeled object, at least one of the model material and the support material is attached to the inkjet head. A step of forming a first film by discharging from a nozzle onto a base material, photocuring the first film to form a first cured layer, and an nth (nth (n)) included in the plurality of plane data Is an integer greater than or equal to 2), at least one of the model material and the support material is ejected from the nozzle of the inkjet head onto the (n−1) th cured layer to form the nth film. And a step of photo-curing the n-th film to form an n-th cured layer, performing the step of forming the n-th film and forming the n-th cured layer at least once, and thereafter Remove support material The method for producing a 3D structure according to [8], further including a step of:
[10] A step of forming the first hardened layer by irradiating the liquid composition with actinic rays based on the first plane data included in the plurality of plane data representing the shape of each layer of the 3D structure. And actinic rays are irradiated onto the liquid composition based on the nth (n is an integer of 2 or more) plane data included in the plurality of plane data, and the n−1th cured layer is irradiated with the active ray. The method for producing a 3D structure according to [7], further comprising performing a step of forming the n-th cured layer at least once.
 本発明によれば、それを用いて製造した3D造形物がゴムのような伸びと弾性を有する3D造形用光硬化性組成物、およびそのような3D造形用光硬化性組成物を用いた3D造形物の製造方法が提供される。 According to the present invention, a 3D modeling product manufactured using the same has a rubber-like elongation and elasticity, and a 3D modeling photocurable composition for 3D modeling is used. A method for manufacturing a shaped article is provided.
図1はUV-IJ法による3D造形システムの1態様を示す模式図である。FIG. 1 is a schematic diagram showing one embodiment of a 3D modeling system based on the UV-IJ method. 図2はUV-IJ法による3D造形方法のフロー図である。FIG. 2 is a flowchart of the 3D modeling method by the UV-IJ method. 図3はUV-IJ法による3D造形方法の工程(その一)の側面図である。FIG. 3 is a side view of the process (part 1) of the 3D modeling method by the UV-IJ method. 図4AはUV-IJ法による3D造形方法の工程(その二)の側面図および図4Bはその上面図である。FIG. 4A is a side view of the step (part 2) of the 3D modeling method by the UV-IJ method, and FIG. 4B is a top view thereof. 図5AはUV-IJ法による3D造形方法の工程(その三)の側面図および図5Bはその上面図である。FIG. 5A is a side view of the step (part 3) of the 3D modeling method by the UV-IJ method, and FIG. 5B is a top view thereof. 図6AはUV-IJ法による3D造形方法の工程(その四)の側面図および図6Bはその上面図である。FIG. 6A is a side view of the step (part 4) of the 3D modeling method by the UV-IJ method, and FIG. 6B is a top view thereof. 図7AはUV-IJ法による3D造形方法の工程(その五)の側面図および図7Bはその上面図である。FIG. 7A is a side view of the process (part 5) of the 3D modeling method by the UV-IJ method, and FIG. 7B is a top view thereof. 図8は本発明の3D造形方法により得られるモデル材の斜視図である。FIG. 8 is a perspective view of a model material obtained by the 3D modeling method of the present invention. 図9はSLA法による3D造形システムの1態様を示す模式図である。FIG. 9 is a schematic diagram showing one mode of a 3D modeling system based on the SLA method. 図10はSLA法による3D造形方法のフロー図である。FIG. 10 is a flowchart of the 3D modeling method by the SLA method. 図11AはSLA法による3D造形方法の工程(その一)の側面図および図11Bはその上面図である。FIG. 11A is a side view of the process (part 1) of the 3D modeling method by the SLA method, and FIG. 11B is a top view thereof. 図12AはSLA法による3D造形方法の工程(その二)の側面図および図12Bはその上面図である。FIG. 12A is a side view of the step (part 2) of the 3D modeling method by the SLA method, and FIG. 12B is a top view thereof. 図13AはSLA法による3D造形方法の工程(その三)の側面図および図13Bはその上面図である。FIG. 13A is a side view of the step (part 3) of the 3D modeling method by the SLA method, and FIG. 13B is a top view thereof. 図14AはSLA法による3D造形方法の工程(その四)の側面図および図14Bはその上面図である。FIG. 14A is a side view of the step (part 4) of the 3D modeling method by the SLA method, and FIG. 14B is a top view thereof.
 以下に、例示的な実施形態を挙げて本発明を説明する。 Hereinafter, the present invention will be described with reference to exemplary embodiments.
 1.3D造形用光硬化性組成物
 本発明の3D造形用光硬化性組成物は、単官能重合性化合物、多官能重合性化合物および光重合開始剤を含む。
1.3D Photocurable Composition for 3D Modeling The photocurable composition for 3D modeling of the present invention includes a monofunctional polymerizable compound, a polyfunctional polymerizable compound, and a photopolymerization initiator.
 1-1.重合性化合物
 本発明の3D造形用光硬化性組成物は、重合性化合物として、単官能重合性化合物および多官能重合性化合物を含む。
1-1. Polymerizable compound The photocurable composition for 3D modeling of the present invention contains a monofunctional polymerizable compound and a polyfunctional polymerizable compound as the polymerizable compound.
 1-1-1.単官能重合性化合物
 本発明の単官能重合性化合物は、分子内に1つの重合性基を有する重合性化合物である。
1-1-1. Monofunctional polymerizable compound The monofunctional polymerizable compound of the present invention is a polymerizable compound having one polymerizable group in the molecule.
 単官能重合性化合物は、モノマーであってもよく、数個の分子が重合したオリゴマー等であってもよい。単官能重合性化合物の分子量は、120~500とすることで、後述するUV-IJ法による3D造形物の製造時にインクジェット出射性を高めることができるほか、SLA法による3D造形物の製造時に液体の対流を防いで硬化性を大きくし、破断強度を高めることが可能となる。また、単官能重合性化合物の分子量を160~400とすることで、インクジェット出射性および硬化性をさらに高めることができる。 The monofunctional polymerizable compound may be a monomer or an oligomer in which several molecules are polymerized. By setting the molecular weight of the monofunctional polymerizable compound to 120 to 500, it is possible to improve the ink jetting property when manufacturing a 3D modeled object by the UV-IJ method described later, and to liquid when manufacturing a 3D modeled object by the SLA method. It is possible to prevent convection and increase curability and increase the breaking strength. Further, by setting the molecular weight of the monofunctional polymerizable compound to 160 to 400, it is possible to further improve the ink jetting property and curability.
 重合性基は、ラジカル重合性の官能基でも、カチオン重合性の官能基でもよい。ラジカル重合性の官能基には、エチレン基を有する官能基が含まれ、具体的には、エチレン基、プロペニル基、ブテニル基、ビニルフェニル基、(メタ)アクリル基、アリルエーテル基、ビニルエーテル基、マレイル基、マレイミド基、(メタ)アクリルアミド基、アセチルビニル基およびビニルアミド基からなる群から選択される1または複数の官能基を含みうる。カチオン重合性の官能基には、エポキシ基、オキセタン基、フリル基およびビニルエーテル基からなる群から選択される1または複数の官能基を含みうる。なお、「(メタ)アクリル」は「アクリル」、「メタクリル」の双方又はいずれかを意味し、「(メタ)アクリレート」は「アクリレート」、「メタクリレート」の双方又はいずれかを意味する。 The polymerizable group may be a radical polymerizable functional group or a cationic polymerizable functional group. The radical polymerizable functional group includes a functional group having an ethylene group. Specifically, an ethylene group, a propenyl group, a butenyl group, a vinylphenyl group, a (meth) acryl group, an allyl ether group, a vinyl ether group, One or more functional groups selected from the group consisting of a maleyl group, a maleimide group, a (meth) acrylamide group, an acetylvinyl group, and a vinylamide group may be included. The cationically polymerizable functional group may include one or more functional groups selected from the group consisting of an epoxy group, an oxetane group, a furyl group, and a vinyl ether group. “(Meth) acryl” means “acryl” and / or “methacryl”, and “(meth) acrylate” means both “acrylate” and “methacrylate”.
 これらのうち、ラジカル重合性の官能基としては(メタ)アクリル基、アリルエーテル基、ビニルエーテル基およびマレイミド基からなる群から選択される1または複数の官能基が好ましく、(メタ)アクリル基およびビニルエーテル基からなる群から選択される1または複数の官能基がさらに好ましく、(メタ)アクリル基がさらに好ましい。カチオン重合性の官能基としてはエポキシ基、オキセタン基およびビニルエーテル基が好ましく、ビニルエーテル基およびオキセタン基がさらに好ましい。 Among these, the radical polymerizable functional group is preferably one or more functional groups selected from the group consisting of (meth) acrylic groups, allyl ether groups, vinyl ether groups and maleimide groups, and (meth) acrylic groups and vinyl ethers. One or more functional groups selected from the group consisting of groups are more preferred, and (meth) acryl groups are more preferred. As the cationically polymerizable functional group, an epoxy group, an oxetane group and a vinyl ether group are preferable, and a vinyl ether group and an oxetane group are more preferable.
 単官能重合性化合物は、単独で用いてもよいし、複数の種類を組み合わせて用いてもよい。 Monofunctional polymerizable compounds may be used alone or in combination of a plurality of types.
 前記(メタ)アクリル基を有する化合物の例には、メチル(メタ)アクリレート、エチルアクリレート、プロピルアクリレート、ブチルアクリレート、2-エチルヘキシルアクリレート、ペンチルアクリレート、イソアミルアクリレート、オクチルアクリレート、イソオクチル(メタ)アクリレート、イソノニルアクリレート、デシルアクリレート、イソデシルアクリレート、ラウリル(メタ)アクリレート、トリデシル(メタ)アクリレート、イソミリスチルアクリレート、イソステアリルアクリレート、n-ステアリルアクリレート、シクロヘキシルアクリレート、ベンジルアクリレート、フェノキシエチルアクリレート、フェノキシエトキシエチルアクリレート、ブトキシエチル(メタ)アクリレート、テトラヒドロフルフリル(メタ)アクリレート、イソボルニル(メタ)アクリレート、ジシクロペンテニル(メタ)アクリレート、ジシクロペンタニル(メタ)アクリレート、メトキシエチルアクリレート、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、2-ヒドロキシブチル(メタ)アクリレート、2-ヒドロキシ-3-フェノキシプロピル(メタ)アクリレート、2-(メタ)アクリロイロキシエチルフタル酸、2-(メタ)アクリロイロキシエチル-2-ヒドロキシエチル-フタル酸、t-ブチルシクロヘキシル(メタ)アクリレート、2-(メタ)アクリロイルオキシエチルヘキサヒドロフタル酸、2-エチルヘキシル-ジグリコールアクリレート、4-ヒドロキシブチルアクリレート、メトキシジエチレングリコールアクリレート、メトキシトリエチレングリコールアクリレート、エトキシジエチレングリコールアクリレート、2-(2-エトキシエトキシ)エチルアクリレート、2-エチルヘキシルカルビトールアクリレート、などが含まれる。 Examples of the compound having the (meth) acrylic group include methyl (meth) acrylate, ethyl acrylate, propyl acrylate, butyl acrylate, 2-ethylhexyl acrylate, pentyl acrylate, isoamyl acrylate, octyl acrylate, isooctyl (meth) acrylate, Nonyl acrylate, decyl acrylate, isodecyl acrylate, lauryl (meth) acrylate, tridecyl (meth) acrylate, isomyristyl acrylate, isostearyl acrylate, n-stearyl acrylate, cyclohexyl acrylate, benzyl acrylate, phenoxyethyl acrylate, phenoxyethoxyethyl acrylate, Butoxyethyl (meth) acrylate, tetrahydrofurfuryl (meth) a Acrylate, isobornyl (meth) acrylate, dicyclopentenyl (meth) acrylate, dicyclopentanyl (meth) acrylate, methoxyethyl acrylate, 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 2-hydroxy Butyl (meth) acrylate, 2-hydroxy-3-phenoxypropyl (meth) acrylate, 2- (meth) acryloyloxyethylphthalic acid, 2- (meth) acryloyloxyethyl-2-hydroxyethyl-phthalic acid, t -Butylcyclohexyl (meth) acrylate, 2- (meth) acryloyloxyethyl hexahydrophthalic acid, 2-ethylhexyl-diglycol acrylate, 4-hydroxybutyl acrylate, methoxydiethylene glycol acrylate, methoxy Triethylene glycol acrylate, ethoxydiethylene glycol acrylate, 2- (2-ethoxyethoxy) ethyl acrylate, 2-ethylhexyl carbitol acrylate, and the like.
 単官能重合性化合物として、シクロヘキシルアクリレート、ベンジルアクリレート、フェノキシエチルアクリレート、およびフェノキシエトキシエチルアクリレートから選択される1または複数の化合物(以下、化合物Aともいう。)の量を、インク全体に対して50質量%以上とすると、光硬化性を高めることができる。好ましくは、フェノキシエチルアクリレートの量を、インク全体に対して50質量%以上とすることができる。 As the monofunctional polymerizable compound, the amount of one or more compounds selected from cyclohexyl acrylate, benzyl acrylate, phenoxyethyl acrylate, and phenoxyethoxyethyl acrylate (hereinafter also referred to as compound A) is 50 with respect to the entire ink. When it is at least mass%, photocurability can be improved. Preferably, the amount of phenoxyethyl acrylate can be 50% by mass or more based on the entire ink.
 化合物Aは、光重合することで線状の高分子量のポリマーを与える単官能モノマーである。熱重合と比べて、光重合では短時間で大量のラジカルが発生させるため、ラジカル濃度が高くなる。ラジカル濃度が高いと、ポリマーの生長反応の他に、水素引き抜きによるグラフト重合が発生して、不必要な架橋が生じ、その結果、ゴムとしての強度が低下することがある。また、光重合では、酸素阻害により高分子量のポリマーの生成が妨げられることは周知の事実である。化合物Aではこのような問題が生じにくい。化合物Aの重合物は、低重合度でも組成物の粘度を上昇させやすいため、酸素阻害の影響を少なくする。また、化合物Aを用いると、化合物Aに含まれる嵩張った置換基によって立体障害が生じ、グラフト反応が発生しにくくなるため、線状のポリマーが得られやすい。その結果、化合物Aを用いて3D造形物を作製すると、伸びと強度に優れた硬化物が得られると考えられる。 Compound A is a monofunctional monomer that gives a linear high molecular weight polymer by photopolymerization. Compared with thermal polymerization, the photopolymerization generates a large amount of radicals in a short time, and therefore the radical concentration becomes high. When the radical concentration is high, in addition to the growth reaction of the polymer, graft polymerization by hydrogen abstraction occurs and unnecessary crosslinking occurs, resulting in a decrease in strength as a rubber. In photopolymerization, it is a well-known fact that oxygen inhibition prevents the production of high molecular weight polymers. In Compound A, such a problem is unlikely to occur. Since the polymer of compound A tends to increase the viscosity of the composition even at a low degree of polymerization, the influence of oxygen inhibition is reduced. In addition, when Compound A is used, a steric hindrance occurs due to the bulky substituent contained in Compound A, and the graft reaction hardly occurs, so that a linear polymer is easily obtained. As a result, when a 3D model is produced using Compound A, it is considered that a cured product having excellent elongation and strength can be obtained.
 前記アリルエーテル基を有する単官能重合性化合物の例には、フェニルアリルエーテル、o-,m-,p-クレゾールモノアリルエーテル、ビフェニル-2-オールモノアリルエーテル、ビフェニル-4-オールモノアリルエーテル、ブチルアリルエーテル、シクロヘキシルアリルエーテル、シクロヘキサンメタノールモノアリルエーテル等が含まれる。 Examples of the monofunctional polymerizable compound having an allyl ether group include phenyl allyl ether, o-, m-, p-cresol monoallyl ether, biphenyl-2-ol monoallyl ether, biphenyl-4-ol monoallyl ether. Butyl allyl ether, cyclohexyl allyl ether, cyclohexane methanol monoallyl ether and the like.
 前記ビニルエーテル基を有する単官能重合性化合物の例には、ブチルビニルエーテル、ブチルプロペニルエーテル、ブチルブテニルエーテル、ヘキシルビニルエーテル、エチルヘキシルビニルエーテル、フェニルビニルエーテル、ベンジルビニルエーテル、エチルエトキシビニルエーテル、アセチルエトキシエトキシビニルエーテル、シクロヘキシルビニルエーテル、アダマンチルビニルエーテルなどが含まれる。 Examples of the monofunctional polymerizable compound having a vinyl ether group include butyl vinyl ether, butyl propenyl ether, butyl butenyl ether, hexyl vinyl ether, ethyl hexyl vinyl ether, phenyl vinyl ether, benzyl vinyl ether, ethyl ethoxy vinyl ether, acetyl ethoxy ethoxy vinyl ether, cyclohexyl vinyl ether. , Adamantyl vinyl ether and the like.
 前記マレイミド基を有する単官能重合性化合物の例には、フェニルマレイミド、シクロヘキシルマレイミド、n-ヘキシルマレイミドなどが含まれる。 Examples of the monofunctional polymerizable compound having a maleimide group include phenylmaleimide, cyclohexylmaleimide, n-hexylmaleimide and the like.
 前記エポキシ基を有する単官能重合性化合物の例には、アリルグリシジルエーテル、2-エチルヘキシルグリシジルエーテル、フェノール(ポリエチレンオキシ)5-グリシジルエーテル、ブチルフェニルグリシジルエーテル、ヘキサヒドロフタル酸グリシジルエステル、ラウリルグリシジルエーテル、1,2-エポキシシクロヘキサン、1,4-エポキシシクロヘキサン、1,2-エポキシ-4-ビニルシクロヘキサン、ノルボルネンオキシドなどが含まれる。 Examples of the monofunctional polymerizable compound having an epoxy group include allyl glycidyl ether, 2-ethylhexyl glycidyl ether, phenol (polyethyleneoxy) 5-glycidyl ether, butyl phenyl glycidyl ether, hexahydrophthalic acid glycidyl ester, lauryl glycidyl ether. 1,2-epoxycyclohexane, 1,4-epoxycyclohexane, 1,2-epoxy-4-vinylcyclohexane, norbornene oxide and the like.
 前記オキセタン基を有する単官能重合性化合物の例には、2-(3-オキセタニル)-1-ブタノール、3-(2-(2-エチルヘキシルオキシエチル))-3-エチルオキセタン、3-(2-フェノキシエチル)-3-エチルオキセタンなどが含まれる。 Examples of the monofunctional polymerizable compound having an oxetane group include 2- (3-oxetanyl) -1-butanol, 3- (2- (2-ethylhexyloxyethyl))-3-ethyloxetane, 3- (2 -Phenoxyethyl) -3-ethyloxetane and the like.
 1-1-2.多官能重合性化合物
 本発明の多官能重合性化合物とは、分子内に2以上の重合性基を有する重合性化合物である。本発明において、多官能重合性官能基の平均官能基数(a)は3以上である。
1-1-2. Polyfunctional polymerizable compound The polyfunctional polymerizable compound of the present invention is a polymerizable compound having two or more polymerizable groups in the molecule. In the present invention, the average functional group number (a) of the polyfunctional polymerizable functional group is 3 or more.
 多官能重合性化合物は、モノマーでもよいし、複数のモノマーが重合したオリゴマーもしくはプレポリマーまたはデンドリマーでもよい。多官能重合性化合物としてプレポリマーを用いるとき、その数平均分子量は10,000以上100,000以下であることが好ましく、10,000以上50,000以下であることがさらに好ましい。多官能重合性化合物の数平均分子量を大きくすることで、走査方向での光硬化時に、多官能重合性化合物の中に反応しない官能基が生じ、この反応しない官能基が硬化した層の表面に出やすくなる。この表面に出た部分は、次の層を形成するためのインク中の官能基と反応して、層間の重合に用いられるため、3D造形物の積層方向の強度を高めることができる。また、数平均分子量を100,000以下とすることで、インクジェットから組成物を射出する際に、インクの粘度が高くなることによる出射性の低下を防ぐことができる。 The polyfunctional polymerizable compound may be a monomer, an oligomer, a prepolymer or a dendrimer obtained by polymerizing a plurality of monomers. When a prepolymer is used as the polyfunctional polymerizable compound, the number average molecular weight is preferably 10,000 or more and 100,000 or less, and more preferably 10,000 or more and 50,000 or less. By increasing the number average molecular weight of the polyfunctional polymerizable compound, a non-reactive functional group is generated in the polyfunctional polymerizable compound during photocuring in the scanning direction, and this non-reactive functional group is formed on the surface of the cured layer. It becomes easy to come out. Since the part which came out on this surface reacts with the functional group in the ink for forming the following layer, and is used for the superposition | polymerization of an interlayer, the intensity | strength of the lamination direction of 3D modeling thing can be raised. Moreover, when the number average molecular weight is 100,000 or less, when the composition is ejected from the ink jet, it is possible to prevent a decrease in light emission due to an increase in the viscosity of the ink.
 重合性基は、ラジカル重合性の官能基でも、カチオン重合性の官能基でもよい。ラジカル重合性の官能基には、エチレン重合性基等が含まれる。カチオン重合性の官能基には、エポキシ基、オキセタン基、フリル基およびビニルエーテル基等が含まれる。 The polymerizable group may be a radical polymerizable functional group or a cationic polymerizable functional group. The radical polymerizable functional group includes an ethylene polymerizable group and the like. The cationic polymerizable functional group includes an epoxy group, an oxetane group, a furyl group, a vinyl ether group, and the like.
 前記エチレン重合性基とは、炭素-炭素間の二重結合により重合する性質をもつ重合性基をいい、多官能重合性化合物は、エチレン基、プロペニル基、ブテニル基、ビニルフェニル基、(メタ)アクリル基、アリルエーテル基、ビニルエーテル基、(メタ)アクリルアミド基、マレイル基、アセチルビニル基、ビニルアミド基およびマレイミド基からなる群から選択される1または複数の官能基を含みうる。これらのうち、多官能重合性化合物は、(メタ)アクリル基、アリルエーテル基、ビニルエーテル基およびマレイミド基からなる群から選択される1または複数の官能基を有することが好ましく、得られる3D造形物の伸びおよび強度を高める観点からは(メタ)アクリル基、ビニルエーテル基およびアリルエーテル基からなる群から選択される1または複数の官能基を有することが特に好ましい。これらのエチレン重合性基は、ラジカル重合性の官能基であるため、これらのエチレン重合性基を有する多官能重合性化合物は、ラジカル重合性の官能基を有する前記単官能重合性化合物と併用して用いることができる。ただし、本発明はエチレン重合性基を有する多官能重合性化合物とラジカル重合性の官能基を有する単官能重合性化合物の組み合わせに限定されることはなく、エチレン重合性基を有する多官能重合性化合物に対してラジカル重合性の官能基を有する単官能重合性化合物とカチオン重合性の官能基を有する単官能重合性化合物とを組み合わせて用いてもよい。これらの場合において、多官能重合性化合物は、炭素骨格1モルあたり3モル以上の上記エチレン重合性基を有することが好ましい。 The ethylene polymerizable group refers to a polymerizable group having a property of polymerizing by a carbon-carbon double bond, and the polyfunctional polymerizable compound includes an ethylene group, a propenyl group, a butenyl group, a vinylphenyl group, ) It may contain one or more functional groups selected from the group consisting of acrylic groups, allyl ether groups, vinyl ether groups, (meth) acrylamide groups, maleyl groups, acetyl vinyl groups, vinyl amide groups and maleimide groups. Among these, the polyfunctional polymerizable compound preferably has one or a plurality of functional groups selected from the group consisting of (meth) acrylic groups, allyl ether groups, vinyl ether groups, and maleimide groups, and the obtained 3D shaped article From the viewpoint of increasing the elongation and strength of the resin, it is particularly preferable to have one or more functional groups selected from the group consisting of (meth) acryl groups, vinyl ether groups and allyl ether groups. Since these ethylene polymerizable groups are radical polymerizable functional groups, polyfunctional polymerizable compounds having these ethylene polymerizable groups are used in combination with the monofunctional polymerizable compounds having radical polymerizable functional groups. Can be used. However, the present invention is not limited to the combination of a polyfunctional polymerizable compound having an ethylene polymerizable group and a monofunctional polymerizable compound having a radical polymerizable functional group, and the polyfunctional polymerizable having an ethylene polymerizable group. A monofunctional polymerizable compound having a radical polymerizable functional group and a monofunctional polymerizable compound having a cationic polymerizable functional group may be used in combination. In these cases, the polyfunctional polymerizable compound preferably has 3 mol or more of the ethylene polymerizable group per 1 mol of the carbon skeleton.
