WO2015118731A1 - Control device for parallel travel work system - Google Patents

Control device for parallel travel work system Download PDF

Info

Publication number
WO2015118731A1
WO2015118731A1 PCT/JP2014/077906 JP2014077906W WO2015118731A1 WO 2015118731 A1 WO2015118731 A1 WO 2015118731A1 JP 2014077906 W JP2014077906 W JP 2014077906W WO 2015118731 A1 WO2015118731 A1 WO 2015118731A1
Authority
WO
WIPO (PCT)
Prior art keywords
work
control device
traveling
work vehicle
autonomous
Prior art date
Application number
PCT/JP2014/077906
Other languages
French (fr)
Japanese (ja)
Inventor
康平 小倉
晃史 黒田
松本 圭司
青木 英明
Original Assignee
ヤンマー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ヤンマー株式会社 filed Critical ヤンマー株式会社
Priority to KR1020227041929A priority Critical patent/KR20220164087A/en
Priority to KR1020167024514A priority patent/KR102107556B1/en
Priority to KR1020217039475A priority patent/KR102475681B1/en
Priority to CN201911196165.XA priority patent/CN110703785A/en
Priority to PCT/JP2015/053444 priority patent/WO2015119266A1/en
Priority to PCT/JP2015/053442 priority patent/WO2015119265A1/en
Priority to CN201580007599.4A priority patent/CN105980949B/en
Priority to JP2015561071A priority patent/JPWO2015119265A1/en
Priority to KR1020207012364A priority patent/KR102252318B1/en
Priority to JP2015561072A priority patent/JP6253678B2/en
Priority to KR1020217013732A priority patent/KR102340161B1/en
Priority to EP15746411.6A priority patent/EP3104244B1/en
Priority to US15/115,853 priority patent/US10191492B2/en
Publication of WO2015118731A1 publication Critical patent/WO2015118731A1/en
Priority to JP2017228469A priority patent/JP6485716B2/en
Priority to JP2019020169A priority patent/JP6999221B2/en
Priority to JP2021205761A priority patent/JP7354217B2/en
Priority to JP2023151983A priority patent/JP2023168382A/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01BSOIL WORKING IN AGRICULTURE OR FORESTRY; PARTS, DETAILS, OR ACCESSORIES OF AGRICULTURAL MACHINES OR IMPLEMENTS, IN GENERAL
    • A01B69/00Steering of agricultural machines or implements; Guiding agricultural machines or implements on a desired track
    • A01B69/007Steering or guiding of agricultural vehicles, e.g. steering of the tractor to keep the plough in the furrow
    • A01B69/008Steering or guiding of agricultural vehicles, e.g. steering of the tractor to keep the plough in the furrow automatic
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/0011Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots associated with a remote control arrangement
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0276Control of position or course in two dimensions specially adapted to land vehicles using signals provided by a source external to the vehicle
    • G05D1/0278Control of position or course in two dimensions specially adapted to land vehicles using signals provided by a source external to the vehicle using satellite positioning signals, e.g. GPS
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0287Control of position or course in two dimensions specially adapted to land vehicles involving a plurality of land vehicles, e.g. fleet or convoy travelling
    • G05D1/0291Fleet control
    • G05D1/0295Fleet control by at least one leading vehicle of the fleet

