WO2015136712A1 - Path transmission frequency output apparatus - Google Patents

Path transmission frequency output apparatus Download PDF

Info

Publication number
WO2015136712A1
WO2015136712A1 PCT/JP2014/057001 JP2014057001W WO2015136712A1 WO 2015136712 A1 WO2015136712 A1 WO 2015136712A1 JP 2014057001 W JP2014057001 W JP 2014057001W WO 2015136712 A1 WO2015136712 A1 WO 2015136712A1
Authority
WO
WIPO (PCT)
Prior art keywords
transmission
information
path
frequency
module
Prior art date
Application number
PCT/JP2014/057001
Other languages
French (fr)
Japanese (ja)
Inventor
亮太 山田
祐輔 山地
優樹 井上
創 梅木
Original Assignee
オムロン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オムロン株式会社 filed Critical オムロン株式会社
Priority to PCT/JP2014/057001 priority Critical patent/WO2015136712A1/en
Publication of WO2015136712A1 publication Critical patent/WO2015136712A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/64Hybrid switching systems
    • H04L12/6418Hybrid transport

Definitions

  • the present invention relates to a technique for detecting a transmission state by a transmission module belonging to a network.
  • a large number of transmission modules responsible for information transmission generally belong to the network.
  • predetermined information transmitted from the transmission module is a destination without omission. It can be delivered to the information processing apparatus.
  • a large number of transmission modules belong to a network it is not easy to grasp the flow of information through each transmission module responsible for information transmission.
  • the user when any communication failure occurs, it is required to quickly eliminate the communication failure. For this reason, it is preferable that the user (administrator) can accurately grasp the flow of information in the network.
  • Patent Document 1 discloses a device for visualizing the flow of information in a network.
  • information that meets the conditions specified on the topology screen and the ground-to-ground traffic screen for example, a condition in which the flow of information via a predetermined node or link is set to a maximum of N in descending order of traffic volume.
  • the flow is displayed on the display device.
  • the transmission path between nodes included in the network is configured to be displayed preferentially from a transmission path with a high transmission frequency.
  • a transmission path with a relatively high transmission frequency is extracted and visualized.
  • a transmission route with high transmission frequency also means that traffic is increasing, so there is a high possibility that information congestion will occur, and it is not possible to grasp the existence of such a transmission route. It is considered useful for the construction of a network having a suitable transmission situation.
  • transmission paths with relatively low transmission frequencies include transmission paths that are not so important in the transmission of information on the network. If present in the network, some communication failure may occur due to information transmission through a transmission path with a low transmission frequency. In particular, when the low transmission frequency is caused by the poor transmission environment on the transmission path, the possibility of communication failure increases. In this way, from the viewpoint of stable information transmission in the network, although the technical significance can be found also in the transmission path having a relatively low transmission frequency, the conventional technique relates to the detection of the transmission path having such a low transmission frequency. No disclosure or suggestion can be found.
  • the present invention has been made in view of such a problem, and an object of the present invention is to provide a path transmission frequency output device that outputs so as to easily detect the presence of a transmission path having a relatively low transmission frequency in a network. .
  • a transmission path used for information transmission is based on information passing through one transmission module belonging to a network or an information processing apparatus that is a destination of information transmission.
  • the transmission frequency is calculated so as to correspond to the transmission module belonging to it, and based on the calculated transmission frequency corresponding to each transmission module, the technical significance is determined from the transmission paths used in the network.
  • a configuration for outputting a low-frequency path having As a result, the frequency of use of the transmission path by the transmission module is taken into consideration for each transmission module, so that a transmission path unnecessary for the transmission module belonging to the network can be suitably output as a low-frequency path.
  • the transmission module located on the upstream side is expressed as “upstream transmission module” or the like
  • the transmission module located on the downstream side is expressed as “downstream transmission module” or the like.
  • information is transmitted from the upstream transmission module to the transmission module located on the downstream side, and finally the information reaches the information processing apparatus.
  • transmission module when it is not necessary to distinguish “upstream transmission module”, “downstream transmission module”, and the like, they may be simply expressed as “transmission module”.
  • the present invention relates to one transmission module among a plurality of transmission modules in a network to which a plurality of transmission modules belong and to which an information processing apparatus set as a transmission destination of predetermined transmission information of each transmission module belongs. And at least one of a transmission path between the transmission module and the transmission path between the transmission module and the information processing apparatus on the upstream side of the analysis target apparatus that is one of the predetermined transmission module and the information processing apparatus.
  • a route transmission frequency output device for outputting the transmission frequency of the predetermined transmission information.
  • the path transmission frequency output device is transmitted from a plurality of upstream transmission modules that are part of the network, include the analysis target device, and belong to an upstream network located upstream of the analysis target device.
  • an acquisition unit that acquires the analysis target information that is the predetermined transmission information that has passed through the analysis target device, and the plurality of upstream transmission modules from the analysis target information acquired by the acquisition unit
  • Extraction means for extracting the analysis target information transmitted from each of the upstream transmission modules as module correspondence analysis target information for each upstream transmission module, and the module correspondence analysis target information extracted by the extraction means includes the upstream In one or a plurality of transmission paths used from the side transmission module to the analysis target device, The module correspondence analysis target information corresponding to each of the plurality of upstream transmission modules calculated by the calculation means and the calculation means for calculating the transmission frequency of the module correspondence analysis target information for each upstream transmission module.
  • Output means for outputting a low-frequency path whose transmission frequency is lower than that of the other used transmission paths out of the other used transmission paths based on the transmission frequency.
  • the path transmission frequency output apparatus is an apparatus that outputs the transmission frequency in the transmission path upstream of the analysis target apparatus belonging to the network.
  • the target transmission path includes a transmission path between transmission modules in the network and at least one transmission path among transmission paths between the transmission module and the information processing apparatus.
  • the transmission module in the present application only needs to be configured to transmit the predetermined transmission information to the information processing apparatus that is the transmission destination, and may have a function other than the transmission of the predetermined transmission information. Absent. Therefore, it is not necessary for all transmission modules belonging to the network to have the same function, and each transmission module may be individually designed as appropriate.
  • the specific content of the information is not limited to a specific one as long as the predetermined transmission information transmitted by the transmission module is information transmitted from the transmission module to the information processing apparatus. That is, as long as it forms a flow of information targeted for transmission frequency in the route transmission frequency output device according to the present invention, the information is the predetermined transmission information according to the present invention.
  • the acquisition unit acquires analysis target information that is transmitted from the upstream transmission module belonging to the upstream network and is predetermined transmission information that passes through the analysis target device.
  • the path transmission output device uses the predetermined transmission information passing through the analysis target device that is a reference transmission module or information processing device, and passes the transmission route of the predetermined transmission information to the analysis target device. By analyzing whether it has arrived, the transmission frequency of the transmitted transmission path is output.
  • This analysis target information is a set of predetermined transmission information transmitted from the upstream transmission module. Therefore, the extraction unit extracts information corresponding to each upstream transmission module from the acquired analysis target information. For example, when there are N upstream transmission modules related to the analysis target information, the extraction unit is involved in information transmission in which each of the N upstream transmission modules starts from the upstream transmission module.
  • the analysis target information is extracted as module correspondence analysis target information.
  • the calculation means calculates the transmission frequency of the module correspondence analysis target information on the used transmission path for each upstream transmission module.
  • the calculation means calculates the transmission frequency on the used transmission path, which is the transmission path through which the module correspondence analysis target information transmitted from one upstream transmission module reaches the analysis target apparatus. Therefore, the use transmission path corresponding to each of the upstream transmission modules and the transmission frequency there are generally different for each upstream transmission module, but as a result, all upstream transmission modules may be the same.
  • the low-frequency path is specified by the output means based on the transmission frequency of the module correspondence analysis target information corresponding to each of the upstream transmission modules, and is output separately from the other used transmission paths.
  • the low frequency path is specified by considering the transmission frequency on the used transmission path by the upstream transmission module for each upstream transmission module, the low frequency path is determined by the upstream transmission module belonging to the upstream network. It means that the transmission path is less frequently used for each.
  • the infrequent route may be a route that is accidentally formed so that information can be transmitted between the transmission modules, and it is preferable from the viewpoint of network stability to continue using the infrequent route. There may be no.
  • the output unit makes it easy for the user to recognize the low-frequency path by outputting the low-frequency path separately from the other used transmission paths.
  • the form of distinction in output is not limited to a specific form, and it is sufficient that at least the user can recognize that the low-frequency path is different from other used transmission paths.
  • the path transmission frequency output device configured as described above can suitably output a transmission path that is highly likely to be unnecessary for a transmission module belonging to the network as a low-frequency path. This makes it easy for the user to take various measures such as improving the stability of the network based on the output result of the output means.
  • the output unit corresponds to each of the upstream transmission modules in all the upstream transmission modules using the used transmission path among the used transmission paths.
  • a transmission path in which the transmission frequency of the module correspondence analysis target information is lower than a predetermined frequency set for each upstream transmission module may be output as the low-frequency path.
  • the used transmission path in which the transmission frequency of the module correspondence analysis target information is lower than the predetermined frequency means that it is not important for all the upstream transmission modules. it is conceivable that.
  • the output means provides useful information to the user by outputting, as a low-frequency path, a use transmission path in which the transmission frequency of the module correspondence analysis target information is lower than a predetermined frequency in all the upstream transmission modules. It becomes possible.
  • the route transmission frequency output device described above may further include a display device that displays information on the low-frequency route output by the output means.
  • the output means causes the display device to display information on the used transmission path corresponding to all of the upstream transmission modules, and information on a path corresponding to the low-frequency path in all the used transmission paths. Is highlighted more than information on other used transmission paths.
  • the output means outputs information related to the route corresponding to the low-frequency route through highlighting so that the user can recognize the presence of the low-frequency route by distinguishing it from information related to other used transmission routes.
  • a form of highlighting various display forms such as accent display of a diagram indicating a transmission path, color change, and the like can be adopted.
  • the information on the used transmission path may include an integrated value of transmission frequencies from all the upstream transmission modules of the predetermined transmission information in the used transmission path. .
  • the integrated value of the transmission frequency it is possible to provide effective information to the user.
  • the output means corresponds to the low-frequency path among all the used transmission paths corresponding to all the upstream transmission modules. Only the information regarding the above may be displayed on the display device. Displaying only the information related to the route corresponding to the low-frequency route in this way is one form of outputting the low-frequency route separately from other used transmission routes.
  • the path transmission frequency output device When the analysis target device serving as a reference for transmission frequency output is an information processing device, the path transmission frequency output device according to the present invention may be formed in the information processing device, or may be configured separately from the information processing device. It may be formed as a device. Further, when the analysis target device is a predetermined transmission module, the path transmission frequency output device according to the present invention may be formed in the predetermined transmission module, or an apparatus configured separately from the predetermined transmission module May be formed.
  • the route transmission frequency output device is formed in the information processing device or the predetermined transmission module, the information processing device or the predetermined transmission module includes the acquisition unit, the extraction unit, the calculation unit, and the output unit described above. It will be.
  • the route transmission frequency output device is formed in the information processing apparatus 1.
  • the configuration of the following embodiment is an exemplification, and the present invention is not limited to the configuration of this embodiment.
  • FIG. 1 is a diagram showing a schematic configuration of the network 10.
  • the network 10 includes transmission modules equipped with sensors for measuring various external environment parameters (temperature, etc.), and each transmission module collects the measured external environment parameters in the information processing apparatus 1.
  • the network is formed to function.
  • four transmission modules 2A-2D belong, and a plurality of transmission paths are formed between the transmission modules and between the transmission module and the information processing apparatus 1. There are eight specific routes as shown below.
  • Transmission path Lab path from transmission module 2A to transmission module 2B
  • Lac path from transmission module 2A to transmission module 2C
  • Lad path from transmission module 2A to transmission module 2D
  • Transmission path Lbc from transmission module 2B Path to the transmission module 2C
  • Transmission path Ldc Path from the transmission module 2D to the transmission module 2C
  • Transmission path Lb1 Path from the transmission module 2B to the information processing apparatus 1
  • Transmission path Lc1 Path from the transmission module 2C to the information processing apparatus 1
  • Transmission path Ld1 A path from the transmission module 2D to the information processing apparatus 1
  • the transmission path formed in the network 10 is one of transmission parameters for determining transmission conditions in each transmission module, and is determined by a node parameter related to the node address of the transmission module serving as a transmission destination.
  • the node parameter is a parameter for identifying a transmission module belonging to the same network and a downstream transmission module that is a transmission destination from the transmission module.
  • the node addresses of the transmission modules 2B, 2C, and 2D are set as node parameters.
  • the transmission path formed in the network 10 is an example, and if the node parameter set in each transmission module is different, the transmission path formed there is also different from the form shown in FIG.
  • the information processing device 1 includes a transmission / reception device 1a, a server 1b, and a display device 1c.
  • the transmission / reception device 1a receives information transmitted from the transmission modules 2B, 2C, and 2D located near the information processing device 1 in each transmission path, and sends a predetermined operation command to the transmission module located in each transmission path.
  • the transmitting / receiving device 1a, the server 1b, and the display device 1c are electrically connected to each other.
  • the server 1b collects the measurement information in the transmission information transmitted from each transmission module, for example, and performs predetermined information processing. Further, as will be described later, the low-frequency path is identified from the transmission paths formed in the network 10 and is output to the display device 1c.
  • the measurement by the sensor mounted on the transmission module 2A-2D and the transmission of the measurement data to the information processing apparatus 1 are performed after the power is turned on in each transmission module in order to realize continuous information collection.
  • These transmission modules are configured as small devices equipped with a sensor function for measuring the measurement target, a function for recording and processing the measured information, a wireless function to the outside of the transmission module, a power supply function, and the like.
  • sensors mounted on such a transmission module include physical sensors such as a temperature sensor, a humidity sensor, an acceleration sensor, an illuminance sensor, a flow sensor, a pressure sensor, a ground temperature sensor, and a particle sensor, and a CO 2 sensor.
  • each transmission module is equipped with a temperature sensor for measuring the external temperature at the position where each transmission module is arranged, and is measured by each transmission module.
  • the temperature data is provided for predetermined information processing (for example, air conditioning control of the space in which the transmission module is installed based on the temperature data) in the server 1b.
  • Transmission path a process of identifying and outputting a transmission path with a low transmission frequency (corresponding to a low-frequency path according to the present invention) that is not preferable from the viewpoint of the stability of the network 10 (hereinafter, referred to as “transmission path”) , “Route transmission frequency output process”) is performed in the information processing apparatus 1.
  • Each transmission module has an arithmetic device, a memory, etc. inside, and various functions are exhibited when a predetermined control program is executed by the arithmetic device. Therefore, FIG. 2 shows functional blocks in which some of the various functions exhibited by the transmission modules belonging to the network 10 are imaged. Note that FIG. 2 specifically shows functional blocks for the transmission module 2A, but the other transmission modules 2B-2D have similar functional units.
  • Each transmission module is configured to store temperature data measured by an installed temperature sensor in a memory and to transmit the measurement data to a downstream transmission module by a transmission control unit 21 described later.
  • the transmission module 2A includes a transmission control unit 21, a measurement unit 22, and an information storage unit 23 as functional units.
  • the driving power of the transmission module 2A may be supplied from a battery built in the module, or may be supplied from an AC power source or the like outside the module. Below, each function part which 2A of transmission modules have is demonstrated.
  • the transmission control unit 21 is a functional unit that controls transmission / reception of information to / from the outside through an antenna mounted on the transmission module 2A. Specifically, generation of transmission information including measurement data stored in the memory by the information storage unit 23 to be described later, transmission to the downstream transmission module, and transmission from the upstream transmission module if present. Receive transmission information.
  • the data structure of the transmission information transmitted / received to / from the transmission control unit 21 is shown in FIG.
  • the upper part (a) of FIG. 3 schematically shows the data structure of the entire transmission information, and the transmission information is roughly divided into nine data areas.
  • the main part information mdf is formed in eight of the nine data areas. In the main part information mdf, five particularly important areas a1 to a5 will be described.
  • the area a1 (Start Symbol) is a specific byte string indicating the start of transmission information.
  • An area a2 (Destination Address) represents an address of a destination (information processing apparatus 1 in this embodiment) to which transmission information is finally transmitted.
  • An area a3 (Source Address) represents an address of a transmission information transmission source (in the case of the present embodiment, the transmission module 2A).
  • the area a4 (Data) stores temperature data measured by a temperature sensor mounted on the transmission module 2A that is a transmission source.
  • Area a5 (Terminator Symbol for Data) is a specific byte string indicating the end of transmission information.
  • the area a6 in the transmission information is a transmission path used when the transmission information added to the main part information mdf is transmitted from the transmission module as a starting point to the information processing apparatus 1 (use according to the present invention).
  • Information relating to transmission paths (hereinafter referred to as “utilization transmission path information”), and “df” is added to the reference number. This is an area in which a number to be shown is indicated after adf.)
  • the use transmission path information adf is added every time the transmission module transmits or relays transmission information. Therefore, for example, when transmission information is transmitted from the transmission module 2A to the information processing apparatus 1 via the transmission module 2B, when the transmission information is transmitted from the transmission module 2A to the transmission module 2B, the first transmission path Lab is transmitted.
  • the use transmission path information adf1 is added and then relayed to the information processing apparatus 1 by the transmission module 2B, the second use transmission path information adf2 related to the transmission path Lb1 is added.
  • the middle part (b) of FIG. 3 shows the detailed data structure of the area a6 for storing the used transmission path information adf.
  • FIG. 3B shows a state in which a plurality of pieces of used transmission path information are added as transmission information passes through a plurality of transmission modules.
  • An area b1 (Separator Symbol for Appended Data) is a specific byte string indicating the start of the one used transmission path information adf added.
  • Area b2 (Appended Data Source Address) represents the address of the transmission module to which the one used transmission path information adf is added.
  • An area b3 (Appended Data ID) is an identifier for identifying entity data of used transmission path information in the area b4 described later.
  • field b4 (Appended Data Entity) represents entity data of the used transmission path information to be added. Since the used transmission path can be identified by the node address of the transmission module located at the transmission source and destination of the transmission path, the information for identifying the used transmission path using these node addresses. It is good. As another method, when there is an identifier for identifying the transmission path itself, the identifier may be used as transmission path information. Further, in one used transmission path information adf, an area b5 stores checksum data for error detection of the one used transmission path information adf. An area b6 represents a specific byte string indicating the end of the one used transmission path information adf.
  • the measurement unit 22 is a functional unit that measures an external environment parameter (for example, an external temperature) through a sensor (for example, a temperature sensor) mounted on the transmission module 2A. Then, the measurement data by the measurement unit 22 is stored in the memory of the transmission module 2A by the information storage unit 23.
  • the information storage unit 23 also stores transmission information received from the upstream transmission module via the transmission control unit 21. These pieces of information stored in the information storage unit 23 are transmitted to the downstream transmission module with the transmission transmission path information added by the transmission control unit 21.
  • the server 1b also includes an arithmetic device, a memory, and the like, and various functions are exhibited by executing predetermined control programs by the arithmetic device.
  • the server 1b includes a communication unit 11, a data recording unit 12, and an information processing unit 13 as functional units.
  • the communication unit 11 is a functional unit that performs communication for collecting transmission information from the transmission module via the transmission / reception device 1a.
  • the communication unit 11 manages transmission / reception between the transmission modules 2 ⁇ / b> B, 2 ⁇ / b> C, and 2 ⁇ / b> D and the information processing apparatus 1.
  • the data recording unit 12 is a functional unit that records temperature data, which is measurement data, of information included in transmission information transmitted from the transmission module via the communication unit 11, and utilization transmission path information added to the transmission information. It is. And the measurement data and utilization transmission path information which were recorded here are passed to the information processing part 13, and the said information processing part 13 performs the predetermined information processing using the collected measurement data.
  • an acquisition unit 131 is a functional unit that acquires transmission information that reaches the information processing apparatus 1 from each transmission module belonging to the network 10 as analysis target information according to the present invention.
  • the extraction unit 132 classifies the analysis target information acquired by the acquisition unit 131 for each transmission module as a starting point, and extracts the analysis target information corresponding to each transmission module as the module-corresponding analysis target information according to the present invention. It is a functional part to do.
  • the calculation unit 133 is a functional unit that calculates, for each transmission module, the transmission frequency on the used transmission path that has been used until the module correspondence analysis target information reaches the information processing apparatus 1.
  • the output unit 134 is a functional unit that outputs the low-frequency path according to the present invention to the display device 1c, which is specified based on the transmission frequency of the used transmission path for each transmission module calculated by the calculation unit 133. is there.
  • the acquisition unit 131 acquires analysis target information.
  • the analysis target apparatus according to the present invention is the information processing apparatus 1 in the network 10 shown in FIG. 1, the network located on the upstream side of the information processing apparatus 1 matches the network 10, and therefore the upstream transmission according to the present invention.
  • the analysis target information in S101 is transmission information transmitted to the information processing apparatus by each of the transmission modules 2A-2D. Since this transmission information is recorded in the data recording unit 12, the acquisition unit 131 accesses the data recording unit 12 and acquires analysis target information.
  • the process of S101 ends, the process proceeds to S102.
  • the extraction unit 132 extracts the analysis target information transmitted from each of the transmission modules 2A-2D from the analysis target information acquired in S101 as a module-corresponding analysis target for each transmission module. That is, the extraction unit 132 classifies the acquired analysis target information for each transmission module that is the transmission source. Specifically, based on the fact that the analysis target information has the data structure shown in FIG. 3, the extraction process in S102 is performed using the information stored in the area a3 of the main part information mdf. When the process of S102 ends, the process proceeds to S103.
  • the transmission frequency can be calculated based on the time information.
  • FIGS. 6A to 6D show an example of the transmission frequency on the used transmission path calculated for each transmission module 2A-2D based on the module correspondence analysis target information.
  • each transmission module transmits transmission information 10 times per minute, and no communication failure occurs in the transmission process, that is, all transmission information. Is assumed to have reached the information processing apparatus 1.
  • FIG. 6A illustrates the transmission frequency in the used transmission path calculated based on the transmission information transmitted from the transmission module 2A as a starting point.
  • the transmission path Lbc is not used, and therefore the path does not correspond to the used transmission path.
  • the transmission frequency in each used transmission path is as follows.
  • Use transmission path Lab 1 time / min Use transmission path Lac: 6 times / min Use transmission path Lad: 3 times / min Use transmission path Ldc: 2 times / min Use transmission path Lb1: 1 time / min Use transmission path Lc1: 8 times / min Use transmission path Ld1: 1 time / min
  • FIG. 6B illustrates the transmission frequency on the used transmission path calculated based on the transmission information transmitted from the transmission module 2B.
  • the transmission paths Lab, Lac, Lad, Ldc, and Ld1 are not used, so that the path does not correspond to the used transmission path.
  • the transmission frequency in each used transmission path is as follows. Use transmission path Lbc: 2 times / min Use transmission path Lb1: 8 times / min Use transmission path Lc1: 2 times / min
  • FIG. 6C illustrates the transmission frequency in the used transmission path calculated based on the transmission information transmitted from the transmission module 2C as a starting point.
  • the transmission paths Lab, Lac, Lad, Lbc, Ldc, Lb1, and Ld1 are not used, so that the path does not correspond to the used transmission path.
  • the transmission frequency in each used transmission path is as follows. Use transmission path Lc1: 10 times / min
  • FIG. 6D illustrates the transmission frequency on the used transmission path calculated based on the transmission information transmitted from the transmission module 2D.
  • the transmission paths Lab, Lac, Lad, Lbc, and Lb1 are not used, so that the path does not correspond to the used transmission path.
  • the transmission frequency in each used transmission path is as follows. Use transmission path Ldc: 8 times / min Use transmission path Lc1: 8 times / min Use transmission path Ld1: 2 times / min
  • the output unit 134 identifies the low-frequency path among all the used transmission paths based on the transmission frequency on the used transmission path calculated for each transmission module 2A-2D as described above. Specifically, the transmission frequency on the used transmission path calculated for each transmission module is set for each transmission module in all the transmission modules using the used transmission path among all the used transmission paths in the network 10. A path lower than the predetermined frequency (in the case of this embodiment, the predetermined frequency is set to 3 times / min for any transmission module) is specified as a low frequency path.
  • Utilization transmission path Lbc The utilization transmission path Lbc is used only by the transmission module 2B. Therefore, the determination as to whether or not the route is a low-frequency route is made based only on the transmission frequency related to the transmission module 2B. Since the frequency is 2 times / min, the used transmission path Lbc is determined to be a low-frequency path.
  • Utilization transmission path Ldc The utilization transmission path Ldc is used by the transmission modules 2A and 2D. Therefore, the determination as to whether or not the route is a low frequency path is made based on the transmission frequency related to the transmission modules 2A and 2D.
  • the frequencies are 2 times / min and 8 times / min, respectively, and are not in a state where both of the two transmission modules 2A and 2D are below the predetermined frequency, and therefore, the used transmission path Ldc is determined not to be a low frequency path. .
  • Utilization transmission path Lb1 The use transmission path Lb1 is used by the transmission modules 2A and 2B. Therefore, the determination as to whether or not the route is a low frequency path is made based on the transmission frequency related to the transmission modules 2A and 2B.
  • the frequencies are 1 time / min and 8 times / min, respectively, and are not in a state where both of the two transmission modules 2A and 2B are below the predetermined frequency, and therefore, the used transmission path Lb1 is determined not to be a low frequency path. .
  • Utilization transmission path Lc1 The used transmission path Lc1 is used by all the transmission modules 2A-2D. Therefore, the determination as to whether or not the route is a low-frequency path is made based only on the transmission frequency for all the transmission modules 2A-2D.
  • the frequencies are 8 times / min, 2 times / min, 10 times / min, and 8 times / min, respectively, and are not in a state below the predetermined frequency in all of the four transmission modules 2A-2D.
  • Lc1 is determined not to be a low frequency path.
  • Utilization transmission path Ld1 The use transmission path Ld1 is used by the transmission modules 2A and 2D. Therefore, the determination as to whether or not the route is a low frequency path is made based on the transmission frequency related to the transmission modules 2A and 2D. The frequencies are 1 time / min and 2 times / min, respectively, and are lower than the predetermined frequency in the two transmission modules 2A and 2D. Therefore, the used transmission path Ld1 is determined to be a low frequency path.
  • S105 the information regarding the low frequency paths Lab, Lbc, and Ld1 specified in S104 is output to the display device 1c.
  • the output process is also performed by the output unit 134.
  • the entire network 10 is imaged, and an image of each use transmission path (an arrow in the example shown in FIG. 7) is transmitted between transmission modules or transmission modules. It arrange
  • the thicknesses of the arrows corresponding to the low frequency routes Lab, Lbc, and Ld1 are made thicker than the arrows of the other use transmission routes. By highlighting the low frequency route in this way, the user can easily grasp the low frequency route.
  • only the low-frequency routes Lab, Lbc, and Ld1 may be displayed as used transmission routes.
  • the integrated value of the transmission frequency of each transmission module in each used transmission path may be displayed together with an arrow corresponding to the used transmission path.
  • the integrated value of the transmission frequency in the used transmission path for each transmission module shown in FIGS. 6A to 6D is attached.
  • output is performed in the form of an electrical signal that can be used for the electrical processing. Also good. For example, a command to change the node parameter, which is a transmission parameter, to the related transmission modules 2A, 2B, and 2D so that transmission of transmission information in the low frequency paths Lab, Lbc, and Ld1 is not continuously performed.
  • the output unit 134 may output information on the low-frequency paths Lab, Lbc, and Ld1 as information necessary for the process. As a result, the transmission environment of the network 10 can be easily stabilized.
  • the route transmission frequency output process ends.
  • the low-frequency path specified and output as described above is a path whose transmission frequency is lower than a predetermined frequency that is a determination criterion in all the transmission modules that use the transmission path. This is considered to mean that the route is not so important for a transmission module that uses the route. For example, since the low-frequency path is a transmission path that is accidentally formed between the transmission modules, there is a possibility that the transmission frequency there may be low.
  • the low-frequency path is a transmission path that is accidentally formed between the transmission modules, there is a possibility that the transmission frequency there may be low.
  • the user can easily grasp the existence of the low frequency path. For example, in order to stop the use of the low frequency path, use transmission is performed. It becomes easy to take measures for preventing communication failure in the network 10, such as reconstructing a route.
  • the accumulated transmission frequency of the used transmission route Lad is 3 times / min, but the route is not determined to be a low-frequency route.
  • the cumulative frequency of the used transmission path Ld1 is also 3 times / min, the path is determined to be a low-frequency path. This is because the use transmission path Lad is used only by the transmission module 2A, and the use frequency for the transmission module 2A is relatively high, that is, it exceeds the predetermined frequency set corresponding to the transmission module. Because it is.
  • the cumulative frequency of the used transmission path Ld1 is reasonably high, it is accurately determined that the usage frequency is not so high for each of the transmission modules 2A and 2D using the used transmission path Ld1. It is reflected.
  • the information processing apparatus 1 corresponds to the analysis target apparatus according to the present invention.
  • any of the transmission modules belonging to the network 10 may correspond to the analysis target device according to the present invention.
  • the transmission modules located on the upstream side of the transmission module 2C are the transmission modules 2A, 2B, and 2D, and the used transmission paths are Lab, Lad, Lbc and Ldc. Then, the transmission information passing through the transmission module 2C is used as the analysis target information according to the present invention, and the route transmission frequency output process shown in FIG.