 カチオン重合性の官能基を有する多官能重合性化合物は、エポキシ基およびビニルエーテル基からなる群から選択される1または複数の官能基を有することが好ましい。カチオン重合性の官能基を有する多官能重合性化合物は、カチオン重合性の官能基を有する前記単官能重合性化合物と併用して用いることができる。ただし、本発明はカチオン重合性の官能基を有する多官能重合性化合物とカチオン重合性の官能基を有する単官能重合性化合物の組み合わせに限定されることはなく、カチオン重合性の官能基を有する多官能重合性化合物に対してラジカル重合性の官能基を有する単官能重合性化合物とカチオン重合性の官能基を有する単官能重合性化合物とを組み合わせて用いてもよい。これらの場合において、多官能重合性化合物は、炭素骨格1モルあたり3モル以上のカチオン重合性の官能基を有することが好ましい。 The polyfunctional polymerizable compound having a cationic polymerizable functional group preferably has one or more functional groups selected from the group consisting of an epoxy group and a vinyl ether group. The polyfunctional polymerizable compound having a cationic polymerizable functional group can be used in combination with the monofunctional polymerizable compound having a cationic polymerizable functional group. However, the present invention is not limited to a combination of a polyfunctional polymerizable compound having a cationic polymerizable functional group and a monofunctional polymerizable compound having a cationic polymerizable functional group, and has a cationic polymerizable functional group. A monofunctional polymerizable compound having a radical polymerizable functional group and a monofunctional polymerizable compound having a cationic polymerizable functional group may be used in combination with the polyfunctional polymerizable compound. In these cases, it is preferable that the polyfunctional polymerizable compound has 3 or more moles of cationically polymerizable functional groups per mole of the carbon skeleton.
 3D造形用光硬化性組成物に含まれる多官能重合性化合物は、1種類であっても、異なる種類の多官能重合性化合物の組み合わせであってもよい。上記の中でも光重合の感度が良好であることからアクリル基、メタクリル基、ビニルエーテル基、アリルエーテル基およびエポキシ基から選ばれる官能基を有する多官能重合性化合物を用いることが好ましい。 The polyfunctional polymerizable compound contained in the photocurable composition for 3D modeling may be one type or a combination of different types of polyfunctional polymerizable compounds. Among them, it is preferable to use a polyfunctional polymerizable compound having a functional group selected from an acryl group, a methacryl group, a vinyl ether group, an allyl ether group, and an epoxy group because the photopolymerization sensitivity is good.
 本発明においては、多官能重合性化合物の平均官能基数が3以上となるように、多官能重合性化合物の配合比率を調整する。平均官能基数とは、それぞれの多官能重合性化合物が有する官能基数の、多官能重合性化合物全体のモル数に占めるその多官能重合性化合物のモル分率で重みをつけた平均である。つまり、本発明の3D造形用光硬化性組成物に含まれる多官能重合性化合物が1種類のみであれば、平均官能基数はその化合物の官能基数であり、本発明の3D造形用光硬化性組成物が複数の多官能重合性化合物を含む場合は、それぞれの多官能重合性化合物の官能基数に、多官能重合性化合物全体のモル数に占めるその多官能重合性化合物のモル分率を乗算した値の合計となる。なお、このとき、ごく少量のみ含まれるような化合物については、その存在が3D造形物の物性に与える影響は少ないため、モル分率の計算から除外してもよい。 In the present invention, the blending ratio of the polyfunctional polymerizable compound is adjusted so that the average number of functional groups of the polyfunctional polymerizable compound is 3 or more. The average number of functional groups is an average weighted by the mole fraction of the polyfunctional polymerizable compound in the total number of moles of the polyfunctional polymerizable compound of the number of functional groups of each polyfunctional polymerizable compound. That is, if there is only one kind of polyfunctional polymerizable compound contained in the photocurable composition for 3D modeling of the present invention, the average number of functional groups is the number of functional groups of the compound, and the photocurable property for 3D modeling of the present invention. When the composition contains a plurality of polyfunctional polymerizable compounds, the number of functional groups of each polyfunctional polymerizable compound is multiplied by the mole fraction of the polyfunctional polymerizable compound in the total number of moles of the polyfunctional polymerizable compound. The sum of the values obtained. At this time, a compound that is contained only in a very small amount may be excluded from the calculation of the molar fraction because its presence has little influence on the physical properties of the 3D shaped object.
 本発明では、平均官能基数が3以上である多官能重合性化合物を含む3D造形用光硬化組成部物を用いることで、ゴム性能がよい、すなわち、伸びと強度が両立された3D造形物が得られる。その理由は推測の域をでないが、次のように考えている。多官能重合性化合物が含む複数の架橋基は、分子距離的には極めて短い距離に位置している。そこに、単官能重合性化合物から生成した線状高分子の重合性末端が接近するため、一つの線状高分子に生じる複数の架橋点も、互いに短い距離に位置することになり、それぞれの架橋点は、マクロ的にみると多重に架橋される。そのため、伸びに影響する架橋間分子量を変化させないことで伸びを確保し、一方でそれぞれの架橋点による強度を高めることができるため、3D造形物のゴム性能が向上したのではないかと考えている。 In the present invention, by using a photo-curing composition part for 3D modeling containing a polyfunctional polymerizable compound having an average functional group number of 3 or more, a rubber performance is good, that is, a 3D model having both elongation and strength compatible. can get. The reason is not speculative, but I think as follows. The plurality of crosslinking groups contained in the polyfunctional polymerizable compound are located at a very short distance in terms of molecular distance. Since the polymerizable terminal of the linear polymer generated from the monofunctional polymerizable compound approaches there, a plurality of crosslinking points generated in one linear polymer are also located at a short distance from each other. The cross-linking points are cross-linked in a macro manner. Therefore, since the elongation can be ensured by not changing the molecular weight between crosslinks that affects the elongation, and the strength due to the respective crosslinking points can be increased, the rubber performance of the 3D shaped object may be improved. .
 また、本発明では、平均官能基数が3以上である多官能重合性化合物を含む3D造形用光硬化組成部物を用いることで、3D造形物の積層間の強度が向上した。その理由は推測の域をでないが、次のように考えている。多官能重合性化合物は、比較的大きい分子量を持っているため、第n層の光照射時には、液の増粘により、多官能重合性化合物の一部のみが反応し、他の部分は反応しない。この反応しなかった部分が光硬化中に表面に排斥されることにより、表面に重合性基がある状態になる。この表面に、第n+1の層の組成物が着弾し、光硬化するときに、第1層の表面に出た重合性基とも反応しながら、重合することになる。そのため、本発明では3D造形物の積層間の強度も強くなると考えられる。 Moreover, in this invention, the intensity | strength between lamination | stacking of 3D modeling objects improved by using the photocurable composition part for 3D modeling containing the polyfunctional polymerizable compound whose average functional group number is 3 or more. The reason is not speculative, but I think as follows. Since the polyfunctional polymerizable compound has a relatively large molecular weight, only part of the polyfunctional polymerizable compound reacts and the other part does not react due to the thickening of the liquid when the n-th layer is irradiated with light. . The unreacted part is eliminated on the surface during photocuring, so that the surface has a polymerizable group. When the composition of the (n + 1) th layer lands on this surface and is photocured, it is polymerized while reacting with the polymerizable group that appeared on the surface of the first layer. Therefore, in this invention, it is thought that the intensity | strength between lamination | stacking of 3D modeling object also becomes strong.
 本発明において、多官能重合性化合物として、官能基数が20以上である化合物を含むと、強度をより強くすることが可能となる。これは、上述した多重に架橋される架橋点のそれぞれにおける強度がさらに強くなることによると考えられる。また、多官能重合性化合物は、数平均分子量500あたり1.0モル以上の重合性基を有することが好ましい。 In the present invention, when the polyfunctional polymerizable compound includes a compound having 20 or more functional groups, the strength can be further increased. This is considered to be due to the fact that the strength at each of the above-mentioned multiple cross-linking points is further increased. Moreover, it is preferable that a polyfunctional polymerizable compound has 1.0 mol or more of polymerizable groups per number average molecular weight of 500.
 多官能重合性化合物の例には、多官能(メタ)アクリレート化合物、多官能ビニルエーテル化合物、多官能アリルエーテル化合物および多官能エポキシ化合物などが含まれる。 Examples of polyfunctional polymerizable compounds include polyfunctional (meth) acrylate compounds, polyfunctional vinyl ether compounds, polyfunctional allyl ether compounds, and polyfunctional epoxy compounds.
 多官能重合性化合物としての二官能(メタ)アクリレート化合物の例には、トリエチレングリコールジ(メタ)アクリレート、テトラエチレングリコールジ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、トリプロピレングリコールジ(メタ)アクリレート、ポリプロピレングリコールジ(メタ)アクリレート、1,4-ブタンジオールジ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、1,9-ノナンジオールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、ジメチロール-トリシクロデカンジ(メタ)アクリレート、ビスフェノールAのPO付加物ジ(メタ)アクリレート、ヒドロキシピバリン酸ネオペンチルグリコールジ(メタ)アクリレート、ポリテトラメチレングリコールジ(メタ)アクリレートなどが挙げられる。 Examples of bifunctional (meth) acrylate compounds as polyfunctional polymerizable compounds include triethylene glycol di (meth) acrylate, tetraethylene glycol di (meth) acrylate, polyethylene glycol di (meth) acrylate, tripropylene glycol di ( (Meth) acrylate, polypropylene glycol di (meth) acrylate, 1,4-butanediol di (meth) acrylate, 1,6-hexanediol di (meth) acrylate, 1,9-nonanediol di (meth) acrylate, neopentyl Glycol di (meth) acrylate, dimethylol-tricyclodecane di (meth) acrylate, bisphenol A PO adduct di (meth) acrylate, hydroxypivalate neopentyl glycol di (meth) acrylate, polytetra Such as Chi glycol di (meth) acrylate.
 多官能重合性化合物としての三官能以上の(メタ)アクリレート化合物の例には、トリメチロールプロパントリ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、ジトリメチロールプロパンテトラ(メタ)アクリレート、グリセリンプロポキシトリ(メタ)アクリレート、ペンタエリスリトールエトキシテトラ(メタ)アクリレートなどが含まれる。 Examples of tri- or higher functional (meth) acrylate compounds as polyfunctional polymerizable compounds include trimethylolpropane tri (meth) acrylate, pentaerythritol tri (meth) acrylate, pentaerythritol tetra (meth) acrylate, dipentaerythritol hexa (Meth) acrylate, ditrimethylolpropane tetra (meth) acrylate, glycerin propoxytri (meth) acrylate, pentaerythritol ethoxytetra (meth) acrylate and the like are included.
 多官能重合性化合物としての多官能(メタ)アクリレート化合物は、変性物であってもよい。変性物の例には、エチレンオキサイド変性トリメチロールプロパントリ(メタ)アクリレート、エチレンオキサイド変性ペンタエリスリトールテトラアクリレート等のエチレンオキサイド変性(メタ)アクリレート化合物;カプロラクトン変性トリメチロールプロパントリ(メタ)アクリレート等のカプロラクトン変性(メタ)アクリレート化合物;およびカプロラクタム変性ジペンタエリスリトールヘキサ(メタ)アクリレート等のカプロラクタム変性(メタ)アクリレート化合物などが含まれる。 The polyfunctional (meth) acrylate compound as the polyfunctional polymerizable compound may be a modified product. Examples of modified products include ethylene oxide-modified (meth) acrylate compounds such as ethylene oxide-modified trimethylolpropane tri (meth) acrylate and ethylene oxide-modified pentaerythritol tetraacrylate; caprolactone such as caprolactone-modified trimethylolpropane tri (meth) acrylate Modified (meth) acrylate compounds; and caprolactam-modified (meth) acrylate compounds such as caprolactam-modified dipentaerythritol hexa (meth) acrylate.
 多官能重合性化合物としての二官能ビニルエーテル化合物としては、例えば、エチレングリコールジビニルエーテル、ジエチレングリコールジビニルエーテル、トリエチレングリコールジビニルエーテル、プロピレングリコールジビニルエーテル、ジプロピレングリコールビニルエーテル、ブチレンジビニルエーテル、ジブチレングリコールジビニルエーテル、ネオペンチルグリコールジビニルエーテル、シクロヘキサンジオールジビニルエーテル、シクロヘキサンジメタノールジビニルエーテル、ノルボルニルジメタノールジビニルエーテル、イソバイニルジビニルエーテル、ジビニルレゾルシン、ジビニルハイドロキノンなどを挙げることができる。 Examples of the bifunctional vinyl ether compound as the polyfunctional polymerizable compound include ethylene glycol divinyl ether, diethylene glycol divinyl ether, triethylene glycol divinyl ether, propylene glycol divinyl ether, dipropylene glycol vinyl ether, butylene divinyl ether, dibutylene glycol divinyl ether. And neopentyl glycol divinyl ether, cyclohexanediol divinyl ether, cyclohexane dimethanol divinyl ether, norbornyl dimethanol divinyl ether, isovinyl divinyl ether, divinyl resorcin, and divinyl hydroquinone.
 多官能重合性化合物としての三官能ビニルエーテル化合物としては、例えば、グリセリントリビニルエーテル、グリセリンエチレンオキシド付加物トリビニルエーテル(エチレンオキシドの付加モル数6)、トリメチロールプロパントリビニルエーテル、トリビニルエーテルエチレンオキシド付加物トリビニルエーテル(エチレンオキシドの付加モル数3)などを挙げることができる。 Examples of the trifunctional vinyl ether compound as the polyfunctional polymerizable compound include glycerin trivinyl ether, glycerin ethylene oxide adduct trivinyl ether (addition mole number of ethylene oxide 6), trimethylolpropane trivinyl ether, trivinyl ether ethylene oxide adduct trivinyl ether (ethylene oxide). The number of added moles of 3) may be mentioned.
 多官能重合性化合物としての四官能以上のビニルエーテル化合物としては、例えば、ペンタエリスリトールトリビニルエーテル、ジトリメチロールプロパンヘキサビニルエーテル、それらのオキシエチレン付加物などが挙げられる。 Examples of the tetrafunctional or higher functional vinyl ether compound as the polyfunctional polymerizable compound include pentaerythritol trivinyl ether, ditrimethylolpropane hexavinyl ether, and their oxyethylene adducts.
 多官能重合性化合物としての二官能アリルエーテル化合物としては、例えば、トリメチロールプロパンジアリルエーテル、グリセロール α,α’-ジアリルエーテル、ジアリルフタレート、ジアリルイソフタレートなどを挙げることができる。 Examples of the bifunctional allyl ether compound as the polyfunctional polymerizable compound include trimethylolpropane diallyl ether, glycerol α, α′-diallyl ether, diallyl phthalate, diallyl isophthalate, and the like.
 多官能重合性化合物としての三官能アリルエーテル化合物としては、例えば、ペンタエリスリトールトリアリルエーテルなどを挙げることができる。 Examples of the trifunctional allyl ether compound as the polyfunctional polymerizable compound include pentaerythritol triallyl ether.
 多官能重合性化合物としての四官能以上のアリルエーテル化合物としては、例えば、ダイソー社製のジアリルフタレートプレポリマー、ジアリルイソフタレートプレポリマーなどが挙げられる。 Examples of the tetrafunctional or higher functional allyl ether compound as the polyfunctional polymerizable compound include diallyl phthalate prepolymer and diallyl isophthalate prepolymer manufactured by Daiso Corporation.
 多官能重合性化合物としての二官能エポキシ化合物としては、例えば、ネオペンチルグリコールジグリシジルエーテル、1,6ヘキサンジオールジグリシジルエーテルなどを挙げることができる。 Examples of the bifunctional epoxy compound as the polyfunctional polymerizable compound include neopentyl glycol diglycidyl ether and 1,6 hexanediol diglycidyl ether.
 多官能重合性化合物としての三官能エポキシ化合物としては、例えば、ポリグリセロールトリグリシジルエーテルなどを挙げることができる。 Examples of the trifunctional epoxy compound as the polyfunctional polymerizable compound include polyglycerol triglycidyl ether.
 多官能重合性化合物としての四官能以上のエポキシ化合物としては、例えば、ソルビトールポリグリシジルエーテル、ペンタエリスリトールポリグリシジルエーテルなどが挙げられる。 Examples of the tetrafunctional or higher functional epoxy compound as the polyfunctional polymerizable compound include sorbitol polyglycidyl ether and pentaerythritol polyglycidyl ether.
 1-1-3.重合性化合物の組成
 以上の通り、本発明の3D造形用光硬化性組成物に含まれる重合性化合物は、単官能重合性化合物および多官能重合性化合物を含む。3D造形用光硬化性組成物中の単官能重合性化合物(M)と多官能重合性化合物(m)とのモル比率は、(M)/(m)=92/8~99.99/0.01である。
1-1-3. Composition of Polymerizable Compound As described above, the polymerizable compound contained in the photocurable composition for 3D modeling of the present invention includes a monofunctional polymerizable compound and a polyfunctional polymerizable compound. The molar ratio of the monofunctional polymerizable compound (M) to the polyfunctional polymerizable compound (m) in the photocurable composition for 3D modeling is (M) / (m) = 92/8 to 99.99 / 0. .01.
 単官能重合性化合物(M)と多官能重合性化合物(m)とのモル比率を(M)/(m)=92/8以上とすることで、十分な割合の単官能重合性化合物を3D造形用光硬化性組成物に含むことができる。これにより、線状ポリマーとして成長した単官能重合性化合物が重合した高分子鎖が形成され、ゴム特性としての伸び性を十分に有する3D造形物が得られる。一方で、単官能重合性化合物(M)と多官能重合性化合物(m)とのモル比率を(M)/(m)=99.99/0.01以下とすることで、十分な割合の多官能重合性化合物を3D造形用光硬化性組成物に含むことができる。これにより、多官能重合性化合物による架橋が形成され、ゴム特性としての弾性を十分に有する3D造形物が得られる。 By setting the molar ratio of the monofunctional polymerizable compound (M) and the polyfunctional polymerizable compound (m) to (M) / (m) = 92/8 or more, a sufficient proportion of the monofunctional polymerizable compound is 3D. It can contain in the photocurable composition for modeling. As a result, a polymer chain obtained by polymerizing the monofunctional polymerizable compound grown as a linear polymer is formed, and a 3D shaped article having sufficient extensibility as rubber characteristics is obtained. On the other hand, by setting the molar ratio of the monofunctional polymerizable compound (M) and the polyfunctional polymerizable compound (m) to (M) / (m) = 99.99 / 0.01 or less, a sufficient ratio can be obtained. A polyfunctional polymerizable compound can be included in the photocurable composition for 3D modeling. Thereby, the bridge | crosslinking by a polyfunctional polymerizable compound is formed, and the 3D modeling thing which has sufficient elasticity as a rubber characteristic is obtained.
 なお、多官能重合性化合物の平均官能基数が多くなると、架橋に用いることのできる1分子あたりの官能基数が多くなる。そのため、多官能重合性化合物の比率を低くしても、十分な数の架橋が形成されるため、3D造形物は十分な弾性を有する。一方で、架橋の数を一定範囲に抑えることで、単官能重合性化合物の重合による線状ポリマーの伸長が架橋によって阻害されるのを抑制し、線状ポリマーによる伸びをより大きくすることができる。 In addition, when the average number of functional groups of the polyfunctional polymerizable compound increases, the number of functional groups per molecule that can be used for crosslinking increases. Therefore, even if the ratio of the polyfunctional polymerizable compound is lowered, a sufficient number of crosslinks are formed, so that the 3D structure has sufficient elasticity. On the other hand, by suppressing the number of crosslinks within a certain range, it is possible to suppress the elongation of the linear polymer due to the polymerization of the monofunctional polymerizable compound from being inhibited by the crosslinking, and to further increase the elongation due to the linear polymer. .
 そのため、前記多官能重合性化合物の平均官能基数をaとしたとき、単官能重合性化合物(M)と多官能重合性化合物(m)とを(M)/(m)=(100-8×2/a)/(8×2/a)~99.99/0.01のモル比で含ませてもよい。通常用いられる2官能架橋剤を使用した場合と架橋剤の官能基量を同じとすることにより、架橋点間分子量を維持したまま架橋部の強度を高めることができ、破断強度および破断伸度が上昇する。また架橋部とその他の部分の粗密が形成され、より硬い部分と軟らかい部分の海島構造ができてゴム状の物性を発現しやすくなっていると本発明者らは推定している。 Therefore, when the average functional group number of the polyfunctional polymerizable compound is a, the monofunctional polymerizable compound (M) and the polyfunctional polymerizable compound (m) are expressed as (M) / (m) = (100−8 × 2 / a) / (8 × 2 / a) to 99.99 / 0.01 may be included. By making the functional group amount of the crosslinking agent the same as when using a bifunctional crosslinking agent that is usually used, the strength of the crosslinked part can be increased while maintaining the molecular weight between the crosslinking points, and the breaking strength and breaking elongation are To rise. In addition, the present inventors presume that the cross-linked portion and other portions are formed densely, thereby forming a sea-island structure of a harder portion and a softer portion, so that rubbery physical properties are easily expressed.
 1-2.光重合開始剤
 本発明の3D造形用光硬化性組成物は、光重合開始剤を含む。前記単官能重合性化合物および多官能重合性化合物のいずれかまたは双方に、ラジカル重合性の官能基を有するものを用いたときは、光重合開始剤として光ラジカル開始剤を用いることができる。前記単官能重合性化合物および多官能重合性化合物のいずれかまたは双方に、カチオン重合性の官能基を有するものを用いたときは、光重合開始剤として光酸発生剤を用いることができる。光ラジカル開始剤と光酸発生剤の両方を組み合わせて用いてもよい。特に、光重合性化合物としてビニルエーテル基を有する化合物を用いるときに、光ラジカル開始剤と光酸発生剤とを組み合わせて用いることができる。
1-2. Photopolymerization initiator The photocurable composition for 3D modeling of the present invention contains a photopolymerization initiator. When one having both a monofunctional polymerizable compound and a polyfunctional polymerizable compound having a radical polymerizable functional group is used, a photo radical initiator can be used as a photo polymerization initiator. When one or both of the monofunctional polymerizable compound and the polyfunctional polymerizable compound has a cationic polymerizable functional group, a photoacid generator can be used as a photopolymerization initiator. A combination of both a photo radical initiator and a photo acid generator may be used. In particular, when a compound having a vinyl ether group is used as the photopolymerizable compound, a photo radical initiator and a photo acid generator can be used in combination.