Definitions

  • the present invention relates to a control device for a parallel running work system, and relates to a control technique for an unmanned work vehicle when work is performed by an unmanned work vehicle that travels autonomously and a manned work vehicle that travels along with the unmanned work vehicle.
  • a work vehicle that receives a satellite signal from a GPS satellite is provided on a work vehicle that travels within a work area within a predetermined range to detect the current position of the work vehicle, and the GPS satellite is located near the outside of the work place.
  • a monitoring receiving station that receives the satellite signal of the vehicle is provided to detect the current position of the monitoring device, and communication between the work vehicle and the monitoring device is performed to detect the relative distance between the two, so that the work vehicle is out of the monitoring range.
  • a technique for issuing a warning and stopping traveling is known (for example, see Patent Document 1).
  • the unmanned work vehicle receives a satellite signal from the GPS satellite, travels on the set travel route, and the accompanying work vehicle travels while performing another work accompanying the unmanned work vehicle, If the travel route of the unmanned work vehicle deviates from the set travel route, the accompanying work vehicle that travels with the unmanned work vehicle also deviates from the predetermined route. Therefore, it is desirable to travel so as not to deviate from the set route.
  • the present invention has been made in view of the situation as described above, and an unmanned work vehicle that travels autonomously travels without departing from the set travel route from the work start position, and stops autonomous travel when it deviates more than a predetermined amount. To do.
  • the present invention relates to a position calculating means for positioning the position of the aircraft using a satellite positioning system, a steering actuator for operating a steering device, an engine rotation control means, a speed change means, and a control device for controlling these.
  • a remote control device mounted on an accompanying traveling work vehicle that performs an operation while traveling along with the autonomous traveling work vehicle while autonomously traveling along the set traveling route stored in the control device.
  • the control device controls the autonomous running work vehicle so as not to permit the work start at a position that is more than the set range from the work start position. .
  • the control device performs control so that the start of autonomous traveling is not permitted when the maximum occupation area occupied by the autonomous traveling work vehicle and the work implement during traveling overlaps with the outside of the field where the work is performed at the work start position. Is. In the present invention, the control device performs control so that the start of autonomous traveling is not permitted at the work start position when the traveling direction is out of the set range. In the present invention, the control device performs control so as not to allow the start of autonomous traveling when an abnormality occurs in the autonomous traveling work vehicle. In the present invention, when the control device is not connected to the remote operation device of the accompanying traveling work vehicle, control is performed so that autonomous traveling is not permitted. In the present invention, when the operation is interrupted, the control device stores the interruption position, and when the operation is started again, the interruption position is set as the operation restart position, and the position is displayed on the display device.
  • the control device controls to stop the autonomous traveling.
  • the control device controls to stop traveling when the actual position deviates beyond a set range with respect to the target travel route.
  • the control device controls to stop traveling when the detected value from the steering sensor that detects the rudder angle direction becomes an abnormal value.
  • the control device controls to stop traveling when the difference between the detected value of the posture / orientation sensor and the target value exceeds a set value.
  • the control device is connected to a level sensor provided in a fuel tank, and stops traveling when the remaining amount of fuel falls below a set amount.
  • the control device transmits the cause to the remote operation device provided in the accompanying traveling work vehicle, and displays the cause on the display of the remote operation device.
  • the traveling is stopped by setting the speed change means of the hydraulic continuously variable transmission as neutral.
  • the stop of the traveling is performed by using a main clutch disposed between the output shaft of the engine and the input shaft of the transmission case of the gear sliding transmission, power clutch transmission or belt continuously variable transmission. When it is off, the running is stopped and the brake is activated.
  • the autonomous traveling work vehicle can be started only in an appropriate position and in an appropriate state, and the work can be reliably performed on a set route. And if an abnormality occurs in the detection value from the sensor provided in the autonomous traveling work vehicle, the traveling stops, and accurate work can be performed without deviating from the target traveling route, and damage and accidents can be prevented. Can be prevented.
  • the autonomous traveling work vehicle 1 capable of unmanned automatic traveling and the manned traveling traveling vehicle 100 operated by the operator accompanying the autonomous traveling working vehicle 1 as a tractor are used as the tractor.
  • An embodiment will be described in which a rotary tiller is mounted as a work machine on the vehicle 100.
  • the work vehicle is not limited to a tractor, and may be a combine.
  • the work machine is not limited to a rotary tiller.
  • the steering wheel 4 is rotated to rotate the front wheels 9 and 9 through the steering device.
  • the steering direction of the autonomous traveling work vehicle 1 is detected by the steering sensor 20.
  • the steering sensor 20 is composed of an angle sensor such as a rotary encoder, and is disposed at the rotation base of the front wheel 9.
  • the detection configuration of the steering sensor 20 is not limited as long as the steering direction is recognized, and the rotation of the steering handle 4 may be detected or the operation amount of the power steering may be detected.
  • the detection value obtained by the steering sensor 20 is input to the control device 30.
  • a driver's seat 5 is disposed behind the steering handle 4 and a mission case 6 is disposed below the driver's seat 5.
  • Rear axle cases 8 and 8 are connected to the left and right sides of the transmission case 6, and rear wheels 10 and 10 are supported on the rear axle cases 8 and 8 via axles.
  • the power from the engine 3 is shifted by a transmission (a main transmission or an auxiliary transmission) in the mission case 6 so that the rear wheels 10 and 10 can be driven.
  • the transmission is constituted by, for example, a hydraulic continuously variable transmission, and the movable swash plate of a variable displacement hydraulic pump is operated by a transmission means 44 such as a motor so that the transmission can be changed.
  • the speed change means 44 is connected to the control device 30.
  • the rotational speed of the rear wheel 10 is detected by the vehicle speed sensor 27 and is input to the control device 30 as the traveling speed.
  • the vehicle speed detection method and the arrangement position of the vehicle speed sensor 27 are not limited.
  • the transmission case 6 houses a PTO clutch and a PTO transmission.
  • the PTO clutch is turned on and off by a PTO on / off means 45.
  • the PTO on / off means 45 is connected to the control device 30 to connect and disconnect the power to the PTO shaft. It can be controlled.
  • a front axle case 7 is supported on a front frame 13 that supports the engine 3, front wheels 9 and 9 are supported on both sides of the front axle case 7, and power from the transmission case 6 can be transmitted to the front wheels 9 and 9. It is configured.
  • the front wheels 9, 9 are steered wheels, and can be turned by turning the steering handle 4, and the front wheels 9, 9 can be turned left and right by a steering actuator 40 comprising a power steering cylinder as a steering drive means. It is possible.
  • the steering actuator 40 is connected to the control device 30 and is driven by automatic traveling control.
  • the controller 30 is connected to an engine controller 60 serving as an engine rotation control means, and the engine controller 60 is connected to an engine speed sensor 61, a water temperature sensor, a hydraulic pressure sensor, and the like so that the state of the engine can be detected.
  • the engine controller 60 detects the load from the set rotational speed and the actual rotational speed and controls it so as not to be overloaded, and transmits the state of the engine 3 to the remote operation device 112 described later so that it can be displayed on the display 113. Yes.
  • the fuel tank 15 disposed below the step is provided with a level sensor 29 for detecting the fuel level and is connected to the control device 30.
  • the display means 49 provided on the dashboard of the autonomous traveling work vehicle 1 has a fuel supply.
  • a fuel gauge for displaying the remaining amount is provided and connected to the control device 30. Then, information regarding the remaining amount of fuel is transmitted from the control device 30 to the remote operation device 112, and the remaining fuel amount and workable time are displayed on the display 113 of the remote operation device 112.
  • display means 49 for displaying an engine tachometer, a fuel gauge, a hydraulic pressure, etc., a monitor indicating an abnormality, a set value, and the like are arranged.
  • a rotary tiller 24 is installed as a work implement on the rear side of the tractor body via the work implement mounting device 23 so as to be able to move up and down to perform the tilling work.
  • An elevating cylinder 26 is provided on the transmission case 6, and the elevating arm 26 constituting the work implement mounting device 23 is rotated by moving the elevating cylinder 26 to extend and lower the rotary tiller 24.
  • the lift cylinder 26 is expanded and contracted by the operation of the lift actuator 25, and the lift actuator 25 is connected to the control device 30.
  • the mobile receiver 33 that constitutes the satellite positioning system is connected to the control device 30.
  • a mobile GPS antenna 34 and a data reception antenna 38 are connected to the mobile receiver 33, and the mobile GPS antenna 34 and the data reception antenna 38 are provided on the cabin 11.
  • the mobile receiver 33 is provided with a position calculating means for transmitting latitude and longitude to the control device 30 so that the current position can be grasped.
  • GPS United States
  • high-precision positioning can be performed by using a satellite positioning system (GNSS) such as a quasi-zenith satellite (Japan) or a Glonus satellite (Russia). In this embodiment, GPS is used. explain.
  • the autonomous traveling work vehicle 1 includes a gyro sensor 31 for obtaining attitude change information of the airframe, and an orientation sensor 32 for detecting a traveling direction, and is connected to the control device 30.
  • the traveling direction can be calculated from the GPS position measurement, the direction sensor 32 can be omitted.
  • the gyro sensor 31 detects an angular velocity of a tilt (pitch) in the longitudinal direction of the autonomous traveling work vehicle 1, an angular velocity of a tilt (roll) in the lateral direction of the aircraft, and an angular velocity of turning (yaw).
  • the gyro sensor 31 By integrating and calculating the three angular velocities, it is possible to obtain the tilt angle in the front-rear direction and the left-right direction and the turning angle of the body of the autonomous traveling work vehicle 1.
  • Specific examples of the gyro sensor 31 include a mechanical gyro sensor, an optical gyro sensor, a fluid gyro sensor, and a vibration gyro sensor.
  • the gyro sensor 31 is connected to the control device 30 and inputs information relating to the three angular velocities to the control device 30.
  • the direction sensor 32 detects the direction (traveling direction) of the autonomous traveling work vehicle 1.
  • a specific example of the direction sensor 32 includes a magnetic direction sensor.
  • the direction sensor 32 is connected to the control device 30 and inputs information related to the orientation of the aircraft to the control device 30.
  • control device 30 calculates the signals acquired from the gyro sensor 31 and the azimuth sensor 32 by the attitude / azimuth calculation means, and the attitude of the autonomous traveling work vehicle 1 (orientation, forward / backward direction of the body, left / right direction of the body, turning direction) )
  • GPS global positioning system
  • GPS was originally developed as a navigation support system for aircraft, ships, etc., and is composed of 24 GPS satellites (four on six orbital planes) orbiting about 20,000 kilometers above the sky. It consists of a control station that performs tracking and control, and a user receiver that performs positioning.
  • As a positioning method using GPS there are various methods such as single positioning, relative positioning, DGPS (differential GPS) positioning, RTK-GPS (real-time kinematics-GPS) positioning, and any of these methods can be used.
  • DGPS Differential GPS
  • RTK-GPS real-time kinematics-GPS
  • RTK-GPS real-time kinematics-GPS positioning is performed by simultaneously performing GPS observations on a reference station whose position is known and a mobile station whose position is to be obtained. Is transmitted in real time, and the position of the mobile station is obtained in real time based on the position result of the reference station.
  • a mobile receiver 33, a mobile GPS antenna 34, and a data receiving antenna 38 that are mobile stations are arranged in the autonomous traveling work vehicle 1, and a fixed receiver 35, a fixed GPS antenna 36, and a data transmitting antenna that are reference stations. 39 is disposed at a predetermined position that does not interfere with the work in the field.
  • the phase is measured (relative positioning) at both the reference station and the mobile station, and the data measured by the fixed receiver 35 of the reference station is transmitted from the data transmission antenna 39. Transmit to the data receiving antenna 38.
  • the mobile GPS antenna 34 disposed in the autonomous traveling work vehicle 1 receives signals from GPS satellites 37, 37. This signal is transmitted to the mobile receiver 33 for positioning. At the same time, signals from the GPS satellites 37, 37... Are received by the fixed GPS antenna 36 serving as a reference station, measured by the fixed receiver 35 and transmitted to the mobile receiver 33, and the observed data is analyzed and moved. Determine the station location. The position information obtained in this way is transmitted to the control device 30.
  • the control device 30 in the autonomous traveling work vehicle 1 receives radio waves transmitted from the GPS satellites 37, 37,..., Obtains the position information of the aircraft at set time intervals in the mobile receiver 33, and the gyro sensor 31. Further, the displacement information and the direction information of the airframe are obtained from the direction sensor 32, and the steering actuator 40, the speed change means 44, etc. so that the airframe travels along a preset route based on the position information, the displacement information, and the direction information. To control.
  • the obstacle sensor 41 is arranged in the autonomous traveling work vehicle 1 and connected to the control device 30 so as not to come into contact with the obstacle.
  • the obstacle sensor 41 is composed of an ultrasonic sensor, arranged at the front, side, and rear of the aircraft and connected to the control device 30 to determine whether there are obstacles at the front, side, or rear of the aircraft. Detect and control to stop traveling when an obstacle approaches within a set distance.
  • the autonomous traveling work vehicle 1 is mounted with a camera 42 that photographs the front and the work implement and is connected to the control device 30.
  • the video imaged by the camera 42 is displayed on the display 113 of the remote control device 112 provided in the accompanying traveling work vehicle 100.
  • the display screen of the display 113 is small, it is displayed on another large display, the camera image is always or selectively displayed on another dedicated display, or the display means 49 provided in the autonomous traveling work vehicle 1 is used. It is also possible to display it.
  • the remote control device 112 sets the travel route R of the autonomous traveling work vehicle 1, remotely operates the autonomous traveling work vehicle 1, monitors the traveling state of the autonomous traveling work vehicle 1 and the operating state of the work implement, It stores work data.
  • the accompanying traveling work vehicle 100 which is a manned traveling vehicle, is operated and operated by an operator, and the associated traveling working vehicle 100 is equipped with a remote control device 112 so that the autonomous traveling work vehicle 1 can be operated. Since the basic configuration of the accompanying autonomous traveling work vehicle 100 is substantially the same as that of the autonomous traveling work vehicle 1, detailed description thereof is omitted.
  • the accompanying traveling work vehicle 100 may be configured to include a GPS mobile receiver 33 and a mobile GPS antenna 34.
  • the remote operation device 112 can be attached to and detached from an operation unit such as a dashboard of the accompanying traveling work vehicle 100 and the autonomous traveling work vehicle 1.
  • the remote control device 112 can be operated while attached to the dashboard of the accompanying traveling work vehicle 100, or can be taken out of the accompanying traveling work vehicle 100 to be carried and operated, or attached to the dashboard of the autonomous traveling work vehicle 1.
  • the remote operation device 112 can be configured by, for example, a notebook or tablet personal computer. In this embodiment, a tablet computer is used.
  • the remote operation device 112 and the autonomous traveling work vehicle 1 are configured to be able to communicate with each other wirelessly, and the autonomous traveling work vehicle 1 and the remote operation device 112 are provided with transceivers 110 and 111 for communication, respectively. ing.
  • the transceiver 111 is configured integrally with the remote operation device 112.
  • the communication means is configured to be able to communicate with each other via a wireless LAN such as WiFi.
  • the remote operation device 112 is provided with a display 113 as a touch panel type operation screen that can be operated by touching the screen on the surface of the housing, and a transceiver 111, a CPU, a storage device, a battery, and the like are housed in the housing.
  • the display 113 can display surrounding images taken by the camera 42, the state of the autonomous traveling work vehicle 1, the state of work, information on GPS, an operation screen, and the like so that the operator can monitor.
  • the state of the autonomous traveling work vehicle 1 includes a traveling state, an engine state, a working machine state, and the like.
  • the traveling state includes a shift position, a vehicle speed, a fuel remaining amount, a battery voltage, and the like. Is the engine speed, load factor, etc., and the state of the work machine is the type of work machine, PTO rotation speed, work machine height, etc., which are displayed on the display 113 with numbers, level meters, etc.
  • the work status includes: work route (target route or set route), work process, current position, distance from the process to the headland, remaining route, number of processes, current work time, remaining work Time etc.
  • the remaining paths can be easily recognized by filling the existing work paths from the entire work paths.
  • the information regarding GPS is the longitude and latitude at which the autonomous traveling work vehicle 1 is actually located, the number of satellites supplemented, the radio wave reception intensity, and the like.
  • the display 113 of the remote control device 112 displays not only the surrounding images taken by the camera 42 but also the state of the autonomous traveling work vehicle 1 and the traveling route R, a large amount of information cannot be displayed at a time. Therefore, the screen can be enlarged and divided, or a separate display for the camera can be provided, and can be switched or scrolled as necessary. Thus, it is possible to easily see the screen that the operator wants to see.
  • the autonomous traveling work vehicle 1 can be remotely operated by the remote operation device 112.
  • the autonomous traveling work vehicle 1 can be operated for emergency stop, temporary stop, re-start, change of vehicle speed, change of engine speed, raising / lowering of the work machine, turning on / off of the PTO clutch, and the like. That is, an operator can easily remotely operate the autonomous traveling work vehicle 1 by controlling the accelerator actuator, the speed change means 44, the PTO on / off means 45, and the like from the remote operation device 112 via the transceiver 111, the transceiver 110, and the control device 30. It can be done.
  • the mobile receiver 33 including the position calculating means for measuring the position of the autonomous traveling work vehicle 1 serving as the airframe using the satellite positioning system, the steering actuator 40 for operating the steering device, and the engine rotation control means.
  • the autonomous traveling work vehicle 1 including the engine controller 60, the speed change means 44, and the control device 30 that controls these is autonomously traveled along the set travel route R stored in the control device 30, and A parallel operation system that allows the autonomous traveling work vehicle 1 to be operated by a remote operation device 112 mounted on the accompanying traveling work vehicle 100 that performs work while traveling along the autonomous traveling work vehicle 1, wherein the remote operation device 112 includes: Since it is portable and is detachably attached to the accompanying traveling work vehicle 100, a remote control device is used during parallel traveling work.
  • the remote control device 112 has a display 113.
  • the display 113 displays the traveling state of the autonomous traveling work vehicle 1, the state of the engine 3, and the state of the work implement.
  • the state of the traveling work vehicle 1 can be grasped, and even if an abnormality occurs in the autonomous traveling work vehicle 1, it is possible to respond quickly.
  • the display 113 displays a target travel route R, a current position, a distance to the headland, a work time, and a work time until completion of the autonomous travel work vehicle 1 to be described later. Etc. can be easily recognized and a work plan can be easily made. Further, since the GPS information is displayed on the display, the reception state from the satellite can be grasped, and it is possible to easily cope with the case where the signal from the GPS satellite is interrupted.
  • the autonomous traveling work vehicle 1 is provided with a camera 42 that captures the surroundings of the airframe, and an image captured by the camera 42 can be displayed on the display 113. The surrounding situation can be easily recognized, and can be easily dealt with when there is an obstacle.
  • the travel route R is generated according to the work mode.
  • generation of a traveling route of the parallel traveling work by the autonomous traveling work vehicle 1 and the accompanying traveling work vehicle 100 will be described.
  • the parallel running work there are a horizontal parallel cooperative work shown in FIG. 3, a vertical parallel overlapping work and a vertical parallel cooperative work shown in FIG.