Abstract

This invention provides a path transmission frequency output apparatus for outputting a transmission frequency of predetermined transport information on a transmission path of a network. The apparatus calculates, for each of a plurality of transmission modules, a transmission frequency of module-associated analysis target information, which has been extracted from predetermined transmission information for the related transmission module, on one or more used transmission paths along which the module-associated analysis target information propagates from the associated transmission module to an analysis target apparatus. On the basis of the calculated transmission frequency of the module-associated analysis target information associated with the transmission module, the apparatus then distinguishes, from other used transmission paths, and outputs a low-frequency path, the transmission frequency of which is lower than that of the other used transmission paths, from among the used transmission paths. In this way, it is made possible to output the presence of a transmission path, the transmission frequency of which is relatively low in a network, in such a manner that the presence of that transmission path can be easily detected.

Description

経路伝送頻度出力装置Route transmission frequency output device
 本発明は、ネットワークに属する伝送モジュールによる伝送状況を検知する技術に関する。 The present invention relates to a technique for detecting a transmission state by a transmission module belonging to a network.
 ネットワークにおいては情報の伝送を担う多数の伝送モジュールが当該ネットワークに属するのが一般であり、そのようなネットワークを形成することで、伝送モジュールから伝送される所定の情報を、漏れなく目的地である情報処理装置に届けることが可能となる。一方で、多数の伝送モジュールがネットワークに属することで、情報伝送を担う各伝送モジュールを介した情報の流れを把握することが容易ではない。ネットワークにおいては、何らかの通信障害が生じた場合、当該通信障害を速やかに解消することが求められるが、そのためにもネットワークにおける情報の流れをユーザ(管理者)が的確に把握できることが好ましい。 In a network, a large number of transmission modules responsible for information transmission generally belong to the network. By forming such a network, predetermined information transmitted from the transmission module is a destination without omission. It can be delivered to the information processing apparatus. On the other hand, since a large number of transmission modules belong to a network, it is not easy to grasp the flow of information through each transmission module responsible for information transmission. In the network, when any communication failure occurs, it is required to quickly eliminate the communication failure. For this reason, it is preferable that the user (administrator) can accurately grasp the flow of information in the network.
 そこで、例えば、特許文献1は、ネットワークにおける情報の流れを可視化する装置が開示されている。当該技術では、トポロジ画面、対地間トラヒック画面において指定された条件(例えば、所定のノードまたはリンクを経由する情報の流れを、トラヒック量の多いものから順に最大N個とする条件)に合う情報の流れを表示装置に表示させる。そして、例えばネットワークに含まれるノード間の伝送経路に関し、伝送頻度が高い伝送経路から優先的に表示されるように構成されている。 Therefore, for example, Patent Document 1 discloses a device for visualizing the flow of information in a network. In this technology, information that meets the conditions specified on the topology screen and the ground-to-ground traffic screen (for example, a condition in which the flow of information via a predetermined node or link is set to a maximum of N in descending order of traffic volume). The flow is displayed on the display device. For example, the transmission path between nodes included in the network is configured to be displayed preferentially from a transmission path with a high transmission frequency.
特開2012-60604号公報JP 2012-60604 A
 従来技術におけるネットワークの情報の流れの可視化技術においては、伝送頻度が比較的高い伝送経路が抽出されて可視化される。確かに、伝送頻度が高い伝送経路は、トラフィックが増大していることにもなるため、情報の輻輳等が発生する可能性が高い経路であり、そのような伝送経路の存在を把握することは、好適な伝送状況を有するネットワークの構築に有用と考えられる。 In the conventional technology for visualizing the information flow of the network, a transmission path with a relatively high transmission frequency is extracted and visualized. Certainly, a transmission route with high transmission frequency also means that traffic is increasing, so there is a high possibility that information congestion will occur, and it is not possible to grasp the existence of such a transmission route. It is considered useful for the construction of a network having a suitable transmission situation.
 一方で、伝送頻度が比較的低い伝送経路には、ネットワークでの情報の伝送においてそれほど重要性が高くない伝送経路も含まれていると言えるが、実際にそのような低伝送頻度の伝送経路がネットワークに存在していれば、低伝送頻度の伝送経路での情報伝送に起因して、何らかの通信障害が発生する場合がある。特に、その低伝送頻度が、伝送経路での伝送環境が良好ではないことに起因しているような場合には、通信障害が発生する可能性は高くなる。このようにネットワークでの安定した情報伝送の観点から、比較的伝送頻度が低い伝送経路にも、技術的な意義を見出せるものの、従来技術においては、そのような低伝送頻度の伝送経路の検知に関する開示や示唆は、一切見出すことができない。 On the other hand, it can be said that transmission paths with relatively low transmission frequencies include transmission paths that are not so important in the transmission of information on the network. If present in the network, some communication failure may occur due to information transmission through a transmission path with a low transmission frequency. In particular, when the low transmission frequency is caused by the poor transmission environment on the transmission path, the possibility of communication failure increases. In this way, from the viewpoint of stable information transmission in the network, although the technical significance can be found also in the transmission path having a relatively low transmission frequency, the conventional technique relates to the detection of the transmission path having such a low transmission frequency. No disclosure or suggestion can be found.
 本発明は、このような問題に鑑みてなされたものであり、ネットワークにおいて伝送頻度が比較的低い伝送経路の存在を検知しやすいように出力する経路伝送頻度出力装置を提供することを目的とする。 The present invention has been made in view of such a problem, and an object of the present invention is to provide a path transmission frequency output device that outputs so as to easily detect the presence of a transmission path having a relatively low transmission frequency in a network. .
 本発明においては、上記課題を解決するために、ネットワークに属する一の伝送モジュール又は情報伝送の目的地である情報処理装置を通る情報に基づいて、情報伝送のために利用されている伝送経路での伝送頻度を、そこに属する伝送モジュールに対応するように算出し、その算出された各伝送モジュールに対応した伝送頻度に基づいて、ネットワークで利用している伝送経路の中から、技術的な意義を有する低頻度経路を出力する構成を採用した。これにより、伝送モジュールによる伝送経路の利用頻度を伝送モジュール毎に考慮していくことになるため、ネットワークに属する伝送モジュールにとって不要な伝送経路を低頻度経路として好適に出力することができる。なお、本願において、ネットワークでの情報の流れにおいて、上流側に位置する伝送モジュールを「上流側伝送モジュール」もしくはそれに類する表現、下流側に位置する伝送モジュールを「下流側伝送モジュール」もしくはそれに類する表現とする。すなわち、ネットワークにおいては上流側伝送モジュールから、その下流側に位置する伝送モジュールへと情報が伝送され、最終的には情報処理装置へと情報が到達することになる。また、「上流側伝送モジュール」や「下流側伝送モジュール」等を区別する必要がない場合には、単に「伝送モジュール」と表現する場合もある。 In the present invention, in order to solve the above-described problem, a transmission path used for information transmission is based on information passing through one transmission module belonging to a network or an information processing apparatus that is a destination of information transmission. The transmission frequency is calculated so as to correspond to the transmission module belonging to it, and based on the calculated transmission frequency corresponding to each transmission module, the technical significance is determined from the transmission paths used in the network. A configuration for outputting a low-frequency path having As a result, the frequency of use of the transmission path by the transmission module is taken into consideration for each transmission module, so that a transmission path unnecessary for the transmission module belonging to the network can be suitably output as a low-frequency path. In the present application, in the information flow in the network, the transmission module located on the upstream side is expressed as “upstream transmission module” or the like, and the transmission module located on the downstream side is expressed as “downstream transmission module” or the like. And That is, in the network, information is transmitted from the upstream transmission module to the transmission module located on the downstream side, and finally the information reaches the information processing apparatus. In addition, when it is not necessary to distinguish “upstream transmission module”, “downstream transmission module”, and the like, they may be simply expressed as “transmission module”.
 詳細には、本発明は、複数の伝送モジュールが属するとともに、各伝送モジュールの所定送信情報の伝送目的地として設定される情報処理装置が属するネットワークにおいて、該複数の伝送モジュールのうち一つの伝送モジュールである所定の伝送モジュール及び該情報処理装置のうち何れかである分析対象装置より上流側の、該ネットワークでの伝送モジュール間の伝送経路と伝送モジュールと該情報処理装置間の伝送経路のうち少なくとも一方における、該所定送信情報の伝送頻度を出力する経路伝送頻度出力装置である。そして、当該経路伝送頻度出力装置は、前記ネットワークの一部であって前記分析対象装置を含み且つ該分析対象装置の上流側に位置する上流側ネットワークに属する複数の上流側伝送モジュールから伝送される前記所定送信情報のうち、該分析対象装置を通った前記所定送信情報である分析対象情報を取得する取得手段と、前記取得手段によって取得された前記分析対象情報から、前記複数の上流側伝送モジュールのそれぞれから送信された該分析対象情報を該上流側伝送モジュール毎にモジュール対応分析対象情報として抽出する抽出手段と、前記抽出手段によって抽出された前記モジュール対応分析対象情報が、それに対応する前記上流側伝送モジュールから前記分析対象装置に至るまでに通った一又は複数の利用伝送経路における、該モジュール対応分析対象情報の伝送頻度を、該上流側伝送モジュール毎に算出する算出手段と、前記算出手段によって算出された、前記複数の上流側伝送モジュールのそれぞれに対応する、前記モジュール対応分析対象情報の伝送頻度に基づいて、前記利用伝送経路のうち、その伝送頻度が他の利用伝送経路より低い低頻度経路を、該他の利用伝送経路と区別して出力する出力手段と、を備える。 Specifically, the present invention relates to one transmission module among a plurality of transmission modules in a network to which a plurality of transmission modules belong and to which an information processing apparatus set as a transmission destination of predetermined transmission information of each transmission module belongs. And at least one of a transmission path between the transmission module and the transmission path between the transmission module and the information processing apparatus on the upstream side of the analysis target apparatus that is one of the predetermined transmission module and the information processing apparatus. On the other hand, a route transmission frequency output device for outputting the transmission frequency of the predetermined transmission information. The path transmission frequency output device is transmitted from a plurality of upstream transmission modules that are part of the network, include the analysis target device, and belong to an upstream network located upstream of the analysis target device. Of the predetermined transmission information, an acquisition unit that acquires the analysis target information that is the predetermined transmission information that has passed through the analysis target device, and the plurality of upstream transmission modules from the analysis target information acquired by the acquisition unit Extraction means for extracting the analysis target information transmitted from each of the upstream transmission modules as module correspondence analysis target information for each upstream transmission module, and the module correspondence analysis target information extracted by the extraction means includes the upstream In one or a plurality of transmission paths used from the side transmission module to the analysis target device, The module correspondence analysis target information corresponding to each of the plurality of upstream transmission modules calculated by the calculation means and the calculation means for calculating the transmission frequency of the module correspondence analysis target information for each upstream transmission module. Output means for outputting a low-frequency path whose transmission frequency is lower than that of the other used transmission paths out of the other used transmission paths based on the transmission frequency.
 本発明に係る経路伝送頻度出力装置は、ネットワークに属する分析対象装置より上流側の伝送経路における伝送頻度を出力する装置である。ここで、対象となる伝送経路は、ネットワークでの伝送モジュール間の伝送経路と、伝送モジュールと情報処理装置間の伝送経路のうち少なくとも一方の伝送経路とを含む。ここで、本願における伝送モジュールは、所定送信情報を伝送目的地である情報処理装置まで伝送するように構成されるものであればよく、所定送信情報の伝送以外の機能を有していても構わない。したがって、ネットワークに属する伝送モジュールは、全てにおいて同一の機能を有する必要はなく、各伝送モジュールが個別的に適宜設計されてもよい。また、伝送モジュールにより伝送される所定送信情報は、伝送モジュールから情報処理装置に伝送される情報であればその情報の具体的な内容は特定のものに限定されない。すなわち、本発明に係る経路伝送頻度出力装置において伝送頻度の対象となる情報の流れを形成するものであれば、当該情報は本発明に係る所定送信情報とされる。 The path transmission frequency output apparatus according to the present invention is an apparatus that outputs the transmission frequency in the transmission path upstream of the analysis target apparatus belonging to the network. Here, the target transmission path includes a transmission path between transmission modules in the network and at least one transmission path among transmission paths between the transmission module and the information processing apparatus. Here, the transmission module in the present application only needs to be configured to transmit the predetermined transmission information to the information processing apparatus that is the transmission destination, and may have a function other than the transmission of the predetermined transmission information. Absent. Therefore, it is not necessary for all transmission modules belonging to the network to have the same function, and each transmission module may be individually designed as appropriate. In addition, the specific content of the information is not limited to a specific one as long as the predetermined transmission information transmitted by the transmission module is information transmitted from the transmission module to the information processing apparatus. That is, as long as it forms a flow of information targeted for transmission frequency in the route transmission frequency output device according to the present invention, the information is the predetermined transmission information according to the present invention.
 ここで、本発明に係る経路伝送頻度出力装置では、取得手段によって、上流側ネットワークに属する上流側伝送モジュールから伝送され、且つ分析対象装置を通った所定送信情報である分析対象情報が取得される。すなわち、経路伝送出力装置は、基準となる伝送モジュール又は情報処理装置である分析対象装置を通る所定送信情報を利用して、当該所定送信情報がどのような伝送経路を経て、当該分析対象装置に至っているかを分析することで、通ってきた伝送経路の伝送頻度を出力するものである。 Here, in the route transmission frequency output device according to the present invention, the acquisition unit acquires analysis target information that is transmitted from the upstream transmission module belonging to the upstream network and is predetermined transmission information that passes through the analysis target device. . In other words, the path transmission output device uses the predetermined transmission information passing through the analysis target device that is a reference transmission module or information processing device, and passes the transmission route of the predetermined transmission information to the analysis target device. By analyzing whether it has arrived, the transmission frequency of the transmitted transmission path is output.