 光ラジカル開始剤には、開裂型と水素引き抜き型とがある。本発明の3D造形用光硬化性組成物は、少なくとも開裂型の光重合開始剤を含むことが好ましい。つまり、本発明の3D造形用光硬化性組成物は、(a)開裂型と水素引き抜き型の両方の光重合開始剤を含有していてもよく、(b)開裂型の光重合開始剤のみを含有していてもよい。所望の効果に応じて、光重合開始剤の態様を適宜使い分ければよい。 The photo radical initiator includes a cleavage type and a hydrogen abstraction type. The photocurable composition for 3D modeling of the present invention preferably contains at least a cleavage type photopolymerization initiator. That is, the photocurable composition for 3D modeling of the present invention may contain (a) both a cleavage type and a hydrogen abstraction type photopolymerization initiator, and (b) only a cleavage type photopolymerization initiator. May be contained. What is necessary is just to use properly the aspect of a photoinitiator according to the desired effect.
 3D造形用光硬化性組成物が、(a)開裂型と水素引き抜き型の両方の光重合開始剤を含有している場合は、開裂型の開始剤を質量比として多く含有していることが好ましい。光重合開始剤における水素引き抜き型開始剤の割合は、30質量%以下であることが好ましく、20質量%以上30質量%以下であることがより好ましい。 When the photocurable composition for 3D modeling contains (a) both a cleavage type and a hydrogen abstraction type photopolymerization initiator, it may contain a large amount of a cleavage type initiator as a mass ratio. preferable. The ratio of the hydrogen abstraction type initiator in the photopolymerization initiator is preferably 30% by mass or less, and more preferably 20% by mass or more and 30% by mass or less.
 3D造形用光硬化性組成物中に光重合開始剤として開裂型と水素引き抜き型の両方の種類の重合開始剤を含有していると、3D造形用光硬化性組成物の硬化速度が上昇する。この理由は定かではないが、開裂型と水素引き抜き型の光重合開始剤が並存すると、水素引き抜き型の重合開始剤が増感剤のような役割を果たすために重合速度が向上するものと考えられる。これは通常の印刷に比べ、はるかに大きな時間を要する3D造形物の製造において、重要である。 When the photo-curable composition for 3D modeling contains both a cleavage type and a hydrogen abstraction type polymerization initiator as a photopolymerization initiator, the curing rate of the photo-curable composition for 3D modeling increases. . The reason for this is not clear, but it is thought that when cleavage type and hydrogen abstraction type photopolymerization initiators coexist, the hydrogen abstraction type polymerization initiator functions as a sensitizer and thus the polymerization rate is improved. It is done. This is important in the production of 3D objects that require much longer time than ordinary printing.
 3D造形用光硬化性組成物が、(b)開裂型の光重合開始剤のみを含有している(水素引き抜き型の開始剤を含有していない)場合には、(a)開裂型と水素引き抜き型の両方の光重合開始剤を含有している場合と比較して、3D造形用光硬化性組成物の硬化物の伸びまたは弾性が向上することがある。この理由は定かではないが、以下のように考えることができる。単官能重合性化合物の重合により得られる線状高分子間で、水素引き抜き型の重合開始剤によってグラフト反応が発生すると、不規則な架橋が生じることがある。架橋が規則的であれば、硬化物を伸長させた際に均一に力を受けるため、高い伸縮性を維持することができる。ところが、硬化物中に不規則な架橋があると、硬化物を伸長させた際に組成物中の特定の部位に応力が集中する。そのため、架橋部位または線状高分子鎖の破断を招くために、かえって伸びまたは弾性が低下すると考えられる。 When the photocurable composition for 3D modeling contains only (b) a cleavage type photopolymerization initiator (no hydrogen abstraction type initiator), (a) a cleavage type and hydrogen The elongation or elasticity of the cured product of the photocurable composition for 3D modeling may be improved as compared with a case where both photopolymerization initiators of the drawing type are contained. The reason for this is not clear, but can be considered as follows. When a graft reaction occurs between linear polymers obtained by polymerization of a monofunctional polymerizable compound by a hydrogen abstraction type polymerization initiator, irregular crosslinking may occur. If the cross-linking is regular, a uniform force is applied when the cured product is stretched, so that high stretchability can be maintained. However, if there are irregular crosslinks in the cured product, stress is concentrated at specific sites in the composition when the cured product is stretched. For this reason, it is considered that elongation or elasticity is lowered in order to cause breakage of the cross-linked site or the linear polymer chain.
 そのため、3D造形物の作製スピードを早めることが求められる場合には、3D造形用光硬化性組成物に、(a)開裂型と水素引き抜き型の両方の種類の重合開始剤を含有させることが好ましい。一方、硬化物の耐久性を重視する場合には、(b)開裂型の光重合開始剤のみを含有させる(水素引き抜き型の光重合開始剤を実質的に含有させない)ことが好ましい。 Therefore, when it is required to increase the production speed of the 3D modeling object, the photocurable composition for 3D modeling may include (a) both types of polymerization initiators of a cleavage type and a hydrogen abstraction type. preferable. On the other hand, when importance is attached to the durability of the cured product, it is preferable to contain only (b) a cleavage type photopolymerization initiator (substantially contain no hydrogen abstraction type photopolymerization initiator).
 開裂型の光重合開始剤の例には、ジエトキシアセトフェノン、2-ヒドロキシ-2-メチル-1-フェニルプロパン-1-オン、ベンジルジメチルケタール、1-(4-イソプロピルフェニル)-2-ヒドロキシ-2-メチルプロパン-1-オン、4-(2-ヒドロキシエトキシ)フェニル-(2-ヒドロキシ-2-プロピル)ケトン、1-ヒドロキシシクロヘキシル-フェニルケトン、2-メチル-2-モルホリノ(4-チオメチルフェニル)プロパン-1-オン、2-ベンジル-2-ジメチルアミノ-1-(4-モルホリノフェニル)-ブタノン等のアセトフェノン系;ベンゾイン、ベンゾインメチルエーテル、ベンゾインイソプロピルエーテル等のベンゾイン類;2,4,6-トリメチルベンゾインジフェニルホスフィンオキシド等のアシルホスフィンオキシド系;ベンジルおよびメチルフェニルグリオキシエステルなどが含まれる。 Examples of cleavage type photopolymerization initiators include diethoxyacetophenone, 2-hydroxy-2-methyl-1-phenylpropan-1-one, benzyldimethyl ketal, 1- (4-isopropylphenyl) -2-hydroxy- 2-methylpropan-1-one, 4- (2-hydroxyethoxy) phenyl- (2-hydroxy-2-propyl) ketone, 1-hydroxycyclohexyl-phenylketone, 2-methyl-2-morpholino (4-thiomethyl) Acetophenones such as phenyl) propan-1-one, 2-benzyl-2-dimethylamino-1- (4-morpholinophenyl) -butanone; benzoins such as benzoin, benzoin methyl ether, benzoin isopropyl ether; Acylphosphine oxide systems such as 6-trimethylbenzoindiphenylphosphine oxide; benzyl and methyl Phenylglyoxyester and the like are included.
 水素引き抜き型の光重合開始剤の例には、ベンゾフェノン類(ベンゾフェノン、N,N-ジエチルベンゾフェノン、等)、チオキサントン類(2,4-ジエチルチオキサントン、イソプロピルチオキサントン、クロロチオキサントン、イソプロポキシクロロチオキサントン等)、アントラキノン類(エチルアントラキノン、ベンズアントラキノン、アミノアントラキノン、クロロアントラキノン等)、アクリジン類(9-フェニルアクリジン、1,7-ビス(9,9'-アクリジニル)ヘプタン等)等が含まれる。 Examples of hydrogen abstraction type photopolymerization initiators include benzophenones (benzophenone, N, N-diethylbenzophenone, etc.), thioxanthones (2,4-diethylthioxanthone, isopropylthioxanthone, chlorothioxanthone, isopropoxychlorothioxanthone, etc.) And anthraquinones (ethyl anthraquinone, benzanthraquinone, aminoanthraquinone, chloroanthraquinone, etc.), acridines (9-phenylacridine, 1,7-bis (9,9′-acridinyl) heptane, etc.) and the like.
 光酸発生剤の例には、公知のスルホニウム塩、アンモニウム塩、ジアリールヨードニウム塩、トリアリールスルホニウム塩等が含まれる。具体的には、トリアリールスルホニウムヘキサフルオロホスフェート塩、ヨードニウム(4-メチルフェニル)(4-(2-メチルプロピル)フェニル)ヘキサフルオロホスフェート、トリアリールスルホニウムヘキサフルオロアンチモネート、3-メチル-2-ブテニルテトラメチレンスルホニウムヘキサフルオロアンチモネート等が含まれる。市販の光酸発生剤として、バイエル:UVI-6990、ダイセル・サイテック:Uvacure1591、チバ・スペシャルティ・ケミカルズ:CGI-552、Ir250、旭電化工業:SP-150、152、170、172、CP-77、サンアプロ:CPI-100P、CPI-101A、CPI-200K、CPI-210S等を用いることができる。 Examples of the photoacid generator include known sulfonium salts, ammonium salts, diaryliodonium salts, triarylsulfonium salts, and the like. Specifically, triarylsulfonium hexafluorophosphate salt, iodonium (4-methylphenyl) (4- (2-methylpropyl) phenyl) hexafluorophosphate, triarylsulfonium hexafluoroantimonate, 3-methyl-2-butyl Tenenyltetramethylenesulfonium hexafluoroantimonate and the like are included. Commercially available photoacid generators include Bayer: UVI-6990, Daicel Cytec: Uvacure 1591, Ciba Specialty Chemicals: CGI-552, Ir250, Asahi Denka Kogyo: SP-150, 152, 170, 172, CP-77, Sun Apro: CPI-100P, CPI-101A, CPI-200K, CPI-210S, etc. can be used.
 また、本発明の3D造形用光硬化性組成物は、増感剤を含有してもよい。増感剤としては、例えば、400nm以上の波長の光により増感機能を発現するものを用いることができる。このような増感剤の例には、9,10-ジブトキシアントラセン、9,10-ジエトキシアントラセン、9,10-ジプロポキシアントラセン、9,10-ビス(2-エチルヘキシルオキシ)アントラセン等のアントラセン誘導体等が含まれる。これらの増感剤のうち、市販の物の例には、川崎化成工業:DBA、DEA等が含まれる。 Moreover, the photocurable composition for 3D modeling of the present invention may contain a sensitizer. As a sensitizer, what expresses a sensitization function with the light of a wavelength of 400 nm or more can be used, for example. Examples of such sensitizers include anthracene such as 9,10-dibutoxyanthracene, 9,10-diethoxyanthracene, 9,10-dipropoxyanthracene, and 9,10-bis (2-ethylhexyloxy) anthracene. Derivatives and the like are included. Among these sensitizers, examples of commercially available products include Kawasaki Kasei Kogyo: DBA, DEA and the like.
 3D造形用光硬化性組成物における光重合開始剤の含有量は、活性光線や活性光線硬化性化合物の種類などにもよるが、0.01質量%~10質量%であることが好ましい。 The content of the photopolymerization initiator in the photocurable composition for 3D modeling is preferably 0.01% by mass to 10% by mass, although it depends on the type of actinic ray or actinic ray curable compound.
 1-3.他のインク成分
 3D造形用光硬化性組成物には、必要に応じて光重合開始剤助剤や重合禁止剤などがさらに含まれていてもよい。光重合開始剤助剤は、第3級アミン化合物であってよく、芳香族第3級アミン化合物が好ましい。芳香族第3級アミン化合物の例には、N,N-ジメチルアニリン、N,N-ジエチルアニリン、N,N-ジメチル-p-トルイジン、N,N-ジメチルアミノ-p-安息香酸エチルエステル、N,N-ジメチルアミノ-p-安息香酸イソアミルエチルエステル、N,N-ジヒドロキシエチルアニリン、トリエチルアミンおよびN,N-ジメチルヘキシルアミン等が含まれる。なかでも、N,N-ジメチルアミノ-p-安息香酸エチルエステル、N,N-ジメチルアミノ-p-安息香酸イソアミルエチルエステルが好ましい。3D造形用光硬化性組成物に、これらの化合物が、一種のみ含まれていてもよく、二種類以上が含まれていてもよい。
1-3. Other ink components The photocurable composition for 3D modeling may further contain a photopolymerization initiator auxiliary agent, a polymerization inhibitor, or the like, if necessary. The photopolymerization initiator assistant may be a tertiary amine compound, preferably an aromatic tertiary amine compound. Examples of aromatic tertiary amine compounds include N, N-dimethylaniline, N, N-diethylaniline, N, N-dimethyl-p-toluidine, N, N-dimethylamino-p-benzoic acid ethyl ester, N, N-dimethylamino-p-benzoic acid isoamyl ethyl ester, N, N-dihydroxyethylaniline, triethylamine, N, N-dimethylhexylamine and the like are included. Of these, N, N-dimethylamino-p-benzoic acid ethyl ester and N, N-dimethylamino-p-benzoic acid isoamyl ethyl ester are preferred. Only 1 type of these compounds may be contained in the photocurable composition for 3D modeling, and 2 or more types may be contained.
 重合禁止剤の例には、(アルキル)フェノール、ハイドロキノン、カテコール、レゾルシン、p-メトキシフェノール、t-ブチルカテコール、t-ブチルハイドロキノン、ピロガロール、1,1-ピクリルヒドラジル、フェノチアジン、p-ベンゾキノン、ニトロソベンゼン、2,5-ジ-t-ブチル-p-ベンゾキノン、ジチオベンゾイルジスルフィド、ピクリン酸、クペロン、アルミニウムN-ニトロソフェニルヒドロキシルアミン、トリ-p-ニトロフェニルメチル、N-(3-オキシアニリノ-1,3-ジメチルブチリデン)アニリンオキシド、ジブチルクレゾール、シクロヘキサノンオキシムクレゾール、グアヤコール、o-イソプロピルフェノール、ブチラルドキシム、メチルエチルケトキシム、シクロヘキサノンオキシム等が含まれる。 Examples of polymerization inhibitors include (alkyl) phenol, hydroquinone, catechol, resorcin, p-methoxyphenol, t-butylcatechol, t-butylhydroquinone, pyrogallol, 1,1-picrylhydrazyl, phenothiazine, p-benzoquinone , Nitrosobenzene, 2,5-di-t-butyl-p-benzoquinone, dithiobenzoyl disulfide, picric acid, cuperone, aluminum N-nitrosophenylhydroxylamine, tri-p-nitrophenylmethyl, N- (3-oxyanilino- 1,3-dimethylbutylidene) aniline oxide, dibutylcresol, cyclohexanone oxime cresol, guaiacol, o-isopropylphenol, butyraloxime, methyl ethyl ketoxime, cyclohexanone oxime and the like.
 3D造形用光硬化性組成物には、その硬化物と後述のサポート剤の硬化物との剥離を容易にするために、さらに剥離促進剤を含んでもよい。剥離促進剤は、インクの全質量に対して0.01質量%~3.0質量%含有することが好ましい。0.01質量%未満では基材との剥離性が低下し、3.0質量%を超えると、硬化前の3D造形用光硬化性組成物の液滴が合一しやすくなり、インク滲みの原因となることがある。 The photocurable composition for 3D modeling may further contain a peeling accelerator in order to facilitate the peeling between the cured product and the cured product of the support agent described below. The peeling accelerator is preferably contained in an amount of 0.01% by mass to 3.0% by mass with respect to the total mass of the ink. If it is less than 0.01% by mass, the releasability from the substrate is lowered, and if it exceeds 3.0% by mass, the droplets of the photocurable composition for 3D modeling before curing can be easily combined, and ink bleeding It can be a cause.
 剥離促進剤としては、シリコン界面活性剤、フッ素界面活性剤、セバシン酸ステアリルのような高級脂肪酸エステルが挙げられるが、好ましくは、シリコン界面活性剤である。また、剥離促進剤は、3D造形用光硬化性組成物、下記で述べるサポート材用組成物のいずれかに含有させればよいが、好ましくは両方に含有させることがより好ましい。 Examples of the release accelerator include silicon surfactants, fluorine surfactants, and higher fatty acid esters such as stearyl sebacate, and silicon surfactants are preferable. Further, the peeling accelerator may be contained in either the photocurable composition for 3D modeling or the composition for support material described below, but it is more preferable to contain it in both.
 1-4.3D造形用光硬化性組成物の物性
 後述するUV-IJ法を用いる場合、インクジェットヘッドのノズルからの吐出性の観点から、3D造形用光硬化性組成物の25℃における粘度は、150mPa・s以下であることが好ましい。高粘度になるとインクジェットでは吐出できなくなるからである。3D造形用光硬化性組成物の粘度は、回転粘度計によって測定することができる。
1-4. Physical Properties of Photocurable Composition for 3D Modeling When using the UV-IJ method described later, the viscosity at 25 ° C. of the photocurable composition for 3D modeling is from the viewpoint of ejection properties from the nozzle of an inkjet head. 150 mPa · s or less is preferable. This is because ink jetting cannot be used when the viscosity is high. The viscosity of the photocurable composition for 3D modeling can be measured with a rotational viscometer.
 3D造形用光硬化性組成物の硬化物のガラス転移温度は、25℃未満であることが好ましい。硬化物にゴム状物質のような、伸び性と応力に対する反発性を付与するためである。また、冬場の気温を考えると、3D造形用光硬化性組成物の硬化物のガラス転移温度は、5℃以下であることが好ましく、0℃以下であることが好ましく、-25℃未満がより好ましい。 It is preferable that the glass transition temperature of the hardened | cured material of the photocurable composition for 3D modeling is less than 25 degreeC. This is to impart stretchability and resilience to stress, such as a rubber-like substance, to the cured product. In consideration of the temperature in winter, the glass transition temperature of the cured product of the photocurable composition for 3D modeling is preferably 5 ° C. or less, preferably 0 ° C. or less, and more preferably less than −25 ° C. preferable.
 1-5.3D造形用光硬化性組成物の用途
 本発明の3D造形用光硬化性組成物は、UV-IJ(ultra-violet inkjet)法またはSLA(stereolithography)法等による、3D造形物の製造に用いられる。
1-5.3 Use of Photocurable Composition for 3D Modeling The photocurable composition for 3D modeling of the present invention can be used for 3D modeling by UV-IJ (ultra-violet inkjet) method or SLA (stereolithography) method. Used for manufacturing.
 UV-IJ法では、インクジェットを用いて3D造形用光硬化性組成物を基材に塗布して、基材に着弾した3D造形用光硬化性組成物に活性光線を照射して硬化させる。その後、塗布と硬化を繰り返すことで、3D造形物を製造する。SLA法では、液体状の3D造形用光硬化性組成物に活性光線を照射して、照射された3D造形用光硬化性組成物を硬化させる。その後、硬化された3D造形用光硬化性組成物を一層分の厚さだけ降下させた後、再度活性光線を照射してその上の層を硬化させていく。3D造形用光硬化性組成物は、UV-IJ法において3D造形物を製造するための「モデル材」またはSLA法において硬化される組成物として用いられるか、またはこれらに含ませることができる。 In the UV-IJ method, a photocurable composition for 3D modeling is applied to a substrate using an inkjet, and the photocurable composition for 3D modeling that has landed on the substrate is irradiated with actinic rays and cured. Then, 3D modeling thing is manufactured by repeating application and hardening. In the SLA method, the liquid photocurable composition for 3D modeling is irradiated with an actinic ray to cure the irradiated photocurable composition for 3D modeling. Thereafter, the cured photocurable composition for 3D modeling is lowered by a thickness of one layer, and then the active layer is irradiated again to cure the layer thereon. The photo-curable composition for 3D modeling can be used as or included in a “model material” for producing a 3D model in the UV-IJ method or a composition cured in the SLA method.
 2.3D造形物の製造方法
 本発明の3D造形物の製造方法は、上記した3D造形用光硬化性組成物に活性光線を照射する工程を含む。UV-IJ法およびSLA法のいずれにおいても、本発明の3D造形用光硬化性組成物は、活性光線を照射して硬化させることができる。活性光線としては、特に限定されることはないが、UV-IJ法においては紫外線または電子線を、SLA法においてはレーザー光を、それぞれ好ましく用いることができる。
2. Manufacturing method of 3D modeling object The manufacturing method of the 3D modeling object of this invention includes the process of irradiating actinic light to the above-mentioned 3D modeling photocurable composition. In both the UV-IJ method and the SLA method, the photocurable composition for 3D modeling of the present invention can be cured by irradiation with actinic rays. The actinic ray is not particularly limited, but ultraviolet rays or electron beams can be preferably used in the UV-IJ method, and laser light can be preferably used in the SLA method.
 活性光線が紫外線である場合、活性光線照射部(紫外線照射手段)の例には、蛍光管(低圧水銀ランプ、殺菌灯)、冷陰極管、紫外レーザー、数100Pa~1MPaまでの動作圧力を有する低圧、中圧、高圧水銀ランプ、メタルハライドランプおよびLED(発光ダイオード)等が含まれる。硬化性の観点から、照度100mW/cm以上の紫外線を照射する紫外線照射手段;具体的には、高圧水銀ランプ、メタルハライドランプおよびLED等が好ましく、消費電力が少ない点から、LEDがより好ましい。具体的には、Phoseon Technology社製 395nm、水冷LEDを用いることができる。 When the active light is ultraviolet light, examples of the active light irradiation part (ultraviolet irradiation means) include a fluorescent tube (low pressure mercury lamp, germicidal lamp), a cold cathode tube, an ultraviolet laser, and an operating pressure of several hundred Pa to 1 MPa. Low pressure, medium pressure, high pressure mercury lamp, metal halide lamp, LED (light emitting diode) and the like are included. From the viewpoint of curability, ultraviolet irradiation means for irradiating ultraviolet rays having an illuminance of 100 mW / cm 2 or more; specifically, high-pressure mercury lamps, metal halide lamps and LEDs are preferable, and LEDs are more preferable from the viewpoint of low power consumption. Specifically, a 395 nm, water-cooled LED manufactured by Phoseon Technology can be used.
 活性光線が電子線である場合、活性光線照射部(電子線照射手段)の例には、スキャニング方式、カーテンビーム方式、ブロードビーム方式等の電子線照射手段が含まれる。処理能力の観点から、カーテンビーム方式の電子線照射手段が好ましい。電子線照射手段の例には、日新ハイボルテージ(株)製の「キュアトロンEBC-200-20-30」、AIT(株)製の「Min-EB」等が含まれる。 When the active light is an electron beam, examples of the active light irradiation unit (electron beam irradiation means) include electron beam irradiation means such as a scanning method, a curtain beam method, and a broad beam method. From the viewpoint of processing capability, a curtain beam type electron beam irradiation means is preferable. Examples of electron beam irradiation means include “Curetron EBC-200-20-30” manufactured by Nissin High Voltage Co., Ltd., “Min-EB” manufactured by AIT Co., Ltd., and the like.
 活性光線が電子線である場合、電子線照射の加速電圧は、十分な硬化を行うためには、30~250kVとすることが好ましく、30~100kVとすることがより好ましい。加速電圧が100~250kVである場合、電子線照射量は30~100kGyであることが好ましく、30~60kGyであることがより好ましい。 When the actinic ray is an electron beam, the acceleration voltage for electron beam irradiation is preferably 30 to 250 kV and more preferably 30 to 100 kV in order to perform sufficient curing. When the acceleration voltage is 100 to 250 kV, the electron beam irradiation amount is preferably 30 to 100 kGy, and more preferably 30 to 60 kGy.
 活性光線がレーザー光である場合、半導体励起固体レーザー、Arレーザー、He-Cdレーザーなどの紫外線レーザーを用いることが出来る。 When the actinic ray is a laser beam, an ultraviolet laser such as a semiconductor excited solid laser, an Ar laser, or a He—Cd laser can be used.
 2-1.UV-IJ法による3D造形物の製造方法
 UV-IJ法による3D造形物の製造方法では、上述の3D造形用光硬化性組成物含むモデル材と、サポート材組成物含むサポート材と、を用いることが好ましい。3D造形物の造形過程において、3D造形用光硬化性組成物の硬化前後の物理的・化学的性質が変化する。そのため、上述の3D造形用光硬化性組成物を含むモデル材と後述するサポート材組成物を含むサポート材とを用いることによって、モデル材の形状を維持しながら製造していくことがより好ましい。3D造形用光硬化性組成物の硬化物とサポート材の硬化物とは、剥離が比較的容易である。