  • the working time can be shortened, and can be realized by adding the autonomous traveling working vehicle 1 to the accompanying traveling work vehicle 100 that has been conventionally owned. Therefore, it is not necessary to purchase two new autonomously-working working vehicles 1 and the cost can be reduced.
  • the accompanying traveling work vehicle 100 travels diagonally behind the autonomous traveling working vehicle 1 to partially overlap the work area (the working equipment of the accompanying traveling working vehicle 100 is duplicated in a trencher or the like). However, it is possible to shorten the time by working alone about twice as wide as the work equipment at once.
  • the autonomous traveling work vehicle 1 and the accompanying traveling work vehicle 100 travel in a line in the front and rear, are equipped with the same work equipment, the first unit is plowed, the second unit Breaks up one piece of work.
  • the autonomous running work vehicle 1 and the accompanying running work vehicle 100 run side by side in a row, the first one is plowed (ground), and the second one is another work such as fertilization and sowing.
  • the machine it is possible to divide two or more tasks before and after.
  • the travel route generation of the automatic work system that performs work while autonomously traveling by the autonomous traveling work vehicle 1 in the side-by-side cooperative work will be described.
  • the setting operation is performed by the remote operation device 112, but can also be performed by the display means 49 of the autonomous traveling work vehicle 1.
  • a reference length for tilling work is input in advance to the storage device 30 a of the control device 30.
  • the reference length includes the working width W1 of the work implement mounted on the tractor, the distance L1 from the GPS antenna 34 mounted on the fuselage to the work implement end, the total length L2 of the fuselage (or the minimum turning radius) L3)
  • the work machine is arranged eccentrically, as shown in FIG.
  • the eccentric amount S1 from the center of the left and right is obtained from the specifications of the machine body and stored in the storage device 30a of the control device 30.
  • the side drive type or the center drive type is selected.
  • the position of the chain case 24a and the value of the width W2 are also stored in the storage device 30a.
  • an area (L2 ⁇ (W1 + W2)) occupied by the total length L2 of the machine body and the work machine width (W1 + W2) is defined as a maximum occupied area Q occupied by the autonomous mobile work vehicle 1 and the work machine (rotary tillage device 24). And stored in the storage device 30a.
  • the distance from the front end of the front work machine to the rear end of the machine body is L2.
  • W1 + W2 is W1 when the mid work machine is larger than the width of the machine body (the outer width of the left and right rear wheels).
  • the maximum occupied area Q is not limited to a quadrangle, and can be a circumscribed circle Q1 of this quadrangle. By using the circumscribed circle Q1, it becomes easy to recognize interference with a hook or the like when turning.
  • the autonomous traveling work vehicle 1 is positioned at the four corners (A, B, C, D, or inflection points) of the field, Do a geodetic journey. That is, as shown in FIG. 7, the latitude and the longitude are stored in the storage device 30 a of the control device 30 as the position information at the entrance / exit E of the farm field H. By setting the entrance / exit E, the work start position and work end position can be easily set.
  • the autonomous traveling work vehicle 1 enters the field from the doorway E and advances to move to one corner (corner) A closest to the gate so as to be parallel to the short side or the long side (hereinafter referred to as ⁇ ) of the field. And geodetic, and store as first corner data (latitude and longitude).
  • first corner data latitude and longitude
  • the unmanned tractor is moved to the next corner B, turned around 90 degrees so as to be parallel to the kite, and is measured and stored as second corner data.
  • it moves to the next corner C to acquire and store the third corner data, and moves to the next corner D to acquire and store the fourth corner data.
  • the shape of the field is determined by connecting the corners (B, C, D) in a straight line like one stroke in order from one corner A, and acquired as field data.
  • the shape of the farm field is a deformed farm field
  • data of corner positions other than the four corners and inflection point positions are acquired to determine the farm field data. For example, position data of three corners is acquired and stored for a triangle, and position of five corners is acquired for a pentagon.
  • the corner data are connected by a straight line, if the straight lines intersect, they are not recognized as field data. This is because there is a high possibility that corners or inflection points are missing as a farm field.
  • the creation of field data prohibits the acquisition of field data from map data published by the Internet, map makers, etc., and adopts and permits only the above-mentioned data measured at the site. In this way, it is prevented from going out of the field due to an error when the vehicle is run in actual work.
  • the reference route As the reference path, a traveling direction from the work start position to the work end position and a path from the work end position to the exit are selected. Specifically, as shown in FIG. 8, the reference route sets whether to start or end work clockwise or to start or end work counterclockwise. This setting can be easily selected by displaying an arrow or a mark on the display 113 and touching it.
  • the work range HA obtained from the farm field data is substantially rectangular, and this work range HA is displayed on the display 113 of the remote operation device 112.
  • the headland HB is further set on both sides.
  • the width Wb of the headland HB is obtained from the tillage width W1 when the working machine is the rotary tiller 24. For example, it is possible to input a tilling width and select an integral multiple thereof.
  • the headland width Wb needs to be larger than the minimum turning radius because it is necessary to turn without turning back the handle and to turn with a margin in consideration of slipping and the like. Therefore, by storing the minimum turning radius in advance, a value smaller than the minimum turning radius cannot be input at the time of setting.
  • the turning radius to be set may be the turning radius when there is no accelerated turning or auto steering function.
  • the total length of the work implements, the width of the strips, and the like are taken into consideration, so that the headland width Wb can be input as an arbitrary length.
  • the turning direction in the headland HB can also be set.
  • the width (distance from the shore) Wc of the end HC on the work start side can be set to an arbitrary length. I am doing so.
  • the overlap amount Wr (FIG. 3) is a width that overlaps in the forward path and the return path when reciprocating with a work machine (for example, a rotary tiller), and a work width that overlaps the left and right rotary tillers in the parallel running work.
  • the overlap amount Wr is set to an arbitrary length so as not to leave tillage even if there is an inclination or unevenness.
  • the overlap amount Wr is provided, there is a possibility that the working machines may come into contact with each other when they pass each other by turning in the headland in the case of overlapping work in parallel running.
  • the autonomous traveling work vehicle 1 stops traveling due to the detection of the obstacle sensor 41.
  • the accompanying traveling work vehicle 100 performs work while skipping one or more rows to avoid contact. Or when approaching a headland, "passing control" which avoids contact
  • the “passing control” is, for example, a control in which one working machine is raised and the other working machine is lowered when passing each other.
  • a work machine that does not need to be overlapped such as a transplanter, seeder, or trencher in the center, it is not necessary to set the interval between the lines and skip it or perform “passing control” so that it can be selected. ing.
  • the work end position can be set or selected in the field data. For example, when the work end position becomes a position opposite to the entrance E after the travel route R is set, or when the remaining farm field HD in the rectangular work range HA of the farm field H is at a position away from the entrance E. Is set so that the work end position is given priority, so that the overlapping work is avoided as much as possible and the field scene can be finished without being roughened.
  • the work start position is set by tracing the work travel route R in the reverse direction from the work end position. Therefore, the work start position may be a position away from the entrance E.
  • the work start position and work end position can be set at the operator's preferred position, it is also possible to change the work start direction and work end direction by setting an idle running process that does not perform work. Become.
  • the travel route R is automatically generated so that the control device 30 sequentially performs a reciprocating straight-ahead operation in the work range HA and performs a reversing turn in the headland HB.
  • the work conditions are, for example, a vehicle speed (shift position) at the time of work, an engine speed, a PTO speed (PTO shift position), a vehicle speed at the time of turning, an engine speed, and the like.
  • a work process along the travel route R is generated.
  • the setting values on the display 113 can be input and selected in order by sequentially displaying setting screens on the display 113 so that mistakes and settings are not forgotten. I have to.
  • the operator drives the autonomous traveling work vehicle 1 to move to the work start position in order to start work.
  • the traveling work vehicle 100 is positioned in the vicinity thereof. Then, the operator operates the remote operation device 112 to start work.
  • the work start condition is stored in the control device 30 of the autonomous traveling work vehicle 1, and when the work starting means of the remote operation device 112 provided in the accompanying traveling work vehicle 100 is turned on, the control device 30 satisfies the predetermined work start condition. Judgment is made.
  • the work start condition will be described later.
  • the accompanying traveling work vehicle 100 that performs work while traveling along with the autonomous traveling working vehicle 1 will be described.
  • the accompanying autonomous traveling work vehicle 100 is operated manually by an operator.
  • the operator operates so as to travel along the rear or side of the autonomous traveling work vehicle 1 that is an unmanned working vehicle traveling on the set route (traveling route R). Therefore, the operator monitors and operates the autonomous traveling work vehicle 1 while driving the accompanying autonomous traveling work vehicle 100, and operates the autonomous traveling work vehicle 1 by operating the remote control device 112 as necessary.
  • the control device 30 includes a steering actuator 40, a brake actuator, an accelerator actuator, a speed change means 44, a PTO on / off means 45, a clutch actuator, an elevating actuator 25, and the like. Connected with.
  • the traveling speed of the autonomous traveling working vehicle 1 is detected by the speed sensor 27, the engine speed is detected by the rotational speed sensor 61, and the detected value.
  • an image captured by the camera 42 is transmitted to the remote operation device 112 and displayed on the display 113, so that it is possible to see the state of the front of the machine body, the work machine, and the farm field.
  • work data is stored in the storage device of the remote operation device 112.
  • the work data for example, the position of the field and the work day are stored, the work completed position in the travel route R set in the field is stored, and in the fertilization work, the type of fertilizer and the amount of fertilizer applied per unit area are set. Or remember.
  • the autonomous traveling work vehicle 1 is traveled from one end to the other end of the field H to perform the field scene work, and the position of the autonomous traveling work vehicle 1 is grasped by using the satellite positioning system.
  • the process for setting the work range, the process for setting the entrance / exit E, the process for setting the reference travel start direction, the process for setting the headland HB at both ends of the work range, and the travel route R in the field are set.
  • Specifications of the work vehicle. Enter the easily obtained length than specification), is moved through the field can geodetic, the travel route R can be easily obtained.
  • the width of the headland HB is an integer multiple of the working machine width, the headland can be easily set. Further, since the width of the headland HB is set to be larger than the minimum turning radius L3, the headland can be turned without turning back at the headland and the work efficiency is not lowered.
  • the control device 30 performs the following control. That is, as shown in FIG. 10, the autonomous traveling work vehicle 1 and the accompanying autonomous traveling work vehicle 100 are respectively arranged at the work start positions in the field, the operator gets on the accompanying traveling work vehicle 100, and the remote control device 112 is put on standby. Manipulate state. At this time, it is determined whether the remote control device 112 of the accompanying autonomous traveling work vehicle 100 and the control device 30 of the autonomous traveling work vehicle 1 are connected so as to be communicable (S1). If it is not connected, the power supply is confirmed, the wireless state is checked, and the connection is set (S2). When connected, the operator performs an operation to start work.
  • the control device 30 By operating the work start means, the control device 30 detects the current position of the work vehicle based on a signal from the GPS, and displays position information such as the current position, the work start position, and the work progress direction on the display 113 (S3). ). Note that the current position, the work start position, the work progress direction, the field shape, and the like are always displayed on the display 113 (in other words, when the map is displayed) unless switched. It is determined whether the current position is within the set range from the set work start position (S4). If it is determined that the aircraft is not within the set range from the work start position, the start of autonomous travel is not permitted, and the operator drives the autonomous travel work vehicle 1 and moves to the work start position (S5).
  • the setting range for example, a range that can be easily corrected to the normal position by traveling several meters from the start of the work or a range that does not affect the work performed by the accompanying traveling work vehicle 100, and the remaining work range is made as small as possible.
  • autonomous traveling is not started even when the field is not a work field.
  • the maximum occupation area Q of the autonomous traveling work vehicle 1 overlaps with the outside of the farm field (S6). That is, even if the machine body is located within the set range in the field H, the rear end of the work machine (rotary tiller 24) may be located outside the field H. In this case, autonomous traveling does not start.
  • the traveling direction of the autonomous traveling work vehicle 1 and the set traveling direction are within the set range (S7). If it is not within the range, the start of autonomous traveling is not permitted, and the operator adjusts the traveling direction of the autonomous traveling work vehicle 1 (S5).
  • the traveling direction within the set range is, for example, within 30 degrees to the left and right of the set traveling direction, and a range that can be corrected to the set traveling direction within a few meters from the start of travel.
  • the autonomous running work it is determined whether the work is finished (S14). When the work is finished, the traveling of the autonomous traveling work vehicle 1 is stopped and finished (S15). If it is not finished, it is determined whether the work is interrupted (S16). The interruption condition will be described later. When the interruption condition does not occur, the autonomous traveling work is continued, and when the work is interrupted, the interrupted position is stored in the storage device 30a (S17). At the time of interruption, it is determined whether the work can be resumed (S18). When the work is resumed, the position at the time of interruption is displayed as the restart position (S19), and the process returns to Step 1.
  • the control device 30 determines that the autonomous traveling work vehicle 1 is located at a position away from the operation start position by a set range or more or out of the field. Since the control is performed so that the work start is not permitted when the vehicle is located in the position, it is prevented that the unworked area at the work start position becomes large. Can be quickly restored.
  • control device 30 since the control device 30 performs control so that the start of autonomous driving is not permitted when the traveling direction is out of the set range at the work start position, the control device 30 may travel in an unintended direction, There will be no contact marks or work marks that are greatly bent.
  • control device 30 performs control so that the start of autonomous traveling is not permitted when an abnormality occurs in the autonomous traveling work vehicle, the operation is started with the abnormality, and the machine body, the engine, the work machine, or the like is damaged. There is no. Further, since the control device 30 performs control so that autonomous traveling is not permitted when not connected to the remote operation device 112 of the accompanying traveling work vehicle 100, the operation by the remote operation device 112 can be performed reliably, and the autonomous traveling work vehicle 1 Can be easily recognized. Further, when the operation is interrupted, the control device 30 stores the interruption position, and when starting the operation again, the interruption position is set as the operation restart position, and the position is displayed on the display means 49 and the display 113. Positioning at the start of work after interruption can be performed easily, and work can be prevented from being interrupted.
  • the control device 30 determines whether a GPS signal is received (S20).
  • the control device 30 receives GPS signals from a plurality of GPS satellites 37, 37,... To detect the current position of the autonomous traveling work vehicle 1, but if the GPS signal cannot be received, the current position is determined. It becomes impossible to grasp and it becomes impossible to travel on the set route. Therefore, when the GPS signal is interrupted, the autonomous traveling is stopped (S21), and the suspended state is entered.
  • the cause of the stop of the traveling is displayed on the display 113 of the remote operation device 112 which becomes a display device at the time of stop and the display means 49 of the accompanying traveling work vehicle 100, and an alarm is issued (S22).
  • the actual position detected by the GPS is compared with the set travel route R (S23), and when the actual position deviates from the travel route R by more than the set distance, the autonomous traveling is stopped (S21). Further, it is determined whether the output value of the steering sensor 20 for detecting the steering direction of the steering handle 4 during the work is within a normal range (S24). For example, if an abnormal value is detected due to a cause such as a disconnection or a short circuit, the vehicle turns sharply. Therefore, it is detected whether the value is an abnormal value, and if it is an abnormal value, traveling is stopped (S21).
  • the traveling is stopped (S21).
  • the set value can be set arbitrarily. Thus, it is not necessary to refuel in the middle of the work, preventing the vehicle from moving due to the lack of fuel during the work, and not damaging the engine. If the interruption does not occur, the autonomous running is continued (S27).
  • traveling stopped (S21)
  • the cause of the interruption is displayed and an alarm is issued (S22)
  • the operator stops the operation of the accompanying traveling work vehicle 100 and performs the work to eliminate the cause of the interruption
  • the autonomous running is resumed (S27).
  • the means for stopping the traveling stops traveling with the transmission means 44 being neutral. That is, in the case of a transmission using a hydraulic continuously variable transmission (HST), a transmission means constituted by a solenoid or a motor is operated to move the movable swash plate of the variable displacement hydraulic pump to a neutral position. Thus, even when the traveling is stopped in the work on the slope, it is prevented from descending along the slope.
  • HST hydraulic continuously variable transmission
  • the means for stopping the traveling is between the output shaft of the engine 3 and the input shaft of the transmission case.
  • the main clutch placed in the position is turned off to stop traveling and activate the brake. In this way, even when traveling is stopped on an inclined ground, it is prevented from descending along the slope.
  • the PTO on / off means 45 When the traveling is stopped, the PTO on / off means 45 is operated to turn off the PTO clutch to stop the operation of the work machine, and the engine 3 is rotated to the idle speed. In this way, it is possible to prevent the work surface from being roughened without suddenly moving.
  • the engine speed when the vehicle is stopped can be set arbitrarily.
  • the operator stops the work and gets on the autonomous traveling work vehicle 1. Then, the engine is restarted, and an operation for avoiding the cause of the load increase is performed. For example, the work implement is raised or the shift position is lowered to run at a low speed. Then, normal work is resumed when the high load region is avoided.
  • the control device 30 performs control so as to stop the autonomous traveling, so that the control device 30 stops before greatly deviating from the target traveling route R, and the work accuracy deteriorates. Can be prevented.
  • control device 30 performs control so as to stop traveling when the actual position deviates from the set travel range with respect to the target travel route R, the control device 30 stops before greatly deviating from the target travel route R, thereby deteriorating work accuracy. It is possible to prevent people from getting stuck due to getting stuck deeply or getting on obstacles.
  • control device 30 since the control device 30 performs control so as to stop traveling when the detected value from the steering sensor 20 becomes an abnormal value, the steering actuator 40 is operated while the detected value of the steering sensor 20 is abnormal. It is possible to prevent traveling in an undirected direction. Further, since the control device 30 controls to stop traveling when the difference between the detected value and the target value of the gyro sensor 31 and the azimuth sensor 32 that detect the posture / azimuth exceeds a set value, the control device 30 proceeds in an unintended direction. Can be prevented.
  • control device 30 transmits the cause to the remote operation device 112 provided in the accompanying traveling work vehicle 100 and displays the cause on the display 113 of the remote operation device 112, so that the operator indicates the cause of the travel stop. It can be easily recognized and can quickly respond to eliminate the cause of the stoppage. Further, in the case of failure, the maintenance work vehicle can be quickly and easily handled.
  • the present invention can be used for a remote operation device for remotely operating a construction machine or an agricultural work vehicle that can be remotely operated.

