WO2015129552A1 - Etching composition, etching method employing same, and production method for semiconductor substrate product - Google Patents

Etching composition, etching method employing same, and production method for semiconductor substrate product Download PDF

Info

Publication number
WO2015129552A1
WO2015129552A1 PCT/JP2015/054680 JP2015054680W WO2015129552A1 WO 2015129552 A1 WO2015129552 A1 WO 2015129552A1 JP 2015054680 W JP2015054680 W JP 2015054680W WO 2015129552 A1 WO2015129552 A1 WO 2015129552A1
Authority
WO
WIPO (PCT)
Prior art keywords
etching
layer
etching composition
preferable
semiconductor substrate
Prior art date
Application number
PCT/JP2015/054680
Other languages
French (fr)
Japanese (ja)
Inventor
篤史 水谷
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Publication of WO2015129552A1 publication Critical patent/WO2015129552A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F1/00Etching metallic material by chemical means
    • C23F1/44Compositions for etching metallic material from a metallic material substrate of different composition
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K13/00Etching, surface-brightening or pickling compositions
    • C09K13/04Etching, surface-brightening or pickling compositions containing an inorganic acid
    • C09K13/06Etching, surface-brightening or pickling compositions containing an inorganic acid with organic material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F1/00Etching metallic material by chemical means
    • C23F1/10Etching compositions
    • C23F1/14Aqueous compositions
    • C23F1/16Acidic compositions
    • C23F1/28Acidic compositions for etching iron group metals
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F1/00Etching metallic material by chemical means
    • C23F1/10Etching compositions
    • C23F1/14Aqueous compositions
    • C23F1/16Acidic compositions
    • C23F1/30Acidic compositions for etching other metallic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3205Deposition of non-insulating-, e.g. conductive- or resistive-, layers on insulating layers; After-treatment of these layers
    • H01L21/321After treatment
    • H01L21/3213Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer
    • H01L21/32133Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer by chemical means only
    • H01L21/32134Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer by chemical means only by liquid etching only
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/665Unipolar field-effect transistors with an insulated gate, i.e. MISFET using self aligned silicidation, i.e. salicide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate

Definitions

  • the present invention relates to an etching composition, an etching method using the same, and a method for manufacturing a semiconductor substrate product.
  • the manufacture of an integrated circuit is composed of various processing steps in multiple stages. In the manufacturing process, deposition of various materials, lithography, etching, and the like are repeated many times. Among them, etching of a metal or metal compound layer is an important process. Certain metals must be selectively etched and other materials must remain without being corroded. It is required to remove only a specific material layer in a form that leaves a specific layer among a plurality of layers made of similar metal species or a more corrosive layer. The size of wirings and integrated circuits in a semiconductor substrate is becoming increasingly smaller, and the importance of accurately etching a layer (material) to be left without corrosion is increasing.
  • a field effect transistor As an example, with the rapid miniaturization, there is a strong demand for thinning a silicide layer formed on the upper surface of a source / drain region and for developing a new material.
  • a salicide Silicon: Self-Aligned Silicide
  • a part of a source region and a drain region made of silicon or the like formed on a semiconductor substrate and a metal layer attached to the upper surface thereof are annealed.
  • the metal layer tungsten (W), titanium (Ti), cobalt (Co), or the like is applied, and recently nickel (Ni) is adopted.
  • Patent Document 1 discloses an example using a chemical solution in which toluenesulfonic acid is added in addition to nitric acid and hydrochloric acid.
  • Non-Patent Document 1 As a material change in the channel layer of the transistor, a material study is being performed in order to improve mobility, which is an electron transport property of the transistor.
  • Application of Ge is considered promising for pMOS, and application of InGa, InGaAs, InAlAs, InP, GaP, InSb, etc., called III-V group has been proposed for nMOS (for example, see Non-Patent Document 1).
  • etching of a substrate in which NiPt and a first material containing at least one of In, Al, Ga, Sb, and As (hereinafter sometimes referred to as a III-V group material) is present.
  • This is an etching method in which an acidic etching composition containing halogen ions (halide ions) and nitric acid or nitrate ions is applied to a substrate.
  • the content of halogen ions in the acidic etching composition is 10% by mass or less
  • the acidic etching composition further contains sulfonic acid
  • the water content of the acidic etching composition is 50% by mass.
  • Ge may further exist in the substrate, and the first material is InGaAs, InP, InAs, AlGaSb, InSb, InAs, GaAs, InAsSb, GaSb, AlSb, AlAs, InAlAs, and GaP. Of these, at least one of them is preferable, and InGaAs or InAlAs is more preferable.
  • the present invention is also an etching composition for a substrate in which NiPt and a first material containing at least one of In, Al, Ga, Sb, and As are present.
  • Halogen ions and nitric acid or nitrate ions An acidic etching composition containing: Further, the present invention relates to a substrate including a layer containing NiPt and a layer containing a first material containing at least one of In, Al, Ga, Sb, and As, halogen ions, , A method of manufacturing a semiconductor substrate product having an etching step of applying an acidic etching composition containing nitric acid or nitrate ions.
  • NiPt can be selectively removed without removing the III-V group material, and excellent etching characteristics can be obtained. Show.
  • FIG. 1 is a schematic cross-sectional view of a manufacturing process example of a semiconductor substrate according to an embodiment of the present invention.
  • FIG. 2 is a process diagram showing an example of manufacturing a MOS transistor according to an embodiment of the present invention.
  • the present invention includes NiPt and a first material containing at least one of In, Al, Ga, Sb, and As (so-called III-V material, hereinafter simply referred to as III-V material).
  • An etching method for an existing substrate in which an acidic etching composition containing halogen ions and nitric acid or nitrate ions is applied to the substrate.
  • Ge germanium
  • NiPt can be selectively removed without removing the III-V group material (and possibly removing Ge as well), thereby improving the performance and yield of substrates and semiconductor substrate products described later. Can be achieved.
  • FIG. 1 shows the semiconductor substrate before and after etching.
  • a metal layer (second layer) is formed on the upper surface of the semiconductor layer (first layer) 2 containing a first material containing at least one of In, Al, Ga, Sb, and As. ) 1 is arranged.
  • the semiconductor layer (first layer) include a source electrode, a drain electrode, and a channel dope layer, and these are preferably composed of a III-V group material or Ge (germanium).
  • the III-V group material (first material) is preferably at least one of InGaAs, InP, InAs, AlGaSb, InSb, InAs, GaAs, InAsSb, GaSb, AlSb, AlAs, InAlAs, and GaP.
  • InGaAs or InAlAs More preferably, InGaAs or InAlAs.
  • the other metal can be selectively removed without removing the first material or its silicide, it is possible to improve the performance and yield of a substrate or semiconductor substrate product to be described later. it can.
  • the constituent material of the metal layer (second layer) 1 includes titanium (Ti), cobalt (Co), nickel (Ni), nickel platinum (NiPt), tungsten (W), tantalum (Ta), niobium (Nb), etc.
  • NiPt has been adopted from the viewpoint of low contact resistance.
  • the metal layer can be formed by a method usually applied to this type of metal film, and specifically, film formation by CVD (Chemical Vapor Deposition) can be mentioned.
  • the thickness of the metal layer at this time is not particularly limited, but examples include a film having a thickness of 5 nm to 50 nm.
  • the metal layer is a NiPt layer (Pt content of more than 0% by mass and preferably 20% by mass or less) and a Ni layer (Pt content of 0% by mass) for selective removal of the etching composition of the present invention. Since the effect of this is exhibited, it is preferable.
  • the metal layer may contain other elements in addition to the metal atoms listed above. For example, oxygen and nitrogen inevitably mixed in may exist. The amount of inevitable impurities is preferably suppressed to, for example, about 1 ppt to 10 ppm (mass basis).
  • step (a) after the metal layer 1 is formed on the upper side of the semiconductor layer 2 (III-V group material-containing layer), annealing (sintering) is performed, and a metal-Si reaction film (first film) is formed at the interface.
  • Three layers (silicide layers) 3 are formed (step (b)).
  • Annealing may be performed under conditions normally applied to the manufacture of this type of device, and for example, treatment at 200 to 1000 ° C. may be mentioned.
  • the thickness of the silicide layer 3 at this time is not particularly limited, but examples include a layer of 50 nm or less, and an example of a layer of 10 nm or less. Although there is no lower limit in particular, it is practical that it is 1 nm or more.
  • This silicide layer is applied as a low-resistance film, and functions as a conductive portion that electrically connects a source electrode and a drain electrode located below the silicide layer and a wiring disposed thereon. Accordingly, when defects or corrosion occur in the silicide layer, this conduction is hindered, which may lead to quality degradation such as device malfunction. In particular, recently, the integrated circuit structure inside the substrate has been miniaturized, and even a minute damage can have a great influence on the performance of the element. Therefore, it is desirable to prevent such defects and corrosion as much as possible.
  • the silicide layer is a concept included in the first semiconductor layer 2 (III-V group material-containing layer).
  • the second layer when the second layer is selectively removed with respect to the first layer, the second layer (metal layer) is given priority over the non-silicided semiconductor layer 2 (III-V group material-containing layer).
  • the second layer In addition to the mode of removing the first layer, the second layer (metal layer) is preferentially removed with respect to the silicide layer.
  • the remaining metal layer 1 is etched (step (b)-> step (c)).
  • the etching composition is applied at this time, and the metal layer 1 is removed by applying and contacting the etching composition from the upper side of the metal layer 1.
  • the semiconductor layer 2 (group III-V material-containing layer) is an epitaxial layer and can be formed by crystal growth on a silicon substrate having specific crystallinity by a chemical vapor deposition (CVD) method.
  • CVD chemical vapor deposition
  • an epitaxial layer formed with desired crystallinity may be formed by an electron beam epitaxy (MBE) method or the like.
  • the semiconductor layer 2 (group III-V material-containing layer) a P-type layer
  • boron (B) having a concentration of about 1 ⁇ 10 14 cm ⁇ 3 to 1 ⁇ 10 21 cm ⁇ 3 is doped.
  • phosphorus (P) is doped at a concentration of 1 ⁇ 10 14 cm ⁇ 3 to 1 ⁇ 10 21 cm ⁇ 3 .
  • a layer containing both elements is formed as a silicide layer between the semiconductor layer (first layer) and the metal layer (second layer). This silicide layer is included in the first layer in a broad sense, but is referred to as a “third layer” when distinguished from this in a narrow sense.
  • composition is not particularly limited, In x Ga y As z M p: the formula of (M metal element).
  • x + y + z + p 1, x is preferably 0.05 or more and 0.80 or less, y is preferably 0.05 or more and 0.40 or less, z is preferably 0.01 or more and 0.60 or less, and p is 0. .05 or more and 0.70 or less is preferable.
  • the third layer may contain other elements. This is the same as described for the metal layer (second layer).
  • concentration of each element be the value measured with the following measuring methods.
  • the depth direction from 0 to 30 nm is analyzed by etching ESCA (Quanta Quantera manufactured by ULVAC-PHI), and the average value of Ge concentration in the analysis result of 3 to 15 nm is set as the element concentration (mass%).
  • FIG. 2 is a process diagram showing an example of manufacturing a MOS transistor.
  • A is a MOS transistor structure formation process
  • B is a metal film sputtering process
  • C is a first annealing process
  • D is a metal film selective removal process
  • E is a second annealing process. It is a process.
  • a gate electrode 23 is formed through a gate insulating film 22 formed on the surface of the silicon substrate 21.
  • Extension regions may be separately formed on both sides of the gate electrode 23.
  • a protective layer (not shown) that prevents contact with the NiPt layer may be formed on the gate electrode 23.
  • a sidewall 25 made of a silicon oxide film or a silicon nitride film is formed, and a source region 26 and a drain region 27 are formed by ion implantation.
  • a NiPt film 28 is formed and subjected to a rapid annealing process.
  • the silicon substrate has an insulating film made of silicon oxide or aluminum oxide and a III-V group material layer or Ge. By annealing, the elements in the NiPt film 28 are diffused into the silicon substrate to be silicided.
  • the upper portions of the source electrode 26 and the drain electrode 27 are silicided to form the NiPt-III-V group material-Si source electrode portion 26A and the NiPt-III-V group material-Si drain electrode portion 27A.
  • the NiPt—Ge—Si source electrode portion 26A and the NiPt—Ge—Si drain electrode portion 27A are formed.
  • the electrode member is changed to a desired state (annealed silicide source electrode 26B, annealed silicide drain electrode 27B) by performing the second annealing as shown in FIG. be able to.
  • the first and second annealing temperatures are not particularly limited, but can be performed at 400 to 1100 ° C., for example.
  • the NiPt film 28 remaining without contributing to silicidation can be removed by using the etching composition of the present invention (FIGS. 2C and 2D).
  • FIGS. 2C and 2D etching composition of the present invention
  • Etched metal films include noble metals (eg, Pt, Au, Pd, Ir, Ni, Mo, Rh, and Re), lanthanide metals (eg, erbium, gadolinium, ytterbium, yttrium, holmium, and dysprosium), and these (For example, NiPt (3 to 20%)). In particular, NiPt can be selectively removed.
  • noble metals eg, Pt, Au, Pd, Ir, Ni, Mo, Rh, and Re
  • lanthanide metals eg, erbium, gadolinium, ytterbium, yttrium, holmium, and dysprosium
  • NiPt 3 to 20%
  • NiPt can be selectively removed.
  • High-k materials eg, HfO 2 , HfON, and HfSiON
  • Metal gate materials eg, TiN, TaN, TiAlN, and W
  • interstitial layers eg, Al 2 O 3 and La 2 O 5
  • fill metals eg, aluminum
  • dielectrics eg, , Si 3 N 4 and SiO 2
  • semiconductors eg, p-type and n-type doped Si, Ge, and SiGe
  • metal silicides to be etched eg, nickel platinum silicide
  • contact materials eg, NiGe
  • III-V materials eg, InGaAs, InSb, aP, mention may be made of GaAs, InAs, AlGaSb, InAs, InAsSb, GaSb, AlSb, AlAs
  • the metal etching process described herein provides (a) a semiconductor substrate having a metal film that is partially or wholly exposed to the etching composition of the present disclosure and thereby etchable. And (b) contacting the metal film to be etched with the etching composition of the present disclosure, and (c) cleaning the etched semiconductor substrate with a solvent (for example, a solvent containing water).
  • a solvent for example, a solvent containing water.
  • the etching composition can be contacted to the semiconductor substrate by any suitable means known to those skilled in the art.
  • Such means include, but are not limited to, immersing the semiconductor substrate in a bath of the etching composition, or spraying or flowing the etching composition over the semiconductor substrate. Spraying or flowing the etching composition can be terminated when the substrate is covered with the etching composition, or can continue for some or all of the time that the etching composition is in contact with the semiconductor substrate. it can. Typically, the semiconductor substrate and the etching composition can be brought into full contact within seconds. Depending on the individual process, additional etching compositions can be used during the etching period or consistently during the period. During the etching period, the process can include stirring means or the stirring means can be eliminated.
  • the etching composition can be circulated or agitated.
  • the substrate can be rotated or moved up and down during etching.
  • the semiconductor substrate is placed horizontally, but the substrate can be rotated horizontally.
  • the semiconductor substrate can be vibrated to induce agitation.
  • the etching period can typically be run from about 30 seconds to about 30 minutes. The time depends on the thickness of the film being etched, the need to avoid adverse effects on other exposed films, the particular etching composition used, the particular contact means used, and the temperature employed.
  • the temperature at which the metal film is etched is generally between 20 ° C. and 60 ° C.
  • a preferred temperature range is from about 20 ° C to about 50 ° C.
  • the most preferred temperature range is from about 30 ° C to about 50 ° C.
  • the semiconductor substrate is cleaned with a solvent consisting of water, preferably deionized water. Any suitable cleaning method can be employed. Examples include immersing the semiconductor substrate in stagnant water or flowing water, or spraying or flowing water on the semiconductor substrate. The agitation described above may be employed during the etching period.
  • the aqueous solvent can include an additional water-soluble organic solvent. Use of water-soluble organic solvents helps remove organic residues and quick-dry.
  • drying of the semiconductor substrate is enhanced by using a drying means as an optional step.
  • drying means include spraying a non-oxidizing gas such as nitrogen gas, rotating the substrate, or baking on a hot plate or in an oven.
  • the present invention is an etching composition for a substrate in which NiPt and a first material (III-V group material) containing at least one of In, Al, Ga, Sb, and As are present.
  • An acidic etching composition containing nitric acid or nitrate ions. Halogen ion content of the acidic etching composition is 10% by mass or less, the acidic etching composition further contains sulfonic acid, and the water content of the acidic etching composition (aqueous composition) is 50% by mass or less (more Preferably, it is preferably 35% by mass or less.
  • the acidic etching composition is preferably an aqueous composition and is preferably liquid.
  • each component including an arbitrary one will be described.
  • the etching composition according to the present invention contains halogen ions.
  • halogen ions chlorine ions, bromine ions, iodine ions, and fluorine ions are preferable, and chlorine ions and bromine ions are more preferable.
  • the source of halogen ions is not particularly limited, but may be supplied as a salt with an organic cation described later, or may be supplied by adding a hydride (hydrochloric acid, hydrobromic acid, etc.).
  • the halogen ion concentration is preferably 0.01% by mass or more, more preferably 0.05% by mass or more, and particularly preferably 0.1% by mass or more in the etching composition.
  • the III-V material-containing layer (first layer) or its silicide layer (third layer) is maintained while maintaining good etching properties of the metal layer (second layer). It is preferable because damage can be effectively suppressed.
  • the identification of the components of the etching composition it need not be confirmed as a compound. For example, in the case of hydrochloric acid, the presence and amount of chlorine ions (Cl ⁇ ) are identified in an aqueous solution. Is.
  • the halogen ions may be used alone or in combination of two or more.
  • the combined use ratio is not particularly limited, but the total use amount is preferably within the above concentration range as the sum of two or more types of ions.
  • the etching composition according to this embodiment includes nitric acid or nitrate ions.
  • the concentration is preferably 0.1% by mass or more, more preferably 0.5% by mass or more, and particularly preferably 1% by mass or more in the etching composition.
  • 23 mass% or less is preferable, 20 mass% or less is more preferable, 16 mass% or less is further more preferable, and 3 mass% or less is especially preferable.
  • 10 mass parts or more are preferable with respect to 100 mass parts of halogen ions, 30 mass parts or more are more preferable, and 50 mass parts or more are especially preferable.
  • the III-V material-containing layer (first layer) or its silicide layer (first layer) is maintained while maintaining good etching properties of the metal layer (second layer). This is preferable because damage to the (three layers) can be effectively suppressed.
  • the components of the etching composition need not be confirmed, for example, as nitric acid, but the presence and amount of nitrate ions (NO 3 ⁇ ) are identified in the aqueous solution. is there.
  • nitric acid or nitrate ion may use only 1 type, and may use 2 or more types together.
  • the etching composition of the present invention may contain a sulfonic acid compound. Even if the sulfonic acid compound is an alkylsulfonic acid compound (preferably having 1 to 12 carbon atoms, more preferably 1 to 6 carbon atoms, and particularly preferably 1 to 3 carbon atoms), an aryl sulfonic acid compound (preferably having 6 to 14 carbon atoms) 6 to 10 is more preferable).
  • the alkyl sulfonic acid compound may be a sulfonic acid compound having an aralkyl group (preferably having 7 to 15 carbon atoms, more preferably 7 to 11 carbon atoms).
  • alkylsulfonic acid compound methanesulfonic acid, ethanesulfonic acid, octylsulfonic acid, methanedisulfonic acid, ethanedisulfonic acid, benzylsulfonic acid and the like are preferable.
  • the arylsulfonic acid compound is preferably any of the following formulas (S-1) to (S-3).
  • Z ⁇ 1 >, Z ⁇ 2 > is a sulfonic acid group which may pass through the coupling group L.
  • R 56 is a substituent, and an alkyl group (preferably having 1 to 12 carbon atoms, more preferably 1 to 6 carbon atoms, and particularly preferably 1 to 3 carbon atoms) is particularly preferable.
  • n 51 and n 56 are integers of 0 to 5.
  • n 53 is an integer of 0 to 4.
  • the maximum value of n 51 , n 53 , and n 56 decreases with the number of Z 1 or Z 2 in the same ring.
  • n 52 is an integer of 1 to 6, preferably 1 or 2.
  • n 54 and n 55 are each independently an integer of 0 to 4, and n 54 + n 55 is 1 or more.
  • n 54 + n 55 is preferably 1 or 2.
  • n 57 and n 58 are each independently an integer of 0 to 5, and n 57 + n 58 is 1 or more. n 57 + n 58 is preferably 1 or 2.
  • a plurality of R 56 may be the same as or different from each other.
  • the linking group L is preferably O, S, NR N , an alkylene group (preferably having 1 to 12 carbon atoms, more preferably 1 to 6 and particularly preferably 1 to 3), or a combination thereof.
  • RN represents an alkyl group (preferably having 1 to 12 carbon atoms, more preferably 1 to 6 carbon atoms, particularly preferably 1 to 3 carbon atoms), an aryl group (preferably having 6 to 22 carbon atoms, more preferably 6 to 14 carbon atoms), or hydrogen.
  • An atom is preferred.
  • the aryl sulfonic acid compound examples include p-toluene sulfonic acid, benzene sulfonic acid, 2-naphthalene sulfonic acid, naphthalene-1-sulfonic acid, 1,5-naphthalenedisulfonic acid, 2,6-naphthalenedisulfonic acid, and the like. It is done.
  • the concentration of the sulfonic acid compound is preferably 1% by mass or more, more preferably 5% by mass or more, and particularly preferably 30% by mass or more in the etching composition. As an upper limit, 80 mass% or less is preferable, 75 mass% or less is more preferable, and 70 mass% or less is especially preferable.
  • the application of the sulfonic acid compound at the above concentration is preferable in that effective protection of the III-V group material and the germanium layer can be realized while realizing good etching of the metal layer.
  • the etching composition of the present invention may contain an organic cation, and is preferably a cation having a carbon atom and exhibiting alkalinity.
  • organic onium is preferable, and organic ammonium is more preferable.
  • organic ammonium having 5 or more carbon atoms is preferable, and organic ammonium having 8 or more carbon atoms is more preferable.
  • the upper limit is practically 35 or less carbon atoms.
  • the sulfonic acid compound has a function of reducing the solubility of the III-V material and germanium and suppressing the elution. Therefore, it is preferable to apply a considerable amount. This enhances the selective removal of the III-V material-containing layer (first layer) and the metal layer (second layer), but it is not sufficient.
  • an organic cation is allowed to coexist therewith to adsorb it to the III-V group material-containing layer or the germanium surface, thereby forming an effective anticorrosion surface. Accordingly, a remarkable etching selectivity is exhibited in combination with the effect of suppressing the elution of the III-V material and germanium by the sulfonic acid compound.
  • the organic cation when the number of carbon atoms of the organic cation is increased (5 or more), the dissolution of the III-V group material or germanium can be suppressed remarkably. From such an action, the organic cation only needs to be present in a very small amount in the system, and it is particularly preferable to select an amount and type that enhance the cooperative action with the sulfonic acid compound.
  • Examples of the organic onium include nitrogen-containing onium (such as quaternary ammonium), phosphorus-containing onium (such as quaternary phosphonium), and sulfur-containing onium (for example, SRy 3 + : Ry is an alkyl group having 1 to 6 carbon atoms). Of these, nitrogen-containing onium (quaternary ammonium, pyridinium, pyrazolium, imidazolium, etc.) is preferable. In particular, the organic cation is preferably quaternary ammonium. Examples of the organic onium include ions represented by the following formula (Q-1).
  • R Q1 to R Q4 are each independently an alkyl group having 1 to 35 carbon atoms, an alkenyl group having 2 to 35 carbon atoms, an alkynyl group having 2 to 35 carbon atoms, an aryl group having 6 to 14 carbon atoms, 7 to 15 aralkyl groups, groups represented by the following formula (y).
  • the total number of carbon atoms of R Q1 to R Q4 is preferably 5 or more, and more preferably 8 or more.
  • Y1- (Ry1-Y2) my-Ry2- * (y) Y1 is an alkyl group having 1 to 12 carbon atoms, an alkenyl group having 2 to 12 carbon atoms, an alkynyl group having 2 to 12 carbon atoms, an aralkyl group having 7 to 14 carbon atoms, an aryl group having 6 to 14 carbon atoms, a hydroxyl group, A sulfanyl group, an alkoxy group having 1 to 4 carbon atoms, or a thioalkoxy group having 1 to 4 carbon atoms is represented.
  • Y2 represents O, S, CO, NR N ( RN is a hydrogen atom or an alkyl group having 1 to 6 carbon atoms).
  • Ry1 and Ry2 each independently represents an alkylene group having 1 to 6 carbon atoms, an alkenylene group having 2 to 6 carbon atoms, an alkynylene group having 2 to 6 carbon atoms, an arylene group having 6 to 10 carbon atoms, or a combination thereof.
  • my represents an integer of 0 to 6.
  • the plurality of Ry1 and Y2 may be different from each other.
  • Ry1 and Ry2 may further have a substituent T. * Is a bond.
  • the organic cation is preferably at least one selected from the group consisting of an alkyl ammonium cation, an aryl ammonium cation, and an alkyl / aryl ammonium cation.
  • tetraalkylammonium preferably having a carbon number of 5 to 35, more preferably 8 to 25, particularly preferably 10 to 25
  • the alkyl group may be substituted with an arbitrary substituent (for example, a hydroxyl group, an allyl group, or an aryl group) as long as the effects of the present invention are not impaired.
  • the alkyl group may be linear, branched or cyclic.
  • TMA tetramethylammonium
  • TEA tetraethylammonium
  • benzyltrimethylammonium ethyltrimethylammonium, 2-hydroxyethyltrimethylammonium, benzyltriethylammonium, hexadecyltrimethylammonium, tetrabutylammonium (TBA), tetra Hexyl ammonium (THA), tetrapropyl ammonium (TPA), trimethylbenzyl ammonium, lauryl pyridinium, cetyl pyridinium, lauryl trimethyl ammonium, hexadecyl trimethyl ammonium, octadecyl trimethyl ammonium, didecyl dimethyl ammonium, dilauryl dimethyl ammonium, distearyl dimethyl ammonium , Georail dimethylan Chloride, lauryl dimethyl benzyl ammonium, cetyl am
  • the source of the organic cation is not particularly limited, and examples thereof include the salt with the halogen ion and the salt with hydroxide ion.
  • the concentration of the organic cation is preferably 1 ⁇ 10 ⁇ 6 mol / L or more in the etching composition, more preferably 1 ⁇ 10 ⁇ 5 mol / L or more, and 5 ⁇ 10 ⁇ 5 mol / L or more. It is particularly preferred.
  • the upper limit is preferably 1 mol / L or less, more preferably 0.5 mol / L or less, and particularly preferably 0.1 mol / L or less.
  • the III-V material-containing layer (first layer) or its silicide layer (third layer) is maintained while maintaining good etching properties of the metal layer (second layer). It is preferable because damage can be effectively suppressed.
  • the organic cation preferably has a ClogP of ⁇ 4 or more, more preferably 0 or more.
  • the measurement of the octanol-water partition coefficient (log P value) can be generally carried out by a flask soaking method described in JIS Japanese Industrial Standard Z7260-107 (2000). Further, the octanol-water partition coefficient (log P value) can be estimated by a computational chemical method or an empirical method instead of the actual measurement. As the calculation method, Crippen's fragmentation method (J. Chem. Inf. Comput.
  • the ClogP value is a value obtained by calculating the common logarithm logP of the distribution coefficient P between 1-octanol and water. Any method and software used for calculating the ClogP value can be used, but unless otherwise specified, ChemDraw Ultra 12.0 (trade name) is used in the present invention.
  • a compound or a substituent / linking group includes an alkyl group / alkylene group, an alkenyl group / alkenylene group, an alkynyl group / alkynylene group, etc., these may be cyclic or linear, and may be linear or branched These may be substituted with any group or unsubstituted.
  • an alkyl group, an alkylene group, an alkenyl group, an alkenylene group, an alkynyl group, an alkynylene group is a group containing a hetero atom (e.g., O, S, CO, NR N and the like) may be separated by a, with this To form a ring structure.
  • an aryl group, a heterocyclic group, etc. when included, they may be monocyclic or condensed and may be similarly substituted or unsubstituted.
  • the technical matters such as temperature and thickness, as well as the choices of substituents and linking groups of the compounds, can be combined with each other even if the list is described independently.
  • water (aqueous medium) is preferably applied as the medium.
  • the water (aqueous medium) may be an aqueous medium containing a dissolved component as long as the effects of the present invention are not impaired, or may contain an unavoidable trace mixed component.
  • water that has been subjected to purification treatment such as distilled water, ion-exchanged water, or ultrapure water is preferable, and ultrapure water that is used for semiconductor manufacturing is particularly preferable.
  • the concentration of water is not particularly limited, but is preferably 10% by mass or more, and more preferably 15% by mass or more.
  • the pH (25 ° C.) of the etching composition is preferably 3 or less, and more preferably 1 or less. The above range is preferable from the viewpoint of effectively preventing damage to the first layer or the third layer while securing a sufficient etching rate of the second layer.
  • pH is measured at room temperature (25 ° C.) with F-51 (trade name) manufactured by HORIBA.
  • Optional additives include solvents, carboxylic acids or other complexing agents, anti-corrosion agents, viscosity reducing agents, and surfactants, and are included in all embodiments to optimize performance and reduce costs. It may be used.
  • the carboxylic acid can be used to improve the solubility of the metal ions by complementing chloride complex formation.
  • the surfactant is not only a conventional purpose as a surface tension modifier, but also a wetting agent to inhibit corrosion on various exposed surfaces such as aluminum, silicon dioxide, silicon nitride, silicide, tungsten, and TiN. Can also be used.
  • the solvent allows the Hansen solubility parameter to be changed as a solution to remove certain targeted organic residues and change the oxidation potential of the solution.
  • the additive used may be a mixture of different types, a mixture of the same class of additives, or a mixture of both the same class and different types of additives. Note that the additive is stable under low pH and oxidizing conditions.
  • the etching composition described herein comprises one or more organic solvents.
  • the organic solvent suitable for use in the etching composition described herein excludes stabilizers such as glycols, ethers, and polyols. Examples of specific organic solvents (or stabilizers) that can be removed from the etching composition can include glyme, diglyme, triglyme, crown ethers, ethylene glycol, tripropylene glycol, and propylene glycol methyl ether. .
  • the etching composition comprises one or more of the removed solvents described above.
  • concentration of the additive may depend on the effectiveness or purpose of each additive.
  • concentration of the additional solvent used is about 3% to about 35%.
  • concentration of the carboxylic acid, other complexing agent, viscosity reducing agent, and surfactant is about. 001% to about 10%.
  • the etching composition in this invention is good also as a kit which divided
  • the liquid composition containing the said halogen ion and organic cation in water as a 1st liquid is prepared, and the aspect which prepares the liquid composition containing nitric acid or nitrate ion as a 2nd liquid is mentioned.
  • other components such as other sulfonic acid compounds can be contained separately or together in the first liquid, the second liquid, or the other third liquid.
  • a mode in which both solutions are mixed to prepare an etching composition, and then applied to the etching treatment at an appropriate time is preferable.
  • timely after mixing refers to the time period after mixing until the desired action is lost, specifically within 60 minutes, more preferably within 30 minutes, and more preferably within 10 minutes. Is more preferably within 1 minute, and particularly preferably within 1 minute. Although there is no lower limit in particular, it is practical that it is 1 second or more.
  • the etching composition of this invention has few impurities, for example, a metal content, etc. in a liquid in view of the use use.
  • the Na, K, and Ca ion concentration in the liquid is preferably in the range of 1 ppt to 1 ppm (mass basis).
  • the number of coarse particles having an average particle size of 0.5 ⁇ m or more is preferably in the range of 100 particles / cm 3 or less, and is preferably in the range of 50 particles / cm 3 or less.
  • the etching composition of the present invention can be stored, transported and used in any container as long as corrosivity or the like does not matter (whether or not it is a kit).
  • a container having a high cleanliness and a low impurity elution is preferable.
  • the containers that can be used include, but are not limited to, “Clean Bottle” series manufactured by Aicero Chemical Co., Ltd., “Pure Bottle” manufactured by Kodama Resin Co., Ltd., and the like.
  • the single wafer type apparatus has a processing tank, and the semiconductor substrate is conveyed or rotated in the processing tank, and the etching composition is applied (discharge, jetting, flowing down, dropping, etc.) into the processing tank.
  • the etching composition is preferably brought into contact with the semiconductor substrate.
  • Advantages of the single wafer type apparatus include (i) since a fresh etching composition is always supplied, so that reproducibility is good, and (ii) in-plane uniformity is high.
  • a kit in which the etching composition is divided into a plurality of parts can be easily used. For example, a method of mixing and discharging the first liquid and the second liquid in-line is suitably employed.
  • the temperature of both the first liquid and the second liquid it is preferable to adjust the temperature of both the first liquid and the second liquid, or to adjust the temperature of only one of them and mix and discharge them in-line.
  • the management temperature when adjusting the line temperature is preferably in the same range as the processing temperature described later.
  • the single wafer type apparatus is preferably provided with a nozzle in its treatment tank, and a method of discharging the etching composition onto the semiconductor substrate by swinging the nozzle in the surface direction of the semiconductor substrate is preferable. By doing so, the deterioration of the liquid can be prevented, which is preferable.
  • a kit is divided into two or more liquids so that it is difficult to generate gas or the like.
  • the processing temperature at which etching is performed is preferably 10 ° C. or higher, and more preferably 20 ° C. or higher.
  • the upper limit is preferably 80 ° C. or lower, more preferably 70 ° C. or lower, further preferably 60 ° C. or lower, further preferably 50 ° C. or lower, and preferably 40 ° C. or lower. Particularly preferred.
  • the etching processing temperature is based on the temperature applied to the substrate in the temperature measurement method shown in the examples described later. However, when the temperature is controlled by the storage temperature or batch processing, the temperature in the tank is controlled by the circulation system. In some cases, the temperature may be set in the circulation flow path.
  • the supply rate of the etching composition is not particularly limited, but is preferably 0.05 to 5 L / min, and more preferably 0.1 to 3 L / min.
  • the supply rate of the etching composition is not particularly limited, but is preferably 0.05 to 5 L / min, and more preferably 0.1 to 3 L / min.
  • a semiconductor substrate is transported or rotated in a predetermined direction, and an etching composition is sprayed into the space to bring the etching composition into contact with the semiconductor substrate.
  • the supply rate of the etching composition and the rotation speed of the substrate are the same as those already described.
  • the metal layer is preferably etched at a high etching rate.
  • the etching rate [R2] of the second layer (metal layer) is not particularly limited, but is preferably 20 ⁇ / min or more, more preferably 100 ⁇ / min or more, and 200 ⁇ / min or more in consideration of production efficiency. It is particularly preferred. Although there is no upper limit in particular, it is practical that it is 1200 kg / min or less.
  • the exposed width of the metal layer is not particularly limited, it is preferably 2 nm or more, more preferably 4 nm or more from the viewpoint that the advantages of the present invention become more prominent.
  • the upper limit is practically 1000 nm or less, preferably 100 nm or less, and more preferably 20 nm or less.
  • the etching rate [R1] of the first layer or its silicide layer (third layer) is not particularly limited, but is preferably not excessively removed, preferably 200 ⁇ / min or less, and 100 ⁇ / min or less. Is more preferably 50 ⁇ / min or less, further preferably 20 ⁇ / min or less, and particularly preferably 10 ⁇ / min or less. There is no particular lower limit, but considering the measurement limit, it is practical that it is 0.1 ⁇ / min or more.
  • the etching rate ratio ([R2] / [R1]) is not particularly limited, but it is preferably 2 or more on the premise of an element that requires high selectivity.
  • the etching condition of the silicide layer (third layer) is broadly synonymous with the III-V group material-containing layer (first layer), and the layer before the annealing (for example, the III-V group material-containing layer) It can be substituted depending on the etching rate.
  • a metal electrode layer such as Al, Cu, Ti, or W, an insulating film such as HfO, HfSiO, AlO x , SiO, SiOC, SiON, TiN, SiN, or TiAlC Since damage to the layers (which may be collectively referred to as the fourth layer) can be suitably suppressed, it is also preferable to be applied to a semiconductor substrate including these layers.
  • the composition of a metal compound when expressed by a combination of elements, it means that a composition having an arbitrary composition is widely included.
  • SiOC (SiON) means that Si, O, and C (N) coexist, and does not mean that the ratio of the amounts is 1: 1: 1. This is common in this specification, and the same applies to other metal compounds.
  • the time required for etching one substrate is preferably 10 seconds or more, and more preferably 50 seconds or more. As an upper limit, it is preferable that it is 300 seconds or less, and it is more preferable that it is 200 seconds or less.
  • the order of the above steps is not construed as being limited, and further steps may be included between the steps.
  • preparation means that a specific material is synthesized or blended, and a predetermined item is procured by purchase or the like.
  • using an etching composition so as to etch each material of a semiconductor substrate is referred to as “application”, but the embodiment is not particularly limited.
  • the method widely includes contacting the etching composition with the substrate.
  • the etching composition may be etched by being immersed in a batch type, or may be etched by discharging a single wafer type.
  • semiconductor substrate is used to mean not only a wafer but also the entire substrate structure having a circuit structure formed thereon.
  • a semiconductor substrate member refers to the member which comprises the semiconductor substrate defined above, and may consist of one material or may consist of several materials.
  • a processed semiconductor substrate is sometimes referred to as a semiconductor substrate product, and is further distinguished as necessary, and a chip that has been processed and diced out and processed product thereof is referred to as a semiconductor element. That is, in a broad sense, a semiconductor element or a semiconductor product incorporating the semiconductor element belongs to a semiconductor substrate product.
  • Example 1 (Production of test substrate) On a commercially available silicon substrate (diameter: 12 inches), a NiPt layer, an InGaAs layer, an InAlAs layer, and a Ge layer were formed to a thickness of 500 mm, and four types of blank wafers were prepared. (Etching test) The blank wafer was etched using a single wafer type apparatus (SPOS-Europe BV, POLOS (trade name)) under the following conditions, and an evaluation test was performed. -Processing temperature: described in the table-Discharge rate: 1 L / min.
  • etching rate About the etching rate (ER), it computed by measuring the film thickness before and behind an etching process using ellipsometry (a spectroscopic ellipsometer, JA Woolum Japan Co., Ltd. Vase was used). An average value of 5 points was adopted (measurement condition measurement range: 1.2-2.5 eV, measurement angle: 70, 75 degrees).
  • Second layer 2 Semiconductor layer (first layer) 3 Silicide layer (third layer) 21 Silicon substrate 22 Gate insulating film 23 Gate electrode 25 Side wall 26 Source electrode 27 Drain electrode 28 NiPt film