2-1. Method for Producing 3D Modeled Object by UV-IJ Method In the method for producing 3D modeled object by UV-IJ method, the above-described model material including the photocurable composition for 3D modeling and the support material including the support material composition are used. It is preferable. In the modeling process of the 3D modeled object, the physical and chemical properties before and after curing of the photocurable composition for 3D modeling change. Therefore, it is more preferable to manufacture while maintaining the shape of the model material by using the model material including the above-described 3D modeling photocurable composition and the support material including the support material composition described later. Separation of the cured product of the photocurable composition for 3D modeling and the cured product of the support material is relatively easy.
 このとき、サポート材をインクジェットで吐出して3D造形物の空間部分を形作り、モデル材をインクジェットで吐出して3D造形物を形作る。サポート材とモデル材とを同時に吐出してもよいし、サポート材を先に吐出して、その後モデル材を吐出してもよい。インクジェットで吐出したサポート材およびモデル材の少なくとも一方を含む第nの膜を硬化させて第nの硬化層を形成し、その上に同様に吐出した第n+1の膜を硬化させると、第n+1の膜は、第nの硬化層とも接着して硬化するため、積層方向にも接着しながら硬化していく。こうしてすべての硬化層を形成したあと、サポート材の硬化物を除去することで、目的の3D造形物を得ることができる。 At this time, the support material is ejected with an ink jet to form a space portion of the 3D object, and the model material is ejected with an ink jet to form a 3D object. The support material and the model material may be discharged simultaneously, or the support material may be discharged first and then the model material may be discharged. When the nth film including at least one of the support material and the model material ejected by the ink jet is cured to form the nth cured layer, and the similarly ejected n + 1th film is cured thereon, the n + 1th film Since the film is cured by adhering to the n-th cured layer, the film is cured while adhering in the stacking direction. After all the hardened layers are formed in this way, the target 3D object can be obtained by removing the hardened material of the support material.
 サポート材組成物は、特に限定されないものの、熱溶融性するもの、または光硬化性で、その硬化物が水溶性であるか、もしくは水膨潤性であるものが好ましい。また、サポート材の硬化物と、モデル材の硬化物とが剥離しやすいことが好ましい。 Although the support material composition is not particularly limited, it is preferably a heat-meltable one or a photo-curable one whose water-soluble or water-swellable product is water-swellable. Moreover, it is preferable that the hardened | cured material of a support material and the hardened | cured material of a model material are easy to peel.
 熱溶融性するものとしては、パラフィンワックス、マイクロクリスタリンワックス、カルナバワックス、エステルワックス、アミドワックス、PEG20000などのワックス類が挙げられる。光硬化性でその硬化物が水溶性、であるか、または水膨潤性であるものとは、例えば、光重合性官能基(炭素炭素不飽和基など)を有する水溶性化合物(水溶性モノマー)と、光開裂型開始剤と、水と、を主成分とする光硬化樹脂組成物でありうるが、特に限定されない。サポート材には、さらに水溶性高分子が含まれていてもよい。 Examples of heat-meltable materials include paraffin wax, microcrystalline wax, carnauba wax, ester wax, amide wax, and PEG 20000. What is photocurable and the cured product is water-soluble or water-swellable is, for example, a water-soluble compound (water-soluble monomer) having a photopolymerizable functional group (carbon-carbon unsaturated group, etc.) And a photo-curable resin composition mainly composed of a photocleavable initiator and water, but is not particularly limited. The support material may further contain a water-soluble polymer.
 サポート材に含まれる水溶性モノマーの例には、水溶性(メタ)アクリレート、ポリオキシエチレンジアクリレート、ポリオキシプロピレンジアクリレート、アクロロイルモルホリン、ヒドロキシアルキルアクリレート;水溶性のアクリルアミドとして、アクリルアミド、N,N-ジメチルアクリルアミド、N-ヒドロキシエチルアクリルアミドなどが含まれる。サポート材に含まれる水溶性高分子の例には、ポリエチレングリコール、ポリプロピレングリコール、ポリビニルアルコールなどが含まれる。サポート材に含まれる光開裂型開始剤の例には、1-[4-(2-ヒドロキシエトキシ)フェニル]-2-メチル-1-プロパン-1-オンなどが挙げられるが、特に限定されない。 Examples of water-soluble monomers contained in the support material include water-soluble (meth) acrylate, polyoxyethylene diacrylate, polyoxypropylene diacrylate, achloroyl morpholine, hydroxyalkyl acrylate; water-soluble acrylamides such as acrylamide, N, N-dimethylacrylamide, N-hydroxyethylacrylamide and the like are included. Examples of the water-soluble polymer contained in the support material include polyethylene glycol, polypropylene glycol, polyvinyl alcohol and the like. Examples of the photocleavable initiator contained in the support material include 1- [4- (2-hydroxyethoxy) phenyl] -2-methyl-1-propan-1-one, but are not particularly limited.
 UV-IJ法による具体的な製造方法の例は、3D造形物の各層におけるモデル材およびサポート材の配置を表す複数の平面データに含まれる第1の平面データに基づいて、モデル材およびサポート材の少なくともいずれか一方をインクジェットヘッドのノズルから基材上に吐出して第1の膜を形成し、前記第1の膜を光硬化させて第1の硬化層を形成する工程と、前記複数の平面データに含まれる第n(nは2以上の整数)の平面データに基づいて、モデル材およびサポート材の少なくともいずれか一方をインクジェットヘッドのノズルから第n-1の硬化層上に吐出して第nの膜を形成し、第nの膜を光硬化させて第nの硬化層を形成する工程とを有し、第nの膜を形成し第nの硬化層を形成する工程を少なくとも1回以上行い、その後サポート材を除去する工程をさらに有する。 An example of a specific manufacturing method using the UV-IJ method is based on the first plane data included in the plurality of plane data representing the arrangement of the model material and the support material in each layer of the 3D modeled object, and the model material and the support material A step of ejecting at least one of the nozzles of the inkjet head onto a substrate to form a first film, photocuring the first film to form a first cured layer, and Based on the nth (n is an integer of 2 or more) plane data included in the plane data, at least one of the model material and the support material is ejected from the nozzle of the inkjet head onto the (n-1) th cured layer. Forming an n-th film, photo-curing the n-th film to form an n-th cured layer, and forming at least one of the n-th film and the n-th cured layer. Done more than once, that Further comprising the step of removing the support member.
 なお、上記UV-IJ法による具体的な製造方法は、CAD(Computer Aided Design)データを3D造形用データであるSTL(Stereo Lithography)データに変換する工程、およびSTLデータに基づいて前記複数の平面データを作成する工程をさらに有していてもよい。また、購入する等の方法で入手したSTLデータまたは複数の平面データを用いてもよい。 The specific manufacturing method based on the UV-IJ method includes a step of converting CAD (Computer Aided Design) data into STL (Stereo Lithography) data which is 3D modeling data, and the plurality of planes based on the STL data. You may further have the process of producing data. Further, STL data obtained by a method such as purchase or a plurality of plane data may be used.
 2-2.UV-IJ法による3D造形システムおよび装置
 図1には、UV-IJ法による3D造形システムの例の概要が示される。図1に示されるUV-IJ法による3D造形システムは、インクジェット部1に、上下(図面Z方向)に駆動する駆動手段(図示省略)を備え3D造形物が配置される、基材からなるステージ11と、左右(図面XY方向)に移動可能にレール(図示省略)上に配置された、モデル材またはサポート材を吐出するインクジェット装置12と、を有する。
2-2. FIG. 1 shows an outline of an example of a 3D modeling system based on the UV-IJ method. The 3D modeling system based on the UV-IJ method shown in FIG. 1 includes a stage made of a base material on which an inkjet unit 1 is provided with driving means (not shown) for driving up and down (in the drawing Z direction) and a 3D modeling object is disposed. 11 and an inkjet device 12 that discharges a model material or a support material, which is arranged on a rail (not shown) so as to be movable in the left-right direction (XY direction in the drawing).
 インクジェット装置12は、モデル材用インクジェットヘッド13と、サポート材用インクジェットヘッド14と、膜厚調整用ローラ15と、光源16とを備える。モデル材用インクジェットヘッド13およびサポート材用インクジェットヘッド14は、それぞれ吐出用のノズルを有する。モデル材用インクジェットヘッド13は、配管13aを介してポンプ13bと光硬化性組成物タンク13cに連通する。光硬化性組成物タンク13cには、本願発明の3D造形用光硬化性組成物を含むモデル材を入れることができる。サポート材用インクジェットヘッド14は、配管14aを介してポンプ14bと光硬化性組成物タンク14cに連通する。光硬化性組成物タンク14cには、サポート材を入れることができる。 The inkjet device 12 includes an inkjet head 13 for a model material, an inkjet head 14 for a support material, a film thickness adjusting roller 15, and a light source 16. Each of the model material inkjet head 13 and the support material inkjet head 14 has a nozzle for ejection. The model material inkjet head 13 communicates with a pump 13b and a photocurable composition tank 13c through a pipe 13a. A model material containing the photocurable composition for 3D modeling of the present invention can be placed in the photocurable composition tank 13c. The support-use inkjet head 14 communicates with the pump 14b and the photocurable composition tank 14c via the pipe 14a. A support material can be placed in the photocurable composition tank 14c.
 図1に示すように、UV-IJ法による3D造形システムは、さらに演算制御部2と、CADデータ等の3D造形用データを入力するための入力装置4と、CADデータから変換されたSTLデータや、STLデータから得られたスライスデータを出力する出力装置5と、STLデータや仮想3D造形物等を表示する表示装置6と、3D造形物を製造するために必要な種々の情報、例えばロット番号と、CADデータ番号、STLデータ番号、モデル材およびサポート材を含む光硬化性組成物セットの番号等を関連付けて記録するための記憶装置3とを有する。 As shown in FIG. 1, the 3D modeling system based on the UV-IJ method further includes an arithmetic control unit 2, an input device 4 for inputting 3D modeling data such as CAD data, and STL data converted from CAD data. Output device 5 that outputs slice data obtained from STL data, display device 6 that displays STL data, virtual 3D objects, etc., and various information necessary for manufacturing 3D objects, such as lots And a storage device 3 for associating and recording the number, the CAD data number, the STL data number, the number of the photocurable composition set including the model material and the support material, and the like.
 演算制御部2は、CADデータに基づいてSTLデータを算出するSTL演算手段21と、所望の3D造形物にあった光硬化性組成物セットを選択するよう情報を送る光硬化性組成物セット制御手段22と、ステージを駆動させる情報を送るステージ制御手段23と、モデル材またはサポート材を吐出させる情報を送るインクジェット制御手段24と、所望の厚さになるよう層を研磨する情報を送るローラ制御手段25と、吐出された光硬化性組成物を硬化させるために光照射するよう情報を送る光源制御手段26と、を備える。 The calculation control unit 2 calculates STL data based on CAD data, and a photocurable composition set control for sending information to select a photocurable composition set suitable for a desired 3D model. Means 22, stage control means 23 for sending information for driving the stage, ink jet control means 24 for sending information for discharging the model material or support material, and roller control for sending information for polishing the layer to a desired thickness Means 25 and light source control means 26 for sending information to irradiate light to cure the discharged photocurable composition.
 演算制御部2は、CPU等の通常のコンピュータシステムで用いられる演算装置等で構成すればよい。入力装置4としては、例えばキーボード、マウス等のポインティングデバイスが挙げられる。出力装置5としては、例えばプリンタ等が挙げられる。表示装置6としては、例えば液晶ディスプレイ、モニタ等の画像表示装置等が挙げられる。記憶装置3としてはROM、RAM、磁気ディスクなどの記憶装置が使用可能である。 The arithmetic control unit 2 may be configured by an arithmetic device used in a normal computer system such as a CPU. Examples of the input device 4 include pointing devices such as a keyboard and a mouse. Examples of the output device 5 include a printer. Examples of the display device 6 include an image display device such as a liquid crystal display and a monitor. As the storage device 3, a storage device such as a ROM, a RAM, or a magnetic disk can be used.
 2-3.UV-IJ法による3D造形システムを用いた3D造形物の製造フロー
 図1に示すUV-IJ法による3D造形システムを用いるUV-IJ法による3D造形方法について、図2のフロー図を参照しながら詳細に説明する。
2-3. Manufacturing flow of 3D modeling object using 3D modeling system by UV-IJ method 3D modeling method by UV-IJ method using 3D modeling system by UV-IJ method shown in FIG. 1 with reference to the flowchart of FIG. This will be described in detail.
 (イ)ステップS101において、例えばCADデータを入力する。そしてステップS102において、CADデータを3D造形用データとしてのSTLデータに変換する。なお、STLデータから形成される仮想3D造形物を出力装置5上に表示して所望の形状が形成されるか否かを確認し、所望の形状が形成されない場合は、STLデータに修正を加えてもよい。 (A) In step S101, for example, CAD data is input. In step S102, the CAD data is converted into STL data as 3D modeling data. It should be noted that a virtual 3D structure formed from the STL data is displayed on the output device 5 to check whether a desired shape is formed. If the desired shape is not formed, the STL data is corrected. May be.
 (ロ)ステップS103において、図3に示すように仮想3D造形物を図3のZ方向において複数の薄片状の層に微分割し、各層におけるモデル材の配置データを得る。また、各平面データにおいて、モデル材を支持または固定するためのサポート材の配置データも併せて作成する。モデル材のX,Y方向の周囲にサポート材を配置することで、いわゆるオーバーハング部分、例えば「K」の字の第二画目部分等を下方からサポート材で支持することができる。モデル材の配置データとサポート材の配置データを同じ層ごとに組み合わせて、本発明における「第1の平面データD1、第2の平面データD2、…第Xの平面データDX」を得る。 (B) In step S103, as shown in FIG. 3, the virtual 3D structure is finely divided into a plurality of lamellar layers in the Z direction of FIG. 3, and arrangement data of the model material in each layer is obtained. In each plane data, support material arrangement data for supporting or fixing the model material is also created. By disposing the support material around the X and Y directions of the model material, a so-called overhang portion, for example, the second image portion of the letter “K” can be supported from below by the support material. The arrangement data of the model material and the arrangement data of the support material are combined for each same layer to obtain “first plane data D1, second plane data D2,... Xth plane data DX” in the present invention.
 (ハ)ステップS105において、仮想3D造形物のデータや複数の平面データに基づいて、最適な光硬化性組成物セットを用意する。 (C) In step S105, an optimal photocurable composition set is prepared based on the data of the virtual 3D structure and the plurality of plane data.
 (ニ)ステップS108において、第1の平面データD1に基づき、駆動手段を作動させてステージとインクジェット装置との相対的な位置を合わせる。 (D) In step S108, based on the first plane data D1, the driving means is operated to align the relative positions of the stage and the inkjet apparatus.
 (ホ)ステップS110において、図4に示すように、第1の平面データD1に基づいてインクジェットの位置を制御して、ステージ上の適切な位置にモデル材(Ma)およびサポート材(S)の少なくともいずれか一方をインクジェットヘッドのノズルから吐出していき、第1の膜を形成する。各ノズルから吐出される1滴あたりの液滴量は、画像の解像度にもよるが、1pl~70plが好ましく、2~50plがより好ましい。その後、ステップS112において、活性光線を照射して第1の膜を光硬化させて第1の硬化層を得る。なお、第1の硬化層の厚みが均一であるか否かを確認し、均一でない場合は厚い部分を研磨して、第1の硬化層の厚さを均一にすることが好ましい。なお、硬化後の各硬化層の厚さは、1~25μm程度であることが好ましい。 (E) In step S110, as shown in FIG. 4, the position of the ink jet is controlled based on the first plane data D1, and the model material (Ma) and the support material (S) are placed at appropriate positions on the stage. At least one of them is ejected from the nozzle of the inkjet head to form the first film. The amount of droplets ejected from each nozzle is preferably 1 pl to 70 pl, more preferably 2 to 50 pl, although it depends on the resolution of the image. Thereafter, in step S112, the first film is photocured by irradiating actinic rays to obtain a first cured layer. In addition, it is preferable to confirm whether or not the thickness of the first hardened layer is uniform, and if not uniform, the thick portion is polished to make the thickness of the first hardened layer uniform. The thickness of each cured layer after curing is preferably about 1 to 25 μm.
 活性光線の照射は、3D造形用光硬化性組成物滴が記録媒体上に付着した後10秒以内、好ましくは0.001秒~5秒以内、より好ましくは0.01秒~2秒以内に行う。隣り合う3D造形用光硬化性組成物滴同士が合一するのを抑制するためである。活性光線の照射は、1層分の3D造形用光硬化性組成物を吐出した後に行われることが好ましい。 Irradiation with actinic rays is performed within 10 seconds, preferably within 0.001 second to 5 seconds, more preferably within 0.01 second to 2 seconds after the photocurable composition droplet for 3D modeling is deposited on the recording medium. Do. This is because adjacent photo-curable composition droplets for 3D modeling are prevented from coalescing. The irradiation with actinic rays is preferably performed after discharging the photocurable composition for 3D modeling for one layer.
 (ヘ)ステップS114において、形成すべき層がさらにあるかを判定する。形成すべき層がさらにある場合は、ステップS108に戻り、図5に示すように、ひとつの硬化層の厚さ分だけ、ステージ11の位置を下方(Z方向)に移動させる。その後、ステップS110、S112により第nの硬化層を第n-1の硬化層上に形成する。そして、図6、図7に示すように、最終層(第Xの硬化層)が積層されるまで、ステップS108、S110、S112、S114の手順を繰り返して複数の層を積層させる。ステップS114において、形成すべき層がこれ以上はない場合は、ステップS116に移行する。 (F) In step S114, it is determined whether there are more layers to be formed. If there are more layers to be formed, the process returns to step S108, and the position of the stage 11 is moved downward (Z direction) by the thickness of one hardened layer, as shown in FIG. Thereafter, an nth hardened layer is formed on the (n-1) th hardened layer in steps S110 and S112. Then, as shown in FIGS. 6 and 7, the steps S108, S110, S112, and S114 are repeated until a final layer (Xth cured layer) is stacked, and a plurality of layers are stacked. If there are no more layers to be formed in step S114, the process proceeds to step S116.
 (ト)ステップS116において、サポート材を除去する。例えば、サポート材を水で膨潤させて除去する。この除去工程と併せて、他の除去工程、例えばサポート材に高圧水を噴霧してモデル材からサポート材を除去してもよい。 (G) In step S116, the support material is removed. For example, the support material is removed by swelling with water. In combination with this removal step, the support material may be removed from the model material by performing another removal step, for example, spraying high-pressure water on the support material.
 以上により、図8に示すような、3D造形物Mを作製することができる。 As described above, a 3D structure M as shown in FIG. 8 can be produced.
 [実施形態の変形例]
 以上に記載した実施形態においては、モデル材用のインクジェットヘッドが1つの例を示したが、モデル材用のインクジェットヘッド数は1つに制限されない。例えばモデル材用に2つのインクジェットヘッドを設け、各インクジェットヘッドのノズルから物性が異なるモデル材を同時に吐出し、モデル材を混合させて複合材料として造形することもできる。
[Modification of Embodiment]
In the embodiment described above, one example of the inkjet head for the model material is shown, but the number of inkjet heads for the model material is not limited to one. For example, two inkjet heads may be provided for a model material, model materials having different physical properties may be simultaneously ejected from the nozzles of each inkjet head, and the model materials may be mixed to form a composite material.
 2-4.SLA法による3D造形物の製造方法
 SLA法よる3D造形物の製造方法は、上述の液体状の3D造形用光硬化性組成物を用意する工程と、この3D造形用光硬化性組成物に活性光線を照射して光硬化させる工程と、を含むことが好ましい。
2-4. Manufacturing method of 3D modeling object by SLA method The manufacturing method of 3D modeling object by SLA method is active in the process of preparing the above-mentioned liquid photocurable composition for 3D modeling, and this photocurable composition for 3D modeling. And a step of photocuring by irradiating light.
 たとえば、上述の液体状の3D造形用光硬化性組成物の中に、基材からなる、上下移動な可能なステージを沈め、3D造形用光硬化性組成物に活性光線を照射して造形物の層ごと硬化させていく。1の層を硬化したら、テーブルをひとつの硬化層の厚さ分だけ下に下げ、再度活性光線を照射してその上の層を硬化していくことで、目的の3D造形物を製造することができる。 For example, the above-described liquid photocurable composition for 3D modeling is submerged in a stage that can be moved up and down, and a 3D modeling photocurable composition is irradiated with actinic rays to form a model. Let each layer harden. After curing one layer, lower the table by the thickness of one cured layer and irradiate actinic rays again to cure the layer above it to produce the desired 3D object. Can do.
 SLA法による具体的な製造方法の例は、3D造形物の各層の形状を表す複数の平面データに含まれる第1の平面データに基づいて、液体状の本発明の3D造形用光硬化性組成物に活性光線を照射して第1の硬化層を形成する工程と、複数の平面データに含まれる第n(nは2以上の整数)の平面データに基づいて、前記液体状の組成物に活性光線を照射して第n-1の硬化層上に第nの硬化層を形成する工程とを有し、前記第nの硬化層を形成する工程を少なくとも1回以上行う。 An example of a specific manufacturing method based on the SLA method is a liquid photocurable composition for 3D modeling of the present invention based on first plane data included in a plurality of plane data representing the shape of each layer of a 3D modeled object. The liquid composition is formed on the basis of the step of irradiating an object with actinic rays to form the first cured layer and the nth plane data (n is an integer of 2 or more) included in the plurality of plane data. Irradiating actinic rays to form an nth cured layer on the (n-1) th cured layer, and performing the nth cured layer at least once.
 なお、上記SLA法による具体的な製造方法は、CADデータを3D造形用データであるSTLデータに変換する工程、およびSTLデータに基づいて前記複数の平面データを作成する工程をさらに有していてもよい。また、購入する等の方法で入手したSTLデータまたは複数の平面データを用いてもよい。 In addition, the specific manufacturing method by the SLA method further includes a step of converting CAD data into STL data, which is 3D modeling data, and a step of creating the plurality of plane data based on the STL data. Also good. Further, STL data obtained by a method such as purchase or a plurality of plane data may be used.
 2-5.SLA法による3D造形システムおよび装置
 本発明の3D造形用光硬化性組成物を用いて、SLA法によって3D造形物を製造するためのシステムおよび装置の例を、以下に説明する。