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • General Physics & Mathematics (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental Sciences (AREA)
  • Soil Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Guiding Agricultural Machines (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Abstract

The objective of the present invention is to enable high precision work without deviating from a set path and to enable the start of work only when an autonomous travel work vehicle is at an appropriate position and in an appropriate state. An autonomous travel work vehicle (1), which is provided with a position calculation means that measures the device body position, a steering actuator (40), an engine rotation control means, a transmission means (44), and a control device (30) that controls each of same, is caused to work, while autonomously travelling along a set travel path stored in the control device (30), by an accompanying travel work vehicle (100) that works while accompanying the travel of the autonomous travel work vehicle (1) by means of attended operation and that is mounted with a remote operation device (112) that operates the autonomous travel work vehicle. The control device (30) controls in a manner such that the start of work is not permitted at positions at which the autonomous travel work vehicle is separated by at least a set range from the work starting position.

Description

併走作業システムの制御装置Control device for parallel running system
 本発明は、併走作業システムの制御装置に関し、自律走行する無人作業車両と、この無人作業車両に随伴して走行する有人作業車両とにより作業を行う場合の無人作業車両の制御技術に関する。 The present invention relates to a control device for a parallel running work system, and relates to a control technique for an unmanned work vehicle when work is performed by an unmanned work vehicle that travels autonomously and a manned work vehicle that travels along with the unmanned work vehicle.
 従来、所定範囲の作業地内を走行する作業車に、GPS衛星からの衛星信号を受信する作業車側受信局を設けて作業車の現在位置を検出し、作業地の外側の近傍にGPS衛星からの衛星信号を受信する監視側受信局を設けて監視装置の現在位置を検出し、作業車と監視装置との間で通信して両者の相対距離を検出し、作業車の監視可能範囲から外れると警報を発し走行を停止させる技術が公知となっている(例えば、特許文献1参照)。 Conventionally, a work vehicle that receives a satellite signal from a GPS satellite is provided on a work vehicle that travels within a work area within a predetermined range to detect the current position of the work vehicle, and the GPS satellite is located near the outside of the work place. A monitoring receiving station that receives the satellite signal of the vehicle is provided to detect the current position of the monitoring device, and communication between the work vehicle and the monitoring device is performed to detect the relative distance between the two, so that the work vehicle is out of the monitoring range. A technique for issuing a warning and stopping traveling is known (for example, see Patent Document 1).
特開平9-146635号公報Japanese Patent Laid-Open No. 9-146635
 前記技術において、監視可能範囲から外れることは圃場外に出てしまうことになるので、このような制御は望ましくない。また、無人作業車がGPS衛星からの衛星信号を受信して、設定された走行経路を走行し、該無人作業車に随伴して随伴作業車が別の作業を行いながら走行する場合では、先行する無人作業車の走行経路が設定走行経路から外れると、随伴走行する随伴作業車も所定の経路から外れることになるので、設定経路から外れないように走行することが望まれる。 In the above-described technology, it is not desirable to perform such control because it is out of the field if it is out of the monitoring range. In the case where the unmanned work vehicle receives a satellite signal from the GPS satellite, travels on the set travel route, and the accompanying work vehicle travels while performing another work accompanying the unmanned work vehicle, If the travel route of the unmanned work vehicle deviates from the set travel route, the accompanying work vehicle that travels with the unmanned work vehicle also deviates from the predetermined route. Therefore, it is desirable to travel so as not to deviate from the set route.
 本発明は以上の如き状況に鑑みてなされたものであり、自律走行する無人作業車が作業開始位置から設定走行経路を外れることなく走行し、所定量以上外れると、自律走行を停止させるようにする。 The present invention has been made in view of the situation as described above, and an unmanned work vehicle that travels autonomously travels without departing from the set travel route from the work start position, and stops autonomous travel when it deviates more than a predetermined amount. To do.
 本発明の解決しようとする課題は以上の如くであり、次にこの課題を解決するための手段を説明する。 The problems to be solved by the present invention are as described above. Next, means for solving the problems will be described.
 即ち、本発明は、衛星測位システムを利用して機体の位置を測位する位置算出手段と、操舵装置を作動させる操舵アクチュエータと、エンジン回転制御手段と、変速手段と、これらを制御する制御装置とを備えた自律走行作業車両を、前記制御装置に記憶させた設定走行経路に沿って自律走行させるとともに、該自律走行作業車両に随伴走行しながら作業を行う随伴走行作業車両に搭載する遠隔操作装置により自律走行作業車両を操作可能とする併走作業システムであって、前記制御装置は、自律走行作業車両が作業開始位置より設定範囲以上離れた位置では作業開始を許可しないように制御するものである。 That is, the present invention relates to a position calculating means for positioning the position of the aircraft using a satellite positioning system, a steering actuator for operating a steering device, an engine rotation control means, a speed change means, and a control device for controlling these. A remote control device mounted on an accompanying traveling work vehicle that performs an operation while traveling along with the autonomous traveling work vehicle while autonomously traveling along the set traveling route stored in the control device. In the parallel running work system that allows the autonomous running work vehicle to be operated, the control device controls the autonomous running work vehicle so as not to permit the work start at a position that is more than the set range from the work start position. .
 本発明は、前記制御装置は作業開始位置において、自律走行作業車両と作業機が走行時に占める最大占有領域が作業を行う圃場外と重複していると自律走行の開始を許可しないように制御するものである。
 本発明は、制御装置は作業開始位置において、進行方向が設定範囲外に向いていると自律走行の開始を許可しないように制御するものである。
 本発明は、制御装置は自律走行作業車両に異常が発生した場合は自律走行の開始を許可しないように制御するものである。
 本発明は、制御装置は随伴走行作業車両の遠隔操作装置と接続されていない場合は自律走行を許可しないように制御するものである。
 本発明は、制御装置は作業が中断されると、中断位置を記憶し、再度作業を開始するときはその中断位置を作業再開始位置とし、表示装置にその位置を表示するものである。
In the present invention, the control device performs control so that the start of autonomous traveling is not permitted when the maximum occupation area occupied by the autonomous traveling work vehicle and the work implement during traveling overlaps with the outside of the field where the work is performed at the work start position. Is.
In the present invention, the control device performs control so that the start of autonomous traveling is not permitted at the work start position when the traveling direction is out of the set range.
In the present invention, the control device performs control so as not to allow the start of autonomous traveling when an abnormality occurs in the autonomous traveling work vehicle.
In the present invention, when the control device is not connected to the remote operation device of the accompanying traveling work vehicle, control is performed so that autonomous traveling is not permitted.
In the present invention, when the operation is interrupted, the control device stores the interruption position, and when the operation is started again, the interruption position is set as the operation restart position, and the position is displayed on the display device.
 本発明は、前記制御装置は、衛星からの信号が途絶えると、自律走行を停止するように制御するものである。
 本発明は、制御装置は目標走行経路に対して実位置が設定範囲以上逸脱すると走行を停止するように制御するものである。
 本発明は、制御装置は舵角方向を検出する操向センサからの検出値が異常な値となると走行を停止するように制御するものである。
 本発明は、制御装置は姿勢・方位センサの検出値と目標値との差が設定値以上となると走行を停止するように制御するものである。
 本発明は、前記制御装置は燃料タンクに設けたレベルセンサと接続し、燃料残量が設定量以下になると走行を停止するものである。
 本発明は、前記制御装置は、前記走行を停止すると、その原因を随伴走行作業車両に備える遠隔操作装置に送信し、遠隔操作装置のディスプレイに表示させるものである。
 本発明は、前記走行の停止は、油圧式無段変速装置の変速手段を中立として走行を停止するものである。
 本発明は、前記走行の停止は、歯車摺動式変速装置またはパワークラッチ式変速装置またはベルト式無段変速装置の、エンジンの出力軸とミッションケースの入力軸との間に配置したメインクラッチをオフとして走行を停止しブレーキを作動させるものである。
In the present invention, when the signal from the satellite is interrupted, the control device controls to stop the autonomous traveling.
In the present invention, the control device controls to stop traveling when the actual position deviates beyond a set range with respect to the target travel route.
In the present invention, the control device controls to stop traveling when the detected value from the steering sensor that detects the rudder angle direction becomes an abnormal value.
In the present invention, the control device controls to stop traveling when the difference between the detected value of the posture / orientation sensor and the target value exceeds a set value.
In the present invention, the control device is connected to a level sensor provided in a fuel tank, and stops traveling when the remaining amount of fuel falls below a set amount.
In the present invention, when the traveling is stopped, the control device transmits the cause to the remote operation device provided in the accompanying traveling work vehicle, and displays the cause on the display of the remote operation device.
According to the present invention, the traveling is stopped by setting the speed change means of the hydraulic continuously variable transmission as neutral.
According to the present invention, the stop of the traveling is performed by using a main clutch disposed between the output shaft of the engine and the input shaft of the transmission case of the gear sliding transmission, power clutch transmission or belt continuously variable transmission. When it is off, the running is stopped and the brake is activated.
 以上のような手段を用いることにより、自律走行作業車両が適正な位置で、適正な状態でのみ作業が開始できるようになり、確実に設定した経路で作業ができる。そして、自律走行作業車両に備えるセンサからの検出値に異常が発生すると、走行を停止するようになり、目標とする走行経路から逸脱することなく、正確な作業が行え、損傷や事故を未然に防止することができる。 By using the means as described above, the autonomous traveling work vehicle can be started only in an appropriate position and in an appropriate state, and the work can be reliably performed on a set route. And if an abnormality occurs in the detection value from the sensor provided in the autonomous traveling work vehicle, the traveling stops, and accurate work can be performed without deviating from the target traveling route, and damage and accidents can be prevented. Can be prevented.
自律走行作業車両とGPS衛星と基準局を示す概略側面図。The schematic side view which shows an autonomous traveling work vehicle, a GPS satellite, and a reference station. 制御ブロック図。Control block diagram. 横併走協調作業の状態を示す図。The figure which shows the state of a side-running cooperation work. 縦併走重複作業を示す図。The figure which shows the longitudinal parallel duplication work. 自律走行作業車両の基準となる長さを示す図。The figure which shows the length used as the reference | standard of an autonomous running work vehicle. 自律走行作業車両に装着した作業機を偏心して装着した場合の偏心量を示す図。The figure which shows the amount of eccentricity at the time of attaching the working machine with which the autonomous running work vehicle was mounted | worn eccentrically. 圃場データを取得するための行程を示す図。The figure which shows the process for acquiring agricultural field data. 基準経路の方向を示す図。The figure which shows the direction of a reference | standard path | route. 圃場における作業範囲と枕地を示す図。The figure which shows the work range and headland in an agricultural field. 自律走行開始制御を示すフローチャート図。The flowchart figure which shows autonomous running start control. 自律走行時の中断制御を示すフローチャート図。The flowchart figure which shows the interruption control at the time of autonomous driving | running | working.
 無人で自動走行可能な自律走行作業車両1、及び、この自律走行作業車両1に随伴してオペレータが操向操作する有人の随伴走行作業車両100をトラクタとし、自律走行作業車両1及び随伴走行作業車両100には作業機としてロータリ耕耘装置がそれぞれ装着されている実施例について説明する。但し、作業車両はトラクタに限定するものではなく、コンバイン等でもよく、また、作業機はロータリ耕耘装置に限定するものではなく、畝立て機や草刈機やレーキや播種機や施肥機やワゴン等であってもよい。 The autonomous traveling work vehicle 1 capable of unmanned automatic traveling and the manned traveling traveling vehicle 100 operated by the operator accompanying the autonomous traveling working vehicle 1 as a tractor are used as the tractor. An embodiment will be described in which a rotary tiller is mounted as a work machine on the vehicle 100. However, the work vehicle is not limited to a tractor, and may be a combine. The work machine is not limited to a rotary tiller. A vertical machine, a mower, a rake, a seeder, a fertilizer, a wagon, etc. It may be.
 図1、図2において、自律走行作業車両1となるトラクタの全体構成について説明する。ボンネット2内にエンジン3が内設され、該ボンネット2の後部のキャビン11内にダッシュボード14が設けられ、ダッシュボード14上に操向操作手段となるステアリングハンドル4が設けられている。該ステアリングハンドル4の回動により操舵装置を介して前輪9・9の向きが回動される。自律走行作業車両1の操舵方向は操向センサ20により検知される。操向センサ20はロータリエンコーダ等の角度センサからなり、前輪9の回動基部に配置される。但し、操向センサ20の検知構成は限定するものではなく操舵方向が認識されるものであればよく、ステアリングハンドル4の回動を検知したり、パワーステアリングの作動量を検知してもよい。操向センサ20により得られた検出値は制御装置30に入力される。 1 and 2, the overall configuration of the tractor serving as the autonomous traveling work vehicle 1 will be described. An engine 3 is installed in the hood 2, a dashboard 14 is provided in a cabin 11 at the rear of the hood 2, and a steering handle 4 serving as a steering operation means is provided on the dashboard 14. The steering wheel 4 is rotated to rotate the front wheels 9 and 9 through the steering device. The steering direction of the autonomous traveling work vehicle 1 is detected by the steering sensor 20. The steering sensor 20 is composed of an angle sensor such as a rotary encoder, and is disposed at the rotation base of the front wheel 9. However, the detection configuration of the steering sensor 20 is not limited as long as the steering direction is recognized, and the rotation of the steering handle 4 may be detected or the operation amount of the power steering may be detected. The detection value obtained by the steering sensor 20 is input to the control device 30.
 前記ステアリングハンドル4の後方に運転席5が配設され、運転席5下方にミッションケース6が配置される。ミッションケース6の左右両側にリアアクスルケース8・8が連設され、該リアアクスルケース8・8には車軸を介して後輪10・10が支承される。エンジン3からの動力はミッションケース6内の変速装置(主変速装置や副変速装置)により変速されて、後輪10・10を駆動可能としている。変速装置は例えば油圧式無段変速装置で構成して、可変容量型の油圧ポンプの可動斜板をモータ等の変速手段44により作動させて変速可能としている。変速手段44は制御装置30と接続されている。後輪10の回転数は車速センサ27により検知され、走行速度として制御装置30に入力される。但し、車速の検知方法や車速センサ27の配置位置は限定するものではない。 A driver's seat 5 is disposed behind the steering handle 4 and a mission case 6 is disposed below the driver's seat 5. Rear axle cases 8 and 8 are connected to the left and right sides of the transmission case 6, and rear wheels 10 and 10 are supported on the rear axle cases 8 and 8 via axles. The power from the engine 3 is shifted by a transmission (a main transmission or an auxiliary transmission) in the mission case 6 so that the rear wheels 10 and 10 can be driven. The transmission is constituted by, for example, a hydraulic continuously variable transmission, and the movable swash plate of a variable displacement hydraulic pump is operated by a transmission means 44 such as a motor so that the transmission can be changed. The speed change means 44 is connected to the control device 30. The rotational speed of the rear wheel 10 is detected by the vehicle speed sensor 27 and is input to the control device 30 as the traveling speed. However, the vehicle speed detection method and the arrangement position of the vehicle speed sensor 27 are not limited.
 ミッションケース6内にはPTOクラッチやPTO変速装置が収納され、PTOクラッチはPTO入切手段45により入り切りされ、PTO入切手段45は制御装置30と接続され、PTO軸への動力の断接を制御可能としている。 The transmission case 6 houses a PTO clutch and a PTO transmission. The PTO clutch is turned on and off by a PTO on / off means 45. The PTO on / off means 45 is connected to the control device 30 to connect and disconnect the power to the PTO shaft. It can be controlled.
 前記エンジン3を支持するフロントフレーム13にはフロントアクスルケース7が支持され、該フロントアクスルケース7の両側に前輪9・9が支承され、前記ミッションケース6からの動力が前輪9・9に伝達可能に構成している。前記前輪9・9は操舵輪となっており、ステアリングハンドル4の回動操作により回動可能とするとともに、操舵駆動手段となるパワステシリンダからなる操舵アクチュエータ40により前輪9・9が左右操舵回動可能となっている。操舵アクチュエータ40は制御装置30と接続され、自動走行制御により駆動される。 A front axle case 7 is supported on a front frame 13 that supports the engine 3, front wheels 9 and 9 are supported on both sides of the front axle case 7, and power from the transmission case 6 can be transmitted to the front wheels 9 and 9. It is configured. The front wheels 9, 9 are steered wheels, and can be turned by turning the steering handle 4, and the front wheels 9, 9 can be turned left and right by a steering actuator 40 comprising a power steering cylinder as a steering drive means. It is possible. The steering actuator 40 is connected to the control device 30 and is driven by automatic traveling control.
 制御装置30にはエンジン回転制御手段となるエンジンコントローラ60が接続され、エンジンコントローラ60にはエンジン回転数センサ61や水温センサや油圧センサ等が接続され、エンジンの状態を検知できるようにしている。エンジンコントローラ60では設定回転数と実回転数から負荷を検出し、過負荷とならないように制御するとともに、後述する遠隔操作装置112にエンジン3の状態を送信してディスプレイ113で表示できるようにしている。 The controller 30 is connected to an engine controller 60 serving as an engine rotation control means, and the engine controller 60 is connected to an engine speed sensor 61, a water temperature sensor, a hydraulic pressure sensor, and the like so that the state of the engine can be detected. The engine controller 60 detects the load from the set rotational speed and the actual rotational speed and controls it so as not to be overloaded, and transmits the state of the engine 3 to the remote operation device 112 described later so that it can be displayed on the display 113. Yes.
 また、ステップ下方に配置した燃料タンク15には燃料の液面を検知するレベルセンサ29が配置されて制御装置30と接続され、自律走行作業車両1のダッシュボードに設ける表示手段49には燃料の残量を表示する燃料計が設けられ制御装置30と接続されている。そして、制御装置30から遠隔操作装置112に燃料残量に関する情報が送信されて、遠隔操作装置112のディスプレイ113に燃料残量と作業可能時間が表示される。 The fuel tank 15 disposed below the step is provided with a level sensor 29 for detecting the fuel level and is connected to the control device 30. The display means 49 provided on the dashboard of the autonomous traveling work vehicle 1 has a fuel supply. A fuel gauge for displaying the remaining amount is provided and connected to the control device 30. Then, information regarding the remaining amount of fuel is transmitted from the control device 30 to the remote operation device 112, and the remaining fuel amount and workable time are displayed on the display 113 of the remote operation device 112.
 前記ダッシュボード14上にはエンジンの回転計や燃料計や油圧等や異常を示すモニタや設定値等を表示する表示手段49が配置されている。 On the dashboard 14, display means 49 for displaying an engine tachometer, a fuel gauge, a hydraulic pressure, etc., a monitor indicating an abnormality, a set value, and the like are arranged.
 また、トラクタ機体後方に作業機装着装置23を介して作業機としてロータリ耕耘装置24が昇降自在に装設させて耕耘作業を行うように構成している。前記ミッションケース6上に昇降シリンダ26が設けられ、該昇降シリンダ26を伸縮させることにより、作業機装着装置23を構成する昇降アームを回動させてロータリ耕耘装置24を昇降できるようにしている。昇降シリンダ26は昇降アクチュエータ25の作動により伸縮され、昇降アクチュエータ25は制御装置30と接続されている。 In addition, a rotary tiller 24 is installed as a work implement on the rear side of the tractor body via the work implement mounting device 23 so as to be able to move up and down to perform the tilling work. An elevating cylinder 26 is provided on the transmission case 6, and the elevating arm 26 constituting the work implement mounting device 23 is rotated by moving the elevating cylinder 26 to extend and lower the rotary tiller 24. The lift cylinder 26 is expanded and contracted by the operation of the lift actuator 25, and the lift actuator 25 is connected to the control device 30.
 制御装置30には衛星測位システムを構成する移動受信機33が接続されている。移動受信機33には移動GPSアンテナ34とデータ受信アンテナ38が接続され、移動GPSアンテナ34とデータ受信アンテナ38は前記キャビン11上に設けられる。該移動受信機33には、位置算出手段を備えて緯度と経度を制御装置30に送信し、現在位置を把握できるようにしている。なお、GPS(米国)に加えて準天頂衛星(日本)やグロナス衛星(ロシア)等の衛星測位システム(GNSS)を利用することで精度の高い測位ができるが、本実施形態ではGPSを用いて説明する。 The mobile receiver 33 that constitutes the satellite positioning system is connected to the control device 30. A mobile GPS antenna 34 and a data reception antenna 38 are connected to the mobile receiver 33, and the mobile GPS antenna 34 and the data reception antenna 38 are provided on the cabin 11. The mobile receiver 33 is provided with a position calculating means for transmitting latitude and longitude to the control device 30 so that the current position can be grasped. In addition to GPS (United States), high-precision positioning can be performed by using a satellite positioning system (GNSS) such as a quasi-zenith satellite (Japan) or a Glonus satellite (Russia). In this embodiment, GPS is used. explain.
 自律走行作業車両1は、機体の姿勢変化情報を得るためにジャイロセンサ31、および進行方向を検知するために方位センサ32を具備し制御装置30と接続されている。但し、GPSの位置計測から進行方向を算出できるので、方位センサ32を省くことができる。
 ジャイロセンサ31は自律走行作業車両1の機体前後方向の傾斜(ピッチ)の角速度、機体左右方向の傾斜(ロール)の角速度、および旋回(ヨー)の角速度、を検出するものである。該三つの角速度を積分計算することにより、自律走行作業車両1の機体の前後方向および左右方向への傾斜角度、および旋回角度を求めることが可能である。ジャイロセンサ31の具体例としては、機械式ジャイロセンサ、光学式ジャイロセンサ、流体式ジャイロセンサ、振動式ジャイロセンサ等が挙げられる。ジャイロセンサ31は制御装置30に接続され、当該三つの角速度に係る情報を制御装置30に入力する。