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Metallurgy (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Weting (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)
  • ing And Chemical Polishing (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

 Provided is an etching method for a substrate in which a first material containing NiPt, and at least one element from among In, Al, Ga, Sb, and As, is present, the etching method involving application of an acidic etching composition containing halogen ions and nitric acid or nitrate ions to a substrate.

Description

エッチング組成物、これを用いるエッチング方法および半導体基板製品の製造方法Etching composition, etching method using the same, and method for manufacturing semiconductor substrate product
 本発明は、エッチング組成物、これを用いるエッチング方法および半導体基板製品の製造方法に関する。 The present invention relates to an etching composition, an etching method using the same, and a method for manufacturing a semiconductor substrate product.
 集積回路の製造は、多段階の様々な加工工程で構成されている。その製造過程では、様々な材料の堆積、リソグラフィ、エッチング等が幾度も繰り返される。なかでも、金属や金属化合物の層のエッチングは重要なプロセスとなる。特定の金属を選択的にエッチングし、その他の材料は腐食させることなく残存させなければならない。類似した金属種からなる複数の層中の特定の層や、より腐食性の高い層を残す形態で所定の材料の層のみを除去することが求められる。半導体基板内の配線や集積回路のサイズはますます小さくなり、残すべき層(材料)を腐食することなく正確にエッチングする重要性が高まっている。
 電界効果トランジスタを例にとってみると、その急速な微細化に伴い、ソース・ドレイン領域の上面に形成されるシリサイド層の薄膜化や新規材料の開発が強く求められている。
 シリサイド層を形成するサリサイド(Salicide: Self-Aligned Silicide)プロセスでは、半導体基板上に形成したシリコン等からなるソース領域およびドレイン領域の一部とその上面に付した金属層とをアニールする。金属層としては、タングステン(W)、チタン(Ti)、コバルト(Co)などが適用され、最近ではニッケル(Ni)が採用されている。これにより、ソース・ドレイン電極等の上側に低抵抗のシリサイド層を形成することができる。さらなる微細化のため、貴金属である白金(Pt)を加えたNiPtシリサイド層を形成することも提案されている。
 サリサイド工程の後においては、そこに残された金属層をエッチングにより除去する。このエッチングは通常ウエットエッチングにより行われ、その薬液として塩酸と硝酸の混合液(王水)が適用されている。特許文献1は、硝酸および塩酸に加え、トルエンスルホン酸を加えた薬液を用いる例を開示している。
 トランジスタのチャネル層の材料変化としては、トランジスタの電子輸送特性である移動度の向上のために材料検討が行われている。pMOSではGeの適用が有望視されており、nMOSではIII-V族と呼ばれるInGa、InGaAs、InAlAs、InP、GaP、InSbなどの適用が提案されている(例えば、非特許文献1参照)。
The manufacture of an integrated circuit is composed of various processing steps in multiple stages. In the manufacturing process, deposition of various materials, lithography, etching, and the like are repeated many times. Among them, etching of a metal or metal compound layer is an important process. Certain metals must be selectively etched and other materials must remain without being corroded. It is required to remove only a specific material layer in a form that leaves a specific layer among a plurality of layers made of similar metal species or a more corrosive layer. The size of wirings and integrated circuits in a semiconductor substrate is becoming increasingly smaller, and the importance of accurately etching a layer (material) to be left without corrosion is increasing.
Taking a field effect transistor as an example, with the rapid miniaturization, there is a strong demand for thinning a silicide layer formed on the upper surface of a source / drain region and for developing a new material.
In a salicide (Salicide: Self-Aligned Silicide) process for forming a silicide layer, a part of a source region and a drain region made of silicon or the like formed on a semiconductor substrate and a metal layer attached to the upper surface thereof are annealed. As the metal layer, tungsten (W), titanium (Ti), cobalt (Co), or the like is applied, and recently nickel (Ni) is adopted. Thereby, a low-resistance silicide layer can be formed on the upper side of the source / drain electrodes and the like. For further miniaturization, it has also been proposed to form a NiPt silicide layer to which platinum (Pt) which is a noble metal is added.
After the salicide process, the metal layer left there is removed by etching. This etching is usually performed by wet etching, and a mixed solution of hydrochloric acid and nitric acid (aqua regia) is applied as the chemical solution. Patent Document 1 discloses an example using a chemical solution in which toluenesulfonic acid is added in addition to nitric acid and hydrochloric acid.
As a material change in the channel layer of the transistor, a material study is being performed in order to improve mobility, which is an electron transport property of the transistor. Application of Ge is considered promising for pMOS, and application of InGa, InGaAs, InAlAs, InP, GaP, InSb, etc., called III-V group has been proposed for nMOS (for example, see Non-Patent Document 1).
国際公開第2012/125401号International Publication No. 2012/125401
 本発明の課題は、InGaAsやInAlAsなどのいわゆるIII-V族材料を含有する層が存在する基板において、特定の金属を含む層を選択的に除去することができ、優れたエッチング特性を示すエッチング組成物、エッチング方法および半導体基板製品の製造方法の提供にある。 It is an object of the present invention to selectively remove a layer containing a specific metal in a substrate on which a layer containing a so-called III-V group material such as InGaAs or InAlAs exists, and to exhibit excellent etching characteristics. It is in providing the composition, the etching method, and the manufacturing method of a semiconductor substrate product.
 本発明によれば、以下の手段が提供される。
 すなわち、本発明は、NiPtと、In、Al、Ga、Sb及びAsのうちの少なくとも1種を含む第一の材料(以下、III-V族材料ということがある)とが存在する基板のエッチング方法であり、ハロゲンイオン(ハロゲン化物イオン)と、硝酸または硝酸イオンとを含む酸性エッチング組成物を基板に適用するエッチング方法である。
 上記エッチング方法において、酸性エッチング組成物のハロゲンイオンの含有量が10質量%以下であること、酸性エッチング組成物がさらにスルホン酸を含むこと、または、前記酸性エッチング組成物の含水量が50質量%以下(より好ましくは、35質量%以下)であることが好ましい。
 また、上記エッチング方法において、前記基板にさらにGeが存在してもよく、前記第一の材料がInGaAs、InP、InAs、AlGaSb、InSb、InAs、GaAs、InAsSb、GaSb、AlSb、AlAs、InAlAs及びGaPのうちの少なくとも1種であることが好ましく、InGaAsまたはInAlAsであることがより好ましい。
 また、本発明は、NiPtと、In、Al、Ga、Sb及びAsのうちの少なくとも1種を含む第一の材料とが存在する基板のエッチング組成物であり、ハロゲンイオンと、硝酸または硝酸イオンとを含む酸性エッチング組成物である。
 また、本発明は、NiPtを含有する層と、In、Al、Ga、Sb及びAsのうちの少なくとも1種を含む第一の材料とを含有する層とが存在する基板に対し、ハロゲンイオンと、硝酸または硝酸イオンとを含む酸性エッチング組成物を適用するエッチング工程を有する半導体基板製品の製造方法である。
According to the present invention, the following means are provided.
That is, according to the present invention, etching of a substrate in which NiPt and a first material containing at least one of In, Al, Ga, Sb, and As (hereinafter sometimes referred to as a III-V group material) is present. This is an etching method in which an acidic etching composition containing halogen ions (halide ions) and nitric acid or nitrate ions is applied to a substrate.
In the above etching method, the content of halogen ions in the acidic etching composition is 10% by mass or less, the acidic etching composition further contains sulfonic acid, or the water content of the acidic etching composition is 50% by mass. Or less (more preferably 35% by mass or less).
In the etching method, Ge may further exist in the substrate, and the first material is InGaAs, InP, InAs, AlGaSb, InSb, InAs, GaAs, InAsSb, GaSb, AlSb, AlAs, InAlAs, and GaP. Of these, at least one of them is preferable, and InGaAs or InAlAs is more preferable.
The present invention is also an etching composition for a substrate in which NiPt and a first material containing at least one of In, Al, Ga, Sb, and As are present. Halogen ions and nitric acid or nitrate ions An acidic etching composition containing:
Further, the present invention relates to a substrate including a layer containing NiPt and a layer containing a first material containing at least one of In, Al, Ga, Sb, and As, halogen ions, , A method of manufacturing a semiconductor substrate product having an etching step of applying an acidic etching composition containing nitric acid or nitrate ions.
 本発明のエッチング組成物、これを用いるエッチング方法および半導体基板製品の製造方法によれば、III-V族材料は除去せずに、NiPtを選択的に除去することができ、優れたエッチング特性を示す。
 本発明の上記及び他の特徴及び利点は、適宜添付の図面を参照して、下記の記載からより明らかになるであろう。
According to the etching composition of the present invention, the etching method using the same, and the method for manufacturing a semiconductor substrate product, NiPt can be selectively removed without removing the III-V group material, and excellent etching characteristics can be obtained. Show.
The above and other features and advantages of the present invention will become more apparent from the following description, with reference where appropriate to the accompanying drawings.
図1は、本発明の一実施形態における半導体基板の作製工程例を模式断面図である。FIG. 1 is a schematic cross-sectional view of a manufacturing process example of a semiconductor substrate according to an embodiment of the present invention. 図2は、本発明の一実施形態におけるMOSトランジスタの製造例を示す工程図である。FIG. 2 is a process diagram showing an example of manufacturing a MOS transistor according to an embodiment of the present invention.
 本明細書に記載される範囲や比率の数値限界(すなわち、その上限や下限)は、全て含まれる。本明細書に記載される範囲には、該範囲以内の全ての中間の数値が含まれる。言い換えると、本明細書に記載される該範囲以内の全ての中間の数値は、該範囲の開示によって全て開示されるものとみなされる。多様な開示された要素の全ての可能な組み合わせは、特段に排除されない限り、本発明の範囲内に含まれるものとみなされる。
 特に断りの無い限り、%は質量%である。全ての温度は、特に断りの無い限り、セルシウス温度(℃)で測定される。
 まず、本発明のエッチング方法の好ましい実施形態について、図1、図2に基づき説明する。
All numerical limits (ie, upper and lower limits) of the ranges and ratios described herein are included. Ranges described herein include all intermediate numerical values within the range. In other words, all intermediate numerical values within the ranges described herein are considered to be all disclosed by the disclosure of the ranges. All possible combinations of the various disclosed elements are considered to be within the scope of the present invention unless specifically excluded.
Unless otherwise specified,% is% by mass. All temperatures are measured at Celsius temperature (° C.) unless otherwise noted.
First, a preferred embodiment of the etching method of the present invention will be described with reference to FIGS.
 本発明は、NiPtと、In、Al、Ga、Sb及びAsのうちの少なくとも1種を含む第一の材料(いわゆるIII-V族材料、以下単にIII-V族材料ということがある)とが存在する基板のエッチング方法であり、ハロゲンイオンと、硝酸または硝酸イオンとを含む酸性エッチング組成物を基板に適用するエッチング方法である。
 また、上記エッチング方法において、基板にさらにGe(ゲルマニウム)が存在してもよい。
 本発明では、III-V族材料は除去せずに(場合によりGeも除去せずに)、NiPtを選択的に除去することができ、後述する基板や半導体基板製品の性能向上や歩留向上を図ることができる。
[エッチング工程]
 図1はエッチング前後の半導体基板を示した図である。本実施形態の製造例においては、In、Al、Ga、Sb及びAsのうちの少なくとも1種を含む第一の材料を含有する半導体層(第一層)2の上面に金属層(第二層)1が配置されている。
 半導体層(第一層)としてはソース電極、ドレイン電極、チャネルドープ層が挙げられ、これらがIII-V族材料またはGe(ゲルマニウム)で構成されることが好ましい。III-V族材料(第一の材料)としては、InGaAs、InP、InAs、AlGaSb、InSb、InAs、GaAs、InAsSb、GaSb、AlSb、AlAs、InAlAs及びGaPのうちの少なくとも1種であることが好ましく、InGaAsまたはInAlAsであることがより好ましい。本発明においては、上記第一の材料またはそのシリサイドは除去せずに、他の金属を選択的に除去することができることから、後述する基板や半導体基板製品の性能向上や歩留まり向上を図ることができる。
The present invention includes NiPt and a first material containing at least one of In, Al, Ga, Sb, and As (so-called III-V material, hereinafter simply referred to as III-V material). An etching method for an existing substrate, in which an acidic etching composition containing halogen ions and nitric acid or nitrate ions is applied to the substrate.
In the etching method, Ge (germanium) may further exist on the substrate.
In the present invention, NiPt can be selectively removed without removing the III-V group material (and possibly removing Ge as well), thereby improving the performance and yield of substrates and semiconductor substrate products described later. Can be achieved.
[Etching process]
FIG. 1 shows the semiconductor substrate before and after etching. In the manufacturing example of this embodiment, a metal layer (second layer) is formed on the upper surface of the semiconductor layer (first layer) 2 containing a first material containing at least one of In, Al, Ga, Sb, and As. ) 1 is arranged.
Examples of the semiconductor layer (first layer) include a source electrode, a drain electrode, and a channel dope layer, and these are preferably composed of a III-V group material or Ge (germanium). The III-V group material (first material) is preferably at least one of InGaAs, InP, InAs, AlGaSb, InSb, InAs, GaAs, InAsSb, GaSb, AlSb, AlAs, InAlAs, and GaP. More preferably, InGaAs or InAlAs. In the present invention, since the other metal can be selectively removed without removing the first material or its silicide, it is possible to improve the performance and yield of a substrate or semiconductor substrate product to be described later. it can.
 金属層(第二層)1の構成材料としては、チタン(Ti)、コバルト(Co)、ニッケル(Ni)、ニッケルプラチナ(NiPt)、タングステン(W)、タンタル(Ta)、ニオブ(Nb)などの金属種(単一金属または複合金属)が挙げられるが、近年、低コンタクト抵抗という観点からNiPtが採用されている。金属層の形成は通常この種の金属膜の形成に適用される方法を用いることができ、具体的には、CVD(Chemical Vapor Deposition)による成膜が挙げられる。このときの金属層の厚さは特に限定されないが、5nm以上50nm以下の膜の例が挙げられる。本発明においては、金属層がNiPt層(Pt含有率0質量%超20質量%以下が好ましい)、Ni層(Pt含有率0質量%)であることが、本発明のエッチング組成物の選択除去の効果が発揮されるため好ましい。
 金属層は、上記に挙げた金属原子以外に、その他の元素を含んでいてもよい。例えば、不可避的に混入する酸素や窒素は存在していてもよい。不可避不純物の量は例えば、1ppt~10ppm(質量基準)程度に抑えられていることが好ましい。
The constituent material of the metal layer (second layer) 1 includes titanium (Ti), cobalt (Co), nickel (Ni), nickel platinum (NiPt), tungsten (W), tantalum (Ta), niobium (Nb), etc. In recent years, NiPt has been adopted from the viewpoint of low contact resistance. The metal layer can be formed by a method usually applied to this type of metal film, and specifically, film formation by CVD (Chemical Vapor Deposition) can be mentioned. The thickness of the metal layer at this time is not particularly limited, but examples include a film having a thickness of 5 nm to 50 nm. In the present invention, the metal layer is a NiPt layer (Pt content of more than 0% by mass and preferably 20% by mass or less) and a Ni layer (Pt content of 0% by mass) for selective removal of the etching composition of the present invention. Since the effect of this is exhibited, it is preferable.
The metal layer may contain other elements in addition to the metal atoms listed above. For example, oxygen and nitrogen inevitably mixed in may exist. The amount of inevitable impurities is preferably suppressed to, for example, about 1 ppt to 10 ppm (mass basis).
 上記の工程(a)において半導体層2(III-V族材料含有層)の上側に金属層1が形成された後、アニール(焼結)が行われ、その界面に金属-Si反応膜(第三層:シリサイド層)3が形成される(工程(b))。アニールは通常この種の素子の製造に適用される条件によればよいが、例えば、200~1000℃で処理することが挙げられる。このときのシリサイド層3の厚さは特に限定されないが、50nm以下の層とされている例が挙げられ、さらに10nm以下の層とされている例が挙げられる。下限値は特にないが、1nm以上であることが実際的である。このシリサイド層は低抵抗膜として適用され、その下部に位置するソース電極、ドレイン電極と、その上部に配置される配線とを電気的に接続する導電部として機能する。したがって、シリサイド層に欠損や腐食が生じるとこの導通が阻害され、素子誤作動等の品質低下につながることがある。特に、昨今、基板内部の集積回路構造は微細化されてきており、微小な損傷であっても素子の性能にとって大きな影響を与えうる。そのため、そのような欠損や腐食は可及的に防止されることが望ましい。
 なお、本明細書において、広義には、シリサイド層は、第一層の半導体層2(III-V族材料含有層)に含まれる概念である。したがって、第一層に対して第二層を選択的に除去するというときには、シリサイド化されていない半導体層2(III-V族材料含有層)に対して第二層(金属層)を優先的に除去する態様のみならず、シリサイド層に対して第二層(金属層)を優先的に除去する態様を含む意味である。
In the step (a), after the metal layer 1 is formed on the upper side of the semiconductor layer 2 (III-V group material-containing layer), annealing (sintering) is performed, and a metal-Si reaction film (first film) is formed at the interface. Three layers (silicide layers) 3 are formed (step (b)). Annealing may be performed under conditions normally applied to the manufacture of this type of device, and for example, treatment at 200 to 1000 ° C. may be mentioned. The thickness of the silicide layer 3 at this time is not particularly limited, but examples include a layer of 50 nm or less, and an example of a layer of 10 nm or less. Although there is no lower limit in particular, it is practical that it is 1 nm or more. This silicide layer is applied as a low-resistance film, and functions as a conductive portion that electrically connects a source electrode and a drain electrode located below the silicide layer and a wiring disposed thereon. Accordingly, when defects or corrosion occur in the silicide layer, this conduction is hindered, which may lead to quality degradation such as device malfunction. In particular, recently, the integrated circuit structure inside the substrate has been miniaturized, and even a minute damage can have a great influence on the performance of the element. Therefore, it is desirable to prevent such defects and corrosion as much as possible.
In this specification, in a broad sense, the silicide layer is a concept included in the first semiconductor layer 2 (III-V group material-containing layer). Therefore, when the second layer is selectively removed with respect to the first layer, the second layer (metal layer) is given priority over the non-silicided semiconductor layer 2 (III-V group material-containing layer). In addition to the mode of removing the first layer, the second layer (metal layer) is preferentially removed with respect to the silicide layer.
 次いで、残存した金属層1のエッチングが行われる(工程(b)->工程(c))。本実施形態においては、このときエッチング組成物が適用され、金属層1の上側からエッチング組成物を付与し接触させることで、金属層1を除去する。
 半導体層2(III-V族材料含有層)は、エピタキシャル層からなり、化学的気相成長(CVD)法により、特定の結晶性を有するシリコン基板上に結晶成長させて形成することができる。あるいは、電子線エピタキシ(MBE)法等により、所望の結晶性で形成したエピタキシャル層としてもよい。
 半導体層2(III-V族材料含有層)をP型の層とするには、濃度が1×1014cm-3~1×1021cm-3程度のボロン(B)がドープされる。N型の層とするには、リン(P)が1×1014cm-3~1×1021cm-3の濃度でドープされる。
 サリサイド工程を経て、上記半導体層(第一層)と金属層(第二層)との間に、両者の元素を含有する層がシリサイド層として形成される。このシリサイド層は広義には上記第一層に含まれるが、狭義にこれと区別して呼ぶとき「第三層」と言う。その組成は、特に限定されないが、InGaAs(M:金属元素)の式で表される。このとき、x+y+z+p=1として、xは0.05以上0.80以下が好ましく、yは0.05以上0.40以下が好ましく、zは0.01以上0.60以下が好ましく、pは0.05以上0.70以下が好ましい。ただし、第三層にはその他の元素が含まれていてもよい。そのことは、上記金属層(第二層)で述べたことと同様である。
 なお、各元素の濃度は以下の測定方法で測定した値とする。具体的には、基板をエッチングESCA(アルバックファイ製 Quantera)にて0~30nmまでの深さ方向を分析し、3~15nm分析結果におけるGe濃度の平均値を元素濃度(質量%)とする。
Next, the remaining metal layer 1 is etched (step (b)-> step (c)). In the present embodiment, the etching composition is applied at this time, and the metal layer 1 is removed by applying and contacting the etching composition from the upper side of the metal layer 1.
The semiconductor layer 2 (group III-V material-containing layer) is an epitaxial layer and can be formed by crystal growth on a silicon substrate having specific crystallinity by a chemical vapor deposition (CVD) method. Alternatively, an epitaxial layer formed with desired crystallinity may be formed by an electron beam epitaxy (MBE) method or the like.
In order to make the semiconductor layer 2 (group III-V material-containing layer) a P-type layer, boron (B) having a concentration of about 1 × 10 14 cm −3 to 1 × 10 21 cm −3 is doped. For the N-type layer, phosphorus (P) is doped at a concentration of 1 × 10 14 cm −3 to 1 × 10 21 cm −3 .
Through the salicide process, a layer containing both elements is formed as a silicide layer between the semiconductor layer (first layer) and the metal layer (second layer). This silicide layer is included in the first layer in a broad sense, but is referred to as a “third layer” when distinguished from this in a narrow sense. Its composition is not particularly limited, In x Ga y As z M p: the formula of (M metal element). At this time, x + y + z + p = 1, x is preferably 0.05 or more and 0.80 or less, y is preferably 0.05 or more and 0.40 or less, z is preferably 0.01 or more and 0.60 or less, and p is 0. .05 or more and 0.70 or less is preferable. However, the third layer may contain other elements. This is the same as described for the metal layer (second layer).
In addition, let the density | concentration of each element be the value measured with the following measuring methods. Specifically, the depth direction from 0 to 30 nm is analyzed by etching ESCA (Quanta Quantera manufactured by ULVAC-PHI), and the average value of Ge concentration in the analysis result of 3 to 15 nm is set as the element concentration (mass%).
(MOSトランジスタの加工)
 III-V族化合物半導体は極めて高い電子移動度を有することから、次世代MOSトランジスタ材料として期待されている。III-V族化合物半導体を用いたロジックMOSトランジスタや超低電圧動作が可能な量子トンネルトランジスタの開発が進んでいる。
 図2は、MOSトランジスタの製造例を示す工程図である。(A)はMOSトランジスタ構造の形成工程、(B)は金属膜のスパッタ工程、(C)は1回目のアニール工程、(D)は金属膜の選択除去工程、(E)は2回目のアニール工程である。
 図に示すように、シリコン基板21の表面に形成されたゲート絶縁膜22を介してゲート電極23が形成されている。ゲート電極23の両側にエクステンション領域が別途形成されていてもよい。ゲート電極23の上側に、NiPt層との接触を防ぐ保護層(図示せず)が形成されていてもよい。さらに、シリコン酸化膜又はシリコン窒化膜からなるサイドウォール25が形成され、イオン注入によりソース領域26及びドレイン領域27が形成されている。
 次いで、図に示すように、NiPt膜28が形成され、急速アニール処理が施される。シリコン基板には、酸化ケイ素や酸化アルミニウムから構成される絶縁膜とIII-V族材料層またはGeが存在する。アニールにより、NiPt膜28中の元素をシリコン基板中に拡散させてシリサイド化させる。この結果、ソース電極26及びドレイン電極27の上部がシリサイド化されて、NiPt-III-V族材料-Siソース電極部26A及びNiPt-III-V族材料-Siドレイン電極部27Aが形成される。なお、シリコン基板の部位によっては、NiPt-Ge-Siソース電極部26A及びNiPt-Ge-Siドレイン電極部27Aが形成される。このとき、必要により、図2(E)に示したように2回目のアニールをすることにより電極部材を所望の状態(アニールされたシリサイドソース電極26B,アニールされたシリサイドドレイン電極27B)に変化させることができる。上記1回目と2回目のアニール温度は特に限定されないが、例えば、400~1100℃で行うことができる。
(Processing of MOS transistors)
Since III-V compound semiconductors have extremely high electron mobility, they are expected as next-generation MOS transistor materials. Development of logic MOS transistors using group III-V compound semiconductors and quantum tunnel transistors capable of ultra-low voltage operation is in progress.
FIG. 2 is a process diagram showing an example of manufacturing a MOS transistor. (A) is a MOS transistor structure formation process, (B) is a metal film sputtering process, (C) is a first annealing process, (D) is a metal film selective removal process, and (E) is a second annealing process. It is a process.
As shown in the figure, a gate electrode 23 is formed through a gate insulating film 22 formed on the surface of the silicon substrate 21. Extension regions may be separately formed on both sides of the gate electrode 23. A protective layer (not shown) that prevents contact with the NiPt layer may be formed on the gate electrode 23. Further, a sidewall 25 made of a silicon oxide film or a silicon nitride film is formed, and a source region 26 and a drain region 27 are formed by ion implantation.
Next, as shown in the figure, a NiPt film 28 is formed and subjected to a rapid annealing process. The silicon substrate has an insulating film made of silicon oxide or aluminum oxide and a III-V group material layer or Ge. By annealing, the elements in the NiPt film 28 are diffused into the silicon substrate to be silicided. As a result, the upper portions of the source electrode 26 and the drain electrode 27 are silicided to form the NiPt-III-V group material-Si source electrode portion 26A and the NiPt-III-V group material-Si drain electrode portion 27A. Depending on the portion of the silicon substrate, the NiPt—Ge—Si source electrode portion 26A and the NiPt—Ge—Si drain electrode portion 27A are formed. At this time, if necessary, the electrode member is changed to a desired state (annealed silicide source electrode 26B, annealed silicide drain electrode 27B) by performing the second annealing as shown in FIG. be able to. The first and second annealing temperatures are not particularly limited, but can be performed at 400 to 1100 ° C., for example.