2-5. 3D modeling system and apparatus by SLA method An example of a system and apparatus for manufacturing a 3D modeled object by the SLA method using the photocurable composition for 3D modeling of the present invention will be described below.
 SLA法による3D造形物の製造では、液体状の3D造形用光硬化性組成物の中にテーブルを沈め、テーブル上の3D造形用光硬化性組成物に活性光線を照射して、製造しようとする3D造形物を形作っていく。 In the production of 3D modeling objects by the SLA method, a table is submerged in a liquid photocurable composition for 3D modeling, and an actinic ray is irradiated to the photocurable composition for 3D modeling on the table for manufacturing. To make a 3D model.
 図9には、SLA法による3D造形システムの例の概要が示される。なお、SLA部31および演算制御部32の構成以外は図1と同様のため、重複する説明は省略する。図9に示されるSLA法による3D造形システムは、本発明の3D造形用光硬化性組成物を含む液体状の光硬化性組成物セットを入れる容器33と、上下(図面Z方向)に駆動する駆動手段(図示省略)を備え3D造形物が配置されるステージ34と、ステージの重力方向上方に配置された、活性光線を照射するための光学系と、を有する。 FIG. 9 shows an outline of an example of a 3D modeling system based on the SLA method. The configuration other than the SLA unit 31 and the calculation control unit 32 is the same as in FIG. The 3D modeling system based on the SLA method shown in FIG. 9 is driven up and down (in the Z direction in the drawing) with a container 33 containing a liquid photocurable composition set containing the photocurable composition for 3D modeling of the present invention. It has a stage 34 provided with driving means (not shown) and on which a 3D object is arranged, and an optical system for irradiating actinic rays arranged above the stage in the gravity direction.
 光学系の構成は、ステージ上を走査しながら活性光線を照射できれば特に限定されないが、たとえば、光源35と、光出射面36と、集光レンズ37と、活性光線の照射点を左右(図面XY方向)に走査する走査手段(図示省略)とを有する。 The configuration of the optical system is not particularly limited as long as it can irradiate actinic rays while scanning on the stage. Scanning means (not shown).
 演算制御部32は、CADデータ等の3D造形用データを入力するための入力装置4と、CADデータから変換されたSTLデータや、STLデータから得られたスライスデータを出力する出力装置5と、STLデータや仮想3D造形物等を表示する表示装置6と、3D造形物を製造するために必要な種々の情報、例えばロット番号と、CADデータ番号、STLデータ番号、本発明の3D造形用光硬化性組成物を含む光硬化性組成物セットの番号等を関連付けて記録するための記憶装置3とを有する。 The arithmetic control unit 32 includes an input device 4 for inputting 3D modeling data such as CAD data, an STL data converted from CAD data, and an output device 5 that outputs slice data obtained from the STL data. Display device 6 for displaying STL data, virtual 3D objects, etc., and various information necessary for manufacturing 3D objects, such as lot number, CAD data number, STL data number, 3D modeling light of the present invention And a storage device 3 for recording the number of the photocurable composition set including the curable composition in association with each other.
 演算制御部32は、CADデータに基づいてSTLデータを算出するSTL演算手段41と、硬化させる層の高さにあわせてステージを上下させるステージ制御手段42と、STLデータにあわせて活性光線の照射点を走査させる情報を送るSLA制御手段43と、3D造形用光硬化性組成物を硬化させるために光照射するよう情報を送る光源制御手段44と、を備える。 The calculation control unit 32 includes an STL calculation unit 41 that calculates STL data based on CAD data, a stage control unit 42 that moves the stage up and down according to the height of the layer to be cured, and an irradiation of active rays according to the STL data. SLA control means 43 for sending information for scanning points, and light source control means 44 for sending information for light irradiation to cure the photocurable composition for 3D modeling.
 2-6.SLA法による3D造形システムを用いた3D造形物の製造フロー
 図9に示すSLA法による3D造形システムを用いる3D造形方法について、図10のフロー図を参照しながら詳細に説明する。
2-6. Manufacturing flow of 3D modeling object using 3D modeling system by SLA method The 3D modeling method using the 3D modeling system by the SLA method shown in FIG. 9 will be described in detail with reference to the flowchart of FIG.
 (イ)ステップS121において、例えばCADデータを入力する。そしてステップS122において、CADデータを3D造形用データとしてのSTLデータに変換する。なお、STLデータから形成される仮想3D造形物(仮想モデル材)を出力装置5上に表示して所望の形状が形成されるか否かを確認し、所望の形状が形成されない場合は、STLデータに修正を加えてもよい。 (A) In step S121, for example, CAD data is input. In step S122, the CAD data is converted into STL data as 3D modeling data. Note that a virtual 3D structure (virtual model material) formed from the STL data is displayed on the output device 5 to check whether a desired shape is formed. If the desired shape is not formed, the STL is displayed. Modifications may be made to the data.
 (ロ)ステップS123において、図3と同様に仮想3D造形物を図3のZ方向において複数の薄片状の層に微分割し、「第1の平面データD1、第2の平面データD2、…第Xの平面データDX」を得る。 (B) In step S123, the virtual 3D structure is finely divided into a plurality of lamellar layers in the Z direction of FIG. 3 in the same manner as in FIG. 3, and “first plane data D1, second plane data D2,. Xth plane data DX ”is obtained.
 (ハ)ステップS125において、仮想3D造形物のデータや複数の平面データに基づいて最適な光硬化性組成物セットを用意し、容器33に光硬化性組成物セットを充填する。 (C) In step S125, an optimal photocurable composition set is prepared based on the data of the virtual 3D structure and the plurality of plane data, and the container 33 is filled with the photocurable composition set.
 (ニ)ステップS128において、第1の平面データD1に基づき、駆動手段および走査手段を作動させてステージ34と活性光線の照射点との相対的位置合わせを行う。このとき、光源制御手段44は、活性光線の照射を停止するよう光源35に情報を送る。 (D) In step S128, based on the first plane data D1, the driving means and the scanning means are operated to perform relative alignment between the stage 34 and the irradiation point of the actinic ray. At this time, the light source control means 44 sends information to the light source 35 so as to stop the irradiation of the actinic ray.
 (ホ)ステップS132において、図11に示すように、活性光線を照射しながら走査して、ステージ34上の光重合組成物を硬化させて第1の硬化層を形成する。 (E) In step S132, as shown in FIG. 11, scanning is performed while irradiating actinic rays, and the photopolymerized composition on the stage 34 is cured to form a first cured layer.
 (ヘ)ステップS134において、形成すべき層がさらにあるかを判定する。形成すべき層がさらにある場合は、第2の層の形成に先立ってステップS128に戻り、図12に示すように、ひとつの硬化層の厚さ分だけ、ステージ34の位置を下方(Z方向)に移動させる。その後、ステップS132により第nの硬化層を第n-1の硬化層の上に形成する。そして、図13、図14に示すように、最終層(第Xの硬化層)が積層されるまで、ステップS128、S132の手順を繰り返して複数の層を積層させる。ステップS134において、形成すべき層がこれ以上はない場合は、処理を終了する。 (F) In step S134, it is determined whether there are more layers to be formed. If there are more layers to be formed, the process returns to step S128 prior to the formation of the second layer, and as shown in FIG. 12, the stage 34 is moved downward (Z direction) by the thickness of one hardened layer. ). Thereafter, in step S132, the nth hardened layer is formed on the n-1st hardened layer. Then, as shown in FIGS. 13 and 14, the steps S128 and S132 are repeated until a final layer (Xth cured layer) is stacked, and a plurality of layers are stacked. In step S134, if there are no more layers to be formed, the process ends.
 以上により、図8に示すような、3D造形物Mを作製することができる。 As described above, a 3D structure M as shown in FIG. 8 can be produced.
 以下において、実施例を参照して本発明をより詳細に説明する。これらの実施例によって、本発明の範囲は限定して解釈されない。 Hereinafter, the present invention will be described in more detail with reference to examples. These examples do not limit the scope of the present invention.
 以下の成分を用いて、各実施例および比較例に係る3D造形用光硬化性組成物を調製した。 Using the following components, a photocurable composition for 3D modeling according to each example and comparative example was prepared.
 (実施例1)
 3D造形用光硬化性組成物1の調製
 以下の成分を混合および溶解させて3D造形用光硬化性組成物1を調製した。
 [3D造形用光硬化性組成物1の組成]
 フェノキシエチルアクリレート(共栄社化学社製ライトアクリレートPO-A) 91.02g
 トリメチロールプロパントリアクリレート(サートマー社製SR351) 7.38g
 TEMPO(2,2,6,6-テトラメチルピペリジニル-N-オキシル) 0.10g
 DAROCURE TPO(ホスフィンオキシド系光重合開始剤 BASF社製) 1.50g
Example 1
Preparation of 3D modeling photocurable composition 1 The following components were mixed and dissolved to prepare 3D modeling photocurable composition 1.
[Composition of photocurable composition 1 for 3D modeling]
Phenoxyethyl acrylate (Kyoeisha Chemical Company Light Acrylate PO-A) 91.02 g
7.38 g of trimethylolpropane triacrylate (SR351, manufactured by Sartomer)
TEMPO (2,2,6,6-tetramethylpiperidinyl-N-oxyl) 0.10 g
DAROCURE TPO (phosphine oxide photopolymerization initiator, manufactured by BASF) 1.50 g
 (実施例2)
 3D造形用光硬化性組成物2の調製
 以下の成分を混合および溶解させて3D造形用光硬化性組成物2を調製した。
 [3D造形用光硬化性組成物2の組成]
 フェノキシエチルアクリレート(共栄社化学社製ライトアクリレートPO-A) 98.38g
 トリメチロールプロパントリアクリレート(サートマー社製SR351) 0.02g
 TEMPO(2,2,6,6-テトラメチルピペリジニル-N-オキシル) 0.10g
 DAROCURE TPO(ホスフィンオキシド系光重合開始剤 BASF社製) 1.50g
(Example 2)
Preparation of photocurable composition 2 for 3D modeling The following components were mixed and dissolved to prepare a photocurable composition 2 for 3D modeling.
[Composition of photocurable composition 2 for 3D modeling]
Phenoxyethyl acrylate (Kyoeisha Chemical Co., Ltd. Light Acrylate PO-A) 98.38 g
0.02 g of trimethylolpropane triacrylate (SR351, manufactured by Sartomer)
TEMPO (2,2,6,6-tetramethylpiperidinyl-N-oxyl) 0.10 g
DAROCURE TPO (phosphine oxide photopolymerization initiator, manufactured by BASF) 1.50 g
 (実施例3)
 3D造形用光硬化性組成物3の調製
 以下の成分を混合および溶解させて3D造形用光硬化性組成物3を調製した。
 [3D造形用光硬化性組成物3の組成]
 フェノキシエチルアクリレート(共栄社化学社製ライトアクリレートPO-A) 86.77g
 トリメチロールプロパントリアクリレート(サートマー社製SR351) 11.63g
 TEMPO(2,2,6,6-テトラメチルピペリジニル-N-オキシル) 0.10g
 DAROCURE TPO(ホスフィンオキシド系光重合開始剤 BASF社製) 1.50g
Example 3
Preparation of 3D modeling photocurable composition 3 The following components were mixed and dissolved to prepare 3D modeling photocurable composition 3.
[Composition of 3D modeling photocurable composition 3]
Phenoxyethyl acrylate (Kyoeisha Chemical Co., Ltd. light acrylate PO-A) 86.77 g
11.63 g of trimethylolpropane triacrylate (SR351 manufactured by Sartomer)
TEMPO (2,2,6,6-tetramethylpiperidinyl-N-oxyl) 0.10 g
DAROCURE TPO (phosphine oxide photopolymerization initiator, manufactured by BASF) 1.50 g
 (実施例4)
 3D造形用光硬化性組成物4の調製
 以下の成分を混合および溶解させて3D造形用光硬化性組成物4を調製した。
 [3D造形用光硬化性組成物4の組成]
 フェノキシエチルアクリレート(共栄社化学社製ライトアクリレートPO-A) 89.59g
 トリメチロールプロパントリアクリレート(サートマー社製SR351) 8.81g
 TEMPO(2,2,6,6-テトラメチルピペリジニル-N-オキシル) 0.10g
 DAROCURE TPO(ホスフィンオキシド系光重合開始剤 BASF社製) 1.50g
Example 4
Preparation of photocurable composition 4 for 3D modeling The following components were mixed and dissolved to prepare a photocurable composition 4 for 3D modeling.
[Composition of photocurable composition 4 for 3D modeling]
Phenoxyethyl acrylate (Kyoeisha Chemical Light Acrylate PO-A) 89.59g
Trimethylolpropane triacrylate (SR351, Sartomer) 8.81 g
TEMPO (2,2,6,6-tetramethylpiperidinyl-N-oxyl) 0.10 g
DAROCURE TPO (phosphine oxide photopolymerization initiator, manufactured by BASF) 1.50 g
 (実施例5)
 3D造形用光硬化性組成物5の調製
 以下の成分を混合および溶解させて3D造形用光硬化性組成物5を調製した。
 [3D造形用光硬化性組成物5の組成]
 イソステアリルアクリレート(大阪有機化学社製ISTA) 93.89g
 トリメチロールプロパントリアクリレート(サートマー社製SR351) 4.51g
 TEMPO(2,2,6,6-テトラメチルピペリジニル-N-オキシル) 0.10g
 DAROCURE TPO(ホスフィンオキシド系光重合開始剤 BASF社製) 1.50g
(Example 5)
Preparation of 3D modeling photocurable composition 5 The following components were mixed and dissolved to prepare 3D modeling photocurable composition 5.
[Composition of photocurable composition 5 for 3D modeling]
Isostearyl acrylate (Osaka Organic Chemical Co., Ltd. ISTA) 93.89 g
Trimethylolpropane triacrylate (SR351 manufactured by Sartomer) 4.51 g
TEMPO (2,2,6,6-tetramethylpiperidinyl-N-oxyl) 0.10 g
DAROCURE TPO (phosphine oxide photopolymerization initiator, manufactured by BASF) 1.50 g
 (実施例6)
 3D造形用光硬化性組成物6の調製
 以下の成分を混合および溶解させて3D造形用光硬化性組成物6を調製した。
 [3D造形用光硬化性組成物6の組成]
 フェノキシエチルアクリレート(共栄社化学社製ライトアクリレートPO-A) 91.95g
 ペンタエリスリトールトリアリルエーテル(ダイソー社製ネオアリルP-30) 6.45g
 TEMPO(2,2,6,6-テトラメチルピペリジニル-N-オキシル) 0.10g
 DAROCURE TPO(ホスフィンオキシド系光重合開始剤 BASF社製) 1.50g
(Example 6)
Preparation of 3D modeling photocurable composition 6 The following components were mixed and dissolved to prepare 3D modeling photocurable composition 6.
[Composition of photocurable composition 6 for 3D modeling]
91.95 g of phenoxyethyl acrylate (Kyoeisha Chemical Co., Ltd. light acrylate PO-A)
Pentaerythritol triallyl ether (Daiso Neoleol P-30) 6.45 g
TEMPO (2,2,6,6-tetramethylpiperidinyl-N-oxyl) 0.10 g
DAROCURE TPO (phosphine oxide photopolymerization initiator, manufactured by BASF) 1.50 g
 (実施例7)
 3D造形用光硬化性組成物7の調製
 以下の成分を混合および溶解させて3D造形用光硬化性組成物7を調製した。
 [3D造形用光硬化性組成物7の組成]
 フェノキシエチルアクリレート(共栄社化学社製ライトアクリレートPO-A) 89.75g
 ペンタエリスリトールテトラアクリレート(サートマー社製SR295) 8.65g
 TEMPO(2,2,6,6-テトラメチルピペリジニル-N-オキシル) 0.10g
 DAROCURE TPO(ホスフィンオキシド系光重合開始剤 BASF社製) 1.50g
(Example 7)
Preparation of 3D modeling photocurable composition 7 The following components were mixed and dissolved to prepare 3D modeling photocurable composition 7.
[Composition of photocurable composition 7 for 3D modeling]
Phenoxyethyl acrylate (Kyoeisha Chemical Light Acrylate PO-A) 89.75 g
Pentaerythritol tetraacrylate (SR295, manufactured by Sartomer) 8.65 g
TEMPO (2,2,6,6-tetramethylpiperidinyl-N-oxyl) 0.10 g
DAROCURE TPO (phosphine oxide photopolymerization initiator, manufactured by BASF) 1.50 g
 (実施例8)
 3D造形用光硬化性組成物8の調製
 以下の成分を混合および溶解させて3D造形用光硬化性組成物8を調製した。
 [3D造形用光硬化性組成物8の組成]
 フェノキシエチルアクリレート(共栄社化学社製ライトアクリレートPO-A) 91.42g
 ペンタエリスリトールテトラアクリレート(サートマー社製SR295) 6.98g
 TEMPO(2,2,6,6-テトラメチルピペリジニル-N-オキシル) 0.10g
 DAROCURE TPO(ホスフィンオキシド系光重合開始剤 BASF社製) 1.50g
(Example 8)
Preparation of photocurable composition 8 for 3D modeling The following components were mixed and dissolved to prepare a photocurable composition 8 for 3D modeling.
[Composition of photocurable composition 8 for 3D modeling]
91.42 g of phenoxyethyl acrylate (Kyoeisha Chemical Co., Ltd. light acrylate PO-A)
Pentaerythritol tetraacrylate (SR295 manufactured by Sartomer) 6.98 g
TEMPO (2,2,6,6-tetramethylpiperidinyl-N-oxyl) 0.10 g
DAROCURE TPO (phosphine oxide photopolymerization initiator, manufactured by BASF) 1.50 g
 (実施例9)
 3D造形用光硬化性組成物9の調製
 以下の成分を混合および溶解させて3D造形用光硬化性組成物9を調製した。
 [3D造形用光硬化性組成物9の組成]
 フェノキシエチルアクリレート(共栄社化学社製ライトアクリレートPO-A) 90.02g
 ジペンタエリスリトールヘキサアクリレート(新中村化学社製A-DPH) 8.38g
 TEMPO(2,2,6,6-テトラメチルピペリジニル-N-オキシル) 0.10g
 DAROCURE TPO(ホスフィンオキシド系光重合開始剤 BASF社製) 1.50g
Example 9
Preparation of 3D modeling photocurable composition 9 The following components were mixed and dissolved to prepare 3D modeling photocurable composition 9.
[Composition of photocurable composition 9 for 3D modeling]
Phenoxyethyl acrylate (Kyoeisha Chemical Co., Ltd. Light Acrylate PO-A) 90.02 g
Dipentaerythritol hexaacrylate (Shin-Nakamura Chemical A-DPH) 8.38g
TEMPO (2,2,6,6-tetramethylpiperidinyl-N-oxyl) 0.10 g
DAROCURE TPO (phosphine oxide photopolymerization initiator, manufactured by BASF) 1.50 g
 (実施例10)
 3D造形用光硬化性組成物10の調製
 以下の成分を混合および溶解させて3D造形用光硬化性組成物10を調製した。
 [3D造形用光硬化性組成物10の組成]
 フェノキシエチルアクリレート(共栄社化学社製ライトアクリレートPO-A) 91.35g
 ジペンタエリスリトールヘキサアクリレート(新中村化学社製A-DPH) 7.05g
 TEMPO(2,2,6,6-テトラメチルピペリジニル-N-オキシル) 0.10g
 DAROCURE TPO(ホスフィンオキシド系光重合開始剤 BASF社製) 1.50g
(Example 10)
Preparation of 3D modeling photocurable composition 10 The following components were mixed and dissolved to prepare 3D modeling photocurable composition 10.
[Composition of 3D modeling photocurable composition 10]
91.35 g of phenoxyethyl acrylate (Kyoeisha Chemical Co., Ltd. light acrylate PO-A)
Dipentaerythritol hexaacrylate (A-DPH manufactured by Shin-Nakamura Chemical Co., Ltd.) 7.05 g
TEMPO (2,2,6,6-tetramethylpiperidinyl-N-oxyl) 0.10 g
DAROCURE TPO (phosphine oxide photopolymerization initiator, manufactured by BASF) 1.50 g
 (実施例11)
 3D造形用光硬化性組成物11の調製
 以下の成分を混合および溶解させて3D造形用光硬化性組成物11を調製した。
 [3D造形用光硬化性組成物11の組成]
 フェノキシエチルアクリレート(共栄社化学社製ライトアクリレートPO-A) 87.14g
 ジペンタエリスリトールペンタアクリレートヘキサメチレンジイソシアネートウレタンプレポリマー(新中村化学社製UA-510H) 11.26g
 TEMPO(2,2,6,6-テトラメチルピペリジニル-N-オキシル) 0.10g
 DAROCURE TPO(ホスフィンオキシド系光重合開始剤 BASF社製) 1.50g
(Example 11)
Preparation of 3D modeling photocurable composition 11 The following components were mixed and dissolved to prepare 3D modeling photocurable composition 11.
[Composition of photocurable composition 11 for 3D modeling]
Phenoxyethyl acrylate (Kyoeisha Chemical Company Light Acrylate PO-A) 87.14 g
11.26 g of dipentaerythritol pentaacrylate hexamethylene diisocyanate urethane prepolymer (UA-510H, manufactured by Shin-Nakamura Chemical Co., Ltd.)
TEMPO (2,2,6,6-tetramethylpiperidinyl-N-oxyl) 0.10 g
DAROCURE TPO (phosphine oxide photopolymerization initiator, manufactured by BASF) 1.50 g
 (実施例12)
 3D造形用光硬化性組成物12の調製
 以下の成分を混合および溶解させて3D造形用光硬化性組成物12を調製した。
 [3D造形用光硬化性組成物12の組成]
 フェノキシエチルアクリレート(共栄社化学社製ライトアクリレートPO-A) 89.75g
 ジペンタエリスリトールペンタアクリレートヘキサメチレンジイソシアネートウレタンプレポリマー(新中村化学社製UA-510H) 8.65g
 TEMPO(2,2,6,6-テトラメチルピペリジニル-N-オキシル) 0.10g
 DAROCURE TPO(ホスフィンオキシド系光重合開始剤 BASF社製) 1.50g
Example 12
Preparation of 3D modeling photocurable composition 12 The following components were mixed and dissolved to prepare 3D modeling photocurable composition 12.
[Composition of photocurable composition 12 for 3D modeling]
Phenoxyethyl acrylate (Kyoeisha Chemical Light Acrylate PO-A) 89.75 g
Dipentaerythritol pentaacrylate hexamethylene diisocyanate urethane prepolymer (UA-510H, manufactured by Shin-Nakamura Chemical Co., Ltd.) 8.65 g
TEMPO (2,2,6,6-tetramethylpiperidinyl-N-oxyl) 0.10 g
DAROCURE TPO (phosphine oxide photopolymerization initiator, manufactured by BASF) 1.50 g
 (実施例13)
 3D造形用光硬化性組成物13の調製
 以下の成分を混合および溶解させて3D造形用光硬化性組成物13を調製した。なお、8KX-078については溶媒を除去した後の固形分のみを添加した。
 [3D造形用光硬化性組成物13の組成]
 フェノキシエチルアクリレート(共栄社化学社製ライトアクリレートPO-A)87.47g
 多官能アクリレートポリマー(大成ファインケミカル社製8KX-078、官能基数88、分子量4万) 10.93g 
 TEMPO(2,2,6,6-テトラメチルピペリジニル-N-オキシル) 0.10g
 DAROCURE TPO(ホスフィンオキシド系光重合開始剤 BASF社製) 1.50g
(Example 13)
Preparation of 3D modeling photocurable composition 13 The following components were mixed and dissolved to prepare 3D modeling photocurable composition 13. For 8KX-078, only the solid content after removing the solvent was added.
[Composition of 3D modeling photocurable composition 13]
87.47g phenoxyethyl acrylate (Kyoeisha Chemical Co., Ltd. light acrylate PO-A)
Multifunctional acrylate polymer (8KX-078, Taisei Fine Chemical Co., Ltd., 88 functional groups, 40,000 molecular weight) 10.93 g
TEMPO (2,2,6,6-tetramethylpiperidinyl-N-oxyl) 0.10 g
DAROCURE TPO (phosphine oxide photopolymerization initiator, manufactured by BASF) 1.50 g
 (実施例14)
 3D造形用光硬化性組成物14の調製
 以下の成分を混合および溶解させて3D造形用光硬化性組成物14を調製した。なお、8KX-078については溶媒を除去した後の固形分のみを添加した。
 [3D造形用光硬化性組成物14の組成]
 フェノキシエチルアクリレート(共栄社化学社製ライトアクリレートPO-A)69.43g
 多官能アクリレートポリマー(大成ファインケミカル社製8KX-078、官能基数88、分子量4万) 28.96g 
 TEMPO(2,2,6,6-テトラメチルピペリジニル-N-オキシル) 0.10g
 DAROCURE TPO(ホスフィンオキシド系光重合開始剤 BASF社製) 1.50g
(Example 14)
Preparation of 3D modeling photocurable composition 14 The following components were mixed and dissolved to prepare 3D modeling photocurable composition 14. For 8KX-078, only the solid content after removing the solvent was added.
[Composition of photocurable composition 14 for 3D modeling]
69.43g of phenoxyethyl acrylate (Kyoeisha Chemical Co., Ltd. light acrylate PO-A)
Polyfunctional acrylate polymer (8KX-078, Taisei Fine Chemical Co., Ltd., 88 functional groups, 40,000 molecular weight) 28.96g
TEMPO (2,2,6,6-tetramethylpiperidinyl-N-oxyl) 0.10 g
DAROCURE TPO (phosphine oxide photopolymerization initiator, manufactured by BASF) 1.50 g
 (実施例15)
 3D造形用光硬化性組成物15の調製
 以下の成分を混合および溶解させて3D造形用光硬化性組成物15を調製した。なお、8KX-077については溶媒を除去した後の固形分のみを添加した。
 [3D造形用光硬化性組成物15の組成]
 フェノキシエチルアクリレート(共栄社化学社製ライトアクリレートPO-A)92.34g
 多官能アクリレートポリマー(大成ファインケミカル社製8KX-077、官能基数167、分子量2万) 6.06g
 TEMPO(2,2,6,6-テトラメチルピペリジニル-N-オキシル) 0.10g
 DAROCURE TPO(ホスフィンオキシド系光重合開始剤 BASF社製) 1.50g
(Example 15)
Preparation of 3D modeling photocurable composition 15 The following components were mixed and dissolved to prepare 3D modeling photocurable composition 15. For 8KX-077, only the solid content after removing the solvent was added.
[Composition of 3D modeling photocurable composition 15]