The autonomous traveling work vehicle 1 includes a gyro sensor 31 for obtaining attitude change information of the airframe, and an orientation sensor 32 for detecting a traveling direction, and is connected to the control device 30. However, since the traveling direction can be calculated from the GPS position measurement, the direction sensor 32 can be omitted.
The gyro sensor 31 detects an angular velocity of a tilt (pitch) in the longitudinal direction of the autonomous traveling work vehicle 1, an angular velocity of a tilt (roll) in the lateral direction of the aircraft, and an angular velocity of turning (yaw). By integrating and calculating the three angular velocities, it is possible to obtain the tilt angle in the front-rear direction and the left-right direction and the turning angle of the body of the autonomous traveling work vehicle 1. Specific examples of the gyro sensor 31 include a mechanical gyro sensor, an optical gyro sensor, a fluid gyro sensor, and a vibration gyro sensor. The gyro sensor 31 is connected to the control device 30 and inputs information relating to the three angular velocities to the control device 30.
 方位センサ32は自律走行作業車両1の向き(進行方向)を検出するものである。方位センサ32の具体例としては磁気方位センサ等が挙げられる。方位センサ32は制御装置30に接続され、機体の向きに係る情報を制御装置30に入力する。 The direction sensor 32 detects the direction (traveling direction) of the autonomous traveling work vehicle 1. A specific example of the direction sensor 32 includes a magnetic direction sensor. The direction sensor 32 is connected to the control device 30 and inputs information related to the orientation of the aircraft to the control device 30.
 こうして制御装置30は、上記ジャイロセンサ31、方位センサ32から取得した信号を姿勢・方位演算手段により演算し、自律走行作業車両1の姿勢(向き、機体前後方向及び機体左右方向の傾斜、旋回方向)を求める。 In this way, the control device 30 calculates the signals acquired from the gyro sensor 31 and the azimuth sensor 32 by the attitude / azimuth calculation means, and the attitude of the autonomous traveling work vehicle 1 (orientation, forward / backward direction of the body, left / right direction of the body, turning direction) )
 次に、自律走行作業車両1の位置情報をGPS(グローバル・ポジショニング・システム)を用いて取得する方法について説明する。
 GPSは、元来航空機・船舶等の航法支援用として開発されたシステムであって、上空約二万キロメートルを周回する二十四個のGPS衛星(六軌道面に四個ずつ配置)、GPS衛星の追跡と管制を行う管制局、測位を行うための利用者の受信機で構成される。
 GPSを用いた測位方法としては、単独測位、相対測位、DGPS(ディファレンシャルGPS)測位、RTK-GPS(リアルタイムキネマティック-GPS)測位など種々の方法が挙げられ、これらいずれの方法を用いることも可能であるが、本実施形態では測定精度の高いRTK-GPS測位方式を採用し、この方法について図1、図2より説明する。
Next, a method for acquiring the position information of the autonomous traveling work vehicle 1 using the GPS (global positioning system) will be described.
GPS was originally developed as a navigation support system for aircraft, ships, etc., and is composed of 24 GPS satellites (four on six orbital planes) orbiting about 20,000 kilometers above the sky. It consists of a control station that performs tracking and control, and a user receiver that performs positioning.
As a positioning method using GPS, there are various methods such as single positioning, relative positioning, DGPS (differential GPS) positioning, RTK-GPS (real-time kinematics-GPS) positioning, and any of these methods can be used. However, in this embodiment, an RTK-GPS positioning system with high measurement accuracy is adopted, and this method will be described with reference to FIGS.
 RTK-GPS(リアルタイムキネマティック-GPS)測位は、位置が判っている基準局と、位置を求めようとする移動局とで同時にGPS観測を行い、基準局で観測したデータを無線等の方法で移動局にリアルタイムで送信し、基準局の位置成果に基づいて移動局の位置をリアルタイムに求める方法である。 RTK-GPS (real-time kinematics-GPS) positioning is performed by simultaneously performing GPS observations on a reference station whose position is known and a mobile station whose position is to be obtained. Is transmitted in real time, and the position of the mobile station is obtained in real time based on the position result of the reference station.
 本実施形態においては、自律走行作業車両1に移動局となる移動受信機33と移動GPSアンテナ34とデータ受信アンテナ38が配置され、基準局となる固定受信機35と固定GPSアンテナ36とデータ送信アンテナ39が圃場の作業の邪魔にならない所定位置に配設される。本実施形態のRTK-GPS(リアルタイムキネマティック-GPS)測位は、基準局および移動局の両方で位相の測定(相対測位)を行い、基準局の固定受信機35で測位したデータをデータ送信アンテナ39からデータ受信アンテナ38に送信する。 In the present embodiment, a mobile receiver 33, a mobile GPS antenna 34, and a data receiving antenna 38 that are mobile stations are arranged in the autonomous traveling work vehicle 1, and a fixed receiver 35, a fixed GPS antenna 36, and a data transmitting antenna that are reference stations. 39 is disposed at a predetermined position that does not interfere with the work in the field. In the RTK-GPS (real-time kinematic-GPS) positioning of the present embodiment, the phase is measured (relative positioning) at both the reference station and the mobile station, and the data measured by the fixed receiver 35 of the reference station is transmitted from the data transmission antenna 39. Transmit to the data receiving antenna 38.
 自律走行作業車両1に配置された移動GPSアンテナ34はGPS衛星37・37・・・からの信号を受信する。この信号は移動受信機33に送信され測位される。そして、同時に基準局となる固定GPSアンテナ36でGPS衛星37・37・・・からの信号を受信し、固定受信機35で測位し移動受信機33に送信し、観測されたデータを解析して移動局の位置を決定する。こうして得られた位置情報は制御装置30に送信される。 The mobile GPS antenna 34 disposed in the autonomous traveling work vehicle 1 receives signals from GPS satellites 37, 37. This signal is transmitted to the mobile receiver 33 for positioning. At the same time, signals from the GPS satellites 37, 37... Are received by the fixed GPS antenna 36 serving as a reference station, measured by the fixed receiver 35 and transmitted to the mobile receiver 33, and the observed data is analyzed and moved. Determine the station location. The position information obtained in this way is transmitted to the control device 30.
 こうして、この自律走行作業車両1における制御装置30は、GPS衛星37・37・・・から送信される電波を受信して移動受信機33において設定時間間隔で機体の位置情報を求め、ジャイロセンサ31及び方位センサ32から機体の変位情報および方位情報を求め、これら位置情報と変位情報と方位情報に基づいて機体が予め設定した設定経路に沿って走行するように、操舵アクチュエータ40、変速手段44等を制御する。 In this way, the control device 30 in the autonomous traveling work vehicle 1 receives radio waves transmitted from the GPS satellites 37, 37,..., Obtains the position information of the aircraft at set time intervals in the mobile receiver 33, and the gyro sensor 31. Further, the displacement information and the direction information of the airframe are obtained from the direction sensor 32, and the steering actuator 40, the speed change means 44, etc. so that the airframe travels along a preset route based on the position information, the displacement information, and the direction information. To control.
 また、自律走行作業車両1には障害物センサ41が配置されて制御装置30と接続され、障害物に当接しないようにしている。例えば、障害物センサ41は超音波センサで構成して機体の前部や側部や後部に配置して制御装置30と接続し、機体の前方や側方や後方に障害物があるかどうかを検出し、障害物が設定距離以内に近づくと走行を停止させるように制御する。 Moreover, the obstacle sensor 41 is arranged in the autonomous traveling work vehicle 1 and connected to the control device 30 so as not to come into contact with the obstacle. For example, the obstacle sensor 41 is composed of an ultrasonic sensor, arranged at the front, side, and rear of the aircraft and connected to the control device 30 to determine whether there are obstacles at the front, side, or rear of the aircraft. Detect and control to stop traveling when an obstacle approaches within a set distance.
 また、自律走行作業車両1には前方や作業機を撮影するカメラ42が搭載され制御装置30と接続されている。カメラ42で撮影された映像は随伴走行作業車両100に備えられた遠隔操作装置112のディスプレイ113に表示されるようにしている。ただし、ディスプレイ113の表示画面が小さい場合は大きい別のディスプレイで表示したり、カメラ映像は別の専用のディスプレイで常時または選択的に表示したり、自律走行作業車両1に設けた表示手段49で表示したりすることも可能である。 In addition, the autonomous traveling work vehicle 1 is mounted with a camera 42 that photographs the front and the work implement and is connected to the control device 30. The video imaged by the camera 42 is displayed on the display 113 of the remote control device 112 provided in the accompanying traveling work vehicle 100. However, when the display screen of the display 113 is small, it is displayed on another large display, the camera image is always or selectively displayed on another dedicated display, or the display means 49 provided in the autonomous traveling work vehicle 1 is used. It is also possible to display it.
 遠隔操作装置112は前記自律走行作業車両1の走行経路Rを設定したり、自律走行作業車両1を遠隔操作したり、自律走行作業車両1の走行状態や作業機の作動状態を監視したり、作業データを記憶したりするものである。 The remote control device 112 sets the travel route R of the autonomous traveling work vehicle 1, remotely operates the autonomous traveling work vehicle 1, monitors the traveling state of the autonomous traveling work vehicle 1 and the operating state of the work implement, It stores work data.
 有人走行車両となる随伴走行作業車両100はオペレータが乗車して運転操作するとともに、随伴走行作業車両100に遠隔操作装置112を搭載して自律走行作業車両1を操作可能としている。随伴自律走行作業車両100の基本構成は自律走行作業車両1と略同じ構成であるので詳細な説明は省略する。なお、随伴走行作業車両100にはGPS用の移動受信機33や移動GPSアンテナ34を備える構成とすることも可能である。 The accompanying traveling work vehicle 100, which is a manned traveling vehicle, is operated and operated by an operator, and the associated traveling working vehicle 100 is equipped with a remote control device 112 so that the autonomous traveling work vehicle 1 can be operated. Since the basic configuration of the accompanying autonomous traveling work vehicle 100 is substantially the same as that of the autonomous traveling work vehicle 1, detailed description thereof is omitted. The accompanying traveling work vehicle 100 may be configured to include a GPS mobile receiver 33 and a mobile GPS antenna 34.
 遠隔操作装置112は、随伴走行作業車両100及び自律走行作業車両1のダッシュボード等の操作部に着脱可能としている。遠隔操作装置112は随伴走行作業車両100のダッシュボードに取り付けたまま操作することも、随伴走行作業車両100の外に持ち出して携帯して操作することも、自律走行作業車両1のダッシュボードに取り付けて操作可能としている。遠隔操作装置112は例えばノート型やタブレット型のパーソナルコンピュータで構成することができる。本実施形態ではタブレット型のコンピュータで構成している。 The remote operation device 112 can be attached to and detached from an operation unit such as a dashboard of the accompanying traveling work vehicle 100 and the autonomous traveling work vehicle 1. The remote control device 112 can be operated while attached to the dashboard of the accompanying traveling work vehicle 100, or can be taken out of the accompanying traveling work vehicle 100 to be carried and operated, or attached to the dashboard of the autonomous traveling work vehicle 1. Can be operated. The remote operation device 112 can be configured by, for example, a notebook or tablet personal computer. In this embodiment, a tablet computer is used.
 さらに、遠隔操作装置112と自律走行作業車両1は無線で相互に通信可能に構成しており、自律走行作業車両1と遠隔操作装置112には通信するための送受信機110・111がそれぞれ設けられている。送受信機111は遠隔操作装置112に一体的に構成されている。通信手段は例えばWiFi等の無線LANで相互に通信可能に構成されている。遠隔操作装置112は画面に触れることで操作可能なタッチパネル式の操作画面としたディスプレイ113を筐体表面に設け、筐体内に送受信機111やCPUや記憶装置やバッテリ等を収納している。該ディスプレイ113には、前記カメラ42で撮影した周囲の画像や自律走行作業車両1の状態や作業の状態やGPSに関する情報や操作画面等を表示できるようにし、オペレータが監視できるようにしている。 Further, the remote operation device 112 and the autonomous traveling work vehicle 1 are configured to be able to communicate with each other wirelessly, and the autonomous traveling work vehicle 1 and the remote operation device 112 are provided with transceivers 110 and 111 for communication, respectively. ing. The transceiver 111 is configured integrally with the remote operation device 112. The communication means is configured to be able to communicate with each other via a wireless LAN such as WiFi. The remote operation device 112 is provided with a display 113 as a touch panel type operation screen that can be operated by touching the screen on the surface of the housing, and a transceiver 111, a CPU, a storage device, a battery, and the like are housed in the housing. The display 113 can display surrounding images taken by the camera 42, the state of the autonomous traveling work vehicle 1, the state of work, information on GPS, an operation screen, and the like so that the operator can monitor.
 前記自律走行作業車両1の状態としては、走行状態やエンジンの状態や作業機の状態等であり、走行状態としては変速位置や車速や燃料残量やバッテリの電圧等であり、エンジンの状態としてはエンジンの回転数や負荷率等であり、作業機の状態としては作業機の種類やPTO回転数や作業機高さ等であり、それぞれディスプレイ113に数字やレベルメータ等で表示される。
 前記作業の状態としては、作業経路(目標経路または設定経路)、作業行程、現在位置、行程から計算される枕地までの距離、残りの経路、行程数、今までの作業時間、残りの作業時間等である。残りの経路は、全体の作業経路から既作業経路を塗りつぶすことで容易に認識できるようにしている。また、現在位置から次の行程を矢印で表示することで、現在から旋回方向等次の行程を容易に認識することができるようにしている。
 GPSに関する情報は、自律走行作業車両1の実位置となる経度や緯度、衛星の補足数や電波受信強度等である。
The state of the autonomous traveling work vehicle 1 includes a traveling state, an engine state, a working machine state, and the like. The traveling state includes a shift position, a vehicle speed, a fuel remaining amount, a battery voltage, and the like. Is the engine speed, load factor, etc., and the state of the work machine is the type of work machine, PTO rotation speed, work machine height, etc., which are displayed on the display 113 with numbers, level meters, etc.
The work status includes: work route (target route or set route), work process, current position, distance from the process to the headland, remaining route, number of processes, current work time, remaining work Time etc. The remaining paths can be easily recognized by filling the existing work paths from the entire work paths. Further, by displaying the next stroke from the current position with an arrow, it is possible to easily recognize the next stroke such as the turning direction from the current time.
The information regarding GPS is the longitude and latitude at which the autonomous traveling work vehicle 1 is actually located, the number of satellites supplemented, the radio wave reception intensity, and the like.
 前記遠隔操作装置112のディスプレイ113は、カメラ42で撮影した周囲の画像の他、自律走行作業車両1の状態や走行経路R等も表示するため、一度に多数の情報を表示できない。そこで、画面を大きくして分割表示したり、カメラ用のディスプレイを別に設けたり、必要に応じて切り換えたり、スクロールさせたりすることも可能である。こうして、作業者が見たい画面を容易に見ることができる。 Since the display 113 of the remote control device 112 displays not only the surrounding images taken by the camera 42 but also the state of the autonomous traveling work vehicle 1 and the traveling route R, a large amount of information cannot be displayed at a time. Therefore, the screen can be enlarged and divided, or a separate display for the camera can be provided, and can be switched or scrolled as necessary. Thus, it is possible to easily see the screen that the operator wants to see.
 また、前記自律走行作業車両1は遠隔操作装置112により遠隔操作可能としている。例えば、自律走行作業車両1の緊急停止や一時停止や再発進や車速の変更やエンジン回転数の変更や作業機の昇降やPTOクラッチの入り切り等を操作できるようにしている。つまり、遠隔操作装置112から送受信機111、送受信機110、制御装置30を介してアクセルアクチュエータや変速手段44やPTO入切手段45等を制御し作業者が容易に自律走行作業車両1を遠隔操作できるのである。 The autonomous traveling work vehicle 1 can be remotely operated by the remote operation device 112. For example, the autonomous traveling work vehicle 1 can be operated for emergency stop, temporary stop, re-start, change of vehicle speed, change of engine speed, raising / lowering of the work machine, turning on / off of the PTO clutch, and the like. That is, an operator can easily remotely operate the autonomous traveling work vehicle 1 by controlling the accelerator actuator, the speed change means 44, the PTO on / off means 45, and the like from the remote operation device 112 via the transceiver 111, the transceiver 110, and the control device 30. It can be done.
 以上のように、衛星測位システムを利用して機体となる自律走行作業車両1の位置を測位する位置算出手段を備える移動受信機33と、操舵装置を作動させる操舵アクチュエータ40と、エンジン回転制御手段となるエンジンコントローラ60と、変速手段44と、これらを制御する制御装置30とを備えた自律走行作業車両1を、前記制御装置30に記憶させた設定走行経路Rに沿って自律走行させるとともに、該自律走行作業車両1に随伴走行しながら作業を行う随伴走行作業車両100に搭載する遠隔操作装置112により自律走行作業車両1を操作可能とする併走作業システムであって、前記遠隔操作装置112は可搬可能、かつ、随伴走行作業車両100に着脱可能に取り付けられるので、併走作業時においては、遠隔操作装置112を随伴走行作業車両100に取り付けた状態で作業を行い、自律走行作業車両1により単独で作業を行ったり、自律走行作業車両1にトラブルが生じたりした場合には、遠隔操作装置112を取り外して、自律走行作業車両1に乗り込んだり、自律走行作業車両1の近傍または良く見える位置で操作したり確認したりできるようになる。よって、操作性が向上し、トラブル等の処置も容易に行うことができる。 As described above, the mobile receiver 33 including the position calculating means for measuring the position of the autonomous traveling work vehicle 1 serving as the airframe using the satellite positioning system, the steering actuator 40 for operating the steering device, and the engine rotation control means. The autonomous traveling work vehicle 1 including the engine controller 60, the speed change means 44, and the control device 30 that controls these is autonomously traveled along the set travel route R stored in the control device 30, and A parallel operation system that allows the autonomous traveling work vehicle 1 to be operated by a remote operation device 112 mounted on the accompanying traveling work vehicle 100 that performs work while traveling along the autonomous traveling work vehicle 1, wherein the remote operation device 112 includes: Since it is portable and is detachably attached to the accompanying traveling work vehicle 100, a remote control device is used during parallel traveling work. 12 is attached to the accompanying traveling work vehicle 100, and when the autonomous traveling work vehicle 1 performs work alone or trouble occurs in the autonomous traveling work vehicle 1, the remote control device 112 is removed. Thus, it is possible to get into the autonomous traveling work vehicle 1 and to operate and check in the vicinity of the autonomous traveling work vehicle 1 or at a position where it can be seen clearly. Therefore, operability is improved, and troubles can be easily handled.
 また、前記遠隔操作装置112は、ディスプレイ113を有し、該ディスプレイ113には自律走行作業車両1の走行状態やエンジン3の状態、作業機の状態を表示するので、オペレータは視覚により容易に自律走行作業車両1の状態を把握することができ、自律走行作業車両1に異常が発生しても迅速に対応することができる。 The remote control device 112 has a display 113. The display 113 displays the traveling state of the autonomous traveling work vehicle 1, the state of the engine 3, and the state of the work implement. The state of the traveling work vehicle 1 can be grasped, and even if an abnormality occurs in the autonomous traveling work vehicle 1, it is possible to respond quickly.
 また、前記ディスプレイ113には自律走行作業車両1の後述する目標走行経路R、現在位置、枕地までの距離、作業時間、完了までの作業時間を表示するので、作業時における走行状態や作業経過等が容易に認識でき、作業計画も立て易くなる。
 また、前記ディスプレイにはGPS情報を表示するので、衛星からの受信状態を把握でき、GPS衛星からの信号が途絶えた場合等での対処が容易にできる。
 また、前記自律走行作業車両1には機体周囲を撮影するカメラ42が備えられ、該カメラ42で撮影した映像を前記ディスプレイ113にて表示可能としたので、離れた位置で自律走行作業車両1の周囲の様子を容易に認識でき、障害物があったとき等において容易に対処できる。
The display 113 displays a target travel route R, a current position, a distance to the headland, a work time, and a work time until completion of the autonomous travel work vehicle 1 to be described later. Etc. can be easily recognized and a work plan can be easily made.
Further, since the GPS information is displayed on the display, the reception state from the satellite can be grasped, and it is possible to easily cope with the case where the signal from the GPS satellite is interrupted.
In addition, the autonomous traveling work vehicle 1 is provided with a camera 42 that captures the surroundings of the airframe, and an image captured by the camera 42 can be displayed on the display 113. The surrounding situation can be easily recognized, and can be easily dealt with when there is an obstacle.
 次に、自律走行作業車両1の走行経路Rの作成について説明する。
 走行経路Rは作業形態に合わせて生成される。作業形態としては、自律走行作業車両1のみの単独走行作業、自律走行作業車両1と随伴走行作業車両100による併走走行作業、自律走行収穫作業車(コンバイン)と随伴搬送車両等とによる複合収穫作業等があるが、本実施形態では自律走行作業車両1と随伴走行作業車両100による併走走行作業の走行経路生成について説明する。さらに、併走走行作業では、図3に示す横併走協調作業と図4に示す縦併走重複作業と縦併走協調作業がある。なお、自律走行作業車両1と随伴走行作業車両100とによる併走走行作業では、作業時間を短縮できるとともに、従来から所有している随伴走行作業車両100に自律走行作業車両1を加えることで実現でき、新たに自律走行作業車両1を二台購入する必要はなく、コストが抑えられる。
Next, creation of the travel route R of the autonomous traveling work vehicle 1 will be described.
The travel route R is generated according to the work mode. As a work form, the independent traveling work of the autonomous traveling working vehicle 1 alone, the parallel traveling work by the autonomous traveling working vehicle 1 and the accompanying traveling working vehicle 100, the combined harvesting work by the autonomous traveling harvesting working vehicle (combine) and the accompanying transport vehicle, etc. However, in the present embodiment, generation of a traveling route of the parallel traveling work by the autonomous traveling work vehicle 1 and the accompanying traveling work vehicle 100 will be described. Furthermore, in the parallel running work, there are a horizontal parallel cooperative work shown in FIG. 3, a vertical parallel overlapping work and a vertical parallel cooperative work shown in FIG. In the parallel running work by the autonomous traveling work vehicle 1 and the accompanying traveling work vehicle 100, the working time can be shortened, and can be realized by adding the autonomous traveling working vehicle 1 to the accompanying traveling work vehicle 100 that has been conventionally owned. Therefore, it is not necessary to purchase two new autonomously-working working vehicles 1 and the cost can be reduced.
