WO2015133882A1 - Scfv antibody library, method for preparing same, and scfv antibody screening method using same - Google Patents

Scfv antibody library, method for preparing same, and scfv antibody screening method using same Download PDF

Info

Publication number
WO2015133882A1
WO2015133882A1 PCT/KR2015/002262 KR2015002262W WO2015133882A1 WO 2015133882 A1 WO2015133882 A1 WO 2015133882A1 KR 2015002262 W KR2015002262 W KR 2015002262W WO 2015133882 A1 WO2015133882 A1 WO 2015133882A1
Authority
WO
WIPO (PCT)
Prior art keywords
antibody
variable region
chain variable
library
scfv
Prior art date
Application number
PCT/KR2015/002262
Other languages
French (fr)
Korean (ko)
Inventor
남도현
김석형
윤엽
이남경
주경민
박현규
Original Assignee
사회복지법인 삼성생명공익재단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 사회복지법인 삼성생명공익재단 filed Critical 사회복지법인 삼성생명공익재단
Publication of WO2015133882A1 publication Critical patent/WO2015133882A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • CCHEMISTRY; METALLURGY
    • C40COMBINATORIAL TECHNOLOGY
    • C40BCOMBINATORIAL CHEMISTRY; LIBRARIES, e.g. CHEMICAL LIBRARIES
    • C40B40/00Libraries per se, e.g. arrays, mixtures
    • C40B40/04Libraries containing only organic compounds
    • C40B40/10Libraries containing peptides or polypeptides, or derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • CCHEMISTRY; METALLURGY
    • C40COMBINATORIAL TECHNOLOGY
    • C40BCOMBINATORIAL CHEMISTRY; LIBRARIES, e.g. CHEMICAL LIBRARIES
    • C40B30/00Methods of screening libraries
    • C40B30/04Methods of screening libraries by measuring the ability to specifically bind a target molecule, e.g. antibody-antigen binding, receptor-ligand binding
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/60Immunoglobulins specific features characterized by non-natural combinations of immunoglobulin fragments
    • C07K2317/62Immunoglobulins specific features characterized by non-natural combinations of immunoglobulin fragments comprising only variable region components
    • C07K2317/622Single chain antibody (scFv)

Definitions

  • the present invention relates to a ScFv antibody library, a method for preparing the same, and a method for screening ScFv antibodies using the same, specifically, a ScFv comprising a heavy chain variable region (V H ) and a light chain variable region (V L ⁇ or V L ⁇ ) of an antibody derived from an immune organ.
  • the present invention relates to a library for presenting an antibody on a phage surface, a method for preparing the same, and a method for screening ScFv antibodies using the same.
  • Antibody drugs are growing rapidly in the biopharmaceutical field due to their high therapeutic effect and target therapeutic properties.
  • the global market for antibody drugs continues to grow at an average annual rate of 10-15%, forming a market of $ 44.7 billion in 2010.
  • Most of the diseases that are the main targets of antibody drugs are concentrated on specific disease indications such as intractable cancer (49%) and immune diseases (35%), and competition between similar indication products is intense. Nevertheless, the development of anti-cancer antibody therapeutics will continue to grow in the future as there are therapeutic targets segmented within the diseases.
  • Human antibodies Due to the reduced efficacy and technical difficulties, researches for the development of human antibodies have been actively conducted. Human antibodies have a 100% human-derived antibody sequence, which completely solves the problem of immunogenicity and is an ideal therapeutic antibody.
  • the technical field for producing human antibodies can largely exemplify transgenic mice and antibody displays (phage display, yeast display, ribosomal display, etc.).
  • the development of antibodies using transgenic mice which have been tried a lot recently, is a technique for producing human monoclonal antibodies by applying the existing hybridoma technology to transgenic mice transplanted with human antibody genes.
  • This technology can produce in vivo affinity maturation, which can produce antibodies with high affinity, and can make human antibodies effectively.
  • the conditions for use of transgenic mice are expensive and manufactured. Technological entry is difficult such as knowhow.
  • Antibody fragment display technologies such as phage display, yeast display, and ribosomal display, have been combined with research into the development of humanized antibodies, and have been approached with various strategies to date to identify antibody candidates. to be.
  • Human antibody phage library Human Antibody Phage Library
  • Human Antibody Phage Library Human Antibody Phage Library
  • phage display is a technique for screening antibodies by expressing antibody fragments on the surface of bacteriophage, and existing antibody development techniques (chimeric / humanized antibody development using hybridomas, antibody development using transgenic transgenic mice).
  • existing antibody development techniques chimeric / humanized antibody development using hybridomas, antibody development using transgenic transgenic mice.
  • the antigen-specific antibody can be identified in a short time.
  • an effective antibody can be identified only when a high diversity of libraries is secured, securing a library is largely solved due to the recent development of gene amplification and cloning techniques.
  • the synthetic antibody library is created by adding random synthetic sequences to the complementarity determining regions (CDRs) of antibodies.
  • CDRs complementarity determining regions
  • synthetic antibody libraries have a lower percentage of antibody fragments that can function normally due to mutations, frameshifts, and the like, compared to natural human libraries.
  • strategies for using antibody libraries to identify new target antigens have been diversified, and new antigen-specific antibodies have been identified through cell panning using Tumor-derived primary cells. (Zhu X. et al., Mol. Cancer Res. 2010).
  • phage display is an efficient approach because it can secure candidate antibodies and produce antibodies through cloning.
  • Candidate antibody drugs targeting various types of cancers identified by applying such phage display technology are entering clinical trials.
  • the library of antibody variable region genes is required for the identification of a desired antibody, and various library constructions are essential.
  • the inventors of the present application provide a scFv antibody comprising a heavy chain variable region (V H ) and a light chain variable region (V L ⁇ or V L ⁇ ) of an antibody derived from an immune organ through a library and a method for preparing the same.
  • V H heavy chain variable region
  • V L ⁇ or V L ⁇ light chain variable region
  • the present invention is a library comprising a phage to present a ScFv antibody on the surface,
  • the ScFv antibody comprises a heavy chain variable region (V H ) and a light chain variable region (V L ⁇ or V L ⁇ ) of an antibody derived from an immune organ,
  • the ScFv antibody was encoded from a nucleic acid synthesized using a heavy chain variable region (V H ) and a light chain variable region (V L ⁇ or V L ⁇ ) specific primer of an antibody derived from an immune organ, using a nucleic acid extracted from an immune organ-derived cell as a template. It is about a library characterized in that.
  • the ScFv antibody may be expressed in a transformant into which a vector having the following structure in which a nucleic acid has been cloned is introduced, and present on a phage surface included in the transformant:
  • a to D are any one restriction enzyme recognition site selected from the group consisting of SfiI, NheI, BglII and NotI,
  • E is a His tag or HA (Hemagglutinin) tag insertion site
  • X is a gene insertion region encoding a heavy chain variable region (V H )
  • Y is a gene insertion region encoding a light chain variable region (V L ⁇ or V L ⁇ ).
  • the invention also comprises the steps of extracting a nucleic acid from an immune organ-derived cell; The nucleic acid encoding the heavy chain variable region and the light chain variable region using the extracted nucleic acid as a template and using the heavy chain variable region (V H ) and the light chain variable region (V L ⁇ or V L ⁇ ) specific primers of the antibody derived from an immune organ. Amplifying; Cloning a nucleic acid encoding the heavy and light chain variable regions into a vector and then introducing the transformant into a transformant; And expressing the ScFv antibody in the transformant to present the ScFv antibody expressed on the phage surface included in the transformant.
  • the present invention further relates to a ScFv antibody screening method comprising reacting the library with an antigen to screen for antigen specific ScFv antibodies.
  • 1 is a map of a pSIA23 vector constructed in accordance with the present invention.
  • FIG. 2 is a schematic diagram illustrating a process of constructing a pSIA23 vector according to the present invention.
  • Figure 3 is a photograph showing the results of confirming the V H and V L ⁇ / V L ⁇ gene amplification of the cDNA obtained from the bone marrow / blood / tonsil samples using the primer mixture.
  • Figure 4 is a photograph showing the colony PCR results of the V H and V L ⁇ / V L ⁇ gene inserted in the T-vector.
  • FIG. 5 is a photograph showing the results of confirming the insertion efficiency of V L ⁇ / V L ⁇ through colony PCR.
  • FIG. 6 is a schematic diagram showing the construction of a human antibody library.
  • FIG. 7 is a photograph showing the results of confirming the insertion of V H through colony PCR.
  • 10 is a graph showing the results of confirming the distribution of various amino acids for each KABAT position.
  • Figure 11 is a photograph showing the results confirmed whether the expression of the antibody fragment (scFv) through a dot-blot experiment.
  • FIG 13 shows the results of the screening of each antigen-specific antibody fragment (scFv).
  • Figure 14 shows the result of confirming the binding pattern through ELISA after phage recovery of DLL4_C01 clone.
  • Figure 16 shows the results confirming the binding pattern of the antibody fragment to DLL4.
  • Fig. 17 is a schematic diagram of cell panning identifying EGFRvIII specific antibodies using 626T, glioblastoma (GBM) patient cell.
  • FIG. 18 identifies EGFRvIII mutations in 626T patient cells and shows that EGFRvIII specific antibody fragments are enriched through cell panning.
  • the present invention is a library comprising a phage to present a ScFv antibody on the surface, the ScFv antibody comprises a heavy chain variable region (V H ) and light chain variable region (V L ⁇ or V L ⁇ ) of the antibody from the immune organs And a nucleic acid extracted from an immune organ-derived cell as a template and encoded from a nucleic acid synthesized using a heavy chain variable region (V H ) and a light chain variable region (V L ⁇ or V L ⁇ ) specific primers of an immune organ-derived antibody. It is about a library.
  • V H heavy chain variable region
  • V L ⁇ or V L ⁇ light chain variable region
  • the term "antibody” is an immunoglobulin selected from the group consisting of IgA, IgE, IgM, IgD, IgY, and IgG, and can specifically bind to a target antigen. It consists of two light chains and a heavy chain, each of which consists of a variable domain in which the amino acid sequence is variable and a constant domain having a constant sequence.
  • the antigen binding site is located at the end of the three-dimensional structure of the variable region, which is formed by the collection of complementarity determining regions, each of which is present in the light and heavy chains. Complementarity determining regions are particularly highly variable parts of the amino acid sequence among the variable region, the antibody specific for a variety of antigens can be found by this high variability.
  • ScFv single-chain Fv, single chain fragment antibody or antibody fragment
  • ScFv is an antibody connecting the variable region of the light chain and heavy chain. In some cases, it may include a linker consisting of a peptide chain of about 15 amino acids linked, wherein the ScFv is a light chain variable region-linked region-heavy chain variable region, or heavy chain variable region-linked It may have a structure of a site-light chain variable region and has the same or similar antigenic specificity as the original antibody.
  • an “antibody (or ScFv) library” is a collection of various antibody genes with different sequences. Very high diversity is required to isolate antibodies specific for any antigen from an antibody library, and libraries of different antibody clones are constructed and used.
  • the antibody gene constituting such an antibody library can be cloned into a phagemid vector, for example, and transformed into a transformant (E. coli).
  • nucleic acid may be used interchangeably with genes or nucleotides, for example, but may be selected from the group consisting of natural / synthetic DNA, genomic DNA, natural / synthetic RNA, cDNA, and cRNA, but is not limited thereto.
  • a "phagemid" vector is used for phage display and is a plasmid DNA having a phage origin of replication, and typically has an antibiotic resistant gene as a selection marker.
  • the phagemid vector used for phage display includes the gIII gene of M13 phage or a part thereof, and the ScFv gene is ligated at the 5 'end of the gIII gene and expressed through a transformant.
  • helper phage is a phage that provides the genetic information needed for phagemids to be assembled into phage particles. Since phagemid contains only gIII or a part of phage gene, the host cell (transformer) transformed with phagemid is infected with a helper phage to supply the remaining phage gene. M13K07 or VCSM13 are available and most include antibiotic resistance genes such as kanamycin, which allows the selection of transformants infected with helper phage. In addition, since there is a defect in the packaging signal, the phagemid gene is selectively assembled into the phage particle rather than the helper phage gene.
  • a “signal sequence” is a nucleotide sequence or the corresponding amino acid sequence which is located at the 5 'end of a gene and functions as a signal required when a protein encoded from the gene is secreted to the outside.
  • the ScFv antibody may be expressed in a transformant into which a vector having the following structure in which a nucleic acid is cloned is introduced, and present on a phage surface included in the transformant.
  • a to D are any one restriction enzyme recognition site selected from the group consisting of Sfi I, Nhe I, BglII and Not I,
  • E is a His tag or HA (Hemagglutinin) tag insertion site
  • X is a gene insertion region encoding a heavy chain variable region (V H )
  • Y is a gene insertion region encoding a light chain variable region (V L ⁇ or V L ⁇ ).
  • the gene sequence for the restriction enzyme recognition site of A to D is a gene encoding V H to be inserted into the X site and a gene encoding V L ⁇ or V L ⁇ to be inserted into the Y site.
  • each gene should be selected within a range that does not cleave.
  • the vector comprising the structure according to the present invention may be, for example, a pSIA23 vector, the cleavage map of which is as shown in FIG. 1.
  • the structure may include a recognition site of a restriction enzyme of SfiI-NheI-BglII-NotI in the A to E direction, that is, the 5 'to 3' direction.
  • A may be SfiI
  • B is NheI
  • C is BglII
  • D may be a recognition site of NotI restriction enzyme.
  • the linker is a linking region connecting the heavy and light chain variable regions in the ScFv described above, and is a hydrophilic flexible peptide chain mainly composed of glycine and serine ("Gly-Gly-Gly-Gly-Ser"). Genes encoding 15 amino acid sequences of 3 "or similar sequences can be used.
  • FIG. 2 The process of producing a vector comprising the structure according to the invention is shown in FIG. 2.
  • a restriction enzyme recognition site for insertion of the heavy chain variable region (V H ) and light chain variable region (V L ⁇ or V L ⁇ ), and inducing expression into the surrounding cytoplasm
  • the pelB sequence can be added as one of the signal sequences.
  • the label tag can be replaced with His6-tag and HA-tag which are used more widely than the E-tag of the pCANTAB 5E vector.
  • a library vector pSIA23 including restriction enzyme recognition sites excluding restriction enzymes capable of cleaving X and Y through restriction enzyme recognition site optimization may be prepared.
  • Antibodies expressed in the transformants into which the vector is introduced can be identified through labeling or ELISA through antigens tagged with fluorescent markers.
  • the nucleic acid encoding the antibodies can be isolated and tested again to see if the nucleic acid encodes an antibody with the desired biological properties.
  • the ScFv according to the present invention may be an unsensitized human antibody.
  • the ScFv may be an unsensitized human antibody derived from an immune organ such as bone marrow, blood or tonsils.
  • the heavy chain variable region (V H ) and light chain variable region (V L ⁇ or V L ⁇ ) genes of the ScFv may be obtained by extracting RNA from cells isolated from human immune organs.
  • the inventors of the present application secured RNA (cDNA) for ScFv library construction using tonsil tissue with various B cell repertoires (Example 2).
  • the sequence number for the primer mixture for example, V H gene amplification of the extracted synthesizing a cDNA of the RNA, then Table 1 (SEQ ID NO: 7 to 58) from the mononuclear cells isolated from the human immune system 7 and Amplifying a cDNA with a mixture comprising at least one primer selected from the group consisting of the sequences represented by 24 and at least one primer selected from the group consisting of the sequences represented by SEQ ID NOs: 25-58 for amplification of the V L gene, V H And genes encoding V L can be obtained.
  • the ScFv according to the present invention does not exhibit the HAMA response seen in existing techniques (eg hybridomas, etc.). .
  • the obtained heavy chain variable region (V H ) and the light chain variable region (V L ⁇ or V L ⁇ ) may have the sequences of Tables 6, 7 and 8 (SEQ ID NOs 63 to 254), respectively.
  • the heavy chain variable region is SEQ ID NO: 63-104 (heavy chain variable region of V H -V L ⁇ having the structure of FR1-CDR1-FR2-CDR2-FR3-CDR3-FR4), 147-200 (V H -V Heavy chain variable region of L ⁇ may have any sequence selected from the group consisting of the sequence represented by FR1-CDR1-FR2-CDR2-FR3-CDR3-FR4, and the light chain variable region is SEQ ID NO: 105 -146 (V L ⁇ , has the structure of FR1-CDR1-FR2-CDR2-FR3-CDR3-FR4), 201-254 (V L ⁇ , has the structure of FR1-CDR1-FR2-CDR2-FR3-CDR3-FR4)
  • ScFv can be converted into immunoglobulin to be used as a therapeutic antibody.
  • the half-life is short in the human body, it is possible to develop a therapeutic antibody by increasing the half-life through PEGylation (PEGylation) technology, a drug delivery system. In addition, it is applicable to the development of new types of antibody platform, such as bispecific antibodies.
  • the diversity of the library according to the present invention can exhibit a diversity of about 10 8 to 10 14 at a high level, and the antibody library of about 10 10 level can be constructed by the present invention. In some cases, the diversity may be further increased by any combination resulting from the heavy (V H ) and light (V L ⁇ or V L ⁇ ) gene combination process of the antibody during cloning.
  • the present invention comprises the steps of extracting the nucleic acid from immune-derived cells; The nucleic acid encoding the heavy chain variable region and the light chain variable region using the extracted nucleic acid as a template and using the heavy chain variable region (V H ) and the light chain variable region (V L ⁇ or V L ⁇ ) specific primers of the antibody derived from an immune organ. Amplifying; Cloning a nucleic acid encoding the heavy and light chain variable regions into a vector and then introducing the transformant into a transformant; And expressing the ScFv antibody in the transformant to present the ScFv antibody expressed on the phage surface included in the transformant.
  • RNA can be obtained by extracting RNA from cells isolated from an immune organ, such as bone marrow, blood or tonsils.
  • the extracted nucleic acid is used as a template, and the heavy chain variable region and the light chain using heavy chain variable region (V H ) and light chain variable region (V L ⁇ or V L ⁇ ) specific primers of the antibody derived from an immune organ. Amplifying the nucleic acid encoding the variable region.
  • the primer mixture of Table 1 (SEQ ID NO: 7 to 58), for example, in the group consisting of the sequence represented by SEQ ID NO: 7 to 24 for V H gene amplification as for the selection of one or more primers and V L gene amplification SEQ ID NO: consisting of a sequence represented by 25-58 mixture comprising at least one primer selected from the group amplifies the cDNA to obtain a gene encoding the V H and V L can do.
  • the ScFv antibody may be introduced into a transformant into which a vector of the following structure into which a nucleic acid has been cloned has been introduced:
  • a to D are any one restriction enzyme recognition site selected from the group consisting of Sfi I, Nhe I, BglII and Not I,
  • E is a His tag or HA (Hemagglutinin) tag insertion site
  • X is a gene insertion region encoding a heavy chain variable region (V H )
  • Y is a gene insertion region encoding a light chain variable region (V L ⁇ or V L ⁇ ).
  • V H heavy chain variable region
  • V L ⁇ light chain variable region
  • the production method according to the present invention includes expressing the ScFv antibody in the transformant, and presenting the ScFv antibody expressed on the phage surface included in the transformant.
  • the type of the transformant is preferably, for example, Escherichia coli. E. coli DH5a, E. coli JM101, E. coli K12 294, E. coli W3110, E. coli X1776, E. coli XL-1Blue (Stratagene), E. coli B, FMB101, NM522, NM538 and NM539 Including but not limited to.
  • the invention also relates to a ScFv antibody screening method comprising the step of screening an antigen specific ScFv antibody by reacting the library with an antigen.
  • the screening method may include culturing the transformant and phage of the library, binding the ScFv antibody expressed on the phage surface with the antigen, and screening and selecting a transformant expressing the desired antibody. Such screening and screening steps can be performed using various techniques known in the art.
  • a ScFv antibody that binds to a specific antigen can be isolated and prepared from the library by a panning method.
  • the panning is a process of binding a phage to a target antigen and removing unbound phage, amplifying the phage by recovering the bound phage and infecting the host cell, and repeating this process 2-4 times. It may include.
  • ScFv antibodies for treating autoimmune diseases or cancer can be screened.
  • ScFv antibodies can be screened specifically for binding to factors known to cause autoimmune diseases or cancers, and the screened ScFv antibodies act as antagonists, leading to expression of autoimmune diseases or cancer causing targets. By suppressing, the disease can be treated.
  • Autoimmune disease refers to a disorder caused by an autoimmune process in which immune system components, such as antibodies or lymphocytes, attack or harm molecules, cells or tissues of the organisms that produce them, for example multiple sclerosis, allograft rejection. , Autoimmune thyroid disease, inflammatory bowel disease (Crohn's disease, ulcerative colitis, local enteritis, etc.), psoriasis, rheumatoid arthritis or systemic lupus erythematosus.
  • Cancer may mean a disease caused by neoplastic cell growth and proliferation and unregulated cell growth / proliferation.
  • cancer include squamous cell carcinoma, small cell lung cancer, non-small cell lung cancer, lung adenocarcinoma, squamous carcinoma of the lung, peritoneal cancer, hepatocellular carcinoma, gastrointestinal cancer, pancreatic cancer, glioblastoma, cervical cancer, ovarian cancer, liver cancer, bladder cancer, Hepatocellular carcinoma, breast cancer, colon cancer, colorectal cancer, endometrial or uterine carcinoma, salivary gland carcinoma, kidney cancer, liver cancer, prostate cancer, vulvar cancer, thyroid cancer, liver carcinoma, gastric cancer, melanoma, and various types of head and neck cancer
  • the present invention is not limited thereto.
  • the ScFv antibody targeting the DLL4 (Delta like ligand 4) protein can be screened by the screening method according to the present invention, and the screened ScFv antibody was found to have a significant binding capacity to the DLL4 protein. (See Example 13-16).
  • EGFRvIII specific antibodies were identified through cell panning techniques, and the screened ScFv antibodies were found to have significant binding capacity to EGFRvIII, and showed cell growth inhibition (see Examples 17-19). ).
  • Example 1 phagemid vector construction for antibody library construction
  • a restriction enzyme recognition sequence insertion for V H and V L insertion and a pelB sequence for insertion of expression into the periplasm were inserted into the vector.
  • pSIA23 vector which is a vector for constructing a library of itself, was constructed by changing a label tag.
  • restriction enzymes Sfi I, Nhe I recognition sequences are inserted at the sites where V H is to be inserted, and BamH I and Not I recognition sequences are inserted at the sites where V L is to be inserted, and the pelB sequence is also inserted.
  • Four oligonucleotides were designed for insertion. Oligonucleotides used are as follows.
  • the template to be inserted was completed by assembly PCR using four oligonucleotides, and insertion into the skeletal vector (pCANTAB 5E) cut with HindIII and NotI was completed. His6-tag and HA-tag, which are used more widely than the E-tag of the existing pCANTAB 5E vector, were inserted.
  • a primer set in which restriction enzyme NotI and EcoRI recognition sequences were introduced at both ends was synthesized to amplify His6-HA-Amber codon-pIII sequence from pCOMB3X phagemid vector.
  • variable region gene extraction of the bone marrow (20) / blood (40) / tonsil (16) -derived antibodies was carried out as follows.
  • the library of the present invention is technically distinctive and unique in that RNA for constructing ScFv libraries (cDNA) was obtained using tonsil tissue having various B cell repertoires.
  • Bone marrow from healthy donors was obtained through STEMCELL Technologies in the form of frozen primary cells ( ⁇ 1.5 ⁇ 10 7 cells / vial, total 20 vial). After securing only mononuclear cells using a ficoll gradient, RNA extraction was performed as follows. After addition of 1 mL of Tri-reagent (Molecular Research Center) and repeated pipetting, the cells were allowed to stand at room temperature for 5 minutes and lysed. Then, 100 ⁇ L of biphasic calcium phosphate (BCP) was added and shaken several times for 15 seconds.
  • BCP biphasic calcium phosphate
  • RNA granules were obtained by centrifugation at 15 ° C. and 13,000 rpm for 10 minutes. In order to increase the purity of the RNA obtained, the mixture was stirred with 1 mL of 75% EtOH and stirred vigorously, followed by centrifugation at 15 ° C. and 13,000 rpm for 5 minutes.
  • RNA concentration was measured using a Bioanalyzer (Nanodrop).
  • 10 mL of healthy donor blood was mixed with 10 mL of PBS, and mononuclear cells were obtained by Ficoll gradient, and RNA was extracted in the above manner.
  • 2 mL of Tri-reagent (Molecular Research Center) was added to 200 mg of tonsil tissue, followed by tissue disruption. After 200 ⁇ L of BCP was added to the crushed tissue, the experimental method was performed as described above. Using 5 ⁇ g of each prepared RNA, cDNA was synthesized using a superscript III cDNA synthesis kit (Invitrogen), and used for amplifying the variable region of the antibody.
  • a cDNA mixture synthesized in three bone marrow / blood / tonsil tissues was used as a template, and PCR was performed using primers of 14 heavy chains and 28 light chains (kappa 13 and lambda 15). Primer sets for amplification of V H , V L ⁇ , V L ⁇ fragments were designed and used as shown in Table 1 below.
  • Restriction sequences inserted for cloning variable region genes in the constructed pSIA23 phagemid were SfiI-NheI (for V H insertion) and BglII-NotI (for V L insertion). Accordingly, as shown in Table 1, SfiI-NheI was inserted at both ends of the V H fragment to be amplified, and BglII-NotI was inserted at both ends of the V L fragment.
  • 14 F-primers and 4 R-primers were used, and the synthesized primers were divided by the difference in gene expression of the variable region subgroups, and V H is a total of 5 sets as shown in Table 2.
  • V H1 (SEQ ID NOs 7-10), V H3 (SEQ ID NOs 13-15), V H5 (SEQ ID NO 18), V H6 (SEQ ID NO 19), V H2 + 4 + 7 (SEQ ID NOs 11-12, 16 -17, 20) divided into F-primers, and primers in which JH 12 , JH 45 , JH 3 , JH 6 (SEQ ID NOs: 21-24) R-primers were mixed in equal moles were used.
  • Light chain variable region gene amplification was also divided into four sets of F-primers, each of 13 F-primers (SEQ ID NOs: 25-37) for kappa amplification and 15 F-primers (SEQ ID NOs: 38-52) for lambda amplification.
  • Amplification was performed by mixing the R-primer mixture (kappa: SEQ ID NO: 53-54, lambda: SEQ ID NO: 55-58) corresponding to each molar number.
  • PCR conditions for V H / V L amplification are as follows. 95 ° C., 5 minutes; (95 ° C., 30 sec-56 ° C., 30 sec-72 ° C., 45 sec) 30 repetitions; 72 ° C., 7 minutes.
  • the V H fragment was amplified to about 400 bp including Sfi I and Nhe I, and the V L fragment was about 360 bp including BglII and Not I sites.
  • the results are shown in FIG. 3. Referring to FIG. 3, it was confirmed that various V H and V L ⁇ / V L ⁇ genes were successfully amplified.
  • T-vector subcloning was performed to confirm that there was no problem with the sequence of the inserted variable region.
  • the ligation was carried out at 16 ° C. overnight culture conditions using 100 ng and 40 ng of the T-vector: molar ratio of V H & V L ⁇ / V L ⁇ fragment as 1: 3.
  • the enzyme was eluted with 10 ⁇ L in dH 2 O using a microcon centrifugal filter devices (Millipore) was purified and concentrated.
  • T-vector, 5 ⁇ L of antibody variable region gene, and 25 ⁇ L of electro-competent cell E.
  • cloni 10G, Lucigen were mixed and transferred to 0.1cm electro-cuvette and transformed at 1.8kV.
  • the transformed host was suspended in 1 mL SOC medium and incubated for 1 hour at 37 ° C., and then titrated through 10 ⁇ L sequential dilution (10 ⁇ 2 to 10 ⁇ 6 ), and the remaining cultured transformants were 15 cm plate (LB / ampicillin). /0.5% glucose) to obtain host cells grown by incubating overnight at 37 °C, overnight, divided and stored at -80 °C.
  • V L ⁇ T-vector library (total ⁇ 1.29 ⁇ 10 8 cfu) was obtained through 10 T-vector-V L ⁇ transformations as shown in Table 3, and 8 T-vector-V L ⁇ fragment transformations.
  • V L ⁇ T-vector library (total 1.05 ⁇ 10 8 cfu) was obtained.
  • six T-vector-V H transformations yielded a V H T-vector library (total -3.03 ⁇ 10 8 cfu).
  • PCR was performed using a primer that recognizes a specific site in the plasmid, thereby performing V H and V L ( ⁇ / ⁇ ). ⁇ ) the fragment was inserted correctly. After V H and V L ( ⁇ / ⁇ ) transformation, colonies were tipped and mixed into the PCR mixture.
  • the primer sequences used for colony PCR are as follows.
  • SEQ ID NO: 60 (R-primer (M13-R)): 5'-GTT TTC CCA GTC ACG A-3 '.
  • V H and V L ( ⁇ / ⁇ ) were transformed, plasmids of individual colonies were obtained, and then functionalized by analyzing the cloned VH and V L ( ⁇ / ⁇ ) sequences using M13 F-primers. It was confirmed whether ScFv without expression can be expressed.
  • germ-line sequences (complementarity determining regions, skeletal regions) of antibodies were analyzed using VBASE2 DB (http://www.vbase2.org).
  • V H and V L are considered in the case of building libraries using human immune tissues considering the factors that affect the normal sequence maintenance of variable regions such as similar genes, invalid skeletal genes, and PCR error rate. It is believed that the T-vector sublibrary with the ( ⁇ / ⁇ ) gene was constructed appropriately.
  • V H and V L ( ⁇ / ⁇ ) genes were inserted into the library construction vector (pSIA23), and then transferred through an appropriate E. coli host (eg, TG1, ER2537). It should be expressed on the surface of the M13 bacteriophage in ScFv form. After inserting the V L ( ⁇ ) gene and the V L ( ⁇ ) gene into the pSIA23 vector, two sub-libraries are made. After confirming that each light chain gene is properly inserted into the pSIA23 vector, the V H gene is inserted. Hosts with T-vector-V L ( ⁇ ) and T-vector-V L ( ⁇ ) were grown in 500 mL LB / ampicillin at 37 ° C. overnight, followed by Maxi-prep.
  • the pSIA23 vector, T-vector-V L ( ⁇ ) and T-vector-V L ( ⁇ ) were treated with 5U / ⁇ g of restriction enzymes BglII and NotI, respectively, and cleavage was performed at 37 ° C. overnight. Restriction digestion was repeatedly performed to obtain a large number of V L genes and a pSIA23 vector that was cleaved and inserted into the V L gene in the next step.
  • T4 ligase in the middle of the night culture azepin 16 °C insert the V L genes in pSIA23 vector and the resulting pSIA23-V L using Microcon centrifugal filter devices (Millipore) and concentrated to pSIA23-V L to a final volume of 10 ⁇ L.
  • Example 7 Completed library construction by constructing pSIA23-ScFv (V H -V L ) and inserting into host cell (TG1)
  • pSIA23-V H -V L ⁇ ( ⁇ 6.14 ⁇ 10 9 cfu) and pSIA23-V H -V L ⁇ ( ⁇ 5.64 ⁇ 10 9 cfu) were obtained as shown in Table 5 through 44 transformation of pSIA23-ScFv into TG1. .
  • the final library's diversity, combining the two sub-library, is 1.18 ⁇ 10 10 cfu.
  • the size of a library is one of the most important factors in assessing its quality. The larger the library is, the more various antibodies it has, and the higher the probability of finally identifying an antibody specific for a desired antigen. Additionally, 92.2% (pSIA23-V H -V L ⁇ ) 93.8% (pSIA23-V H -V L ⁇ ) in colony PCR with the pelB primers used previously to confirm that the V H -V L gene was inserted correctly. It was confirmed that the insertion was properly, the results are shown in FIG.
  • the protein may not be properly expressed due to a stop codon, and even if expressed, a protein that cannot function as an antibody may be expressed.
  • the following sequencing is intended to analyze the number of functionally benign antibody clones.
  • the antibody heavy chain D and J gene fragments are analyzed to be absent from the sequence and thus cannot function as antibodies.
  • the antibody cannot perform the function of the antibody because it is not a native sequence of the antibody due to the insertion, deletion, or mutation of the nucleotide sequence in the antibody heavy chain variable region.
  • the nucleotide sequence of the 32, 59 clone heavy chain was excluded because it is not the sequence of the antibody.
  • stop codons were identified in the antibody light chain variable region.
  • Clones 09, 21, 58 do not have an antibody-specific sequence due to the insertion, deletion, mutation, etc. of the nucleotide sequence in the antibody light chain sequence.
  • the sequence of the light chain is not the sequence of the antibody.
  • the antibody heavy chain D and J gene fragments were analyzed to be absent from the sequence, so that the antibody could not function as the antibody, and the light chain was also a clone that could not function as an antibody.
  • the light chain was also a clone that could not function as an antibody.
  • the antibody heavy chain nor the light chain shows the antibody sequence.
  • stop codons were found in both the heavy and light chains of the antibody.
  • VH-VL 37 GYSFTNDW IYPGDSDV ARRTFCGGDCDAFDI NIGSKS SDS QVWDSSSDHYV 5 3 VH-VL ( ⁇ ) 38 GFKFSSYG ISQDGSNK AKTTTYSIQMGFDS SLRSYY GKN NSRDSSGNHLV 3 3 VH-VL ( ⁇ ) 39 GYTFTNYG ISAYNGNT ARDDGPVATIGTWVLFDY SLRSYY GKN NSRDSSGNHLV One 3 VH-VL ( ⁇ ) 40 GASVDSGRNY FSYSGST ARLSPVAGNYYFDY SLRSYY GKN NSRDSSGNHLV 4 3 VH-VL ( ⁇ ) 41 GSTFSNFL INQDGNEQ AKPLLRLVSSSWAGH SLRSYY GKN NSRDSSGNHLV 3 3 VH-VL ( ⁇ ) 42 GFSFSIYG IWCDGSHQ ARRGSSGILGPDTFDL SSNV
  • the functional diversity of the library is determined by the percentage of clones that can actually express the antibody. Clones that do not function or express these normal functions are most likely due to errors in the PCR process during library construction. Due to the nature of library construction, a lot of PCR work was performed, and as these errors accumulated, the proportion of clones capable of functioning was about 69%.
  • amino acid length and distribution of the CDR-H3 region which is an important site for maintaining the diversity of the antibody library, are also about 4 to 25 different lengths as in many libraries, and 98.4% is recommended in the KABAT DB.
  • CDR-H3 plays an important role in antigen recognition, and due to the diversity of amino acid composition and amino acid length by position of the CDR loops, as shown in the above results, it is possible to produce a significant change in the conformational structure in the process of binding antigen to several antigens. It seems to be suitable for recognition.
  • the debris was precipitated by centrifugation and supernatant (peripheral cytoplasmic extract) was taken. Since the pSIA23 vector contains the pelB leader sequence, the expressed ScFv migrates to the periplasm.
  • the nitrocellulose membrane was treated with 1 ⁇ L of the culture solution and the peripheral cytoplasmic extract, and then dried at room temperature for 1 hour. After blocking with 5% skim milk (TBS-0.1% tween 20), anti-HA-HRP was detected. Referring to FIG. 11, it was confirmed that 64 clones out of 96 analyzed HA-Tag were properly detected. Through this, it was confirmed that the antibody fragment is properly expressed.
  • V H -V L ⁇ and V H -V L ⁇ were each added in 1 L of culture medium (SB / ampicillin / 2% glucose) to 37 ° C., Incubated at 220 rpm for about 5 hours.
  • Host cells cultured at OD 600 with an absorbance of 0.5 to 0.8 were centrifuged at 5,000 g for 20 minutes to remove supernatant, and then the precipitated host cells were suspended in SB medium and completely mixed with 0.5 volume of 50% glycerol. Thereafter, 1 mL was dispensed and stored at -80 ° C.
  • V H -V L ⁇ Two sub-libraries amplified before, V H -V L ⁇ , V H -V L ⁇ were incubated in 400 mL culture medium (SB / ampicillin / 2% glucose) until OD 600 became 0.5. The supernatant was removed by centrifugation, suspended in 400 mL of glucose-free culture medium (SB / Ampicillin), and 10 12 pfu (plaque forming unit) of VCSM13 helper phage was added at 37 ° C. Cultured at 80 rpm for 1 hour. The kanamycin antibiotic (an antibiotic gene introduced into the helper phage) was then added at a final concentration of 70 ⁇ g / mL, followed by overnight culture at 30 ° C.
  • SB / ampicillin / 2% glucose glucose-free culture medium
  • 10 12 pfu plaque forming unit
  • phage libraries to be made out of the host cell.
  • the culture supernatant was then centrifuged to recover the phage library by precipitation of phage particles using PEG8000 (polyethylene glycol) solution.
  • PEG8000 polyethylene glycol
  • Each sample was diluted and counted in LB / ampicillin culture medium again after infection with host cells (TG1) to count phage recovered from each sublibrary. Since phage particles expressing Sc12F of 10 12 ⁇ 10 13 pfu level was used for panning.
  • Phage display screening was performed through repeated round panning.
  • the counted sublibrarys were assembled to a level of about 4.0 ⁇ 10 13 pfu (V H ⁇ V L ⁇ : about 2.0 ⁇ 10 13 pfu, V H ⁇ V L ⁇ : about 2.0 ⁇ 10 13 pfu) and then 5 ⁇ g / mL in PBS.
  • Nine antigens diluted at levels (c-Met, HGF, ANG2, DLL4, EGFR, TNF-a, NRP1, VEGF, VEGFR2) were treated with coated immunotubes. Prior to treatment, the immunotubes and phage particles were treated for 1 hour with a blocking solution containing 3% skim milk in PBS to prevent non-specific binding.
  • the phage library was treated with an antigen-coated immunotube for 1 hour, followed by washing the immunotube with PBST (0.1% Tween 20) washing solution, and then adding 1 mL of 100 mM triethylamine to the antigen for 10 minutes. Bound phage particles were recovered and neutralized with 1M Tris-Cl (pH 7.4). In order to confirm the number of recovered phages (output), the recovered solution was diluted and infected with host cells, and counted in the culture medium. The remaining recovered solution was plated in a 15 cm culture medium and cultured, and 5 mL of SB culture medium (50% glycerol) was added to collect and store colonies (-80 ° C).
  • SB culture medium 50% glycerol
  • Phage particle amplification was performed by taking 50 ⁇ L of the previous round phage solution stored for subsequent panning cycles. Phage particles recovered by adding VCSM13 helper phage (10 11 -10 12 pfu) after incubation in host cells were prepared by PEG precipitation, and the next round panning was performed by the same method as the previous round panning. Panning was performed up to 3 to 4 times for the antigen, and the phage display panning results are shown in FIG. 12.
  • the phage particles recovered in the final round were identified as colonies in the culture medium through infection with host cells (TG1). These colonies were randomly taken and cultured after each inoculation in 96-well plates containing 200 ⁇ L SB / ampicillin culture medium (within 37 ° C., within 3 hours). Then, to induce the expression of the ScFv-pIII protein, each well was treated with IPTG at a final concentration of 1 mM and incubated overnight at 30 ° C. and 220 rpm.
  • the culture plate was centrifuged and the supernatant was removed, and then 1XTES solution (20% w / v sucrose, 50 mM Tris, 1 mM EDTA) was maintained at 40 ⁇ L at 4 ° C. to recover periplasm sites of cultured cells in each well. , pH 8.0) to lyse cells by standing at 4 ° C for 30 minutes. Subsequently, 60 ⁇ L of a 0.2 ⁇ TES solution was again treated, and allowed to stand for 30 minutes. Finally, the plate was centrifuged and the supernatant was recovered to produce a small scale ScFv-pIII protein.
  • 1XTES solution 20% w / v sucrose, 50 mM Tris, 1 mM EDTA
  • the C01 clone showing a strong toxic signal was selected from the panning result of the DLL4 antigen. Since DLL4_C01 ScFv was selected through phage display screening, it was confirmed that it showed concentration-dependent binding ability to DLL4 while being expressed in the structure of phage. Phage particles were individually collected from host cells expressing the DLL4_C01 clone and counted. Thereafter, each phage particle was diluted in a DLL4 coated 96 well plate and treated according to its concentration, and the binding ability thereof was confirmed by ELISA analysis using an anti-phage antibody, and the results are shown in FIG. 14.
  • the binding capacity decreases as the number of phage particles decreased, and it was confirmed that the signal was saturated at a specific particle number or more.
  • the ScFv screened on the basis of the binding capacity to DLL4 during the screening process was able to test the binding ability to DLL4 even in the form labeled on the phage structure.
  • the protein expression strain (TOP10F ') was used for expression and purification.
  • the basic structure of the phagemid vector can be seen in FIG. 1, where the host cell (TG1) carrying the screened phagemid inhibits the amber codon (UAG) present between ScFv and the phage pIII protein.
  • an expression strain (TOP10F ′) which is a non-suppressor strain, was used.
  • Phagemid encoding the ScFv was recovered from the host cell and then transduced into the expression strain. Subsequently, the DNA strains were used to confirm the expression strains to which each phagemid was successfully introduced.
  • the expression strains to which each ScFv was introduced were taken in single colonies, inoculated in 3 mL of LB / ampicillin culture medium, and then cultured overnight at 37 ° C and 220 rpm. . After overnight culture, the culture medium was transferred to 400 mL of culture medium (SB / Ampicillin), and further cultured until the OD 600 reached 0.5-0.8, and overnight culture was again carried out at 30 ° C. and 220 rpm by adding IPTG at a final concentration of 1 mM. It became.
  • the cells were suspended using 16 mL of 1X TES solution, an additional 24 mL of 0.2X TES was added to dissolve the expression host, and only the surrounding cytoplasm was recovered by centrifugation.
  • the recovered culture solution was 0.45. It was filtered through a ⁇ m filter.
  • ScFv protein in the filtered lysate was bound with 1 mL of Ni-NTA beads (Qiagen) for 1 hour at 4 ° C for His-tag purification. Then, it was packed in a gravity column (gravity column, Bio-rad), washed with PBS (with 10 mM imidazole), and recovered in ScFv form using PBS (with 200 mM imidazole). Purified ScFv was confirmed by SDS-PAGE and coomassie blue staining, and the results are shown in FIG. 15. Referring to Figure 15, each ScFv was confirmed to have a size of about 28 kDa. Each purified ScFv protein was used for storage after concentration measurement through the Bradford protein measurement method and for later experiments.
  • the binding capacity of the produced ScFv to DLL4 protein was confirmed by concentration-specific ELISA. ScFv was treated for each concentration produced in DLL4 coated at a concentration of 4 ⁇ g / mL in a 96-well plate, and the HF-coupled anti-HA antibody was treated for 1 hour to detect ScFv binding to DLL4, and the results are shown in FIG. 16. It was. As a result, it was confirmed that DLL4_C01 ScFv showed a binding pattern in a concentration-dependent manner, and it was confirmed that the DLL4_C01 ScFv had a significant binding capacity to the DLL4 protein compared to the control group (BSA).
  • BSA control group
  • EGFRvIII is a cancer cell-specific antigen that is a mutation resulting from overexpression and amplification of EGFR in cancer cells, resulting in the deletion of 6-273 amino acids. Most existing EGFR antibody therapeutics, such as Cetuximab and Panitumumab, bind between 310-480 amino acids of EGFR. Generic EGFR antibody therapies bind to both EGFR and EGFRvIII and are unable to specifically target EGFRvIII and are reported to be ineffective in EGFRvIII mutant cancer patients.
  • EGFRvIII antigen is an antigen optimized for the development of antibody-drug conjugates (ADCs) because it is a cancer-specific antigen that is expressed only in cancer cells but not in normal cells.
  • ADCs antibody-drug conjugates
  • Antibodies were identified by cell panning techniques in the libraries prepared through the examples in the manner shown in FIG. 17 using patient derived cells overexpressed with EGFRvIII for the development of antibodies that bind to EGFRvIII. Since purified recombinant proteins (antigens) do not reproduce the three-dimensional structure of proteins, conventional panning methods cannot efficiently identify antibodies. However, since cell panning uses cancer antigens overexpressed in patient cells, antibodies that recognize natural forms can be more efficiently developed. After developing cancer cells from glioblastoma (GBM) cancer patients to develop EGFRvIII specific antibodies using cell panning, the expression level of EGFRvIII was confirmed using RT-PCR and Western blot as shown in FIG.
  • GBM glioblastoma
  • 626T glioblastoma patient cells with the highest expression of EGFRvIII were selected as the cells for final antibody development. It was confirmed that EGFRvIII expression was inhibited using EGFRvIII shRNA, and the proportion of EGFRvIII specific antibodies increased through repeated panning of EGFRvIII specific antibodies after negative selection in patient-derived cells. After finally securing three candidate antibodies in FIG. 19, EGFRvIII specific binding ability was confirmed by ELISA analysis. Surface Plasmon Resonance was performed using Biacore T100 to measure the binding constant. Three scFvs were found to show a binding capacity of several tens of nM. As a result of confirming that three identified candidate antibodies can effectively inhibit cell growth of 626T glioblastoma patient cells, it was confirmed that 1B07N effectively inhibited growth as shown in FIG. 19.
  • ScFv is a human antibody, so it is possible to screen for antibodies which do not exhibit HAMA response as compared to antibodies screened through the prior art, and for treating or diagnosing a disease. To enable the development of antibodies that can be used effectively.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Biochemistry (AREA)
  • Molecular Biology (AREA)
  • Engineering & Computer Science (AREA)
  • Medicinal Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Wood Science & Technology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Biomedical Technology (AREA)
  • Biophysics (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Physics & Mathematics (AREA)
  • Microbiology (AREA)
  • Plant Pathology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Peptides Or Proteins (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