92.34 g of phenoxyethyl acrylate (Kyoeisha Chemical Co., Ltd. light acrylate PO-A)
Multifunctional acrylate polymer (8KX-077, Taisei Fine Chemical Co., Ltd., 167 functional groups, 20,000 molecular weight) 6.06 g
TEMPO (2,2,6,6-tetramethylpiperidinyl-N-oxyl) 0.10 g
DAROCURE TPO (phosphine oxide photopolymerization initiator, manufactured by BASF) 1.50 g
 (実施例16)
 3D造形用光硬化性組成物16の調製
 以下の成分を混合および溶解させて3D造形用光硬化性組成物16を調製した。
 [3D造形用光硬化性組成物16の組成]
 フェノキシエチルアクリレート(共栄社化学社製ライトアクリレートPO-A) 92.61g
 多分岐ポリアクリレート(大阪有機化学社製star-501、官能基数20~99、分子量16000) 5.79g
 TEMPO(2,2,6,6-テトラメチルピペリジニル-N-オキシル) 0.10g
 DAROCURE TPO(ホスフィンオキシド系光重合開始剤 BASF社製) 1.50g
(Example 16)
Preparation of 3D modeling photocurable composition 16 The following components were mixed and dissolved to prepare 3D modeling photocurable composition 16.
[Composition of 3D modeling photocurable composition 16]
92.61 g of phenoxyethyl acrylate (Kyoeisha Chemical Co., Ltd. Light Acrylate PO-A)
Multi-branched polyacrylate (star-501, Osaka Organic Chemical Co., Ltd., functional group number 20-99, molecular weight 16000) 5.79 g
TEMPO (2,2,6,6-tetramethylpiperidinyl-N-oxyl) 0.10 g
DAROCURE TPO (phosphine oxide photopolymerization initiator, manufactured by BASF) 1.50 g
 (実施例17)
 3D造形用光硬化性組成物17の調製
 以下の成分を混合および溶解させて3D造形用光硬化性組成物17を調製した。1、6ヘキサンジオールジアクリレートとペンタエリスリトールテトラアクリレートとのモル比は、1:1とした。
 [3D造形用光硬化性組成物17の組成]
 フェノキシエチルアクリレート(共栄社化学社製ライトアクリレートPO-A) 91.18g
 1、6ヘキサンジオールジアクリレート(新中村化学社製A-HD-N) 2.82g
 ペンタエリスリトールテトラアクリレート(サートマー社製SR295) 4.39g
 TEMPO(2,2,6,6-テトラメチルピペリジニル-N-オキシル) 0.10g
 DAROCURE TPO(ホスフィンオキシド系光重合開始剤 BASF社製) 1.50g
(Example 17)
Preparation of 3D modeling photocurable composition 17 The following components were mixed and dissolved to prepare 3D modeling photocurable composition 17. The molar ratio of 1,6 hexanediol diacrylate to pentaerythritol tetraacrylate was 1: 1.
[Composition of 3D modeling photocurable composition 17]
91.18 g of phenoxyethyl acrylate (Kyoeisha Chemical Co., Ltd. light acrylate PO-A)
1,6 hexanediol diacrylate (A-HD-N manufactured by Shin-Nakamura Chemical Co., Ltd.) 2.82 g
Pentaerythritol tetraacrylate (SR295 manufactured by Sartomer) 4.39 g
TEMPO (2,2,6,6-tetramethylpiperidinyl-N-oxyl) 0.10 g
DAROCURE TPO (phosphine oxide photopolymerization initiator, manufactured by BASF) 1.50 g
 (実施例18)
 3D造形用光硬化性組成物18の調製
 以下の成分を混合および溶解させて3D造形用光硬化性組成物18を調製した。1、6ヘキサンジオールジアクリレートとジペンタエリスリトールヘキサアクリレートとのモル比は、1:1とした。
 [3D造形用光硬化性組成物18の組成]
 フェノキシエチルアクリレート(共栄社化学社製ライトアクリレートPO-A) 93.39g
 1、6ヘキサンジオールジアクリレート(新中村化学社製A-HD-N) 1.41g
 ジペンタエリスリトールヘキサアクリレート(新中村化学社製A-DPH) 3.60g
 TEMPO(2,2,6,6-テトラメチルピペリジニル-N-オキシル) 0.10g
 DAROCURE TPO(ホスフィンオキシド系光重合開始剤 BASF社製) 1.50g
(Example 18)
Preparation of 3D modeling photocurable composition 18 The following components were mixed and dissolved to prepare 3D modeling photocurable composition 18. The molar ratio of 1,6 hexanediol diacrylate to dipentaerythritol hexaacrylate was 1: 1.
[Composition of 3D modeling photocurable composition 18]
Phenoxyethyl acrylate (Kyoeisha Chemical Light acrylate PO-A) 93.39 g
1,6 hexanediol diacrylate (A-HD-N, manufactured by Shin-Nakamura Chemical Co., Ltd.) 1.41 g
Dipentaerythritol hexaacrylate (Shin-Nakamura Chemical A-DPH) 3.60 g
TEMPO (2,2,6,6-tetramethylpiperidinyl-N-oxyl) 0.10 g
DAROCURE TPO (phosphine oxide photopolymerization initiator, manufactured by BASF) 1.50 g
 (実施例19)
 3D造形用光硬化性組成物19の調製
 以下の成分を混合および溶解させて3D造形用光硬化性組成物19を調製した。トリメチロールプロパントリアクリレートとジペンタエリスリトールヘキサアクリレートとのモル比は、1:2とした。
 [3D造形用光硬化性組成物19の組成]
 フェノキシエチルアクリレート(共栄社化学社製ライトアクリレートPO-A) 92.42g
 トリメチロールプロパントリアクリレート(サートマー社製SR351) 1.21g
 ジペンタエリスリトールヘキサアクリレート(新中村化学社製A-DPH) 4.77g
 TEMPO(2,2,6,6-テトラメチルピペリジニル-N-オキシル) 0.10g
 DAROCURE TPO(ホスフィンオキシド系光重合開始剤 BASF社製) 1.50g
(Example 19)
Preparation of 3D modeling photocurable composition 19 The following components were mixed and dissolved to prepare 3D modeling photocurable composition 19. The molar ratio of trimethylolpropane triacrylate to dipentaerythritol hexaacrylate was 1: 2.
[Composition of 3D modeling photocurable composition 19]
92.42g phenoxyethyl acrylate (Kyoeisha Chemical Co., Ltd. light acrylate PO-A)
Trimethylolpropane triacrylate (SR351 manufactured by Sartomer) 1.21 g
4.77 g of dipentaerythritol hexaacrylate (A-DPH manufactured by Shin-Nakamura Chemical Co., Ltd.)
TEMPO (2,2,6,6-tetramethylpiperidinyl-N-oxyl) 0.10 g
DAROCURE TPO (phosphine oxide photopolymerization initiator, manufactured by BASF) 1.50 g
 (実施例20)
 3D造形用光硬化性組成物20の調製
 以下の成分を混合および溶解させて3D造形用光硬化性組成物20を調製した。
 [3D造形用光硬化性組成物20の組成]
 2-エチルヘキシルオキセタン(東亜合成社製OXT-212) 91.68g
 グリセロールポリグリシジルエーテル(ナガセケムテックス社製EX-314) 5.79g
 2メチルアミノエタノール 0.03g
 CPI-100P(光酸発生剤 サンアプロ社製) 2.50g
(Example 20)
Preparation of 3D modeling photocurable composition 20 The following components were mixed and dissolved to prepare 3D modeling photocurable composition 20.
[Composition of photocurable composition 20 for 3D modeling]
2-ethylhexyloxetane (OXT-212 manufactured by Toa Gosei Co., Ltd.) 91.68 g
Glycerol polyglycidyl ether (EX-314 manufactured by Nagase ChemteX Corporation) 5.79 g
0.03 g of 2-methylaminoethanol
CPI-100P (Photo acid generator, San Apro) 2.50g
 (実施例21)
 3D造形用光硬化性組成物21の調製
 以下の成分を混合および溶解させて3D造形用光硬化性組成物21を調製した。
 [3D造形用光硬化性組成物21の組成]
 2-エチルヘキシルオキセタン(東亜合成社製OXT-212) 93.89g
 ペンタエリスリトールポリグリシジルエーテル(ナガセケムテックス社製EX-411) 4.51g
 2メチルアミノエタノール 0.03g
 CPI-100P(光酸発生剤 サンアプロ社製) 2.50g
(Example 21)
Preparation of 3D modeling photocurable composition 21 The following components were mixed and dissolved to prepare 3D modeling photocurable composition 21.
[Composition of 3D modeling photocurable composition 21]
2-ethylhexyloxetane (OXT-212 manufactured by Toa Gosei Co., Ltd.) 93.89 g
Pentaerythritol polyglycidyl ether (EX-411 manufactured by Nagase ChemteX Corporation) 4.51 g
0.03 g of 2-methylaminoethanol
CPI-100P (Photo acid generator, San Apro) 2.50g
 (実施例22)
 3D造形用光硬化性組成物22の調製
 以下の成分を混合および溶解させて3D造形用光硬化性組成物22を調製した。
 [3D造形用光硬化性組成物22の組成]
 シクロヘキシルビニルエーテル(日本カーバイト工業社製CHVE) 89.46g
 トリメチロールプロパントリビニルエーテル 5.34g
 2メチルアミノエタノール 0.03g
 CPI-100P(光酸発生剤 サンアプロ社製) 2.50g
(Example 22)
Preparation of 3D modeling photocurable composition 22 The following components were mixed and dissolved to prepare 3D modeling photocurable composition 22.
[Composition of 3D modeling photocurable composition 22]
Cyclohexyl vinyl ether (CHVE manufactured by Nippon Carbide Industries Co., Ltd.) 89.46g
Trimethylolpropane trivinyl ether 5.34 g
0.03 g of 2-methylaminoethanol
CPI-100P (Photo acid generator, San Apro) 2.50g
 (実施例23)
 3D造形用光硬化性組成物23の調製
 以下の成分を混合および溶解させて3D造形用光硬化性組成物23を調製した。
 [3D造形用光硬化性組成物23の組成]
 フェノキシエチルアクリレート(共栄社化学社製ライトアクリレートPO-A) 91.02g
 トリメチロールプロパントリアクリレート(サートマー社製SR351) 7.38g
 TEMPO(2,2,6,6-テトラメチルピペリジニル-N-オキシル) 0.10g
 DAROCURE TPO(ホスフィンオキシド系光重合開始剤 BASF社製) 1.50g
(Example 23)
Preparation of 3D modeling photocurable composition 23 The following components were mixed and dissolved to prepare 3D modeling photocurable composition 23.
[Composition of 3D modeling photocurable composition 23]
Phenoxyethyl acrylate (Kyoeisha Chemical Company Light Acrylate PO-A) 91.02 g
7.38 g of trimethylolpropane triacrylate (SR351, manufactured by Sartomer)
TEMPO (2,2,6,6-tetramethylpiperidinyl-N-oxyl) 0.10 g
DAROCURE TPO (phosphine oxide photopolymerization initiator, manufactured by BASF) 1.50 g
 (比較例1)
 3D造形用光硬化性組成物24の調製
 以下の成分を混合および溶解させて3D造形用光硬化性組成物24を調製した。
 [3D造形用光硬化性組成物24の組成]
 フェノキシエチルアクリレート(共栄社化学社製ライトアクリレートPO-A) 92.67g
 1、6ヘキサンジオールジアクリレート(新中村化学社製A-HD-N) 5.73g
 TEMPO(2,2,6,6-テトラメチルピペリジニル-N-オキシル) 0.10g
 DAROCURE TPO(ホスフィンオキシド系光重合開始剤 BASF社製) 1.50g
(Comparative Example 1)
Preparation of 3D modeling photocurable composition 24 The following components were mixed and dissolved to prepare 3D modeling photocurable composition 24.
[Composition of photocurable composition 24 for 3D modeling]
92.67 g of phenoxyethyl acrylate (Kyoeisha Chemical Co., Ltd. light acrylate PO-A)
1,6 hexanediol diacrylate (A-HD-N manufactured by Shin-Nakamura Chemical Co., Ltd.) 5.73 g
TEMPO (2,2,6,6-tetramethylpiperidinyl-N-oxyl) 0.10 g
DAROCURE TPO (phosphine oxide photopolymerization initiator, manufactured by BASF) 1.50 g
 (比較例2)
 3D造形用光硬化性組成物25の調製
 以下の成分を混合および溶解させて3D造形用光硬化性組成物25を調製した。
 [3D造形用光硬化性組成物25の組成]
 フェノキシエチルアクリレート(共栄社化学社製ライトアクリレートPO-A) 98.39g
 トリメチロールプロパントリアクリレート(サートマー社製SR351) 0.01g
 TEMPO(2,2,6,6-テトラメチルピペリジニル-N-オキシル) 0.10g
 DAROCURE TPO(ホスフィンオキシド系光重合開始剤 BASF社製) 1.50g
(Comparative Example 2)
Preparation of 3D modeling photocurable composition 25 The following components were mixed and dissolved to prepare 3D modeling photocurable composition 25.
[Composition of photocurable composition 25 for 3D modeling]
Phenoxyethyl acrylate (Kyoeisha Chemical Light Acrylate PO-A) 98.39 g
0.01 g of trimethylolpropane triacrylate (SR351 manufactured by Sartomer)
TEMPO (2,2,6,6-tetramethylpiperidinyl-N-oxyl) 0.10 g
DAROCURE TPO (phosphine oxide photopolymerization initiator, manufactured by BASF) 1.50 g
 (比較例3)
 3D造形用光硬化性組成物26の調製
 以下の成分を混合および溶解させて3D造形用光硬化性組成物26を調製した。
 [3D造形用光硬化性組成物26の組成]
 フェノキシエチルアクリレート(共栄社化学社製ライトアクリレートPO-A) 85.38g
 トリメチロールプロパントリアクリレート(サートマー社製SR351) 13.02g
 TEMPO(2,2,6,6-テトラメチルピペリジニル-N-オキシル) 0.10g
 DAROCURE TPO(ホスフィンオキシド系光重合開始剤 BASF社製) 1.50g
(Comparative Example 3)
Preparation of 3D modeling photocurable composition 26 The following components were mixed and dissolved to prepare 3D modeling photocurable composition 26.
[Composition of 3D modeling photocurable composition 26]
Phenoxyethyl acrylate (Kyoeisha Chemical Company Light Acrylate PO-A) 85.38 g
Trimethylolpropane triacrylate (SR351, manufactured by Sartomer) 13.02 g
TEMPO (2,2,6,6-tetramethylpiperidinyl-N-oxyl) 0.10 g
DAROCURE TPO (phosphine oxide photopolymerization initiator, manufactured by BASF) 1.50 g
 各実施例および比較例の3D造形用光硬化性組成物1~22および24~26をコニカミノルタIJ社製のピエゾヘッド512Lを搭載したUV硬化型プリンタに装填した。そして、ヘッド温度を「75℃以下であってインクの粘度が10mPa・sとなる温度」、あるいは75℃でもインクの粘度が10mPa・s超となる場合は「75℃」に設定した。そしてインクを1滴の液滴量42pl、8kHzの周波数の条件で長さ(X方向)80mm×巾(Y方向)10mmのベタ状に吐出し、高圧水銀灯で照度100mW/cmで1秒間光照射して層を形成し、次いでヘッドおよび光源を垂直方向に上昇させて形成した層状にヘッドからインクを吐出硬化して積層し、これを厚みが1mmになるまで繰り返してXY方向の物性測定用サンプルを作成した。 The photocurable compositions 1 to 22 and 24 to 26 for 3D modeling of each example and comparative example were loaded into a UV curable printer equipped with a piezo head 512L manufactured by Konica Minolta IJ. The head temperature was set to “75 ° C. or lower and the ink viscosity becomes 10 mPa · s”, or “75 ° C.” when the ink viscosity exceeds 10 mPa · s even at 75 ° C. Then a drop of ink droplet volume 42 pl, length under conditions of frequency of 8 kHz (X direction) discharged into 80 mm × width (Y-direction) 10 mm solid form, one second light intensity 100 mW / cm 2 at a high pressure mercury lamp Layers are formed by irradiation, and then the head and the light source are raised in the vertical direction, and the ink is ejected and cured from the head and laminated, and this is repeated until the thickness reaches 1 mm for measuring physical properties in the XY directions. A sample was created.
 上記と同様に長さ(X方向)10mm×巾(Y方向)1mmのベタ状に吐出硬化した膜を厚み80mmになるまで積層してZ方向の物性測定用サンプルを作成した。 In the same manner as described above, a solid film having a length (X direction) of 10 mm × width (Y direction) of 1 mm was cured by stacking until a thickness of 80 mm was obtained, thereby preparing a sample for measuring physical properties in the Z direction.
 3D造形用光硬化性組成物23をエンビジョンテック社製光造形機perfectry desktopのバットに投入し、長さ(X方向)80mm×巾(Y方向)10mm×厚み(Z方向)1mmのXY方向物性測定用サンプルおよび長さ(X方向)10mm×巾(Y方向)1mm×厚み(Z方向)80mmのZ方向物性測定用サンプルを作成した。 The photocurable composition 23 for 3D modeling is put into the bat of an optical modeling machine perfect desktop manufactured by Envision Tech Co., Ltd., and the length (X direction) 80 mm × width (Y direction) 10 mm × thickness (Z direction) 1 mm XY direction A sample for measuring physical properties and a sample for measuring physical properties in the Z direction having a length (X direction) of 10 mm × width (Y direction) of 1 mm × thickness (Z direction) of 80 mm were prepared.
 (破断伸びと破断強度の測定)
 上記作成した実施例および比較例のXY方向測定用サンプルおよぶZ方向測定用サンプルをテンシロンで以下の条件で引張試験を実施し破断時の伸びと強度を測定した。
 引張速度:500mm/min
 チャック間距離:5cm
(Measurement of elongation at break and strength at break)
Tensile test was performed on the XY direction measurement samples and the Z direction measurement samples of the above-prepared examples and comparative examples with Tensilon under the following conditions to measure the elongation and strength at break.
Tensile speed: 500 mm / min
Distance between chucks: 5cm
 (評価基準-破断伸び)
 ◎:破断伸びが200%以上。
 ○:破断伸びが150%以上200%未満。
 △:破断伸びが100%以上150%未満。
 ×:破断伸びが100%未満。
(Evaluation criteria-Elongation at break)
A: Elongation at break is 200% or more.
○: Elongation at break is 150% or more and less than 200%.
Δ: Elongation at break is 100% or more and less than 150%.
X: Elongation at break is less than 100%.
 (評価基準-破断強度)
 ◎:破断強度が3MPa以上。
 ○:破断強度が1MPa以上3MPa未満。
 ×:破断強度が1MPa未満。
(Evaluation criteria-Breaking strength)
A: Breaking strength is 3 MPa or more.
○: Breaking strength is 1 MPa or more and less than 3 MPa.
X: Breaking strength is less than 1 MPa.
 (出射性)
 3D造形用光硬化性組成物1~22および24~26を、コニカミノルタIJ社製のピエゾヘッド512Lを搭載したUV硬化型プリンタに装填した。そして、ヘッド温度を「75℃以下であってインクの粘度が10mPa・sとなる温度」、あるいは75℃でもインクの粘度が10mPa・s超となる場合は「75℃」に設定した。そして、1L相当のインクを、1滴の液滴量42pl、8kHzの周波数の条件で、60分間連続的に吐出させた。そして、欠ノズルの数をカウントして、インクの出射性を評価した。インクの出射性の評価は、以下の基準で行った。
 ◎:欠ノズルが発生しなかった。
 ○:欠ノズルが1個以上全体の3%未満発生した。
 △:欠ノズルが全体の3%以上10%未満発生した。
 ×:欠ノズルが全体の10%以上発生した。
(Outgoing properties)
The photocurable compositions 1 to 22 and 24 to 26 for 3D modeling were loaded into a UV curable printer equipped with a piezo head 512L manufactured by Konica Minolta IJ. The head temperature was set to “75 ° C. or lower and the ink viscosity becomes 10 mPa · s”, or “75 ° C.” when the ink viscosity exceeds 10 mPa · s even at 75 ° C. Then, 1 L of ink was continuously ejected for 60 minutes under the conditions of a droplet amount of 42 pl and a frequency of 8 kHz. Then, the number of missing nozzles was counted to evaluate ink emission. Evaluation of ink emission was performed according to the following criteria.
A: No missing nozzle was generated.
○: One or more missing nozzles occurred and less than 3% of the total.
Δ: 3% or more and less than 10% of missing nozzles occurred
×: 10% or more of missing nozzles occurred.
 実施例1~23および比較例1~3のそれぞれについて、用いた単官能重合性化合物の種類、多官能重合性化合物の種類、官能基数および平均官能基数(a)、単官能重合性化合物と多官能重合性化合物とのモル比(%)、多官能重合性化合物の平均官能基数(a)から算出した100-8×2/aおよび8×/aの値、ならびに上記基準による評価結果を、表1に示す。 For each of Examples 1 to 23 and Comparative Examples 1 to 3, the type of monofunctional polymerizable compound used, the type of polyfunctional polymerizable compound, the number of functional groups and the average number of functional groups (a), the monofunctional polymerizable compound and the polyfunctional polymerizable compound The molar ratio (%) with the functional polymerizable compound, the values of 100-8 × 2 / a and 8 × / a calculated from the average number of functional groups (a) of the polyfunctional polymerizable compound, and the evaluation results based on the above criteria, Table 1 shows.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 なお、表中の略号は、それぞれの3D造形用光硬化性組成物の調製に用いた以下の重合性化合物を表す。
 ・単官能有機性化合物
 POA:フェノキシエチルアクリレート
 ISTA:イソステアリルアクリレート
 OXT-212:2-エチルヘキシルオキセタン
 CHVE:シクロヘキシルビニルエーテル
 ・多官能有機性化合物
 SR351:トリメチロールプロパントリアクリレート
 SR295:ペンタエリスリトールテトラアクリレート
 A-DPH:ジペンタエリスリトールヘキサアクリレート
 UA-510H:ジペンタエリスリトールペンタアクリレートヘキサメチレンジイソシアネートウレタンプレポリマー(新中村化学社製UA-510H)
 8KX-078:多官能アクリレートポリマー(大成ファインケミカル社製8KX-078)
 8KX-077:多官能アクリレートポリマー(大成ファインケミカル社製8KX-077)
 star-501:多分岐ポリアクリレート(大阪有機化学社製star-501)
 HDDA:1,6ヘキサンジオールジアクリレート
 EX-314:グリセロールポリグリシジルエーテル
 EX-411:ペンタエリスリトールポリグリシジルエーテル
 TMVE:トリメチロールプロパントリビニルエーテル
In addition, the symbol in a table | surface represents the following polymerizable compounds used for preparation of each photocurable composition for 3D modeling.
Monofunctional organic compound POA: Phenoxyethyl acrylate ISTA: Isostearyl acrylate OXT-212: 2-Ethylhexyloxetane CHVE: Cyclohexyl vinyl ether Polyfunctional organic compound SR351: Trimethylolpropane triacrylate SR295: Pentaerythritol tetraacrylate A-DPH : Dipentaerythritol hexaacrylate UA-510H: Dipentaerythritol pentaacrylate hexamethylene diisocyanate urethane prepolymer (UA-510H manufactured by Shin-Nakamura Chemical Co., Ltd.)
8KX-078: Multifunctional acrylate polymer (8KX-078 manufactured by Taisei Fine Chemical Co., Ltd.)
8KX-077: Multifunctional acrylate polymer (8KX-077 manufactured by Taisei Fine Chemical Co., Ltd.)
star-501: multi-branched polyacrylate (star-501 manufactured by Osaka Organic Chemical Co., Ltd.)
HDDA: 1,6-hexanediol diacrylate EX-314: glycerol polyglycidyl ether EX-411: pentaerythritol polyglycidyl ether TMVE: trimethylolpropane trivinyl ether
 単官能重合性化合物(M)と多官能重合性化合物(m)とのモル比を(M)/(m)=92/8~99.99/0.01の範囲にすることで、破断伸びおよび破断強度のいずれも良好な3D造形物が得られ、また出射性も良好だった。 By setting the molar ratio of the monofunctional polymerizable compound (M) to the polyfunctional polymerizable compound (m) in the range of (M) / (m) = 92/8 to 99.99 / 0.01, the elongation at break A 3D model with good breaking strength was obtained, and the light output was also good.
 単官能重合性化合物(M)と多官能重合性化合物(m)とのモル比を(M)/(m)=(100-8×2/a)/(8×2/a)~99.99/0.01の範囲にすることで、破断伸びおよび破断強度がより良好な3D造形物が得られた。 The molar ratio of the monofunctional polymerizable compound (M) and the polyfunctional polymerizable compound (m) is (M) / (m) = (100−8 × 2 / a) / (8 × 2 / a) to 99.99. By setting the ratio in the range of 99 / 0.01, a 3D shaped article with better breaking elongation and breaking strength was obtained.
 多官能重合性化合物の分子量を10,000以上100,000以下とするか、多官能重合性化合物に官能基数が20以上である化合物を含ませると、破断伸びおよび破断強度がより良好となった。 When the molecular weight of the polyfunctional polymerizable compound is 10,000 or more and 100,000 or less, or when the polyfunctional polymerizable compound contains a compound having 20 or more functional groups, the elongation at break and the breaking strength are improved. .
 本発明の3D造形用光硬化性組成物は光硬化性を有し、その硬化物はゴムのような伸びと弾性を有する。そのため、本発明のインク組成物から得られる画像又は3D造形物に独特の特性を付与することができる。 The photocurable composition for 3D modeling of the present invention has photocurability, and the cured product has elongation and elasticity like rubber. Therefore, unique characteristics can be imparted to the image or 3D structure obtained from the ink composition of the present invention.
 本出願は、2014年3月14日出願の日本国出願番号2014-052505号に基づく優先権を主張する出願であり、当該出願の明細書および図面に記載された内容は本出願に援用される。 This application claims priority based on Japanese Patent Application No. 2014-052505 filed on March 14, 2014, and the contents described in the specification and drawings of the application are incorporated in this application. .
 1 インクジェット部
 2 演算制御部
 3 記憶装置
 4 入力装置
 5 出力装置
 6 表示装置
 11 ステージ
 12 インクジェット装置
 13 モデル材用インクジェットヘッド
 14 サポート材用インクジェットヘッド
 16 光源
 31 SLA部
 32 演算制御部
 33 容器
 34 ステージ
DESCRIPTION OF SYMBOLS 1 Inkjet part 2 Arithmetic control part 3 Memory | storage device 4 Input device 5 Output device 6 Display apparatus 11 Stage 12 Inkjet apparatus 13 Inkjet head for model material 14 Inkjet head for support material 16 Light source 31 SLA part 32 Calculation control part 33 Container 34 Stage