 図3に示す横併走協調作業は、自律走行作業車両1の斜め後方を随伴走行作業車両100が走行して作業域を一部重複させて(随伴走行作業車両100の作業機がトレンチャー等では重複させる必要はない)、作業機の約二倍の幅を一人で一度に作業し、時間の短縮化を図ることができる。図4に示す縦併走重複作業は、自律走行作業車両1と随伴走行作業車両100は前後一列に並んで走行し、同じ作業機を装着して、一台目は荒耕しを行い、二台目は砕土作業を行い一つの作業を分割する。また、縦併走協調作業は自律走行作業車両1と随伴走行作業車両100は前後一列に並んで走行し、一台目は耕耘(砕土)を行い、二台目は施肥や播種等の別の作業機で、前後二つ以上の作業を分割して行うことができる。 In the side-by-side cooperative work shown in FIG. 3, the accompanying traveling work vehicle 100 travels diagonally behind the autonomous traveling working vehicle 1 to partially overlap the work area (the working equipment of the accompanying traveling working vehicle 100 is duplicated in a trencher or the like). However, it is possible to shorten the time by working alone about twice as wide as the work equipment at once. In the longitudinally overlapping work shown in FIG. 4, the autonomous traveling work vehicle 1 and the accompanying traveling work vehicle 100 travel in a line in the front and rear, are equipped with the same work equipment, the first unit is plowed, the second unit Breaks up one piece of work. In addition, the autonomous running work vehicle 1 and the accompanying running work vehicle 100 run side by side in a row, the first one is plowed (ground), and the second one is another work such as fertilization and sowing. With the machine, it is possible to divide two or more tasks before and after.
 上記横併走協調作業における自律走行作業車両1により自律走行しながら作業を行う自動作業システムの走行経路生成について説明する。なお、設定操作は遠隔操作装置112で行うが、自律走行作業車両1の表示手段49で行うことも可能とする。
 まず、耕耘作業するための基準長さを制御装置30の記憶装置30aに予め入力しておく。基準長さは、図5に示すように、トラクタに装着される作業機の作業幅W1、機体に搭載されたGPSアンテナ34から作業機端までの距離L1、機体の全長L2(または最小旋回半径L3)、作業機が偏心して配置される場合は図6に示すように左右中心からの偏心量S1がそれぞれ機体の諸元表から得て制御装置30の記憶装置30aに保存する行程を経る。また、作業機がロータリ耕耘装置24の場合には、サイドドライブ式またはセンタードライブ式かを選択し、サイドドライブ式の場合にはチェーンケース24aの位置と幅W2の値も記憶装置30aに保存する。また、機体の全長L2と作業機幅(W1+W2)で占める面積(L2×(W1+W2))を、自律走行作業車両1と作業機(ロータリ耕耘装置24)が走行時に占める最大占有領域Qと定義して記憶装置30aに保存する。なお、フロント作業機を装着した場合はフロント作業機の前端から機体後端までの距離がL2となる。また、ロータリ耕耘装置24の代わりにミッド作業機を装着した場合、(W1+W2)はミッド作業機が機体の幅(左右の後輪の外幅)よりも大きい場合はW1となる。また、最大占有領域Qは四角形に限定せず、この四角形の外接円Q1とすることも可能である。外接円Q1とすることで旋回時に畦等との干渉が認識し易くなる。
The travel route generation of the automatic work system that performs work while autonomously traveling by the autonomous traveling work vehicle 1 in the side-by-side cooperative work will be described. The setting operation is performed by the remote operation device 112, but can also be performed by the display means 49 of the autonomous traveling work vehicle 1.
First, a reference length for tilling work is input in advance to the storage device 30 a of the control device 30. As shown in FIG. 5, the reference length includes the working width W1 of the work implement mounted on the tractor, the distance L1 from the GPS antenna 34 mounted on the fuselage to the work implement end, the total length L2 of the fuselage (or the minimum turning radius) L3) When the work machine is arranged eccentrically, as shown in FIG. 6, the eccentric amount S1 from the center of the left and right is obtained from the specifications of the machine body and stored in the storage device 30a of the control device 30. Further, when the working machine is the rotary tiller 24, the side drive type or the center drive type is selected. In the case of the side drive type, the position of the chain case 24a and the value of the width W2 are also stored in the storage device 30a. . Further, an area (L2 × (W1 + W2)) occupied by the total length L2 of the machine body and the work machine width (W1 + W2) is defined as a maximum occupied area Q occupied by the autonomous mobile work vehicle 1 and the work machine (rotary tillage device 24). And stored in the storage device 30a. When the front work machine is mounted, the distance from the front end of the front work machine to the rear end of the machine body is L2. When a mid work machine is mounted instead of the rotary tiller 24, (W1 + W2) is W1 when the mid work machine is larger than the width of the machine body (the outer width of the left and right rear wheels). Further, the maximum occupied area Q is not limited to a quadrangle, and can be a circumscribed circle Q1 of this quadrangle. By using the circumscribed circle Q1, it becomes easy to recognize interference with a hook or the like when turning.
 次に、圃場の位置と範囲及び作業を行う走行経路Rを設定するために、圃場の四隅(A、B、C、D、または、変曲点)に自律走行作業車両1を位置させて、測地する行程を行う。つまり、図7に示すように、圃場Hの出入口Eで測地して出入口位置データとして制御装置30の記憶装置30aにその緯度と経度を記憶する。出入口Eを設定しておくことで、作業開始位置や作業終了位置を容易に設定することができる。 Next, in order to set the position and range of the field and the travel route R for performing the work, the autonomous traveling work vehicle 1 is positioned at the four corners (A, B, C, D, or inflection points) of the field, Do a geodetic journey. That is, as shown in FIG. 7, the latitude and the longitude are stored in the storage device 30 a of the control device 30 as the position information at the entrance / exit E of the farm field H. By setting the entrance / exit E, the work start position and work end position can be easily set.
 自律走行作業車両1を出入口Eから圃場内に入り進行させて入口に最も近い一つの隅(角)Aに移動して、圃場の短辺または長辺(以下畦とする)と平行となるように位置させて測地し、第一隅部データ(緯度と経度)として記憶する。次に、無人トラクタを次の隅Bに移動させて、畦と平行となるように約90度方向転換して測地し第二隅部データとして記憶する。そして、前記同様に次の隅Cに移動して第三隅部データを取得して記憶し、次の隅Dに移動して第四隅部データを取得して記憶する。こうして、一つの隅Aから順番に一筆書きのように直線で隅(B、C、D)を結ぶことにより圃場の形状を確定し圃場データとして取得する。但し、圃場の形状が変形圃場である場合には、四隅以外の隅位置や変曲点位置のデータを取得して圃場データを確定する。例えば、三角形であれば三つの隅を、五角形であれば五つの隅の位置データを取得し記憶する。但し、隅部データを直線で結んだ際に、直線が交差した場合は圃場データとして認識しないようにしている。これは、圃場としてあり得ず、隅または変曲点が抜けている可能性が高いからである。また、圃場データの作成はインターネットや地図メーカ等が公開している地図データから圃場データを取得することを禁止し、前述の現地で測地したデータのみ採用し許可するものとしている。こうして、実際の作業で走行させたときに誤差により圃場外に出てしまうことを防止している。 The autonomous traveling work vehicle 1 enters the field from the doorway E and advances to move to one corner (corner) A closest to the gate so as to be parallel to the short side or the long side (hereinafter referred to as 畦) of the field. And geodetic, and store as first corner data (latitude and longitude). Next, the unmanned tractor is moved to the next corner B, turned around 90 degrees so as to be parallel to the kite, and is measured and stored as second corner data. Then, similarly to the above, it moves to the next corner C to acquire and store the third corner data, and moves to the next corner D to acquire and store the fourth corner data. Thus, the shape of the field is determined by connecting the corners (B, C, D) in a straight line like one stroke in order from one corner A, and acquired as field data. However, when the shape of the farm field is a deformed farm field, data of corner positions other than the four corners and inflection point positions are acquired to determine the farm field data. For example, position data of three corners is acquired and stored for a triangle, and position of five corners is acquired for a pentagon. However, when the corner data are connected by a straight line, if the straight lines intersect, they are not recognized as field data. This is because there is a high possibility that corners or inflection points are missing as a farm field. In addition, the creation of field data prohibits the acquisition of field data from map data published by the Internet, map makers, etc., and adopts and permits only the above-mentioned data measured at the site. In this way, it is prevented from going out of the field due to an error when the vehicle is run in actual work.
 更に、圃場の周囲には、取水口や排水口が設けられていたり、境界を示す杭や石等が配設されていたり、樹木が入り込んで生えていたりする場合がある。これらは直線状に走行した場合に邪魔となるので、これらは障害物として設定できるようにしている。この障害物は圃場データ作成時に障害物として設定する。この障害物を設定した場合には、自律走行時には避けて走行するように走行路が設定される。 In addition, there are cases where water intakes and drains are provided around the field, piles and stones indicating the boundaries are arranged, and trees grow and grow. Since these are obstructive when traveling in a straight line, they can be set as obstacles. This obstacle is set as an obstacle when creating the field data. When this obstacle is set, the traveling path is set so as to avoid traveling during autonomous traveling.
 次に、基準経路を選択する行程となる。基準経路は作業開始位置から作業終了位置までの進行方向及び作業終了位置から出口までの経路を選択する。具体的には、図8に示すように、基準経路は、右回りで作業を開始または終了するか、或いは、左回りで作業を開始または終了するかを設定する。この設定はディスプレイ113上で矢印や目印等を表示させてそれをタッチする等して簡単に選択できるようにしている。 Next, it becomes the process of selecting the reference route. As the reference path, a traveling direction from the work start position to the work end position and a path from the work end position to the exit are selected. Specifically, as shown in FIG. 8, the reference route sets whether to start or end work clockwise or to start or end work counterclockwise. This setting can be easily selected by displaying an arrow or a mark on the display 113 and touching it.
 こうして、図9に示すように、圃場データから得られる作業範囲HAは略四角形となるようにしており、この作業範囲HAが遠隔操作装置112のディスプレイ113に表示される。この作業範囲HAにおいて更に枕地HBを両側に設定する。枕地HBの幅Wbは作業機をロータリ耕耘装置24とした場合、耕耘幅W1から求められる。例えば、耕耘幅を入力しその整数倍を選択できるようにしている。なお、枕地幅Wbはハンドルを切り返しせずに旋回させ、滑り等も考慮してマージンを持たせて旋回させる必要があるため、最小旋回半径よりも大きくしなければならない。そこで、最小旋回半径を予め記憶させておくことで、この最小旋回半径よりも小さな値は設定時において入力できないようにしている。但し、設定する旋回半径は増速旋回やオートステアリング機能がない場合の旋回半径としてもよい。
 その他の作業機を装着した場合においては、作業機の全長や条の幅等が考慮されるので、枕地幅Wbは任意の長さを数値で入力することも可能としている。
 枕地を往復して作業を行う場合や枕地を含む作業範囲の周囲を螺旋状に周回して作業を終了する場合もあるので、枕地HBにおける旋回方向も設定できるようにしている。
 また、圃場の周囲は畦が存在するため畦処理のために別途作業が必要な場合があるため、作業開始側の端部HCの幅(畔からの距離)Wcも任意の長さに設定できるようにしている。
In this way, as shown in FIG. 9, the work range HA obtained from the farm field data is substantially rectangular, and this work range HA is displayed on the display 113 of the remote operation device 112. In this work range HA, the headland HB is further set on both sides. The width Wb of the headland HB is obtained from the tillage width W1 when the working machine is the rotary tiller 24. For example, it is possible to input a tilling width and select an integral multiple thereof. The headland width Wb needs to be larger than the minimum turning radius because it is necessary to turn without turning back the handle and to turn with a margin in consideration of slipping and the like. Therefore, by storing the minimum turning radius in advance, a value smaller than the minimum turning radius cannot be input at the time of setting. However, the turning radius to be set may be the turning radius when there is no accelerated turning or auto steering function.
When other work implements are mounted, the total length of the work implements, the width of the strips, and the like are taken into consideration, so that the headland width Wb can be input as an arbitrary length.
When the work is performed by reciprocating the headland or the work may be terminated by spirally surrounding the work range including the headland, the turning direction in the headland HB can also be set.
Further, since there is a cocoon around the field, a separate work may be required for the cocoon processing, and therefore the width (distance from the shore) Wc of the end HC on the work start side can be set to an arbitrary length. I am doing so.
 次に、オーバーラップ量(重複幅)を設定する行程となる。オーバーラップ量Wr(図3)は作業機(例えば、ロータリ耕耘装置)で往復作業する場合の往路と復路で重複させる幅や、併走協調作業における左右のロータリ耕耘装置が重複する作業幅であり、傾斜や凹凸等があっても耕耘残しがないようにオーバーラップ量Wrが任意の長さに設定される。なお、オーバーラップ量Wrをもたせると、縦併走重複作業の場合、枕地で旋回してすれ違うときに作業機同士が当接してしまうおそれがある。または、障害物センサ41の検出により自律走行作業車両1は走行を停止してしまうことになる。このようなことを避けるため、随伴走行作業車両100は1列以上飛ばして作業を行い、当接を避けた走行を行う。或いは、枕地に近づくと、作業機の当接を避ける「すれ違い制御」を行う。「すれ違い制御」は、例えば、すれ違うときに、一方の作業機は上昇させ、他方の作業機は下降させるような制御とする。ただし、中央1条の移植機や播種機やトレンチャー等のオーバーラップさせる必要はない作業機による作業では、条の間隔を設定し、飛ばしたり「すれ違い制御」を行う必要はなく、選択できるようにしている。 Next, it is the process of setting the overlap amount (overlap width). The overlap amount Wr (FIG. 3) is a width that overlaps in the forward path and the return path when reciprocating with a work machine (for example, a rotary tiller), and a work width that overlaps the left and right rotary tillers in the parallel running work. The overlap amount Wr is set to an arbitrary length so as not to leave tillage even if there is an inclination or unevenness. In addition, when the overlap amount Wr is provided, there is a possibility that the working machines may come into contact with each other when they pass each other by turning in the headland in the case of overlapping work in parallel running. Alternatively, the autonomous traveling work vehicle 1 stops traveling due to the detection of the obstacle sensor 41. In order to avoid such a situation, the accompanying traveling work vehicle 100 performs work while skipping one or more rows to avoid contact. Or when approaching a headland, "passing control" which avoids contact | abutting of a working machine is performed. The “passing control” is, for example, a control in which one working machine is raised and the other working machine is lowered when passing each other. However, when working with a work machine that does not need to be overlapped, such as a transplanter, seeder, or trencher in the center, it is not necessary to set the interval between the lines and skip it or perform “passing control” so that it can be selected. ing.
 また、圃場データに作業終了位置を設定または選択できるようにしている。例えば、走行経路Rが設定された後に作業終了位置が出入口Eと反対位置となった場合や、圃場Hのうち四角形の作業範囲HAの残りの圃場HDが出入口Eと離れた位置にある場合等においては、作業終了位置が優先されるように設定して、できるだけ重複した作業を避け、圃場面を荒らすことなく終了できるように設定する。この場合、作業終了位置から逆方向に作業走行経路Rをたどって設定することで作業開始位置が設定される。よって、作業開始位置は出入口Eから離れた位置となることもある。また、作業開始位置や作業終了位置はオペレータの好みの位置に設定することもできるために、作業を行わない空走り行程を設定することで作業開始方向や作業終了方向を変更することも可能となる。
 上記の数値や選択肢を入力して設定すると、制御装置30によって作業範囲HAで順次往復直進作業を行い、枕地HBで反転する回行を行うように自動的に走行経路Rが生成される。
In addition, the work end position can be set or selected in the field data. For example, when the work end position becomes a position opposite to the entrance E after the travel route R is set, or when the remaining farm field HD in the rectangular work range HA of the farm field H is at a position away from the entrance E. Is set so that the work end position is given priority, so that the overlapping work is avoided as much as possible and the field scene can be finished without being roughened. In this case, the work start position is set by tracing the work travel route R in the reverse direction from the work end position. Therefore, the work start position may be a position away from the entrance E. In addition, since the work start position and work end position can be set at the operator's preferred position, it is also possible to change the work start direction and work end direction by setting an idle running process that does not perform work. Become.
When the above numerical values and options are input and set, the travel route R is automatically generated so that the control device 30 sequentially performs a reciprocating straight-ahead operation in the work range HA and performs a reversing turn in the headland HB.
 走行経路Rの生成行程を経ると、次に、作業条件を設定する行程となる。作業条件は、例えば、作業時における車速(変速位置)、エンジン回転数、PTO回転数(PTO変速位置)、旋回時における車速、エンジン回転数等である。走行経路Rに沿った作業行程が生成される。
 なお、前記ディスプレイ113上での設定値の入力や選択は、ディスプレイ113に順次設定画面が表示され、間違いや設定忘れが生じないようにし、オペレータにとっても簡単に操作でき、設定や入力ができるようにしている。
After the generation process of the travel route R, it becomes a process for setting work conditions. The work conditions are, for example, a vehicle speed (shift position) at the time of work, an engine speed, a PTO speed (PTO shift position), a vehicle speed at the time of turning, an engine speed, and the like. A work process along the travel route R is generated.
It should be noted that the setting values on the display 113 can be input and selected in order by sequentially displaying setting screens on the display 113 so that mistakes and settings are not forgotten. I have to.
 上記設定が終了し、走行経路Rおよび走行経路Rに沿った作業行程が生成されると、作業を開始するために、オペレータが自律走行作業車両1を運転して作業開始位置に移動させ、随伴走行作業車両100をその近傍に位置させる。そして、オペレータが遠隔操作装置112を操作して作業を開始する。 When the above setting is completed and the travel route R and the work route along the travel route R are generated, the operator drives the autonomous traveling work vehicle 1 to move to the work start position in order to start work. The traveling work vehicle 100 is positioned in the vicinity thereof. Then, the operator operates the remote operation device 112 to start work.
 作業を開始するには、自律走行作業車両1の開始条件が整うことが条件となっている。
 作業開始条件は、自律走行作業車両1の制御装置30に記憶され、随伴走行作業車両100に備えられる遠隔操作装置112の作業開始手段をオンすると、制御装置30は所定の作業開始条件を満たしているか判断する。作業開始条件については後述する。
In order to start work, it is a condition that the start condition of the autonomous traveling work vehicle 1 is satisfied.
The work start condition is stored in the control device 30 of the autonomous traveling work vehicle 1, and when the work starting means of the remote operation device 112 provided in the accompanying traveling work vehicle 100 is turned on, the control device 30 satisfies the predetermined work start condition. Judgment is made. The work start condition will be described later.
 前記自律走行作業車両1に随伴して走行しながら作業を行う随伴走行作業車両100について説明する。
 随伴自律走行作業車両100は、オペレータが搭乗して手動運転を行う。オペレータは設定経路(走行経路R)を走行する無人作業車となる自律走行作業車両1の後方または側方を随伴して走行するように運転する。よって、オペレータは随伴自律走行作業車両100を運転しながら自律走行作業車両1を監視して作業を行い、必要に応じて遠隔操作装置112を操作して自律走行作業車両1を操作する。
The accompanying traveling work vehicle 100 that performs work while traveling along with the autonomous traveling working vehicle 1 will be described.
The accompanying autonomous traveling work vehicle 100 is operated manually by an operator. The operator operates so as to travel along the rear or side of the autonomous traveling work vehicle 1 that is an unmanned working vehicle traveling on the set route (traveling route R). Therefore, the operator monitors and operates the autonomous traveling work vehicle 1 while driving the accompanying autonomous traveling work vehicle 100, and operates the autonomous traveling work vehicle 1 by operating the remote control device 112 as necessary.
 前記遠隔操作装置112による自律走行作業車両1を遠隔操作するために、制御装置30には操舵アクチュエータ40、ブレーキアクチュエータ、アクセルアクチュエータ、変速手段44、PTO入切手段45、クラッチアクチュエータ、昇降アクチュエータ25等と接続されている。 In order to remotely operate the autonomous traveling work vehicle 1 by the remote operation device 112, the control device 30 includes a steering actuator 40, a brake actuator, an accelerator actuator, a speed change means 44, a PTO on / off means 45, a clutch actuator, an elevating actuator 25, and the like. Connected with.
 また、自律走行作業車両1の走行状態や作動状態を監視するために、自律走行作業車両1の走行速度を速度センサ27で検知し、回転数センサ61でエンジン回転数を検知し、検知した値をそれぞれ表示手段49及び遠隔操作装置112のディスプレイ113に表示する。また、カメラ42で撮影した映像が遠隔操作装置112に送信されてディスプレイ113に表示され、機体前方や作業機や圃場の状態を見ることを可能としている。 Further, in order to monitor the traveling state and the operating state of the autonomous traveling work vehicle 1, the traveling speed of the autonomous traveling working vehicle 1 is detected by the speed sensor 27, the engine speed is detected by the rotational speed sensor 61, and the detected value. Are displayed on the display means 49 and the display 113 of the remote control device 112, respectively. In addition, an image captured by the camera 42 is transmitted to the remote operation device 112 and displayed on the display 113, so that it is possible to see the state of the front of the machine body, the work machine, and the farm field.
 また、遠隔操作装置112の記憶装置には作業データが記憶される。作業データとしては、例えば、圃場の位置や作業日を記憶したり、その圃場に設定した走行経路Rにおける作業済位置を記憶したり、施肥作業では肥料の種類や単位面積当てりの施肥量を記憶したりする。 Also, work data is stored in the storage device of the remote operation device 112. As the work data, for example, the position of the field and the work day are stored, the work completed position in the travel route R set in the field is stored, and in the fertilization work, the type of fertilizer and the amount of fertilizer applied per unit area are set. Or remember.