 シリサイド化に寄与せずに残ったNiPt膜28は、本発明のエッチング組成物を用いることによって除去することができる(図2(C)(D))。このとき、図示したものは大幅に模式化して示しており、シリサイド化された層(26A,27A)の上部に堆積して残るNiPt膜があってもなくてもよい。半導体基板ないしその製品の構造も簡略化して図示しており、必要に応じて、必要な部材があるものとして解釈すればよい。 The NiPt film 28 remaining without contributing to silicidation can be removed by using the etching composition of the present invention (FIGS. 2C and 2D). At this time, what is shown in the figure is schematically shown, and there may or may not be a NiPt film deposited and left on top of the silicided layers (26A, 27A). The structure of the semiconductor substrate or its product is also shown in a simplified manner, and may be interpreted as having necessary members as necessary.
 構成材料の好ましい例を挙げると下記のような形態を例示できる。
 21 シリコン基板 Si,SiGe,Ge
 図示せず チャネルドープ層:III-V族材料またはGe
 22 ゲート絶縁膜:  HfO(High-k)
 23 ゲート電極:   Al,W,TiN or Ta
 25 サイドウォール: SiOCN,SiN or SiO(low-k)
 26 ソース電極:   III-V族材料またはGe(n型、p型)*
 27 ドレイン電極:  III-V族材料またはGe(n型、p型)*
 28 金属層:     NiPt
 図示せず キャップ:  TiN
 なお、PMOS側のチャネルとしてGeが適用され、NMOS側にはInGaAsの適用が有望視されている。
The following forms can be illustrated if the preferable example of a constituent material is given.
21 Silicon substrate Si, SiGe, Ge
Not shown Channel doped layer: III-V material or Ge
22 Gate insulating film: HfO 2 (High-k)
23 Gate electrode: Al, W, TiN or Ta
25 Side wall: SiOCN, SiN or SiO 2 (low-k)
26 Source electrode: III-V group material or Ge (n-type, p-type) *
27 Drain electrode: III-V group material or Ge (n-type, p-type) *
28 Metal layer: NiPt
Not shown Cap: TiN
Note that Ge is applied as a channel on the PMOS side, and InGaAs is promising on the NMOS side.
 エッチングされる金属膜は、貴金属(例えば、Pt、Au、Pd、Ir、Ni、Mo、Rh、及びRe)、ランタニド金属(例えば、エルビウム、ガドリニウム、イッテルビウム、イットリウム、ホルミウム、及びジスプロシウム)、及びこれらの合金(例えばNiPt(3~20%))を挙げることができる。特に、NiPtを選択的に除去できる。
 高度な集積回路に集積され前記エッチング組成物に曝される可能性が高い材料であって、エッチングされることを望まないものとしては、high-k材料(例えば、HfO、HfON、及びHfSiON)、金属ゲート材料(例えば、TiN、TaN、TiAlN、及びW)、インタースティシャル(interstitial)層(例えば、Al及びLa)、フィル金属(例えば、アルミニウム)、誘電体(例えば、Si及びSiO)、半導体(例えば、p型ドープ及びn型ドープされたSi、Ge、及びSiGe)、エッチングされる金属のシリサイド(例えばニッケル白金シリサイド)、接点材料(例えば、NiGe、NiPtGe、及びNiInSb)、及びIII-V材料(例えば、InGaAs、InSb、GaP、GaAs、InAs、AlGaSb、InAs、InAsSb、GaSb、AlSb、AlAs,InAlAs及びInP)を挙げることができる。本開示に係る前記エッチング組成物及びプロセスは、これらの膜に与える損傷を最小化させるか損傷を与えず、それでいて不要金属を取り除くように最適される。
 ある実施形態では、本明細書に記載された金属エッチングプロセスは、(a)本開示のエッチング組成物に部分的にまたは全体的に曝され、これによってエッチング可能な金属膜を有する半導体基板を提供し;(b)エッチングされる金属膜を本開示のエッチング組成物と接触させ、さらに(c)エッチングされた半導体基板を溶剤(例えば、水を含む溶剤。)により洗浄することを含む。
 エッチング組成物は、当業者に公知の任意の適切な手段により、半導体基板に接触させることができる。このような手段としては、これらに限定されるものではないが、エッチング組成物の浴中に半導体基板を浸漬する、または半導体基板上にエッチング組成物を吹き付けるまたは流すことが挙げられる。エッチング組成物を吹き付けるまたは流すことは、基板がエッチング組成物で覆われた時点で終えることができ、またはエッチング組成物が半導体基板と接触している時間の一部若しくは全部の間、続けることができる。典型的には、半導体基板とエッチング組成物は、数秒以内に完全に接触させることができる。エッチングピリオドの最中に、または該ピリオドの間一貫して、個別のプロセスに応じて付加的なエッチング組成物を用いることができる。
 エッチングピリオドの間は、プロセスは攪拌手段を含むことができ、または攪拌手段を排除することができる。例えば、浸漬する実施形態であるプロセスにおいては、エッチング組成物を循環又は攪拌できる。あるいは、エッチング中に基板を回転させ、または上下に動かすことができる。吹き付けるまたは流す実施形態であるプロセスにおいては、半導体基板は水平に置かれるが、基板は水平方向に回転できる。実施形態のいずれにおいても、攪拌を誘発するために、半導体基板を振動させることができる。当業者であれば、個別のアプリケーションに応じて接触及び攪拌手段の最適な組み合わせを決めることができる。
 エッチングピリオドは、通常は約30秒から約30分実行することができる。当該時間は、エッチングされる膜の厚さ、他の露出膜への悪影響を避ける必要度、用いられる個別のエッチング組成物、用いられる個別の接触手段、及び採用された温度に依存する。
 金属膜がエッチングされる場合の温度は、一般には20℃から60℃の間である。好ましい温度範囲は約20℃から約50℃である。最も好ましい温度範囲は約30℃から約50℃である。
 エッチング工程に続いて、水、好ましくは脱イオン水からなる溶剤によって、半導体基板は洗浄される。適切な洗浄方法であればどのようなものでも採用できる。半導体基板を停滞水若しくは流水に浸漬すること、または半導体基板上に水を吹き付ける若しくは流すことが例示できる。エッチングピリオドの間は、上述した攪拌を採用しても良い。
 前記水性溶剤は、追加の水溶性有機溶媒を含むことができる。水溶性有機溶媒を使用すれば、有機残留物の除去や速乾を助ける。
 洗浄工程に続いて、任意の工程として、乾燥手段を使用することによって半導体基板の乾燥が亢進される。乾燥手段の例としては、窒素ガスのような非酸化性ガスをスプレーする、基板を回転させる、またはホットプレート上で若しくはオーブン中で焼成することが挙げられる。
 本発明のエッチング方法が適用される具体例を上述したが、この具体例に限らず、他の半導体の製造方法にも適用できる。例えば、WO2011/087610(特表2013-511164)の図1~8に開示されているトランジスタ、WO2011/090583(特表2013-513975)の図1~22に開示されているデバイスが挙げられる。
Etched metal films include noble metals (eg, Pt, Au, Pd, Ir, Ni, Mo, Rh, and Re), lanthanide metals (eg, erbium, gadolinium, ytterbium, yttrium, holmium, and dysprosium), and these (For example, NiPt (3 to 20%)). In particular, NiPt can be selectively removed.
High-k materials (eg, HfO 2 , HfON, and HfSiON) that are highly integrated into a highly integrated circuit and are likely to be exposed to the etching composition and do not want to be etched Metal gate materials (eg, TiN, TaN, TiAlN, and W), interstitial layers (eg, Al 2 O 3 and La 2 O 5 ), fill metals (eg, aluminum), dielectrics (eg, , Si 3 N 4 and SiO 2 ), semiconductors (eg, p-type and n-type doped Si, Ge, and SiGe), metal silicides to be etched (eg, nickel platinum silicide), contact materials (eg, NiGe) , NiPtGe, and NiInSb), and III-V materials (eg, InGaAs, InSb, aP, mention may be made of GaAs, InAs, AlGaSb, InAs, InAsSb, GaSb, AlSb, AlAs, the InAlAs and InP). The etching compositions and processes according to the present disclosure are optimized to minimize or do no damage to these films while still removing unwanted metals.
In certain embodiments, the metal etching process described herein provides (a) a semiconductor substrate having a metal film that is partially or wholly exposed to the etching composition of the present disclosure and thereby etchable. And (b) contacting the metal film to be etched with the etching composition of the present disclosure, and (c) cleaning the etched semiconductor substrate with a solvent (for example, a solvent containing water).
The etching composition can be contacted to the semiconductor substrate by any suitable means known to those skilled in the art. Such means include, but are not limited to, immersing the semiconductor substrate in a bath of the etching composition, or spraying or flowing the etching composition over the semiconductor substrate. Spraying or flowing the etching composition can be terminated when the substrate is covered with the etching composition, or can continue for some or all of the time that the etching composition is in contact with the semiconductor substrate. it can. Typically, the semiconductor substrate and the etching composition can be brought into full contact within seconds. Depending on the individual process, additional etching compositions can be used during the etching period or consistently during the period.
During the etching period, the process can include stirring means or the stirring means can be eliminated. For example, in a process that is an immersed embodiment, the etching composition can be circulated or agitated. Alternatively, the substrate can be rotated or moved up and down during etching. In the process, which is an embodiment of spraying or flowing, the semiconductor substrate is placed horizontally, but the substrate can be rotated horizontally. In any of the embodiments, the semiconductor substrate can be vibrated to induce agitation. One skilled in the art can determine the optimal combination of contact and agitation means depending on the particular application.
The etching period can typically be run from about 30 seconds to about 30 minutes. The time depends on the thickness of the film being etched, the need to avoid adverse effects on other exposed films, the particular etching composition used, the particular contact means used, and the temperature employed.
The temperature at which the metal film is etched is generally between 20 ° C. and 60 ° C. A preferred temperature range is from about 20 ° C to about 50 ° C. The most preferred temperature range is from about 30 ° C to about 50 ° C.
Following the etching step, the semiconductor substrate is cleaned with a solvent consisting of water, preferably deionized water. Any suitable cleaning method can be employed. Examples include immersing the semiconductor substrate in stagnant water or flowing water, or spraying or flowing water on the semiconductor substrate. The agitation described above may be employed during the etching period.
The aqueous solvent can include an additional water-soluble organic solvent. Use of water-soluble organic solvents helps remove organic residues and quick-dry.
Subsequent to the cleaning step, the drying of the semiconductor substrate is enhanced by using a drying means as an optional step. Examples of drying means include spraying a non-oxidizing gas such as nitrogen gas, rotating the substrate, or baking on a hot plate or in an oven.
Although the specific example to which the etching method of the present invention is applied has been described above, the present invention is not limited to this specific example, and can be applied to other semiconductor manufacturing methods. For example, the transistors disclosed in FIGS. 1 to 8 of WO 2011/087610 (special table 2013-511164) and the devices disclosed in FIGS. 1 to 22 of WO 2011/090583 (special table 2013-513975) can be given.
[エッチング組成物]
 次に、本発明のエッチング組成物の好ましい実施形態について説明する。
 本発明は、NiPtと、In、Al、Ga、Sb及びAsのうちの少なくとも1種を含む第一の材料(III-V族材料)とが存在する基板のエッチング組成物であり、ハロゲンイオンと、硝酸または硝酸イオンとを含む酸性エッチング組成物である。酸性エッチング組成物のハロゲンイオンの含有量が10質量%以下であること、酸性エッチング組成物がさらにスルホン酸を含むこと、酸性エッチング組成物(水性組成物)の含水量が50質量%以下(より好ましくは、35質量%以下)であることが好ましい。酸性エッチング組成物は、水性組成物であることが好ましく、液状であることが好ましい。以下、任意のものを含め、各成分について説明する。
[Etching composition]
Next, a preferred embodiment of the etching composition of the present invention will be described.
The present invention is an etching composition for a substrate in which NiPt and a first material (III-V group material) containing at least one of In, Al, Ga, Sb, and As are present. An acidic etching composition containing nitric acid or nitrate ions. Halogen ion content of the acidic etching composition is 10% by mass or less, the acidic etching composition further contains sulfonic acid, and the water content of the acidic etching composition (aqueous composition) is 50% by mass or less (more Preferably, it is preferably 35% by mass or less. The acidic etching composition is preferably an aqueous composition and is preferably liquid. Hereinafter, each component including an arbitrary one will be described.
(ハロゲンイオン)
 本発明に係るエッチング組成物にはハロゲンイオンが含まれる。ハロゲンイオンはなかでも、塩素イオン、臭素イオン、ヨウ素イオン、およびフッ素イオンが好ましく、塩素イオン、臭素イオンがより好ましい。ハロゲンイオンの供給源は特に限定されないが、後記有機カチオンとの塩として供給してもよいし、水素化物(塩酸、臭化水素酸等)の添加によって供給してもよい。
 ハロゲンイオンの濃度は、エッチング組成物中、0.01質量%以上であることが好ましく、0.05質量%以上がより好ましく、0.1質量%以上含有させることが特に好ましい。上限としては、30質量%以下が好ましく、27質量%以下がより好ましく、25質量%以下がさらに好ましく、10質量%以下が特に好ましい。ハロゲンイオンを上記の範囲とすることで、金属層(第二層)の良好なエッチング性を維持しながら、III-V族材料含有層(第一層)ないしそのシリサイド層(第三層)の損傷を効果的に抑制できるため好ましい。エッチング組成物の成分の同定に関しては、化合物として確認される必要まではなく、例えば、塩酸の場合、水溶液中で塩素イオン(Cl)が同定されることにより、その存在および量が把握されるものである。
 なお、本発明において、上記ハロゲンイオンは、1種のみを用いてもよいし、2種以上を併用してもよい。2種以上を併用する場合、その併用割合は特に限定されないが、合計使用量は、2種以上のイオンの総和として上記濃度範囲とすることが好ましい。
(Halogen ion)
The etching composition according to the present invention contains halogen ions. Among the halogen ions, chlorine ions, bromine ions, iodine ions, and fluorine ions are preferable, and chlorine ions and bromine ions are more preferable. The source of halogen ions is not particularly limited, but may be supplied as a salt with an organic cation described later, or may be supplied by adding a hydride (hydrochloric acid, hydrobromic acid, etc.).
The halogen ion concentration is preferably 0.01% by mass or more, more preferably 0.05% by mass or more, and particularly preferably 0.1% by mass or more in the etching composition. As an upper limit, 30 mass% or less is preferable, 27 mass% or less is more preferable, 25 mass% or less is further more preferable, and 10 mass% or less is especially preferable. By keeping the halogen ion in the above range, the III-V material-containing layer (first layer) or its silicide layer (third layer) is maintained while maintaining good etching properties of the metal layer (second layer). It is preferable because damage can be effectively suppressed. Regarding the identification of the components of the etching composition, it need not be confirmed as a compound. For example, in the case of hydrochloric acid, the presence and amount of chlorine ions (Cl ) are identified in an aqueous solution. Is.
In the present invention, the halogen ions may be used alone or in combination of two or more. When using 2 or more types together, the combined use ratio is not particularly limited, but the total use amount is preferably within the above concentration range as the sum of two or more types of ions.
(硝酸または硝酸イオン)
 本実施形態に係るエッチング組成物には硝酸または硝酸イオンが含まれる。
 その濃度は、エッチング組成物中、0.1質量%以上であることが好ましく、0.5質量%以上がより好ましく、1質量%以上含有させることが特に好ましい。上限としては、23質量%以下が好ましく、20質量%以下がより好ましく、16質量%以下がさらに好ましく、3質量%以下が特に好ましい。ハロゲンイオン100質量部に対しては、10質量部以上が好ましく、30質量部以上がより好ましく、50質量部以上が特に好ましい。上限としては、3000質量部以下が好ましく、1000質量部以下がより好ましく、600質量部以下が特に好ましい。
 硝酸または硝酸イオンの濃度を上記の範囲とすることで、金属層(第二層)の良好なエッチング性を維持しながら、III-V族材料含有層(第一層)ないしそのシリサイド層(第三層)の損傷を効果的に抑制できるため好ましい。なお、エッチング組成物の成分の同定に関しては、例えば硝酸として確認される必要まではなく、水溶液中で硝酸イオン(NO )が同定されることにより、その存在および量が把握されるものである。なお、硝酸または硝酸イオンは、1種のみを用いてもよいし、2種以上を併用してもよい。
(Nitric acid or nitrate ion)
The etching composition according to this embodiment includes nitric acid or nitrate ions.
The concentration is preferably 0.1% by mass or more, more preferably 0.5% by mass or more, and particularly preferably 1% by mass or more in the etching composition. As an upper limit, 23 mass% or less is preferable, 20 mass% or less is more preferable, 16 mass% or less is further more preferable, and 3 mass% or less is especially preferable. 10 mass parts or more are preferable with respect to 100 mass parts of halogen ions, 30 mass parts or more are more preferable, and 50 mass parts or more are especially preferable. As an upper limit, 3000 mass parts or less are preferable, 1000 mass parts or less are more preferable, and 600 mass parts or less are especially preferable.
By keeping the concentration of nitric acid or nitrate ions in the above range, the III-V material-containing layer (first layer) or its silicide layer (first layer) is maintained while maintaining good etching properties of the metal layer (second layer). This is preferable because damage to the (three layers) can be effectively suppressed. The components of the etching composition need not be confirmed, for example, as nitric acid, but the presence and amount of nitrate ions (NO 3 ) are identified in the aqueous solution. is there. In addition, nitric acid or nitrate ion may use only 1 type, and may use 2 or more types together.
(スルホン酸化合物)
 本発明のエッチング組成物においては、スルホン酸化合物を含有させてもよい。スルホン酸化合物は、アルキルスルホン酸化合物(炭素数1~12が好ましく、1~6がより好ましく、1~3が特に好ましい)であっても、アリールスルホン酸化合物(炭素数6~14が好ましく、6~10がより好ましい)であってもよい。アルキルスルホン酸化合物はアラルキル基を有するスルホン酸化合物(炭素数7~15が好ましく、7~11がより好ましい)であってもよい。
 アルキルスルホン酸化合物としては、メタンスルホン酸、エタンスルホン酸、オクチルスルホン酸、メタンジスルホン酸、エタンジスルホン酸、ベンジルスルホン酸などが好ましい。
 アリールスルホン酸化合物としては、下記式(S-1)~(S-3)のいずれかであることが好ましい。式中、Z、Zは連結基Lを介することのあるスルホン酸基である。R56は置換基であり、なかでもアルキル基(炭素数1~12が好ましく、1~6がより好ましく、1~3が特に好ましい)が好ましい。n51およびn56は0~5の整数である。n53は0~4の整数である。n51、n53、およびn56の最大値は同じ環にあるZまたはZの数に応じて減ずる。n52は1~6の整数であり、1または2が好ましい。n54およびn55はそれぞれ独立に0~4の整数であり、n54+n55は1以上である。n54+n55は1または2が好ましい。n57およびn58はそれぞれ独立に0~5の整数であり、n57+n58は1以上である。n57+n58は1または2が好ましい。複数あるR56は互いに同じでも異なっていてもよい。連結基LはO、S、NR、アルキレン基(炭素数1~12が好ましく、1~6がより好ましく、1~3が特に好ましい)、またはその組合せであることが好ましい。Rはアルキル基(炭素数1~12が好ましく、1~6がより好ましく、1~3が特に好ましい)、アリール基(炭素数6~22が好ましく、6~14がより好ましい)、または水素原子であることが好ましい。
(Sulfonic acid compound)
The etching composition of the present invention may contain a sulfonic acid compound. Even if the sulfonic acid compound is an alkylsulfonic acid compound (preferably having 1 to 12 carbon atoms, more preferably 1 to 6 carbon atoms, and particularly preferably 1 to 3 carbon atoms), an aryl sulfonic acid compound (preferably having 6 to 14 carbon atoms) 6 to 10 is more preferable). The alkyl sulfonic acid compound may be a sulfonic acid compound having an aralkyl group (preferably having 7 to 15 carbon atoms, more preferably 7 to 11 carbon atoms).
As the alkylsulfonic acid compound, methanesulfonic acid, ethanesulfonic acid, octylsulfonic acid, methanedisulfonic acid, ethanedisulfonic acid, benzylsulfonic acid and the like are preferable.
The arylsulfonic acid compound is preferably any of the following formulas (S-1) to (S-3). In formula, Z < 1 >, Z < 2 > is a sulfonic acid group which may pass through the coupling group L. In FIG. R 56 is a substituent, and an alkyl group (preferably having 1 to 12 carbon atoms, more preferably 1 to 6 carbon atoms, and particularly preferably 1 to 3 carbon atoms) is particularly preferable. n 51 and n 56 are integers of 0 to 5. n 53 is an integer of 0 to 4. The maximum value of n 51 , n 53 , and n 56 decreases with the number of Z 1 or Z 2 in the same ring. n 52 is an integer of 1 to 6, preferably 1 or 2. n 54 and n 55 are each independently an integer of 0 to 4, and n 54 + n 55 is 1 or more. n 54 + n 55 is preferably 1 or 2. n 57 and n 58 are each independently an integer of 0 to 5, and n 57 + n 58 is 1 or more. n 57 + n 58 is preferably 1 or 2. A plurality of R 56 may be the same as or different from each other. The linking group L is preferably O, S, NR N , an alkylene group (preferably having 1 to 12 carbon atoms, more preferably 1 to 6 and particularly preferably 1 to 3), or a combination thereof. RN represents an alkyl group (preferably having 1 to 12 carbon atoms, more preferably 1 to 6 carbon atoms, particularly preferably 1 to 3 carbon atoms), an aryl group (preferably having 6 to 22 carbon atoms, more preferably 6 to 14 carbon atoms), or hydrogen. An atom is preferred.
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
 アリールスルホン酸化合物の具体例としては、パラトルエンスルホン酸、ベンゼンスルホン酸、2-ナフタレンスルホン酸、ナフタレン-1-スルホン酸、1,5-ナフタレンジスルホン酸、2,6-ナフタレンジスルホン酸などが挙げられる。
 スルホン酸化合物の濃度は、エッチング組成物中、1質量%以上であることが好ましく、5質量%以上がより好ましく、30質量%以上含有させることが特に好ましい。上限としては、80質量%以下が好ましく、75質量%以下がより好ましく、70質量%以下が特に好ましい。スルホン酸化合物を上記の濃度で適用することにより、良好な金属層のエッチングを実現しつつ、III-V族材料やゲルマニウム層の効果的な保護を実現することができる点で好ましい。
Specific examples of the aryl sulfonic acid compound include p-toluene sulfonic acid, benzene sulfonic acid, 2-naphthalene sulfonic acid, naphthalene-1-sulfonic acid, 1,5-naphthalenedisulfonic acid, 2,6-naphthalenedisulfonic acid, and the like. It is done.
The concentration of the sulfonic acid compound is preferably 1% by mass or more, more preferably 5% by mass or more, and particularly preferably 30% by mass or more in the etching composition. As an upper limit, 80 mass% or less is preferable, 75 mass% or less is more preferable, and 70 mass% or less is especially preferable. The application of the sulfonic acid compound at the above concentration is preferable in that effective protection of the III-V group material and the germanium layer can be realized while realizing good etching of the metal layer.
(有機カチオン)
 本発明のエッチング組成物においては、有機カチオンを含有させてもよく、炭素原子を有しアルカリ性を呈するカチオンであることが好ましい。なかでも、有機オニウムであることが好ましく、有機アンモニウムであることがより好ましい。具体的には、炭素数5以上の有機アンモニウムであることが好ましく、炭素数8以上の有機アンモニウムであることがより好ましい。上限としては炭素数35以下が実際的である。
 有機カチオンが系内で奏する作用については、推定を含むが以下のように考えられる。本発明のエッチング組成物においては、ハロゲンイオンと硝酸イオンが主に金属層(第二層)のエッチング作用を奏していると解される。スルホン酸化合物については、III-V族材料やゲルマニウムの溶解度を低下させその溶出を抑える働きがあると解される。そのため相当量を適用することが好ましい。これによりIII-V族材料含有層(第一層)と金属層(第二層)との選択除去性が高まるが、十分ではなかった。本発明では、そこに有機カチオンを共存させることで、III-V族材料含有層やゲルマニウム表面にこれを吸着させ、効果的な防食表面を構成する。これにより、スルホン酸化合物によるIII-V族材料やゲルマニウムの溶出の抑制効果と相まって、顕著なエッチングの選択性を発現する。さらに有機カチオンの炭素数が多くなると(5以上)より顕著にIII-V族材料やゲルマニウムの溶解を抑制することができる。かかる作用から、有機カチオンは系内に微量で存在すればよく、上記スルホン酸化合物との協働作用が高まる量および種類のものが選定されることが特に好ましい。
(Organic cation)
The etching composition of the present invention may contain an organic cation, and is preferably a cation having a carbon atom and exhibiting alkalinity. Among these, organic onium is preferable, and organic ammonium is more preferable. Specifically, organic ammonium having 5 or more carbon atoms is preferable, and organic ammonium having 8 or more carbon atoms is more preferable. The upper limit is practically 35 or less carbon atoms.
About the effect | action which an organic cation shows in a system including estimation, it thinks as follows. In the etching composition of the present invention, it is understood that halogen ions and nitrate ions mainly exert an etching action on the metal layer (second layer). It is understood that the sulfonic acid compound has a function of reducing the solubility of the III-V material and germanium and suppressing the elution. Therefore, it is preferable to apply a considerable amount. This enhances the selective removal of the III-V material-containing layer (first layer) and the metal layer (second layer), but it is not sufficient. In the present invention, an organic cation is allowed to coexist therewith to adsorb it to the III-V group material-containing layer or the germanium surface, thereby forming an effective anticorrosion surface. Accordingly, a remarkable etching selectivity is exhibited in combination with the effect of suppressing the elution of the III-V material and germanium by the sulfonic acid compound. Further, when the number of carbon atoms of the organic cation is increased (5 or more), the dissolution of the III-V group material or germanium can be suppressed remarkably. From such an action, the organic cation only needs to be present in a very small amount in the system, and it is particularly preferable to select an amount and type that enhance the cooperative action with the sulfonic acid compound.
 有機オニウムとしては、含窒素オニウム(第四級アンモニウム等)、含リンオニウム(第四級ホスホニウム等)、含硫黄オニウム(例えばSRy :Ryは炭素数1~6のアルキル基)が挙げられる。なかでも含窒素オニウム(第四級アンモニウム、ピリジニウム、ピラゾリウム、イミダゾリウム等)が好ましい。有機カチオンは、なかでも第四級アンモニウムであることが好ましい。
 有機オニウムとしては、下記式(Q-1)で表されるイオンが挙げられる。
Examples of the organic onium include nitrogen-containing onium (such as quaternary ammonium), phosphorus-containing onium (such as quaternary phosphonium), and sulfur-containing onium (for example, SRy 3 + : Ry is an alkyl group having 1 to 6 carbon atoms). Of these, nitrogen-containing onium (quaternary ammonium, pyridinium, pyrazolium, imidazolium, etc.) is preferable. In particular, the organic cation is preferably quaternary ammonium.
Examples of the organic onium include ions represented by the following formula (Q-1).
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
 式中、RQ1~RQ4はそれぞれ独立に炭素数1~35のアルキル基、炭素数2~35のアルケニル基、炭素数2~35のアルキニル基、炭素数6~14のアリール基、炭素数7~15のアラルキル基、下記式(y)で表される基である。ただし、RQ1~RQ4の炭素数の合計は5以上であることが好ましく、8以上であることがより好ましい。
 