Claims (10)

  1.  単官能重合性化合物、多官能重合性化合物および光重合開始剤を含む3D造形用光硬化性組成物であって、
     該多官能重合性化合物の平均官能基数は3以上であり、
     該単官能重合性化合物(M)と該多官能重合性化合物(m)とを(M)/(m)=92/8~99.99/0.01のモル比で含む、組成物。
    A photocurable composition for 3D modeling comprising a monofunctional polymerizable compound, a polyfunctional polymerizable compound, and a photopolymerization initiator,
    The average functional group number of the polyfunctional polymerizable compound is 3 or more,
    A composition comprising the monofunctional polymerizable compound (M) and the polyfunctional polymerizable compound (m) in a molar ratio of (M) / (m) = 92/8 to 99.99 / 0.01.
  2.  前記多官能重合性化合物の平均官能基数をaとしたとき、
     該単官能重合性化合物(M)と該多官能重合性化合物(m)とを(M)/(m)=(100-8×2/a)/(8×2/a)~99.99/0.01のモル比で含む、請求項1に記載の組成物。
    When the average functional group number of the polyfunctional polymerizable compound is a,
    The monofunctional polymerizable compound (M) and the polyfunctional polymerizable compound (m) are converted into (M) / (m) = (100−8 × 2 / a) / (8 × 2 / a) to 99.99. The composition of claim 1 comprising a molar ratio of /0.01.
  3.  前記多官能重合性化合物は分子量が10,000以上100,000以下である化合物を含む、請求項1または2に記載の組成物。 The composition according to claim 1 or 2, wherein the polyfunctional polymerizable compound includes a compound having a molecular weight of 10,000 or more and 100,000 or less.
  4.  前記多官能重合性化合物は官能基数が20以上である化合物を含む、請求項3に記載の組成物。 The composition according to claim 3, wherein the polyfunctional polymerizable compound includes a compound having 20 or more functional groups.
  5.  前記単官能重合性化合物は、ラジカル重合性の官能基を有する化合物を含み、前記光重合開始剤は光ラジカル開始剤を含む、請求項1~4のいずれか1項に記載の組成物。 The composition according to any one of claims 1 to 4, wherein the monofunctional polymerizable compound includes a compound having a radical polymerizable functional group, and the photopolymerization initiator includes a photo radical initiator.
  6.  前記単官能重合性化合物は、カチオン重合性の官能基を有する化合物を含み、前記光重合開始剤は光酸発生剤を含む、請求項1~4のいずれか1項に記載の組成物。 The composition according to any one of claims 1 to 4, wherein the monofunctional polymerizable compound includes a compound having a cationic polymerizable functional group, and the photopolymerization initiator includes a photoacid generator.
  7.  請求項1~6のいずれか1項に記載の組成物に活性光線を照射する工程を含む、3D造形物の製造方法。 A method for producing a 3D structure, comprising a step of irradiating the composition according to any one of claims 1 to 6 with actinic rays.
  8.  前記組成物を含むモデル材と、サポート材組成物を含むサポート材と、を用いる、請求項7に記載の3D造形物の製造方法。 The method for manufacturing a 3D structure according to claim 7, wherein a model material including the composition and a support material including a support material composition are used.
  9.  3D造形物の各層におけるモデル材およびサポート材の配置を表す複数の平面データに含まれる第1の平面データに基づいて、前記モデル材および前記サポート材の少なくともいずれか一方をインクジェットヘッドのノズルから基材上に吐出して第1の膜を形成し、
     該第1の膜を光硬化させて第1の硬化層を形成する工程と、
     該複数の平面データに含まれる第n(nは2以上の整数)の平面データに基づいて、前記モデル材および前記サポート材の少なくともいずれか一方をインクジェットヘッドのノズルから第n-1の硬化層上に吐出して第nの膜を形成し、
     該第nの膜を光硬化させて第nの硬化層を形成する工程とを有し、
     該第nの膜を形成し第nの硬化層を形成する工程を少なくとも1回以上行い、
     その後、サポート材を除去する工程をさらに有する、請求項8に記載の3D造形物の製造方法。
    Based on the first plane data included in the plurality of plane data representing the arrangement of the model material and the support material in each layer of the 3D modeled object, at least one of the model material and the support material is determined from the nozzle of the inkjet head. Discharging onto the material to form a first film;
    Photocuring the first film to form a first cured layer;
    Based on the nth (n is an integer of 2 or more) plane data included in the plurality of plane data, at least one of the model material and the support material is removed from the nozzle of the inkjet head to the (n-1) th hardened layer. To form an nth film by discharging onto the surface;
    And photocuring the nth film to form an nth cured layer,
    Performing the step of forming the nth film and forming the nth hardened layer at least once,
    Then, the manufacturing method of the 3D modeling thing of Claim 8 which further has the process of removing a support material.
  10.  3D造形物の各層の形状を表す複数の平面データに含まれる第1の平面データに基づいて、液体状の前記組成物の表面に活性光線を照射して第1の硬化層を形成する工程と、
     該複数の平面データに含まれる第n(nは2以上の整数)の平面データに基づいて、該液体状の組成物の表面に活性光線を照射して第n-1の硬化層上に第nの硬化層を形成する工程とを有し、該第nの硬化層を形成する工程を少なくとも1回以上行う、請求項7に記載の3D造形物の製造方法。
    A step of irradiating the surface of the liquid composition with actinic rays based on the first plane data included in the plurality of plane data representing the shape of each layer of the 3D structure to form a first hardened layer; ,
    Based on the nth (n is an integer of 2 or more) plane data included in the plurality of plane data, the surface of the liquid composition is irradiated with actinic rays to form the n-1th cured layer on the n−1th cured layer. The method for producing a 3D structure according to claim 7, further comprising: forming a cured layer of n, and performing the step of forming the nth cured layer at least once.
PCT/JP2015/057569 2014-03-14 2015-03-13 Photocurable composition for 3d modeling and method for producing 3d model WO2015137504A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016507858A JP6399084B2 (en) 2014-03-14 2015-03-13 Photocurable composition for 3D modeling and method for producing 3D modeling

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-052505 2014-03-14
JP2014052505 2014-03-14

Publications (1)

Publication Number Publication Date
WO2015137504A1 true WO2015137504A1 (en) 2015-09-17

Family

ID=54071938

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/057569 WO2015137504A1 (en) 2014-03-14 2015-03-13 Photocurable composition for 3d modeling and method for producing 3d model

Country Status (2)

Country Link
JP (1) JP6399084B2 (en)
WO (1) WO2015137504A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6042523B1 (en) * 2015-11-25 2016-12-14 岡本化学工業株式会社 Composition for optical three-dimensional modeling and method for producing three-dimensional model using the same
WO2017033427A1 (en) * 2015-08-26 2017-03-02 ナガセケムテックス株式会社 Patterning material, patterning method and patterning device
CN108329423A (en) * 2017-01-18 2018-07-27 东友精细化工有限公司 Photocurable composition and the photocuring film formed by the Photocurable composition
WO2019146132A1 (en) * 2018-01-26 2019-08-01 岡本化学工業株式会社 Composition for optical three-dimensional shaping, three-dimensional shaped object, and production method therefor

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08323866A (en) * 1995-06-05 1996-12-10 Takemoto Oil & Fat Co Ltd Photo-setting liquid for optical three-dimensional shaping and photo-setting composition for optical three-dimensional shaping containing the same
JPH1030002A (en) * 1996-07-16 1998-02-03 Olympus Optical Co Ltd Photo curable fluid resin composition
JP2000351907A (en) * 1999-06-11 2000-12-19 Jsr Corp Resin composition and three-dimensional form
JP2005088429A (en) * 2003-09-18 2005-04-07 Fuji Photo Film Co Ltd Manufacturing method of three-dimensional shaped article
JP2005529200A (en) * 2002-05-03 2005-09-29 ディーエスエム アイピー アセッツ ビー.ブイ. Radiation curable resin composition and rapid prototyping method using the same
JP2010229170A (en) * 2009-03-25 2010-10-14 Fujifilm Corp Material for three-dimensional modeling, production method for three-dimensional model and three-dimensional model
JP2010265408A (en) * 2009-05-15 2010-11-25 Cmet Inc Resin composition for optical stereolithography
US20110104500A1 (en) * 2009-03-13 2011-05-05 John Southwell Radiation curable resin composition and rapid three-dimensional imaging process using the same
JP2012111226A (en) * 2010-11-01 2012-06-14 Keyence Corp Model material for forming optically shaped article, support material for supporting shape during optical shaping of optically shaped article, and method for manufacturing optically shaped article in inkjet optically shaping method

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08323866A (en) * 1995-06-05 1996-12-10 Takemoto Oil & Fat Co Ltd Photo-setting liquid for optical three-dimensional shaping and photo-setting composition for optical three-dimensional shaping containing the same
JPH1030002A (en) * 1996-07-16 1998-02-03 Olympus Optical Co Ltd Photo curable fluid resin composition
JP2000351907A (en) * 1999-06-11 2000-12-19 Jsr Corp Resin composition and three-dimensional form
JP2005529200A (en) * 2002-05-03 2005-09-29 ディーエスエム アイピー アセッツ ビー.ブイ. Radiation curable resin composition and rapid prototyping method using the same
JP2005088429A (en) * 2003-09-18 2005-04-07 Fuji Photo Film Co Ltd Manufacturing method of three-dimensional shaped article
US20110104500A1 (en) * 2009-03-13 2011-05-05 John Southwell Radiation curable resin composition and rapid three-dimensional imaging process using the same
JP2010229170A (en) * 2009-03-25 2010-10-14 Fujifilm Corp Material for three-dimensional modeling, production method for three-dimensional model and three-dimensional model
JP2010265408A (en) * 2009-05-15 2010-11-25 Cmet Inc Resin composition for optical stereolithography
JP2012111226A (en) * 2010-11-01 2012-06-14 Keyence Corp Model material for forming optically shaped article, support material for supporting shape during optical shaping of optically shaped article, and method for manufacturing optically shaped article in inkjet optically shaping method

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017033427A1 (en) * 2015-08-26 2017-03-02 ナガセケムテックス株式会社 Patterning material, patterning method and patterning device
JP6042523B1 (en) * 2015-11-25 2016-12-14 岡本化学工業株式会社 Composition for optical three-dimensional modeling and method for producing three-dimensional model using the same
JP2017095602A (en) * 2015-11-25 2017-06-01 岡本化学工業株式会社 Composition for optical three-dimensional shaping and method for manufacturing three-dimensional shaped article using the same
CN108329423A (en) * 2017-01-18 2018-07-27 东友精细化工有限公司 Photocurable composition and the photocuring film formed by the Photocurable composition
CN108329423B (en) * 2017-01-18 2020-09-01 东友精细化工有限公司 Photocurable composition and photocurable film formed from the same
WO2019146132A1 (en) * 2018-01-26 2019-08-01 岡本化学工業株式会社 Composition for optical three-dimensional shaping, three-dimensional shaped object, and production method therefor
JPWO2019146132A1 (en) * 2018-01-26 2021-02-04 岡本化学工業株式会社 Composition for optical three-dimensional modeling, three-dimensional modeled object, and manufacturing method thereof
JP7279942B2 (en) 2018-01-26 2023-05-23 岡本化学工業株式会社 Composition for optical stereolithography, three-dimensional object, and method for producing the same
US11939416B2 (en) 2018-01-26 2024-03-26 Okamoto Chemical Industry Co., Ltd. Composition for optical stereolithography, stereolithographic object, and method for producing the same

Also Published As

Publication number Publication date
JP6399084B2 (en) 2018-10-03
JPWO2015137504A1 (en) 2017-04-06

Similar Documents

Publication Publication Date Title
JP6451288B2 (en) Model material ink, ink set and method for producing 3D object
WO2017018453A1 (en) Resin composition for model materials, resin composition for support materials, optically shaped article and method for producing optically shaped article
JP6269340B2 (en) 3D modeling composition, 3D modeling ink set, and 3D manufacturing method
JP2015174919A (en) Photocurable composition for 3d modeling and method for producing 3d model
JP2015078255A (en) Inkjet ink composition for three-dimensional shaping and method for producing three-dimensionally shaped article
JP5767615B2 (en) Underlayer film composition for imprint and pattern forming method using the same
JP6384485B2 (en) Inkjet ink composition for three-dimensional modeling and method for producing three-dimensional modeling
JP6047049B2 (en) Composition, cured product, laminate, method for producing underlayer film, pattern forming method, pattern and method for producing semiconductor resist
JP6662041B2 (en) Ink composition and method for forming image or three-dimensional structure
JP6399084B2 (en) Photocurable composition for 3D modeling and method for producing 3D modeling
JP6937300B2 (en) Manufacturing method of resin composition for model material and stereolithography
WO2018142485A1 (en) Ink set for stereolithography, stereolithographic article, and method for producing stereolithographic article
JP6451287B2 (en) 3D modeling manufacturing method, model material ink, and ink set
JPWO2016143559A1 (en) Three-dimensional modeling ink composition, ink set, and three-dimensional modeling manufacturing method
WO2014208487A1 (en) Inkjet discharge method, pattern formation method, and pattern
JP2016002683A (en) Method for manufacturing 3d shaped object, photocurable composition for 3d shaping, and ink set for 3d shaping
WO2017159358A1 (en) Composition for model materials, optically shaped article, and method for producing optically shaped articles
JP6269333B2 (en) Model material composition for 3D modeling, ink set for 3D modeling, and manufacturing method of 3D modeling
JP6269339B2 (en) 3D modeling composition, 3D modeling ink set, and 3D manufacturing method
WO2019230132A1 (en) Photo-fabrication composition set
WO2019230134A1 (en) Photo-fabrication composition set, photo-fabricated article, and production method for photo-fabricated article
JP2021024886A (en) Active energy ray-curable composition, cured product, and method for producing cured product
JPWO2018143299A1 (en) Optical modeling ink set, optical modeling product, and manufacturing method of optical modeling product
JP7052397B2 (en) Composition for three-dimensional model, manufacturing device for three-dimensional model, and method for manufacturing three-dimensional model
CN117295797A (en) Additives for build materials and related printed 3D articles

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15762333

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016507858

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15762333

Country of ref document: EP

Kind code of ref document: A1