 以上のように、圃場Hの一端から他端にかけて自律走行作業車両1を走行させて圃場面作業を行うために、衛星測位システムを利用して自律走行作業車両1の位置を把握して、自律走行作業車両を自動的に走行して作業させる走行経路Rの設定方法であって、機体の前後長を入力する行程と、作業機の幅を入力する行程と、作業機と作業機の幅方向のオーバーラップ量を入力する行程と、圃場外周の隅部と変曲点に作業車両を順次位置させて、各位置で衛星測位システムを利用して機体の位置を測位する行程と、圃場内での作業範囲を設定する行程と、出入口Eを設定する行程と、基準走行開始方向を設定する行程と、作業範囲の両端に枕地HBを設定する行程と、圃場内での走行経路Rを設定する行程とが行われるので、作業車両の諸元(スペック)より容易に得られる長さを入力し、圃場内を移動させて測地でき、走行経路Rが容易に得られる。 As described above, the autonomous traveling work vehicle 1 is traveled from one end to the other end of the field H to perform the field scene work, and the position of the autonomous traveling work vehicle 1 is grasped by using the satellite positioning system. A method for setting a travel route R for automatically traveling and working a traveling work vehicle, a process for inputting a longitudinal length of the machine body, a process for inputting a width of the work machine, and a width direction of the work machine and the work machine. The process of inputting the overlap amount of the vehicle, the process of sequentially positioning the work vehicle at the corners and inflection points on the outer periphery of the field, and using the satellite positioning system at each position, The process for setting the work range, the process for setting the entrance / exit E, the process for setting the reference travel start direction, the process for setting the headland HB at both ends of the work range, and the travel route R in the field are set. Specifications of the work vehicle. Enter the easily obtained length than specification), is moved through the field can geodetic, the travel route R can be easily obtained.
 また、前記枕地HBの幅は作業機幅の整数倍とするので、枕地設定を容易に行える。また、前記枕地HBの幅は最小旋回半径L3より大きく設定するので、枕地で切り返すことなく旋回でき作業効率を低下させることがない。 Moreover, since the width of the headland HB is an integer multiple of the working machine width, the headland can be easily set. Further, since the width of the headland HB is set to be larger than the minimum turning radius L3, the headland can be turned without turning back at the headland and the work efficiency is not lowered.
 こうして、作業走行経路Rを作成した後、作業を開始する。制御装置30は次のような制御を行う。すなわち、図10に示すように、自律走行作業車両1と随伴自律走行作業車両100をそれぞれ圃場内の作業開始位置に配置し、オペレータは随伴走行作業車両100に乗車し、遠隔操作装置112をスタンバイ状態に操作する。このとき、随伴自律走行作業車両100の遠隔操作装置112と自律走行作業車両1の制御装置30が通信可能に接続されているか判断する(S1)。接続されていないと電源の確認や無線の状態等をチェックし、接続設定を行う(S2)。接続されていると、オペレータが作業開始の操作を行う。この作業開始手段の操作により制御装置30は、GPSからの信号により、作業車の現在位置を検出しディスプレイ113に現在位置と、作業開始位置と、作業進行方向等の位置情報を表示する(S3)。なお、現在位置と作業開始位置と作業進行方向と圃場形状等は切り替えないかぎり常時(言い換えれば、マップ表示のとき)ディスプレイ113に表示される。この現在位置が設定した作業開始位置から設定範囲内に位置しているか判断する(S4)。機体が作業開始位置から設定範囲内に位置していないと判断すると、自律走行の開始を許可せず、オペレータが自律走行作業車両1を運転して作業開始位置に移動する(S5)。設定範囲としては、例えば、作業開始から数メートル走行することで正規位置に容易に修正できる範囲や随伴走行作業車両100による作業に影響を与えない範囲とし、作業残しの範囲をできるだけ小さくする。なおこのとき、作業を行うように設定された圃場であるかも同時に判断できるので、作業する圃場でない場合も自律走行は開始されない。
 次に、自律走行作業車両1の最大占有領域Qが圃場外と重複していないか判断する(S6)。つまり、機体は圃場H内の設定範囲内に位置しても作業機(ロータリ耕耘装置24)の後端は圃場H外に位置しているときがあるので、この場合自律走行は開始しない。
Thus, after the work travel route R is created, the work is started. The control device 30 performs the following control. That is, as shown in FIG. 10, the autonomous traveling work vehicle 1 and the accompanying autonomous traveling work vehicle 100 are respectively arranged at the work start positions in the field, the operator gets on the accompanying traveling work vehicle 100, and the remote control device 112 is put on standby. Manipulate state. At this time, it is determined whether the remote control device 112 of the accompanying autonomous traveling work vehicle 100 and the control device 30 of the autonomous traveling work vehicle 1 are connected so as to be communicable (S1). If it is not connected, the power supply is confirmed, the wireless state is checked, and the connection is set (S2). When connected, the operator performs an operation to start work. By operating the work start means, the control device 30 detects the current position of the work vehicle based on a signal from the GPS, and displays position information such as the current position, the work start position, and the work progress direction on the display 113 (S3). ). Note that the current position, the work start position, the work progress direction, the field shape, and the like are always displayed on the display 113 (in other words, when the map is displayed) unless switched. It is determined whether the current position is within the set range from the set work start position (S4). If it is determined that the aircraft is not within the set range from the work start position, the start of autonomous travel is not permitted, and the operator drives the autonomous travel work vehicle 1 and moves to the work start position (S5). As the setting range, for example, a range that can be easily corrected to the normal position by traveling several meters from the start of the work or a range that does not affect the work performed by the accompanying traveling work vehicle 100, and the remaining work range is made as small as possible. At this time, since it is also possible to simultaneously determine whether the field is set to perform work, autonomous traveling is not started even when the field is not a work field.
Next, it is determined whether the maximum occupation area Q of the autonomous traveling work vehicle 1 overlaps with the outside of the farm field (S6). That is, even if the machine body is located within the set range in the field H, the rear end of the work machine (rotary tiller 24) may be located outside the field H. In this case, autonomous traveling does not start.
 自律走行作業車両1の最大占有領域Qが圃場内に位置していると、自律走行作業車両1の進行方向と設定された進行方向が設定範囲内に位置しているか判断し(S7)、設定範囲内に入っていないと自律走行の開始を許可せず、オペレータが自律走行作業車両1の進行方向を調整する(S5)。設定範囲内の進行方向は、例えば、設定進行方向の左右30度以内として、走行開始から数メートルで設定進行方向に修正できる範囲とする。 If the maximum occupation area Q of the autonomous traveling work vehicle 1 is located in the field, it is determined whether the traveling direction of the autonomous traveling work vehicle 1 and the set traveling direction are within the set range (S7). If it is not within the range, the start of autonomous traveling is not permitted, and the operator adjusts the traveling direction of the autonomous traveling work vehicle 1 (S5). The traveling direction within the set range is, for example, within 30 degrees to the left and right of the set traveling direction, and a range that can be corrected to the set traveling direction within a few meters from the start of travel.
 次に、自律走行作業車両1に異常がないか判断する(S8)。異常があるとどのような異常であるか表示して(S9)作業は開始せず、異常の修復を行う(S10)。異常として例えば、エンジンがエンストしたり、油温や水温が上昇したり、電気系統が断線したり短絡したりした場合等である。
 異常がない場合には、エンジン3が始動しているか判断し(S11)、始動していないと自律走行は開始されず、オペレータが自律走行作業車両1に乗り始動操作を行う(S12)。始動していると、自律走行及び作業が開始される(S13)。なお、作業車両が電動駆動の場合は、バッテリから電動モータに電力が供給可能な状態になっているかを判断する。
Next, it is determined whether there is any abnormality in the autonomous traveling work vehicle 1 (S8). If there is an abnormality, what kind of abnormality is displayed (S9), the operation is not started, and the abnormality is repaired (S10). Examples of abnormalities include a case where the engine has stalled, an oil temperature or a water temperature has increased, or an electric system has been disconnected or short-circuited.
If there is no abnormality, it is determined whether the engine 3 is started (S11). If it is not started, the autonomous running is not started, and the operator gets on the autonomous running work vehicle 1 and performs a starting operation (S12). If it is started, autonomous running and work are started (S13). When the work vehicle is electrically driven, it is determined whether power can be supplied from the battery to the electric motor.
 自律走行作業時においては、作業が終了したか判断する(S14)。作業が終了すると、自律走行作業車両1の走行が停止されて終了となる(S15)。終了ではないとき、作業が途中で中断されたか判断する(S16)。なお、中断条件は後述する。中断条件が発生しない場合は自律走行作業を続行し、作業を中断した場合は、その中断した位置が記憶装置30aに記憶される(S17)。中断時においては作業が再開できるか判断する(S18)、再開するとなると中断した時の位置が再開始位置として表示され(S19)、ステップ1に戻る。 In the autonomous running work, it is determined whether the work is finished (S14). When the work is finished, the traveling of the autonomous traveling work vehicle 1 is stopped and finished (S15). If it is not finished, it is determined whether the work is interrupted (S16). The interruption condition will be described later. When the interruption condition does not occur, the autonomous traveling work is continued, and when the work is interrupted, the interrupted position is stored in the storage device 30a (S17). At the time of interruption, it is determined whether the work can be resumed (S18). When the work is resumed, the position at the time of interruption is displayed as the restart position (S19), and the process returns to Step 1.
 以上のように、作業開始操作が行われて、自律走行作業車両1により作業を開始する場合、前記制御装置30は、自律走行作業車両1が作業開始位置より設定範囲以上離れた位置や圃場外に位置している場合では作業開始を許可しないように制御するので、作業開始位置での未作業域が大きくなることを防止し、設定範囲内の多少の位置ズレであれば設定走行経路Rへの復帰が迅速に行える。 As described above, when the operation start operation is performed and the operation is started by the autonomous traveling work vehicle 1, the control device 30 determines that the autonomous traveling work vehicle 1 is located at a position away from the operation start position by a set range or more or out of the field. Since the control is performed so that the work start is not permitted when the vehicle is located in the position, it is prevented that the unworked area at the work start position becomes large. Can be quickly restored.
 また、制御装置30は作業開始位置において、進行方向が設定範囲外に向いていると自律走行の開始を許可しないように制御するので、意図しない方向に走行したり、畦や他の障害物に当接したり、大きく曲がった作業跡となることがない。 In addition, since the control device 30 performs control so that the start of autonomous driving is not permitted when the traveling direction is out of the set range at the work start position, the control device 30 may travel in an unintended direction, There will be no contact marks or work marks that are greatly bent.
 また、制御装置30は自律走行作業車両に異常が発生した場合は自律走行の開始を許可しないように制御するので、異常があるまま作業を開始して、機体やエンジンや作業機等を傷めることがない。また、制御装置30は随伴走行作業車両100の遠隔操作装置112と接続されていない場合は自律走行を許可しないように制御するので、遠隔操作装置112による操作が確実に行え、自律走行作業車両1の状態も容易に認識できる。
 また、制御装置30は作業が中断されると、中断位置を記憶し、再度作業を開始するときはその中断位置を作業再開始位置とし、表示手段49やディスプレイ113にその位置を表示するので、中断後の作業開始の位置合わせが容易に行え、作業が途切れることを防止できる。
In addition, since the control device 30 performs control so that the start of autonomous traveling is not permitted when an abnormality occurs in the autonomous traveling work vehicle, the operation is started with the abnormality, and the machine body, the engine, the work machine, or the like is damaged. There is no. Further, since the control device 30 performs control so that autonomous traveling is not permitted when not connected to the remote operation device 112 of the accompanying traveling work vehicle 100, the operation by the remote operation device 112 can be performed reliably, and the autonomous traveling work vehicle 1 Can be easily recognized.
Further, when the operation is interrupted, the control device 30 stores the interruption position, and when starting the operation again, the interruption position is set as the operation restart position, and the position is displayed on the display means 49 and the display 113. Positioning at the start of work after interruption can be performed easily, and work can be prevented from being interrupted.
 そして、自律走行作業車両1と随伴自律走行作業車両100とにより作業が行われている途中において、次のような条件となると自律走行を停止して作業を中断させる。
 つまり、図11に示すように、自律走行作業時において、制御装置30はGPS信号を受信しているか判断する(S20)。制御装置30は自律走行作業車両1の現在位置を検知するために、複数のGPS衛星37・37・・・からのGPS信号を受信しているが、GPS信号を受信できなくなると、現在位置が把握できなくなり、設定した経路を走行できなくなる。よって、GPS信号が途絶えると自律走行を停止させ(S21)、中断状態となる。この停止時に表示装置となる遠隔操作装置112のディスプレイ113及び随伴走行作業車両100の表示手段49には走行を停止した原因を表示して警報を発する(S22)。
Then, while the work is being performed by the autonomous traveling work vehicle 1 and the accompanying autonomous traveling work vehicle 100, the autonomous traveling is stopped and the work is suspended when the following conditions are met.
That is, as shown in FIG. 11, during the autonomous traveling work, the control device 30 determines whether a GPS signal is received (S20). The control device 30 receives GPS signals from a plurality of GPS satellites 37, 37,... To detect the current position of the autonomous traveling work vehicle 1, but if the GPS signal cannot be received, the current position is determined. It becomes impossible to grasp and it becomes impossible to travel on the set route. Therefore, when the GPS signal is interrupted, the autonomous traveling is stopped (S21), and the suspended state is entered. The cause of the stop of the traveling is displayed on the display 113 of the remote operation device 112 which becomes a display device at the time of stop and the display means 49 of the accompanying traveling work vehicle 100, and an alarm is issued (S22).
 また、GPSにより検知した実位置と設定した走行経路Rとを比較し(S23)、実位置が走行経路Rから設定した距離以上逸脱すると、自律走行を停止させる(S21)。
 また、作業中にステアリングハンドル4の操舵方向を検知する操向センサ20の出力値が正常の範囲内か判断する(S24)。例えば、断線やショート等の原因により異常な値を検出した場合急旋回してしまうので、異常な値でないかを検出し、異常値であると走行を停止させる(S21)。
Further, the actual position detected by the GPS is compared with the set travel route R (S23), and when the actual position deviates from the travel route R by more than the set distance, the autonomous traveling is stopped (S21).
Further, it is determined whether the output value of the steering sensor 20 for detecting the steering direction of the steering handle 4 during the work is within a normal range (S24). For example, if an abnormal value is detected due to a cause such as a disconnection or a short circuit, the vehicle turns sharply. Therefore, it is detected whether the value is an abnormal value, and if it is an abnormal value, traveling is stopped (S21).
 また、姿勢を検知するジャイロセンサ31と方位を検知する方位センサ32の出力値が正常の範囲内か判断する(S25)。異常値であると走行を停止させる(S21)。 Also, it is determined whether the output values of the gyro sensor 31 for detecting the posture and the direction sensor 32 for detecting the azimuth are within a normal range (S25). If it is an abnormal value, the traveling is stopped (S21).
 また、燃料残量が設定量以下になったか判断する(S26)。燃料残量が設定量以下になると走行を停止する(S21)。但し、設定値は任意に設定できるようにしている。こうして、作業途中で燃料補給をする必要がなく、作業途中で燃料がなくなることによって動けなくなることを防止し、エンジンを傷めることもない。
 上記中断が発生しない場合は自律走行が続行される(S27)。走行を停止した場合においては(S21)、中断の原因を表示して警報を発すると(S22)、オペレータは随伴走行作業車両100の作業を停止して、中断の原因を解消する作業を行い、中断が解消する(S28)と、自律走行を再開させる(S27)。
Further, it is determined whether the remaining fuel amount is equal to or less than the set amount (S26). When the remaining amount of fuel falls below the set amount, the traveling is stopped (S21). However, the set value can be set arbitrarily. Thus, it is not necessary to refuel in the middle of the work, preventing the vehicle from moving due to the lack of fuel during the work, and not damaging the engine.
If the interruption does not occur, the autonomous running is continued (S27). When traveling is stopped (S21), the cause of the interruption is displayed and an alarm is issued (S22), the operator stops the operation of the accompanying traveling work vehicle 100 and performs the work to eliminate the cause of the interruption, When the interruption is resolved (S28), the autonomous running is resumed (S27).
 前記走行を停止させる手段は、油圧式無段変速装置を用いている場合には、変速手段44を中立として走行を停止する。つまり、油圧式無段変速装置(HST)を用いた変速装置の場合には、ソレノイドやモータで構成した変速手段を作動させて可変容量油圧ポンプの可動斜板を中立位置に移動させるのである。こうして、傾斜地での作業において走行を停止した場合でも傾斜に沿って下りないようにしている。 When the hydraulic continuously variable transmission is used, the means for stopping the traveling stops traveling with the transmission means 44 being neutral. That is, in the case of a transmission using a hydraulic continuously variable transmission (HST), a transmission means constituted by a solenoid or a motor is operated to move the movable swash plate of the variable displacement hydraulic pump to a neutral position. Thus, even when the traveling is stopped in the work on the slope, it is prevented from descending along the slope.
 また、前記走行を停止させる手段は、歯車摺動式変速装置やパワークラッチ式変速装置やベルト式無段変速装置等を用いる変速装置では、エンジン3の出力軸とミッションケースの入力軸との間に配置したメインクラッチをオフとして走行を停止しブレーキを作動させる。こうして、傾斜地で走行を停止した場合でも傾斜に沿って下りないようにしている。 Further, in the transmission using a gear sliding transmission, a power clutch transmission, a belt-type continuously variable transmission, or the like, the means for stopping the traveling is between the output shaft of the engine 3 and the input shaft of the transmission case. The main clutch placed in the position is turned off to stop traveling and activate the brake. In this way, even when traveling is stopped on an inclined ground, it is prevented from descending along the slope.
 前記走行を停止したとき、PTO入切手段45を作動させてPTOクラッチをオフとして作業機の作動を停止させるとともに、エンジン3の回転数をアイドル回転まで低下させる。こうして、不意に急な動きが生じることがなく作業面を荒らすことを防止している。但し、走行停止時のエンジン回転数は任意に設定可能としている。 When the traveling is stopped, the PTO on / off means 45 is operated to turn off the PTO clutch to stop the operation of the work machine, and the engine 3 is rotated to the idle speed. In this way, it is possible to prevent the work surface from being roughened without suddenly moving. However, the engine speed when the vehicle is stopped can be set arbitrarily.
 また、自律走行作業車両1が作業中に負荷の増加等によりエンストが発生して停止した場合には、オペレータは作業を中止して自律走行作業車両1に搭乗する。そして、エンジンを再始動させて、負荷が上昇した原因を回避する操作を行う。例えば、作業機を上昇させたり変速位置を下げて低速走行させたりする。そして、高負荷域を回避して通過させると通常の作業を再開させる。 In addition, when the autonomous traveling work vehicle 1 stops due to an engine stall due to an increase in load or the like during the work, the operator stops the work and gets on the autonomous traveling work vehicle 1. Then, the engine is restarted, and an operation for avoiding the cause of the load increase is performed. For example, the work implement is raised or the shift position is lowered to run at a low speed. Then, normal work is resumed when the high load region is avoided.
 上記のように前記制御装置30は、GPS衛星37からの信号が途絶えると、自律走行を停止するように制御するので、目標走行経路Rから大きく外れる前に停止して、作業精度が悪化することを防止できる。 As described above, when the signal from the GPS satellite 37 is interrupted, the control device 30 performs control so as to stop the autonomous traveling, so that the control device 30 stops before greatly deviating from the target traveling route R, and the work accuracy deteriorates. Can be prevented.
 また、制御装置30は目標走行経路Rに対して実位置が設定範囲以上逸脱すると走行を停止するように制御するので、目標走行経路Rから大きく外れる前に停止して、作業精度が悪化することを防止でき、深くはまり込んだり障害物に乗り上げたりして身動きができなくなることも防止できる。 Further, since the control device 30 performs control so as to stop traveling when the actual position deviates from the set travel range with respect to the target travel route R, the control device 30 stops before greatly deviating from the target travel route R, thereby deteriorating work accuracy. It is possible to prevent people from getting stuck due to getting stuck deeply or getting on obstacles.
 また、制御装置30は操向センサ20からの検出値が異常な値となると走行を停止するように制御するので、操向センサ20の検出値が異常のまま操舵アクチュエータ40を作動させて、意図せぬ方向へ進行することを防止できる。また、制御装置30は姿勢・方位を検知意するジャイロセンサ31と方位センサ32の検出値と目標値との差が設定値以上となると走行を停止するように制御するので、意図しない方向に進行することを防止できる。 In addition, since the control device 30 performs control so as to stop traveling when the detected value from the steering sensor 20 becomes an abnormal value, the steering actuator 40 is operated while the detected value of the steering sensor 20 is abnormal. It is possible to prevent traveling in an undirected direction. Further, since the control device 30 controls to stop traveling when the difference between the detected value and the target value of the gyro sensor 31 and the azimuth sensor 32 that detect the posture / azimuth exceeds a set value, the control device 30 proceeds in an unintended direction. Can be prevented.
 また、制御装置30は、前記走行を停止すると、その原因を随伴走行作業車両100に備える遠隔操作装置112に送信し、遠隔操作装置112のディスプレイ113に表示させるので、オペレータは走行停止の原因を容易に認識でき、停止の原因を解消するための対応を迅速にできる。また、故障である場合には、メンテナンス作業車の処置も迅速に簡単にできる。 In addition, when the traveling is stopped, the control device 30 transmits the cause to the remote operation device 112 provided in the accompanying traveling work vehicle 100 and displays the cause on the display 113 of the remote operation device 112, so that the operator indicates the cause of the travel stop. It can be easily recognized and can quickly respond to eliminate the cause of the stoppage. Further, in the case of failure, the maintenance work vehicle can be quickly and easily handled.
 本発明は、遠隔操作可能な建設機械や農用作業車等を遠隔操作する遠隔操作装置に利用可能である。 The present invention can be used for a remote operation device for remotely operating a construction machine or an agricultural work vehicle that can be remotely operated.
 1   自律走行作業車両
 30  制御装置
 40  操舵アクチュエータ
 44  変速手段
 60  エンジンコントローラ
 100 随伴走行作業車両
 112 遠隔操作装置
 