The present invention relates to a ScFv antibody library, a method for preparing the same, and a ScFv antibody screening method using the same and, specifically, to a library presenting a ScFV antibody comprising a heavy chain variable region (VH) and a light chain variable region (V or V) of an immune organ-derived antibody, to a method for preparing the same, and a ScFv antibody screening method using the same.

Description

ScFv 항체 라이브러리, 이의 제조방법 및 이를 이용한 ScFv 항체 스크리닝 방법ScFv antibody library, preparation method thereof, and ScFv antibody screening method using the same
본 발명은 ScFv 항체 라이브러리, 이의 제조방법 및 이를 이용한 ScFv 항체 스크리닝 방법에 관한 것으로, 구체적으로 면역 기관 유래 항체의 중쇄 가변 영역 (VH) 및 경쇄 가변영역 (V 또는 V)을 포함하는 ScFv 항체를 파지 표면에 제시하는 라이브러리, 이의 제조방법 및 이를 이용한 ScFv 항체 스크리닝 방법에 관한 것이다.The present invention relates to a ScFv antibody library, a method for preparing the same, and a method for screening ScFv antibodies using the same, specifically, a ScFv comprising a heavy chain variable region (V H ) and a light chain variable region (V or V ) of an antibody derived from an immune organ. The present invention relates to a library for presenting an antibody on a phage surface, a method for preparing the same, and a method for screening ScFv antibodies using the same.
항체의약품은 높은 치료 효과 및 표적 치료성 등으로 인해 바이오 의약품 분야에서도 가장 급속도로 성장 중이다. 항체의약품의 세계 시장 규모는 연평균 10-15%의 성장을 지속하고 있는 가운데, 2010년 447억 달러의 시장을 형성한 것으로 알려져 있다. 항체의약품의 주요 표적이 되는 질환은 대부분이 난치성 암(49%) 및 면역질환(35%)과 같이 특정 질환 적응증에 집중되어 있어, 유사 적응증 제품간의 판매경쟁이 치열한 상황이다. 그럼에도 불구하고, 질환들 내 세분화되는 치료 표적들이 존재하기 때문에 향후에도 항암용 항체치료제 개발 분야는 성장세를 지속할 것으로 판단된다. Antibody drugs are growing rapidly in the biopharmaceutical field due to their high therapeutic effect and target therapeutic properties. The global market for antibody drugs continues to grow at an average annual rate of 10-15%, forming a market of $ 44.7 billion in 2010. Most of the diseases that are the main targets of antibody drugs are concentrated on specific disease indications such as intractable cancer (49%) and immune diseases (35%), and competition between similar indication products is intense. Nevertheless, the development of anti-cancer antibody therapeutics will continue to grow in the future as there are therapeutic targets segmented within the diseases.
아울러, 최근에는 다양한 분석 기술의 발달로 인해 개인 맞춤형 질환치료(personalized medicine) 분야가 확대되고 있는 실정이다. 이러한 맞춤형 질환치료 전략은 기존의 치료제(항체, 합성의약품)를 조합하거나, 신규 표적에 대한 항체치료제를 적용하는 것을 최적인 것으로 평가하고 있기 때문에, 항체 개발 R&D 분야 역시 이에 따른 성장세를 보일 것으로 전망된다. In addition, in recent years, the field of personalized medicine is expanding due to the development of various analytical technologies. This customized disease treatment strategy is expected to be optimal for combining existing therapeutics (antibodies, synthetic drugs) or applying antibody therapeutics to new targets. Therefore, the R & D field of antibody development is expected to grow accordingly. .
현재 항체 후보물질의 동정 및 확보에 이용되는 기술은 하이브리도마 세포주를 이용한 키메릭(chimeric) 또는 인간화(Humanized) 항체의 개발, 형질전환 마우스(Transgenic mouse)를 이용하는 방법 및 항체 디스플레이 기술을 이용하는 방법으로 크게 구분할 수 있다. Currently, techniques used for identifying and securing antibody candidates include the development of chimeric or humanized antibodies using hybridoma cell lines, methods using transgenic mice, and methods using antibody display technology. It can be divided into
초기의 항체의약품은 하이브리도마 세포주를 이용한 마우스 단일클론 항체 개발 기술과 함께, 키메릭(인간/마우스) 또는 인간화 단일 클론 항체 형태로 항체공학을 통해 개선하여 개발되었다. 그러나, HAMA(Human-anti-mouse antibody) 반응을 해결하기 위해 CDR-Grafting 기술이 개발되고, 이를 통해 면역원성이 감소되었지만, 개선된 항체의 항원 결합력의 감소에 대한 문제점이 나타났다. CDR-Walking 기술을 통해 인간화 과정에서 저하된 항체의 항원 결합력은 개선되었지만, 면역원성을 감소시키거나 제거하지 못하는 문제가 나타났다. Early antibody drugs were developed through antibody engineering in the form of chimeric (human / mouse) or humanized monoclonal antibodies, along with mouse monoclonal antibody development using hybridoma cell lines. However, although CDR-Grafting technology has been developed to solve the human-anti-mouse antibody (HAMA) reaction, and thus immunogenicity has been reduced, there has been a problem for the reduction of antigen binding capacity of the improved antibody. CDR-Walking technology has improved the antigen binding capacity of antibodies degraded during humanization, but has shown a problem of reducing or eliminating immunogenicity.
이러한 약효 감소 및 기술적 어려움으로 인해, 인간항체(Human antibody)를 개발하기 위한 연구가 활발히 진행이 되었다. 인간항체는 100% 인간유래의 항체 서열을 가지고 있어 면역원성에 관한 문제를 완전하게 해결할 수 있어, 이상적인 치료용 항체의 형태이다. Due to the reduced efficacy and technical difficulties, researches for the development of human antibodies have been actively conducted. Human antibodies have a 100% human-derived antibody sequence, which completely solves the problem of immunogenicity and is an ideal therapeutic antibody.
인간항체를 제작하기 위한 기술 분야는 크게 형질전환 마우스 및 항체 디스플레이(파지 디스플레이, 이스트 디스플레이, 리보솜 디스플레이 등)를 예시할 수 있다. 최근 많이 시도되고 있는 형질전환 마우스를 이용한 항체의 개발은 인간항체 유전자를 이식한 형질전환 마우스에 기존의 하이브리도마 기술을 적용시켜 인간 단일클론항체를 제조하는 기술이다. 이 기술은 생체 내 친화도 성숙(in-vivo maturation)이 가능하기 때문에 친화력이 높은 항체를 제조할 수 있으며, 인간항체를 효과적으로 만들 수 있다는 큰 장점이 있으나, 형질전환 마우스의 사용 조건이 비싸고, 제작 노하우(knowhow) 등 기술적 진입이 어려운 측면이 있다. The technical field for producing human antibodies can largely exemplify transgenic mice and antibody displays (phage display, yeast display, ribosomal display, etc.). The development of antibodies using transgenic mice, which have been tried a lot recently, is a technique for producing human monoclonal antibodies by applying the existing hybridoma technology to transgenic mice transplanted with human antibody genes. This technology can produce in vivo affinity maturation, which can produce antibodies with high affinity, and can make human antibodies effectively. However, the conditions for use of transgenic mice are expensive and manufactured. Technological entry is difficult such as knowhow.
파지 디스플레이(Phage display), 이스트 디스플레이(Yeast display) 및 리보솜 디스플레이(Ribosomal display) 등의 항체 절편 디스플레이 기술은 인간화 항체의 개발 연구와 맞물려, 항체 후보물질을 발굴하기 위해 현재까지 다양한 전략으로 접근되는 방법이다. 1990년대 후반부터 인간항체 파지 라이브러리(Human Antibody Phage Library) 기술이 개발되어 지금까지 다양한 항체 개발 연구에 이용되고 있다. Antibody fragment display technologies, such as phage display, yeast display, and ribosomal display, have been combined with research into the development of humanized antibodies, and have been approached with various strategies to date to identify antibody candidates. to be. Human antibody phage library (Human Antibody Phage Library) technology has been developed since the late 1990s, and has been used in various antibody development studies.
이 중, 파지 디스플레이는 박테리오파지의 표면에 항체단편을 발현시켜 항체를 스크리닝하는 기술이며, 기존의 항체개발 기술(하이브리도마를 이용한 키메릭/인간화 항체 개발, 유전자 이식 트랜스제닉 마우스를 이용한 항체 개발)에 비해 단시간에 항원 특이적 항체를 동정할 수 있다는 장점이 있다. 높은 다양성의 라이브러리가 확보되어야 효과적인 항체를 동정할 수 있다는 단점이 있지만, 최근의 유전자 증폭 기술 및 클로닝 기술의 발달로 인해 라이브러리 확보는 상당 부분 해결되고 있다. Among these, phage display is a technique for screening antibodies by expressing antibody fragments on the surface of bacteriophage, and existing antibody development techniques (chimeric / humanized antibody development using hybridomas, antibody development using transgenic transgenic mice). Compared to the above, there is an advantage in that the antigen-specific antibody can be identified in a short time. Although there is a disadvantage in that an effective antibody can be identified only when a high diversity of libraries is secured, securing a library is largely solved due to the recent development of gene amplification and cloning techniques.
인간 유전자 기반의 자연적 라이브러리에 비해, 항체의 상보성결정부위(CDR)에 무작위 합성 서열을 넣어 다양성을 창조한 것을 합성 항체 라이브러리(Synthetic antibody library)라고 한다. 그러나, 합성 항체 라이브러리는 돌연변이나 프레임시프트(frameshift) 등의 영향으로 정상적으로 기능 가능한 항체 단편의 비율이 자연적 인간 라이브러리에 비해 낮다. 최근에는 신규 표적항원을 동정하기 위한 항체 라이브러리 이용 전략이 다양해지고 있으며, 대표적으로 종양 유래 1차세포(Tumor-derived primary cells)를 이용한 셀 패닝(Cell panning)을 통해 신규 항원 특이적 항체를 동정하였다 (Zhu X. et al., Mol. Cancer Res. 2010). Compared to the natural library based on human genes, the synthetic antibody library is created by adding random synthetic sequences to the complementarity determining regions (CDRs) of antibodies. However, synthetic antibody libraries have a lower percentage of antibody fragments that can function normally due to mutations, frameshifts, and the like, compared to natural human libraries. In recent years, strategies for using antibody libraries to identify new target antigens have been diversified, and new antigen-specific antibodies have been identified through cell panning using Tumor-derived primary cells. (Zhu X. et al., Mol. Cancer Res. 2010).
이와 같이, 다양한 접근 전략이 가능하기 때문에 지속적인 항체 후보물질이 확보될 수 있고, 클로닝을 통해 항체를 생산할 수 있기 때문에 파지 디스플레이는 효율적인 접근 전략이라 할 수 있다. 이러한 파지 디스플레이 기술을 응용하여 동정된 다양한 종류의 암을 표적으로 하는 후보 항체의약품들이 임상에 진입하고 있다. 파지 디스플레이 기술의 활용을 위해, 목적하는 항체 동정을 위해서는 항체 가변영역 유전자들의 라이브러리화가 필요하며, 다양한 라이브러리 구축이 필수적이라 할 것이다.As such, since a variety of approaches are possible, phage display is an efficient approach because it can secure candidate antibodies and produce antibodies through cloning. Candidate antibody drugs targeting various types of cancers identified by applying such phage display technology are entering clinical trials. In order to utilize phage display technology, the library of antibody variable region genes is required for the identification of a desired antibody, and various library constructions are essential.
이러한 배경하에서, 본 출원의 발명자들은 면역 기관 유래 항체의 중쇄 가변 영역 (VH) 및 경쇄 가변영역 (V 또는 V)을 포함하는 ScFv 항체를 파지 표면에 제시하는 라이브러리 및 이의 제조방법을 통해, HAMA 반응을 유발하지 않는 인간항체를 편리하면서도 효율적으로 스크리닝할 수 있음을 확인함으로써, 본 발명을 완성하였다.Under this background, the inventors of the present application provide a scFv antibody comprising a heavy chain variable region (V H ) and a light chain variable region (V or V ) of an antibody derived from an immune organ through a library and a method for preparing the same. By confirming that human antibodies that do not induce a HAMA response can be screened conveniently and efficiently, the present invention has been completed.
발명의 요약Summary of the Invention
본 발명의 목적은 질병의 치료 또는 진단에 효과적으로 사용될 수 있는 인간항체를 스크리닝하기 위한 ScFv 라이브러리, 이의 제조방법 및 이를 이용하여 항체를 스크리닝하는 방법을 제공하는 것이다.It is an object of the present invention to provide a ScFv library for screening human antibodies that can be effectively used for the treatment or diagnosis of a disease, a method for preparing the same, and a method for screening antibodies using the same.
본 발명은 ScFv 항체를 표면에 제시하는 파지를 포함하는 라이브러리로, The present invention is a library comprising a phage to present a ScFv antibody on the surface,
상기 ScFv 항체는 면역 기관 유래 항체의 중쇄 가변 영역 (VH) 및 경쇄 가변영역 (V 또는 V)을 포함하고,The ScFv antibody comprises a heavy chain variable region (V H ) and a light chain variable region (V or V ) of an antibody derived from an immune organ,
상기 ScFv 항체는 면역 기관 유래 세포에서 추출된 핵산을 주형으로 면역 기관 유래 항체의 중쇄 가변 영역 (VH) 및 경쇄 가변영역 (V 또는 V) 특이적 프라이머를 이용하여 합성된 핵산으로부터 코딩된 것임을 특징으로 하는 라이브러리에 관한 것이다.The ScFv antibody was encoded from a nucleic acid synthesized using a heavy chain variable region (V H ) and a light chain variable region (V or V ) specific primer of an antibody derived from an immune organ, using a nucleic acid extracted from an immune organ-derived cell as a template. It is about a library characterized in that.
상기 ScFv 항체는 핵산이 클로닝된 하기 구조의 벡터가 도입된 형질전환체에서 발현되어, 형질전환체에 포함된 파지 표면에 제시되는 것일 수 있다:The ScFv antibody may be expressed in a transformant into which a vector having the following structure in which a nucleic acid has been cloned is introduced, and present on a phage surface included in the transformant:
A-X-B-링커-C-Y-D-EA-X-B-Linker-C-Y-D-E
상기 A~D는 SfiI, NheI, BglII 및 NotI으로 이루어진 군에서 선택되는 어느 하나의 제한효소 인식 부위이고,A to D are any one restriction enzyme recognition site selected from the group consisting of SfiI, NheI, BglII and NotI,
상기 E는 His tag 또는 HA(Hemagglutinin) tag 삽입 부위이며,E is a His tag or HA (Hemagglutinin) tag insertion site,
상기 X는 중쇄 가변영역(VH)을 코딩하는 유전자 삽입 부위이며, Y는 경쇄 가변영역 (V또는 V)을 코딩하는 유전자 삽입 부위이다.X is a gene insertion region encoding a heavy chain variable region (V H ), Y is a gene insertion region encoding a light chain variable region (V or V ).
본 발명은 또한, 면역 기관 유래 세포에서 핵산을 추출하는 단계; 상기 추출된 핵산을 주형으로 하고, 면역 기관 유래 항체의 중쇄 가변 영역 (VH) 및 경쇄 가변영역 (V 또는 V) 특이적 프라이머를 이용하여 중쇄 가변 영역 및 경쇄 가변 영역을 코딩하는 핵산을 증폭하는 단계; 상기 중쇄 가변 영역 및 경쇄 가변 영역을 코딩하는 핵산을 벡터에 클로닝한 다음 형질전환체에 도입하는 단계; 및 상기 형질전환체에서 ScFv 항체를 발현하여, 형질전환체에 포함된 파지 표면에 발현된 ScFv 항체를 제시하는 단계를 포함하는 라이브러리의 제조방법에 관한 것이다.The invention also comprises the steps of extracting a nucleic acid from an immune organ-derived cell; The nucleic acid encoding the heavy chain variable region and the light chain variable region using the extracted nucleic acid as a template and using the heavy chain variable region (V H ) and the light chain variable region (V or V ) specific primers of the antibody derived from an immune organ. Amplifying; Cloning a nucleic acid encoding the heavy and light chain variable regions into a vector and then introducing the transformant into a transformant; And expressing the ScFv antibody in the transformant to present the ScFv antibody expressed on the phage surface included in the transformant.
본 발명은 더욱이, 상기 라이브러리를 항원과 반응시켜 항원 특이적 ScFv 항체를 스크리닝하는 단계를 포함하는 ScFv 항체 스크리닝 방법에 관한 것이다.The present invention further relates to a ScFv antibody screening method comprising reacting the library with an antigen to screen for antigen specific ScFv antibodies.
도 1은 본 발명에 따라 구축된 pSIA23 벡터의 지도이다.1 is a map of a pSIA23 vector constructed in accordance with the present invention.
도 2는 본 발명에 따른 pSIA23 벡터를 구축하는 과정을 도시한 모식도이다.2 is a schematic diagram illustrating a process of constructing a pSIA23 vector according to the present invention.
도 3은 프라이머 혼합물을 이용하여 골수/혈액/편도 샘플로부터 수득된 cDNA의 VH 및 V/V 유전자 증폭 양상을 확인한 결과를 나타낸 사진이다.Figure 3 is a photograph showing the results of confirming the V H and V / V gene amplification of the cDNA obtained from the bone marrow / blood / tonsil samples using the primer mixture.
도 4는 T-벡터에 삽입된 VH 및 V/V 유전자의 콜로니 PCR 결과를 나타낸 사진이다.Figure 4 is a photograph showing the colony PCR results of the V H and V / V gene inserted in the T-vector.
도 5는 콜로니 PCR을 통해 V/V의 삽입 효율을 확인한 결과를 나타낸 사진이다.5 is a photograph showing the results of confirming the insertion efficiency of V / V through colony PCR.
도 6은 인간항체 라이브러리의 구축 과정을 나타내는 모식도이다.6 is a schematic diagram showing the construction of a human antibody library.
도 7 은 콜로니 PCR을 통해 VH의 삽입을 확인한 결과를 나타낸 사진이다.7 is a photograph showing the results of confirming the insertion of V H through colony PCR.
도 8은 아과(subfamily)를 도표화한 그래프이다.8 is a graph that plots subfamily.
도 9는 KABAT DB를 이용하여, 서열 분석된 항체단편(scFv) CDR-H3의 길이 분포 확인한 결과를 나타낸 그래프이다.9 is a graph showing the results of confirming the length distribution of the sequenced antibody fragment (scFv) CDR-H3 using KABAT DB.
도 10은 KABAT 위치별 다양한 아미노산의 분포 확인한 결과를 나타낸 그래프이다.10 is a graph showing the results of confirming the distribution of various amino acids for each KABAT position.
도 11은 Dot-blot 실험을 통해 항체단편(scFv)의 발현 유무 확인한 결과를 나타낸 사진이다.Figure 11 is a photograph showing the results confirmed whether the expression of the antibody fragment (scFv) through a dot-blot experiment.
도 12는 각 항원에 대한 라이브러리 패닝 결과를 나타낸 표이다.12 is a table showing the library panning results for each antigen.
도 13은 각 항원 특이적 항체단편(scFv)의 스크리닝 결과를 나타낸 것이다.Figure 13 shows the results of the screening of each antigen-specific antibody fragment (scFv).
도 14는 DLL4_C01 클론의 파지 회수 후, ELISA를 통한 결합 양상을 확인한 결과를 나타낸 것이다.Figure 14 shows the result of confirming the binding pattern through ELISA after phage recovery of DLL4_C01 clone.
도 15는 항체단편 발현 세포주(TOP10F')로 형질전환 후, 순수한 항체단편의 발현 및 정제를 확인한 결과를 나타낸 것이다.15 shows the results of confirming the expression and purification of pure antibody fragments after transformation with the antibody fragment expression cell line (TOP10F ′).
도 16은 DLL4에 대한 항체 단편의 결합양상을 확인한 결과를 나타낸 것이다.Figure 16 shows the results confirming the binding pattern of the antibody fragment to DLL4.
도 17은 교모세포종(GBM) 환자 세포인 626T를 이용하여 EGFRvIII 특이적 항체를 동정하는 cell panning 모식도이다.Fig. 17 is a schematic diagram of cell panning identifying EGFRvIII specific antibodies using 626T, glioblastoma (GBM) patient cell.
도 18은 626T 환자 세포에서 EGFRvIII 돌연변이를 확인하고 cell panning을 통해 EGFRvIII 특이적 항체단편들이 농축됨을 나타낸 것이다.FIG. 18 identifies EGFRvIII mutations in 626T patient cells and shows that EGFRvIII specific antibody fragments are enriched through cell panning.
도 19는 본 항체라이브러리에서 동정된 3종의 EGFRvIII 항체의 항원 특이적 결합을 확인하고, 표면플라스몬공명법(Surface Plasmon Resonance)을 통해 결합상수 (SPR analysis)를 측정하고, 세포성장 억제능을 나타낸 것이다.19 confirms antigen-specific binding of three EGFRvIII antibodies identified in the present antibody library, measures binding constants (SPR analysis) through surface plasmon resonance, and shows cell growth inhibition. will be.
발명의 상세한 설명 및 구체적인 구현예Detailed Description of the Invention and Specific Embodiments
일 관점에서, 본 발명은 ScFv 항체를 표면에 제시하는 파지를 포함하는 라이브러리로, 상기 ScFv 항체는 면역 기관 유래 항체의 중쇄 가변 영역 (VH) 및 경쇄 가변영역 (V 또는 V)을 포함하고, 면역 기관 유래 세포에서 추출된 핵산을 주형으로 면역 기관 유래 항체의 중쇄 가변 영역 (VH) 및 경쇄 가변영역 (V 또는 V) 특이적 프라이머를 이용하여 합성된 핵산으로부터 코딩된 것임을 특징으로 하는 라이브러리에 관한 것이다.In one aspect, the present invention is a library comprising a phage to present a ScFv antibody on the surface, the ScFv antibody comprises a heavy chain variable region (V H ) and light chain variable region (V or V ) of the antibody from the immune organs And a nucleic acid extracted from an immune organ-derived cell as a template and encoded from a nucleic acid synthesized using a heavy chain variable region (V H ) and a light chain variable region (V or V ) specific primers of an immune organ-derived antibody. It is about a library.
본 발명에서 사용되는 용어 "항체"는 IgA, IgE, IgM, IgD, IgY 및 IgG로 이루어진 군으로부터 선택되는 면역글로불린으로, 목표 항원에 특이적으로 결합할 수 있다. 경쇄(light chain)와 중쇄(heavy chain) 각각 2개씩 모여 이루어지며, 각각의 사슬은 아미노산 서열이 가변적인 가변영역(variable domain)과 일정한 서열을 가지는 고정영역(constant domain)으로 이루어져 있다. 가변영역의 3차원구조 말단에 항원이 결합하는 부위가 위치하며, 이 부위는 경쇄와 중쇄에 각각 3개씩 존재하는 상보성결정부위(complementarity determining region)들이 모여서 형성된다. 상보성결정부위는 가변영역 중에서도 아미노산 서열의 가변성이 특히 높은 부분이며, 이러한 높은 가변성에 의해 다양한 항원에 대해 특이적 항체가 찾아질 수 있다. As used herein, the term "antibody" is an immunoglobulin selected from the group consisting of IgA, IgE, IgM, IgD, IgY, and IgG, and can specifically bind to a target antigen. It consists of two light chains and a heavy chain, each of which consists of a variable domain in which the amino acid sequence is variable and a constant domain having a constant sequence. The antigen binding site is located at the end of the three-dimensional structure of the variable region, which is formed by the collection of complementarity determining regions, each of which is present in the light and heavy chains. Complementarity determining regions are particularly highly variable parts of the amino acid sequence among the variable region, the antibody specific for a variety of antigens can be found by this high variability.
"ScFv (single-chain Fv, 단일사슬단편항체 또는 항체 단편)"는 경쇄 및 중쇄의 가변영역을 연결한 항체이다. 경우에 따라서, 15개 내외의 아미노산이 연결된 펩타이드 사슬로 이루어진 링커(linker, 연결부위)를 포함할 수 있으며, 이 때, ScFv는 경쇄 가변영역-연결부위-중쇄 가변영역, 또는 중쇄 가변영역- 연결부위-경쇄 가변영역의 구조를 가질 수 있으며, 원 항체와 동일 혹은 유사한 항원특이성을 가진다. "ScFv (single-chain Fv, single chain fragment antibody or antibody fragment)" is an antibody connecting the variable region of the light chain and heavy chain. In some cases, it may include a linker consisting of a peptide chain of about 15 amino acids linked, wherein the ScFv is a light chain variable region-linked region-heavy chain variable region, or heavy chain variable region-linked It may have a structure of a site-light chain variable region and has the same or similar antigenic specificity as the original antibody.
"항체(또는 ScFv) 라이브러리"는 서로 다른 서열을 가지는 다양한 항체 유전자들의 집합이다. 항체 라이브러리로부터 임의의 항원에 대해 특이적 항체를 분리하기 위해서는 매우 높은 다양성이 요구되며, 서로 다른 항체 클론들로 이루어진 라이브러리가 구축되어 사용된다. 이러한 항체라이브러리를 이루는 항체 유전자는 예를 들어, 파지미드(phagemid) 벡터에 클로닝되어 형질전환체(대장균)에 형질전환될 수 있다.An "antibody (or ScFv) library" is a collection of various antibody genes with different sequences. Very high diversity is required to isolate antibodies specific for any antigen from an antibody library, and libraries of different antibody clones are constructed and used. The antibody gene constituting such an antibody library can be cloned into a phagemid vector, for example, and transformed into a transformant (E. coli).
상기 “핵산”은 유전자 또는 뉴클레오티드와 혼용될 수 있으며, 예를 들어 천연/합성 DNA, 게놈 DNA, 천연/합성 RNA, cDNA 및 cRNA로 이루어지는 군으로부터 선택될 수 있으나, 이에 제한되는 것은 아니다.The “nucleic acid” may be used interchangeably with genes or nucleotides, for example, but may be selected from the group consisting of natural / synthetic DNA, genomic DNA, natural / synthetic RNA, cDNA, and cRNA, but is not limited thereto.
"파지미드" 벡터는 파지 디스플레이에 사용되고, 파지복제시작점(phage origin of replication)을 가지는 플라스미드 DNA이며, 통상적으로 항생제내성유전자를 선택 마커(selection marker)로 가지고 있다. 파지 디스플레이에 사용되는 파지미드 벡터의 경우 M13 파지의 gIII 유전자 또는 그 일부가 포함되어 있으며, ScFv 유전자는 gIII 유전자의 5' 말단에 라이게이션(ligation)되어 형질전환체를 통해 발현된다.A "phagemid" vector is used for phage display and is a plasmid DNA having a phage origin of replication, and typically has an antibiotic resistant gene as a selection marker. The phagemid vector used for phage display includes the gIII gene of M13 phage or a part thereof, and the ScFv gene is ligated at the 5 'end of the gIII gene and expressed through a transformant.
"헬퍼 파지(helper phage)"는 파지미드가 파지 입자로 조립되도록 필요한 유전정보를 제공하는 파지이다. 파지미드에는 파지 유전자 중 gIII 혹은 그 일부만이 존재하므로 파지미드로 형질전환된 숙주세포(형질전환체)를 헬퍼 파지로 감염시켜 나머지 파지 유전자를 공급하게 된다. M13K07 혹은 VCSM13 등의 종류가 있으며 대부분 카나마이신(kanamycin) 등 항생제 내성 유전자를 포함하여 헬퍼 파지에 감염된 형질전환체를 선택할 수 있도록 하고 있다. 또한 조립신호(packaging signal)에 결함이 있으므로 헬퍼 파지 유전자보다 파지미드 유전자가 선별적으로 파지입자 속으로 조립된다.A "helper phage" is a phage that provides the genetic information needed for phagemids to be assembled into phage particles. Since phagemid contains only gIII or a part of phage gene, the host cell (transformer) transformed with phagemid is infected with a helper phage to supply the remaining phage gene. M13K07 or VCSM13 are available and most include antibiotic resistance genes such as kanamycin, which allows the selection of transformants infected with helper phage. In addition, since there is a defect in the packaging signal, the phagemid gene is selectively assembled into the phage particle rather than the helper phage gene.
"신호서열"은 유전자의 5' 말단부분에 위치하여, 유전자로부터 코딩된 단백질이 외부로 분비될 때 필요한 신호로 기능하는 염기서열 혹은 그에 상응하는 아미노산 서열이다.A "signal sequence" is a nucleotide sequence or the corresponding amino acid sequence which is located at the 5 'end of a gene and functions as a signal required when a protein encoded from the gene is secreted to the outside.
일 실시예에서, 상기 ScFv 항체는 핵산이 클로닝된 하기 구조의 벡터가 도입된 형질전환체에서 발현되어, 형질전환체에 포함된 파지 표면에 제시되는 것일 수 있다.In one embodiment, the ScFv antibody may be expressed in a transformant into which a vector having the following structure in which a nucleic acid is cloned is introduced, and present on a phage surface included in the transformant.
A-X-B-링커-C-Y-D-EA-X-B-Linker-C-Y-D-E
상기 A~D는 SfiⅠ, NheⅠ, BglII 및 NotⅠ으로 이루어진 군에서 선택되는 어느 하나의 제한효소 인식 부위이고,A to D are any one restriction enzyme recognition site selected from the group consisting of Sfi I, Nhe I, BglII and Not I,
상기 E는 His tag 또는 HA(Hemagglutinin) tag 삽입 부위이며,E is a His tag or HA (Hemagglutinin) tag insertion site,
상기 X는 중쇄 가변영역(VH)을 코딩하는 유전자 삽입 부위이며, Y는 경쇄 가변영역 (V 또는 V)을 코딩하는 유전자 삽입 부위이다.X is a gene insertion region encoding a heavy chain variable region (V H ), Y is a gene insertion region encoding a light chain variable region (V or V ).