 この分析対象情報は、上流側伝送モジュールから伝送されてきた所定送信情報のまとまりである。そこで、抽出手段は、取得された分析対象情報から、上流側伝送モジュール毎に対応した情報を抽出する。例えば、分析対象情報に関連する上流側伝送モジュールがN個存在する場合には、抽出手段は、そのN個の上流側伝送モジュールのそれぞれが該上流側伝送モジュールを起点とした情報伝送に関与した分析対象情報を、モジュール対応分析対象情報として抽出する。 This analysis target information is a set of predetermined transmission information transmitted from the upstream transmission module. Therefore, the extraction unit extracts information corresponding to each upstream transmission module from the acquired analysis target information. For example, when there are N upstream transmission modules related to the analysis target information, the extraction unit is involved in information transmission in which each of the N upstream transmission modules starts from the upstream transmission module. The analysis target information is extracted as module correspondence analysis target information.
 次に、本発明に係る経路伝送頻度出力装置では、算出手段によって、上流側伝送モジュール毎に、利用伝送経路におけるモジュール対応分析対象情報の伝送頻度が算出される。すなわち、算出手段は、一の上流側伝送モジュールを起点として伝送されるモジュール対応分析対象情報が、分析対象装置に至るまでに通った伝送経路である利用伝送経路での伝送頻度を算出する。したがって、上流側伝送モジュールのそれぞれに対応した利用伝送経路およびそこでの伝送頻度は、一般には上流側伝送モジュール毎に異なるが、結果として全ての上流側伝送モジュールにおいて同じ場合もあり得る。 Next, in the path transmission frequency output device according to the present invention, the calculation means calculates the transmission frequency of the module correspondence analysis target information on the used transmission path for each upstream transmission module. In other words, the calculation means calculates the transmission frequency on the used transmission path, which is the transmission path through which the module correspondence analysis target information transmitted from one upstream transmission module reaches the analysis target apparatus. Therefore, the use transmission path corresponding to each of the upstream transmission modules and the transmission frequency there are generally different for each upstream transmission module, but as a result, all upstream transmission modules may be the same.
 そして、出力手段によって、上流側伝送モジュールのそれぞれに対応したモジュール対応分析対象情報の伝送頻度に基づいて低頻度経路が特定され、それが他の利用伝送経路と区別されて出力される。このように上流側伝送モジュールによる利用伝送経路での伝送頻度を上流側伝送モジュール毎に考慮して低頻度経路が特定されるため、当該低頻度経路は、上流側ネットワークに属する上流側伝送モジュールのそれぞれにとって利用頻度が低い伝送経路であることを意味する。低頻度経路は、偶発的に伝送モジュール間が情報伝送可能となって形成された経路である可能性もあり、低頻度経路を継続して利用していくことはネットワークの安定性の観点から好ましくない場合もある。そこで、出力手段は、この低頻度経路を他の利用伝送経路と区別して出力することで、ユーザに低頻度経路を認識させやすくする。なお、出力における区別の形態は、特定の形態に限定されるものではなく、少なくともユーザにとって、低頻度経路が、他の利用伝送経路と違う経路であること認識することができればよい。 Then, the low-frequency path is specified by the output means based on the transmission frequency of the module correspondence analysis target information corresponding to each of the upstream transmission modules, and is output separately from the other used transmission paths. In this way, since the low frequency path is specified by considering the transmission frequency on the used transmission path by the upstream transmission module for each upstream transmission module, the low frequency path is determined by the upstream transmission module belonging to the upstream network. It means that the transmission path is less frequently used for each. The infrequent route may be a route that is accidentally formed so that information can be transmitted between the transmission modules, and it is preferable from the viewpoint of network stability to continue using the infrequent route. There may be no. Therefore, the output unit makes it easy for the user to recognize the low-frequency path by outputting the low-frequency path separately from the other used transmission paths. Note that the form of distinction in output is not limited to a specific form, and it is sufficient that at least the user can recognize that the low-frequency path is different from other used transmission paths.
 このように構成される経路伝送頻度出力装置は、ネットワークに属する伝送モジュールにとって不要となる可能性の高い伝送経路を低頻度経路として好適に出力することができる。これにより、ユーザは出力手段の出力結果を踏まえて、ネットワークの安定性向上等、種々の対策を講じやすくなる。 The path transmission frequency output device configured as described above can suitably output a transmission path that is highly likely to be unnecessary for a transmission module belonging to the network as a low-frequency path. This makes it easy for the user to take various measures such as improving the stability of the network based on the output result of the output means.
 ここで、上記経路伝送頻度出力装置において、前記出力手段は、前記利用伝送経路のうち、該利用伝送経路を利用した全ての前記上流側伝送モジュールにおいて、該上流側伝送モジュールのそれぞれに対応する前記モジュール対応分析対象情報の伝送頻度が、該上流側伝送モジュール毎に設定された所定頻度より低い伝送経路を、前記低頻度経路として出力してもよい。利用伝送経路を利用する上流側伝送モジュールの全てにおいて、モジュール対応分析対象情報の伝送頻度が所定頻度より低い利用伝送経路は、その全ての上流側伝送モジュールにとって重要性を有しないことを意味するものと考えられる。そして、全ての上流側伝送モジュールにとって重要性を有しない伝送経路を経て所定送信情報が伝送された場合、重要性が低い故に好ましくない伝送環境に晒され、ネットワークの安定性が阻害される可能性が高い。そこで、出力手段は、上記の上流側伝送モジュールの全てにおいてモジュール対応分析対象情報の伝送頻度が所定頻度より低い利用伝送経路を、低頻度経路として出力することで、ユーザに有益な情報を提供することが可能となる。 Here, in the path transmission frequency output device, the output unit corresponds to each of the upstream transmission modules in all the upstream transmission modules using the used transmission path among the used transmission paths. A transmission path in which the transmission frequency of the module correspondence analysis target information is lower than a predetermined frequency set for each upstream transmission module may be output as the low-frequency path. In all the upstream transmission modules that use the used transmission path, the used transmission path in which the transmission frequency of the module correspondence analysis target information is lower than the predetermined frequency means that it is not important for all the upstream transmission modules. it is conceivable that. And, if the predetermined transmission information is transmitted through a transmission path that is not important for all upstream transmission modules, it may be exposed to an unfavorable transmission environment due to its low importance, and the stability of the network may be hindered Is expensive. Therefore, the output means provides useful information to the user by outputting, as a low-frequency path, a use transmission path in which the transmission frequency of the module correspondence analysis target information is lower than a predetermined frequency in all the upstream transmission modules. It becomes possible.
 ここで、上述までの経路伝送頻度出力装置は、前記出力手段により出力される前記低頻度経路に関する情報を表示する表示装置を、更に備えてもよい。その場合、前記出力手段は、前記上流側伝送モジュールの全てに対応する前記利用伝送経路に関する情報を前記表示装置に表示させるとともに、該全ての利用伝送経路において前記低頻度経路に相当する経路に関する情報を、他の利用伝送経路に関する情報よりも強調表示させる。このように出力手段は、強調表示を介して低頻度経路に相当する経路に関する情報を、他の利用伝送経路に関する情報と区別して出力することで、ユーザに、低頻度経路の存在を認識させやすくなる。なお、強調表示の形態としては、伝送経路を意味する図のアクセント表示、色の変更等、様々な表示形態を採用できる。 Here, the route transmission frequency output device described above may further include a display device that displays information on the low-frequency route output by the output means. In that case, the output means causes the display device to display information on the used transmission path corresponding to all of the upstream transmission modules, and information on a path corresponding to the low-frequency path in all the used transmission paths. Is highlighted more than information on other used transmission paths. In this way, the output means outputs information related to the route corresponding to the low-frequency route through highlighting so that the user can recognize the presence of the low-frequency route by distinguishing it from information related to other used transmission routes. Become. In addition, as a form of highlighting, various display forms such as accent display of a diagram indicating a transmission path, color change, and the like can be adopted.
 また、上記経路伝送頻度出力装置において、前記利用伝送経路に関する情報には、該利用伝送経路における前記所定送信情報の、全ての前記上流側伝送モジュールからの伝送頻度の積算値が含まれてもよい。このように伝送頻度の積算値を補助的に表示することで、ユーザに対して効果的な情報提供ができる。 In the path transmission frequency output device, the information on the used transmission path may include an integrated value of transmission frequencies from all the upstream transmission modules of the predetermined transmission information in the used transmission path. . Thus, by effectively displaying the integrated value of the transmission frequency, it is possible to provide effective information to the user.
 また、上述までの経路伝送頻度出力装置が表示装置を備える場合、前記出力手段は、前記上流側の伝送モジュールの全てに対応する前記利用伝送経路の全てのうち、前記低頻度経路に相当する経路に関する情報のみを前記表示装置に表示させてもよい。このように低頻度経路に相当する経路に関する情報のみを表示することも、低頻度経路を他の利用伝送経路と区別して出力する形態の一つである。 When the path transmission frequency output device described above includes a display device, the output means corresponds to the low-frequency path among all the used transmission paths corresponding to all the upstream transmission modules. Only the information regarding the above may be displayed on the display device. Displaying only the information related to the route corresponding to the low-frequency route in this way is one form of outputting the low-frequency route separately from other used transmission routes.
 なお、伝送頻度出力の基準となる分析対象装置が情報処理装置である場合、本発明に係る経路伝送頻度出力装置は情報処理装置内に形成されてもよく、又は、情報処理装置とは別に構成される装置として形成されてもよい。また、分析対象装置が所定の伝送モジュールである場合、本発明に係る経路伝送頻度出力装置は当該所定の伝送モジュール内に形成されてもよく、又は当該所定の伝送モジュールとは別に構成される装置として形成されてもよい。経路伝送頻度出力装置が情報処理装置内又は所定の伝送モジュール内に形成される場合には、当該情報処理装置又は所定の伝送モジュールが、上述した取得手段、抽出手段、算出手段、出力手段を備えることになる。 When the analysis target device serving as a reference for transmission frequency output is an information processing device, the path transmission frequency output device according to the present invention may be formed in the information processing device, or may be configured separately from the information processing device. It may be formed as a device. Further, when the analysis target device is a predetermined transmission module, the path transmission frequency output device according to the present invention may be formed in the predetermined transmission module, or an apparatus configured separately from the predetermined transmission module May be formed. When the route transmission frequency output device is formed in the information processing device or the predetermined transmission module, the information processing device or the predetermined transmission module includes the acquisition unit, the extraction unit, the calculation unit, and the output unit described above. It will be.
 ネットワークにおいて伝送頻度が比較的低い伝送経路の存在を検知しやすいように出力することが可能となる。 It becomes possible to output so that it is easy to detect the presence of a transmission path with a relatively low transmission frequency in the network.
4台の伝送モジュールが属するネットワークの概略構成を示す図である。It is a figure which shows schematic structure of the network to which four transmission modules belong. 図1に示すネットワークに含まれる伝送モジュールの機能ブロック図である。It is a functional block diagram of the transmission module contained in the network shown in FIG. 伝送モジュールによって伝送される所定送信情報のデータ構造を示す図である。It is a figure which shows the data structure of the predetermined transmission information transmitted by the transmission module. 図1に示すネットワークシステムに含まれるサーバの機能ブロック図である。It is a functional block diagram of the server contained in the network system shown in FIG. 情報処理装置で実行され、低頻度経路を出力するための経路伝送頻度出力処理のフローチャートである。It is a flowchart of the path | route transmission frequency output process performed by information processing apparatus and outputting a low frequency path | route. 伝送モジュール2Aに対応した利用伝送経路、及び該利用伝送経路での伝送頻度を示す図である。It is a figure which shows the transmission frequency in the utilization transmission path | route corresponding to the transmission module 2A, and this utilization transmission path | route. 伝送モジュール2Bに対応した利用伝送経路、及び該利用伝送経路での伝送頻度を示す図である。It is a figure which shows the transmission frequency in the utilization transmission path | route corresponding to the transmission module 2B, and this utilization transmission path | route. 伝送モジュール2Cに対応した利用伝送経路、及び該利用伝送経路での伝送頻度を示す図である。It is a figure which shows the transmission frequency in the utilization transmission path | route corresponding to the transmission module 2C, and this utilization transmission path | route. 伝送モジュール2Dに対応した利用伝送経路、及び該利用伝送経路での伝送頻度を示す図である。It is a figure which shows the transmission frequency in the utilization transmission path | route corresponding to transmission module 2D, and this utilization transmission path | route. 図1に示すネットワークにおける低頻度経路を強調表示して出力した例を示す図である。It is a figure which shows the example which highlighted and output the low frequency path | route in the network shown in FIG.
 図面を参照して本発明に係る経路伝送頻度出力装置について説明する、なお、本実施例では、当該経路伝送頻度出力装置は、情報処理装置1内に形成される。なお、以下の実施形態の構成は例示であり、本発明はこの実施の形態の構成に限定されるものではない。 The route transmission frequency output device according to the present invention will be described with reference to the drawings. In this embodiment, the route transmission frequency output device is formed in the information processing apparatus 1. The configuration of the following embodiment is an exemplification, and the present invention is not limited to the configuration of this embodiment.
 図1は、ネットワーク10の概略構成を示す図である。ネットワーク10には、様々な外部環境パラメータ(温度等)を計測するためのセンサが搭載された伝送モジュールが属しており、計測された外部環境パラメータを情報処理装置1に収集するように各伝送モジュールが機能するようにネットワークが形成されている。図1に示すネットワーク10には、4台の伝送モジュール2A-2Dが属しており、伝送モジュール間、及び伝送モジュールと情報処理装置1との間に複数の伝送経路が形成されている。具体的な経路は、以下に示す8つの通りである。
 伝送経路Lab:伝送モジュール2Aから伝送モジュール2Bに向かう経路
 伝送経路Lac:伝送モジュール2Aから伝送モジュール2Cに向かう経路
 伝送経路Lad:伝送モジュール2Aから伝送モジュール2Dに向かう経路
 伝送経路Lbc:伝送モジュール2Bから伝送モジュール2Cに向かう経路
 伝送経路Ldc:伝送モジュール2Dから伝送モジュール2Cに向かう経路
 伝送経路Lb1:伝送モジュール2Bから情報処理装置1に向かう経路
 伝送経路Lc1:伝送モジュール2Cから情報処理装置1に向かう経路
 伝送経路Ld1:伝送モジュール2Dから情報処理装置1に向かう経路
FIG. 1 is a diagram showing a schematic configuration of the network 10. The network 10 includes transmission modules equipped with sensors for measuring various external environment parameters (temperature, etc.), and each transmission module collects the measured external environment parameters in the information processing apparatus 1. The network is formed to function. In the network 10 shown in FIG. 1, four transmission modules 2A-2D belong, and a plurality of transmission paths are formed between the transmission modules and between the transmission module and the information processing apparatus 1. There are eight specific routes as shown below.