DESCRIPTION OF SYMBOLS 1 Autonomous traveling work vehicle 30 Control apparatus 40 Steering actuator 44 Shift means 60 Engine controller 100 Accompanied traveling work vehicle 112 Remote operation apparatus

Claims (14)

  1.  衛星測位システムを利用して機体の位置を測位する位置算出手段と、操舵装置を作動させる操舵アクチュエータと、エンジン回転制御手段と、変速手段と、これらを制御する制御装置とを備えた自律走行作業車両を、前記制御装置に記憶させた設定走行経路に沿って自律走行させるとともに、該自律走行作業車両に随伴走行しながら作業を行う随伴走行作業車両に搭載する遠隔操作装置により自律走行作業車両を操作可能とする併走作業システムであって、前記制御装置は、自律走行作業車両が作業開始位置より設定範囲以上離れた位置では作業開始を許可しないように制御することを特徴とする併走作業システムの制御装置。 Autonomous traveling work comprising position calculating means for positioning the position of the aircraft using a satellite positioning system, a steering actuator for operating the steering device, engine rotation control means, speed change means, and a control device for controlling these. The vehicle travels autonomously along the set travel route stored in the control device, and the autonomous traveling work vehicle is mounted by a remote operation device mounted on the accompanying traveling work vehicle that performs work while traveling along with the autonomous traveling working vehicle. A parallel running work system capable of being operated, wherein the control device controls the autonomous running work vehicle so as not to allow the work start at a position separated from the work start position by a set range or more. Control device.
  2.  前記制御装置は作業開始位置において、自律走行作業車両と作業機が走行時に占める最大占有領域が作業を行う圃場外と重複していると自律走行の開始を許可しないように制御することを特徴とする請求項1に記載の併走作業システムの制御装置。 The control device performs control so that the start of autonomous traveling is not permitted when the maximum occupied area occupied by the autonomous traveling work vehicle and the work implement during traveling overlaps with the outside of the field where the work is performed at the work start position. The control apparatus for a parallel operation system according to claim 1.
  3.  前記制御装置は作業開始位置において、進行方向が設定範囲外に向いていると自律走行の開始を許可しないように制御することを特徴とする請求項1または請求項2に記載の併走作業システムの制御装置。 3. The parallel operation system according to claim 1, wherein the control device performs control so that the start of autonomous traveling is not permitted when the traveling direction is out of a set range at a work start position. 4. Control device.
  4.  前記制御装置は自律走行作業車両に異常が発生した場合は自律走行の開始を許可しないように制御することを特徴とする請求項1に記載の併走作業システムの制御装置。 The control device for a parallel running work system according to claim 1, wherein the control device performs control so as not to permit the start of autonomous running when an abnormality occurs in the autonomous running work vehicle.
  5.  前記制御装置は随伴走行作業車両の遠隔操作装置と接続されていない場合は自律走行を許可しないように制御することを特徴とする請求項1に記載の併走作業システムの制御装置。 The control device for a parallel running work system according to claim 1, wherein the control device controls the autonomous running so as not to be permitted when it is not connected to the remote operation device of the accompanying running work vehicle.
  6.  前記制御装置は作業が中断されると、中断位置を記憶し、再度作業を開始するときはその中断位置を作業再開始位置とし、表示装置にその位置を表示することを特徴とする請求項1に記載の併走作業システムの制御装置。 2. The control device according to claim 1, wherein when the work is interrupted, the interrupt position is stored, and when the work is started again, the interrupt position is set as the work restart position, and the position is displayed on the display device. The control device of the parallel running system described in 1.
  7.  前記制御装置は、衛星からの信号が途絶えると、自律走行を停止するように制御することを特徴とする請求項1に記載の併走作業システムの制御装置。 The control device for a parallel running work system according to claim 1, wherein the control device controls the autonomous running to stop when the signal from the satellite is interrupted.
  8.  前記制御装置は目標走行経路に対して実位置が設定範囲以上逸脱すると走行を停止するように制御することを特徴とする請求項1に記載の併走作業システムの制御装置。 The control device for a parallel running work system according to claim 1, wherein the control device performs control so as to stop traveling when an actual position deviates from a target range with respect to a target travel route.
  9.  前記制御装置は舵角方向を検出する操向センサからの検出値が異常な値となると走行を停止するように制御することを特徴とする請求項1に記載の併走作業システムの制御装置。 The control device for a parallel running work system according to claim 1, wherein the control device performs control so as to stop traveling when a detected value from a steering sensor for detecting a rudder angle direction becomes an abnormal value.
  10.  前記制御装置は姿勢・方位センサの検出値と目標値との差が設定値以上となると走行を停止するように制御することを特徴とする請求項1に記載の併走作業システムの制御装置。 The control device for a parallel running work system according to claim 1, wherein the control device controls the running to stop when the difference between the detected value of the posture / orientation sensor and the target value exceeds a set value.
  11.  前記制御装置は燃料タンクに設けたレベルセンサと接続し、燃料残量が設定量以下になると走行を停止するように制御することを特徴とする請求項1に記載の併走作業システムの制御装置。 The control device for a parallel running work system according to claim 1, wherein the control device is connected to a level sensor provided in a fuel tank, and controls to stop traveling when the remaining amount of fuel becomes a set amount or less.
  12.  前記制御装置は、前記走行を停止すると、その原因を随伴走行作業車両に備える遠隔操作装置に送信し、遠隔操作装置のディスプレイに表示させることを特徴とする請求項7乃至請求項11の何れか1項に記載の併走作業システムの制御装置。 12. The control device according to claim 7, wherein when the traveling is stopped, the cause is transmitted to a remote operation device provided in the accompanying traveling work vehicle and displayed on a display of the remote operation device. The control device for the parallel operation system according to Item 1.
  13.  前記走行の停止は、油圧式無段変速装置の変速手段を中立として走行を停止することを特徴とする請求項7乃至請求項11の何れか1項に記載の併走作業システムの制御装置。 12. The control device for a parallel running work system according to any one of claims 7 to 11, wherein the traveling is stopped by neutralizing a speed change means of a hydraulic continuously variable transmission.
  14.  前記走行の停止は、歯車摺動式変速装置またはパワークラッチ式変速装置またはベルト式無段変速装置の、エンジンの出力軸とミッションケースの入力軸との間に配置したメインクラッチをオフとして走行を停止しブレーキを作動させることを特徴とする請求項7乃至請求項11の何れか1項に記載の併走作業システムの制御装置。
     
    The travel stop is performed by turning off the main clutch disposed between the output shaft of the engine and the input shaft of the transmission case of the gear sliding transmission, power clutch transmission or belt type continuously variable transmission. The control device for a parallel running work system according to any one of claims 7 to 11, wherein the control device stops and activates a brake.
PCT/JP2014/077906 2014-02-06 2014-10-21 Control device for parallel travel work system WO2015118731A1 (en)

Priority Applications (17)

Application Number Priority Date Filing Date Title
JP2015561071A JPWO2015119265A1 (en) 2014-02-06 2015-02-06 Travel control system
JP2015561072A JP6253678B2 (en) 2014-02-06 2015-02-06 Parallel work system
KR1020167024514A KR102107556B1 (en) 2014-02-06 2015-02-06 Parallel travel work system
KR1020217013732A KR102340161B1 (en) 2014-02-06 2015-02-06 Parallel travel work system
PCT/JP2015/053444 WO2015119266A1 (en) 2014-02-06 2015-02-06 Parallel travel work system
PCT/JP2015/053442 WO2015119265A1 (en) 2014-02-06 2015-02-06 Travel control system
CN201580007599.4A CN105980949B (en) 2014-02-06 2015-02-06 Parallel operation system
KR1020227041929A KR20220164087A (en) 2014-02-06 2015-02-06 Parallel travel work system
KR1020207012364A KR102252318B1 (en) 2014-02-06 2015-02-06 Parallel travel work system
KR1020217039475A KR102475681B1 (en) 2014-02-06 2015-02-06 Parallel travel work system
CN201911196165.XA CN110703785A (en) 2014-02-06 2015-02-06 Autonomous travel operation system
EP15746411.6A EP3104244B1 (en) 2014-02-06 2015-02-06 Parallel travel work system
US15/115,853 US10191492B2 (en) 2014-02-06 2015-02-06 Parallel travel work system
JP2017228469A JP6485716B2 (en) 2014-02-06 2017-11-28 Parallel work system
JP2019020169A JP6999221B2 (en) 2014-02-06 2019-02-06 Automated work system
JP2021205761A JP7354217B2 (en) 2014-02-06 2021-12-20 automatic work system
JP2023151983A JP2023168382A (en) 2014-02-06 2023-09-20 Work vehicle support system and work vehicle support method

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2014021757 2014-02-06
JP2014-021757 2014-02-06
JP2014021759 2014-02-06
JP2014-021759 2014-02-06

Publications (1)

Publication Number Publication Date
WO2015118731A1 true WO2015118731A1 (en) 2015-08-13

Family

ID=53777550

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/077906 WO2015118731A1 (en) 2014-02-06 2014-10-21 Control device for parallel travel work system

Country Status (1)

Country Link
WO (1) WO2015118731A1 (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017159801A1 (en) * 2016-03-18 2017-09-21 ヤンマー株式会社 Autonomous traveling system
JP2017173969A (en) * 2016-03-22 2017-09-28 ヤンマー株式会社 Autonomous travel system
JP2018041358A (en) * 2016-09-09 2018-03-15 ヤンマー株式会社 Autonomous travelling system
WO2018101351A1 (en) * 2016-12-02 2018-06-07 株式会社クボタ Travel route management system and travel route determination device
JP2018092620A (en) * 2016-12-02 2018-06-14 株式会社クボタ Traveling route determination device
WO2018116769A1 (en) * 2016-12-19 2018-06-28 株式会社クボタ Traveling path management system
JP2018101410A (en) * 2016-12-19 2018-06-28 株式会社クボタ Travel route management system
JP2018099041A (en) * 2016-12-19 2018-06-28 株式会社クボタ Travel route management system
JP2018113943A (en) * 2017-01-20 2018-07-26 株式会社クボタ Travel control device
KR20190091262A (en) * 2016-12-02 2019-08-05 가부시끼 가이샤 구보다 Driving route management system and driving route determining device
CN110383191A (en) * 2017-03-09 2019-10-25 洋马株式会社 Path generating system
JP2020018236A (en) * 2018-08-01 2020-02-06 株式会社クボタ Harvester
JP2020035485A (en) * 2019-11-21 2020-03-05 ヤンマー株式会社 Autonomous travel system
JP2020156525A (en) * 2020-07-06 2020-10-01 株式会社クボタ Travel control device
KR20210016086A (en) * 2016-05-10 2021-02-10 얀마 파워 테크놀로지 가부시키가이샤 Autonomous travel route generating system
JP2022063327A (en) * 2020-04-03 2022-04-21 ヤンマーパワーテクノロジー株式会社 Autonomous travel system
US11726485B2 (en) 2016-09-05 2023-08-15 Kubota Corporation Autonomous work vehicle travel system, travel route managing device, travel route generating device, and travel route determining device

Citations (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04316415A (en) * 1991-04-17 1992-11-06 Ishikawajima Shibaura Mach Co Ltd Controlling apparatus for automatic traveling working vehicle
JPH09128044A (en) * 1995-11-02 1997-05-16 Hitachi Ltd Semi-automatic control system for traveling work machine
JPH09146635A (en) * 1995-11-27 1997-06-06 Nosakubutsu Seiiku Kanri Syst Kenkyusho:Kk Device for monitoring operation of working vehicle
JPH1066403A (en) * 1996-08-26 1998-03-10 Seibutsukei Tokutei Sangyo Gijutsu Kenkyu Suishin Kiko Operation support-equipment for paddy field-working vehicle
JPH1066406A (en) * 1996-08-28 1998-03-10 Seibutsukei Tokutei Sangyo Gijutsu Kenkyu Suishin Kiko Unmanned working of rice paddy working vehicle
JPH1066405A (en) * 1996-08-28 1998-03-10 Seibutsukei Tokutei Sangyo Gijutsu Kenkyu Suishin Kiko Unmanned working by unmanned operation of working vehicle
JPH11266608A (en) * 1998-03-23 1999-10-05 Bio Oriented Technol Res Advancement Inst Unmanned working method for field working vehicle
JP2000014208A (en) * 1998-07-03 2000-01-18 Bio Oriented Technol Res Advancement Inst Operation support device of field work vehicle
JP2000023531A (en) * 1998-07-08 2000-01-25 Fuji Heavy Ind Ltd Detector for biting in of foreign material and autonomous mobile car
JP2000029522A (en) * 1998-07-10 2000-01-28 Fuji Heavy Ind Ltd Autonomous traveling method and autonomously traveling vehicle
JP2000186349A (en) * 1998-12-22 2000-07-04 Hitachi Constr Mach Co Ltd Automatically operating construction machine
JP2002034308A (en) * 2000-07-24 2002-02-05 Iseki & Co Ltd Work vehicle control system
JP2003061882A (en) * 2001-08-28 2003-03-04 Matsushita Electric Ind Co Ltd Self-propelled vacuum cleaner
JP2004008053A (en) * 2002-06-05 2004-01-15 Yanmar Agricult Equip Co Ltd Work vehicle for agriculture
JP2005215742A (en) * 2004-01-27 2005-08-11 Yanmar Co Ltd Agricultural work car
JP2006018675A (en) * 2004-07-02 2006-01-19 Kubota Corp Automation structure for mobile work machine
JP2006341356A (en) * 2005-06-10 2006-12-21 Fanuc Ltd Robot controller
JP2007208509A (en) * 2006-01-31 2007-08-16 Iseki & Co Ltd Remote operation system of working vehicle
US20070233348A1 (en) * 2006-03-30 2007-10-04 Norbert Diekhans Method for controlling agricultural machine systems
JP2008131880A (en) * 2006-11-28 2008-06-12 Yanmar Co Ltd Agricultural working vehicle
JP2008250995A (en) * 2007-03-06 2008-10-16 Yamaha Motor Co Ltd Vehicle
JP2014178759A (en) * 2013-03-13 2014-09-25 Kubota Corp Work vehicle cooperation system

Patent Citations (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04316415A (en) * 1991-04-17 1992-11-06 Ishikawajima Shibaura Mach Co Ltd Controlling apparatus for automatic traveling working vehicle
JPH09128044A (en) * 1995-11-02 1997-05-16 Hitachi Ltd Semi-automatic control system for traveling work machine
JPH09146635A (en) * 1995-11-27 1997-06-06 Nosakubutsu Seiiku Kanri Syst Kenkyusho:Kk Device for monitoring operation of working vehicle
JPH1066403A (en) * 1996-08-26 1998-03-10 Seibutsukei Tokutei Sangyo Gijutsu Kenkyu Suishin Kiko Operation support-equipment for paddy field-working vehicle
JPH1066406A (en) * 1996-08-28 1998-03-10 Seibutsukei Tokutei Sangyo Gijutsu Kenkyu Suishin Kiko Unmanned working of rice paddy working vehicle
JPH1066405A (en) * 1996-08-28 1998-03-10 Seibutsukei Tokutei Sangyo Gijutsu Kenkyu Suishin Kiko Unmanned working by unmanned operation of working vehicle
JPH11266608A (en) * 1998-03-23 1999-10-05 Bio Oriented Technol Res Advancement Inst Unmanned working method for field working vehicle
JP2000014208A (en) * 1998-07-03 2000-01-18 Bio Oriented Technol Res Advancement Inst Operation support device of field work vehicle
JP2000023531A (en) * 1998-07-08 2000-01-25 Fuji Heavy Ind Ltd Detector for biting in of foreign material and autonomous mobile car
JP2000029522A (en) * 1998-07-10 2000-01-28 Fuji Heavy Ind Ltd Autonomous traveling method and autonomously traveling vehicle
JP2000186349A (en) * 1998-12-22 2000-07-04 Hitachi Constr Mach Co Ltd Automatically operating construction machine
JP2002034308A (en) * 2000-07-24 2002-02-05 Iseki & Co Ltd Work vehicle control system
JP2003061882A (en) * 2001-08-28 2003-03-04 Matsushita Electric Ind Co Ltd Self-propelled vacuum cleaner
JP2004008053A (en) * 2002-06-05 2004-01-15 Yanmar Agricult Equip Co Ltd Work vehicle for agriculture
JP2005215742A (en) * 2004-01-27 2005-08-11 Yanmar Co Ltd Agricultural work car
JP2006018675A (en) * 2004-07-02 2006-01-19 Kubota Corp Automation structure for mobile work machine
JP2006341356A (en) * 2005-06-10 2006-12-21 Fanuc Ltd Robot controller
JP2007208509A (en) * 2006-01-31 2007-08-16 Iseki & Co Ltd Remote operation system of working vehicle
US20070233348A1 (en) * 2006-03-30 2007-10-04 Norbert Diekhans Method for controlling agricultural machine systems
JP2008131880A (en) * 2006-11-28 2008-06-12 Yanmar Co Ltd Agricultural working vehicle
JP2008250995A (en) * 2007-03-06 2008-10-16 Yamaha Motor Co Ltd Vehicle
JP2014178759A (en) * 2013-03-13 2014-09-25 Kubota Corp Work vehicle cooperation system

Cited By (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017159801A1 (en) * 2016-03-18 2017-09-21 ヤンマー株式会社 Autonomous traveling system
JP2017173969A (en) * 2016-03-22 2017-09-28 ヤンマー株式会社 Autonomous travel system
KR102283928B1 (en) 2016-05-10 2021-07-29 얀마 파워 테크놀로지 가부시키가이샤 Autonomous travel route generating system
KR20210016086A (en) * 2016-05-10 2021-02-10 얀마 파워 테크놀로지 가부시키가이샤 Autonomous travel route generating system
US11726485B2 (en) 2016-09-05 2023-08-15 Kubota Corporation Autonomous work vehicle travel system, travel route managing device, travel route generating device, and travel route determining device
JP2018041358A (en) * 2016-09-09 2018-03-15 ヤンマー株式会社 Autonomous travelling system
KR20190091262A (en) * 2016-12-02 2019-08-05 가부시끼 가이샤 구보다 Driving route management system and driving route determining device
WO2018101351A1 (en) * 2016-12-02 2018-06-07 株式会社クボタ Travel route management system and travel route determination device
JP2018092620A (en) * 2016-12-02 2018-06-14 株式会社クボタ Traveling route determination device
US11320279B2 (en) 2016-12-02 2022-05-03 Kubota Corporation Travel route management system and travel route determination device
KR102586896B1 (en) 2016-12-02 2023-10-11 가부시끼 가이샤 구보다 Driving path management system and driving path decision device
WO2018116769A1 (en) * 2016-12-19 2018-06-28 株式会社クボタ Traveling path management system
CN109964189A (en) * 2016-12-19 2019-07-02 株式会社久保田 Driving path management system
JP2018099041A (en) * 2016-12-19 2018-06-28 株式会社クボタ Travel route management system
JP2018101410A (en) * 2016-12-19 2018-06-28 株式会社クボタ Travel route management system
CN108334067A (en) * 2017-01-20 2018-07-27 株式会社久保田 Travel controlling system
JP2018113943A (en) * 2017-01-20 2018-07-26 株式会社クボタ Travel control device
CN108334067B (en) * 2017-01-20 2022-07-19 株式会社久保田 Travel control device
CN110383191A (en) * 2017-03-09 2019-10-25 洋马株式会社 Path generating system
CN110383191B (en) * 2017-03-09 2023-04-18 洋马动力科技有限公司 Path generation system
JP2020018236A (en) * 2018-08-01 2020-02-06 株式会社クボタ Harvester
JP7357444B2 (en) 2018-08-01 2023-10-06 株式会社クボタ harvester
JP2020035485A (en) * 2019-11-21 2020-03-05 ヤンマー株式会社 Autonomous travel system
JP7058635B2 (en) 2019-11-21 2022-04-22 ヤンマーパワーテクノロジー株式会社 Autonomous driving system
JP7332732B2 (en) 2020-04-03 2023-08-23 ヤンマーパワーテクノロジー株式会社 Autonomous driving system
JP2022063327A (en) * 2020-04-03 2022-04-21 ヤンマーパワーテクノロジー株式会社 Autonomous travel system
JP2022128488A (en) * 2020-07-06 2022-09-01 株式会社クボタ Travel control apparatus
JP7098683B2 (en) 2020-07-06 2022-07-11 株式会社クボタ Control device
JP7345605B2 (en) 2020-07-06 2023-09-15 株式会社クボタ Travel control device
JP2020156525A (en) * 2020-07-06 2020-10-01 株式会社クボタ Travel control device

Similar Documents

Publication Publication Date Title
JP6999221B2 (en) Automated work system
JP6448152B2 (en) Parallel work system
JP6170185B2 (en) Setting method of work vehicle travel route
WO2015118731A1 (en) Control device for parallel travel work system
WO2015119265A1 (en) Travel control system
WO2015118730A1 (en) Remote operation device for parallel travel work system
JP6368964B2 (en) Control device for work vehicle
JP6163460B2 (en) Accompanying work system
JP2016095659A (en) Plurality-of-vehicles accompanying travel work system
JP2016093126A (en) Operation terminal
JP2015222503A (en) Autonomous travel working vehicle

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14881429

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14881429

Country of ref document: EP

Kind code of ref document: A1