본 발명에 따른 A-X-B-링커-C-Y-D-E 구조 중 A~D의 제한효소 인식 부위에 대한 유전자 서열은 X 부위에 삽입될 VH를 코딩하는 유전자 및 Y 부위에 삽입될 V 또는 V를 코딩하는 유전자의 서열을 고려하여, 각 유전자를 절단하지 않는 범위 내에서 선택되어야 한다. In the AXB-linker-CYDE structure according to the present invention, the gene sequence for the restriction enzyme recognition site of A to D is a gene encoding V H to be inserted into the X site and a gene encoding V or V to be inserted into the Y site. In consideration of the sequence of, each gene should be selected within a range that does not cleave.
본 발명에 따른 구조를 포함하는 벡터는 예를 들어, pSIA23 벡터일 수 있으며, 이의 개열지도는 도 1에 도시된 바와 같다. 도 1에 도시된 pSIA23 벡터의 구조를 참조하면, 구조 중 A에서 E 방향 즉, 5'에서 3' 방향으로 SfiⅠ- NheⅠ- BglII- NotⅠ의 제한효소의 인식부위를 포함할 수 있다. 도 1을 참조하면, 상기 A는 SfiⅠ, B는 NheⅠ, C는 BglII 및 D는 NotⅠ 제한효소의 인식 부위일 수 있다. The vector comprising the structure according to the present invention may be, for example, a pSIA23 vector, the cleavage map of which is as shown in FIG. 1. Referring to the structure of the pSIA23 vector shown in FIG. 1, the structure may include a recognition site of a restriction enzyme of SfiI-NheI-BglII-NotI in the A to E direction, that is, the 5 'to 3' direction. 1, A may be SfiI, B is NheI, C is BglII, and D may be a recognition site of NotI restriction enzyme.
상기 링커는 앞서 설명한 ScFv에서 중쇄 가변영역 및 경쇄 가변영역을 연결하는 연결부위로, 주로 글리신(glycine)과 세린(serine)으로 이루어진 친수성의 유연한 펩티드 사슬로서 "(Gly-Gly-Gly-Gly-Ser)3"의 15개의 아미노산 서열 또는 이와 유사한 서열을 코딩하는 유전자가 사용될 수 있다.The linker is a linking region connecting the heavy and light chain variable regions in the ScFv described above, and is a hydrophilic flexible peptide chain mainly composed of glycine and serine ("Gly-Gly-Gly-Gly-Ser"). Genes encoding 15 amino acid sequences of 3 "or similar sequences can be used.
본 발명에 따른 구조를 포함하는 벡터를 제조하는 과정은 도 2에 도시되어 있다. 도 2를 참조하면, pCANTAB 5E 파지미드 벡터를 기반으로 중쇄 가변영역 (VH) 및 경쇄 가변영역 (V또는 V) 삽입을 위해 제한효소 인식 부위를 구축하고, 주변세포질로의 발현 유도를 위해 신호서열의 하나로 pelB 서열을 추가할 수 있다. 또한, pCANTAB 5E 벡터가 가지는 E-tag보다 광범위하게 쓰이는 His6-tag 및 HA-tag으로 표지 tag를 교체할 수 있다. 이후, 제한효소 인지부위 최적화(optimization)를 통해 X 및 Y를 절단할 수 있는 제한효소는 제외한 제한효소 인지부위를 포함하는 라이브러리 벡터 pSIA23을 제조할 수 있다.The process of producing a vector comprising the structure according to the invention is shown in FIG. 2. Referring to Figure 2, based on the pCANTAB 5E phagemid vector construct a restriction enzyme recognition site for insertion of the heavy chain variable region (V H ) and light chain variable region (V or V ), and inducing expression into the surrounding cytoplasm The pelB sequence can be added as one of the signal sequences. In addition, the label tag can be replaced with His6-tag and HA-tag which are used more widely than the E-tag of the pCANTAB 5E vector. Subsequently, a library vector pSIA23 including restriction enzyme recognition sites excluding restriction enzymes capable of cleaving X and Y through restriction enzyme recognition site optimization may be prepared.
상기 벡터가 도입된 형질전환체에서 발현된 항체는 형광 마커 등을 통해 태깅된 항원을 통해 표지화 또는 ELISA 등을 통해 확인할 수 있다.Antibodies expressed in the transformants into which the vector is introduced can be identified through labeling or ELISA through antigens tagged with fluorescent markers.
원하는 특성을 보유하는 항체를 발현하는 형질전환체가 동정되면, 항체들을 암호화하는 핵산을 분리하고, 이 핵산이 원하는 생물학적 특성을 보유하는 항체를 암호화하는지 여부를 확인하기 위해 다시 테스트할 수도 있다. Once a transformant is expressed that expresses an antibody having the desired properties, the nucleic acid encoding the antibodies can be isolated and tested again to see if the nucleic acid encodes an antibody with the desired biological properties.
하나의 실시예에서, 본 발명에 따른 ScFv는 미감작 인간항체일 수 있다. 상기 ScFv는 면역 기관 예를 들어, 골수, 혈액 또는 편도에서 유래한 미감작 인간항체일 수 있다. 상기 ScFv의 중쇄 가변영역 (VH) 및 경쇄 가변영역 (V또는 V) 유전자는 인간의 면역 기관에서 분리된 세포에서 RNA를 추출하여 수득할 수 있다. 특히, 본 출원의 발명자들은 다양한 B세포 레퍼토리를 가지는 편도 조직을 사용하여 ScFv 라이브러리 구축을 위한 RNA (cDNA)를 확보하였다 (실시예 2).In one embodiment, the ScFv according to the present invention may be an unsensitized human antibody. The ScFv may be an unsensitized human antibody derived from an immune organ such as bone marrow, blood or tonsils. The heavy chain variable region (V H ) and light chain variable region (V or V ) genes of the ScFv may be obtained by extracting RNA from cells isolated from human immune organs. In particular, the inventors of the present application secured RNA (cDNA) for ScFv library construction using tonsil tissue with various B cell repertoires (Example 2).
예를 들어, 인간의 면역 기관에서 분리된 단핵세포로부터 RNA를 추출하여 cDNA를 합성한 다음, 표 1 (서열번호 7 내지 58)의 프라이머 혼합물, 예를 들어 VH 유전자 증폭을 위한 서열번호 7~24로 표시되는 서열로 구성된 군에서 선택되는 하나 이상의 프라이머 및 VL 유전자 증폭을 위한 서열번호 25~58로 표시되는 서열로 구성된 군에서 선택되는 하나 이상의 프라이머를 포함하는 혼합물로 cDNA를 증폭하여 VH 및 VL를 코딩하는 유전자를 수득할 수 있다. 중쇄 가변영역 (VH) 및 경쇄 가변영역 (V 또는 V)이 100% 인간 유래이기 때문에, 본 발명에 따른 ScFv는 기존의 기술(예. 하이브리도마 등)에서 나타나는 HAMA 반응이 나타나지 않는다.For example, the sequence number for the primer mixture, for example, V H gene amplification of the extracted synthesizing a cDNA of the RNA, then Table 1 (SEQ ID NO: 7 to 58) from the mononuclear cells isolated from the human immune system 7 and Amplifying a cDNA with a mixture comprising at least one primer selected from the group consisting of the sequences represented by 24 and at least one primer selected from the group consisting of the sequences represented by SEQ ID NOs: 25-58 for amplification of the V L gene, V H And genes encoding V L can be obtained. Since the heavy chain variable region (V H ) and the light chain variable region (V or V ) are 100% human-derived, the ScFv according to the present invention does not exhibit the HAMA response seen in existing techniques (eg hybridomas, etc.). .
이 때, 수득된 상기 중쇄 가변영역 (VH) 및 경쇄 가변영역 (V 또는 V)은 각각 표 6, 표7 및 표 8의 서열(서열번호 63 내지 254)을 가질 수 있다. 구체적으로, 중쇄 가변영역은 서열번호 63-104 (VH-V 중 중쇄 가변영역으로 FR1-CDR1-FR2-CDR2-FR3-CDR3-FR4의 구조를 가짐), 147-200 (VH-V 중 중쇄 가변영역으로 FR1-CDR1-FR2-CDR2-FR3-CDR3-FR4의 구조를 가짐)로 표시되는 서열로 구성된 군에서 선택되는 어느 하나의 서열을 가질 수 있으며, 경쇄 가변영역은 서열번호 105-146 (V, FR1-CDR1-FR2-CDR2-FR3-CDR3-FR4의 구조를 가짐), 201-254 (V, FR1-CDR1-FR2-CDR2-FR3-CDR3-FR4의 구조를 가짐)로 표시되는 서열로 구성된 군에서 선택되는 어느 하나의 서열을 가질 수 있다.In this case, the obtained heavy chain variable region (V H ) and the light chain variable region (V or V ) may have the sequences of Tables 6, 7 and 8 (SEQ ID NOs 63 to 254), respectively. Specifically, the heavy chain variable region is SEQ ID NO: 63-104 (heavy chain variable region of V H -V having the structure of FR1-CDR1-FR2-CDR2-FR3-CDR3-FR4), 147-200 (V H -V Heavy chain variable region of may have any sequence selected from the group consisting of the sequence represented by FR1-CDR1-FR2-CDR2-FR3-CDR3-FR4, and the light chain variable region is SEQ ID NO: 105 -146 (V , has the structure of FR1-CDR1-FR2-CDR2-FR3-CDR3-FR4), 201-254 (V , has the structure of FR1-CDR1-FR2-CDR2-FR3-CDR3-FR4) It may have any one sequence selected from the group consisting of the sequence represented by.
HAMA 반응을 고려하여, 인간항체의 연구/제품 개발이 활발히 이뤄지고 있으며, 본 발명에 따른 라이브러리를 통하여 동정될 ScFv의 경우 항체의 약 1/6 정도의 크기를 가지기 때문에, 조직이나 종양으로의 침투율이 우수하므로, 생체 진단용으로 이용이 가능하다.In consideration of the HAMA response, research / product development of human antibodies has been actively conducted, and since ScFv to be identified through the library according to the present invention has a size of about 1/6 of the antibody, penetration rate into tissues or tumors is increased. As it is excellent, it can be used for biological diagnosis.
경우에 따라서, ScFv를 면역글로불린의 형태로 전환하여 치료용 항체로도 사용 가능하다. 또한, 인체 내에서 반감기가 짧으나, 약물전달 시스템인 페길레이션(PEGylation) 기술을 통해 반감기를 증가시킴으로써 치료용 항체로 개발도 가능하다. 아울러, 이중 특이 항체 등과 같은 새로운 형태의 항체 플랫폼 개발에 적용 가능하다. In some cases, ScFv can be converted into immunoglobulin to be used as a therapeutic antibody. In addition, although the half-life is short in the human body, it is possible to develop a therapeutic antibody by increasing the half-life through PEGylation (PEGylation) technology, a drug delivery system. In addition, it is applicable to the development of new types of antibody platform, such as bispecific antibodies.
본 발명에 따른 라이브러리의 다양성은 높은 수준으로 약 108~1014의 다양성을 나타낼 수 있으며, 본 발명에 의해 약 1010 수준의 항체 라이브러리를 구축할 수 있다. 경우에 따라서, 클로닝 과정에서 항체의 중쇄 (VH) 및 경쇄 (V 또는 V) 유전자 조합 과정으로 생겨나는 임의의 조합에 의해 다양성을 더욱 증가시킬 수 있다.The diversity of the library according to the present invention can exhibit a diversity of about 10 8 to 10 14 at a high level, and the antibody library of about 10 10 level can be constructed by the present invention. In some cases, the diversity may be further increased by any combination resulting from the heavy (V H ) and light (V or V ) gene combination process of the antibody during cloning.
다른 관점에서, 본 발명은 면역 기관 유래 세포에서 핵산 추출하는 단계; 상기 추출된 핵산을 주형으로 하고, 면역 기관 유래 항체의 중쇄 가변 영역 (VH) 및 경쇄 가변영역 (V 또는 V) 특이적 프라이머를 이용하여 중쇄 가변 영역 및 경쇄 가변 영역을 코딩하는 핵산을 증폭하는 단계; 상기 중쇄 가변 영역 및 경쇄 가변 영역을 코딩하는 핵산을 벡터에 클로닝한 다음 형질전환체에 도입하는 단계; 및 상기 형질전환체에서 ScFv 항체를 발현하여, 형질전환체에 포함된 파지 표면에 발현된 ScFv 항체를 제시하는 단계를 포함하는 라이브러리의 제조방법에 관한 것이다.In another aspect, the present invention comprises the steps of extracting the nucleic acid from immune-derived cells; The nucleic acid encoding the heavy chain variable region and the light chain variable region using the extracted nucleic acid as a template and using the heavy chain variable region (V H ) and the light chain variable region (V or V ) specific primers of the antibody derived from an immune organ. Amplifying; Cloning a nucleic acid encoding the heavy and light chain variable regions into a vector and then introducing the transformant into a transformant; And expressing the ScFv antibody in the transformant to present the ScFv antibody expressed on the phage surface included in the transformant.
본 발명에 따른 제조방법은 면역 기관 유래 세포에서 핵산 추출하는 단계를 포함한다. 하나의 실시예에서, 면역 기관 예를 들어, 골수, 혈액 또는 편도에서 분리된 세포에서 RNA를 추출하여 수득할 수 있다. The preparation method according to the present invention comprises the step of extracting nucleic acids from cells derived from immune organs. In one embodiment, RNA can be obtained by extracting RNA from cells isolated from an immune organ, such as bone marrow, blood or tonsils.
본 발명에 따른 제조방법은 상기 추출된 핵산을 주형으로 하고, 면역 기관 유래 항체의 중쇄 가변 영역 (VH) 및 경쇄 가변영역 (V 또는 V) 특이적 프라이머를 이용하여 중쇄 가변 영역 및 경쇄 가변 영역을 코딩하는 핵산을 증폭하는 단계를 포함한다. 예를 들어, 상기 추출된 RNA로부터 cDNA를 합성한 다음, 표 1 (서열번호 7 내지 58)의 프라이머 혼합물, 예를 들어 VH 유전자 증폭을 위한 서열번호 7~24로 표시되는 서열로 구성된 군에서 선택되는 하나 이상의 프라이머 및 VL 유전자 증폭을 위한 서열번호 25~58로 표시되는 서열로 구성된 군에서 선택되는 하나 이상의 프라이머를 포함하는 혼합물로 cDNA를 증폭하여 VH 및 VL를 코딩하는 유전자를 수득할 수 있다.In the preparation method according to the present invention, the extracted nucleic acid is used as a template, and the heavy chain variable region and the light chain using heavy chain variable region (V H ) and light chain variable region (V or V ) specific primers of the antibody derived from an immune organ. Amplifying the nucleic acid encoding the variable region. For example, after synthesizing cDNA from the extracted RNA, the primer mixture of Table 1 (SEQ ID NO: 7 to 58), for example, in the group consisting of the sequence represented by SEQ ID NO: 7 to 24 for V H gene amplification as for the selection of one or more primers and V L gene amplification SEQ ID NO: consisting of a sequence represented by 25-58 mixture comprising at least one primer selected from the group amplifies the cDNA to obtain a gene encoding the V H and V L can do.
이후, 상기 중쇄 가변 영역 및 경쇄 가변 영역을 코딩하는 핵산을 벡터에 클로닝한 다음 형질전환체에 도입하는 단계를 포함한다. 상기 ScFv 항체는 핵산이 클로닝된 하기 구조의 벡터가 도입된 형질전환체에 도입될 수 있다:Thereafter, the nucleic acid encoding the heavy chain variable region and light chain variable region is cloned into a vector and then introduced into a transformant. The ScFv antibody may be introduced into a transformant into which a vector of the following structure into which a nucleic acid has been cloned has been introduced:
A-X-B-링커-C-Y-D-EA-X-B-Linker-C-Y-D-E
상기 A~D는 SfiⅠ, NheⅠ, BglII 및 NotⅠ으로 이루어진 군에서 선택되는 어느 하나의 제한효소 인식 부위이고,A to D are any one restriction enzyme recognition site selected from the group consisting of Sfi I, Nhe I, BglII and Not I,
상기 E는 His tag 또는 HA(Hemagglutinin) tag 삽입 부위이며,E is a His tag or HA (Hemagglutinin) tag insertion site,
상기 X는 중쇄 가변영역(VH)을 코딩하는 유전자 삽입 부위이며, Y는 경쇄 가변영역 (V또는 V)을 코딩하는 유전자 삽입 부위이다. 각 구성의 구체적 설명은 앞서 언급한 바와 같다.X is a gene insertion region encoding a heavy chain variable region (V H ), Y is a gene insertion region encoding a light chain variable region (V or V ). The detailed description of each structure is as mentioned above.
본 발명에 따른 제조방법은 상기 형질전환체에서 ScFv 항체를 발현하여, 형질전환체에 포함된 파지 표면에 발현된 ScFv 항체를 제시하는 단계를 포함한다. 상기 형질전환체의 종류는 예를 들어, 대장균이 바람직하다. E.coli DH5a, E.coli JM101, E.coli K12 294, E.coli W3110, E.coli X1776, E.coli XL-1Blue(Stratagene), E.coli B, FMB101, NM522, NM538 및 NM539 등을 포함하나, 이에 제한되는 것은 아니다.The production method according to the present invention includes expressing the ScFv antibody in the transformant, and presenting the ScFv antibody expressed on the phage surface included in the transformant. The type of the transformant is preferably, for example, Escherichia coli. E. coli DH5a, E. coli JM101, E. coli K12 294, E. coli W3110, E. coli X1776, E. coli XL-1Blue (Stratagene), E. coli B, FMB101, NM522, NM538 and NM539 Including but not limited to.
본 발명은 또한, 상기 라이브러리를 항원과 반응시켜 항원 특이적 ScFv 항체를 스크리닝하는 단계를 포함하는 ScFv 항체 스크리닝 방법에 관한 것이다.The invention also relates to a ScFv antibody screening method comprising the step of screening an antigen specific ScFv antibody by reacting the library with an antigen.
상기 스크리닝은 방법은 라이브러리의 형질전환체와 파지를 배양하여 파지 표면에 발현된 ScFv 항체를 항원과 결합시켜 원하는 항체를 발현하는 형질전환체를 스크리닝하고, 선별하는 과정을 포함할 수 있다. 이러한 스크리닝 및 선별 단계는 당 업계에 공지된 다양한 기술을 이용하여 수행될 수 있다. The screening method may include culturing the transformant and phage of the library, binding the ScFv antibody expressed on the phage surface with the antigen, and screening and selecting a transformant expressing the desired antibody. Such screening and screening steps can be performed using various techniques known in the art.
예를 들어, 상기 라이브러리로부터 패닝(panning) 방법에 의하여 특정 항원에 결합하는 ScFv 항체를 분리하여 제작할 수 있다. 상기 패닝은 특정 항원(target antigen)에 파지를 결합시키고 결합하지 않은 파지를 제거한 후, 결합된 파지를 회수하여 숙주세포에 감염시킴으로써 파지 수를 증폭하고, 이 과정을 2-4회 반복하는 과정을 포함할 수 있다.For example, a ScFv antibody that binds to a specific antigen can be isolated and prepared from the library by a panning method. The panning is a process of binding a phage to a target antigen and removing unbound phage, amplifying the phage by recovering the bound phage and infecting the host cell, and repeating this process 2-4 times. It may include.
본 발명의 스크리닝 방법에 따르면, 자가면역질환 또는 암을 치료하는 ScFv 항체를 스크리닝할 수 있다. 예를 들어, 자가면역질환 또는 암을 유발하는 것으로 공지된 인자에 특이적으로 결합하는 ScFv 항체를 스크리닝할 수 있으며, 스크리닝된 ScFv 항체는 길항제로 작용하여, 자가면역질환 또는 암 유발 타겟의 발현을 억제함으로써 질환을 치료할 수 있다.According to the screening method of the present invention, ScFv antibodies for treating autoimmune diseases or cancer can be screened. For example, ScFv antibodies can be screened specifically for binding to factors known to cause autoimmune diseases or cancers, and the screened ScFv antibodies act as antagonists, leading to expression of autoimmune diseases or cancer causing targets. By suppressing, the disease can be treated.
자가면역질환은 항체 또는 림프구와 같은 면역계 성분이 이를 생성하는 유기체의 분자, 세포 또는 조직을 공격하거나 유해하게 되는 자가면역 과정에 의해 발병되는 장애를 의미하며, 예를 들어 다발성 경화증, 동종이식 거부반응, 자가면역 갑상선 질환, 염증성 장 질환 (크론병, 궤양성 결장염, 국소성 장염 등), 건선, 류마티스성 관절염 또는 전신성 홍반성 루푸스를 들 수 있다.Autoimmune disease refers to a disorder caused by an autoimmune process in which immune system components, such as antibodies or lymphocytes, attack or harm molecules, cells or tissues of the organisms that produce them, for example multiple sclerosis, allograft rejection. , Autoimmune thyroid disease, inflammatory bowel disease (Crohn's disease, ulcerative colitis, local enteritis, etc.), psoriasis, rheumatoid arthritis or systemic lupus erythematosus.
암은 신생물성 세포 성장과 증식 및 조절되지 않은 세포 성장/증식에 의해 발병되는 질환을 의미할 수 있다. 암의 예시로는 편평세포 암, 소세포 폐암, 비-소세포 폐암, 폐의 선암종, 폐의 편평 암종, 복막암, 간세포 암, 위장관 암, 췌장암, 아교모세포종, 자궁경부암, 난소암, 간암, 방광암, 간세포암, 유방암, 결장암, 결장직장암, 자궁내막 또는 자궁 암종, 침샘 암종, 신장암, 간암, 전립선 암, 외음부 암, 갑상선 암, 간 암종, 위암, 흑색종, 및 다양한 유형의 두경부암이 포함되나, 이에 제한되는 것은 아니다.Cancer may mean a disease caused by neoplastic cell growth and proliferation and unregulated cell growth / proliferation. Examples of cancer include squamous cell carcinoma, small cell lung cancer, non-small cell lung cancer, lung adenocarcinoma, squamous carcinoma of the lung, peritoneal cancer, hepatocellular carcinoma, gastrointestinal cancer, pancreatic cancer, glioblastoma, cervical cancer, ovarian cancer, liver cancer, bladder cancer, Hepatocellular carcinoma, breast cancer, colon cancer, colorectal cancer, endometrial or uterine carcinoma, salivary gland carcinoma, kidney cancer, liver cancer, prostate cancer, vulvar cancer, thyroid cancer, liver carcinoma, gastric cancer, melanoma, and various types of head and neck cancer However, the present invention is not limited thereto.
하나의 실시예에서, 본 발명에 따른 스크리닝 방법에 의해 DLL4 (Delta like ligand 4) 단백질을 타겟으로 하는 ScFv 항체를 스크리닝할 수 있으며, 스크리닝된 ScFv 항체는 DLL4 단백질에 유의적인 결합능이 있음을 확인하였다 (실시예 13-16 참조). 또 다른 실시예에서, EGFRvIII 특이적인 항체를 cell panning 기법을 통해 동정하고, 스크리닝된 ScFv 항체는 EGFRvIII에 유의적인 결합능이 있음을 확인하였으며, 세포성장 억제능을 보임을 확인하였다 (실시예 17-19 참조).In one embodiment, the ScFv antibody targeting the DLL4 (Delta like ligand 4) protein can be screened by the screening method according to the present invention, and the screened ScFv antibody was found to have a significant binding capacity to the DLL4 protein. (See Example 13-16). In another embodiment, EGFRvIII specific antibodies were identified through cell panning techniques, and the screened ScFv antibodies were found to have significant binding capacity to EGFRvIII, and showed cell growth inhibition (see Examples 17-19). ).
이하, 실시예를 통하여 본 발명을 더욱 상세히 설명하고자 한다. 이들 실시예는 오로지 본 발명을 예시하기 위한 것으로서, 본 발명의 범위가 이들 실시예에 의해 제한되는 것으로 해석되지는 않는 것은 당업계에서 통상의 지식을 가진 자에게 있어서 자명할 것이다.Hereinafter, the present invention will be described in more detail with reference to Examples. These examples are only for illustrating the present invention, it will be apparent to those skilled in the art that the scope of the present invention is not to be construed as being limited by these examples.
실시예 Example
실시예 1: 항체 라이브러리 제작을 위한 파지미드 벡터 구축Example 1: phagemid vector construction for antibody library construction
pCANTAB 5E 파지미드 벡터를 기반으로, 벡터 내에 VH 및 VL 삽입을 위한 제한효소 인지서열 삽입 및 주변세포질로의 발현 유도를 위한 pelB 서열을 삽입하였다. 추가적으로, 표지 tag 변경을 통해 자체적인 라이브러리 구축용 벡터인 pSIA23 벡터를 도 2의 방법으로 구축하였다. VL → VH 의 순차적인 삽입을 통한 라이브러리 구축을 위해, VH가 삽입될 부위에 제한효소 SfiⅠ, NheⅠ 인지서열, VL이 삽입될 부위에 BamHⅠ, NotⅠ 인지서열을 삽입하고, pelB 서열도 삽입하기 위해 4가지 올리고뉴클레오티드를 설계하였다. 사용된 올리고뉴클레오티드는 다음과 같다.Based on the pCANTAB 5E phagemid vector, a restriction enzyme recognition sequence insertion for V H and V L insertion and a pelB sequence for insertion of expression into the periplasm were inserted into the vector. In addition, pSIA23 vector, which is a vector for constructing a library of itself, was constructed by changing a label tag. In order to construct a library through sequential insertion of V L → V H , restriction enzymes Sfi I, Nhe I recognition sequences are inserted at the sites where V H is to be inserted, and BamH I and Not I recognition sequences are inserted at the sites where V L is to be inserted, and the pelB sequence is also inserted. Four oligonucleotides were designed for insertion. Oligonucleotides used are as follows.
서열번호 1: 5'-TAC GCC AAG CTT GGA GCC ATG AAA TAC CTG CTG CCG ACC GCT GCT GCT GGT-3', SEQ ID NO: 5'-TAC GCC AAG CTT GGA GCC ATG AAA TAC CTG CTG CCG ACC GCT GCT GCT GGT-3 ',
서열번호 2: 5'-TCA GCG CAA CAC GCT AGC GGT GGA GGC GGT TCA GGC GGA GGT GGA TCC GGC GGT GGC GG-3', SEQ ID NO: 5'-TCA GCG CAA CAC GCT AGC GGT GGA GGC GGT TCA GGC GGA GGT GGA TCC GGC GGT GGC GG-3 ',
서열번호 3: 3'-CTG GCG ACG ACG ACC AGA CGA CGA GGA GCG CCG GGT CGG CCG GAG TCG CGT TGT GCG AT-5' SEQ ID NO: 3'-CTG GCG ACG ACG ACC AGA CGA CGA GGA GCG CCG GGT CGG CCG GAG TCG CGT TGT GCG AT-5 '
서열번호 4: 3'-TAG GCC GCC ACC GCC TAG CCC TAG GAC ACT TAC CCT GCG CCG GCG TTA AT-5'. SEQ ID NO: 3'-TAG GCC GCC ACC GCC TAG CCC TAG GAC ACT TAC CCT GCG CCG GCG TTA AT-5 '.
4가지 올리고뉴클레오티드를 이용한 어셈블리 PCR(Assembly PCR)을 통해 삽입할 주형을 완성하고, HindIII, NotⅠ으로 절단된 뼈대 벡터(pCANTAB 5E)에 삽입을 완료하였다. 기존 pCANTAB 5E 벡터가 가지는 E-tag보다 광범위하게 쓰이는 His6-tag, HA-tag을 삽입하였다. 표지 tag 교체를 위해 양 말단에 제한효소 NotⅠ, EcoRⅠ인지 서열이 도입된 프라이머 세트를 합성하여 pCOMB3X 파지미드 벡터로부터 His6-HA-Amber codon-pIII 서열을 증폭을 시켰다. 사용된 프라이머는 다음과 같다[서열번호 5(F-프라이머(NotⅠ)) : 5'-TTT GCG GCC GCC ACC ATC ACC ATC ACC ATG G-3', 서열번호 6(R-프라이머(EcoRⅠ)) : 5'-CGG AAT TCA GAC TCC TTA TTA CGC AGT ATG TTA GC-3']. 이를 NotI/EcoRI으로 절단된 pSIA23 벡터 내에 삽입하였다. 초기 벡터 설계에 사용된 BamHⅠ의 제한효소 인지서열이 경쇄 서열 내부에 존재함을 문헌상에서 확인한 후, BamHⅠ을 BglⅡ로 변환을 하여, 도 1에서와 같이 최종 라이브러리 벡터(pSIA23)의 구축을 완료하였다. The template to be inserted was completed by assembly PCR using four oligonucleotides, and insertion into the skeletal vector (pCANTAB 5E) cut with HindIII and NotI was completed. His6-tag and HA-tag, which are used more widely than the E-tag of the existing pCANTAB 5E vector, were inserted. To replace the label tag, a primer set in which restriction enzyme NotI and EcoRI recognition sequences were introduced at both ends was synthesized to amplify His6-HA-Amber codon-pIII sequence from pCOMB3X phagemid vector. Primers used were as follows (SEQ ID NO: 5 (F-primer (Not I)): 5'-TTT GCG GCC GCC ACC ATC ACC ATC ACC ATG G-3 ', SEQ ID NO: 6 (R-primer (EcoR I)): 5'-CGG AAT TCA GAC TCC TTA TTA CGC AGT ATG TTA GC-3 ']. It was inserted into pSIA23 vector digested with NotI / EcoRI. After confirming in literature that the restriction enzyme recognition sequence of BamHI used in the initial vector design was inside the light chain sequence, BamHI was converted into BglII, and the construction of the final library vector (pSIA23) was completed as shown in FIG. 1.
실시예 2: ScFv 라이브러리 구축을 위한 각 장기 조직 및 cDNA 확보Example 2: Obtaining Each Organ Tissue and cDNA for ScFv Library Construction
골수(20명)/혈액(40명)/편도(16명) 유래 항체의 가변영역 유전자 추출은 다음과 같이 진행하였다. 본 발명의 라이브러리는 다양한 B세포 레퍼토리를 가지는 편도 조직을 사용하여 ScFv 라이브러리 구축을 위한 RNA (cDNA)를 확보하였다는 점에서, 기술적 차별성을 가지며 특이하다.The variable region gene extraction of the bone marrow (20) / blood (40) / tonsil (16) -derived antibodies was carried out as follows. The library of the present invention is technically distinctive and unique in that RNA for constructing ScFv libraries (cDNA) was obtained using tonsil tissue having various B cell repertoires.
건강한 기증자의 골수를 STEMCELL Technologies를 통해 동결 1차 세포(~1.5 × 107 cells/vial, 총 20 vial)의 형태로 확보하였다. Ficoll gradient를 이용하여 단핵세포만을 확보한 후, 다음과 같이 RNA 추출을 진행하였다. 1mL의 Tri-reagent(Molecular Research Center) 첨가 및 반복적인 피펫팅 후 상온에서 5분간 정치하고 세포를 용해시킨 후, 100μL의 BCP(biphasic calcium phosphate)를 첨가하고, 15초간 수 차례 흔들어 주었다. 4℃, 13,000rpm에서 15분간 원심분리 후, 조심스럽게 상층액만 분리하여, 500μL의 isopropanol을 첨가한 후, 상온에서 10분간 정치하였다. 15℃, 13,000rpm에서 10분간 원심분리하여 RNA 알갱이를 획득하였다. 얻은 RNA의 순도를 높이기 위해, 75% EtOH 1mL로 부유하고 및 강하게 흔들어 섞어준 후 15℃, 13,000rpm에서 5분간 원심분리하였다. EtOH을 버린 후 알갱이를 상온에서 건조(약 10분)한 다음, RNase-free water(DEPC-treated) 50μL로 부유시키고, Bioanalyzer (Nanodrop)를 이용하여 RNA 농도를 측정하였다. 혈액의 경우, 건강한 기증자의 혈액 10mL을 PBS 10mL에 혼합한 후, Ficoll gradient로 단핵세포를 확보하고 위와 같은 방식으로 RNA가 추출되었다. 편도의 경우, 편도 조직 200mg에 Tri-reagent (Molecular Research Center) 2mL을 넣은 후, 조직 파쇄를 진행하였다. 파쇄된 조직에 200μL의 BCP를 투입 후, 실험 방법은 위와 같이 진행하였다. 준비된 각 조직의 RNA 5μg 을 이용, superscript III cDNA synthesis kit(Invitrogen)으로 cDNA를 합성하여 항체의 가변영역 유전자 증폭에 이용하였다.Bone marrow from healthy donors was obtained through STEMCELL Technologies in the form of frozen primary cells (~ 1.5 × 10 7 cells / vial, total 20 vial). After securing only mononuclear cells using a ficoll gradient, RNA extraction was performed as follows. After addition of 1 mL of Tri-reagent (Molecular Research Center) and repeated pipetting, the cells were allowed to stand at room temperature for 5 minutes and lysed. Then, 100 μL of biphasic calcium phosphate (BCP) was added and shaken several times for 15 seconds. After centrifugation at 4 ° C and 13,000 rpm for 15 minutes, only the supernatant was carefully separated, 500 μL of isopropanol was added, and then allowed to stand at room temperature for 10 minutes. RNA granules were obtained by centrifugation at 15 ° C. and 13,000 rpm for 10 minutes. In order to increase the purity of the RNA obtained, the mixture was stirred with 1 mL of 75% EtOH and stirred vigorously, followed by centrifugation at 15 ° C. and 13,000 rpm for 5 minutes. After discarding EtOH, the granules were dried at room temperature (about 10 minutes), suspended in 50 μL of RNase-free water (DEPC-treated), and RNA concentration was measured using a Bioanalyzer (Nanodrop). In the case of blood, 10 mL of healthy donor blood was mixed with 10 mL of PBS, and mononuclear cells were obtained by Ficoll gradient, and RNA was extracted in the above manner. In the case of tonsil, 2 mL of Tri-reagent (Molecular Research Center) was added to 200 mg of tonsil tissue, followed by tissue disruption. After 200 μL of BCP was added to the crushed tissue, the experimental method was performed as described above. Using 5 μg of each prepared RNA, cDNA was synthesized using a superscript III cDNA synthesis kit (Invitrogen), and used for amplifying the variable region of the antibody.