Transmission path Lab: path from transmission module 2A to transmission module 2B Transmission path Lac: path from transmission module 2A to transmission module 2C Transmission path Lad: path from transmission module 2A to transmission module 2D Transmission path Lbc: from transmission module 2B Path to the transmission module 2C Transmission path Ldc: Path from the transmission module 2D to the transmission module 2C Transmission path Lb1: Path from the transmission module 2B to the information processing apparatus 1 Transmission path Lc1: Path from the transmission module 2C to the information processing apparatus 1 Transmission path Ld1: A path from the transmission module 2D to the information processing apparatus 1
 ネットワーク10において形成される伝送経路は、各伝送モジュールでの送信条件を決定する送信パラメータの一つであって、送信先となる伝送モジュールのノードアドレスに関するノードパラメータにより確定される。当該ノードパラメータは、同一のネットワークに属する伝送モジュールであって伝送モジュールからの送信先となる下流側伝送モジュールを識別するためのパラメータである。図1に示すネットワーク10では、例えば、伝送モジュール2Aにおいて、伝送モジュール2B、2C、2Dのノードアドレスが、ノードパラメータとして設定されている。なお、ネットワーク10に形成される伝送経路は例示であり、各伝送モジュールにおいて設定されるノードパラメータが異なれば、そこに形成される伝送経路も図1に示す形態とは異なることになる。 The transmission path formed in the network 10 is one of transmission parameters for determining transmission conditions in each transmission module, and is determined by a node parameter related to the node address of the transmission module serving as a transmission destination. The node parameter is a parameter for identifying a transmission module belonging to the same network and a downstream transmission module that is a transmission destination from the transmission module. In the network 10 shown in FIG. 1, for example, in the transmission module 2A, the node addresses of the transmission modules 2B, 2C, and 2D are set as node parameters. The transmission path formed in the network 10 is an example, and if the node parameter set in each transmission module is different, the transmission path formed there is also different from the form shown in FIG.
 また、ネットワーク10では、各伝送モジュールによって伝送される送信情報は、他の伝送モジュールの中継を介して、又は直接に、最終的に情報処理装置1に届けられる。ここで、情報処理装置1は、送受信装置1a、サーバ1b、表示装置1cを有している。送受信装置1aは、各伝送経路において情報処理装置1の近くに位置する伝送モジュール2B、2C、2Dから伝送されてくる情報を受信し、また、各伝送経路に位置する伝送モジュールに所定の動作指令や通知を届けるために、伝送モジュール2B、2C、2Dに対して送信するための装置である。なお、送受信装置1a、サーバ1b、表示装置1cは互いに電気的に接続されている。そして、サーバ1bは、例えば、各伝送モジュールから伝送された送信情報内の計測情報を収集し、所定の情報処理を行う。また、後述するようにネットワーク10に形成されている伝送経路の中から低頻度経路を特定して、表示装置1cに出力する。 In the network 10, transmission information transmitted by each transmission module is finally delivered to the information processing apparatus 1 via a relay of another transmission module or directly. Here, the information processing device 1 includes a transmission / reception device 1a, a server 1b, and a display device 1c. The transmission / reception device 1a receives information transmitted from the transmission modules 2B, 2C, and 2D located near the information processing device 1 in each transmission path, and sends a predetermined operation command to the transmission module located in each transmission path. And a device for transmitting to the transmission modules 2B, 2C and 2D in order to deliver notifications. The transmitting / receiving device 1a, the server 1b, and the display device 1c are electrically connected to each other. And the server 1b collects the measurement information in the transmission information transmitted from each transmission module, for example, and performs predetermined information processing. Further, as will be described later, the low-frequency path is identified from the transmission paths formed in the network 10 and is output to the display device 1c.
 なお、伝送モジュール2A-2Dに搭載されたセンサによる計測、およびその計測データの情報処理装置1への伝送は、継続的な情報収集を実現するために、各伝送モジュールで電源が投入されてから、所定の間隔で(例えば、一定の間隔で)繰り返し実行されるものである。これらの伝送モジュールは、計測対象を計測するセンサ機能、計測した情報を記録したり処理したりする機能、伝送モジュール外部への無線機能、電源機能等が実装された小型のデバイスとして構成されている。また、このような伝送モジュールに搭載されるセンサとしては、例えば、温度センサ、湿度センサ、加速度センサ、照度センサ、フローセンサ、圧力センサ、地温センサ、パーティクルセンサ等の物理系センサや、COセンサ、pHセンサ、ECセンサ、土壌水分センサ等の化学系センサがある。本実施の形態では、説明を簡便にするために、各伝送モジュールには、それぞれが配置された位置における外部温度を計測するための温度センサが搭載されているものとし、各伝送モジュールで計測された温度データはサーバ1bにおける所定の情報処理(例えば、温度データに基づいた、伝送モジュールが設置された空間の空調制御等)に供される。 Note that the measurement by the sensor mounted on the transmission module 2A-2D and the transmission of the measurement data to the information processing apparatus 1 are performed after the power is turned on in each transmission module in order to realize continuous information collection. Are repeatedly executed at predetermined intervals (for example, at regular intervals). These transmission modules are configured as small devices equipped with a sensor function for measuring the measurement target, a function for recording and processing the measured information, a wireless function to the outside of the transmission module, a power supply function, and the like. . Examples of sensors mounted on such a transmission module include physical sensors such as a temperature sensor, a humidity sensor, an acceleration sensor, an illuminance sensor, a flow sensor, a pressure sensor, a ground temperature sensor, and a particle sensor, and a CO 2 sensor. There are chemical sensors such as pH sensors, EC sensors, and soil moisture sensors. In the present embodiment, in order to simplify the explanation, it is assumed that each transmission module is equipped with a temperature sensor for measuring the external temperature at the position where each transmission module is arranged, and is measured by each transmission module. The temperature data is provided for predetermined information processing (for example, air conditioning control of the space in which the transmission module is installed based on the temperature data) in the server 1b.
 ここで、ネットワーク10に形成された8つの伝送経路について、その全てが効率的に利用されているとは限らない。偶発的に伝送モジュール間で確立した伝送経路は、その伝送環境が必ずしも好適な状態とは限らないため当該伝送経路での伝送頻度は低くなる傾向がある。そのため、このような伝送経路では、今時点では通信障害は発生していないが、後に通信障害が発生する可能性が比較的高く、いわば、ネットワーク10の安定性の観点から好ましくない伝送経路とも言える。そこで、ネットワーク10に含まれる伝送経路のうち、ネットワーク10の安定性の観点から好ましくない、伝送頻度の低い伝送経路(本発明に係る低頻度経路に相当する)を特定し、出力する処理(以下、「経路伝送頻度出力処理」という)が情報処理装置1で行われる。 Here, not all of the eight transmission paths formed in the network 10 are used efficiently. A transmission path that is accidentally established between the transmission modules has a tendency that the transmission frequency of the transmission path is low because the transmission environment is not necessarily in a suitable state. For this reason, in such a transmission path, no communication failure has occurred at this point, but there is a relatively high possibility that a communication failure will occur later. In other words, it can be said that the transmission path is not preferable from the viewpoint of the stability of the network 10. . Therefore, among the transmission paths included in the network 10, a process of identifying and outputting a transmission path with a low transmission frequency (corresponding to a low-frequency path according to the present invention) that is not preferable from the viewpoint of the stability of the network 10 (hereinafter, referred to as “transmission path”) , “Route transmission frequency output process”) is performed in the information processing apparatus 1.
 以上を踏まえ、ネットワーク10における伝送モジュールおよび情報処理装置1による具体的な処理について説明する。各伝送モジュールは、内部に演算装置、メモリ等を有し、当該演算装置により所定の制御プログラムが実行されることで、様々な機能が発揮される。そこで、図2に、ネットワーク10に属する伝送モジュールが発揮する様々な機能の一部をイメージ化した機能ブロックを示す。なお、図2には、伝送モジュール2Aについての機能ブロックを具体的に図示しているが、その他の伝送モジュール2B-2Dについても同様の機能部を有する。なお、各伝送モジュールでは、搭載される温度センサによって計測された温度データをメモリに記憶し、後述する伝送制御部21によってその計測データを下流側の伝送モジュールに送信するように構成される。 Based on the above, specific processing by the transmission module and the information processing apparatus 1 in the network 10 will be described. Each transmission module has an arithmetic device, a memory, etc. inside, and various functions are exhibited when a predetermined control program is executed by the arithmetic device. Therefore, FIG. 2 shows functional blocks in which some of the various functions exhibited by the transmission modules belonging to the network 10 are imaged. Note that FIG. 2 specifically shows functional blocks for the transmission module 2A, but the other transmission modules 2B-2D have similar functional units. Each transmission module is configured to store temperature data measured by an installed temperature sensor in a memory and to transmit the measurement data to a downstream transmission module by a transmission control unit 21 described later.
 ここで、伝送モジュール2Aは、機能部として、伝送制御部21、計測部22、情報記憶部23を有している。なお、伝送モジュール2Aの駆動電力は、モジュールが内蔵するバッテリから電力供給を受けてもよく、また、モジュールの外部のAC電源等から電力供給を受けてもよい。以下に、伝送モジュール2Aが有する各機能部について説明する。 Here, the transmission module 2A includes a transmission control unit 21, a measurement unit 22, and an information storage unit 23 as functional units. Note that the driving power of the transmission module 2A may be supplied from a battery built in the module, or may be supplied from an AC power source or the like outside the module. Below, each function part which 2A of transmission modules have is demonstrated.
 伝送制御部21は、伝送モジュール2Aに搭載されたアンテナを通し外部との情報の送受信を司る機能部である。具体的には、後述する情報記憶部23によってメモリに記憶された計測データを含む送信情報の生成とその下流側伝送モジュールへの送信、及び、存在する場合には上流側伝送モジュールから送信されてきた送信情報の受信を行う。ここで、伝送制御部21に送受信される送信情報のデータ構造を図3に示す。図3の上段(a)は、送信情報全体のデータ構造を概略的に示しており、当該送信情報は、概略的に九つのデータ領域に区分される。本実施例では、九つのデータ領域のうち八つの領域で主部情報mdfが形成される。この主部情報mdfにおいては、特に重要な5つの領域a1~a5について説明する。領域a1(Start Symbol)は、送信情報の始まりを示す特定のバイト列である。領域a2(Destination Address)は、送信情報が最終的に伝送される宛先(本実施例の場合は、情報処理装置1)のアドレスを表す。領域a3(Source Address)は、送信情報の送信元(本実施例の場合は、伝送モジュール2A)のアドレスを表す。領域a4(Data)は、送信元である伝送モジュール2Aに搭載された温度センサによる計測温度データを格納する。領域a5(Terminator Symbol for Data)は、送信情報の終わりを示す特定のバイト列である。 The transmission control unit 21 is a functional unit that controls transmission / reception of information to / from the outside through an antenna mounted on the transmission module 2A. Specifically, generation of transmission information including measurement data stored in the memory by the information storage unit 23 to be described later, transmission to the downstream transmission module, and transmission from the upstream transmission module if present. Receive transmission information. Here, the data structure of the transmission information transmitted / received to / from the transmission control unit 21 is shown in FIG. The upper part (a) of FIG. 3 schematically shows the data structure of the entire transmission information, and the transmission information is roughly divided into nine data areas. In the present embodiment, the main part information mdf is formed in eight of the nine data areas. In the main part information mdf, five particularly important areas a1 to a5 will be described. The area a1 (Start Symbol) is a specific byte string indicating the start of transmission information. An area a2 (Destination Address) represents an address of a destination (information processing apparatus 1 in this embodiment) to which transmission information is finally transmitted. An area a3 (Source Address) represents an address of a transmission information transmission source (in the case of the present embodiment, the transmission module 2A). The area a4 (Data) stores temperature data measured by a temperature sensor mounted on the transmission module 2A that is a transmission source. Area a5 (Terminator Symbol for Data) is a specific byte string indicating the end of transmission information.
 更に、送信情報における領域a6は、主部情報mdfに対して付加された、送信情報が起点となる伝送モジュールから情報処理装置1まで伝送されるときに、利用した伝送経路(本発明に係る利用伝送経路に相当する)に関する情報(以下、「利用伝送経路情報」といい、参照番号にadfを付すこととする。また、複数の利用伝送経路情報が付加される場合には、その付加順を示す数字をadfの後に続けて示すこととする。)が格納される領域である。この利用伝送経路情報adfは、伝送モジュールが送信情報を送信、又は中継する度に付加されていく。したがって、例えば、伝送モジュール2Aを起点として伝送モジュール2Bを経由して情報処理装置1に送信情報を伝送する場合、伝送モジュール2Aから伝送モジュール2Bに送信される際に、伝送経路Labに関する1番目の利用伝送経路情報adf1が付加され、次に、伝送モジュール2Bによって情報処理装置1に中継される際に、伝送経路Lb1に関する2番目の利用伝送経路情報adf2が付加されることになる。 Further, the area a6 in the transmission information is a transmission path used when the transmission information added to the main part information mdf is transmitted from the transmission module as a starting point to the information processing apparatus 1 (use according to the present invention). Information relating to transmission paths (hereinafter referred to as “utilization transmission path information”), and “df” is added to the reference number. This is an area in which a number to be shown is indicated after adf.) The use transmission path information adf is added every time the transmission module transmits or relays transmission information. Therefore, for example, when transmission information is transmitted from the transmission module 2A to the information processing apparatus 1 via the transmission module 2B, when the transmission information is transmitted from the transmission module 2A to the transmission module 2B, the first transmission path Lab is transmitted. When the use transmission path information adf1 is added and then relayed to the information processing apparatus 1 by the transmission module 2B, the second use transmission path information adf2 related to the transmission path Lb1 is added.
 ここで、図3の中段(b)に、利用伝送経路情報adfを格納する領域a6の詳細なデータ構造を示す。なお、図3(b)では、送信情報が複数の伝送モジュールを経由することで、複数の利用伝送経路情報が付加された状態が示されている。ここで、利用伝送経路情報adfを形成するデータ領域b1~b6について説明する。領域b1(Separator Symbol for Appended Data)は、付加された一の利用伝送経路情報adfの始まりを示す特定のバイト列である。領域b2(Appended Data Source Address)は、当該一の利用伝送経路情報adfを付加した伝送モジュールのアドレスを表す。領域b3(Appended Data ID)は、後述する領域b4の利用伝送経路情報の実体データを識別する識別子である。 Here, the middle part (b) of FIG. 3 shows the detailed data structure of the area a6 for storing the used transmission path information adf. Note that FIG. 3B shows a state in which a plurality of pieces of used transmission path information are added as transmission information passes through a plurality of transmission modules. Here, the data areas b1 to b6 forming the used transmission path information adf will be described. An area b1 (Separator Symbol for Appended Data) is a specific byte string indicating the start of the one used transmission path information adf added. Area b2 (Appended Data Source Address) represents the address of the transmission module to which the one used transmission path information adf is added. An area b3 (Appended Data ID) is an identifier for identifying entity data of used transmission path information in the area b4 described later.