  Y1-(Ry1-Y2)my-Ry2-*    (y)
 
 Y1は炭素数1~12のアルキル基、炭素数2~12のアルケニル基、炭素数2~12のアルキニル基、炭素数7~14のアラルキル基、炭素数6~14のアリール基、ヒドロキシル基、スルファニル基、炭素数1~4のアルコキシ基、または炭素数1~4のチオアルコキシ基を表す。Y2は、O、S、CO、NR(Rは水素原子または炭素数1~6のアルキル基)を表す。Ry1およびRy2はそれぞれ独立に炭素数1~6のアルキレン基、炭素数2~6のアルケニレン基、炭素数2~6のアルキニレン基、炭素数6~10のアリーレン基、またはそれらの組合せを表す。myは0~6の整数を表す。myが2以上のとき複数のRy1およびY2はそれぞれ異なっていてもよい。Ry1およびRy2はさらに置換基Tを有していてもよい。*は結合手である。
In the formula, R Q1 to R Q4 are each independently an alkyl group having 1 to 35 carbon atoms, an alkenyl group having 2 to 35 carbon atoms, an alkynyl group having 2 to 35 carbon atoms, an aryl group having 6 to 14 carbon atoms, 7 to 15 aralkyl groups, groups represented by the following formula (y). However, the total number of carbon atoms of R Q1 to R Q4 is preferably 5 or more, and more preferably 8 or more.

Y1- (Ry1-Y2) my-Ry2- * (y)