실시예 3: VH 및 VL(λ/κ) 유전자 증폭Example 3: V H and V L (λ / κ) Gene Amplification
골수/혈액/편도 3가지 조직에서 합성한 cDNA 혼합물을 주형으로 하고, 중쇄 14종 및 경쇄 28종(kappa 13, lambda 15)의 프라이머를 이용하여 PCR을 실시하였다. VH, V, V 단편의 증폭을 위한 프라이머 세트는 다음 표 1과 같이 설계 및 합성하여 이용되었다. A cDNA mixture synthesized in three bone marrow / blood / tonsil tissues was used as a template, and PCR was performed using primers of 14 heavy chains and 28 light chains (kappa 13 and lambda 15). Primer sets for amplification of V H , V , V fragments were designed and used as shown in Table 1 below.
표 1
Figure PCTKR2015002262-appb-T000001
Table 1
Figure PCTKR2015002262-appb-T000001
구축된 pSIA23 파지미드 내 가변영역 유전자 클로닝을 위해 삽입된 제한효소 서열은 SfiⅠ-NheⅠ(VH 삽입용), BglII-NotⅠ(VL 삽입용)이다. 이에 맞게, 표 1에서와 같이 증폭되는 VH 단편의 양 말단에는 SfiⅠ-NheI을 삽입하고, VL 단편의 양 말단에는 BglII-NotⅠ을 삽입하는 형태로 프라이머를 제작하였다. 중쇄 가변영역 유전자 증폭은 각 14종의 F-프라이머 및 4 종의 R-프라이머가 이용되었으며, 합성된 프라이머는 가변영역 하위집단의 유전자 발현 정도 차이로 나누어, 표 2와 같이 VH는 총 5세트 VH1(서열번호 7-10), VH3(서열번호 13-15), VH5(서열번호 18), VH6(서열번호 19), VH2+4+7 (서열번호 11-12, 16-17, 20) F-프라이머로 나누고, JH12, JH45, JH3, JH6 (서열번호 21-24) R-프라이머가 동일 몰수로 혼합된 프라이머를 사용하였다. Restriction sequences inserted for cloning variable region genes in the constructed pSIA23 phagemid were SfiI-NheI (for V H insertion) and BglII-NotI (for V L insertion). Accordingly, as shown in Table 1, SfiI-NheI was inserted at both ends of the V H fragment to be amplified, and BglII-NotI was inserted at both ends of the V L fragment. For heavy chain variable region gene amplification, 14 F-primers and 4 R-primers were used, and the synthesized primers were divided by the difference in gene expression of the variable region subgroups, and V H is a total of 5 sets as shown in Table 2. V H1 (SEQ ID NOs 7-10), V H3 (SEQ ID NOs 13-15), V H5 (SEQ ID NO 18), V H6 (SEQ ID NO 19), V H2 + 4 + 7 (SEQ ID NOs 11-12, 16 -17, 20) divided into F-primers, and primers in which JH 12 , JH 45 , JH 3 , JH 6 (SEQ ID NOs: 21-24) R-primers were mixed in equal moles were used.
표 2
Figure PCTKR2015002262-appb-T000002
TABLE 2
Figure PCTKR2015002262-appb-T000002
경쇄 가변영역 유전자 증폭 역시 카파 증폭용 13종의 F-프라이머 (서열번호 25-37), 람다 증폭용 15종의 F-프라이머(서열번호 38-52)를 각각 4종의 F-프라이머 세트로 나누어, 각각에 해당하는 R-프라이머 혼합물(카파: 서열번호 53-54, 람다: 서열번호 55-58)과 동일 몰수로 혼합하여 증폭을 실시하였다. VH/VL 증폭을 위한 PCR 조건은 다음과 같다. 95℃, 5분; (95℃, 30초 - 56℃, 30초 - 72℃, 45초) 30회 반복; 72℃, 7분. 증폭 완료시 VH 단편은 SfiⅠ, NheⅠ를 포함한 약 400bp, VL 단편은 BglII, NotⅠ site를 포함한 약 360bp크기로 증폭되었으며, 그 결과를 도 3에 나타내었다. 도 3을 참조하면, 다양한 VH 및 V/V 유전자가 성공적으로 증폭되는 양상을 확인하였다. 증폭된 PCR 결과물은 PCI 추출 후 EtOH 침전을 통해 정제 및 농축하였다. 농축된 PCR 결과물은 2% 아가로즈 젤에서 전기영동 후, 해당 크기(VH=~400bp, V/VLK=~350bp)를 확인하고, 회수된 각 단편은 DNA 농도 측정 후 클로닝을 위해 -20℃에서 보관하였다.Light chain variable region gene amplification was also divided into four sets of F-primers, each of 13 F-primers (SEQ ID NOs: 25-37) for kappa amplification and 15 F-primers (SEQ ID NOs: 38-52) for lambda amplification. , Amplification was performed by mixing the R-primer mixture (kappa: SEQ ID NO: 53-54, lambda: SEQ ID NO: 55-58) corresponding to each molar number. PCR conditions for V H / V L amplification are as follows. 95 ° C., 5 minutes; (95 ° C., 30 sec-56 ° C., 30 sec-72 ° C., 45 sec) 30 repetitions; 72 ° C., 7 minutes. Upon completion of the amplification, the V H fragment was amplified to about 400 bp including Sfi I and Nhe I, and the V L fragment was about 360 bp including BglII and Not I sites. The results are shown in FIG. 3. Referring to FIG. 3, it was confirmed that various V H and V / V genes were successfully amplified. The amplified PCR result was purified and concentrated through EtOH precipitation after PCI extraction. Concentrated PCR results were subjected to electrophoresis on 2% agarose gel to confirm their size (V H = ~ 400 bp, V / V LK = ~ 350 bp), and each recovered fragment was subjected to cloning after DNA concentration measurement. Store at 20 ° C.
실시예 4: VH 및 VL(λ/κ) 유전자 T-벡터로 서브클로닝Example 4: Subcloning with V H and V L (λ / κ) Gene T-Vector
항체 라이브러리 구축을 진행하기 전에, 삽입된 가변영역의 서열에 문제가 없는지 확인하기 위해 T-벡터 서브클로닝을 진행하였다. T-벡터: VH&V/V단편의 몰 수 비율을 1:3으로 하여 각각 100ng, 40ng을 이용, 16℃, 밤샘배양 조건에서 결찰을 실시하였다. 65℃, 10분간 두어 효소 불활성화를 한 후, microcon centrifugal filter devices(Millipore)를 이용하여 dH2O에 10μL로 용출하여 정제 및 농축을 진행하였다. 항체 가변영역 유전자가 삽입된 T-vector, 5μL와 electro-competent cell(E. cloni 10G, Lucigen) 25μL를 혼합 후 0.1cm electro-cuvette에 옮겨 1.8kV에서 형질전환을 실시하였다. 형질전환된 숙주를 1mL S.O.C. 배지에 부유하여 37℃에서 1시간 배양 후, 10μL 순차적인 희석 (10-2~10-6)을 통해 적정하고, 잔여 배양된 형질전환체들은 15cm 플레이트(LB/암피실린/0.5% 글루코오스)에 도말하여 37℃, 밤샘배양함으로써 성장한 숙주세포들을 확보한 후, 분주하여 -80℃에 보관하였다. 결과적으로, 표 3에서와 같이 10회의 T-벡터-V 형질전환을 통해 V T-벡터 라이브러리 (총 ~1.29×108 cfu)를 얻었으며, 8회의 T-벡터-V 단편 형질전환을 통해, V T-벡터 라이브러리 (총 ~1.05×108 cfu)를 얻었다. 또한, 6회의 T-벡터-VH 형질전환을 통해 VH T-벡터 라이브러리 (총 ~3.03×108 cfu)를 얻었다.Before proceeding with the antibody library construction, T-vector subcloning was performed to confirm that there was no problem with the sequence of the inserted variable region. The ligation was carried out at 16 ° C. overnight culture conditions using 100 ng and 40 ng of the T-vector: molar ratio of V H & V / V fragment as 1: 3. After incubation for 10 minutes at 65 ℃, the enzyme was eluted with 10μL in dH 2 O using a microcon centrifugal filter devices (Millipore) was purified and concentrated. T-vector, 5μL of antibody variable region gene, and 25μL of electro-competent cell (E. cloni 10G, Lucigen) were mixed and transferred to 0.1cm electro-cuvette and transformed at 1.8kV. The transformed host was suspended in 1 mL SOC medium and incubated for 1 hour at 37 ° C., and then titrated through 10 μL sequential dilution (10 −2 to 10 −6 ), and the remaining cultured transformants were 15 cm plate (LB / ampicillin). /0.5% glucose) to obtain host cells grown by incubating overnight at 37 ℃, overnight, divided and stored at -80 ℃. As a result, the V T-vector library (total ~ 1.29 × 10 8 cfu) was obtained through 10 T-vector-V transformations as shown in Table 3, and 8 T-vector-V fragment transformations. Through the V T-vector library (total 1.05 × 10 8 cfu) was obtained. In addition, six T-vector-V H transformations yielded a V H T-vector library (total -3.03 × 10 8 cfu).
표 3
Figure PCTKR2015002262-appb-T000003
TABLE 3
Figure PCTKR2015002262-appb-T000003
실시예 5: VH 및 VL(λ/κ) 유전자의 성능 평가Example 5: Performance Evaluation of V H and V L (λ / κ) Genes
VH 및 VL(λ/κ) 단편이 서브클로닝된 형질전환 콜로니 내 T-벡터를 주형으로 이용하여, 플라스미드 내 특정 부위를 인식하는 프라이머를 이용한 PCR을 수행하여, VH 및 VL(λ/κ) 단편이 제대로 삽입되어 있는지 확인하였다. VH 및 VL(λ/κ) 형질전환 후, 콜로니를 팁으로 찍어 PCR 혼합물에 섞어주었다. 콜로니 PCR에 사용된 프라이머 서열은 다음과 같다 Using a T-vector in a transformed colony in which VH and V L (λ / κ) fragments were subcloned as a template, PCR was performed using a primer that recognizes a specific site in the plasmid, thereby performing V H and V L (λ / κ). κ) the fragment was inserted correctly. After V H and V L (λ / κ) transformation, colonies were tipped and mixed into the PCR mixture. The primer sequences used for colony PCR are as follows.
서열번호 59 (F-프라이머 (M13-F)): 5'-ACA GGA AAC AGC TAT GAC-3', SEQ ID NO: 59 (F-primer (M13-F)): 5'-ACA GGA AAC AGC TAT GAC-3 ',
서열번호 60 (R-프라이머 (M13-R)): 5'- GTT TTC CCA GTC ACG A-3'. SEQ ID NO: 60 (R-primer (M13-R)): 5'-GTT TTC CCA GTC ACG A-3 '.
PCR을 진행하고, 2% 아가로스 젤을 이용하여 제대로 삽입이 되어 있는지를 확인하였으며, 그 결과를 도 4에 나타내었다. 도 4를 참조하면, 대부분이 문제없이 제대로 삽입되어 있음을 확인하였다. VH 및 VL(λ/κ) 형질전환하고, 개별 콜로니의 플라스미드를 획득한 후, M13 F-프라이머를 이용하여, 클로닝된 VH 및 VL(λ/κ) 서열을 분석하여 기능적으로 문제가 없는 ScFv가 발현이 할 수 있는지를 확인하였다. DNA 서열 분석 후 VBASE2 DB (http://www.vbase2.org)를 이용하여, 항체의 germ-line 서열(상보성 결정부위, 뼈대부위)를 분석하였다. 다음 단계로 넘어가기 전에 간단한 체크를 하는 단계이므로, 여기서 분석된 서열은 방대하게 나타내지 않고, 클론의 개수 및 정상적으로 작동 가능한 클론의 비율만 나타내었다. 중쇄 가변영역 총 77개 클론이, 경쇄 가변영역은 총 140개 클론이 분석되었으며, 'VBASE2' antibody germ-line seq. DB를 통한 서열 분석 결과, 'out of frame' 14건, 'stop codon insertion' 13건, 'problematic chain' 9건 총 36건의 문제있는 서열들이 확인되었다. 결과적으로, 217개 클론 중 181개 클론이 올바른 서열을 가지고 있는 것으로 확인되어 약 83.4% 가량이 유효 클론임을 확인하였다. 인간 면역조직을 이용한 라이브러리 구축할 경우, 유사 유전자나 유효하지 않은 뼈대부위 유전자, PCR 에러 비율 등 가변부위의 정상적인 서열 유지에 영향을 미치는 원인을 고려하였을 때, 83.4% 정도의 유효 VH 및 VL(λ/κ) 유전자를 가지는 T-벡터 하위 라이브러리는 적절히 제작되었다고 판단된다.PCR was carried out, and 2% agarose gel was used to confirm proper insertion, and the results are shown in FIG. 4. Referring to Figure 4, it was confirmed that most of them are properly inserted without problems. V H and V L (λ / κ) were transformed, plasmids of individual colonies were obtained, and then functionalized by analyzing the cloned VH and V L (λ / κ) sequences using M13 F-primers. It was confirmed whether ScFv without expression can be expressed. After DNA sequence analysis, germ-line sequences (complementarity determining regions, skeletal regions) of antibodies were analyzed using VBASE2 DB (http://www.vbase2.org). Since a simple check is made before moving on to the next step, the sequences analyzed here are not shown extensively, only the number of clones and the percentage of clones that can function normally. A total of 77 clones of the heavy chain variable region and 140 clones of the light chain variable region were analyzed, and the 'VBASE2' antibody germ-line seq. As a result of sequence analysis through the DB, 36 problematic sequences were identified, including 14 'out of frame', 13 'stop codon insertion' and 9 'problematic chain'. As a result, 181 clones out of 217 clones were found to have the correct sequence, confirming that about 83.4% were effective clones. 83.4% of effective V H and V L are considered in the case of building libraries using human immune tissues considering the factors that affect the normal sequence maintenance of variable regions such as similar genes, invalid skeletal genes, and PCR error rate. It is believed that the T-vector sublibrary with the (λ / κ) gene was constructed appropriately.
실시예 6: pSIA23-LC(경쇄) 구축Example 6: pSIA23-LC (light chain) construction
파지 디스플레이 기술을 이용하여 항원 특이적 항체 단편을 동정하기 위해서는 라이브러리 구축용 벡터(pSIA23)에 VH 및 VL(λ/κ) 유전자를 삽입하여, 적절한 대장균 숙주(예, TG1, ER2537)를 통해 ScFv 형태로 M13 박테리오파지의 표면에 발현되어야 한다. pSIA23 벡터에 VL(λ) 유전자 와 VL(κ) 유전자를 각각 삽입하여 2개의 하위 라이브러리를 만든 후, 각각의 경쇄 유전자들이 pSIA23 벡터에 제대로 삽입됨을 확인한 후, VH 유전자를 삽입하고자 한다. T-벡터-VL(λ)와 T-벡터-VL(κ)를 가진 숙주들을 각각 500mL LB/암피실린에서 37℃, 밤샘배양 조건으로 키운 후 Maxi-prep을 진행한다. To identify antigen-specific antibody fragments using phage display technology, the V H and V L (λ / κ) genes were inserted into the library construction vector (pSIA23), and then transferred through an appropriate E. coli host (eg, TG1, ER2537). It should be expressed on the surface of the M13 bacteriophage in ScFv form. After inserting the V L (λ) gene and the V L (κ) gene into the pSIA23 vector, two sub-libraries are made. After confirming that each light chain gene is properly inserted into the pSIA23 vector, the V H gene is inserted. Hosts with T-vector-V L (λ) and T-vector-V L (κ) were grown in 500 mL LB / ampicillin at 37 ° C. overnight, followed by Maxi-prep.
pSIA23 벡터, T-벡터-VL(λ), T-벡터-VL(κ)에 제한효소 BglII, NotⅠ 각각 5U/μg 처리하여 37℃ 한밤 배양을 통하여 절단을 진행하였다. 제한효소 절단을 반복적으로 진행하여 대량의 VL 유전자 및 절단되어 다음 단계에서 VL 유전자가 삽입 가능한 pSIA23 벡터 획득하였다. T4 리가아제를 16℃ 한밤배양으로 pSIA23 벡터에 VL 유전자를 삽입하고, 생성된 pSIA23-VL을 Microcon centrifugal filter devices (Millipore)를 이용하여 최종부피 10μL로 pSIA23-VL을 농축하였다. 농축된 pSIA23-VL 5μL와 electro-competent cell (E. cloni 10G, Lucigen) 25μL를 혼합한 후, 0.1cm electro-cuvette에 옮겨 1.8kV에서 형질전환을 실시하였다. 형질전환된 숙주를 1mL S.O.C. 배지에 부유하여 37℃에서 1시간 배양 후, 10μL 순차적인 희석(10-3~10-7)을 통해 적정하고, 약 1mL의 형질전환체들은 15cm 플레이트(LB/암피실린/0.5% 글루코오스)에 도말하여 37℃, 밤샘배양 배양하여 형질전환된 숙주를 확보 후, 분주하여 -80℃에 보관하였다. 9회의 pSIA23-VLλ의 형질전환을 통해, pSIA23-VLλ 라이브러리 (총 ~6.44×108 cfu)를 표 4와 같이 획득하였다.The pSIA23 vector, T-vector-V L (λ) and T-vector-V L (κ) were treated with 5U / μg of restriction enzymes BglII and NotI, respectively, and cleavage was performed at 37 ° C. overnight. Restriction digestion was repeatedly performed to obtain a large number of V L genes and a pSIA23 vector that was cleaved and inserted into the V L gene in the next step. T4 ligase in the middle of the night culture azepin 16 ℃ insert the V L genes in pSIA23 vector and the resulting pSIA23-V L using Microcon centrifugal filter devices (Millipore) and concentrated to pSIA23-V L to a final volume of 10μL. 5 μL of concentrated pSIA23-V L and 25 μL of electro-competent cells (E. cloni 10G, Lucigen) were mixed and transferred to 0.1 cm electro-cuvette and transformed at 1.8 kV. The transformed host was suspended in 1 mL SOC medium and incubated for 1 hour at 37 ° C., and then titrated through 10 μL serial dilution (10 −3 to 10 −7 ), and about 1 mL of the transformants were 15 cm plate (LB / Ampicillin). /0.5% glucose) and then cultured overnight at 37 ℃, to ensure the transformed host, aliquoted and stored at -80 ℃. Through nine transformations of pSIA23-VLλ, a pSIA23-VLλ library (total ˜6.44 × 10 8 cfu) was obtained as shown in Table 4.
표 4
Figure PCTKR2015002262-appb-T000004
Table 4
Figure PCTKR2015002262-appb-T000004
VL(λ) 유전자가 라이브러리 구축용 벡터에 제대로 삽입되었는지 확인 하기 위해 다음의 프라이머를 이용하여 콜로니 PCR을 진행하였으며, 그 결과를 도 5에 나타내었다.Colony PCR was performed using the following primers to confirm that the V L (λ) gene was correctly inserted into the library construction vector, and the results are shown in FIG. 5.
서열번호 61 (F-프라이머 (pelB-F)): 5'-ATG ATT ACG CCA AGC TTG GAG CC-3', SEQ ID NO: 61 (F-primer (pelB-F)): 5'-ATG ATT ACG CCA AGC TTG GAG CC-3 ',
서열번호 62 (R-프라이머 (pelB-R)): 5'-GGA ACC AGA GCC ACC ACC GGA A-3']SEQ ID NO: 62 (R-primer (pelB-R)): 5'-GGA ACC AGA GCC ACC ACC GGA A-3 ']
도 5를 참조하면, 93.8%가 제대로 삽입되었음을 확인하였으며, 서열분석에서 90%가 상보성 결정부위와 뼈대부위에 문제가 없음이 확인하였다. 9회의 pSIA23-V를 이용한 형질전환을 통해, pSIA23-V 라이브러리 (총 ~5.23×108 cfu)를 얻었다 (표 4). 위와 같은 방식으로 콜로니 PCR을 진행하여, 87.5%가 VL(κ) 유전자가 제대로 삽입되었음을 확인하였으며, 서열 분석을 통해 90%에서 상보성 결정부위와 뼈대부위에 문제가 없음이 확인되었다.Referring to FIG. 5, it was confirmed that 93.8% was properly inserted, and 90% of sequencing analysis confirmed that there is no problem in complementarity determining and skeletal sites. Nine times through transfection with pSIA23-V Lκ, pSIA23-V Lκ library (total ~ 5.23 × 10 8 cfu) were obtained (Table 4). Colony PCR was performed in the same manner as above, and 87.5% confirmed that the V L (κ) gene was correctly inserted, and 90% confirmed that there was no problem in complementarity determining and skeletal regions.
실시예 7: pSIA23-ScFv(VH-VL) 구축 및 숙주세포(TG1) 내로 삽입을 통한 라이브러리 구축 완료Example 7: Completed library construction by constructing pSIA23-ScFv (V H -V L ) and inserting into host cell (TG1)
앞서 구축된 pSIA23-VL에 VH 유전자를 삽입하여, pSIA23-ScFv(pSIA23-VH-VL)를 구축하기 위한 준비 작업으로 T-벡터-VH를 가진 대장균과 이전 단계에서 획득한 pSIA23-V & pSIA23-V로 형질전환된 대장균을 각각 500mL LB/암피실린에서 37℃, 밤샘배양 조건으로 키웠다. Maxi-prep을 진행하여 대규모의 플라스미드를 확보한 후, pSIA23-V & pSIA23-V, T-벡터-VH를 다음의 조건으로 제한효소 절단을 반복적으로 진행하였다. 제한효소 절단 조건이 다르기 때문에, NheⅠ 절단(5U/ug, 37℃, 한밤배양)을 먼저 진행하고, 이어서 SfiⅠ(5U/ug, 50℃, 한밤배양) 절단을 진행하였다. 대량의 VH 유전자 및 제한효소 절단된 pSIA23-V & pSIA23-V을 획득하고, 이를 반복적으로 진행하였다. 다음의 조건으로 pSIA23-VL 벡터에 VH 유전자를 삽입하고, 생성된 pSIA23-ScFv(pSIA23-VH-V, pSIA23-VH-V)을 Microcon centrifugal filter devices (Millipore)를 이용하여, 최종 부피 dH2O 10μL로 pSIA23-ScFv를 농축하였다. 이러한 경쇄와 중쇄의 순차적인 삽입을 하였기 때문에, 기존의 PCR방법(SOE-PCR)을 통해 만든 라이브러리에 비하여, 경쇄 셔플링(shuffling)에도 활용이 가능하다. 특히, Overlap Extension PCR을 통해 라이브러리를 제작하는 경우, 경쇄-링커-중쇄의 조합을 한번에 파지미드벡터에 삽입을 시키므로, HC-shuffling이나 LC-shuffling 기술 적용이 불가능하다. 그러나, 본 발명에 방법에 따라 제작된 라이브러리의 경우 경쇄와 중쇄 서열을 순차적으로 삽입하였고, 경쇄와 중쇄서열 양 끝에 제한효소 서열이 있기 때문에, 필요하다면 경쇄와 중쇄 서열 각각을 분리할 수 있다. 이러한 경우에 HC-shuffling이나 LC-shuffling을 적용한 친화도 성숙(Affinity Maturation)을 통해, 최종적으로 결합능이 더 우수한 항체단편을 획득할 수 있다. 본 발명에 따라 구축된 pSIA23-ScFv 라이브러리의 모식도를 도 6에 나타내었다.Inserting the V H gene into the previously constructed pSIA23-V L to prepare for constructing pSIA23-ScFv (pSIA23-V H -V L ), E. coli with T-vector-V H and pSIA23 obtained in the previous step Escherichia coli transformed with -V & pSIA23-V were grown in 500 mL LB / ampicillin at 37 ° C., overnight culture conditions. After securing a large-scale plasmid by Maxi-prep, restriction enzyme cleavage was repeatedly performed on pSIA23-V & pSIA23-V and T-vector-V H under the following conditions. Since restriction enzyme cleavage conditions were different, NheI digestion (5U / ug, 37 ° C, midnight culture) was performed first, followed by SfiI (5U / ug, 50 ° C, midnight culture) digestion. A large amount of V H gene and restriction enzyme truncated pSIA23-V & pSIA23-V were obtained and proceeded repeatedly. Inserting the VH gene into the pSIA23-V L vector under the following conditions, and the resulting pSIA23-ScFv (pSIA23-V H -V , pSIA23-V H -V ) using Microcon centrifugal filter devices (Millipore), PSIA23-ScFv was concentrated to 10 μL of final volume dH 2 O. Since the light and heavy chains are sequentially inserted, the light chain and the heavy chains can be utilized for light chain shuffling as compared to a library made through the conventional PCR method (SOE-PCR). In particular, when a library is prepared through overlap extension PCR, the combination of the light chain-linker-heavy chain is inserted into the phagemid vector at once, and thus, HC-shuffling or LC-shuffling techniques cannot be applied. However, in the library prepared according to the method of the present invention, the light and heavy chain sequences were inserted sequentially, and since there are restriction enzyme sequences at both ends of the light and heavy chain sequences, the light and heavy chain sequences may be separated if necessary. In this case, through affinity maturation by applying HC-shuffling or LC-shuffling, it is possible to finally obtain a better antibody fragment binding capacity. A schematic diagram of the pSIA23-ScFv library constructed according to the present invention is shown in FIG. 6.
pSIA23-ScFv 5μL와 electro-competent cell(TG1, Lucigen) 25μL를 혼합 후 0.1cm electro-cuvette에 옮겨 1.8kV에서 형질전환을 실시하였다. 형질전환된 숙주를 1mL S.O.C. 배지에 부유하여 37℃에서 1시간 배양 후, 10μL를 순차적인 희석(10-3~10-7)을 통해 적정하고, 잔여 배양액은 15cm 플레이트(LB/암피실린/0.5% 글루코오스)에 도말하고, 37℃, 밤샘배양 배양하여 형질전환된 대장균을 확보 후, 분주하여 -80℃에 보관하였다. pSIA23-ScFv를 TG1에 44회의 형질전환을 통해, pSIA23-VH-V(~6.14×109 cfu), pSIA23-VH-V(~5.64×109 cfu)를 표 5와 같이 얻었다. 5 μL of pSIA23-ScFv and 25 μL of electro-competent cells (TG1, Lucigen) were mixed and transferred to 0.1 cm electro-cuvette for transformation at 1.8 kV. The transformed host was suspended in 1 mL SOC medium and incubated at 37 ° C. for 1 hour, and then 10 μL was titrated through sequential dilution (10 −3 to 10 −7 ), and the remaining culture solution was 15 cm plate (LB / ampicillin / 0.5%). Glucose), and cultured overnight at 37 ° C. to ensure transformed E. coli, and then aliquoted and stored at −80 ° C. pSIA23-V H -V (~ 6.14 × 10 9 cfu) and pSIA23-V H -V (~ 5.64 × 10 9 cfu) were obtained as shown in Table 5 through 44 transformation of pSIA23-ScFv into TG1. .
표 5
Figure PCTKR2015002262-appb-T000005
Table 5
Figure PCTKR2015002262-appb-T000005
두 개의 하위-라이브러리(Sub-library)를 합친 최종 라이브러리의 다양성은 1.18×1010 cfu이다. 라이브러리의 크기는 그 라이브러리의 품질을 평가하는 가장 중요한 요소 중 하나이다. 라이브러리의 크기가 클수록 다양한 항체를 보유하게 되고, 최종적으로 원하는 항원에 특이적인 항체를 동정할 수 있는 확률이 높아지게 된다. 추가적으로, VH-VL 유전자가 제대로 삽입되었는지 확인하기 위해, 앞서 사용된 pelB 프라이머를 이용한 콜로니 PCR에서, 92.2% (pSIA23-VH-V) 93.8% (pSIA23-VH-V)가 제대로 삽입되었음을 확인하였으며, 그 결과를 도 7에 나타내었다. 제대로 삽입되었을지라도 서열에 프레임시프트(frameshift) 등과 같은 돌연변이가 있다면, 정지코돈이 있어서 단백질 발현이 제대로 안 될 수 있으며, 발현이 되더라도 항체의 기능을 할 수 없는 단백질이 발현될 수 있다. 다음의 서열분석을 통해 기능적으로 문제없는 항체 클론의 수를 분석해보고자 한다. The final library's diversity, combining the two sub-library, is 1.18 × 10 10 cfu. The size of a library is one of the most important factors in assessing its quality. The larger the library is, the more various antibodies it has, and the higher the probability of finally identifying an antibody specific for a desired antigen. Additionally, 92.2% (pSIA23-V H -V ) 93.8% (pSIA23-V H -V ) in colony PCR with the pelB primers used previously to confirm that the V H -V L gene was inserted correctly. It was confirmed that the insertion was properly, the results are shown in FIG. Even if properly inserted, if there is a mutation such as a frameshift in the sequence, the protein may not be properly expressed due to a stop codon, and even if expressed, a protein that cannot function as an antibody may be expressed. The following sequencing is intended to analyze the number of functionally benign antibody clones.
실시예 8: 항체 라이브러리 서열 분석Example 8: Antibody Library Sequencing
1.18×1010 수준의 형질전환체를 가지는 인간 미감작 항체 라이브러리 (Human Naive ScFv Library)의 가변영역 서열 분석을 위해, 임의의 형질전환체 배양하여 각각의 플라스미드 획득한 후 서열 분석을 수행하였다. 그 결과를 표 6, 표 7 및 표 8에 나타내었다. 분석된 pSIA23-VH-V 64개 중 42개(65.6%) (VH: 서열번호 63-104, V: 서열번호 105-146)가 정상적인 상보성 결정부위와 뼈대부위의 서열을 가지는 것을 확인하였다. VH-VL(λ)의 조합에서 02, 15, 48 클론은 중쇄의 가변영역상에 종결 코돈을 가지고 있기 때문에 scFv와 같은 항체의 형태로 발현될 수 없다. 24 클론의 경우에는 항체 중쇄 D, J 유전자 단편이 서열상에 존재하지 않는 것으로 분석되어 항체의 기능을 할 수 없다. 05, 46, 54의 경우 항체 중쇄 가변영역에 염기서열의 삽입, 결실, 돌연변이 등의 현상으로 항체 고유의 염기 서열이 아니기 때문에 항체의 기능을 수행 할 수 없다. 32, 59 클론 중쇄의 염기서열이 항체의 서열이 아니기 때문에 제외하였다. 06, 07, 38 클론의 경우에는 항체 경쇄 가변영역에서 종결코돈이 확인되었다. 09, 21, 58 클론은 항체 경쇄 서열에 염기서열의 삽입, 결실, 돌연변이 등의 현상으로 항체 고유의 서열을 가지지 못한다. 22, 50번 클론의 경우 경쇄의 서열이 항체의 서열이 아니다. 27 클론의 경우에는 항체 중쇄 D, J 유전자 단편이 서열상에 존재하지 않는 것으로 분석되어 항체의 기능을 할 수 없고, 경쇄 역시 항체로서의 역할을 할 수 없는 클론이다. 33, 59 클론의 경우 항체 중쇄와 경쇄 모두가 항체 서열을 나타내지 않는다. 63 클론의 경우 항체의 중쇄와 경쇄 모두에서 종결코돈이 발견되었다.For variable region sequencing of the human Naive ScFv Library with 1.18 × 10 10 levels of transformants, sequencing was performed after each plasmid was obtained by culturing any transformant. The results are shown in Tables 6, 7 and 8. 42 (65.6%) of 64 analyzed pSIA23-V H -V (V H : SEQ ID NO: 63-104, V : SEQ ID NO: 105-146) have normal complementarity determining and skeletal regions Confirmed. In the combination of V H -V L (λ) , 02, 15 and 48 clones cannot be expressed in the form of an antibody such as scFv because they have a stop codon on the variable region of the heavy chain. In the case of 24 clones, the antibody heavy chain D and J gene fragments are analyzed to be absent from the sequence and thus cannot function as antibodies. In the case of 05, 46, 54, the antibody cannot perform the function of the antibody because it is not a native sequence of the antibody due to the insertion, deletion, or mutation of the nucleotide sequence in the antibody heavy chain variable region. The nucleotide sequence of the 32, 59 clone heavy chain was excluded because it is not the sequence of the antibody. For clones 06, 07 and 38, stop codons were identified in the antibody light chain variable region. Clones 09, 21, 58 do not have an antibody-specific sequence due to the insertion, deletion, mutation, etc. of the nucleotide sequence in the antibody light chain sequence. For clones 22 and 50, the sequence of the light chain is not the sequence of the antibody. In the case of the 27 clone, the antibody heavy chain D and J gene fragments were analyzed to be absent from the sequence, so that the antibody could not function as the antibody, and the light chain was also a clone that could not function as an antibody. For clones 33 and 59, neither the antibody heavy chain nor the light chain shows the antibody sequence. For 63 clones, stop codons were found in both the heavy and light chains of the antibody.