 ここで、領域b4(Appended Data Entity)は、付加される利用伝送経路情報の実体データを表す。利用伝送経路は、伝送経路の送信元と送信先に位置する伝送モジュールのノードアドレスによって、利用伝送経路を特定することが可能であるから、これらのノードアドレスを用いて利用伝送経路を特定する情報としてもよい。また、別法として、伝送経路そのものを識別する識別子が存在する場合には、その識別子を利用伝送経路情報としてもよい。更に、一の利用伝送経路情報adfにおいて、領域b5は、当該一の利用伝送経路情報adfの誤り検出用のチェックサムデータを格納している。また、領域b6は、当該一の利用伝送経路情報adfの終わりを示す特定のバイト列を表す。 Here, field b4 (Appended Data Entity) represents entity data of the used transmission path information to be added. Since the used transmission path can be identified by the node address of the transmission module located at the transmission source and destination of the transmission path, the information for identifying the used transmission path using these node addresses. It is good. As another method, when there is an identifier for identifying the transmission path itself, the identifier may be used as transmission path information. Further, in one used transmission path information adf, an area b5 stores checksum data for error detection of the one used transmission path information adf. An area b6 represents a specific byte string indicating the end of the one used transmission path information adf.
 次に、計測部22は、伝送モジュール2Aに搭載されているセンサ(例えば、温度センサ)を通して外部環境パラメータ(例えば、外部温度)を計測する機能部である。そして、その計測部22による計測データは、情報記憶部23によって伝送モジュール2Aのメモリに記憶される。また、情報記憶部23は、伝送モジュールが中継器として機能する場合には、伝送制御部21を介して上流側伝送モジュールから受信した送信情報も記憶する。そして、情報記憶部23によって記憶されているこれらの情報は、伝送制御部21によって利用伝送経路情報が付加されて下流側伝送モジュールに送信されることになる。 Next, the measurement unit 22 is a functional unit that measures an external environment parameter (for example, an external temperature) through a sensor (for example, a temperature sensor) mounted on the transmission module 2A. Then, the measurement data by the measurement unit 22 is stored in the memory of the transmission module 2A by the information storage unit 23. In addition, when the transmission module functions as a repeater, the information storage unit 23 also stores transmission information received from the upstream transmission module via the transmission control unit 21. These pieces of information stored in the information storage unit 23 are transmitted to the downstream transmission module with the transmission transmission path information added by the transmission control unit 21.
 次に、サーバ1bに形成される機能部について図4に基づいて説明する。サーバ1bも、内部に演算装置、メモリ等を有し、当該演算装置により所定の制御プログラムが実行されることで、様々な機能が発揮される。ここで、サーバ1bは、機能部として、通信部11、データ記録部12、情報処理部13を有している。通信部11は、送受信装置1aを介して伝送モジュールから送信情報を収集するための通信を行う機能部である。図1に示すネットワーク10では、通信部11は、伝送モジュール2B、2C、2Dと、情報処理装置1との間の送受信を司る。データ記録部12は、通信部11を介して伝送モジュールから伝送された送信情報に含まれる情報のうち計測データである温度データや、送信情報に付加されている利用伝送経路情報を記録する機能部である。そして、ここで記録された計測データや利用伝送経路情報は、情報処理部13に渡され、当該情報処理部13によって、収集された計測データを用いた所定の情報処理が行われる。 Next, functional units formed in the server 1b will be described with reference to FIG. The server 1b also includes an arithmetic device, a memory, and the like, and various functions are exhibited by executing predetermined control programs by the arithmetic device. Here, the server 1b includes a communication unit 11, a data recording unit 12, and an information processing unit 13 as functional units. The communication unit 11 is a functional unit that performs communication for collecting transmission information from the transmission module via the transmission / reception device 1a. In the network 10 illustrated in FIG. 1, the communication unit 11 manages transmission / reception between the transmission modules 2 </ b> B, 2 </ b> C, and 2 </ b> D and the information processing apparatus 1. The data recording unit 12 is a functional unit that records temperature data, which is measurement data, of information included in transmission information transmitted from the transmission module via the communication unit 11, and utilization transmission path information added to the transmission information. It is. And the measurement data and utilization transmission path information which were recorded here are passed to the information processing part 13, and the said information processing part 13 performs the predetermined information processing using the collected measurement data.
 そして、情報処理部13には、記録された利用伝送経路情報を処理する機能部として、取得部131、抽出部132、算出部133、出力部134が形成されている。先ず、取得部131は、ネットワーク10に属する各伝送モジュールから情報処理装置1に到達した送信情報を、本発明に係る分析対象情報として取得する機能部である。抽出部132は、取得部131によって取得された分析対象情報を、起点となった伝送モジュール毎に分類し、各伝送モジュールに対応した分析対象情報を、本発明に係るモジュール対応分析対象情報として抽出する機能部である。算出部133は、モジュール対応分析対象情報が情報処理装置1に到達するまでに利用してきた利用伝送経路での伝送頻度を、伝送モジュール毎に算出する機能部である。そして、出力部134は、算出部133によって算出された、伝送モジュールごとの利用伝送経路での伝送頻度に基づいて特定される、本発明に係る低頻度経路を表示装置1cに出力する機能部である。 In the information processing unit 13, an acquisition unit 131, an extraction unit 132, a calculation unit 133, and an output unit 134 are formed as functional units that process the recorded use transmission path information. First, the acquisition unit 131 is a functional unit that acquires transmission information that reaches the information processing apparatus 1 from each transmission module belonging to the network 10 as analysis target information according to the present invention. The extraction unit 132 classifies the analysis target information acquired by the acquisition unit 131 for each transmission module as a starting point, and extracts the analysis target information corresponding to each transmission module as the module-corresponding analysis target information according to the present invention. It is a functional part to do. The calculation unit 133 is a functional unit that calculates, for each transmission module, the transmission frequency on the used transmission path that has been used until the module correspondence analysis target information reaches the information processing apparatus 1. The output unit 134 is a functional unit that outputs the low-frequency path according to the present invention to the display device 1c, which is specified based on the transmission frequency of the used transmission path for each transmission module calculated by the calculation unit 133. is there.
<経路伝送頻度出力処理>
 次に、図5に基づいて、取得部131、抽出部132、算出部133、出力部134の処理により実行される経路伝送頻度出力処理について説明する。まず、S101では、取得部131によって、分析対象情報の取得が行われる。図1に示すネットワーク10において本発明に係る分析対象装置を情報処理装置1とした場合、情報処理装置1の上流側に位置するネットワークは、ネットワーク10と一致するため、本発明に係る上流側伝送モジュールとしては、伝送モジュール2A-2Dの4つが相当することになる。したがって、S101における分析対象情報は、伝送モジュール2A-2Dのそれぞれが情報処理装置に向けて伝送した送信情報となる。この送信情報はデータ記録部12に記録されているため、取得部131はデータ記録部12にアクセスして、分析対象情報を取得することになる。S101の処理が終了すると、S102へ進む。
<Route transmission frequency output processing>
Next, a route transmission frequency output process executed by the processes of the acquisition unit 131, the extraction unit 132, the calculation unit 133, and the output unit 134 will be described with reference to FIG. First, in S101, the acquisition unit 131 acquires analysis target information. When the analysis target apparatus according to the present invention is the information processing apparatus 1 in the network 10 shown in FIG. 1, the network located on the upstream side of the information processing apparatus 1 matches the network 10, and therefore the upstream transmission according to the present invention. There are four modules corresponding to the transmission modules 2A-2D. Therefore, the analysis target information in S101 is transmission information transmitted to the information processing apparatus by each of the transmission modules 2A-2D. Since this transmission information is recorded in the data recording unit 12, the acquisition unit 131 accesses the data recording unit 12 and acquires analysis target information. When the process of S101 ends, the process proceeds to S102.
 S102では、抽出部132によって、S101で取得された分析対象情報から、伝送モジュール2A-2Dのそれぞれから送信された分析対象情報が、伝送モジュール毎にモジュール対応分析対象として抽出される。すなわち、抽出部132は、取得された分析対象情報を、その伝送元である伝送モジュール毎に分類する。具体的には、分析対象情報は図3に示すデータ構造を有していることを踏まえ、主部情報mdfの領域a3に格納されている情報を利用して、S102における抽出処理が行われる。S102の処理が終了すると、S103へ進む。 In S102, the extraction unit 132 extracts the analysis target information transmitted from each of the transmission modules 2A-2D from the analysis target information acquired in S101 as a module-corresponding analysis target for each transmission module. That is, the extraction unit 132 classifies the acquired analysis target information for each transmission module that is the transmission source. Specifically, based on the fact that the analysis target information has the data structure shown in FIG. 3, the extraction process in S102 is performed using the information stored in the area a3 of the main part information mdf. When the process of S102 ends, the process proceeds to S103.
 S103では、算出部103によって、S102で抽出された伝送モジュール2A-2Dのそれぞれに対応したモジュール対応分析対象情報を利用して、各モジュール対応分析対象情報が伝送されてきた利用伝送経路での伝送頻度が算出される。モジュール対応分析対象情報は、図3に示すデータ構造を有しているため、その主部情報mdfに付加された利用伝送経路情報adfを参照することで、当該モジュール対応分析対象情報がどの伝送経路を通ってきたのかを把握することができる。そして、伝送頻度の算出に当たっては、例えば、S101での分析対象情報の取得を1分間隔で行い、その1分間で取得された分析対象情報を対象に、各利用伝送経路を通ったモジュール対応分析対象情報の数をカウントしてもよい。また、モジュール対応分析対象情報に付加された利用伝送経路情報に、利用伝送経路を特定するための情報とともに、当該経路を通った時刻情報(例示的には、当該経路での送信元の送信時刻情報、又は、送信先の受信時刻情報)が含まれている場合には、その時刻情報に基づいて伝送頻度を算出することができる。 In S103, using the module correspondence analysis target information corresponding to each of the transmission modules 2A-2D extracted in S102 by the calculation unit 103, transmission on the use transmission path through which each module correspondence analysis target information has been transmitted. The frequency is calculated. Since the module correspondence analysis target information has the data structure shown in FIG. 3, by referring to the used transmission path information adf added to the main part information mdf, which module correspondence analysis target information indicates which transmission path You can see if you have passed. In calculating the transmission frequency, for example, the analysis target information in S101 is acquired at intervals of one minute, and the module correspondence analysis through each use transmission path is performed on the analysis target information acquired in the one minute. You may count the number of object information. Further, in the used transmission path information added to the module correspondence analysis target information, together with information for specifying the used transmission path, time information (for example, the transmission time of the transmission source on the path) Information or reception time information of the transmission destination), the transmission frequency can be calculated based on the time information.
 ここで、図6A-図6Dに、伝送モジュール2A-2D毎に、そのモジュール対応分析対象情報に基づいて算出された、利用伝送経路での伝送頻度の一例を示す。なお、これらの図に示された結果においては、各伝送モジュールは、1分間に10回の送信情報を伝送しており、その伝送過程において通信障害は発生していない、すなわち、全ての送信情報は情報処理装置1に到達しているものとする。 Here, FIGS. 6A to 6D show an example of the transmission frequency on the used transmission path calculated for each transmission module 2A-2D based on the module correspondence analysis target information. In the results shown in these figures, each transmission module transmits transmission information 10 times per minute, and no communication failure occurs in the transmission process, that is, all transmission information. Is assumed to have reached the information processing apparatus 1.
 図6Aは、伝送モジュール2Aを起点として伝送された送信情報に基づいて算出された、利用伝送経路での伝送頻度を例示している。この例では、伝送モジュール2Aに関しては、伝送経路Lbcは利用されていないため、当該経路は利用伝送経路には相当しないことになる。また、各利用伝送経路での伝送頻度は、以下の通りである。
 利用伝送経路Lab:1回/min
 利用伝送経路Lac:6回/min
 利用伝送経路Lad:3回/min
 利用伝送経路Ldc:2回/min
 利用伝送経路Lb1:1回/min
 利用伝送経路Lc1:8回/min
 利用伝送経路Ld1:1回/min
FIG. 6A illustrates the transmission frequency in the used transmission path calculated based on the transmission information transmitted from the transmission module 2A as a starting point. In this example, for the transmission module 2A, the transmission path Lbc is not used, and therefore the path does not correspond to the used transmission path. In addition, the transmission frequency in each used transmission path is as follows.
Use transmission path Lab: 1 time / min
Use transmission path Lac: 6 times / min
Use transmission path Lad: 3 times / min
Use transmission path Ldc: 2 times / min
Use transmission path Lb1: 1 time / min
Use transmission path Lc1: 8 times / min
Use transmission path Ld1: 1 time / min
 次に、図6Bは、伝送モジュール2Bを起点として伝送された送信情報に基づいて算出された、利用伝送経路での伝送頻度を例示している。この例では、伝送モジュール2Bに関しては、伝送経路Lab、Lac、Lad、Ldc、Ld1は利用されていないため、当該経路は利用伝送経路には相当しないことになる。また、各利用伝送経路での伝送頻度は、以下の通りである。
 利用伝送経路Lbc:2回/min
 利用伝送経路Lb1:8回/min
 利用伝送経路Lc1:2回/min
Next, FIG. 6B illustrates the transmission frequency on the used transmission path calculated based on the transmission information transmitted from the transmission module 2B. In this example, with respect to the transmission module 2B, the transmission paths Lab, Lac, Lad, Ldc, and Ld1 are not used, so that the path does not correspond to the used transmission path. In addition, the transmission frequency in each used transmission path is as follows.
Use transmission path Lbc: 2 times / min
Use transmission path Lb1: 8 times / min
Use transmission path Lc1: 2 times / min
 図6Cは、伝送モジュール2Cを起点として伝送された送信情報に基づいて算出された、利用伝送経路での伝送頻度を例示している。この例では、伝送モジュール2Cに関しては、伝送経路Lab、Lac、Lad、Lbc、Ldc、Lb1、Ld1は利用されていないため、当該経路は利用伝送経路には相当しないことになる。また、各利用伝送経路での伝送頻度は、以下の通りである。
 利用伝送経路Lc1:10回/min
FIG. 6C illustrates the transmission frequency in the used transmission path calculated based on the transmission information transmitted from the transmission module 2C as a starting point. In this example, with respect to the transmission module 2C, the transmission paths Lab, Lac, Lad, Lbc, Ldc, Lb1, and Ld1 are not used, so that the path does not correspond to the used transmission path. In addition, the transmission frequency in each used transmission path is as follows.
Use transmission path Lc1: 10 times / min
 図6Dは、伝送モジュール2Dを起点として伝送された送信情報に基づいて算出された、利用伝送経路での伝送頻度を例示している。この例では、伝送モジュール2Dに関しては、伝送経路Lab、Lac、Lad、Lbc、Lb1は利用されていないため、当該経路は利用伝送経路には相当しないことになる。また、各利用伝送経路での伝送頻度は、以下の通りである。
 利用伝送経路Ldc:8回/min
 利用伝送経路Lc1:8回/min
 利用伝送経路Ld1:2回/min