Y1 is an alkyl group having 1 to 12 carbon atoms, an alkenyl group having 2 to 12 carbon atoms, an alkynyl group having 2 to 12 carbon atoms, an aralkyl group having 7 to 14 carbon atoms, an aryl group having 6 to 14 carbon atoms, a hydroxyl group, A sulfanyl group, an alkoxy group having 1 to 4 carbon atoms, or a thioalkoxy group having 1 to 4 carbon atoms is represented. Y2 represents O, S, CO, NR N ( RN is a hydrogen atom or an alkyl group having 1 to 6 carbon atoms). Ry1 and Ry2 each independently represents an alkylene group having 1 to 6 carbon atoms, an alkenylene group having 2 to 6 carbon atoms, an alkynylene group having 2 to 6 carbon atoms, an arylene group having 6 to 10 carbon atoms, or a combination thereof. my represents an integer of 0 to 6. When my is 2 or more, the plurality of Ry1 and Y2 may be different from each other. Ry1 and Ry2 may further have a substituent T. * Is a bond.
 上記有機カチオンは、アルキルアンモニウムカチオン、アリールアンモニウムカチオン、およびアルキル・アリールアンモニウムカチオンからなる群から選ばれる少なくとも一種であることが好ましい。
 具体的には、テトラアルキルアンモニウム(好ましくは炭素数5~35、より好ましくは8~25、特に好ましくは10~25)が好ましい。このとき、アルキル基には本発明の効果を損ねない範囲で任意の置換基(例えば、ヒドロキシル基、アリル基、アリール基)が置換していてもよい。また、アルキル基は直鎖でも分岐でもよく、環状でもよい。具体的には、テトラメチルアンモニウム(TMA)、テトラエチルアンモニウム(TEA)、ベンジルトリメチルアンモニウム、エチルトリメチルアンモニウム、2-ヒドロキシエチルトリメチルアンモニウム、ベンジルトリエチルアンモニウム、ヘキサデシルトリメチルアンモニウム、テトラブチルアンモニウム(TBA)、テトラヘキシルアンモニウム(THA)、テトラプロピルアンモニウム(TPA)、トリメチルベンジルアンモニウム、ラウリルピリジニウム、セチルピリジニウム、ラウリルトリメチルアンモニウム、ヘキサデシルトリメチルアンモニウム、オクタデシルトリメチルアンモニウム、ジデシルジメチルアンモニウム、ジラウリルジメチルアンモニウム、ジステアリルジメチルアンモニウム、ジオレイルジメチルアンモニウム、ラウリルジメチルベンジルアンモニウム、セチルトリメチルアンモニウム、セチルトリメチルアンモニウムなどが挙げられる。
The organic cation is preferably at least one selected from the group consisting of an alkyl ammonium cation, an aryl ammonium cation, and an alkyl / aryl ammonium cation.
Specifically, tetraalkylammonium (preferably having a carbon number of 5 to 35, more preferably 8 to 25, particularly preferably 10 to 25) is preferable. At this time, the alkyl group may be substituted with an arbitrary substituent (for example, a hydroxyl group, an allyl group, or an aryl group) as long as the effects of the present invention are not impaired. The alkyl group may be linear, branched or cyclic. Specifically, tetramethylammonium (TMA), tetraethylammonium (TEA), benzyltrimethylammonium, ethyltrimethylammonium, 2-hydroxyethyltrimethylammonium, benzyltriethylammonium, hexadecyltrimethylammonium, tetrabutylammonium (TBA), tetra Hexyl ammonium (THA), tetrapropyl ammonium (TPA), trimethylbenzyl ammonium, lauryl pyridinium, cetyl pyridinium, lauryl trimethyl ammonium, hexadecyl trimethyl ammonium, octadecyl trimethyl ammonium, didecyl dimethyl ammonium, dilauryl dimethyl ammonium, distearyl dimethyl ammonium , Georail dimethylan Chloride, lauryl dimethyl benzyl ammonium, cetyl trimethyl ammonium, cetyl trimethyl ammonium.
 有機カチオンの供給源は特に限定されないが、前記のハロゲンイオンとの塩や、水酸化物イオンとの塩が挙げられる。
 有機カチオンの濃度は、エッチング組成物中、1×10-6mol/L以上であることが好ましく、1×10-5mol/L以上がより好ましく、5×10-5mol/L以上含有させることが特に好ましい。上限としては、1mol/L以下が好ましく、0.5mol/L以下がより好ましく、0.1mol/L以下が特に好ましい。有機カチオンを上記の範囲とすることで、金属層(第二層)の良好なエッチング性を維持しながら、III-V族材料含有層(第一層)ないしそのシリサイド層(第三層)の損傷を効果的に抑制できるため好ましい。
The source of the organic cation is not particularly limited, and examples thereof include the salt with the halogen ion and the salt with hydroxide ion.
The concentration of the organic cation is preferably 1 × 10 −6 mol / L or more in the etching composition, more preferably 1 × 10 −5 mol / L or more, and 5 × 10 −5 mol / L or more. It is particularly preferred. The upper limit is preferably 1 mol / L or less, more preferably 0.5 mol / L or less, and particularly preferably 0.1 mol / L or less. By keeping the organic cation in the above range, the III-V material-containing layer (first layer) or its silicide layer (third layer) is maintained while maintaining good etching properties of the metal layer (second layer). It is preferable because damage can be effectively suppressed.
 有機カチオンはそのClogPが-4以上であることが好ましく、0以上がさらに好ましい。有機カチオンのClogPをこの範囲とすることで、III-V族材料含有層を効果的に保護した、高いエッチング選択性を実現できる点で好ましい。
 オクタノール-水分配係数(logP値)の測定は、一般にJIS日本工業規格Z7260-107(2000)に記載のフラスコ浸とう法により実施することができる。また、オクタノール-水分配係数(logP値)は実測に代わって、計算化学的手法あるいは経験的方法により見積もることも可能である。計算方法としては、Crippen's fragmentation法(J.Chem.Inf.Comput.Sci.,27,21(1987))、Viswanadhan's fragmentation法(J.Chem.Inf.Comput.Sci.,29,163(1989))、Broto's fragmentation法(Eur.J.Med.Chem.-Chim.Theor.,19,71(1984))などを用いることが知られている。本発明では、Crippen's fragmentation法(J.Chem.Inf.Comput.Sci.,27,21(1987))を用いる。ClogP値とは、1-オクタノールと水への分配係数Pの常用対数logPを計算によって求めた値である。ClogP値の計算に用いる方法やソフトウェアについては任意のものを用いることができるが、特に断らない限り、本発明ではChemDraw Ultra 12.0(商品名)を用いることとする。
The organic cation preferably has a ClogP of −4 or more, more preferably 0 or more. By setting the ClogP of the organic cation within this range, it is preferable in that high etching selectivity can be realized while effectively protecting the III-V group material-containing layer.
The measurement of the octanol-water partition coefficient (log P value) can be generally carried out by a flask soaking method described in JIS Japanese Industrial Standard Z7260-107 (2000). Further, the octanol-water partition coefficient (log P value) can be estimated by a computational chemical method or an empirical method instead of the actual measurement. As the calculation method, Crippen's fragmentation method (J. Chem. Inf. Comput. Sci., 27, 21 (1987)), Viswanadhan's fragmentation method (J. Chem. Inf. Comput. Sci., 29, 163 (1989)), Broto's It is known to use a fragmentation method (Eur. J. Med. Chem.-Chim. Theor., 19, 71 (1984)). In the present invention, the Crippen's fragmentation method (J. Chem. Inf. Comput. Sci., 27, 21 (1987)) is used. The ClogP value is a value obtained by calculating the common logarithm logP of the distribution coefficient P between 1-octanol and water. Any method and software used for calculating the ClogP value can be used, but unless otherwise specified, ChemDraw Ultra 12.0 (trade name) is used in the present invention.
 化合物ないし置換基・連結基等がアルキル基・アルキレン基、アルケニル基・アルケニレン基、アルキニル基・アルキニレン基等を含むとき、これらは環状でも鎖状でもよく、また直鎖でも分岐していてもよく、任意の基で置換されていても無置換でもよい。このとき、アルキル基・アルキレン基、アルケニル基・アルケニレン基、アルキニル基・アルキニレン基はヘテロ原子を含む基(例えば、O、S、CO、NR等)を介在していてもよく、これを伴って環構造を形成していてもよい。またアリール基、ヘテロ環基等を含むとき、それらは単環でも縮環でもよく、同様に置換されていても無置換でもよい。
 本明細書において、化合物の置換基や連結基の選択肢を始め、温度、厚さといった各技術事項は、そのリストがそれぞれ独立に記載されていても、相互に組み合わせることができる。
When a compound or a substituent / linking group includes an alkyl group / alkylene group, an alkenyl group / alkenylene group, an alkynyl group / alkynylene group, etc., these may be cyclic or linear, and may be linear or branched These may be substituted with any group or unsubstituted. In this case, an alkyl group, an alkylene group, an alkenyl group, an alkenylene group, an alkynyl group, an alkynylene group is a group containing a hetero atom (e.g., O, S, CO, NR N and the like) may be separated by a, with this To form a ring structure. Moreover, when an aryl group, a heterocyclic group, etc. are included, they may be monocyclic or condensed and may be similarly substituted or unsubstituted.
In the present specification, the technical matters such as temperature and thickness, as well as the choices of substituents and linking groups of the compounds, can be combined with each other even if the list is described independently.
(水媒体)
 本発明のエッチング組成物には、その一実施形態において、その媒体として水(水媒体)が適用されることが好ましい。水(水媒体)としては、本発明の効果を損ねない範囲で溶解成分を含む水性媒体であってもよく、あるいは不可避的な微量混合成分を含んでいてもよい。なかでも、蒸留水やイオン交換水、あるいは超純水といった浄化処理を施された水が好ましく、半導体製造に使用される超純水を用いることが特に好ましい。水の濃度は特に限定されないが、10質量%以上が好ましく、15質量%以上がより好ましい。上限としては、95質量%以下が好ましく、90質量%以下がより好ましく、85質量%以下がさらに好ましく、50質量%以下がよりさらに好ましく、35質量%以下が特に好ましい。
(pH)
 本発明においては、エッチング組成物のpH(25℃)を3以下とすることが好ましく、1以下とすることがより好ましい。上記の範囲とすることが第二層の十分なエッチング速度を確保しつつ、第一層ないしその第三層の損傷を効果的に防止する観点で好ましい。
 なお、本発明においてpHは、室温(25℃)においてHORIBA社製、F-51(商品名)で測定する。
(Aqueous medium)
In the etching composition of the present invention, in one embodiment, water (aqueous medium) is preferably applied as the medium. The water (aqueous medium) may be an aqueous medium containing a dissolved component as long as the effects of the present invention are not impaired, or may contain an unavoidable trace mixed component. Among these, water that has been subjected to purification treatment such as distilled water, ion-exchanged water, or ultrapure water is preferable, and ultrapure water that is used for semiconductor manufacturing is particularly preferable. The concentration of water is not particularly limited, but is preferably 10% by mass or more, and more preferably 15% by mass or more. As an upper limit, 95 mass% or less is preferable, 90 mass% or less is more preferable, 85 mass% or less is more preferable, 50 mass% or less is further more preferable, 35 mass% or less is especially preferable.
(PH)
In the present invention, the pH (25 ° C.) of the etching composition is preferably 3 or less, and more preferably 1 or less. The above range is preferable from the viewpoint of effectively preventing damage to the first layer or the third layer while securing a sufficient etching rate of the second layer.
In the present invention, pH is measured at room temperature (25 ° C.) with F-51 (trade name) manufactured by HORIBA.
任意の添加剤としては溶剤、カルボン酸または他の錯化剤、抗腐食剤、粘度低下剤、及び界面活性剤が挙げられ、性能を最適化したりコストを下げたりするため、全ての実施形態に用いてもよい。前記カルボン酸は、クロリド錯体形成を補完することにより前記金属イオンの溶解度を改善するために用いることができる。前記界面活性剤は、表面張力調整剤としての従来の目的だけでなく、アルミニウム、二酸化ケイ素、窒化ケイ素、シリサイド、タングステン、及びTiNのような様々な露出面上の腐食を抑制するために湿潤剤として用いることもできる。前記溶剤は、標的となるある種の有機残留物除去の解決策としてハンセン溶解度パラメータの変更を可能にし、溶液の酸化電位を変化させる。用いられる添加剤は、異なるタイプの混合物、同じクラスの添加物の混合物、または同じクラス及び異なるタイプの両方の添加剤の混合物であってもよい。前記添加剤は低pH及び酸化条件下で安定であることに注意しなければならない。 ある実施形態では、本明細書に記載の前記エッチング組成物は、1つ以上の有機溶媒を含む。ある実施形態では、本明細書に記載の前記エッチング組成物での使用に適した前記有機溶媒は、グリコール、エーテル、及びポリオールなどの安定化剤を除く。前記エッチング組成物から除かれ得る特定の有機溶媒(または安定化剤)の例としては、グリム、ジグリム、トリグリム、クラウンエーテル類、エチレングリコール、トリプロピレングリコール、及びプロピレングリコールメチルエーテルを挙げることができる。ある実施形態では、前記エッチング組成物は、上述の除かれた溶媒の1以上を含む。 前記添加剤の濃度は、前記添加剤個別の有効性または目的に依存してもよい。用いられる前記付加的な溶剤の濃度は、約3%~約35%である。前記カルボン酸、他の錯化剤、粘度低下剤、及び界面活性剤の濃度は、約.001%~約10%である。 Optional additives include solvents, carboxylic acids or other complexing agents, anti-corrosion agents, viscosity reducing agents, and surfactants, and are included in all embodiments to optimize performance and reduce costs. It may be used. The carboxylic acid can be used to improve the solubility of the metal ions by complementing chloride complex formation. The surfactant is not only a conventional purpose as a surface tension modifier, but also a wetting agent to inhibit corrosion on various exposed surfaces such as aluminum, silicon dioxide, silicon nitride, silicide, tungsten, and TiN. Can also be used. The solvent allows the Hansen solubility parameter to be changed as a solution to remove certain targeted organic residues and change the oxidation potential of the solution. The additive used may be a mixture of different types, a mixture of the same class of additives, or a mixture of both the same class and different types of additives. Note that the additive is stable under low pH and oxidizing conditions. In certain embodiments, the etching composition described herein comprises one or more organic solvents. In certain embodiments, the organic solvent suitable for use in the etching composition described herein excludes stabilizers such as glycols, ethers, and polyols. Examples of specific organic solvents (or stabilizers) that can be removed from the etching composition can include glyme, diglyme, triglyme, crown ethers, ethylene glycol, tripropylene glycol, and propylene glycol methyl ether. . In certain embodiments, the etching composition comprises one or more of the removed solvents described above. The concentration of the additive may depend on the effectiveness or purpose of each additive. The concentration of the additional solvent used is about 3% to about 35%. The concentration of the carboxylic acid, other complexing agent, viscosity reducing agent, and surfactant is about. 001% to about 10%.
(キット)
 本発明におけるエッチング組成物は、その原料を複数に分割したキットとしてもよい。例えば、第1液として上記ハロゲンイオンおよび有機カチオンを水に含有する液組成物を準備し、第2液として硝酸または硝酸イオンを含有する液組成物を準備する態様が挙げられる。このときその他のスルホン酸化合物などの成分はそれぞれ別にあるいはともに第1液、第2液、またはその他の第3液に含有させておくことができる。
 その使用例としては、両液を混合してエッチング組成物を調液し、その後適時に上記エッチング処理に適用する態様が好ましい。このようにすることで、各成分の分解による液性能の劣化を招かずにすみ、所望のエッチング作用を効果的に発揮させることができる。ここで、混合後「適時」とは、混合ののち所望の作用を失うまでの時期を指し、具体的には60分以内であることが好ましく、30分以内であることがより好ましく、10分以内であることがさらに好ましく、1分以内であることが特に好ましい。下限は特にないが、1秒以上であることが実際的である。
 なお、本発明のエッチング組成物は、その使用用途に鑑み、液中の不純物、例えば金属分などは少ないことが好ましい。特に、液中のNa、K、Caイオン濃度が1ppt~1ppm(質量基準)の範囲にあることが好ましい。また、エッチング組成物において、平均粒径0.5μm以上の粗大粒子数が100個/cm以下の範囲にあることが好ましく、50個/cm以下の範囲にあることが好ましい。
(kit)
The etching composition in this invention is good also as a kit which divided | segmented the raw material into plurality. For example, the liquid composition containing the said halogen ion and organic cation in water as a 1st liquid is prepared, and the aspect which prepares the liquid composition containing nitric acid or nitrate ion as a 2nd liquid is mentioned. At this time, other components such as other sulfonic acid compounds can be contained separately or together in the first liquid, the second liquid, or the other third liquid.
As an example of its use, a mode in which both solutions are mixed to prepare an etching composition, and then applied to the etching treatment at an appropriate time is preferable. By doing in this way, it does not cause deterioration of the liquid performance by decomposition | disassembly of each component, and a desired etching effect | action can be exhibited effectively. Here, “timely” after mixing refers to the time period after mixing until the desired action is lost, specifically within 60 minutes, more preferably within 30 minutes, and more preferably within 10 minutes. Is more preferably within 1 minute, and particularly preferably within 1 minute. Although there is no lower limit in particular, it is practical that it is 1 second or more.
In addition, it is preferable that the etching composition of this invention has few impurities, for example, a metal content, etc. in a liquid in view of the use use. In particular, the Na, K, and Ca ion concentration in the liquid is preferably in the range of 1 ppt to 1 ppm (mass basis). In the etching composition, the number of coarse particles having an average particle size of 0.5 μm or more is preferably in the range of 100 particles / cm 3 or less, and is preferably in the range of 50 particles / cm 3 or less.
(容器)
 本発明のエッチング組成物は、(キットであるか否かに関わらず)腐食性等が問題とならない限り、任意の容器に充填して保管、運搬、そして使用することができる。また、半導体用途向けに、容器のクリーン度が高く、不純物の溶出が少ないものが好ましい。使用可能な容器としては、アイセロ化学(株)製の「クリーンボトル」シリーズ、コダマ樹脂工業(株)製の「ピュアボトル」などが挙げられるが、これらに限定されるものではない。
[エッチング条件]
 本発明のエッチング方法においては、枚葉式装置を用いることが好ましい。具体的に枚葉式装置は、処理槽を有し、その処理槽で上記半導体基板を搬送もしくは回転させ、その処理槽内に上記エッチング組成物を付与(吐出、噴射、流下、滴下等)して、半導体基板に上記エッチング組成物を接触させるものであることが好ましい。
 枚葉式装置のメリットとしては、(i)常に新鮮なエッチング組成物が供給されるので、再現性がよい、(ii)面内均一性が高いといったことが挙げられる。さらに、エッチング組成物を複数に分けたキットを利用しやすく、例えば、上記第1液と第2液をインラインで混合し、吐出する方法が好適に採用される。このとき、上記の第1液と第2液とを共に温度調節するか、どちらか一方だけ温調し、インラインで混合して吐出する方法が好ましい。なかでも、共に温調する実施態様がより好ましい。ラインの温度調節を行うときの管理温度は、後記処理温度と同じ範囲とすることが好ましい。
 枚葉式装置はその処理槽にノズルを具備することが好ましく、このノズルを半導体基板の面方向にスイングさせてエッチング組成物を半導体基板に吐出する方法が好ましい。このようにすることにより、液の劣化が防止でき好ましい。また、キットにして2液以上に分けることでガス等を発生させにくくすることができ好ましい。
(container)
The etching composition of the present invention can be stored, transported and used in any container as long as corrosivity or the like does not matter (whether or not it is a kit). For semiconductor applications, a container having a high cleanliness and a low impurity elution is preferable. Examples of the containers that can be used include, but are not limited to, “Clean Bottle” series manufactured by Aicero Chemical Co., Ltd., “Pure Bottle” manufactured by Kodama Resin Co., Ltd., and the like.
[Etching conditions]
In the etching method of the present invention, it is preferable to use a single wafer type apparatus. Specifically, the single wafer type apparatus has a processing tank, and the semiconductor substrate is conveyed or rotated in the processing tank, and the etching composition is applied (discharge, jetting, flowing down, dropping, etc.) into the processing tank. The etching composition is preferably brought into contact with the semiconductor substrate.