또한, 분석된 pSIA23-VH-V의 78개 중 54개(69.2%) (VH: 서열번호 147-200, V: 서열번호 201-254)가 정상적인 상보성 결정부위와 뼈대부위의 서열을 가지는 것을 확인하였다. VH-VL(κ)의 조합에서 30, 40, 45, 51, 59 클론은 중쇄의 가변영역상에 종결 코돈을 가지고 있기 때문에 scFv와 같은 항체의 형태로 발현될 수 없다. 21, 24, 56 클론의 경우 항체 중쇄 가변영역에 염기서열의 삽입, 결실, 돌연변이 등의 현상으로 항체 고유의 염기 서열이 아니기 때문에 항체의 기능을 수행 할 수 없다. 43, 55, 69, 75 클론 중쇄의 염기서열이 항체의 서열이 아니기 때문에 제외하였다. 71 클론의 경우에는 항체 경쇄 가변영역에서 종결코돈이 확인되었다. 14, 21, 27, 44, 61, 65, 66, 77 클론은 항체 경쇄 서열에 염기서열의 삽입, 결실, 돌연변이 등의 현상으로 항체 고유의 서열을 가지지 못한다. 08번 클론의 경우 경쇄의 서열이 항체의 서열이 아니다. 16 클론의 경우 항체 중쇄와 경쇄 모두가 항체 서열을 나타내지 않는다. 64 클론의 경우 항체의 중쇄와 경쇄 모두에서 종결코돈이 발견되었다.In addition, 54 out of 78 (69.2%) of the analyzed pSIA23-V H -V (V H : SEQ ID NO: 147-200, V : SEQ ID NO: 201-254) are normal complementarity determining regions and skeletal regions. It was confirmed to have. 30, 40, 45, 51, 59 clones in the combination of V H -V L (κ) cannot be expressed in the form of an antibody such as scFv because they have a stop codon on the variable region of the heavy chain. In the case of 21, 24, 56 clones, it is not possible to perform the function of the antibody because it is not the native sequence of the antibody due to the insertion, deletion, mutation, etc. of the nucleotide sequence in the antibody heavy chain variable region. The base sequence of the 43, 55, 69, 75 clone heavy chain was excluded because it is not the sequence of the antibody. In the case of 71 clones, a stop codon was identified in the antibody light chain variable region. 14, 21, 27, 44, 61, 65, 66, 77 clones do not have an antibody-specific sequence due to the insertion, deletion, mutation, etc. of the nucleotide sequence in the antibody light chain sequence. For clone 08, the sequence of the light chain is not the sequence of the antibody. For 16 clones, neither the antibody heavy chain nor the light chain shows the antibody sequence. For 64 clones, stop codons were found in both the heavy and light chains of the antibody.
표 6
lambda VH VL IGHV Subfamily IGKV Subfamily
Clone CDR1 CDR2 CDR3 CDR1 CDR2 CDR3
VH-VL(λ)01 GYTFTNDY INPSGGST ARERSSTGDNNWFDP SLRPYY TNT LSRDITANYVL 1 3
VH-VL(λ)02 EDTFKRNA IVPILGLA ARSGVVAAKVDQ SLRSCS GKN NSRDIS 1 3
VH-VL(λ)03 GASVSRWS VLHSGST ARDGRFSGSGSYAFDV SSNIGSNT SNN AAWDDSLNGVV 4 1
VH-VL(λ)04 GGSFSGYY INHSGRT VQQKLGNDY SDHVGSYNL EGN SSYTGVAIFV 4 2
VH-VL(λ)05 GIIFSDN ISSSSGYT ASHKGFGSRLITGAREPWSP SLRSYF GAN NSRDSSGNRWV 3 3
VH-VL(λ)06 GGSFSEYY INHAGRT ALELDAARRGVDY SSNIGVNS RNT AAWDDSLSACV 4 1
VH-VL(λ)07 GGTFRRYA IIPTLDTP ARDMNSYYDGRGSPGASDL TSNIGAGYD GNT ETYDSSLSAVIFGGGTS*PSx 1 1
VH-VL(λ)08 SLRSYY GKN NSRDSSGNHLV 3
VH-VL(λ)09 GGTFSSFA IIPMFDTP ARDARDYYDSEGYLGAFDI SLRSYY GKN NSRDSSGNHVVFGGRTKVTVL 1 3
VH-VL(λ)10 GFSLTTYW INREGTVT ARDNTHYGSSALEYYDAFDL TGAVTNGHY STA LLFYGGAQLV 3 7
VH-VL(λ)11 GFSLSAPSVG IYWNDNK AHGAGWLFDY SLRSYF GNN NSRDSGAGHPYV 2 3
VH-VL(λ)12 GFSLSTSGLT IYWNNDK GHRRRVNEGGKGGFDY ALPKHF KDT QSADSSDSYVV 2 3
VH-VL(λ)13 GFKFSDYY IGNDDSVK ARDGGRYYDYNGLDV SLRSYY GKN NSRDSSGNHLV 3 3
VH-VL(λ)14 GFTFDTYW IKEDGTET AGFAPF SSNIGSNS ADS APWNSSLNGYV 3 1
VH-VL(λ)15 GFSLITPGMC IDWDDKK ARKVYGNIDAFDI SSYIGNNY DNN GTWDSSLSAGV 2 1
VH-VL(λ)16 GFTFNDYY ISGAGNTI ARGRYFYYMDV SLRSYY LEN NSRDSSGDRVL 3 3
VH-VL(λ)17 GYSFSNYW INPGDSDV ARLHTGQHLVGDWYFDI SSDVGAYDY DVI CSYVGSYTYV 5 2
VH-VL(λ)18 GGFISSTTYY IYHTGNT ARQACYRGSCYSRATYFDQ ALPKKY EDD FSTDSSGKHGV 4 3
VH-VL(λ)19 GYTFSSYW IYPGDSDA ARQVQPVYHYHYLDV SSNIGRNT KND AAWDDSLSVV 5 1
VH-VL(λ)20 GFTFSSYS ISSSSSTI ARKETTVNYYMDV SSNIGSSF DNN GTWDSSQSAVV 3 1
VH-VL(λ)21 GFTFSNYW IRRVGSDK ARDLNPRTNSRDPLDAYDV SLRSYY GKN NSRDSSGNHLVFGGSTQLTVL 3 3
VH-VL(λ)22 GFTFTSSA IVVASGNT AADYDFSFYYASDV 1
VH-VL(λ)23 GDSVGSGNYY IYYDGRT ATGVEAGSQGYFDV SLRSYY GKN NSRDSSGNHLV 4 3
VH-VL(λ)24 GDFFTSYG ISAFNGNR SLRSYY GKN NSRDSSGNHLV 1 3
VH-VL(λ)25 GDTFSAYA IVPIFDRT ARDHRDGYKYYFDS LLGDNY ENT QAWASSTVV 1 3
VH-VL(λ)26 GYTFTVYY INPIGGAT ARGPSSGDFDY NLGKRY QGS QAWDSTTDYV 1 3
VH-VL(λ)27 GYTFTGYY INPNSDGT SNDVSGYNR GVN SSRSSTNSYVFGTRTKLTVL 1 2
VH-VL(λ)28 GGSITGYY IYPTGKT ARLEFGVRFFDF SLRSYY GKN NSRDSSGNHLV 4 3
VH-VL(λ)29 GFSFTGYY INPKSGDT LRSGYPLDH SLRSYY GKN NSRDSSGNHLV 1 3
VH-VL(λ)30 GGSLSTYY IYNTGTT ARQYSSSRYTV SGYSSHA LSSDGSH QTWGDGVHV 4 4
VH-VL(λ)31 GASISSTNW IYHGGHT ARVVRGRHQFIDN ALPKKY EDS YSTDSSGSQWV 4 3
VH-VL(λ)32 SLRISY GRN GSRDISGDHPV 3
VH-VL(λ)33 GYSFTTYW IYPGHSDV ARLPYCGTECYPHLDNWARAPWSPS 5
VH-VL(λ)34 GFSVDTGAVG IFGDGDK AHTDLKYGDFSFDD SLRSYY GKN NSRDSGGNHQV 2 3
VH-VL(λ)35 GGSVSNYNYH FTYSGNI VNYLRGNGGRGP SSDFGGYNY DVS CSYAGTYTSGV 4 2
VH-VL(λ)36 GYAFSSYG ISAVNGNT ARDDFSSYCFSH NIGSKS DNR QVWDSSSEHYV 1 3
Table 6
lambda VH VL IGHV Subfamily IGKV Subfamily
Clone CDR1 CDR2 CDR3 CDR1 CDR2 CDR3
VH-VL (λ) 01 GYTFTNDY INPSGGST ARERSSTGDNNWFDP SLRPYY TNT LSRDITANYVL One 3
VH-VL (λ) 02 EDTFKRNA IVPILGLA ARSGVVAAKVDQ SLRSCS GKN NSRDIS One 3
VH-VL (λ) 03 GASVSRWS VLHSGST ARDGRFSGSGSYAFDV SSNIGSNT SNN AAWDDSLNGVV 4 One
VH-VL (λ) 04 GGSFSGYY INHSGRT VQQKLGNDY SDHVGSYNL EGN SSYTGVAIFV 4 2
VH-VL (λ) 05 GIIFSDN ISSSSGYT ASHKGFGSRLITGAREPWSP SLRSYF GAN NSRDSSGNRWV 3 3
VH-VL (λ) 06 GGSFSEYY INHAGRT ALELDAARRGVDY SSNIGVNS RNT AAWDDSLSACV 4 One
VH-VL (λ) 07 GGTFRRYA IIPTLDTP ARDMNSYYDGRGSPGASDL TSNIGAGYD GNT ETYDSSLSAVIFGGGTS * PSx One One
VH-VL (λ) 08 SLRSYY GKN NSRDSSGNHLV 3
VH-VL (λ) 09 GGTFSSFA IIPMFDTP ARDARDYYDSEGYLGAFDI SLRSYY GKN NSRDSSGNHVVFGGRTKVTVL One 3
VH-VL (λ) 10 GFSLTTYW INREGTVT ARDNTHYGSSALEYYDAFDL TGAVTNGHY STA LLFYGGAQLV 3 7
VH-VL (λ) 11 GFSLSAPSVG IYWNDNK AHGAGWLFDY SLRSYF GNN NSRDSGAGHPYV 2 3
VH-VL (λ) 12 GFSLSTSGLT IYWNNDK GHRRRVNEGGKGGFDY ALPKHF KDT QSADSSDSYVV 2 3
VH-VL (λ) 13 GFKFSDYY IGNDDSVK ARDGGRYYDYNGLDV SLRSYY GKN NSRDSSGNHLV 3 3
VH-VL (λ) 14 GFTFDTYW IKEDGTET AGFAPF SSNIGSNS ADS APWNSSLNGYV 3 One
VH-VL (λ) 15 GFSLITPGMC IDWDDKK ARKVYGNIDAFDI SSYIGNNY DNN GTWDSSLSAGV 2 One
VH-VL (λ) 16 GFTFNDYY ISGAGNTI ARGRYFYYMDV SLRSYY LEN NSRDSSGDRVL 3 3
VH-VL (λ) 17 GYSFSNYW INPGDSDV ARLHTGQHLVGDWYFDI SSDVGAYDY DVI CSYVGSYTYV 5 2
VH-VL (λ) 18 GGFISSTTYY IYHTGNT ARQACYRGSCYSRATYFDQ ALPKKY EDD FSTDSSGKHGV 4 3
VH-VL (λ) 19 GYTFSSYW IYPGDSDA ARQVQPVYHYHYLDV SSNIGRNT KND AAWDDSLSVV 5 One
VH-VL (λ) 20 GFTFSSYS ISSSSSTI ARKETTVNYYMDV SSNIGSSF DNN GTWDSSQSAVV 3 One
VH-VL (λ) 21 GFTFSNYW IRRVGSDK ARDLNPRTNSRDPLDAYDV SLRSYY GKN NSRDSSGNHLVFGGSTQLTVL 3 3
VH-VL (λ) 22 GFTFTSSA IVVASGNT AADYDFSFYYASDV One
VH-VL (λ) 23 GDSVGSGNYY IYYDGRT ATGVEAGSQGYFDV SLRSYY GKN NSRDSSGNHLV 4 3
VH-VL (λ) 24 GDFFTSYG ISAFNGNR SLRSYY GKN NSRDSSGNHLV One 3
VH-VL (λ) 25 GDTFSAYA IVPIFDRT ARDHRDGYKYYFDS LLGDNY ENT QAWASSTVV One 3
VH-VL (λ) 26 GYTFTVYY INPIGGAT ARGPSSGDFDY NLGKRY QGS QAWDSTTDYV One 3
VH-VL (λ) 27 GYTFTGYY INPNSDGT SNDVSGYNR GVN SSRSSTNSYVFGTRTKLTVL One 2
VH-VL (λ) 28 GGSITGYY IYPTGKT ARLEFGVRFFDF SLRSYY GKN NSRDSSGNHLV 4 3
VH-VL (λ) 29 GFSFTGYY INPKSGDT LRSGYPLDH SLRSYY GKN NSRDSSGNHLV One 3
VH-VL (λ) 30 GGSLSTYY IYNTGTT ARQYSSSRYTV SGYSSHA LSSDGSH QTWGDGVHV 4 4
VH-VL (λ) 31 GASISSTNW IYHGGHT ARVVRGRHQFIDN ALPKKY EDS YSTDSSGSQWV 4 3
VH-VL (λ) 32 SLRISY GRN GSRDISGDHPV 3
VH-VL (λ) 33 GYSFTTYW IYPGHSDV ARLPYCGTECYPHLDNWARAPWSPS 5
VH-VL (λ) 34 GFSVDTGAVG IFGDGDK AHTDLKYGDFSFDD SLRSYY GKN NSRDSGGNHQV 2 3
VH-VL (λ) 35 GGSVSNYNYH FTYSGNI VNYLRGNGGRGP SSDFGGYNY DVS CSYAGTYTSGV 4 2
VH-VL (λ) 36 GYAFSSYG ISAVNGNT ARDDFSSYCFSH NIGSKS DNR QVWDSSSEHYV One 3
표 7
VH-VL(λ)37 GYSFTNDW IYPGDSDV ARRTFCGGDCDAFDI NIGSKS SDS QVWDSSSDHYV 5 3
VH-VL(λ)38 GFKFSSYG ISQDGSNK AKTTTYSIQMGFDS SLRSYY GKN NSRDSSGNHLV 3 3
VH-VL(λ)39 GYTFTNYG ISAYNGNT ARDDGPVATIGTWVLFDY SLRSYY GKN NSRDSSGNHLV 1 3
VH-VL(λ)40 GASVDSGRNY FSYSGST ARLSPVAGNYYFDY SLRSYY GKN NSRDSSGNHLV 4 3
VH-VL(λ)41 GSTFSNFL INQDGNEQ AKPLLRLVSSSWAGH SLRSYY GKN NSRDSSGNHLV 3 3
VH-VL(λ)42 GFSFSIYG IWCDGSHQ ARRGSSGILGPDTFDL SSNVGNNY DNN GTWDSRLIVGI 3 1
VH-VL(λ)43 GGSVSSNY VSNIGSP ARGVLALSHGDFHFDS GVGRKS YDT QVWHTTTNRVV 4 3
VH-VL(λ)44 GFLLSEHGLG IFSNDEK VRIFSSHNGKLWFPYKSDY SSNIETNY KDD ASWDDSLTDVV 2 1
VH-VL(λ)45 GFTFTNYW IYPADYDT ARRGDDWNYVRY TSNIGSNS NNN AAWDDSLNGWNVF*TGTQLTVL 5 1
VH-VL(λ)46 GGSFTGYS INPSGTT ARLKTSRTYYSDSGSYLSVGYFDSWAQGTLVTVA SLRSYY GKN NSRDSSGNHLV 4 3
VH-VL(λ)47 GGSFSGYY TIPRGRA ARHQTGERAFDV GSDVGGYNY EVT WSYAGSYTLV 4 2
VH-VL(λ)48 GGSINSTSSY IYYSGNT ARSRDYGSFFDS SSDVGSFDR DVI CSVADSGTLVLGGGTKLTVL 4 2
VH-VL(λ)49 GYKFTNYW IHPDDSES AKTVTGDRPIAGDGFGL SLRSYY GKN NSRDSSGNHLV 5 3
VH-VL(λ)50 LHWVRQAP IAEDESKA TRDVGFADYYMDV 3
VH-VL(λ)51 GYTLTNYG FYPGDSAS ARGSYCTAGVCTTDAFDI SGSVSTSYY STN VLYVGNGIVL 5 8
VH-VL(λ)52 GYTFTNNW IDPSDSQT ARGGFDYDDRGNPTPDYFDS SLRSYY GKN NSRDSSGNHLV 5 3
VH-VL(λ)53 GFSLKNYG LWYDGTTE TRISNRWGGDYFGY NIGSKS YDS QVRDGLTDQVV 3 3
VH-VL(λ)54 RFNFSSYA ISGSDGST RRREGLVVVPAAPHDGLLISGAKGQWSPSL SSNIGSNT DNS AAWDDSPNGHCV 3 1
VH-VL(λ)55 GFSLTTRGEG IYWDDVE VRKIIITNVSRKVLVPYFDH SGSVSTSYS GTN ALHLSSGIWV 2 8
VH-VL(λ)56 GYAFTSYG ISAHNGNT ARDGFSSYYFPL SLRSYY GKN NSRDSRGVV 1 3
VH-VL(λ)57 GFTFGDAW IKSNSAGGTT ATDRDYAFQI GSNIGDNA NGD AAWDGSLNGWV 3 1
VH-VL(λ)58 GSTFTGYF TNPKSGDS AGQQLVPANDVFDL SSDVGAYYR AVS TSYTTTKTYVFGTGPRSPSx 1 2
VH-VL(λ)59
VH-VL(λ)60 GFSLNSPRLG LFSDDEK ARSTNPYSGSYFSAYFDL LLAKKC KDS YSAADYKIV 2 3
VH-VL(λ)61 GFTFSSYW INKDGSEK ARDGADYGDDFDY SSNIGSND TND AAWDDSLSGVL 3 1
VH-VL(λ)62 GDSVSDSY IFPSAST ARRYSTSLSDSFDI SLRSYY GKN NSRDSSGNHLV 4 3
VH-VL(λ)63 GSSIHYYY IYSRGST CARIRVDDRDFWGREYYV*LLGPVDAGHG YLQNYY GER DSLDSSGNHMV 4 3
VH-VL(λ)64 GFSLSTTGMS IDWDNDH ARATSDSWSGYRNYYFDS SSDVGGYNY DVS CSYGGHHSVV 2 2
TABLE 7
VH-VL (λ) 37 GYSFTNDW IYPGDSDV ARRTFCGGDCDAFDI NIGSKS SDS QVWDSSSDHYV 5 3
VH-VL (λ) 38 GFKFSSYG ISQDGSNK AKTTTYSIQMGFDS SLRSYY GKN NSRDSSGNHLV 3 3
VH-VL (λ) 39 GYTFTNYG ISAYNGNT ARDDGPVATIGTWVLFDY SLRSYY GKN NSRDSSGNHLV One 3
VH-VL (λ) 40 GASVDSGRNY FSYSGST ARLSPVAGNYYFDY SLRSYY GKN NSRDSSGNHLV 4 3
VH-VL (λ) 41 GSTFSNFL INQDGNEQ AKPLLRLVSSSWAGH SLRSYY GKN NSRDSSGNHLV 3 3
VH-VL (λ) 42 GFSFSIYG IWCDGSHQ ARRGSSGILGPDTFDL SSNVGNNY DNN GTWDSRLIVGI 3 One
VH-VL (λ) 43 GGSVSSNY VSNIGSP ARGVLALSHGDFHFDS GVGRKS YDT QVWHTTTNRVV 4 3
VH-VL (λ) 44 GFLLSEHGLG IFSNDEK VRIFSSHNGKLWFPYKSDY SSNIETNY KDD ASWDDSLTDVV 2 One
VH-VL (λ) 45 GFTFTNYW IYPADYDT ARRGDDWNYVRY TSNIGSNS NNN AAWDDSLNGWNVF * TGTQLTVL 5 One
VH-VL (λ) 46 GGSFTGYS INPSGTT ARLKTSRTYYSDSGSYLSVGYFDSWAQGTLVTVA SLRSYY GKN NSRDSSGNHLV 4 3
VH-VL (λ) 47 GGSFSGYY TIPRGRA ARHQTGERAFDV GSDVGGYNY EVT WSYAGSYTLV 4 2
VH-VL (λ) 48 GGSINSTSSY IYYSGNT ARSRDYGSFFDS SSDVGSFDR DVI CSVADSGTLVLGGGTKLTVL 4 2
VH-VL (λ) 49 GYKFTNYW IHPDDSES AKTVTGDRPIAGDGFGL SLRSYY GKN NSRDSSGNHLV 5 3
VH-VL (λ) 50 LHWVRQAP IAEDESKA TRDVGFADYYMDV 3
VH-VL (λ) 51 GYTLTNYG FYPGDSAS ARGSYCTAGVCTTDAFDI SGSVSTSYY STN VLYVGNGIVL 5 8
VH-VL (λ) 52 GYTFTNNW IDPSDSQT ARGGFDYDDRGNPTPDYFDS SLRSYY GKN NSRDSSGNHLV 5 3
VH-VL (λ) 53 GFSLKNYG LWYDGTTE TRISNRWGGDYFGY NIGSKS YDS QVRDGLTDQVV 3 3
VH-VL (λ) 54 RFNFSSYA ISGSDGST RRREGLVVVPAAPHDGLLISGAKGQWSPSL SSNIGSNT DNS AAWDDSPNGHCV 3 One
VH-VL (λ) 55 GFSLTTRGEG IYWDDVE VRKIIITNVSRKVLVPYFDH SGSVSTSYS GTN ALHLSSGIWV 2 8
VH-VL (λ) 56 GYAFTSYG ISAHNGNT ARDGFSSYYFPL SLRSYY GKN NSRDSRGVV One 3
VH-VL (λ) 57 GFTFGDAW IKSNSAGGTT ATDRDYAFQI GSNIGDNA NGD AAWDGSLNGWV 3 One
VH-VL (λ) 58 GSTFTGYF TNPKSGDS AGQQLVPANDVFDL SSDVGAYYR AVS TSYTTTKTYVFGTGPRSPSx One 2
VH-VL (λ) 59
VH-VL (λ) 60 GFSLNSPRLG LFSDDEK ARSTNPYSGSYFSAYFDL LLAKKC KDS YSAADYKIV 2 3
VH-VL (λ) 61 GFTFSSYW INKDGSEK ARDGADYGDDFDY SSNIGSND TND AAWDDSLSGVL 3 One
VH-VL (λ) 62 GDSVSDSY IFPSAST ARRYSTSLSDSFDI SLRSYY GKN NSRDSSGNHLV 4 3
VH-VL (λ) 63 GSSIHYYY IYSRGST CARIRVDDRDFWGREYYV * LLGPVDAGHG YLQNYY GER DSLDSSGNHMV 4 3
VH-VL (λ) 64 GFSLSTTGMS IDWDNDH ARATSDSWSGYRNYYFDS SSDVGGYNY DVS CSYGGHHSVV 2 2
표 8
kappa VH VL IGHV Subfamily IGKV Subfamily
Clone CDR1 CDR2 CDR3 CDR1 CDR2 CDR3
VH-VL(K)01 GYKFTGFW IDPDDSHT ATTGGAFA QSISTW KAS QQYNGFPT 5 1
VH-VL(K)02 GYTFTRYY IDANGGGT VRDADNVVVTALAF EDVSRW GAS QQGYSLPIT 1 1
VH-VL(K)03 GYTFTNYL ISVYNGNT ARDGSGGSCYSDDSCALDI QTITTK DVS QQYGIWTS 1 3
VH-VL(K)04 GYSFSTYW IYPGDSDT ATYSSGWY RTINMY GAS LQHNYYIFS 5 1
VH-VL(K)05 GYTFTAYY FNPNSNDA ARLPSTPCTGGSCHDY RDITNY VAS QQSADLPTT 1 1
VH-VL(K)06 GFSFSNYW IKEDGAET ARADFGVVRTFYYYYNALDV QDIRND AAS QQYNTYPLT 3 1
VH-VL(K)07 GANISGTSDY LRYGGTT ARQAVEGRWYGGRRVYCP*QLLL QTVSDW KAS QQYHSYPWT 4 1
VH-VL(K)08 GFTFSSYS ISSSSSYI ARDGIAARPIDP 3
VH-VL(K)09 GGPISSTTFY VHHTGSS ARQRRGTSSWSSRRLQFDL QSISNY AAS QQSYSTPNT 4 1
VH-VL(K)10 ADTFSRFA IIPLFGTG ATSHYYGSDADPAWHFGL QSVVRY AAS QQYNSFSWT 1 1
VH-VL(K)11 GFSLASTGMC IDWDEDT GRIQPQRGIDF QSIGKW KAS QQYSSYSPFT 2 1
VH-VL(K)12 GFSLSTSGMC IDWDDDK ARTQGASGYSYGYVFGY EDVSRW AAS QQVDKMPVT 2 1
VH-VL(K)13 GGSIGSFS IYSSGST ARDFRDYNSGTYEVYNGSDP QSILTSSNGNNF WAS QQSYNTPFT 4 4
VH-VL(K)14 GFSLSNRRVG IFSNDGK ARTGYNYGGSFFFHGIDI QSISDY LAS LQDYSYPRT 2 1
VH-VL(K)15 GFSLNTSGMC IDWDDDK ARMLYRYYFQTSGLDS QNVNR YGS QQYDDWPQT 2 3
VH-VL(K)16 GGSFCGYN 4
VH-VL(K)17 GGSVSAYY IYHSGSS ARDSGSRVDF QSVLYSYTKKMY WAS QQYGTTPYT 4 4
VH-VL(K)18 GYGFSNYG IHVYDGKT ARNLLGGGTTLYPRDESLDV QSVGSN AAS QHYHDWPQT 1 3
VH-VL(K)19 GFSLTSPGAG IHWDDDK AREGRFPDAFDI QSISSY AAS QQSYSAPPVT 2 1
VH-VL(K)20 VSNTRASWN YRSKWYY ARSRPYGVYNDYFGY QGIDTY AAS LQDYNYPRT 6 1
VH-VL(K)21 DSPSPDYG TSPRDSNI ARRALFREETAHMDFGGCGPRAMV 5
VH-VL(K)22 GFSFNTGGVG IFWDDEK AYFGALGFGFKD QNINNY KAS LQHNSYPRT 2 1
VH-VL(K)23 GGIFTDFS IIPMSGSS ARHRSRSWFKMSMDV QDIRHW AAS QQADSFPLT 1 1
VH-VL(K)24 GYYFIDHY INPNNGAT LTDGGMGQGTMVTV HNVFSSY RAS QQYGNSPRT 1 3
VH-VL(K)25 GFSVNCDGVG IFWDGDK GHSLRGPGCRGGACYFFDY QNIKNY AIS QQSYSTPYT 2 1
VH-VL(K)26 GFSVNTGAVG IFGDGDK AHTDLNYGDFSFDD QSVSGY DAS HQRANWPLT 2 3
VH-VL(K)27 GFSSSTYW IHSGGSRT AVLPPGD QSISTW ETS QQYSGYLYSFGQGPGGNQ 3 1
VH-VL(K)28 GFTFGDAW IKSYSAGGAT ATDRDYAFQV QSVSNL AVS QQSYSALYS 3 1
VH-VL(K)29 GFSLTTSGMC IDWDDEK ARMCGYYDTSSGYDEASDM QSVLYSSNNKNC WAS QQYYSTPFT 2 4
VH-VL(K)30 SHSTLVQWV IYWDDDK AHSPAYKIGFYKIAI QPIGRW EAS QQYDSFPHT 2 1
VH-VL(K)31 GGSINTYY IHSSGTT ARDRVLVQGTHYYYYMDV RDISDR GAT QQHDDVPYT 4 1
VH-VL(K)32 GYSFNDFY INPDSGDT ARARGSRLPRYNDNDGSVDHYYYYTDV QSISSY AAS QQSYSTPWT 1 1
VH-VL(K)33 GFSLYTPRMG IYWDNDE AHSQYFGSNNDAFDV ESISTY AAS QQSYSTPQWT 2 1
VH-VL(K)34 GDSITSSTYN LYSSGGT ATDSNNVVPAARGLTFHH RDISHY GAS QQYDNLPGIT 4 1
VH-VL(K)35 GFSLDTFGVG IYWDDDK AYTYNTGSIDWFDP QGVLNS ASH QQYNYMST 2 1
VH-VL(K)36 GFTFSSYS ISSSSSTI ARKETTVNYYMDV QHITDF DAS QQNDDLPPYT 3 1
VH-VL(K)37 GYTFTKYG ISTYNGNT AREDGDSFGLMDYYYAMDV QGISNY AAS LQDFGYPRT 1 1
VH-VL(K)38 GFTVSSNY IYSNGDT ARDSPLDWYHEY RDISNH GAS QQYDHVPPA 3 1
VH-VL(K)39 GGSISGTSYF LFNTDGI AAYQSTSYYRPFED QDIDSW SAS QQYHDVPLT 4 1
VH-VL(K)40 GGTFSCYA IIPIFGTT ARGHTSSGWDYWGQSTLVTVA QSLTTY DAS QQSYSAPLT 1 1
VH-VL(K)41 GGTFSNYA IIPIFATA ARGWDYYGSAPYYLPFSY QSIGVW RAS QQYNLYPLT 1 1
VH-VL(K)42 DGSFASGGYY VYFTGDT ARGVHSSSSGGRAFDV QSVRRN GAS QQYNNWPLWT 4 3
VH-VL(K)43 EDVSRW AAS QQVDKMPAT 1
VH-VL(K)44 GGSISTDY ISYSGST ARAGQVILGNYYYYMDV 4
VH-VL(K)45 GYIFTNIW MYPGDSDT ASAVFLGGGNDAFDI QSVFSSSNNKNY WAS QHYYTYSPM 5 4
VH-VL(K)46 GGSINSADDY IFYSGNT ARGGDSSSWFSYYFQD QSISTD AAS QQSYSTPYT 4 1
VH-VL(K)47 GFSLNTDKVS IYSNYDK VFRSIRLRAFDI ESVSSN GAS QQYTNWPRT 2 3
VH-VL(K)48 GYSFTSYW IYPGGSES ASRYSSTWFL QGISNS AAA QQHITSPLT 5 1
VH-VL(K)49 GASISSTLYY IYYSGNS ARNEPNWNYVFDY QGINSW AAS QQANNFPLT 4 1
VH-VL(K)50 GYTFSDYY INPNRGDT ARDRVGYCRGGTCYSNAYDV QGVGPW STS LQSYSFHRT 1 1
VH-VL(K)51 ERSFIGYY INRSVTT ARGLRRAAPGPFRY QDIDSW GAS QQTTNFPIT 4 1
VH-VL(K)52 SDAICSGSDY IYTSGST ARERKSFVVRGGYYYYYMDV QDISNF DAS QQYDNVPFT 4 1
VH-VL(K)53 GFSLSTSGMC IDWDDDN ARLTYYYDSSAYLPGAFDT QTISTY AAS QQSYSTPFD 2 1
VH-VL(K)54 GYTFTGYY INPKNDET ARDPGSSSATNNWFDP QSISSY AAS QQTYSNFFT 1 1
VH-VL(K)55 QDISTY DAA QQYENLPVT 1
VH-VL(K)56 GLIVSGNY IYSGGNT ARHVDTTMSYFFDSWGQGQWSPSL QDITTF DAV QQFDSLPYT 3 1
VH-VL(K)57 SITNSYYY IYYLYNRGRT ARQGQVVPSAHDPFYM QSVNSF DAS HLYGSSPPWT 4 3
VH-VL(K)58 VFSNAASWN YRIKWFH ARALLNGHFDY QDISNY DAS QQYDNLPFT 6 1
VH-VL(K)59 GGSISGYY IHIVGALT EDGG*LSRTTLTTGAREPWSPS QDIKTH AAS QQTTTFPIT 4 1
VH-VL(K)60 GGSITTSSSF LYYNEIT VRPRDHGFDL QGISSA DAS QQFNNYLPLT 4 1
VH-VL(K)61 GYFFTDHY FDPKSGRT ARVAVAGRLEFYQH QSVGSY DVS QQSYSTRRTFGQRTKVEIK 1 1
VH-VL(K)62 GFSLTNARMG IFSDDDT ARIRAMGMRDYYYYMDV QSISSGY GPS QQYGSPPLT 2 3
VH-VL(K)63 GGSISSSF ISYSGSS ARDRSGTYYTFDI QSLFFSSTNKTF WAP QQSSSTPYT 4 4
VH-VL(K)64 GYSFTHFE VNPDSGNT ARGMTTVANEDVYLYYMDV QSISSY GAS QQNYITL*T 1 1
VH-VL(K)65 GFSLSTSGAG LFWDADR AHNFHMTPVM EDISGW GAS QQANTFPPAFGQGTKWISx 2 1
VH-VL(K)66 GGSISHYY IYGSGST ARDGADDGAQHYHLYGMDV ESISGR SAS LQDFSYPRTFGQGPRWRSx 4 1
VH-VL(K)67 GFSLSTNGVG IFWDDDK AHMGYTSSWYDY QNIESY KAS QQYHSYPWT 2 1
VH-VL(K)68 GGSFSGYY INHSGST ARGNEQWAVGAFDI QSISSS TAS QQSRT 4 1
VH-VL(K)69 RGIGNY AAS QKYNSAPYT 1
VH-VL(K)70 GYILIDYW IWPSDSDT ARPRDYSRSSSLDL QGISSW AAS QQTYSFPLT 5 1
VH-VL(K)71 GYPFIGYY INPNSGGT ARENQREITIFGMDPFDH EDVSRW AAS QQVDKVPVT 1 1
VH-VL(K)72 GYIFTSYY INPSGGGA ARDRAKGGDYEFAY QGISNS AAS QQYYSYPLT 1 1
VH-VL(K)73 GASFNGYY ITPRGEV ARDVNTYDRDIGHHPFDV QGIRNK DAS LQNYNYPYT 4 1
VH-VL(K)74 GFSFSNYW IDPSDSYT ARQGYCNGNSCSNFYSYMDV QSAGKW KTS QQYNLYPLT 5 1
VH-VL(K)75 QDISSY AAS QQSYSVPQTT 1
VH-VL(K)76 GDTFNNYA IIPIFSTT ARDWDPVDAARPDAFDF QGILYSSNNKNY WAS QQYYSTPIT 1 4
VH-VL(K)77 GASISISSYY IGYSGST ATHYCDSVGLDWFDP RNIRTS AAT QQYNSYSPLTFGGGDQAGDQ 4 1
VH-VL(K)78 GYKFSNYW IYPDDSDV ARRSHNWNDLDF QSISSY AAS QQSYSTLALT 5 1
Table 8
kappa VH VL IGHV Subfamily IGKV Subfamily
Clone CDR1 CDR2 CDR3 CDR1 CDR2 CDR3
VH-VL (K) 01 GYKFTGFW IDPDDSHT ATTGGAFA QSISTW KAS QQYNGFPT 5 One
VH-VL (K) 02 GYTFTRYY IDANGGGT VRDADNVVVTALAF EDVSRW GAS QQGYSLPIT One One
VH-VL (K) 03 GYTFTNYL ISVYNGNT ARDGSGGSCYSDDSCALDI QTITTK DVS QQYGIWTS One 3
VH-VL (K) 04 GYSFSTYW IYPGDSDT ATYSSGWY RTINMY GAS LQHNYYIFS 5 One
VH-VL (K) 05 GYTFTAYY FNPNSNDA ARLPSTPCTGGSCHDY RDITNY VAS QQSADLPTT One One
VH-VL (K) 06 GFSFSNYW IKEDGAET ARADFGVVRTFYYYYNALDV QDIRND AAS QQYNTYPLT 3 One
VH-VL (K) 07 GANISGTSDY LRYGGTT ARQAVEGRWYGGRRVYCP * QLLL QTVSDW KAS QQYHSYPWT 4 One
VH-VL (K) 08 GFTFSSYS ISSSSSYI ARDGIAARPIDP 3
VH-VL (K) 09 GGPISSTTFY VHHTGSS ARQRRGTSSWSSRRLQFDL QSISNY AAS QQSYSTPNT 4 One
VH-VL (K) 10 ADTFSRFA IIPLFGTG ATSHYYGSDADPAWHFGL QSVVRY AAS QQYNSFSWT One One
VH-VL (K) 11 GFSLASTGMC IDWDEDT GRIQPQRGIDF QSIGKW KAS QQYSSYSPFT 2 One
VH-VL (K) 12 GFSLSTSGMC IDWDDDK ARTQGASGYSYGYVFGY EDVSRW AAS QQVDKMPVT 2 One
VH-VL (K) 13 GGSIGSFS IYSSGST ARDFRDYNSGTYEVYNGSDP QSILTSSNGNNF WAS QQSYNTPFT 4 4
VH-VL (K) 14 GFSLSNRRVG IFSNDGK ARTGYNYGGSFFFHGIDI QSISDY LAS LQDYSYPRT 2 One
VH-VL (K) 15 GFSLNTSGMC IDWDDDK ARMLYRYYFQTSGLDS QNVNR YGS QQYDDWPQT 2 3
VH-VL (K) 16 GGSFCGYN 4
VH-VL (K) 17 GGSVSAYY IYHSGSS ARDSGSRVDF QSVLYSYTKKMY WAS QQYGTTPYT 4 4
VH-VL (K) 18 GYGFSNYG IHVYDGKT ARNLLGGGTTLYPRDESLDV QSVGSN AAS QHYHDWPQT One 3
VH-VL (K) 19 GFSLTSPGAG IHWDDDK AREGRFPDAFDI QSISSY AAS QQSYSAPPVT 2 One
VH-VL (K) 20 VSNTRASWN YRSKWYY ARSRPYGVYNDYFGY QGIDTY AAS LQDYNYPRT 6 One
VH-VL (K) 21 DSPSPDYG TSPRDSNI ARRALFREETAHMDFGGCGPRAMV 5
VH-VL (K) 22 GFSFNTGGVG IFWDDEK AYFGALGFGFKD QNINNY KAS LQHNSYPRT 2 One
VH-VL (K) 23 GGIFTDFS IIPMSGSS ARHRSRSWFKMSMDV QDIRHW AAS QQADSFPLT One One
VH-VL (K) 24 GYYFIDHY INPNNGAT LTDGGMGQGTMVTV HNVFSSY RAS QQYGNSPRT One 3
VH-VL (K) 25 GFSVNCDGVG IFWDGDK GHSLRGPGCRGGACYFFDY QNIKNY AIS QQSYSTPYT 2 One
VH-VL (K) 26 GFSVNTGAVG IFGDGDK AHTDLNYGDFSFDD QSVSGY DAS HQRANWPLT 2 3
VH-VL (K) 27 GFSSSTYW IHSGGSRT AVLPPGD QSISTW ETS QQYSGYLYSFGQGPGGNQ 3 One
VH-VL (K) 28 GFTFGDAW IKSYSAGGAT ATDRDYAFQV QSVSNL AVS QQSYSALYS 3 One
VH-VL (K) 29 GFSLTTSGMC IDWDDEK ARMCGYYDTSSGYDEASDM QSVLYSSNNKNC WAS QQYYSTPFT 2 4
VH-VL (K) 30 SHSTLVQWV IYWDDDK AHSPAYKIGFYKIAI QPIGRW EAS QQYDSFPHT 2 One
VH-VL (K) 31 GGSINTYY IHSSGTT ARDRVLVQGTHYYYYMDV RDISDR GAT QQHDDVPYT 4 One
VH-VL (K) 32 GYSFNDFY INPDSGDT ARARGSRLPRYNDNDGSVDHYYYYTDV QSISSY AAS QQSYSTPWT One One
VH-VL (K) 33 GFSLYTPRMG IYWDNDE AHSQYFGSNNDAFDV ESISTY AAS QQSYSTPQWT 2 One
VH-VL (K) 34 GDSITSSTYN LYSSGGT ATDSNNVVPAARGLTFHH RDISHY GAS QQYDNLPGIT 4 One
VH-VL (K) 35 GFSLDTFGVG IYWDDDK AYTYNTGSIDWFDP QGVLNS ASH QQYNYMST 2 One
VH-VL (K) 36 GFTFSSYS ISSSSSTI ARKETTVNYYMDV QHITDF DAS QQNDDLPPYT 3 One
VH-VL (K) 37 GYTFTKYG ISTYNGNT AREDGDSFGLMDYYYAMDV QGISNY AAS LQDFGYPRT One One
VH-VL (K) 38 GFTVSSNY IYSNGDT ARDSPLDWYHEY RDISNH GAS QQYDHVPPA 3 One
VH-VL (K) 39 GGSISGTSYF LFNTDGI AAYQSTSYYRPFED QDIDSW SAS QQYHDVPLT 4 One
VH-VL (K) 40 GGTFSCYA IIPIFGTT ARGHTSSGWDYWGQSTLVTVA QSLTTY DAS QQSYSAPLT One One
VH-VL (K) 41 GGTFSNYA IIPIFATA ARGWDYYGSAPYYLPFSY QSIGVW RAS QQYNLYPLT One One
VH-VL (K) 42 DGSFASGGYY VYFTGDT ARGVHSSSSGGRAFDV QSVRRN GAS QQYNNWPLWT 4 3
VH-VL (K) 43 EDVSRW AAS QQVDKMPAT One
VH-VL (K) 44 GGSISTDY ISYSGST ARAGQVILGNYYYYMDV 4
VH-VL (K) 45 GYIFTNIW MYPGDSDT ASAVFLGGGNDAFDI QSVFSSSNNKNY WAS QHYYTYSPM 5 4
VH-VL (K) 46 GGSINSADDY IFYSGNT ARGGDSSSWFSYYFQD QSISTD AAS QQSYSTPYT 4 One
VH-VL (K) 47 GFSLNTDKVS IYSNYDK VFRSIRLRAFDI ESVSSN GAS QQYTNWPRT 2 3
VH-VL (K) 48 GYSFTSYW IYPGGSES ASRYSSTWFL QGISNS AAA QQHITSPLT 5 One
VH-VL (K) 49 GASISSTLYY IYYSGNS ARNEPNWNYVFDY QGINSW AAS QQANNFPLT 4 One
VH-VL (K) 50 GYTFSDYY INPNRGDT ARDRVGYCRGGTCYSNAYDV QGVGPW STS LQSYSFHRT One One
VH-VL (K) 51 ERSFIGYY INRSVTT ARGLRRAAPGPFRY QDIDSW GAS QQTTNFPIT 4 One
VH-VL (K) 52 SDAICSGSDY IYTSGST ARERKSFVVRGGYYYYYMDV QDISNF DAS QQYDNVPFT 4 One
VH-VL (K) 53 GFSLSTSGMC IDWDDDN ARLTYYYDSSAYLPGAFDT QTISTY AAS QQSYSTPFD 2 One
VH-VL (K) 54 GYTFTGYY INPKNDET ARDPGSSSATNNWFDP QSISSY AAS QQTYSNFFT One One
VH-VL (K) 55 QDISTY DAA QQYENLPVT One
VH-VL (K) 56 GLIVSGNY IYSGGNT ARHVDTTMSYFFDSWGQGQWSPSL QDITTF DAV QQFDSLPYT 3 One
VH-VL (K) 57 SITNSYYY IYYLYNRGRT ARQGQVVPSAHDPFYM QSVNSF DAS HLYGSSPPWT 4 3
VH-VL (K) 58 VFSNAASWN YRIKWFH ARALLNGHFDY QDISNY DAS QQYDNLPFT 6 One
VH-VL (K) 59 GGSISGYY IHIVGALT EDGG * LSRTTLTTGAREPWSPS QDIKTH AAS QQTTTFPIT 4 One
VH-VL (K) 60 GGSITTSSSF LYYNEIT VRPRDHGFDL QGISSA DAS QQFNNYLPLT 4 One
VH-VL (K) 61 GYFFTDHY FDPKSGRT ARVAVAGRLEFYQH QSVGSY DVS QQSYSTRRTFGQRTKVEIK One One
VH-VL (K) 62 GFSLTNARMG IFSDDDT ARIRAMGMRDYYYYMDV QSISSGY GPS QQYGSPPLT 2 3
VH-VL (K) 63 GGSISSSF ISYSGSS ARDRSGTYYTFDI QSLFFSSTNKTF WAP QQSSSTPYT 4 4
VH-VL (K) 64 GYSFTHFE VNPDSGNT ARGMTTVANEDVYLYYMDV QSISSY GAS QQNYITL * T One One
VH-VL (K) 65 GFSLSTSGAG LFWDADR AHNFHMTPVM EDISGW GAS QQANTFPPAFGQGTKWISx 2 One
VH-VL (K) 66 GGSISHYY IYGSGST ARDGADDGAQHYHLYGMDV ESISGR SAS LQDFSYPRTFGQGPRWRSx 4 One
VH-VL (K) 67 GFSLSTNGVG IFWDDDK AHMGYTSSWYDY QNIESY KAS QQYHSYPWT 2 One
VH-VL (K) 68 GGSFSGYY INHSGST ARGNEQWAVGAFDI QSISSS TAS QQSRT 4 One
VH-VL (K) 69 RGIGNY AAS QKYNSAPYT One
VH-VL (K) 70 GYILIDYW IWPSDSDT ARPRDYSRSSSLDL QGISSW AAS QQTYSFPLT 5 One
VH-VL (K) 71 GYPFIGYY INPNSGGT ARENQREITIFGMDPFDH EDVSRW AAS QQVDKVPVT One One
VH-VL (K) 72 GYIFTSYY INPSGGGA ARDRAKGGDYEFAY QGISNS AAS QQYYSYPLT One One
VH-VL (K) 73 GASFNGYY ITPRGEV ARDVNTYDRDIGHHPFDV QGIRNK DAS LQNYNYPYT 4 One
VH-VL (K) 74 GFSFSNYW IDPSDSYT ARQGYCNGNSCSNFYSYMDV QSAGKW KTS QQYNLYPLT 5 One
VH-VL (K) 75 QDISSY AAS QQSYSVPQTT One
VH-VL (K) 76 GDTFNNYA IIPIFSTT ARDWDPVDAARPDAFDF QGILYSSNNKNY WAS QQYYSTPIT One 4
VH-VL (K) 77 GASISISSYY IGYSGST ATHYCDSVGLDWFDP RNIRTS AAT QQYNSYSPLTFGGGDQAGDQ 4 One
VH-VL (K) 78 GYKFSNYW IYPDDSDV ARRSHNWNDLDF QSISSY AAS QQSYSTLALT 5 One