FIG. 6D illustrates the transmission frequency on the used transmission path calculated based on the transmission information transmitted from the transmission module 2D. In this example, with respect to the transmission module 2D, the transmission paths Lab, Lac, Lad, Lbc, and Lb1 are not used, so that the path does not correspond to the used transmission path. In addition, the transmission frequency in each used transmission path is as follows.
Use transmission path Ldc: 8 times / min
Use transmission path Lc1: 8 times / min
Use transmission path Ld1: 2 times / min
 S103の処理が終了すると、S104へ進む。そして、S104では、出力部134によって、上記のように伝送モジュール2A-2D毎に算出された利用伝送経路での伝送頻度に基づいて、全利用伝送経路の中から低頻度経路が特定される。具体的には、ネットワーク10における全ての利用伝送経路の中から、利用伝送経路を利用した全ての伝送モジュールにおいて、伝送モジュール毎に算出された利用伝送経路での伝送頻度が、伝送モジュール毎に設定された所定頻度(本実施例の場合は、何れの伝送モジュールについても、所定頻度を3回/minとする)より低い経路を低頻度経路として、特定する。 When the process of S103 is completed, the process proceeds to S104. In S104, the output unit 134 identifies the low-frequency path among all the used transmission paths based on the transmission frequency on the used transmission path calculated for each transmission module 2A-2D as described above. Specifically, the transmission frequency on the used transmission path calculated for each transmission module is set for each transmission module in all the transmission modules using the used transmission path among all the used transmission paths in the network 10. A path lower than the predetermined frequency (in the case of this embodiment, the predetermined frequency is set to 3 times / min for any transmission module) is specified as a low frequency path.
 より詳細に、図6A-図6Dの例をもとに説明する。
(1)利用伝送経路Labについて
 利用伝送経路Labは、伝送モジュール2Aのみが利用している。したがって、低頻度経路であるか否かの判断は、伝送モジュール2Aに関する伝送頻度のみに基づいて行われる。当該頻度は1回/minであるから、利用伝送経路Labは低頻度経路であると判断される。
(2)利用伝送経路Lac、Ladについて
 利用伝送経路Lac、Ladは、伝送モジュール2Aのみが利用している。したがって、低頻度経路であるか否かの判断は、伝送モジュール2Aに関する伝送頻度のみに基づいて行われる。当該頻度はそれぞれ6回/min、3回/minであるから、利用伝送経路Lac、Ladは低頻度経路ではないと判断される。
(3)利用伝送経路Lbcについて
 利用伝送経路Lbcは、伝送モジュール2Bのみが利用している。したがって、低頻度経路であるか否かの判断は、伝送モジュール2Bに関する伝送頻度のみに基づいて行われる。当該頻度は2回/minであるから、利用伝送経路Lbcは低頻度経路であると判断される。
(4)利用伝送経路Ldcについて
 利用伝送経路Ldcは、伝送モジュール2A、2Dが利用している。したがって、低頻度経路であるか否かの判断は、伝送モジュール2A、2Dに関する伝送頻度に基づいて行われる。当該頻度はそれぞれ2回/min、8回/minであり、2つの伝送モジュール2A、2Dにおいて所定頻度をともに下回っている状態ではないため、利用伝送経路Ldcは低頻度経路ではないと判断される。
(5)利用伝送経路Lb1
 利用伝送経路Lb1は、伝送モジュール2A、2Bが利用している。したがって、低頻度経路であるか否かの判断は、伝送モジュール2A、2Bに関する伝送頻度に基づいて行われる。当該頻度はそれぞれ1回/min、8回/minであり、2つの伝送モジュール2A、2Bにおいて所定頻度をともに下回っている状態ではないため、利用伝送経路Lb1は低頻度経路ではないと判断される。
(6)利用伝送経路Lc1
 利用伝送経路Lc1は、全伝送モジュール2A-2Dが利用している。したがって、低頻度経路であるか否かの判断は、全伝送モジュール2A-2Dに関する伝送頻度のみに基づいて行われる。当該頻度はそれぞれ8回/min、2回/min、10回/min、8回/minであり、4つの伝送モジュール2A-2Dの全てにおいて所定頻度を下回っている状態ではないため、利用伝送経路Lc1は低頻度経路ではないと判断される。
(7)利用伝送経路Ld1
 利用伝送経路Ld1は、伝送モジュール2A、2Dが利用している。したがって、低頻度経路であるか否かの判断は、伝送モジュール2A、2Dに関する伝送頻度に基づいて行われる。当該頻度はそれぞれ1回/min、2回/minであり、2つの伝送モジュール2A、2Dにおいて所定頻度をともに下回っているため、利用伝送経路Ld1は低頻度経路であると判断される。
This will be described in more detail based on the examples of FIGS. 6A to 6D.
(1) Use Transmission Route Lab The use transmission route Lab is used only by the transmission module 2A. Therefore, the determination as to whether or not the route is a low frequency path is made based only on the transmission frequency related to the transmission module 2A. Since the frequency is 1 time / min, it is determined that the used transmission path Lab is a low-frequency path.
(2) Use transmission paths Lac and Lad The use transmission paths Lac and Lad are used only by the transmission module 2A. Therefore, the determination as to whether or not the route is a low frequency path is made based only on the transmission frequency related to the transmission module 2A. Since the frequencies are 6 times / min and 3 times / min, respectively, it is determined that the used transmission paths Lac and Lad are not low frequency paths.
(3) Utilization transmission path Lbc The utilization transmission path Lbc is used only by the transmission module 2B. Therefore, the determination as to whether or not the route is a low-frequency route is made based only on the transmission frequency related to the transmission module 2B. Since the frequency is 2 times / min, the used transmission path Lbc is determined to be a low-frequency path.
(4) Utilization transmission path Ldc The utilization transmission path Ldc is used by the transmission modules 2A and 2D. Therefore, the determination as to whether or not the route is a low frequency path is made based on the transmission frequency related to the transmission modules 2A and 2D. The frequencies are 2 times / min and 8 times / min, respectively, and are not in a state where both of the two transmission modules 2A and 2D are below the predetermined frequency, and therefore, the used transmission path Ldc is determined not to be a low frequency path. .
(5) Utilization transmission path Lb1
The use transmission path Lb1 is used by the transmission modules 2A and 2B. Therefore, the determination as to whether or not the route is a low frequency path is made based on the transmission frequency related to the transmission modules 2A and 2B. The frequencies are 1 time / min and 8 times / min, respectively, and are not in a state where both of the two transmission modules 2A and 2B are below the predetermined frequency, and therefore, the used transmission path Lb1 is determined not to be a low frequency path. .
(6) Utilization transmission path Lc1
The used transmission path Lc1 is used by all the transmission modules 2A-2D. Therefore, the determination as to whether or not the route is a low-frequency path is made based only on the transmission frequency for all the transmission modules 2A-2D. The frequencies are 8 times / min, 2 times / min, 10 times / min, and 8 times / min, respectively, and are not in a state below the predetermined frequency in all of the four transmission modules 2A-2D. Lc1 is determined not to be a low frequency path.
(7) Utilization transmission path Ld1
The use transmission path Ld1 is used by the transmission modules 2A and 2D. Therefore, the determination as to whether or not the route is a low frequency path is made based on the transmission frequency related to the transmission modules 2A and 2D. The frequencies are 1 time / min and 2 times / min, respectively, and are lower than the predetermined frequency in the two transmission modules 2A and 2D. Therefore, the used transmission path Ld1 is determined to be a low frequency path.
 S104の処理が終了すると、S105へ進む。S105では、S104で特定された低頻度経路Lab、Lbc、Ld1に関する情報を表示装置1cに出力する。当該出力処理も出力部134によって行われる。表示装置1cにおける情報出力の一例としては、図7に示すように、ネットワーク10全体をイメージ化し、各利用伝送経路のイメージ(図7に示す例では、矢印)を、伝送モジュール間又は伝送モジュールと情報処理装置1との間に配置する。その上で、低頻度経路Lab、Lbc、Ld1のイメージを強調表示する。具体的には、低頻度経路Lab、Lbc、Ld1に対応する矢印の太さを、それら以外の利用伝送経路の矢印よりも太くする。このように低頻度経路を強調表示することで、ユーザは当該低頻度経路を把握しやすくなる。また、出力の別法として、表示される利用伝送経路を低頻度経路Lab、Lbc、Ld1のみとしてもよい。 When the process of S104 is completed, the process proceeds to S105. In S105, the information regarding the low frequency paths Lab, Lbc, and Ld1 specified in S104 is output to the display device 1c. The output process is also performed by the output unit 134. As an example of information output in the display device 1c, as shown in FIG. 7, the entire network 10 is imaged, and an image of each use transmission path (an arrow in the example shown in FIG. 7) is transmitted between transmission modules or transmission modules. It arrange | positions between the information processing apparatuses 1. Then, the images of the low frequency paths Lab, Lbc, and Ld1 are highlighted. Specifically, the thicknesses of the arrows corresponding to the low frequency routes Lab, Lbc, and Ld1 are made thicker than the arrows of the other use transmission routes. By highlighting the low frequency route in this way, the user can easily grasp the low frequency route. As another method of output, only the low-frequency routes Lab, Lbc, and Ld1 may be displayed as used transmission routes.
 また、各伝送モジュールの、各利用伝送経路での伝送頻度の積算値も、利用伝送経路に対応する矢印とともに表示してもよい。図7に示す例では、図6A-図6Dに示された、伝送モジュール毎の利用伝送経路での伝送頻度の積算値が、添えられている。 Also, the integrated value of the transmission frequency of each transmission module in each used transmission path may be displayed together with an arrow corresponding to the used transmission path. In the example shown in FIG. 7, the integrated value of the transmission frequency in the used transmission path for each transmission module shown in FIGS. 6A to 6D is attached.
 更に、出力の別法として、低頻度経路Lab、Lbc、Ld1に関する情報を利用して何らかの電気的処理を行う場合、当該電気的処理に供することのできる電気信号の形で、出力するようにしてもよい。例えば、上記低頻度経路Lab、Lbc、Ld1における送信情報の伝送が継続して行われないように、関係する伝送モジュール2A、2B、2Dに対して、送信パラメータであるノードパラメータを変更させる指令を情報処理装置1から送信する処理を行う場合、当該処理に必要な情報としての低頻度経路Lab、Lbc、Ld1に関する情報を、出力部134によって出力してもよい。この結果、ネットワーク10の伝送環境を容易に安定化させることが可能となる。S105の処理が終了すると、経路伝送頻度出力処理が終了する。 Furthermore, as another method of output, when any electrical processing is performed using information on the low frequency paths Lab, Lbc, Ld1, output is performed in the form of an electrical signal that can be used for the electrical processing. Also good. For example, a command to change the node parameter, which is a transmission parameter, to the related transmission modules 2A, 2B, and 2D so that transmission of transmission information in the low frequency paths Lab, Lbc, and Ld1 is not continuously performed. When the process transmitted from the information processing apparatus 1 is performed, the output unit 134 may output information on the low-frequency paths Lab, Lbc, and Ld1 as information necessary for the process. As a result, the transmission environment of the network 10 can be easily stabilized. When the process of S105 ends, the route transmission frequency output process ends.
 上記のように特定、出力された低頻度経路は、その利用伝送経路を利用する伝送モジュールの全てにおいて、伝送頻度が判断基準となる所定頻度より低い経路である。このことは、当該経路を利用する伝送モジュールにとって、当該経路はそれほど重要性を有しないことを意味するものと考えられる。例えば、低頻度経路は偶発的に伝送モジュール間で形成された伝送経路であるが故に、そこでの伝送頻度が低くなる可能性がある。このように重要性を有しない低頻度経路を経て送信情報が伝送された場合、重要性が低い故に好ましくない伝送環境に晒され、ネットワーク10の安定性が阻害される可能性がある。そこで、上記のように表示装置1cに、その低頻度経路に関する情報が出力されることで、ユーザが低頻度経路の存在を容易に把握でき、例えば、低頻度経路の利用を止めるべく、利用伝送経路の再構築をする等、ネットワーク10での通信障害を予防するための対策を講じやすくなる。 The low-frequency path specified and output as described above is a path whose transmission frequency is lower than a predetermined frequency that is a determination criterion in all the transmission modules that use the transmission path. This is considered to mean that the route is not so important for a transmission module that uses the route. For example, since the low-frequency path is a transmission path that is accidentally formed between the transmission modules, there is a possibility that the transmission frequency there may be low. When transmission information is transmitted through a low-frequency path having no significance in this way, it is exposed to an unfavorable transmission environment due to low importance, and the stability of the network 10 may be hindered. Therefore, by outputting information on the low frequency path to the display device 1c as described above, the user can easily grasp the existence of the low frequency path. For example, in order to stop the use of the low frequency path, use transmission is performed. It becomes easy to take measures for preventing communication failure in the network 10, such as reconstructing a route.
 また、図7を見て理解できるように、利用伝送経路Ladの積算伝送頻度は3回/minであるが、当該経路は低頻度経路とは判断されていない。一方で、利用伝送経路Ld1の積算頻度は同じく3回/minであるものの、逆に当該経路は低頻度経路と判断されている。これは、利用伝送経路Ladについては、伝送モジュール2Aのみが利用しており、且つ伝送モジュール2Aにとっての利用頻度は比較的高い、すなわち、伝送モジュールに対応して設定された所定頻度以上となっていることによる。換言すれば、利用伝送経路Ld1については、積算頻度はそれなりに高いものの、利用伝送経路Ld1を利用している伝送モジュール2A、2Dそれぞれにとっては、それほど利用頻度は高くない状態にあることを的確に反映したものである。この点からも、上記経路伝送頻度出力処理によれば、利用伝送経路の表面上の伝送頻度ではなく、利用伝送経路における伝送モジュールそれぞれの利用頻度を反映させることで、ネットワークの安定の観点から好ましくない低頻度経路をより的確に特定することができる。 As can be understood from FIG. 7, the accumulated transmission frequency of the used transmission route Lad is 3 times / min, but the route is not determined to be a low-frequency route. On the other hand, although the cumulative frequency of the used transmission path Ld1 is also 3 times / min, the path is determined to be a low-frequency path. This is because the use transmission path Lad is used only by the transmission module 2A, and the use frequency for the transmission module 2A is relatively high, that is, it exceeds the predetermined frequency set corresponding to the transmission module. Because it is. In other words, although the cumulative frequency of the used transmission path Ld1 is reasonably high, it is accurately determined that the usage frequency is not so high for each of the transmission modules 2A and 2D using the used transmission path Ld1. It is reflected. Also from this point, according to the above route transmission frequency output processing, it is preferable from the viewpoint of network stability by reflecting the use frequency of each transmission module in the use transmission path instead of the transmission frequency on the surface of the use transmission route. It is possible to more accurately identify the low-frequency path that is not present.
<変形例>
 上記の実施例では、情報処理装置1を本発明に係る分析対象装置に相当させている。その態様に代えて、ネットワーク10に属する伝送モジュールの何れかを、本発明に係る分析対象装置に相当させてもよい。例えば、伝送モジュール2Cを分析対象装置に相当させた場合、伝送モジュール2Cを基準として、その上流側に位置する伝送モジュールは、伝送モジュール2A、2B、2Dとなり、利用伝送経路は、Lab、Lad、Lbc、Ldcとなる。そして、伝送モジュール2Cを通る送信情報を本発明に係る分析対象情報として、上記実施例と同じように、図5に示す経路伝送頻度出力処理を適用すればよい。
<Modification>
In the above embodiment, the information processing apparatus 1 corresponds to the analysis target apparatus according to the present invention. Instead of this aspect, any of the transmission modules belonging to the network 10 may correspond to the analysis target device according to the present invention. For example, when the transmission module 2C is made to correspond to the analysis target device, the transmission modules located on the upstream side of the transmission module 2C are the transmission modules 2A, 2B, and 2D, and the used transmission paths are Lab, Lad, Lbc and Ldc. Then, the transmission information passing through the transmission module 2C is used as the analysis target information according to the present invention, and the route transmission frequency output process shown in FIG.
 1・・・・情報処理装置
 1b・・・・サーバ
 2A-2D・・・・伝送モジュール
DESCRIPTION OF SYMBOLS 1 ... Information processing apparatus 1b ... Server 2A-2D ... Transmission module