Advantages of the single wafer type apparatus include (i) since a fresh etching composition is always supplied, so that reproducibility is good, and (ii) in-plane uniformity is high. Furthermore, a kit in which the etching composition is divided into a plurality of parts can be easily used. For example, a method of mixing and discharging the first liquid and the second liquid in-line is suitably employed. At this time, it is preferable to adjust the temperature of both the first liquid and the second liquid, or to adjust the temperature of only one of them and mix and discharge them in-line. Among these, an embodiment in which the temperature is controlled together is more preferable. The management temperature when adjusting the line temperature is preferably in the same range as the processing temperature described later.
The single wafer type apparatus is preferably provided with a nozzle in its treatment tank, and a method of discharging the etching composition onto the semiconductor substrate by swinging the nozzle in the surface direction of the semiconductor substrate is preferable. By doing so, the deterioration of the liquid can be prevented, which is preferable. In addition, it is preferable that a kit is divided into two or more liquids so that it is difficult to generate gas or the like.
 エッチングを行う処理温度は、10℃以上であることが好ましく、20℃以上であることがより好ましい。上限としては、80℃以下であることが好ましく、70℃以下であることがより好ましく、60℃以下であることがさらに好ましく、50℃以下であることがさらに好ましく、40℃以下であることが特に好ましい。上記下限値以上とすることにより、第二層に対する十分なエッチング速度を確保することができ好ましい。上記上限値以下とすることにより、エッチング処理速度の経時安定性を維持することができ好ましい。また、室温付近で処理できることで、エネルギー消費の削減にもつながる。
 なお、エッチングの処理温度とは後記実施例で示す温度測定方法において基板に適用する温度を基礎とするが、保存温度あるいはバッチ処理で管理する場合にはそのタンク内の温度、循環系で管理する場合には循環流路内の温度で設定してもよい。
The processing temperature at which etching is performed is preferably 10 ° C. or higher, and more preferably 20 ° C. or higher. The upper limit is preferably 80 ° C. or lower, more preferably 70 ° C. or lower, further preferably 60 ° C. or lower, further preferably 50 ° C. or lower, and preferably 40 ° C. or lower. Particularly preferred. By setting it to the above lower limit value or more, a sufficient etching rate for the second layer can be secured, which is preferable. By setting it to the upper limit value or less, it is preferable because the temporal stability of the etching processing rate can be maintained. In addition, the ability to process near room temperature leads to a reduction in energy consumption.
The etching processing temperature is based on the temperature applied to the substrate in the temperature measurement method shown in the examples described later. However, when the temperature is controlled by the storage temperature or batch processing, the temperature in the tank is controlled by the circulation system. In some cases, the temperature may be set in the circulation flow path.
 エッチング組成物の供給速度は特に限定されないが、0.05~5L/minとすることが好ましく、0.1~3L/minとすることがより好ましい。上記下限値以上とすることにより、エッチングの面内の均一性を一層良好に確保することができ好ましい。上記上限値以下とすることにより、連続処理時に安定した性能を確保でき好ましい。半導体基板を回転させるときには、その大きさ等にもよるが、上記と同様の観点から、50~1000rpmで回転させることが好ましい。 The supply rate of the etching composition is not particularly limited, but is preferably 0.05 to 5 L / min, and more preferably 0.1 to 3 L / min. By setting it to the above lower limit value or more, it is preferable because uniformity in the etching plane can be ensured. By setting it to the upper limit value or less, it is preferable because stable performance can be secured during continuous processing. When the semiconductor substrate is rotated, although it depends on its size and the like, it is preferably rotated at 50 to 1000 rpm from the same viewpoint as described above.
 本発明の好ましい実施形態に係る枚葉式のエッチングにおいては、半導体基板を所定の方向に搬送もしくは回転させ、その空間にエッチング組成物を噴射して上記半導体基板に上記エッチング組成物を接触させることが好ましい。エッチング組成物の供給速度や基板の回転速度についてはすでに述べたことと同様である。
 上記金属層は高いエッチングレートでエッチングされることが好ましい。第二層(金属層)のエッチングレート[R2]は、特に限定されないが、生産効率を考慮し、20Å/min以上であることが好ましく、100Å/min以上がより好ましく、200Å/min以上であることが特に好ましい。上限は特にないが、1200Å/min以下であることが実際的である。
In single-wafer etching according to a preferred embodiment of the present invention, a semiconductor substrate is transported or rotated in a predetermined direction, and an etching composition is sprayed into the space to bring the etching composition into contact with the semiconductor substrate. Is preferred. The supply rate of the etching composition and the rotation speed of the substrate are the same as those already described.
The metal layer is preferably etched at a high etching rate. The etching rate [R2] of the second layer (metal layer) is not particularly limited, but is preferably 20 Å / min or more, more preferably 100 Å / min or more, and 200 Å / min or more in consideration of production efficiency. It is particularly preferred. Although there is no upper limit in particular, it is practical that it is 1200 kg / min or less.
 金属層の露出幅は特に限定されないが、本発明の利点がより顕著になる観点から、2nm以上であることが好ましく、4nm以上であることがより好ましい。同様に効果の顕著性の観点から、上限値は1000nm以下であることが実際的であり、100nm以下であることが好ましく、20nm以下であることがより好ましい。 Although the exposed width of the metal layer is not particularly limited, it is preferably 2 nm or more, more preferably 4 nm or more from the viewpoint that the advantages of the present invention become more prominent. Similarly, from the viewpoint of conspicuous effect, the upper limit is practically 1000 nm or less, preferably 100 nm or less, and more preferably 20 nm or less.
 第一層ないしそのシリサイド層(第三層)のエッチングレート[R1]は、特に限定されないが、過度に除去されないことが好ましく、200Å/min以下であることが好ましく、100Å/min以下であることがより好ましく、50Å/min以下であることがさらに好ましく、20Å/min以下であることがさらに好ましく、10Å/min以下であることが特に好ましい。下限は特にないが、測定限界を考慮すると0.1Å/min以上であることが実際的である。
 第一層の選択的エッチングにおいて、そのエッチングレート比([R2]/[R1])は特に限定されないが、高い選択性を必要とする素子を前提に言うと、2以上であることが好ましく、10以上であることがより好ましく、20以上であることがさらに好ましく、50以上であることが特に好ましい。上限としては特に規定されず、高いほど好ましいが、5000以下であることが実際的である。なお、シリサイド層(第三層)のエッチング条件は、広義にはIII-V族材料含有層(第一層)と同義であり、そのアニール前の層(例えばIII-V族材料含有層)と共通しており、そのエッチング速度によって代用することができる。
The etching rate [R1] of the first layer or its silicide layer (third layer) is not particularly limited, but is preferably not excessively removed, preferably 200 Å / min or less, and 100 Å / min or less. Is more preferably 50 Å / min or less, further preferably 20 Å / min or less, and particularly preferably 10 Å / min or less. There is no particular lower limit, but considering the measurement limit, it is practical that it is 0.1 Å / min or more.
In the selective etching of the first layer, the etching rate ratio ([R2] / [R1]) is not particularly limited, but it is preferably 2 or more on the premise of an element that requires high selectivity. It is more preferably 10 or more, further preferably 20 or more, and particularly preferably 50 or more. The upper limit is not particularly defined and is preferably as high as possible, but is practically 5000 or less. The etching condition of the silicide layer (third layer) is broadly synonymous with the III-V group material-containing layer (first layer), and the layer before the annealing (for example, the III-V group material-containing layer) It can be substituted depending on the etching rate.
 さらに、本発明の好ましい実施形態に係るエッチング組成物では、Al、Cu、Ti、W等の金属電極層、HfO、HfSiO、AlO、SiO、SiOC、SiON、TiN、SiN、TiAlC等の絶縁膜層(これらを総称して第四層ということがある)の損傷も好適に抑制できるため、これらを含む半導体基板に適用されることも好ましい。なお、本明細書において、金属化合物の組成をその元素の組合せにより表記した場合には、任意の組成のものを広く包含する意味である。例えば、SiOC(SiON)とは、SiとOとC(N)とが共存することを意味し、その量の比率が1:1:1であることを意味するものではない。このことは、本明細書において共通し、別の金属化合物についても同様である。 Furthermore, in the etching composition according to a preferred embodiment of the present invention, a metal electrode layer such as Al, Cu, Ti, or W, an insulating film such as HfO, HfSiO, AlO x , SiO, SiOC, SiON, TiN, SiN, or TiAlC Since damage to the layers (which may be collectively referred to as the fourth layer) can be suitably suppressed, it is also preferable to be applied to a semiconductor substrate including these layers. In addition, in this specification, when the composition of a metal compound is expressed by a combination of elements, it means that a composition having an arbitrary composition is widely included. For example, SiOC (SiON) means that Si, O, and C (N) coexist, and does not mean that the ratio of the amounts is 1: 1: 1. This is common in this specification, and the same applies to other metal compounds.
 基板1枚のエッチングに要する時間は10秒以上であることが好ましく、50秒以上であることがより好ましい。上限としては、300秒以下であることが好ましく、200秒以下であることがより好ましい。 The time required for etching one substrate is preferably 10 seconds or more, and more preferably 50 seconds or more. As an upper limit, it is preferable that it is 300 seconds or less, and it is more preferable that it is 200 seconds or less.
[半導体基板製品の製造]
 本実施形態においては、シリコンウエハ上に、上記III-V族材料またはGe含有層と金属層とを形成した半導体基板とする工程と、上記半導体基板をアニールする工程、半導体基板にエッチング組成物を付与し、エッチング組成物と金属層とを接触させて、上記金属層を選択的に除去する工程とを介して、所望の構造を有する半導体基板製品を製造することが好ましい。このとき、エッチングには上記特定のエッチング組成物を用いる。上記の工程の順序は制限されて解釈されるものではなく、それぞれの工程間にさらに別の工程を含んでいてもよい。
 ウェハサイズは特に限定されないが、直径8インチ、直径12インチ、または直径14インチのものを好適に使用することができる(1インチ=25.4mm)。
 なお、本明細書において「準備」というときには、特定の材料を合成ないし調合等して備えることのほか、購入等により所定の物を調達することを含む意味である。また、本明細書においては、半導体基板の各材料をエッチングするようエッチング組成物を用いることを「適用」と称するが、その実施態様は特に限定されない。例えば、エッチング組成物と基板とを接触させることを広く含み、具体的には、バッチ式のもので浸漬してエッチングしても、枚葉式のもので吐出によりエッチングしてもよい。
 本明細書において、半導体基板とは、ウェハのみではなくそこに回路構造が施された基板構造体全体を含む意味で用いる。半導体基板部材とは、上記で定義される半導体基板を構成する部材を指し1つの材料からなっていても複数の材料からなっていてもよい。なお、加工済みの半導体基板を半導体基板製品として区別して呼ぶことがあり、必要によってはさらに区別して、これに加工を加えダイシングして取り出したチップ及びその加工製品を半導体素子という。すなわち、広義には半導体素子やこれを組み込んだ半導体製品は半導体基板製品に属するものである。
[Manufacture of semiconductor substrate products]
In the present embodiment, a step of forming a semiconductor substrate on which a group III-V material or Ge-containing layer and a metal layer are formed on a silicon wafer; a step of annealing the semiconductor substrate; and an etching composition on the semiconductor substrate. It is preferable to manufacture a semiconductor substrate product having a desired structure through a step of applying and selectively removing the metal layer by bringing the etching composition into contact with the metal layer. At this time, the specific etching composition is used for etching. The order of the above steps is not construed as being limited, and further steps may be included between the steps.
The wafer size is not particularly limited, but a wafer having a diameter of 8 inches, a diameter of 12 inches, or a diameter of 14 inches can be suitably used (1 inch = 25.4 mm).
In this specification, the term “preparation” means that a specific material is synthesized or blended, and a predetermined item is procured by purchase or the like. In this specification, using an etching composition so as to etch each material of a semiconductor substrate is referred to as “application”, but the embodiment is not particularly limited. For example, the method widely includes contacting the etching composition with the substrate. Specifically, the etching composition may be etched by being immersed in a batch type, or may be etched by discharging a single wafer type.
In this specification, the term “semiconductor substrate” is used to mean not only a wafer but also the entire substrate structure having a circuit structure formed thereon. A semiconductor substrate member refers to the member which comprises the semiconductor substrate defined above, and may consist of one material or may consist of several materials. A processed semiconductor substrate is sometimes referred to as a semiconductor substrate product, and is further distinguished as necessary, and a chip that has been processed and diced out and processed product thereof is referred to as a semiconductor element. That is, in a broad sense, a semiconductor element or a semiconductor product incorporating the semiconductor element belongs to a semiconductor substrate product.
 以下、実施例を挙げて本発明をより詳細に説明するが、本発明は、以下の実施例に限定されるものではない。なお、実施例中で処方や配合量として示した%および部は特に断らない限り質量基準である。 Hereinafter, the present invention will be described in more detail with reference to examples. However, the present invention is not limited to the following examples. In addition, unless otherwise indicated,% and part shown as prescription and compounding quantity in an Example are mass references | standards.
[実施例1]
(試験基板の作製)
 市販のシリコン基板(直径:12インチ)上に、500Åの膜厚でNiPt層,InGaAs層,InAlAs層,Ge層をそれぞれ形成して、4種のブランクウェハを準備した。
(エッチング試験)
 上記のブランクウェハに対して、枚葉式装置(SPS-Europe B.V.社製、POLOS(商品名))にて下記の条件でエッチングを行い、評価試験を実施した。
 ・処理温度    :表中に記載
 ・吐出量     :1L/min.
 ・ウェハ回転数  :500rpm
 ・ノズル移動速度 :7cm/S
 ・エッチング組成物:表中に記載
(処理温度の測定方法)
 株式会社堀場製作所製の放射温度計IT-550F(商品名)を上記枚葉式装置内のウェハ上30cmの高さに固定した。ウェハ中心から2cm外側のウェハ表面上に温度計を向け、薬液を流しながら温度を計測した。温度は、放射温度計からデジタル出力し、パソコンで連続的に記録した。このうち温度が安定した10秒間の温度を平均した値をウェハ上の温度とした。
(エッチング速度)
 エッチング速度(ER)については、エリプソメトリー(分光エリプソメーター、ジェー・エー・ウーラム・ジャパン株式会社 Vaseを使用した)を用いてエッチング処理前後の膜厚を測定することにより算出した。5点の平均値を採用した(測定条件 測定範囲:1.2-2.5eV、測定角:70,75度)。
[Example 1]
(Production of test substrate)
On a commercially available silicon substrate (diameter: 12 inches), a NiPt layer, an InGaAs layer, an InAlAs layer, and a Ge layer were formed to a thickness of 500 mm, and four types of blank wafers were prepared.
(Etching test)
The blank wafer was etched using a single wafer type apparatus (SPOS-Europe BV, POLOS (trade name)) under the following conditions, and an evaluation test was performed.
-Processing temperature: described in the table-Discharge rate: 1 L / min.
-Wafer rotation speed: 500 rpm
・ Nozzle moving speed: 7cm / S
・ Etching composition: listed in the table (method for measuring processing temperature)
A radiation thermometer IT-550F (trade name) manufactured by HORIBA, Ltd. was fixed at a height of 30 cm above the wafer in the single wafer type apparatus. A thermometer was directed onto the wafer surface 2 cm outside from the wafer center, and the temperature was measured while flowing a chemical solution. The temperature was digitally output from the radiation thermometer and recorded continuously with a personal computer. Among these, the value obtained by averaging the temperature for 10 seconds at which the temperature was stabilized was defined as the temperature on the wafer.
(Etching rate)
About the etching rate (ER), it computed by measuring the film thickness before and behind an etching process using ellipsometry (a spectroscopic ellipsometer, JA Woolum Japan Co., Ltd. Vase was used). An average value of 5 points was adopted (measurement condition measurement range: 1.2-2.5 eV, measurement angle: 70, 75 degrees).
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 本開示は本明細書において具体的な実施形態を参照して説明してきたが、当然のことながら、本明細書記載の本発明思想の精神及び範囲から逸脱しない範囲で変更、修正、及び変形することができる。従って、添付の請求の範囲の精神及び範囲から逸脱しない範囲のそのような全ての変更、修正、及び変形を包含することを意図している。 Although the present disclosure has been described herein with reference to specific embodiments, it will be understood that variations, modifications, and variations may be made without departing from the spirit and scope of the inventive concepts described herein. be able to. Accordingly, it is intended to embrace all such alterations, modifications and variations that do not depart from the spirit and scope of the appended claims.
 本発明をその実施態様とともに説明したが、我々は特に指定しない限り我々の発明を説明のどの細部においても限定しようとするものではなく、添付の請求の範囲に示した発明の精神と範囲に反することなく幅広く解釈されるべきであると考える。 While this invention has been described in conjunction with its embodiments, we do not intend to limit our invention in any detail of the description unless otherwise specified and are contrary to the spirit and scope of the invention as set forth in the appended claims. I think it should be interpreted widely.
 本願は、2014年2月26日に日本国で特許出願された特願2014-038710に基づく優先権を主張するものであり、これはここに参照してその内容を本明細書の記載の一部として取り込む。 This application claims priority based on Japanese Patent Application No. 2014-038710 filed in Japan on February 26, 2014, which is hereby incorporated herein by reference. Capture as part.
 1 金属層(第二層)
 2 半導体層(第一層)
 3 シリサイド層(第三層)
21 シリコン基板
22 ゲート絶縁膜
23 ゲート電極
25 サイドウォール
26 ソース電極
27 ドレイン電極
28 NiPt膜
1 Metal layer (second layer)
2 Semiconductor layer (first layer)
3 Silicide layer (third layer)
21 Silicon substrate 22 Gate insulating film 23 Gate electrode 25 Side wall 26 Source electrode 27 Drain electrode 28 NiPt film

Claims (10)

  1.  NiPtと、
     In、Al、Ga、Sb及びAsのうちの少なくとも1種を含む第一の材料とが存在する基板のエッチング方法であり、
     ハロゲンイオンと、硝酸または硝酸イオンとを含む酸性エッチング組成物を基板に適用するエッチング方法。
    NiPt,
    A substrate etching method in which a first material containing at least one of In, Al, Ga, Sb, and As is present,
    An etching method in which an acidic etching composition containing halogen ions and nitric acid or nitrate ions is applied to a substrate.
  2.  請求項1に記載のエッチング方法であり、前記酸性エッチング組成物のハロゲンイオンの含有量が10質量%以下であるエッチング方法。 The etching method according to claim 1, wherein the content of halogen ions in the acidic etching composition is 10% by mass or less.
  3.  請求項1に記載のエッチング方法であり、前記酸性エッチング組成物がさらにスルホン酸を含むエッチング方法。 The etching method according to claim 1, wherein the acidic etching composition further contains a sulfonic acid.
  4.  請求項1に記載のエッチング方法であり、前記酸性エッチング組成物の含水量が50質量%以下であるエッチング方法。 2. The etching method according to claim 1, wherein the water content of the acidic etching composition is 50% by mass or less.
  5.  請求項1に記載のエッチング方法であり、前記酸性エッチング組成物の含水量が35質量%以下であるエッチング方法。 The etching method according to claim 1, wherein the water content of the acidic etching composition is 35% by mass or less.
  6.  請求項1に記載のエッチング方法であり、前記基板にさらにGeも存在するエッチング方法。 The etching method according to claim 1, wherein Ge is further present on the substrate.
  7.  請求項1に記載のエッチング方法であり、
     前記第一の材料がInGaAs、InP、InAs、AlGaSb、InSb、InAs、GaAs、InAsSb、GaSb、AlSb、AlAs、InAlAs及びGaPのうちの少なくとも1種であるエッチング方法。
    The etching method according to claim 1,
    An etching method in which the first material is at least one of InGaAs, InP, InAs, AlGaSb, InSb, InAs, GaAs, InAsSb, GaSb, AlSb, AlAs, InAlAs, and GaP.
  8.  請求項1に記載のエッチング方法であり、
     前記第一の材料がInGaAsまたはInAlAsであるエッチング方法。
    The etching method according to claim 1,
    An etching method in which the first material is InGaAs or InAlAs.
  9.  NiPtと、
     In、Al、Ga、Sb及びAsのうちの少なくとも1種を含む第一の材料とが存在する基板のエッチング組成物であり、
     ハロゲンイオンと、硝酸または硝酸イオンとを含む酸性エッチング組成物。
    NiPt,
    An etching composition for a substrate in which a first material containing at least one of In, Al, Ga, Sb, and As is present,
    An acidic etching composition comprising halogen ions and nitric acid or nitrate ions.
  10.  NiPtを含有する層と、In、Al、Ga、Sb及びAsのうちの少なくとも1種を含む第一の材料とを含有する層とが存在する基板に対し、ハロゲンイオンと、硝酸または硝酸イオンとを含む酸性エッチング組成物を適用するエッチング工程を有する半導体基板製品の製造方法。 For a substrate having a layer containing NiPt and a layer containing a first material containing at least one of In, Al, Ga, Sb and As, halogen ions, nitric acid or nitrate ions The manufacturing method of the semiconductor substrate product which has an etching process which applies the acidic etching composition containing this.
PCT/JP2015/054680 2014-02-28 2015-02-19 Etching composition, etching method employing same, and production method for semiconductor substrate product WO2015129552A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-038710 2014-02-28
JP2014038710A JP2015162653A (en) 2014-02-28 2014-02-28 Etching composition, etching method using the same, and method for manufacturing semiconductor substrate product

Publications (1)

Publication Number Publication Date
WO2015129552A1 true WO2015129552A1 (en) 2015-09-03

Family

ID=54008873

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/054680 WO2015129552A1 (en) 2014-02-28 2015-02-19 Etching composition, etching method employing same, and production method for semiconductor substrate product

Country Status (3)

Country Link
JP (1) JP2015162653A (en)
TW (1) TWI682990B (en)
WO (1) WO2015129552A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0955356A (en) * 1995-08-15 1997-02-25 Fujitsu Ltd Growth method for semiconductor crystal
JP2009535846A (en) * 2006-05-01 2009-10-01 インターナショナル・ビジネス・マシーンズ・コーポレーション Method for forming a self-aligned metal silicide contact
WO2012125401A1 (en) * 2011-03-11 2012-09-20 Fujifilm Electronic Materials U.S.A., Inc. Novel etching composition

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0955356A (en) * 1995-08-15 1997-02-25 Fujitsu Ltd Growth method for semiconductor crystal
JP2009535846A (en) * 2006-05-01 2009-10-01 インターナショナル・ビジネス・マシーンズ・コーポレーション Method for forming a self-aligned metal silicide contact
WO2012125401A1 (en) * 2011-03-11 2012-09-20 Fujifilm Electronic Materials U.S.A., Inc. Novel etching composition

Also Published As

Publication number Publication date
TW201538688A (en) 2015-10-16
JP2015162653A (en) 2015-09-07
TWI682990B (en) 2020-01-21

Similar Documents

Publication Publication Date Title
EP2807289B1 (en) Etching composition
EP2683792B1 (en) Novel etching composition
TWI621694B (en) Etching method of semiconductor substrate, etchant of semiconductor substrate and etchant kit used thereof, and manufacturing method of semiconductor substrate product
TWI674337B (en) Etching liquid, etching method using the same, and method for manufacturing semiconductor substrate product
JP6130810B2 (en) Etching solution and etching solution kit, etching method using the same, and method for manufacturing semiconductor substrate product
US10340150B2 (en) Ni:NiGe:Ge selective etch formulations and method of using same
TWI577834B (en) Novel passivation composition and process
WO2014178421A1 (en) Etching solution, etching solution kit, etching method using same, and method for manufacturing semiconductor substrate product
JP6198671B2 (en) Etching method, etching solution used therefor, and method for manufacturing semiconductor substrate product
US10062580B2 (en) Etchant, etching method using same, and method for manufacturing semiconductor substrate product
JP6369989B2 (en) Etching solution, etching method, and method for manufacturing semiconductor substrate product
WO2015129552A1 (en) Etching composition, etching method employing same, and production method for semiconductor substrate product
JP6063404B2 (en) Etching solution, etching method using the same, and method for manufacturing semiconductor substrate product

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15755672

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15755672

Country of ref document: EP

Kind code of ref document: A1