라이브러리의 기능적 다양성은 실제로 항체로 발현할 수 있는 클론의 비율에 의해 결정된다. 이러한 정상적인 기능을 못하거나 발현되지 않는 클론들은 대부분 라이브러리 구축 과정에서 PCR 과정의 오류로 인한 것으로 판단된다. 라이브러리 구축 특성상 많은 PCR작업이 수행되고 이러한 오류가 축적이 되면서 결국 제 기능이 가능한 클론의 비율은 약 69%정도로 확인 되었다. The functional diversity of the library is determined by the percentage of clones that can actually express the antibody. Clones that do not function or express these normal functions are most likely due to errors in the PCR process during library construction. Due to the nature of library construction, a lot of PCR work was performed, and as these errors accumulated, the proportion of clones capable of functioning was about 69%.
최종적으로 1.18×1010 cfu 수준의 형질전환체를 가지는 인간 미감작 항체 라이브러리를 확보하였으며, 이 중 8.10×109 cfu가 정상적인 ScFv로 발현이 될 수 있음을 확인하였다. 일반적으로 최소 108 이상의 정도가 되면 사용에 무리가 없다고 인식되고 있기 때문에, 본 발명에 따른 라이브러리는 적절하게 구축되었다고 판단할 수 있다. Finally, a human unsensitized antibody library having a transformant of 1.18 × 10 10 cfu was obtained, and it was confirmed that 8.10 × 10 9 cfu could be expressed as a normal ScFv. In general, since it is recognized that the use is at least 10 8 or more, the library according to the present invention can be determined to be properly constructed.
추가로 가변영역의 아과(subfamily) 분포와 상보성 결정부위 서열 다양성을 확인하였으며, 그 결과를 도 8에 나타내었다. 가변영역의 아과 분포를 확인할 수 있는 중쇄는 총 135개 클론이, 경쇄는 총 134개(kappa 74개, lambda 60개) 클론이 분석되었으며, 'VBASE2' DB 를 통한 서열 분석 결과, VH 영역은 VH1, VH4 아과의 분포가 다소 높지만, 비교적 고른 VH1~VH5의 분포를 보였다. V 영역은 Vλ3 아과가 높은 경향을 보이며, V 영역은 Vκ1 아과가 78%로 존재하는 것이 확인되었다. In addition, subfamily distribution and complementarity determining site sequence diversity of the variable region were confirmed, and the results are shown in FIG. 8. The subfamily distribution heavy chain clones total 135 that can determine the variable region, the light chain Total 134 (kappa 74 gae, lambda 60 pieces) clones were analyzed, 'VBASE2' sequence analysis through the DB, V H region Although the distribution of V H1 and V H4 subfamily was rather high, relatively even distributions of V H1 and V H5 were shown. V regions showed a tendency that λ3 subfamily V high, V region was observed to have the V κ1 subfamily present in 78%.
또한, 도 9를 참조하면 항체 라이브러리의 다양성을 유지하는데 중요한 부위인 CDR-H3 영역의 아미노산 길이 및 분포 역시 기존의 여러 라이브러리에서와 같이 약 4~25 개의 다양한 길이를 보이며 98.4%가 KABAT DB에서 권장하는 올바른 CDR-H3의 길이를 가진다. 도 10을 참조하면, CDR-H3 영역의 KABAT 위치(H95-H102)의 아미노산의 분포 역시 다양하게 존재함을 확인하였다. CDR-H3는 항원 인지에 중요한 역할을 하고, 위의 결과에서와 같이 CDR 루프의 위치 별 다양한 아미노산 조성과 아미노산 길이의 다양성으로 인해, 항원과 결합하는 과정에서 상당히 중요한 입체구조의 변화를 일으켜서 여러 항원을 인지하는데 적합할 것으로 판단된다. 9, amino acid length and distribution of the CDR-H3 region, which is an important site for maintaining the diversity of the antibody library, are also about 4 to 25 different lengths as in many libraries, and 98.4% is recommended in the KABAT DB. Has the correct length of CDR-H3. Referring to FIG. 10, it was confirmed that various distributions of amino acids in the KABAT position (H95-H102) of the CDR-H3 region were also present. CDR-H3 plays an important role in antigen recognition, and due to the diversity of amino acid composition and amino acid length by position of the CDR loops, as shown in the above results, it is possible to produce a significant change in the conformational structure in the process of binding antigen to several antigens. It seems to be suitable for recognition.
실시예 9: Dot-blot 분석Example 9: Dot-blot Analysis
도 11에 도시한 바와 같이, 구축된 라이브러리가 ScFv 형태로 제대로 발현할 수 있는지를 확인하기 위해 Dot-blot 분석을 수행하였다. 제작된 라이브러리로부터 임의로 96개의 클론을 선정하여, 96웰 플레이트에서 200μL SB/암피실린 배지에서 37℃에서 배양한다. O.D 600에서 흡광도가 0.5~0.8 정도 되었을 때, IPTG를 최종 농도가 1mM이 되도록 투입하고 30℃, 밤샘배양으로 배양하였다. 다음 날, 원심분리를 하여 상층액(배양액)을 획득하고, 침전된 대 장균은 1X TES 40μL로 섞어준 후, 0.2X TES 60μL을 투입하여 용균시켰다. 원심분리를 통하여 찌꺼기들을 침전시키고 상층액(주변세포질 추출물)만 취하였다. pSIA23 벡터에 pelB 리더 서열이 있기 때문에, 발현되는 ScFv는 주변세포질로 이동하게 된다. 니트로셀룰로오스 막에 배양액과 주변세포질 추출물을 1μL씩 처리한 후, 상온에서 1시간 건조하였다. 5% 탈지유(TBS-0.1% tween 20)를 이용하여 블로킹 한 후, 항-HA-HRP를 처리하여 감지하였다. 도 11을 참조하면, 분석된 96개 중 64개의 클론이 제대로 HA-Tag이 감지됨을 확인하였다. 이를 통해, 항체단편이 제대로 발현됨을 확인하였다.As shown in FIG. 11, Dot-blot analysis was performed to confirm whether the constructed library can be properly expressed in ScFv form. 96 clones are randomly selected from the prepared library and incubated at 37 ° C. in 200 μL SB / Ampicillin medium in 96 well plates. When the absorbance at O.D 600 was about 0.5 to 0.8, IPTG was added to a final concentration of 1 mM and incubated overnight at 30 ° C. Next day, the supernatant (culture solution) was obtained by centrifugation, and the precipitated Escherichia coli was mixed with 40 μL of 1X TES, and then lysed by adding 60 μL of 0.2X TES. The debris was precipitated by centrifugation and supernatant (peripheral cytoplasmic extract) was taken. Since the pSIA23 vector contains the pelB leader sequence, the expressed ScFv migrates to the periplasm. The nitrocellulose membrane was treated with 1 μL of the culture solution and the peripheral cytoplasmic extract, and then dried at room temperature for 1 hour. After blocking with 5% skim milk (TBS-0.1% tween 20), anti-HA-HRP was detected. Referring to FIG. 11, it was confirmed that 64 clones out of 96 analyzed HA-Tag were properly detected. Through this, it was confirmed that the antibody fragment is properly expressed.
실시예 10: 라이브러리 증폭 및 ScFv 발현하는 박테리오파지의 회수Example 10 Library Amplification and Recovery of ScFv-Expressing Bacteriophage
대장균 숙주 TG1 내에 도입되어 있는 pSIA23 벡터를 증폭하기 위해, VH-V, VH-V 두 개의 하위 라이브러리를 각각 1L의 배양배지(SB/암피실린/2% 글루코오스) 내에 첨가하여 37℃, 220rpm에서 약 5시간 동안 배양하였다. O.D 600에서 흡광도가 0.5~0.8정도 배양된 숙주 세포들은 5,000g에서 20분 동안 원심분리하여 상층액을 제거 후, 침전된 숙주세포들을 SB배지에 부유시키고, 0.5 부피의 50% 글리세롤을 완전하게 섞은 후, 1mL씩 분주하여 -80℃에 보관하였다. 앞서 증폭된 VH-V, VH-V두 개의 하위 라이브러리를 각각 400mL 배양배지(SB/암피실린/2% 글루코오스)에 OD600이 0.5가 될 때까지 배양하였다. 원심분리를 하여 상층액을 제거하고 400 mL의 글루코오스가 제거된 배양배지(SB/암피실린) 내에 부유시킨 다음, 1012 pfu(plaque forming unit)의 VCSM13 헬퍼파지(Helper phage)를 첨가하여 37℃, 80rpm 1시간 동안 재배양하였다. 이후 카나마이신 항생제(헬퍼 파지 내 도입된 항생제 유전자)를 최종 농도 70μg/mL 농도로 첨가한 후, 30℃에서 밤샘 배양을 통해 파지 라이브러리가 숙주 세포 외로 만들어질 수 있도록 하였다. 이후 원심 분리된 배양 상층액은 PEG8000 (polyethylene glycol) 용액을 이용하여 파지 입자만 침전시킴으로써 파지 라이브러리를 회수하였다. 각 하위 라이브러리로부터 회수된 파지를 계수하기 위해 각 샘플을 희석한 다음 다시 숙주세포(TG1)에 감염시켜 LB/암피실린 배양배지에서 계수하였다. 이후 1012~1013 pfu 수준의 ScFv를 발현하는 파지 입자들을 패닝에 이용하였다.To amplify the pSIA23 vector introduced into Escherichia coli host TG1, two sub-libraries of V H -V and V H -V were each added in 1 L of culture medium (SB / ampicillin / 2% glucose) to 37 ° C., Incubated at 220 rpm for about 5 hours. Host cells cultured at OD 600 with an absorbance of 0.5 to 0.8 were centrifuged at 5,000 g for 20 minutes to remove supernatant, and then the precipitated host cells were suspended in SB medium and completely mixed with 0.5 volume of 50% glycerol. Thereafter, 1 mL was dispensed and stored at -80 ° C. Two sub-libraries amplified before, V H -V , V H -V were incubated in 400 mL culture medium (SB / ampicillin / 2% glucose) until OD 600 became 0.5. The supernatant was removed by centrifugation, suspended in 400 mL of glucose-free culture medium (SB / Ampicillin), and 10 12 pfu (plaque forming unit) of VCSM13 helper phage was added at 37 ° C. Cultured at 80 rpm for 1 hour. The kanamycin antibiotic (an antibiotic gene introduced into the helper phage) was then added at a final concentration of 70 μg / mL, followed by overnight culture at 30 ° C. to allow phage libraries to be made out of the host cell. The culture supernatant was then centrifuged to recover the phage library by precipitation of phage particles using PEG8000 (polyethylene glycol) solution. Each sample was diluted and counted in LB / ampicillin culture medium again after infection with host cells (TG1) to count phage recovered from each sublibrary. Since phage particles expressing Sc12F of 10 12 ~ 10 13 pfu level was used for panning.
실시예 11: Biopanning을 통한 항원 특이적 항체 동정Example 11: Antigen Specific Antibody Identification Via Biopanning
파지 디스플레이 스크리닝은 반복 회차 패닝을 통해 실시하였다. 계수된 하위 라이브러리를 약 4.0 × 1013 pfu(VH-V: 약 2.0 × 1013 pfu, VH-V: 약 2.0 × 1013 pfu) 수준이 되도록 취합한 후, PBS 내 5μg/mL 수준으로 희석된 9종의 항원(c-Met, HGF, ANG2, DLL4, EGFR, TNF-a, NRP1, VEGF, VEGFR2)이 코팅된 면역튜브에 처리하였다. 처리 전 면역튜브 및 파지 입자는 PBS 내 3% 탈지유를 함유하는 블로킹 용액을 1시간 처리하여 항원 외 비특이적인 결합을 방지하였다. 1시간 동안 파지 라이브러리를 항원이 코팅된 면역튜브에 처리한 후, PBST(0.1% Tween 20) 세척 용액으로 면역튜브를 세척한 다음 100 mM 트리에틸아민 1 mL을 첨가하여 10분간 정치함으로써, 항원에 결합한 파지 입자들을 회수하였고 1M Tris-Cl (pH 7.4)를 이용해 중화하였다. 회수된 파지(output) 수를 확인하기 위해 회수용액을 희석하여 숙주세포에 감염시킨 후 배양배지에서 계수하였다. 잔여 회수용액은 15 cm 배양배지에 도말하여 배양 후, 5mL의 SB 배양배지(50% 글리세롤)를 첨가하여 콜로니들을 회수 및 보관(-80℃)하였다. Phage display screening was performed through repeated round panning. The counted sublibrarys were assembled to a level of about 4.0 × 10 13 pfu (V H −V : about 2.0 × 10 13 pfu, V H −V : about 2.0 × 10 13 pfu) and then 5 μg / mL in PBS. Nine antigens diluted at levels (c-Met, HGF, ANG2, DLL4, EGFR, TNF-a, NRP1, VEGF, VEGFR2) were treated with coated immunotubes. Prior to treatment, the immunotubes and phage particles were treated for 1 hour with a blocking solution containing 3% skim milk in PBS to prevent non-specific binding. The phage library was treated with an antigen-coated immunotube for 1 hour, followed by washing the immunotube with PBST (0.1% Tween 20) washing solution, and then adding 1 mL of 100 mM triethylamine to the antigen for 10 minutes. Bound phage particles were recovered and neutralized with 1M Tris-Cl (pH 7.4). In order to confirm the number of recovered phages (output), the recovered solution was diluted and infected with host cells, and counted in the culture medium. The remaining recovered solution was plated in a 15 cm culture medium and cultured, and 5 mL of SB culture medium (50% glycerol) was added to collect and store colonies (-80 ° C).
계속되는 패닝 회차를 위해 보관된 전 회차 파지 용액 중 50μL를 취해 파지 입자 증폭 작업을 수행하였다. 숙주세포에 배양 후 VCSM13 헬퍼 파지(1011~1012 pfu)를 첨가하여 회수된 파지 입자들은 PEG 침전을 통해 준비되었고, 이를 이용하여 다음 회차 패닝을 전 회차 패닝과 동일한 방법으로 진행하였다. 패닝은 항원에 대하여 총 3~4회차까지 진행하였으며, 파지 디스플레이 패닝 결과는 도 12와 같다.Phage particle amplification was performed by taking 50 μL of the previous round phage solution stored for subsequent panning cycles. Phage particles recovered by adding VCSM13 helper phage (10 11 -10 12 pfu) after incubation in host cells were prepared by PEG precipitation, and the next round panning was performed by the same method as the previous round panning. Panning was performed up to 3 to 4 times for the antigen, and the phage display panning results are shown in FIG. 12.
실시예 12: 항 항원 ScFv 후보 선별을 위한 ELISA 선별Example 12 ELISA Screening for Anti-Antigen ScFv Candidate Selection
각 항원에 대한 총 3~4회의 패닝이 종료된 후, 최종 회차에서 회수된 파지 입자들은 숙주세포(TG1)에 감염을 통해 배양배지에서 콜로니로써 확인되었다. 이 콜로니들을 임의로 취하여 200μL SB/암피실린 배양배지가 담긴 96웰 플레이트 내 각각 접종 후 배양하였다(37℃, 3시간 이내). 이후 ScFv-pIII 단백질의 발현 유도를 위해 각 웰에 최종농도 1mM의 IPTG를 처리하고 30℃, 220rpm에서 밤샘 배양하였다. 이후 배양 플레이트는 원심분리 및 상층액 제거 후 각 웰 내 배양세포의 주변세포질(periplasm) 부위를 회수하기 위하여 40μL의 4℃로 유지해 두었던 1XTES 용액(20% w/v 수크로오스, 50mM Tris, 1 mM EDTA, pH 8.0)을 처리하여 4℃에서 30분 동안 정치함으로써 세포를 용해시켰다. 이후 다시 0.2XTES 용액 60μL를 처리하여 30분 동안 정치하였고, 최종적으로 플레이트를 원심분리한 후 상층액을 회수함으로써 ScFv-pIII 단백질을 소규모로 생산하였다. 한편, 항원이 코팅된 96웰 플레이트를 동시에 준비한 다음 회수된 주변세포질 부위 중 25μL를 취하여 각 웰에 첨가 후 1시간 동안 결합시켰다. 대조군으로는 BSA 단백질을 이용하였다. 이후, TBST를 이용, 3-4회 세척 과정을 거친 다음, HRP가 결합된 항 HA 항체를 1시간 결합시킨 후 다시 세척 및 발색반응(TMB substrate)을 유도한 후 O.D 450 nm에서 그 값을 측정하였다. 결합능 배수가 2이상인 클론의 개수를 분석하여 그 결과를 도 13에 나타내었다. 도 13을 참조하면, 여러 항원에 대하여 결합능력을 가지는 ScFv들이 회수됨을 확인하였다.After a total of three to four pannings for each antigen were completed, the phage particles recovered in the final round were identified as colonies in the culture medium through infection with host cells (TG1). These colonies were randomly taken and cultured after each inoculation in 96-well plates containing 200 μL SB / ampicillin culture medium (within 37 ° C., within 3 hours). Then, to induce the expression of the ScFv-pIII protein, each well was treated with IPTG at a final concentration of 1 mM and incubated overnight at 30 ° C. and 220 rpm. Afterwards, the culture plate was centrifuged and the supernatant was removed, and then 1XTES solution (20% w / v sucrose, 50 mM Tris, 1 mM EDTA) was maintained at 40 μL at 4 ° C. to recover periplasm sites of cultured cells in each well. , pH 8.0) to lyse cells by standing at 4 ° C for 30 minutes. Subsequently, 60 μL of a 0.2 × TES solution was again treated, and allowed to stand for 30 minutes. Finally, the plate was centrifuged and the supernatant was recovered to produce a small scale ScFv-pIII protein. Meanwhile, antigen-coated 96-well plates were prepared at the same time, and then 25 μL of the recovered periplasmic sites were taken and bound to each well for 1 hour. BSA protein was used as a control. After 3-4 times of washing using TBST, HRP conjugated anti-HA antibody was bound for 1 hour, followed by washing and color reaction (TMB substrate), and the value was measured at OD 450 nm. It was. The result of analyzing the number of clones having a binding capacity multiple of 2 or more is shown in FIG. 13. Referring to Figure 13, it was confirmed that the ScFv having a binding capacity for the various antigens are recovered.
실시예 13: Phage ELISAExample 13: Phage ELISA
도 13 중 DLL4를 항원으로 진행한 패닝 결과에서 유독 강한 신호를 보이는 C01 클론을 선택하여 후속 실험을 진행하였다. DLL4_C01 ScFv는 파지 디스플레이 스크리닝을 통해 선별되었기 때문에 파지의 구조에 발현된 채로 DLL4에 대한 농도 의존적인 결합능을 보임을 확인하였다. DLL4_C01 클론을 발현하는 숙주세포에서 파지 입자를 개별적으로 회수작업을 수행하여, 계수하였다. 이후 DLL4가 코팅된 96웰 플레이트에 각각의 파지 입자를 희석하여 그 농도에 따라 처리하여 항 파지 항체를 이용한 ELISA 분석을 통해 그 결합능을 확인하였으며, 그 결과를 도 14에 나타내었다. In FIG. 13, the C01 clone showing a strong toxic signal was selected from the panning result of the DLL4 antigen. Since DLL4_C01 ScFv was selected through phage display screening, it was confirmed that it showed concentration-dependent binding ability to DLL4 while being expressed in the structure of phage. Phage particles were individually collected from host cells expressing the DLL4_C01 clone and counted. Thereafter, each phage particle was diluted in a DLL4 coated 96 well plate and treated according to its concentration, and the binding ability thereof was confirmed by ELISA analysis using an anti-phage antibody, and the results are shown in FIG. 14.
그 결과, 파지 입자수의 감소에 따라 결합능이 감소하는 양상을 확인할 수 있었으며, 특정 입자 수 이상에서는 신호가 포화됨을 확인하였다. 이를 통해 파지 입자수에 의한 DLL4에 대한 특이성을 검정할 수 있었다. 따라서 스크리닝 과정에서 DLL4에 대한 결합능을 기반으로 선별된 ScFv들은 파지 구조체에 표지된 형태로도 DLL4에 대한 결합능을 보임을 검정할 수 있었다.As a result, it was confirmed that the binding capacity decreases as the number of phage particles decreased, and it was confirmed that the signal was saturated at a specific particle number or more. Through this, it was possible to test the specificity for DLL4 by the number of phage particles. Therefore, the ScFv screened on the basis of the binding capacity to DLL4 during the screening process was able to test the binding ability to DLL4 even in the form labeled on the phage structure.
실시예 14: 단백질 발현 균주 TOP10F'을 이용한 ScFv 생산 및 정제Example 14 ScFv Production and Purification Using Protein Expression Strain TOP10F '
ScFv 단독의 결합력 및 기능을 확인하기 위해 단백질 발현 균주(TOP10F')를 이용하여 발현 및 정제과정을 거쳤다. 파지미드 벡터의 기본 구성은 도 1에서 확인할 수 있으며, 스크리닝된 파지미드를 보유한 숙주세포(TG1)는 ScFv와 파지의 pIII 단백질 사이에 존재하는 전사억제 코돈(amber codon(UAG))을 억제하는 숙주로써 ScFv 단독 발현이 불가능하기 때문에, 비억제 숙주(non-suppressor strain)인 발현균주(TOP10F')를 이용하였다. In order to confirm the binding capacity and function of ScFv alone, the protein expression strain (TOP10F ') was used for expression and purification. The basic structure of the phagemid vector can be seen in FIG. 1, where the host cell (TG1) carrying the screened phagemid inhibits the amber codon (UAG) present between ScFv and the phage pIII protein. As it is impossible to express ScFv alone, an expression strain (TOP10F ′), which is a non-suppressor strain, was used.
ScFv를 코딩하는 파지미드는 숙주세포로부터 회수된 후 발현균주 내로 형질도입 되었다. 이후 DNA 서열분석을 통해 각 파지미드가 성공적으로 도입된 발현균주를 확인하였으며, 각 ScFv가 도입된 발현균주들은 단일 콜로니를 취한 다음 LB/암피실린 배양배지 3mL에 접종 후 37℃, 220rpm에서 밤샘배양 되었다. 밤샘배양 후 배양액은 400mL의 배양배지(SB/암피실린)로 옮겨진 후, OD600에서 0.5-0.8이 될 때까지 추가로 배양되었고, 최종 농도 1 mM의 IPTG를 첨가하여 30℃, 220rpm에서 다시 밤샘배양 되었다. 배양액은 원심분리 후 1X TES 용액 16mL을 이용하여 세포를 부유시키고, 0.2X TES 24 mL을 추가로 투입하여, 발현숙주를 용해시킨 다음 원심분리를 통하여 주변세포질 부위만을 회수하였으며, 회수된 배양액은 0.45μm 필터를 통해 여과되었다. Phagemid encoding the ScFv was recovered from the host cell and then transduced into the expression strain. Subsequently, the DNA strains were used to confirm the expression strains to which each phagemid was successfully introduced. The expression strains to which each ScFv was introduced were taken in single colonies, inoculated in 3 mL of LB / ampicillin culture medium, and then cultured overnight at 37 ° C and 220 rpm. . After overnight culture, the culture medium was transferred to 400 mL of culture medium (SB / Ampicillin), and further cultured until the OD 600 reached 0.5-0.8, and overnight culture was again carried out at 30 ° C. and 220 rpm by adding IPTG at a final concentration of 1 mM. It became. After centrifugation, the cells were suspended using 16 mL of 1X TES solution, an additional 24 mL of 0.2X TES was added to dissolve the expression host, and only the surrounding cytoplasm was recovered by centrifugation. The recovered culture solution was 0.45. It was filtered through a μm filter.
여과된 용해용액 내 ScFv 단백질은 His-tag 정제를 위해 Ni-NTA 비드(Qiagen) 1mL이 첨가되어 4℃에서 1시간 동안 결합되었다. 이후 중력 컬럼(gravity column, Bio-rad)에 패킹되어 PBS(with 10mM 이미다졸)을 이용하여 세정하고, PBS(with 200mM 이미다졸)을 이용하여 ScFv 형태로 회수 되었다. 정제된 ScFv는 SDS-PAGE 및 쿠마시 염색(coomassie blue staining)을 통해 확인되었으며, 그 결과를 도 15에 나타내었다. 도 15를 참조하면, 각각의 ScFv는 약 28 kDa 크기를 가짐을 확인할 수 있었다. 각 정제 ScFv 단백질들은 브래드포드(Bradford) 단백질 측정 방법을 통해 농도 측정 후 보관 및 추후 실험에 이용되었다. ScFv protein in the filtered lysate was bound with 1 mL of Ni-NTA beads (Qiagen) for 1 hour at 4 ° C for His-tag purification. Then, it was packed in a gravity column (gravity column, Bio-rad), washed with PBS (with 10 mM imidazole), and recovered in ScFv form using PBS (with 200 mM imidazole). Purified ScFv was confirmed by SDS-PAGE and coomassie blue staining, and the results are shown in FIG. 15. Referring to Figure 15, each ScFv was confirmed to have a size of about 28 kDa. Each purified ScFv protein was used for storage after concentration measurement through the Bradford protein measurement method and for later experiments.
실시예 15: DLL4에 ScFv의 농도별 직접 결합양상 확인Example 15: Confirmation of direct binding patterns of ScFv by DLL4 concentration
생산된 ScFv의 DLL4 단백질에 대한 결합능은 농도별 ELISA를 통해 확인하였다. 96웰 플레이트에 4μg/mL 농도로 코팅된 DLL4에 생산된 농도별로 ScFv를 처리하고, HRP가 결합된 항 HA 항체를 1시간 처리하여 DLL4와 결합중인 ScFv를 탐지하였으며, 그 결과를 도 16에 나타내었다. 그 결과, DLL4_C01 ScFv는 농도 의존적으로 결합양상이 나타남을 확인하였으며, 대조군(BSA)에 비해 DLL4 단백질에 대해 유의적인 결합능이 있음을 확인할 수 있었다.The binding capacity of the produced ScFv to DLL4 protein was confirmed by concentration-specific ELISA. ScFv was treated for each concentration produced in DLL4 coated at a concentration of 4 μg / mL in a 96-well plate, and the HF-coupled anti-HA antibody was treated for 1 hour to detect ScFv binding to DLL4, and the results are shown in FIG. 16. It was. As a result, it was confirmed that DLL4_C01 ScFv showed a binding pattern in a concentration-dependent manner, and it was confirmed that the DLL4_C01 ScFv had a significant binding capacity to the DLL4 protein compared to the control group (BSA).
실시예 16: GBM환자 유래 세포를 이용한 EGFRvIII 특이적 항체 스크리닝Example 16: EGFRvIII Specific Antibody Screening with GBM Patient Derived Cells
EGFRvIII는 암세포에서 EGFR이 과발현 및 증폭되면서 생기는 돌연변이로 6-273의 아미노산이 결손된 암세포 특이적인 항원이다. Cetuximab, Panitumumab등과 같은 기존의 EGFR 항체 치료제들의 경우 대부분 EGFR의 310-480 아미노산 사이에 결합한다. 일반적인 EGFR 항체 치료제들은 EGFR과 EGFRvIII 모두에 결합하여서 특이적으로 EGFRvIII를 표적할 수가 없고, EGFRvIII 돌연변이 암환자들에게는 효과가 없는 것으로 보고된다. 또한, EGFRvIII 항원은 정상세포에서는 발현되지 않고 암세포에서만 발현되는 암 특이적 항원이기 때문에 ADC(Antibody-drug conjugates) 개발에 최적화된 항원이다. EGFRvIII is a cancer cell-specific antigen that is a mutation resulting from overexpression and amplification of EGFR in cancer cells, resulting in the deletion of 6-273 amino acids. Most existing EGFR antibody therapeutics, such as Cetuximab and Panitumumab, bind between 310-480 amino acids of EGFR. Generic EGFR antibody therapies bind to both EGFR and EGFRvIII and are unable to specifically target EGFRvIII and are reported to be ineffective in EGFRvIII mutant cancer patients. In addition, EGFRvIII antigen is an antigen optimized for the development of antibody-drug conjugates (ADCs) because it is a cancer-specific antigen that is expressed only in cancer cells but not in normal cells.
EGFRvIII에 결합하는 항체 개발을 위해 EGFRvIII 과발현된 환자유래세포를 이용하여 도 17에서 나타낸 방식으로, 실시예를 통해 제조된 라이브러리에서 cell panning 기법으로 항체를 동정하였다. 정제된 재조합 단백질(항원)은 단백질의 3차원 구조를 재연하지 못하기 때문에 기존의 panning법은 효율적으로 항체를 동정할 수 없다. 그러나, cell panning법은 환자세포에 과발현된 암항원을 이용하기 때문에 자연상의 형태를 인지하는 항체를 더 효율적으로 개발할 수 있다. Cell panning을 이용하여 EGFRvIII 특이적인 항체를 개발하기 위해 교모세포종(Glioblastoma, GBM) 암환자들에게서 암세포를 확보한 후, 도 18과 같이 EGFRvIII의 발현 정도를 RT-PCR과 Western blot을 이용하여 확인하고, EGFRvIII의 발현이 가장 높은 626T 교모세포종 환자세포를 최종 항체개발을 위한 세포로 선정하였다. EGFRvIII 발현을 EGFRvIII shRNA를 이용하여 억제하고, 환자유래세포에서 음성 선택 후 EGFRvIII 특이적 항체를 반복된 panning을 통해 EGFRvIII 특이적 항체들의 비율이 증가함을 확인하였다. 도 19에서 최종적으로 3종의 후보 항체들을 확보한 후, EGFRvIII 특이적인 결합능을 ELISA 분석을 통해 확인하였다. 결합상수를 측정하기 위해 Biacore T100을 이용한 표면플라스몬공명법(Surface Plasmon Resonance)을 수행하였다. 3종의 scFv들이 수십 nM 수준의 결합능이 보임을 확인하였다. 동정된 3종의 후보항체들이 626T 교모세포종 환자세포의 세포성장을 효율적으로 억제할 수 있는지를 확인한 결과, 도 19에 나타낸 바와 같이 1B07N이 효율적으로 성장을 억제함을 확인하였다.Antibodies were identified by cell panning techniques in the libraries prepared through the examples in the manner shown in FIG. 17 using patient derived cells overexpressed with EGFRvIII for the development of antibodies that bind to EGFRvIII. Since purified recombinant proteins (antigens) do not reproduce the three-dimensional structure of proteins, conventional panning methods cannot efficiently identify antibodies. However, since cell panning uses cancer antigens overexpressed in patient cells, antibodies that recognize natural forms can be more efficiently developed. After developing cancer cells from glioblastoma (GBM) cancer patients to develop EGFRvIII specific antibodies using cell panning, the expression level of EGFRvIII was confirmed using RT-PCR and Western blot as shown in FIG. , 626T glioblastoma patient cells with the highest expression of EGFRvIII were selected as the cells for final antibody development. It was confirmed that EGFRvIII expression was inhibited using EGFRvIII shRNA, and the proportion of EGFRvIII specific antibodies increased through repeated panning of EGFRvIII specific antibodies after negative selection in patient-derived cells. After finally securing three candidate antibodies in FIG. 19, EGFRvIII specific binding ability was confirmed by ELISA analysis. Surface Plasmon Resonance was performed using Biacore T100 to measure the binding constant. Three scFvs were found to show a binding capacity of several tens of nM. As a result of confirming that three identified candidate antibodies can effectively inhibit cell growth of 626T glioblastoma patient cells, it was confirmed that 1B07N effectively inhibited growth as shown in FIG. 19.
본 발명이 속한 분야에서 통상의 지식을 가진 자라면 상기 내용을 바탕으로 본 발명의 범주내에서 다양한 응용 및 변형을 행하는 것이 가능할 것이다.Those skilled in the art to which the present invention pertains will be able to perform various applications and modifications within the scope of the present invention based on the above contents.
본 발명을 통해, 높은 수준의 다양성을 가지는 라이브러리 구축이 가능할 뿐 아니라, ScFv가 인간항체이므로 종래 기술을 통해 스크리닝된 항체와 비교하여 HAMA 반응이 나타나지 않는 항체를 스크리닝할 수 있으며, 질환의 치료 또는 진단에 효과적으로 사용할 수 있는 항체의 개발을 가능하도록 한다.Through the present invention, not only the construction of a library having a high level of diversity is possible, but also ScFv is a human antibody, so it is possible to screen for antibodies which do not exhibit HAMA response as compared to antibodies screened through the prior art, and for treating or diagnosing a disease. To enable the development of antibodies that can be used effectively.
전자파일 첨부하였음.Electronic file attached.

Claims (20)

  1. ScFv 항체를 표면에 제시하는 파지를 포함하는 라이브러리로, A library containing phage that present ScFv antibodies to a surface,
    상기 ScFv 항체는 면역 기관 유래 항체의 중쇄 가변 영역 (VH) 및 경쇄 가변영역 (V 또는 V)을 포함하고, The ScFv antibody comprises a heavy chain variable region (V H ) and a light chain variable region (V or V ) of an antibody derived from an immune organ,
    상기 ScFv 항체는 면역 기관 유래 세포에서 추출된 핵산을 주형으로 면역 기관 유래 항체의 중쇄 가변 영역 (VH) 및 경쇄 가변영역 (V 또는 V) 특이적 프라이머를 이용하여 합성된 핵산으로부터 코딩된 것임을 특징으로 하는 라이브러리.The ScFv antibody was encoded from a nucleic acid synthesized using a heavy chain variable region (V H ) and a light chain variable region (V or V ) specific primer of an antibody derived from an immune organ, using a nucleic acid extracted from an immune organ-derived cell as a template. Library.
  2. 제1항에 있어서, 상기 면역 기관은 골수, 혈액 및 편도로 이루어진 군에서 선택된 하나 이상인 것을 특징으로 하는 라이브러리.The library of claim 1, wherein the immune organ is at least one selected from the group consisting of bone marrow, blood, and tonsils.
  3. 제1항에 있어서, 상기 ScFv 항체는 핵산이 클로닝된 하기 구조의 벡터가 도입된 형질전환체에서 발현되어, 형질전환체에 포함된 파지 표면에 제시되는 것을 특징으로 하는 라이브러리.The library of claim 1, wherein the ScFv antibody is expressed in a transformant into which a vector having the following structure in which nucleic acid has been cloned is introduced, and is present on a phage surface included in the transformant.
    A-X-B-링커-C-Y-D-EA-X-B-Linker-C-Y-D-E
    상기 A~D는 SfiⅠ, NheⅠ, BglII 및 NotⅠ으로 이루어진 군에서 선택되는 어느 하나의 제한효소 인식 부위이고,A to D are any one restriction enzyme recognition site selected from the group consisting of Sfi I, Nhe I, BglII and Not I,
    상기 E는 His tag 또는 HA(Hemagglutinin) tag 삽입 부위이며,E is a His tag or HA (Hemagglutinin) tag insertion site,
    상기 X는 중쇄 가변영역(VH)을 코딩하는 유전자 삽입 부위이며, Y는 경쇄 가변영역 (V 또는 V)을 코딩하는 유전자 삽입 부위이다.X is a gene insertion region encoding a heavy chain variable region (V H ), Y is a gene insertion region encoding a light chain variable region (V or V ).
  4. 제3항에 있어서, 상기 A는 SfiⅠ, B는 NheⅠ, C는 BglII 및 D는 NotⅠ의 제한효소 인식부위인 것을 특징으로 하는 라이브러리.The library according to claim 3, wherein A is SfiI, B is NheI, C is BglII and D is a restriction enzyme recognition site of NotI.
  5. 제1항에 있어서, 상기 ScFv 항체는 인간항체(human antibody)인 것을 특징으로 하는 라이브러리.The library of claim 1, wherein the ScFv antibody is a human antibody.
  6. 제1항에 있어서, 상기 프라이머는 서열번호 7~24로 표시되는 서열로 구성된 군에서 선택되는 하나 이상의 프라이머 및 서열번호 25~58로 표시되는 서열로 구성된 군에서 선택되는 하나 이상의 프라이머를 포함하는 것을 특징으로 하는 라이브러리.The method of claim 1, wherein the primers include one or more primers selected from the group consisting of sequences represented by SEQ ID NOs: 7-24 and one or more primers selected from the group consisting of sequences represented by SEQ ID NOs: 25-58 Featuring a library.
  7. 제1항에 있어서, 상기 중쇄 가변영역은 서열번호 63-104 및 147-200로 표시되는 서열로 구성된 군에서 선택되는 어느 하나의 서열을 가지는 것을 특징으로 하는 라이브러리.The library of claim 1, wherein the heavy chain variable region has any one sequence selected from the group consisting of SEQ ID NOs: 63-104 and 147-200.
  8. 제1항에 있어서, 상기 경쇄 가변영역은 서열번호 105-146 및 201-254로 표시되는 서열로 구성된 군에서 선택되는 어느 하나의 서열을 가지는 것을 특징으로 하는 라이브러리.The library of claim 1, wherein the light chain variable region has any one sequence selected from the group consisting of SEQ ID NOs: 105-146 and 201-254.
  9. 제1항에 있어서, 상기 라이브러리의 다양성은 108~1014인 것을 특징으로 하는 라이브러리.The library of claim 1, wherein the diversity of the library is 108 to 1014.
  10. 면역 기관 유래 세포에서 핵산을 추출하는 단계;Extracting a nucleic acid from an immune organ-derived cell;
    상기 추출된 핵산을 주형으로 하고, 면역 기관 유래 항체의 중쇄 가변 영역 (VH) 및 경쇄 가변영역 (V 또는 V) 특이적 프라이머를 이용하여 중쇄 가변 영역 및 경쇄 가변 영역을 코딩하는 핵산을 증폭하는 단계; The nucleic acid encoding the heavy chain variable region and the light chain variable region using the extracted nucleic acid as a template and using the heavy chain variable region (V H ) and the light chain variable region (V or V ) specific primers of the antibody derived from an immune organ. Amplifying;
    상기 중쇄 가변 영역 및 경쇄 가변 영역을 코딩하는 핵산을 벡터에 클로닝한 다음 형질전환체에 도입하는 단계; 및Cloning a nucleic acid encoding the heavy and light chain variable regions into a vector and then introducing the transformant into a transformant; And
    상기 형질전환체에서 ScFv 항체를 발현하여, 형질전환체에 포함된 파지 표면에서 발현된 ScFv 항체를 제시하는 단계를 포함하는 라이브러리의 제조방법.Expressing a ScFv antibody in the transformant, the method of producing a library comprising the step of presenting the ScFv antibody expressed on the phage surface contained in the transformant.
  11. 제10항에 있어서, 상기 면역 기관은 골수, 혈액 및 편도로 이루어진 군에서 선택된 하나 이상인 것을 특징으로 하는 제조방법.The method of claim 10, wherein the immune organ is at least one selected from the group consisting of bone marrow, blood, and tonsils.
  12. 제10항에 있어서, 상기 ScFv 항체는 하기 구조의 벡터가 도입된 형질전환체에서 발현되는 것을 특징으로 하는 제조방법.The method of claim 10, wherein the ScFv antibody is expressed in a transformant into which a vector having the following structure is introduced.
    A-X-B-링커-C-Y-D-EA-X-B-Linker-C-Y-D-E
    상기 A~D는 SfiⅠ, NheⅠ, BglII 및 NotⅠ으로 이루어진 군에서 선택되는 어느 하나의 제한효소 인식 부위이고,A to D are any one restriction enzyme recognition site selected from the group consisting of Sfi I, Nhe I, BglII and Not I,
    상기 E는 His tag 또는 HA(Hemagglutinin) tag 삽입 부위이며,E is a His tag or HA (Hemagglutinin) tag insertion site,
    상기 X는 중쇄 가변영역(VH)을 발현하는 유전자 삽입 부위이며, Y는 경쇄 가변영역 (V 또는 V)을 발현하는 유전자 삽입 부위이다.X is a gene insertion site expressing the heavy chain variable region (V H ), Y is a gene insertion site expressing the light chain variable region (V or V ).
  13. 제12항에 있어서, 상기 A는 SfiⅠ, B는 NheⅠ, C는 BglII 및 D는 NotⅠ의 제한효소 인식부위인 것을 특징으로 하는 제조방법.The method of claim 12, wherein A is SfiI, B is NheI, C is BglII and D is a restriction enzyme recognition site of NotI.
  14. 제10항에 있어서, 상기 ScFv 항체는 인간항체(Human Antibody)인 것을 특징으로 하는 제조방법.The method of claim 10, wherein the ScFv antibody is a human antibody.
  15. 제10항에 있어서, 상기 프라이머는 서열번호 7~24로 표시되는 서열로 구성된 군에서 선택되는 하나 이상의 프라이머 및 서열번호 25~58로 표시되는 서열로 구성된 군에서 선택되는 하나 이상의 프라이머를 포함하는 것을 특징으로 하는 제조방법.The method of claim 10, wherein the primers include one or more primers selected from the group consisting of sequences represented by SEQ ID NOs: 7-24 and one or more primers selected from the group consisting of sequences represented by SEQ ID NOs: 25-58 Characterized in the manufacturing method.
  16. 제10항에 있어서, 상기 중쇄 가변영역은 서열번호 63-104 및 147-200로 표시되는 서열로 구성된 군에서 선택되는 어느 하나의 서열을 가지는 것을 특징으로 하는 제조방법.The method according to claim 10, wherein the heavy chain variable region has any one sequence selected from the group consisting of sequences represented by SEQ ID NOs: 63-104 and 147-200.
  17. 제10항에 있어서, 상기 경쇄 가변영역은 서열번호 105-146 및 201-254로 표시되는 서열로 구성된 군에서 선택되는 어느 하나의 서열을 가지는 것을 특징으로 하는 제조방법.The method of claim 10, wherein the light chain variable region has any one sequence selected from the group consisting of sequences represented by SEQ ID NOs: 105-146 and 201-254.
  18. 제1항 내지 제9항 중 어느 한 항에 따른 라이브러리를 항원과 반응시켜 항원 특이적 ScFv 항체를 스크리닝하는 단계를 포함하는 ScFv 항체 스크리닝 방법.A method for screening ScFv antibodies, comprising screening an antigen specific ScFv antibody by reacting a library according to any one of claims 1 to 9 with an antigen.
  19. 제18항에 있어서, 자가면역질환 또는 암 유발 인자에 특이적으로 결합하는 ScFv 항체를 스크리닝하는 것을 특징으로 하는 방법.The method of claim 18, wherein the ScFv antibody is specifically screened for binding to an autoimmune disease or cancer causing factor.
  20. 제18항에 있어서, DLL 4 (Delta like ligand 4) 단백질에 특이적으로 결합하는 ScFv 항체를 스크리닝하는 것을 특징으로 하는 방법.The method of claim 18, wherein the ScFv antibody specifically binds to a DLL 4 (Delta like ligand 4) protein.
PCT/KR2015/002262 2014-03-07 2015-03-09 Scfv antibody library, method for preparing same, and scfv antibody screening method using same WO2015133882A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20140027212 2014-03-07
KR10-2014-0027212 2014-03-07

Publications (1)

Publication Number Publication Date
WO2015133882A1 true WO2015133882A1 (en) 2015-09-11

Family

ID=54055604

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2015/002262 WO2015133882A1 (en) 2014-03-07 2015-03-09 Scfv antibody library, method for preparing same, and scfv antibody screening method using same

Country Status (2)

Country Link
KR (1) KR101740030B1 (en)
WO (1) WO2015133882A1 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017059196A3 (en) * 2015-09-30 2017-06-08 Janssen Biotech, Inc. Antagonistic antibodies specifically binding human cd40 and methods of use
CN109416363A (en) * 2016-06-03 2019-03-01 社会福祉法人三星生命公益财团 Anti- NRP1 antibody screening method
US10537633B2 (en) 2016-03-04 2020-01-21 Jn Biosciences Llc Antibodies to TIGIT
WO2020215012A1 (en) * 2019-04-18 2020-10-22 Qlsf Biotherapeutics Inc. Antibodies that target human cd47
US20220227846A1 (en) * 2018-05-25 2022-07-21 Temple University-Of The Commonwealth System Of Higher Education Eradication of bacterial biofilm using anti-amyloid monoclonal antibodies
CN114774405A (en) * 2022-04-19 2022-07-22 上海赛唐生物技术有限公司 Preparation method and application of single-chain antibody expansion library
WO2022161278A1 (en) * 2021-01-26 2022-08-04 北京免疫方舟医药科技有限公司 Anti-tigit antibody and application thereof
WO2023043156A1 (en) * 2021-09-15 2023-03-23 주식회사 파멥신 Modified anti-vegfr2 (kdr) antibody and use thereof
US11820824B2 (en) 2020-06-02 2023-11-21 Arcus Biosciences, Inc. Antibodies to TIGIT

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017209554A2 (en) * 2016-06-03 2017-12-07 사회복지법인 삼성생명공익재단 Anti-nrp1 antibody screening method
CN109416364B (en) * 2016-06-03 2022-04-12 (株)爱恩德生物 Method for screening antibodies using patient-derived tumor spheres

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002000005A1 (en) * 2000-06-21 2002-01-03 Alexion Pharmaceuticals, Inc. Libraries displaying human antibody fragments with hybrid complementarity determining regions
EP1314740A1 (en) * 2000-06-14 2003-05-28 Medical & Biological Laboratories Co., Ltd. METHOD OF CONSTRUCTING scFv ANTIBODY FUSED WITH FLUORESCENT PROTEIN
US20080152657A1 (en) * 2006-05-15 2008-06-26 Lawrence Horowitz Donor specific antibody libraries
US20090143247A1 (en) * 2007-03-15 2009-06-04 Pierre Emile Ulysse Martineau Methods for Producing Active scFv Antibodies and Libraries Therefor
US20120282257A1 (en) * 2009-11-13 2012-11-08 Piero Picci Single-chain variable fragment (scfv) able to recognize and bind cd99 human protein

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100635370B1 (en) 2005-03-04 2006-10-17 주식회사 녹십자홀딩스 Vector DNA expressing ScFv for producing ScFv antibody library

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1314740A1 (en) * 2000-06-14 2003-05-28 Medical & Biological Laboratories Co., Ltd. METHOD OF CONSTRUCTING scFv ANTIBODY FUSED WITH FLUORESCENT PROTEIN
WO2002000005A1 (en) * 2000-06-21 2002-01-03 Alexion Pharmaceuticals, Inc. Libraries displaying human antibody fragments with hybrid complementarity determining regions
US20080152657A1 (en) * 2006-05-15 2008-06-26 Lawrence Horowitz Donor specific antibody libraries
US20090143247A1 (en) * 2007-03-15 2009-06-04 Pierre Emile Ulysse Martineau Methods for Producing Active scFv Antibodies and Libraries Therefor
US20120282257A1 (en) * 2009-11-13 2012-11-08 Piero Picci Single-chain variable fragment (scfv) able to recognize and bind cd99 human protein

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017059196A3 (en) * 2015-09-30 2017-06-08 Janssen Biotech, Inc. Antagonistic antibodies specifically binding human cd40 and methods of use
US10537633B2 (en) 2016-03-04 2020-01-21 Jn Biosciences Llc Antibodies to TIGIT
US11723971B2 (en) 2016-03-04 2023-08-15 JN Biosciences, LLC Antibodies to TIGIT
CN109416363A (en) * 2016-06-03 2019-03-01 社会福祉法人三星生命公益财团 Anti- NRP1 antibody screening method
US20220227846A1 (en) * 2018-05-25 2022-07-21 Temple University-Of The Commonwealth System Of Higher Education Eradication of bacterial biofilm using anti-amyloid monoclonal antibodies
WO2020215012A1 (en) * 2019-04-18 2020-10-22 Qlsf Biotherapeutics Inc. Antibodies that target human cd47
US10858442B2 (en) 2019-04-18 2020-12-08 Qlsf Biotherapeutics Inc. Antibodies that target human CD47
US11820824B2 (en) 2020-06-02 2023-11-21 Arcus Biosciences, Inc. Antibodies to TIGIT
WO2022161278A1 (en) * 2021-01-26 2022-08-04 北京免疫方舟医药科技有限公司 Anti-tigit antibody and application thereof
WO2023043156A1 (en) * 2021-09-15 2023-03-23 주식회사 파멥신 Modified anti-vegfr2 (kdr) antibody and use thereof
CN114774405A (en) * 2022-04-19 2022-07-22 上海赛唐生物技术有限公司 Preparation method and application of single-chain antibody expansion library

Also Published As

Publication number Publication date
KR20150105615A (en) 2015-09-17
KR101740030B1 (en) 2017-05-29

Similar Documents

Publication Publication Date Title
WO2015133882A1 (en) Scfv antibody library, method for preparing same, and scfv antibody screening method using same
CN108137685B (en) HLA-restricted epitopes encoded by somatic mutation genes
US9982253B2 (en) Stabilized fibronectin domain compositions, methods and uses
KR101559599B1 (en) Anti-mesothelin antibodies and uses therefor
AU2006329208B2 (en) Methods for generating and screening fusion protein libraries and uses thereof
US20230279115A1 (en) Single variable domain antibody targeting human programmed death ligand 1 (pd-l1) and derivative thereof
Rojas et al. Light-chain shuffling results in successful phage display selection of functional prokaryotic-expressed antibody fragments to N-glycolyl GM3 ganglioside
EP4289862A1 (en) Anti-human b7-h3 antibody and application thereof
CN113980129B (en) Group of IL-11 monoclonal antibodies and medical application thereof
WO2022216014A1 (en) Anti-cntn4 antibody and use thereof
WO2022045777A1 (en) Novel antibody library preparation method and library prepared thereby
CN112159474B (en) Targeting Frizzled7 humanized antibody and preparation method and application thereof
Shui et al. Construction and selection of human Fab antibody phage display library of liver cancer
Bao et al. Isolating human antibody against human hepatocellular carcinoma by guided-selection
WO2022244908A1 (en) Anti-bcam antibody or antigen-binding fragment thereof
CN113651889A (en) anti-EphA 2 fully-humanized bivalent recombinant antibody scFv-Fc
WO2017209554A2 (en) Anti-nrp1 antibody screening method
Memic et al. Generation of recombinant guinea pig antibody fragments to the human GABAC receptor
Tang et al. Production and characterization of a human single-chain Fv to collagenase IV
CN110891977A (en) Monoclonal antibody specifically binding to MRS
KR20190130604A (en) Humanized anti-nuclear antibodies to target necrosis in cancer therapy
TIAN et al. Production and characterization of a human single2chain Fv to collagenase IV3

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15758309

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15758309

Country of ref document: EP

Kind code of ref document: A1