Claims (5)

  1.  複数の伝送モジュールが属するとともに、各伝送モジュールの所定送信情報の伝送目的地として設定される情報処理装置が属するネットワークにおいて、該複数の伝送モジュールのうち一つの伝送モジュールである所定の伝送モジュール及び該情報処理装置のうち何れかである分析対象装置より上流側の、該ネットワークでの伝送モジュール間の伝送経路と伝送モジュールと該情報処理装置間の伝送経路のうち少なくとも一方における、該所定送信情報の伝送頻度を出力する経路伝送頻度出力装置であって、
     前記ネットワークの一部であって前記分析対象装置を含み且つ該分析対象装置の上流側に位置する上流側ネットワークに属する複数の上流側伝送モジュールから伝送される前記所定送信情報のうち、該分析対象装置を通った前記所定送信情報である分析対象情報を取得する取得手段と、
     前記取得手段によって取得された前記分析対象情報から、前記複数の上流側伝送モジュールのそれぞれから送信された該分析対象情報を該上流側伝送モジュール毎にモジュール対応分析対象情報として抽出する抽出手段と、
     前記抽出手段によって抽出された前記モジュール対応分析対象情報が、それに対応する前記上流側伝送モジュールから前記分析対象装置に至るまでに通った一又は複数の利用伝送経路における、該モジュール対応分析対象情報の伝送頻度を、該上流側伝送モジュール毎に算出する算出手段と、
     前記算出手段によって算出された、前記複数の上流側伝送モジュールのそれぞれに対応する、前記モジュール対応分析対象情報の伝送頻度に基づいて、前記利用伝送経路のうち、その伝送頻度が他の利用伝送経路より低い低頻度経路を、該他の利用伝送経路と区別して出力する出力手段と、
     を備える、経路伝送頻度出力装置。
    In a network to which a plurality of transmission modules belong and to which an information processing apparatus set as a transmission destination of predetermined transmission information of each transmission module belongs, a predetermined transmission module that is one of the plurality of transmission modules, and The predetermined transmission information in at least one of the transmission path between the transmission modules in the network and the transmission path between the transmission module and the information processing apparatus upstream of the analysis target apparatus that is one of the information processing apparatuses. A route transmission frequency output device for outputting a transmission frequency,
    Of the predetermined transmission information transmitted from a plurality of upstream transmission modules belonging to an upstream network that is part of the network and includes the analysis target device and is located upstream of the analysis target device, the analysis target Acquisition means for acquiring analysis target information that is the predetermined transmission information that has passed through the apparatus;
    Extraction means for extracting the analysis target information transmitted from each of the plurality of upstream transmission modules as module-corresponding analysis target information for each upstream transmission module from the analysis target information acquired by the acquisition means;
    The module-corresponding analysis target information in one or a plurality of used transmission paths through which the module-corresponding analysis target information extracted by the extraction unit passes from the upstream transmission module corresponding to the module to the analysis target device. Calculating means for calculating the transmission frequency for each upstream transmission module;
    Based on the transmission frequency of the module correspondence analysis target information corresponding to each of the plurality of upstream transmission modules calculated by the calculating means, the transmission frequency of the used transmission paths is another used transmission path. An output means for outputting a lower infrequent path separately from the other used transmission paths;
    A path transmission frequency output device comprising:
  2.  前記出力手段は、前記利用伝送経路のうち、該利用伝送経路を利用した全ての前記上流側伝送モジュールにおいて、該上流側伝送モジュールのそれぞれに対応する前記モジュール対応分析対象情報の伝送頻度が、該上流側伝送モジュール毎に設定された所定頻度より低い伝送経路を、前記低頻度経路として出力する、
     請求項1に記載の経路伝送頻度出力装置。
    The output means includes a transmission frequency of the module correspondence analysis target information corresponding to each of the upstream transmission modules in all the upstream transmission modules using the usage transmission path among the use transmission paths. A transmission path lower than a predetermined frequency set for each upstream transmission module is output as the low-frequency path.
    The route transmission frequency output device according to claim 1.
  3.  前記出力手段により出力される前記低頻度経路に関する情報を表示する表示装置を、更に備え、
     前記出力手段は、前記上流側伝送モジュールの全てに対応する前記利用伝送経路に関する情報を前記表示装置に表示させるとともに、該全ての利用伝送経路において前記低頻度経路に相当する経路に関する情報を、他の利用伝送経路に関する情報よりも強調表示させる、
     請求項1又は請求項2に記載の経路伝送頻度出力装置。
    A display device for displaying information on the infrequent route output by the output means;
    The output means displays information on the used transmission path corresponding to all of the upstream transmission modules on the display device, and outputs information on a path corresponding to the low-frequency path in all the used transmission paths. To highlight more than the information about the used transmission path,
    The route transmission frequency output device according to claim 1 or 2.
  4.  前記利用伝送経路に関する情報には、該利用伝送経路における前記所定送信情報の、全ての前記上流側伝送モジュールからの伝送頻度の積算値が含まれる、
     請求項3に記載の経路伝送頻度出力装置。
    The information on the used transmission path includes an integrated value of transmission frequencies from all the upstream transmission modules of the predetermined transmission information in the used transmission path.
    The route transmission frequency output device according to claim 3.
  5.  前記出力手段により出力される前記低頻度経路に関する情報を表示する表示装置を、更に備え、
     前記出力手段は、前記上流側の伝送モジュールの全てに対応する前記利用伝送経路の全てのうち、前記低頻度経路に相当する経路に関する情報のみを前記表示装置に表示させる、
     請求項1又は請求項2に記載の経路伝送頻度出力装置。
    A display device for displaying information on the infrequent route output by the output means;
    The output means causes the display device to display only information on a route corresponding to the low-frequency route among all of the used transmission routes corresponding to all of the upstream transmission modules.
    The route transmission frequency output device according to claim 1 or 2.
PCT/JP2014/057001 2014-03-14 2014-03-14 Path transmission frequency output apparatus WO2015136712A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/057001 WO2015136712A1 (en) 2014-03-14 2014-03-14 Path transmission frequency output apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/057001 WO2015136712A1 (en) 2014-03-14 2014-03-14 Path transmission frequency output apparatus

Publications (1)

Publication Number Publication Date
WO2015136712A1 true WO2015136712A1 (en) 2015-09-17

Family

ID=54071189

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/057001 WO2015136712A1 (en) 2014-03-14 2014-03-14 Path transmission frequency output apparatus

Country Status (1)

Country Link
WO (1) WO2015136712A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002271400A (en) * 2001-03-09 2002-09-20 Matsushita Electric Ind Co Ltd Method of data transmission
WO2009148021A1 (en) * 2008-06-03 2009-12-10 株式会社日立製作所 Packet analysis apparatus
JP2012060604A (en) * 2010-09-13 2012-03-22 Nippon Telegr & Teleph Corp <Ntt> Network visualization apparatus

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002271400A (en) * 2001-03-09 2002-09-20 Matsushita Electric Ind Co Ltd Method of data transmission
WO2009148021A1 (en) * 2008-06-03 2009-12-10 株式会社日立製作所 Packet analysis apparatus
JP2012060604A (en) * 2010-09-13 2012-03-22 Nippon Telegr & Teleph Corp <Ntt> Network visualization apparatus

Similar Documents

Publication Publication Date Title
US20120163191A1 (en) Network state monitoring system
US10127789B2 (en) Disaster determination system and disaster determination method
WO2018221046A1 (en) Automatic inspection system and method for controlling automatic inspection system
JP7131189B2 (en) DATA COLLECTION MONITORING DEVICE, DATA COLLECTION MONITORING METHOD, AND DATA COLLECTION MONITORING SYSTEM
JP2013005043A5 (en) Ad hoc network system, node device and data collection terminal
US20180176914A1 (en) Communication terminal and wireless communication system
WO2018061326A1 (en) Automatic inspection system, object to be inspected reading device for automatic inspection system, and automatic inspection system control method
JP6472328B2 (en) Disaster monitoring system, monitoring apparatus, sensor device, and disaster monitoring method
JP5813489B2 (en) Abnormality occurrence estimation method and abnormality occurrence estimation device
WO2015136712A1 (en) Path transmission frequency output apparatus
JP6357756B2 (en) Transmission module, information transmission network system, information transmission method, information transmission program
CN104378367A (en) Improved network security incident correlation analysis system
CN104394124A (en) Association analysis system of network security incident
JP2005341451A (en) Measurement information gathering system
JP2017182655A (en) Alarm device, alarm program, and alarm system
JP2011205536A (en) Power line coupler, and apparatus and system for detection of power line connection configuration
JP5849851B2 (en) Wireless terminal device, wireless communication system, and wireless terminal device control method
JP2005217814A (en) Wireless network extension method
JP6412391B2 (en) Fire alarm system
JP7245664B2 (en) multi-hop communication system
JP2020170946A (en) Data collection status monitoring device, data collection status monitoring program, data collection status monitoring method, and data collection status monitoring system
KR20120087322A (en) Facility sensing sensor having reference node setting function and facility management system
JP2011176482A (en) Radio system and program for use in the same
JP6984299B2 (en) Communication relay device
KR101875341B1 (en) Message relay system and method based on machine learning

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14885456

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14885456

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP