WO2015108342A1 - 루테리알의 형태특성을 이용한 암 예방제 또는 항암제의 스크리닝 방법 - Google Patents

루테리알의 형태특성을 이용한 암 예방제 또는 항암제의 스크리닝 방법 Download PDF

Info

Publication number
WO2015108342A1
WO2015108342A1 PCT/KR2015/000405 KR2015000405W WO2015108342A1 WO 2015108342 A1 WO2015108342 A1 WO 2015108342A1 KR 2015000405 W KR2015000405 W KR 2015000405W WO 2015108342 A1 WO2015108342 A1 WO 2015108342A1
Authority
WO
WIPO (PCT)
Prior art keywords
luterial
cancer
ruterial
candidate
microscope
Prior art date
Application number
PCT/KR2015/000405
Other languages
English (en)
French (fr)
Inventor
최원철
권영아
권성필
전현정
Original Assignee
최원철
권영아
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 최원철, 권영아 filed Critical 최원철
Priority to CN201580008493.6A priority Critical patent/CN106574927A/zh
Priority to EP15737047.9A priority patent/EP3096141A4/en
Priority to JP2016564930A priority patent/JP2017505448A/ja
Priority to US15/111,183 priority patent/US20160334389A1/en
Publication of WO2015108342A1 publication Critical patent/WO2015108342A1/ko
Priority to HK17105189.1A priority patent/HK1231558A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/5005Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells
    • G01N33/5008Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics
    • G01N33/502Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics for testing non-proliferative effects
    • G01N33/5026Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics for testing non-proliferative effects on cell morphology
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/5005Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells
    • G01N33/5008Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics
    • G01N33/5011Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics for testing antineoplastic activity
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/5005Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells
    • G01N33/5008Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics
    • G01N33/5044Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics involving specific cell types
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/5005Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells
    • G01N33/5008Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics
    • G01N33/5076Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics involving cell organelles, e.g. Golgi complex, endoplasmic reticulum
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/5097Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving plant cells
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/543Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals
    • G01N33/54313Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals the carrier being characterised by its particulate form
    • G01N33/5432Liposomes or microcapsules
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/574Immunoassay; Biospecific binding assay; Materials therefor for cancer
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2500/00Screening for compounds of potential therapeutic value
    • G01N2500/10Screening for compounds of potential therapeutic value involving cells

Definitions

  • the present invention relates to a method for screening an anticancer agent using the morphological characteristics of luterial, and in particular, to change the size, form or motility of the luterial variant compared to the control group before treatment with the ruterial variant or the candidate drug for cancer prevention or cancer.
  • the present invention relates to a method for screening an anticancer agent or a cancer preventive agent, comprising selecting a candidate substance that induces or inhibits changes in the size, form or motility of the ruterial as an anticancer agent or a cancer preventive agent.
  • Cancer is one of the biggest threats to human health, a disease that occurs when cells multiply through a series of mutations and in an unlimited, unregulated way.
  • Various biochemical mechanisms related to cancer have been identified, improved detection methods for cancer, mass screening and the development of therapeutics and treatments over the past decade have improved the prospects for diagnosis and treatment of cancer.
  • the basic treatment for cancer has not yet been proposed, and treatment for terminal cancer patients is particularly limited.
  • Anticancer drug screening is a process of evaluating cancer treatment activity and toxicity of anticancer drug candidates, such as synthetic compounds or natural products, during the entire process of anticancer drug development.
  • the screening of anticancer drugs compares the inhibition or proliferation of cancer cells between samples treated with different types of anticancer drugs while culturing cancer cells, and selects the most anticancer drugs that are expected to be ineffective or ineffective.
  • the process it may mean any process of measuring the extent to which cancer cells exposed to the anticancer agent die or the proliferation is inhibited.
  • subrenal capsule assay Conventional in vivo screening method was used as a subrenal capsule assay (subrenal capsule assay), which is to extract the cancer tissue of the patient, cut into small size, inserted into the renal capsule of the mouse and treated with anticancer drugs to change the size of the transplanted tumor Is the method of measuring.
  • subrenal capsule assay since there is a problem in that it is difficult to apply the transformation due to a long time for screening the effects of the dose and cycle of the anticancer agent administered to the mouse, there are disadvantages in that it is not efficient when screening various types of anticancer agents.
  • in vitro screening methods are used to isolate cells from cancerous tissues, treat them with anticancer agents, and culture them to determine whether they inhibit apoptosis or proliferation.
  • the present inventors have discovered that the disease can be diagnosed and predicted by observing the characteristics of micromaterials in the body fluids discharged from the patient, and has filed a patent application on January 14, 2014. (PCT / KR2014 / 00393). The inventor named the micromaterial "luterial”.
  • the inventors of the present invention have developed a method for effectively separating the luterial, which is a micromaterial present in the body fluid discharged from a patient or a normal person, and the characteristics of the separated ruterial as of May 9, 2014.
  • Patent application has been filed (PCT / KR2014 / 004197).
  • a "luterial” is a living organism that exists in all animals, and is a microorganism with a size ranging from virus-like to about 800 nm (50 to 800 nm for normal action steps and 800 nm for abnormal fusion steps). It is named by the inventor.
  • Luterial contains both DNA and RNA and is distinguished from exosomes or microvesicles in that they have adhesion and mobility (FIG. 1).
  • Animals, including humans, are present in blood, saliva, lymphatic vessels, semen, vaginal fluid, breast milk (particularly colostrum), umbilical cord blood, brain cells, spinal cord, bone marrow and are referred to as "luterials”.
  • the ruterial analogues present in the plant are referred to as "Luterion", and the origin of the ruterial found in body fluids such as blood is assumed to be plant-derived ruterion (FIG. 2).
  • Luterial is (1) a cell analog that has an intermediate stage of fusion between prokaryotic and eukaryotic cells; (2) present in body fluids such as blood, semen, serous fluid, and saliva cell fluid; (3) showed positive color development in Janus green B, Acridine Orange, and Rhodamine 123 in immunofluorescence; (4) the optimal state (pH 7.2-7.4) shows the expression characteristics of beta-prothiobacteria and gamma-prothiobacteria derived genes, and has a size of 30 ⁇ 800nm; (5) in the acidified state, it expresses the expression characteristics of not only beta-prothiobacteria and gamma-prothiobacteria-derived genes, but also eukaryotic-derived genes, mainly expressing the Sterptophyta gene, and increasing in size from 400 nm to 2000 nm or more; (6) is involved in ATP production under normal conditions; And (7) cell analogs that differ from mitochondria and are completely different from exosomes (PCT
  • Luterial is present in blood, saliva, lymphatic vessels, semen and vaginal fluids, breast milk (especially colostrum), cord blood, brain cells, spinal cord and bone marrow in animals including humans.
  • horned animals also have ruterials in their horns (PCT / KR2014 / 00393).
  • Luterial may refer to an immature mitochondrial stage that includes DNA as well as mRNA and miRNA. Luterial is characterized by entering the blood without dissolving in the digestive fluid (PCT / KR2014 / 004197).
  • Luterial is also expected to be involved in the regulation of cell cycle and cell growth as well as signaling, cell differentiation and cell death, among which we have found that ruterial is closely related to the diagnosis of cancer ( PCT / KR2014 / 00393).
  • the present inventors can use such ruterials or variants thereof to screen for the prevention or treatment of cancer by selecting a substance that affects the maintenance of steady state or suppression, reduction or recovery of the abnormal state among the anticancer drug candidates. It confirmed that it exists and completed this invention.
  • An object of the present invention is to provide a method for screening an anticancer agent that can be used for the prevention or treatment of cancer by using the ruterial variant specifically found in cancer patients as an indicator of cancer and a target for cancer treatment.
  • the present invention comprises the steps of (a) isolating a mutant luterial from the body fluids that have already been discharged from the patient;
  • (c) a method for screening an anticancer agent comprising selecting a candidate for reducing the size, changing the form, or increasing motility of the ruterial variant as compared to the control group prior to the treatment with the anticancer agent.
  • the present invention also comprises the steps of: (a) separating the ruterial from the body fluid discharged from the normal person;
  • (c) screening for a cancer preventive agent the method comprising selecting a candidate substance that inhibits an increase in the size of ruterial, minimizes morphological changes, or maintains motility, as compared with a control group prior to the candidate treatment. It is about.
  • FIG. 1 is a photograph showing the results of observing normal ruterial through an optical microscope (SR-GSD or CLSM) or an electron microscope (SEM or TEM).
  • SR-GSD optical microscope
  • SEM electron microscope
  • Figure 2 schematically shows the life cycle of luterial.
  • 3 is a schematic diagram showing the mechanism of cancer development associated with luterial.
  • FIG. 4 is a photograph of a flagellar luterial observed through a dark field microscope.
  • FIG. 5 is a photograph of a microtubular luterial observed through a dark field microscope.
  • FIG. 6 is a photograph of a mass-shaped ruterial observed through a dark field microscope.
  • FIG. 7 is a photograph of a rod-shaped ruterial observed through a dark field microscope.
  • Figure 8 shows a photograph taken with a dark field microscope of the luterial derived from stage 4 lung cancer patients.
  • Figure 9 shows a photograph taken with a dark field microscope of luterial derived from a lung cancer patient.
  • Figure 10 shows a photograph taken with a dark field microscope of the luterial derived from the lung cancer stage 3b patient.
  • Figure 11 shows a picture taken with a dark field microscope of luterial derived from a lung cancer patient.
  • Figure 12 shows a photograph taken with a dark field microscope of the lutereal from brain metastasized non-cell lung cancer patients.
  • Fig. 13 shows a photograph taken with a dark field microscope of a lutereal from a clavicle lymph node, liver metastasized lung cancer (squamous cell carcinoma) patient.
  • Figure 14 shows a photograph taken with a dark field microscope of luterial from bone cancer patients with metastasized bone.
  • Figure 15 shows a photograph taken with a dark field microscope of luterial derived from a lung cancer patient.
  • Figure 16 shows a picture taken with a dark field microscope of luterial derived from a lung cancer patient.
  • Figure 17 shows a picture taken with a dark field microscope of luterial derived from a pancreatic cancer patient.
  • Figure 18 shows a photograph taken with a dark field microscope of the lutereal from the liver metastasized pancreatic cancer patient.
  • Figure 19 shows a picture taken with a dark field microscope of the uteri metastases from the uterine metastasized colon cancer patient.
  • Figure 20 shows a picture taken with a dark field microscope of the luteir from the colon cancer patients metastasized to the liver, lungs.
  • Figure 21 shows a photograph taken with a dark field microscope of the luteri from the colon cancer patients metastasized to the liver, lungs, brain.
  • Figure 22 shows a picture taken with a dark field microscope of luterial from a liver cancer patient metastasized liver.
  • Figure 23 shows a photograph taken with a dark field microscope of luterial from lung cancer patients with metastasized lung.
  • Figure 24 shows a picture taken by a confocal laser scanning of the luterial from angiosarcoma of liver patients.
  • Figure 25 shows a photograph taken with a dark field microscope of the luterial derived from the terminal gallbladder cancer.
  • FIG. 26 shows a photograph of luterial derived from a patient with bone metastasized prostate cancer with a dark field microscope.
  • Fig. 27 shows a photograph of luterial derived from a prostate cancer patient with a dark field microscope.
  • Figure 28 shows a photograph taken with a dark field microscope of luterial derived from stage 3 breast cancer patients.
  • FIG. 29 shows a photograph of luterial derived from a stage 3b breast cancer patient with a dark field microscope.
  • Figure 30 shows a picture taken with a dark field microscope of the ruterial derived from patients with papillary thyroid cancer.
  • Figure 31 shows a photograph taken with a dark field microscope of luterial derived from a kidney cancer patient.
  • Figure 32 shows a picture taken with a dark field microscope of the luterial derived from gastric cancer patients.
  • Figure 33 shows a picture taken with a dark field microscope of luterial derived from gastric cancer patients.
  • Figure 34 shows a photograph taken with a dark field microscope of the luterial derived from stage 3b breast cancer patients.
  • FIG. 35 shows a photograph taken by a dark field microscope of a luterial (stage 1) of normal blood.
  • Figure 36 shows the effect of the size, morphological changes or motility recovery in the luterial variant upon luterion treatment separated from chilpi, (a) before treatment of the candidate substance, (b) 30 minutes after the candidate substance treatment and (c) Results are shown 1 hour after the candidate material treatment.
  • Figure 37 shows the effect of the size, morphological change or motility recovery in the luterial variant when treated with luteurion isolated from the soft bridge, (a) before the candidate material treatment, (b) 30 minutes after the candidate material treatment and (c) Results are shown 1 hour after the candidate material treatment.
  • Figure 38 shows the effect of the size, morphological change or motility recovery in the luterial variant upon treatment of luteurion isolated from Baekbokryeong, (a) before treatment with the candidate, (b) 30 minutes after the treatment with the candidate and (c) Results are shown 1 hour after the candidate material treatment.
  • Figure 39 shows the effect of the size, morphological change or motility recovery in the luterial variant upon treatment of rutherion isolated from Angelica, (a) before treatment with the candidate, (b) 30 minutes after the treatment with the candidate and (c) Results are shown 1 hour after the candidate material treatment.
  • FIG. 41 shows Chilpi-derived ruterions (a), duct-derived ruterions (b), baekryok-derived ruterions (c), donkey-derived luterions (d), and locust-derived luterions in AsPC-1 (Pancreatic cancer cell line) e) shows the result of confirming the inhibition of cancer cell line proliferation upon treatment.
  • FIG. 42 shows Chilpi-derived Luterion (a), Leucion-derived Luterion (b), Baekbokryeong-derived Luterion (c), Angelica-derived Luterion (d), and Caesar-derived Luterion (e) in A549 (Lung cancer cell line) The results of confirming inhibition of cancer cell line proliferation during treatment are shown.
  • BT-20 blue tangles-derived luterions
  • the terms "Luterial” and “Luterion” are living organisms existing in animals and plants, respectively, from viruses to about 500 nm (normal fit step 50).
  • the ruterial and luterion include DNA and RNA, and are distinguished from exosomes or microvesicles in that they have motility and adhesion.
  • Mitochondria are identified by Janus green B and fluorescent dye Rhodamine 123, Mitotracker, Acridine Orange, and DAPI. The color is confirmed by the same dye, the mitochondria is similar to the mitochondria in that it has a double-layered membrane structure that has not completed the internal cristae structure and is observed in the same laser wavelength range as mitochondria. It may also be referred to as ", mitochondrial analogue" or "proto-mitochondria.”
  • Luterial and luterion are 50-200 nm in size, and the mutant ruterial and mutant luterion are fused to form variants, which are several tens of micrometers in size.
  • Luterial and luterion may refer to an immature mitochondrial stage that includes mRNA and miRNA (rarely, also DNA). Luterial and luterion are characterized by influx into the blood without dissolving in the digestive fluid and are expected to be involved in the regulation of cell cycle and cell growth as well as signaling, cell differentiation and cell death. It was found to be closely related to the diagnosis of this cancer (PCT / KR2014 / 00393).
  • RNAi RNA interference
  • RNA interference with the potential to When the information system in the RNA of normal ruterial is instructed to produce a protein that causes abnormal disease out of the normal orbit, it artificially interferes with it and suppresses the occurrence of diseases such as cancer, and matures to 200-500 nm or more. It is also involved in energy metabolism and energy metabolism, and when irradiated with a specific wavelength, it acts as a light energy amplification function by reaction expression, and it is confirmed that it reacts like chloroplasts. Thus, when such a ruterial does not play a normal role, it may cause a critical impediment to homeostasis and ATP production, causing disease in both respiration and energy metabolism.
  • (o) has a surface antigen of CD39 or CD73.
  • luterial derived from a cancer patient who does not play a normal role varies in size and shape, and shows different ecology and characteristics from normal ruterial (FIGS. 2 and 3).
  • the cells do not proliferate after forming double-spores, but stem cells in the case of mutant luterial found in previously discharged body fluids of cancer patients or patients with chronic diseases.
  • it has an infinitely multiplying characteristic, and has a size from 800 nm or more to 200 ⁇ m (200,000 nm) or more.
  • viruses similar to viruses, they invade red blood cells, white blood cells, platelets, and the like to grow or aggregate with other ruterials (PCT / KR2014 / 00393).
  • mutant luterial it is referred to as "mutant luterial”, “luterial variant”, “mutant luterial”, “mutant luterial” and "mutant luterial”.
  • luterial derived from blood of humans or animals has a characteristic of being dissolved and extinguished or changed form in a short time in vitro, making it difficult to observe itself, and normal luterial also mutated within 24 hours when placed in an abnormal environment. Mutation to luterial is difficult to use in the treatment of the disease.
  • plant-derived ruterions do not dissolve or disappear quickly even at room temperature, and are fused and mutated even after long-term storage.
  • plant-derived ruterions do not dissolve or disappear quickly even at room temperature, and are fused and mutated even after long-term storage.
  • by inhibiting the growth so that no further fusion occurs in response to the patient's blood-derived mutant ruterial, and inhibiting the maturation of the luterial at the maturation stage of the patient's blood It is possible to suppress the growth by fusion.
  • the properties of the plant-derived ruterion are expected to be due to the RNAi function of the ruterion, and the RNAi function can be used to inhibit or prevent the mutation or maturation of luterial derived from a patient with a specific disease, ultimately. It is expected to be used as a substance to treat or prevent certain diseases.
  • Step (a) is the step of separating the luterial variant from the previously discharged body fluid in the patient or normal person.
  • body fluid discharged from the patient may be blood, saliva, lymphatic vessels, semen, vaginal fluid, breast milk (colostrum), umbilical cord blood, brain cells, spinal cord or bone marrow, but is not limited thereto.
  • Cancer is a brain tumor, head and neck tumor, breast cancer, thyroid cancer, lung cancer, stomach cancer, liver cancer, pancreatic cancer, small intestine cancer, colon (rectal) cancer, kidney cancer, prostate cancer, cervical cancer, endometrial cancer and ovarian cancer It is preferably selected from the group consisting of, but is not limited thereto.
  • luterial can be separated from blood readily obtainable from cancer patients, and luterial contained in blood can be separated, for example, by the following steps.
  • the method of separating luterial from blood may include a first separation step of separating blood-derived substances having a size of platelets and platelets or more from blood; A second separation step of centrifuging the blood from which the blood-derived material having the size of the platelets and the platelets is separated; A third separation step of separating ruterial from the supernatant obtained by the centrifugation; And washing the separated ruterial.
  • the first separation step may include collecting blood from the patient and passing the filter having a pore of 0.8-1.2 ⁇ m to separate the unfiltered material.
  • the second separation step may include obtaining a supernatant by repeatedly centrifuging at 1200 to 5000 rpm for 5 to 10 minutes to remove general micro-vesicles such as exosomes.
  • the third separation step may include the step of separating the ruterial particles gathered with mobility by irradiating the supernatant obtained through centrifugation with a pipette. Since ruterial has the characteristics of autofluorescence and motility, the ruterial particles can be identified from the supernatant when irradiated with infrared rays as described above.
  • the ruterial separated in the third step may be passed through a filter having a pore having a diameter of 50 nm to wash only the unfiltered portion with PBS to obtain a ruterial. Since the ruterial has a long diameter of about 50 nm or more, blood-derived fine substances other than the ruterial may be removed through the above process. By the above procedure, a ruterial having a long diameter of 50-800 nm can be obtained, which can be observed through a dark field microscope or a confocal microscope.
  • the obtained ruterial is 50-200nm (generator) / 200-400nm (maturator) / 400-600nm (divider) / 600-800nm (depending on size) using 200nm, 400nm, 600nm, 800nm and 1000nm filters sequentially. Hyperdividing) / 800 nm or more (variant).
  • particles in which antibodies specifically bind to the ruterial surface antigen are immobilized to the blood may be added to induce binding of the ruterial and the particles, and the ruterial bound to the particles may be recovered and separated.
  • the ruterial surface antigen is CD39 or CD73
  • the anti-CD39 or anti-CD73 antibody that specifically binds to each antigen is immobilized on the magnetic particles, and the particles bound to the ruterial using a magnet (by magnetizing).
  • the luterial can be obtained by separating the bay and then recovering the ruterial (Korean Application No. 10-2015-0004287).
  • luterials in healthy people simply form double-spores, but in the case of luterials (mutant luterials) in patients with chronic disease or cancer, the ruterials may or may not be fused together. Agglomerates (coagulation) or burst (bursting) to adhere to cells such as red blood cells or cancer cells, and its shape and size is unusually large, unlike the normal ruterial. Mutant ruterials have a high adhesion tendency, so that the fusion is further accelerated by such a cycle, and the size of the mutant ruterial is increased to about 800 nm or more in the long diameter and / or the short diameter, some of which are 200 ⁇ m (200,000 nm) or more. It also has a size.
  • (B) is a step of treating an anticancer agent or a cancer prevention candidate to luterial variants isolated from body fluids previously discharged from a patient or luterials separated from body fluids previously released from a normal person.
  • the candidate material may be a collection of agents that maintain the steady state or inhibit, reduce or restore the steady state of luterial, for example, natural extracts, food or plant-derived luterions, RNAi, aptamers. And at least one selected from the group consisting of compounds, but is not limited thereto.
  • the candidate material may be, for example, a combination of allergen-removing sumac (Rhus Verniciflua Stokes) extract or allergen-removing sumac extract and various additional food or medicinal plant-derived extracts. It may be an extract containing.
  • the allergen removing lacquer extract extracts the lacquer, and maintains 0.01 to 1 atmosphere higher than atmospheric pressure in an oxygen concentration of 25 to 100% (v / v) in order to prevent the generation of allergy due to toxicity when ingesting the lacquer. It can be obtained by heat treatment to 25 ⁇ 100 °C.
  • an allergen-extracted sumac extract may be obtained by using a known method or other kinds of food or medicinal plant-derived extracts or fractions thereof, and may be mixed in the same proportion as the allergen-extracted sumac extract.
  • the candidate may be RNAi (miRNA or siRNA), food or plant derived luterion or aptamer. Specifically, it may be an RNAi molecule (antisense miRNA or siRNA) for a characteristic miRNA expressed in cancer cells.
  • RNAi miRNA or siRNA
  • Food or plant-derived ruterions are RNAi molecules that can be contained in long and / or short diameter ruterions of 50-500 nm in size to exhibit RNA interference, for example, foods such as Rhus Verniciflua Stokes or It may be an RNAi molecule contained in a medicinal plant derived ruterial.
  • miRNA is a single-stranded non-coding RNA molecule of 21-25 nucleotides that controls eukaryotic gene expression and binds to the mRNA 3 'untranslated region (UTR) of a particular gene to inhibit the translation of the gene It is known.
  • miRNAs studied in animals reduce protein expression without affecting the mRNA concentration of a particular gene.
  • miRNAs are linked to an RNA-induced silencing complex (RISC) and complementarily bind to specific mRNAs, but the central miRNA portion remains a mismatch and does not degrade mRNA unlike conventional siRNAs.
  • RISC RNA-induced silencing complex
  • food or plant miRNAs induce RNA interference by inducing mRNA degradation in full agreement with the target mRNA.
  • siRNAs play a role in RNA interference (RNAi) pathways, particularly in RNA silencing, a process of sequence specific RNA degradation promoted by double stranded RNA (dsRNA).
  • RNAi RNA interference
  • siRNAs are double stranded with small 3′-overhangs and are derived from longer dsRNA precursors that induce silencing. It acts as a guide to guide destruction of target RNA.
  • Luterion derived from food or medicinal plant means separated from a luteurion-containing food or plant extract or condensate using a method similar to the luteiral isolated from blood.
  • "Luterion” is a living organism in plants or foods. Its size is similar to virus to about 500nm (50 ⁇ 500nm in normal action stage or 800nm or more in abnormal fusion stage). Branch is named by the present inventors.
  • the ruterion includes DNA and RNA and is distinguished from exosomes or microvesicles in that they have motility and adhesion.
  • Mitochondria were identified by Janus green B and fluorescent dyes Rhodamine 123, Mitotracker, and DAPI, which were identified by the same dye as mitochondria, similar to mitochondria.
  • As a double-layered membrane structure it has a structure in which the internal cristae structure is not completed and is observed in the same laser wavelength range as that of the mitochondria, and thus is similar to a mitochondria, a mitochondrial analog, or a mitochondrial precursor. -mitochondria) ".
  • the food or plant-derived ruterions do not dissolve or disappear quickly even at room temperature, and do not fusion and mutate even after long-term storage. In addition, it inhibits growth so that no further fusion occurs by reacting with the mutated luterial derived from the patient's blood, and inhibits the maturation of the luterial at the maturation stage of the patient's blood, Mutant growth or fusion can be suppressed.
  • the characteristics of the food or plant-derived ruterion are expected to be due to the RNAi function of the ruterion, and the RNAi function can be used to inhibit or prevent the mutation or maturation of the patient-derived ruterial with a specific disease, ultimately. May be used as a substance to treat or prevent certain diseases.
  • the food or plant-derived ruterion has a density of 1 or less and a higher density than fats and lipids and a lower density than protein, it may be separated from the plant by steam distillation, but is not limited thereto.
  • the food or plant-derived ruterion may be separated by the following steps.
  • a food or plant extract containing ruterion is added to a particle having an antibody specifically binding to the ruterion surface antigen, thereby inducing binding of the ruterion to the particle, and recovering the ruterion bound to the particle.
  • the ruterion surface antigen is CD39 or CD73
  • the anti-CD39 or anti-CD73 antibody that specifically binds to each antigen is immobilized on the magnetic particles, and the particles bound to the ruterion using a magnet (by magnetizing).
  • This step allows the separation of motility long- and / or short diameter luteurions that respond to IR light sources, and can be observed through darkfield or confocal microscopy.
  • Luterion derived from the food or plant obtained by the above process can be observed through a dark field microscope or a confocal microscope, and 50-200 nm (generator) depending on the size using 200 nm, 400 nm, 600 nm and 800 nm filters sequentially ) / 200-400nm (mature stage) / 400-600nm (divider) / 600-800 nm (hyperdivider)
  • the ruterion may be further characterized by one or more of the following properties:
  • (j) has a surface antigen of CD39 or CD73.
  • the food or plant-derived ruterion can be classified and stored in four types of 50-200nm / 200-400nm / 400-600nm / 600-800nm. After dissolving the ruterion, it is easy to dissolve or change its shape, so it is necessary to pay attention, and it is preferable to freeze it to below freezing below 80 °C in a short time.
  • the short-term storage live state
  • the short-term storage is preferably around 4 °C image, soaked in 0.5% saline solution, it is preferable to irradiate low-temperature IR within 30cm distance.
  • the food or plant luterion may be stored with one or more preservatives selected from the group consisting of flavonoids picetin, butane and sulfur retin.
  • water is added to the luterion and cultured at 18-30 ° C. under IR light to cultivate the plant ruterion, or water is added to the long and / or short diameter 400-800 nm plant-derived luterion and irradiated with IR light. Under irradiation can be cultured at 18-30 ° C. (preferably 20-25 ° C.), thereby inducing the fission of plant ruterions. Water added during the culture may be saline or PBS solution, but is not limited thereto. Plant-derived ruterion before the cultivation can be obtained according to the separation method described above, the size of the long diameter and / or short diameter 50 ⁇ 500nm can be used.
  • the plant-derived ruterion cultured according to the culture method of the present invention may be a long diameter and / or short diameter 300 ⁇ 500nm.
  • the size of the ruterion may not exceed the long diameter and / or short diameter 500 nm, and after cultivation is classified by size and cooled to minus 80 °C or stored in nitrogen or stored in the image Can be stored and preservatives can be added during storage.
  • Luterion is not limited because it is present in all plants, preferably medicinal plants selected from Tables 1-4 can be used. Luterion is expected to be distributed in a large amount on the stem side of the plant, so it is preferable to separate the ruterion from the stem portion.
  • Aptamers are also nucleic acid molecules that exhibit a high specific binding affinity for the molecule through interactions other than the classical Watson-Crick base pairing. Aptamers are those that can specifically bind to a selected target to modulate the activity of the target, and can block the target's ability to act through, for example, aptamer binding. Aptamers are 10-15 kDa (30-45 nucleotides) in size, bind to their targets with affinity of up to nanomolar, and discriminate against closely related targets.
  • the candidate may be obtained from a library of synthetic or natural compounds.
  • Methods of obtaining libraries of compounds are known in the art and can be obtained commercially from Brandon Associates (Merrimack, NH) and Aldrich Chemical (Milwaukee, WI). Bacteria, fungi, foods or medicinal products from many sources, including Biotics (Sussex, UK), Xenova (Slough, UK), Harbor Branch Oceangraphics Institute (Ft. Pierce, FIa.), And PharmaMar, USA (Cambridge, Mass.) Natural compound libraries in the form of plant and animal extracts are commercially available.
  • the normal state of the ruterials do not proliferate after the formation of double-spores (FIG. 35), but the ruterial variants found in the blood of patients confirmed to have cancer proliferate infinitely, similar to stem cells. It has the characteristics from 800nm or more to 200 ⁇ m (200,000nm) or more.
  • the luterial variants found in the blood of patients confirmed to be cancer have a significantly lower motility than normal ruterials. The motility of these ruterials can be quantified through nanotracking rates.
  • candidates that reduce the size of the luterial variant may be selected as anticancer agents as compared to the luterial variant control prior to candidate treatment.
  • the luterial variant of the cancer patient in the absence of the anticancer drug substance, the luterial variant of the cancer patient exhibits abnormal fusion due to the formation of a modified cluster form, which is larger in size than the normal luterial.
  • it may be selected as an anticancer agent.
  • the cancer patient-derived ruterial variant in the absence of an anticancer drug substance may be, for example, having a size of less than 3500 nm and a maximum of 200 ⁇ m at a size of about 1000 nm or more in the long diameter and / or the short diameter. have. However, after 30 minutes or more, preferably 1 hour or more of the candidate material treatment, compared to the control before the candidate material treatment, it can be reduced to a size of 200 ⁇ 2,000nm.
  • the candidate in relation to the size of the ruterial variant, at least 30 minutes, preferably at least 1 hour, after the treatment with the candidate substance, about 70% or less of the diameter of the ruterial variant before the candidate substance treatment, for example, the long diameter of the ruterial variant before the candidate substance treatment.
  • the candidate can be selected as an effective anticancer agent.
  • Test Example 1 of the present application after 1 hour of treatment with anticancer drug candidates Chilpi, Yeongyo, Baekbokyeong, Angelica, and taraxacum-derived luterion, the ruterial variants in each treatment group were compared to the control group before the treatment of the candidates. 13-63% of the total, and reduced to 12-67% of the short diameter of the ruterial variant before the candidate treatment.
  • candidates that change the shape of the luterial variant may be selected as an anticancer agent, as compared to the control prior to the candidate treatment.
  • the anticancer agent can be selected.
  • the reduction in morphology is the number of luterial variants having flagella, microtubule, mass, rod or complex. It may mean reducing or restoring to a circular or elliptical form, which is the ruterial form of a normal person. For example, after 30 minutes or more, preferably 1 hour or more, compared to the control group without the anticancer drug candidate, flagella (FIG. 4), microtubule (FIG. 5), mass (FIG. 6), rod-type (FIG.
  • the complex ruterial decreases to 80% or less, preferably 50% or less, more preferably 30% or less, and may be selected as an anticancer agent.
  • the number of luterial variants having the flagella, microtubule, mass, rod or complex by treating the candidate substance is, for example, 5 to 80%, preferably, compared with the control group without the anticancer agent. If present in 10 to 50%, more preferably 10 to 30%, it can be selected as an anticancer agent.
  • the therapeutic agent screened to reduce or alleviate the morphological deformation of the flagella, or to recover it in a circular or elliptical form may be a therapeutic agent suitable for the treatment of stage IV cancer patients.
  • the therapeutic agents screened to reduce or alleviate morphological changes to mass form, or recover to circular or oval shape may be therapeutic agents suitable for liver, colon, digestive, male rectal and / or female uterine cancer.
  • the therapeutic agents screened to reduce or alleviate morphological changes to rod-like, or to restore circular or oval shapes may be suitable therapeutic agents for lung, pancreas, thyroid, bone, brain, male prostate, female ovary and / or breast cancer. have.
  • stage 4 metastatic cancer Patients suspected of having tumors in which the mixed luterial of the mass type and rod type were found were diagnosed as stage 4 metastatic cancer.
  • the therapeutic agents screened by reducing or alleviating morphological changes to complex or restoring round or oval may be suitable for the prevention or treatment of stage 4 metastatic cancer.
  • the luterial variant may exhibit reduced mobility and exhibit a nanotracking speed of less than 0.5 nm / sec to less than 10 nm / sec to 0 nm / sec of no mobility.
  • the range of change in motility deterioration is reduced or suppressed, or the nano tracking speed is 12 nm / sec or more, for example, 50 nm / sec or more and 600 nm / sec or less, preferably If the recovery to 100nm / sec or more and 500 nm / sec or less can be selected as an effective anticancer agent.
  • the present invention can determine the change in motility during treatment of the candidate material by measuring the electrophoretic mobility.
  • "Electrophoretic mobility” of the present invention is a value obtained by dividing the moving speed of the charged particles by electrophoresis by the strength of the electric field of the place, and when the moving speed of the particles is high, the mobility of the particles is high.
  • the mobility is reduced, and the electrophoretic mobility may be 0 ⁇ m cm / Vs without mobility at less than 0.5 ⁇ m cm / Vs.
  • the motility of the ruterial variant after 30 minutes or more, preferably 1 hour or more of the candidate substance treatment, the mobility was restored, and the electrophoretic mobility increased by 30% or more compared with the ruterial variant control before the candidate substance treatment, for example If it increases by 30 to 300%, it can be selected as an effective anticancer agent.
  • each of the ruterial variants had an electrophoretic mobility of 33-270% compared to the control group. It was confirmed that the increase.
  • the inventors of the present application screened an anticancer agent by using a ruterial variant derived from a cancer patient with a size of 1100 to 3100 nm and having very low or no motility, and then screening the anticancer agent. After progress, the diameter of the luterial variant decreases to less than 70% of the diameter of the ruterial variant prior to treatment of the candidate substance, and the size decreases, or the nano-tracking rate recovers to 100 nm / sec or more, and the electrophoretic mobility increases by 30% or more. Once recovered, the candidates could be screened for anticancer drugs.
  • Cancer prophylactic screening includes (c) selecting candidates for cancer prophylaxis that inhibit the increase in luterial size, minimize morphological changes, or maintain motility compared to the control prior to candidate treatment.
  • the step (c) may be performed in which the fusion of normal-derived ruterials in the group treated with the cancer preventive candidate is not observed, for example, for 30 minutes or more, preferably for 1 hour or more, or the size is maintained.
  • Candidates can be screened as cancer preventers if the long or short diameter of normal-derived luterials does not increase by more than 10% of normal-derived ruterials prior to treatment with a cancer preventive candidate.
  • the normal derived ruterial remains round or elliptical for at least 30 minutes, preferably at least 1 hour, that is, 100% of the ruterial is round or elliptical, flagella, microtubular, Minimize morphological changes to mass, rod, or complex luterials, i.e., if the morphology changes to flagella, microtubular, mass, rod, or complex luterials up to 20%, the candidate is a cancer prevention substance. Can be selected.
  • candidates can be selected as cancer preventers if the motility is maintained for at least 30 minutes, preferably at least 1 hour, in the group treated with the cancer preventive candidates, that is, at a nano-tracking rate of 100 nm / sec or more.
  • treatment of cell fusion inducers such as lysolecithin or polyethylen glycol 6000 may be used to induce ruterial fusion, and then cultured in the presence of a candidate for cancer prevention to increase the size of luterial.
  • Candidates in the case of reducing or inhibiting changes, such as morphological changes or deterioration in motility can be selected as cancer prevention agents.
  • Whether or not the size, form or motility changes of the ruterial by the candidate substance is, for example, Rhodamine 123, Mito-tracker, Acridine Orange, DAPI and Janus Green B (Janus green B) can be confirmed by microscopic image of the ruterial stained with one or more dyes selected from the group consisting of.
  • the microscope used for suppressing the fusion inhibition, size, shape or motility of the ruterial is not particularly limited as long as it can confirm the fluorescence coloration, and it is a dark field micro-scope commonly used by those skilled in the art.
  • Raman spectrometer wavelength of 532 nm
  • Leica Leica
  • Atomic Force Microscope AFM
  • Magnetic Force Microscope MFM
  • Scanning tunneling microscope STM
  • CLSM Confocal Laser Scanning Microscope
  • Near-field It can be checked through a scanning optical microscope (SEM), a scanning electron microscope (SEM) or a transmission electron microscope (TEM).
  • lung cancer patients As shown in Table 5, (1) lung cancer patients, (2) pancreatic cancer patients, (3) colon cancer patients, (4) liver cancer patients, (5) prostate cancer patients, (6) breast cancer patients, (7) papillary thyroid cancer patients, Blood of (8) kidney cancer patients, (9) leukemia patients, (10) terminal cancer (stomach cancer, colorectal cancer, gynecological cancer) patients and (11) stage 4 metastatic cancers (lung cancer, prostate cancer, breast cancer) Luterial was obtained from. In patients diagnosed with cancer, the blood was first separated and centrifuged to lower the substance in the blood, left for 5-10 minutes, the supernatant was separated by a pipette, and 5ul of CD39 antibody-ferromagnetic nanoparticles were used in 100-200ul of blood.
  • CD73 antibody-ferromagnetic nanoparticles were added to bind for 30 minutes, and then placed in a magnetic separator for 1 to 2 minutes to collect the ruterial-magnetic nanoparticles, and the supernatant was discarded and washed. Thereafter, 0.033wt% BSA (Bovine Serum Albumin) / PBS buffer solution was added to the ferromagnetic nanoparticles combined with the ruterial, incubated at 25 ° C. for 1 hour, and the BSA adsorbed ferromagnetic nanoparticles using a magnet.
  • BSA Bovine Serum Albumin
  • Bay was separated, and the ruteral was separated by desorption through incubation by adding a certain amount of PBS to the ferromagnetic nanoparticles adsorbed by BSA.
  • the isolated ruterials were quantitatively analyzed by FP-640 spectroflurorometer (JASCO) using a standard calibration curve at 280 nm (emission slit: 0.5 nm, absorption slit: 0.5 nm). Confocal laser scanning microscopy was used to obtain luterial variants with a size of 1,000-3,200 nm derived from cancer patients.
  • BSA Bovine Serum Albumin
  • PBS buffer solution 0.033wt% BSA (Bovine Serum Albumin) / PBS buffer solution was added to the ferromagnetic nanoparticles combined with the ruterion, incubated at 25 ° C. for 1 hour, and the BSA-adsorbed ferromagnetic nanoparticles using a magnet. Bay was separated, and the BSA-adsorbed ferromagnetic nanoparticles were added to the PBS and desorbed through incubation to separate the luteurions derived from Chilpi, Yeongyo, Baekbokryeong, Angelica, and Blue Tangle.
  • BSA Bovine Serum Albumin
  • Luterion can be obtained from the medicinal plants shown in Tables 1 to 4 in the same manner as above.
  • Example 2 the luterial variants isolated in Example 1 were treated with Chilpi, Yeongyo, Paekbokyeong, Angelica, and Rutinus derived from PBS solution.
  • Treated Luterion derived from Yeongyo, Baekbokryeong, Angelica, and Bluefin oyster at concentrations of 1, 5, 10, 50, 100, and 500 ⁇ g / ml (for 50 ⁇ g / ml, containing about 7 ⁇ 10 8 / ml luterions)
  • the chilpi derived luterion was further diluted to treatment at concentrations of 0.1, 0.5, 1, 5, 10 and 50 ⁇ g / ml (for 5 ⁇ g / ml, including about 7 ⁇ 10 7 / ml luterion).
  • the luterial variant was placed in a cell (Universal Dip Cell: ZEN1002), and after immersing two electrodes, electrophoretic mobility in which charged particles move toward the electrode of the opposite charge. mobility) values were measured.
  • lutei derived from Chilpi (Luterion size long diameter X short diameter: 400nm ⁇ 350nm), duct bridge (400nm ⁇ 370nm), Baekbokyeong (450nm ⁇ 300nm), Angelica (400nm ⁇ 300nm), and blue tangle (420nm ⁇ 330nm)
  • the size of the luterial variants derived from cancer patients decreased and the motility was restored after administration of chilpi, poncho, baekbokyeong, donkey, and blue tangle.
  • FIGS. 36 to 40 The results are shown in FIGS. 36 to 40, respectively, and according to FIGS. 36 to 40, a luterial variant control group (FIG. 36 to FIG. 40 (a)) confirmed that i) the size of about 1,100 ⁇ 3,100nm and ii) the nano tracking speed of about 0 ⁇ 10nm / sec, electrophoretic mobility of about 0 ⁇ 0.5 ⁇ m cm / Vs.
  • nanotracking rate was less than 10 nm / sec in luterial variants, but restored motility of about 100-500 nm / sec in groups treated with Chilpi, Falco, Baibok-ryeong, Angelica, and Caucasus-derived Luterion. It was confirmed.
  • the electrophoresis of less than about 0 ⁇ 0.5 ⁇ m cm / Vs in the luterial mutant was measured, but the motility in the group treated with Chilpi, Yeongyo, Baekbokryeong, Angelica, and T.
  • the electrophoretic mobility was about 0.73 ⁇ m cm / Vs, which was increased by about 46% compared to the luterial variant (control), and about 0.4 ⁇ m cm / Vs in the softened luterion-treated group.
  • the Luterion-treated group derived from Baekbokryeong As compared to the Luterial variant (control), it was increased by about 33%, and in the Luterion-treated group derived from Baekbokryeong, about 0.31 ⁇ m cm / Vs, it can be seen that about 210% compared to the Luterial variant (control), 0.35 ⁇ m cm / Vs in the derived luterion-treated group, about 270% increase compared to the Luterial variant (control), 0.86 ⁇ m cm / Vs in the Luterion-derived group, the luterial variant It can be seen that about 72% increase compared to the (control).
  • ruterials treated with medicinal plants Chilpi, Yeonpuk, Baekbokryeong, Angelica and R. creeper derived luterials reduced aggregation, reduced size, and controlled morphological changes in cancer patients compared to controls. It can be seen that the ruterial motility degradation found can be restored. Therefore, medicinal plants Chilpi, Yeongyo, Baekbokryeong, Angelica, and lupine derived from ruterion were selected as anticancer drugs.
  • Test Example 2 In Vitro Cancer Cell Line Viability of Selected Candidates
  • Example 1 the effect of inhibiting the proliferation of cancer cell lines was confirmed for Chilpi, Yeongyo, Baekbokryeong, Dong-gu, and Tt.
  • the cancer cell lines AsPC-1 Pancreatic cancer cell line
  • A549 Long cancer cell line
  • BT-20 Breast cancer cell line
  • Cultures were performed using RPMI1640 and DMEM medium.
  • Each cell line was seeded in a 96-well plate at different concentrations according to growth rate, incubated at 37 ° C. for 16-24 hours, and then isolated from Example 2, Chipi, Yeongyo, Baekbokryeong, Angelica, and locust-derived luterions. Treatment was carried out in five concentrations.
  • each of chilpi, poncho, baekbokyeong, donkey, and taraxacum-derived luterions were concentration-dependently used as an AsPC-1 (Pancreatic cancer cell line), A549 (Lung cancer cell line) and BT- 20 (Breast cancer cell line) It was confirmed that significantly reduced the viability of each cancer cell line, that is, proliferation of each cancer cell line.
  • an anticancer agent or a cancer prevention agent can be easily screened in a relatively short time.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Immunology (AREA)
  • Biomedical Technology (AREA)
  • Chemical & Material Sciences (AREA)
  • Molecular Biology (AREA)
  • Hematology (AREA)
  • Urology & Nephrology (AREA)
  • Cell Biology (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Biotechnology (AREA)
  • Microbiology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Toxicology (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Physiology (AREA)
  • Botany (AREA)
  • Hospice & Palliative Care (AREA)
  • Oncology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Investigating Or Analysing Biological Materials (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Medicines Containing Plant Substances (AREA)

Abstract

본 발명은 (a) 환자 또는 정상인에서 기 배출된 체액으로부터 루테리알 변이체 (mutant luterial) 또는 정상 루테리알을 분리하는 단계; (b) 상기 분리된 루테리알 변이체에 항암제 또는 암 예방제 후보물질을 처리하는 단계; 및 (c) 후보물질 처리 전 대조군과 비교하여, 루테리알 변이체의 크기를 감소시키거나, 형태를 변화시키거나 또는 운동성을 증가시키는 후보물질을 항암제로, 또는 후보물질 처리 전 대조군과 비교하여, 루테리알의 크기 증가를 억제시키거나, 형태 변화를 최소화하거나 또는 운동성을 유지시키는 후보물질을 암 예방물질로 선별하는 단계를 포함하는 항암제 또는 암 예방제 스크리닝 방법에 관한 것이다.

Description

루테리알의 형태특성을 이용한 암 예방제 또는 항암제의 스크리닝 방법
본 발명은 루테리알의 형태특성을 이용한 항암제 스크리닝 방법에 관한 것으로, 구체적으로는 루테리알 변이체 또는 루테리알에 항암제 또는 암 예방제 후보물질 처리 전 대조군과 비교하여, 루테리알 변이체의 크기, 형태 또는 운동성 변화를 유도 또는 루테리알의 크기, 형태 또는 운동성 변화를 억제하는 후보물질을 항암제 또는 암 예방제로 선별하는 단계를 포함하는 항암제 또는 암 예방제 스크리닝 방법에 관한 것이다.
암은 인류의 건강을 위협하는 최대의 질병 중의 하나로서, 세포가 일련의 돌연변이 과정을 거쳐, 무제한적이고 비조절적인 방식으로 증식하여 발생하는 질병이다. 암과 관련된 다양한 생화학적 기전이 규명되고, 암에 대한 개선된 검출 방법, 집단 스크리닝(mass screening) 및 과거 십 여 년간에 걸친 치료제와 치료방법의 발달로, 암의 진단 및 치료에 대한 전망이 개선되고 있음에도 불구하고, 아직까지 암에 대한 근본적인 치료방법은 제시되지 않고 있으며, 특히 말기암 환자에 대한 치료는 극히 제한되어 있는 실정이다.
여러 항암제들이 지속적으로 개발되고 임상에 적용되면서 항암 치료 효과도 높아지고 있으나, 아직도 여러 암 종류의 치료에 대한 반응률이 충분하지 않아 상당수의 환자는 독성이 매우 강한 항암제에 노출되고 있음에도 불구하고 증상의 완화 또는 수명 연장 효과는 낮은 실정이다. 이러한 현상을 개선하기 위해서는 보다 우수한 항암제 개발 및 이를 이용한 표준 치료법을 연구하는 것이 필수적이다.
이러한 상황에서, 암과 관련된 다양한 생체내 분자를 동정하고 이를 표적으로 약물을 스크리닝함으로써 항암제를 개발하는 노력이 경주되고 있다. 항암제 스크리닝은 항암제 개발 전체 과정 중에서 항암제 후보물질 예를 들어 합성 화합물 또는 천연물 등의 암 치료 활성 및 독성을 평가하는 과정이다.
구체적으로, 항암제 스크리닝은 암세포를 배양하면서 여러 종류의 항암제를 처리한 시료와 처리하지 않은 시료 사이에서 암 세포의 사멸 또는 증식 억제를 비교하여 가장 이상적인 항암제를 찾아내거나 효과가 없을 것으로 예측되는 항암제를 선별하는 과정으로, 항암제에 노출된 암 세포가 사멸하거나 증식이 억제되는 정도를 측정하는 일체의 과정을 의미할 수 있다.
종래 in vivo 스크리닝 방법으로는 신피막하 분석법(subrenal capsule assay)이 사용되었는데, 이는 환자의 암 조직을 적출하여 작은 크기로 자른 뒤 마우스의 신피막하에 삽입하고 항암제를 처리하여 이식된 종양의 크기 변화를 측정한 방법이다. 다만, 마우스에 투여하는 항암제의 용량과 주기에 따라 나타나는 효과를 스크리닝하는 시간이 길어 변환 적용이 어렵다는 문제가 있기 때문에, 여러 종류의 항암제를 스크리닝하는 경우 효율적이지 못하다는 단점이 있다.
이외 in vitro 스크리닝 방법으로는 암 조직으로부터 세포를 분리하고 항암제를 처리한 다음 배양하여 세포사멸 또는 증식 억제 여부를 측정하는 과정을 거친다.
이로부터 얻어진 실험 결과를 통해 적합한 항암제로 스크리닝되기 위해서는 항암제에 의한 반응과 실험 결과를 분석하는 과정이 필요하며, 종양 크기 변화를 관찰하거나, 세포사멸률(또는 증식 억제율), IC50, 화학민감도 인덱스, 항암제 반응성 데이터베이스에서 반응성의 상대적 분포 검토 등 기 확립된 in vitro 데이터와 비교하기도 한다.
이러한 과정을 통해 효과가 있을 것으로 예측되는 항암제와 효과가 없을 것으로 예측되는 항암제를 구별할 수 있으며, 이를 반복 적용하는 과정을 통해 정확성을 개선시킬 수 있다.
이러한 배경하에서, 본 발명자들은 환자에서 기 배출된 체액 내에 존재하는 미세물질의 특성을 관찰함으로써 질병을 진단 및 예측할 수 있음을 발견하고 이에 대한 내용을 2014년 1월 14일자로 특허출원을 한 바 있다(PCT/KR2014/00393). 본 발명자는 상기 미세물질을 "루테리알 (luterial)"으로 명명하였다.
또한, 본 발명자들은 환자 또는 정상인에서 기 배출된 체액 내에 존재하는 미세물질인 루테리알을 효과적으로 분리할 수 있는 방법을 개발하고, 분리된 루테리알의 특성을 규명한 내용을 2014년 5월 9일자로 특허출원 한 바 있다(PCT/KR2014/004197).
"루테리알(luterial)"은 모든 동물에 존재하는 생명인자 (living organism)로서, 바이러스와 유사한 정도부터 약 800nm까지 (정상 피션단계 50~800nm/ 비정상 퓨전단계 800nm이상)의 크기를 가지는 미세물질을 본 발명자가 명명한 것이다.
루테리알은 DNA와 RNA를 모두 포함하며, 부착성과 운동성을 가진다는 점에서 엑소좀(exosome)이나 미소포(microvesicle)와는 구별된다 (도 1). 인간을 포함한 동물의 경우에는 혈액, 타액, 림프관, 정액, 질액, 모유(특히, 초유), 제대혈, 뇌세포, 척수, 골수에 존재하며 "루테리알"로 지칭된다. 아울러, 식물에 존재하는 루테리알 유사물질은 "루테리온(Luterion)"으로 지칭되며, 혈액 등 체액에서 발견되는 루테리알의 기원은 식물 유래 루테리온인 것으로 추정된다 (도 2).
루테리알은 (1) 원핵세포와 진핵세포의 중간단계 융합특성을 지닌 세포유사체로서; (2) 혈액, 정액, 장액, 타액 세포액 등의 체액에 존재하며; (3) 면역형광시험에서 야누스 그린 B(Janus green B), 아크리딘 오렌지(Acridine Orange), 및 로다민123(Rhodamine123)에 양성의 발색반응을 나타내고; (4) 최적상태(pH 7.2~7.4)에서는 베타-프로티오박테리아와 감마-프로티오박테리아 유래 유전자의 발현특성을 나타내고, 30~800nm의 크기를 가지고; (5) 산성화 상태에서는 베타-프로티오박테리아와 감마-프로티오박테리아 유래 유전자뿐만 아니라, 진핵세포 유래 유전자의 발현특성을 나타내는데, 주로 Sterptophyta 유전자를 발현하고, 400nm 이상부터 2000nm 이상까지 크기가 커지며; (6) 정상조건에서 ATP생성에 관여하고; 및 (7) 미토콘드리아와는 상이하고, 엑소좀과는 전혀 다른 세포 유사체이다(PCT/KR2014/004197).
루테리알은 인간을 포함한 동물의 경우에는 혈액, 타액, 림프관, 정액?질액, 모유(특히, 초유), 제대혈, 뇌세포, 척수, 골수에 존재한다. 그 외, 뿔이 있는 동물의 경우에는 뿔 내에도 루테리알이 존재한다(PCT/KR2014/00393).
정상적인 루테리알의 크기는 50~800nm이고, 융합하여 루테리알 변이체를 형성하여 수십 마이크로미터 크기를 가진다. 루테리알은 mRNA와 miRNA뿐만 아니라, DNA도 포함하는 미성숙 미토콘드리아 단계를 지칭하는 것일 수 있다. 루테리알은 소화액에서 녹지 않고 혈액에 유입되는 특징이 있다(PCT/KR2014/004197).
루테리알은 또한, 시그널링, 세포 분화, 세포 사멸 뿐 아니라 세포 사이클 및 세포 성장의 조절과도 관련이 있을 것으로 예상되는데, 본 발명자는 그 중에서도 루테리알이 암의 진단에 밀접한 관련이 있음을 발견하였다(PCT/KR2014/00393).
본 발명자들은 이러한 루테리알 또는 이의 변이체를 이용하여, 항암제 후보물질 중 루테리알의 정상 상태 유지 또는 비정상 상태의 억제, 감소 또는 회복에 영향을 미치는 물질을 선별함으로써, 암의 예방 또는 치료제를 스크리닝할 수 있음을 확인하고, 본 발명을 완성하였다.
발명의 요약
본 발명의 목적은 암 환자에서 특이적으로 발견되는 루테리알 변이체를 암의 지표 및 암 치료를 위한 타겟으로 하여, 암의 예방 또는 치료에 사용 가능한 항암제를 스크리닝하는 방법을 제공하는 데 있다.
본 발명은 (a) 환자에서 기 배출된 체액으로부터 루테리알 변이체 (mutant luterial)를 분리하는 단계;
(b) 상기 분리된 루테리알 변이체에 항암제 후보물질을 처리하는 단계; 및
(c) 후보물질 처리 전 대조군과 비교하여, 루테리알 변이체의 크기를 감소시키거나, 형태를 변화시키거나 또는 운동성을 증가시키는 후보물질을 항암제로 선별하는 단계를 포함하는 항암제 스크리닝 방법에 관한 것이다.
본 발명은 또한, (a) 정상인의 기 배출된 체액으로부터 루테리알을 분리하는 단계;
(b) 암 예방 후보물질 존재하에 상기 분리된 루테리알을 배양하는 단계; 및
(c) 후보물질 처리 전 대조군과 비교하여, 루테리알의 크기 증가를 억제시키거나, 형태 변화를 최소화하거나 또는 운동성을 유지시키는 후보물질을 암 예방물질로 선별하는 단계를 포함하는 암 예방제 스크리닝 방법에 관한 것이다.
도 1은 정상 루테리알을 광학현미경(SR-GSD 또는 CLSM) 또는 전자현미경 (SEM 또는 TEM)을 통해 관찰한 결과를 나타낸 사진이다.
도 2는 루테리알의 life cycle을 개략적으로 도시하여 나타낸 것이다.
도 3은 루테리알과 관련된 암 발병 기작을 나타낸 모식도이다.
도 4는 편모형의 루테리알을 암시야 현미경을 통해 관찰한 사진이다.
도 5는 미세관형의 루테리알을 암시야 현미경을 통해 관찰한 사진이다.
도 6은 매스형의 루테리알을 암시야 현미경을 통해 관찰한 사진이다.
도 7은 로드형의 루테리알을 암시야 현미경을 통해 관찰한 사진이다.
도 8은 폐암4기 환자 유래의 루테리알을 암시야현미경으로 촬영한 사진을 나타낸 것이다.
도 9는 폐암 환자 유래의 루테리알을 암시야현미경으로 촬영한 사진을 나타낸 것이다.
도 10은 폐암 3b기 환자 유래의 루테리알을 암시야현미경으로 촬영한 사진을 나타낸 것이다.
도 11은 폐암 환자 유래의 루테리알을 암시야현미경으로 촬영한 사진을 나타낸 것이다.
도 12는 뇌 전이된 비세포성폐암 환자 유래의 루테리알을 암시야현미경으로 촬영한 사진을 나타낸 것이다.
도 13은 쇄골상림프절, 간 전이된 폐암 (편평세포암종) 환자 유래의 루테리알을 암시야현미경으로 촬영한 사진을 나타낸 것이다.
도 14는 뼈 전이된 폐암 환자 유래의 루테리알을 암시야현미경으로 촬영한 사진을 나타낸 것이다.
도 15는 폐암 환자 유래의 루테리알을 암시야현미경으로 촬영한 사진을 나타낸 것이다.
도 16은 폐암 환자 유래의 루테리알을 암시야현미경으로 촬영한 사진을 나타낸 것이다.
도 17은 췌장암 환자 유래 루테리알을 암시야현미경으로 촬영한 사진을 나타낸 것이다.
도 18은 간 전이된 췌장암 환자 유래의 루테리알을 암시야현미경으로 촬영한 사진을 나타낸 것이다.
도 19는 자궁 전이된 대장암 환자 유래 루테리알을 암시야현미경으로 촬영한 사진을 나타낸 것이다.
도 20은 간, 폐에 전이된 대장암 환자 유래 루테리알을 암시야현미경으로 촬영한 사진을 나타낸 것이다.
도 21은 간, 폐, 뇌로 전이된 대장암 환자 유래의 루테리알을 암시야현미경으로 촬영한 사진을 나타낸 것이다.
도 22는 간 전이된 대장암 환자 유래의 루테리알을 암시야현미경으로 촬영한 사진을 나타낸 것이다.
도 23은 폐 전이된 간암 환자 유래의 루테리알을 암시야현미경으로 촬영한 사진을 나타낸 것이다.
도 24는 간 혈관육종(angiosarcoma of liver) 환자 유래 루테리알을 공초점 레이저 주사현미경으로 촬영한 사진을 나타낸 것이다.
도 25는 담낭암 말기 환자 유래 루테리알을 암시야현미경으로 촬영한 사진을 나타낸 것이다.
도 26은 뼈 전이된 전립선암 환자 유래의 루테리알을 암시야현미경으로 촬영한 사진을 나타낸 것이다.
도 27은 전립선암 환자 유래의 루테리알을 암시야현미경으로 촬영한 사진을 나타낸 것이다.
도 28은 유방암 3기 환자 유래의 루테리알을 암시야현미경으로 촬영한 사진을 나타낸 것이다.
도 29는 유방암 3b기 환자 유래의 루테리알을 암시야현미경으로 촬영한 사진을 나타낸 것이다.
도 30은 유두갑상선암 환자 유래의 루테리알을 암시야현미경으로 촬영한 사진을 나타낸 것이다.
도 31은 신장암 환자 유래의 루테리알을 암시야현미경으로 촬영한 사진을 나타낸 것이다.
도 32는 위암 환자 유래의 루테리알을 암시야현미경으로 촬영한 사진을 나타낸 것이다.
도 33은 위암 환자 유래의 루테리알을 암시야현미경으로 촬영한 사진을 나타낸 것이다.
도 34는 유방암 3b기 환자 유래의 루테리알을 암시야현미경으로 촬영한 사진을 나타낸 것이다.
도 35는 정상인 혈액의 루테리알(1단계)을 암시야현미경으로 촬영한 사진을 나타낸 것이다.
도 36은 칠피에서 분리된 루테리온 처리시 루테리알 변이체에서 나타나는 크기, 형태 변화 또는 운동성 회복 효과를 나타낸 것으로, (a) 후보물질 처리전, (b) 후보물질 처리 후 30분 경과 및 (c) 후보물질 처리 후 1시간 경과 결과를 나타낸다.
도 37은 연교에서 분리된 루테리온 처리시 루테리알 변이체에서 나타나는 크기, 형태 변화 또는 운동성 회복 효과를 나타낸 것으로, (a) 후보물질 처리전, (b) 후보물질 처리 후 30분 경과 및 (c) 후보물질 처리 후 1시간 경과 결과를 나타낸다.
도 38은 백복령에서 분리된 루테리온 처리시 루테리알 변이체에서 나타나는 크기, 형태 변화 또는 운동성 회복 효과를 나타낸 것으로, (a) 후보물질 처리전, (b) 후보물질 처리 후 30분 경과 및 (c) 후보물질 처리 후 1시간 경과 결과를 나타낸다.
도 39는 당귀에서 분리된 루테리온 처리시 루테리알 변이체에서 나타나는 크기, 형태 변화 또는 운동성 회복 효과를 나타낸 것으로, (a) 후보물질 처리전, (b) 후보물질 처리 후 30분 경과 및 (c) 후보물질 처리 후 1시간 경과 결과를 나타낸다.
도 40은 참다래에서 분리된 루테리온 처리시 루테리알 변이체에서 나타나는 크기, 형태 변화 또는 운동성 회복 효과를 나타낸 것으로, (a) 후보물질 처리전, (b) 후보물질 처리 후 30분 경과 및 (c) 후보물질 처리 후 1시간 경과 결과를 나타낸다.
도 41은 AsPC-1 (Pancreatic cancer cell line)에서 칠피 유래 루테리온 (a), 연교 유래 루테리온 (b), 백복령 유래 루테리온 (c), 당귀 유래 루테리온 (d) 및 참다래 유래 루테리온 (e) 처리시 암세포주 증식 억제를 확인한 결과를 나타낸다.
도 42는 A549 (Lung cancer cell line)에서 칠피 유래 루테리온 (a), 연교 유래 루테리온 (b), 백복령 유래 루테리온 (c), 당귀 유래 루테리온 (d) 및 참다래 유래 루테리온 (e) 처리시 암세포주 증식 억제를 확인한 결과를 나타낸다.
도 43은 BT-20 (Breast cancer cell line)에서 칠피 유래 루테리온 (a), 연교 유래 루테리온 (b), 백복령 유래 루테리온 (c), 당귀 유래 루테리온 (d) 및 참다래 유래 루테리온 (e) 처리시 암세포주 증식 억제를 확인한 결과를 나타낸다.
발명의 상세한 설명 및 바람직한 구현예
다른 식으로 정의되지 않는 한, 본 명세서에서 사용된 모든 기술적 및 과학적 용어들은 본 발명이 속하는 기술 분야에서 숙련된 전문가에 의해서 통상적으로 이해되는 것과 동일한 의미를 갖는다. 일반적으로, 본 명세서에서 사용된 명명법은 본 기술 분야에서 잘 알려져 있고 통상적으로 사용되는 것이다.
본 발명에서 사용하는 용어 "루테리알(Luterial)" 및 "루테리온(Luterion)"은 각각 동물 및 식물에 존재하는 생명인자(living organism)로서, 바이러스와 유사한 정도부터 약 500nm까지(정상 피션단계 50~500nm/비정상 퓨전단계 800nm이상)의 크기를 가지는 미세물질을 본 발명자가 명명한 것이다.
상기 루테리알 및 루테리온은 DNA 및 RNA를 포함하며, 운동성과 부착성을 가진다는 점에서 엑소좀(exosome)이나 미소포(microvesicle)와는 구별된다. 미토콘드리아는 야누스 그린 B(Janus green B) 및 형광염색인 로다민123(Rhodamine123), 미토트랙커(Mitotracker), 아크리딘 오렌지(Acridine Orange), 및 DAPI에 의해 발색이 확인되는데, 상기 루테리온도 미토콘드리아와 동일한 염색약에 의해 발색이 확인되며, 미토콘드리아와 유사하게 이중막을 가진 막구조로서 내부 크리스테(cristae) 구조를 완성하지 않은 상태의 구조를 가지고, 미토콘드리아와 동일한 레이저 파장 범위에서 관찰된다는 점에서 "유사 미토콘드리아", "미토콘드리아 유사체" 혹은 "미토콘드리아 전구체 (proto-mitochondria)"라고도 지칭할 수도 있다.
인간을 포함한 동물의 경우에는 혈액, 타액, 림프관, 정액·질액, 모유 (특히, 초유), 제대혈, 뇌세포, 척수, 골수에 존재하며 "루테리알"로 지칭된다. 아울러, 식물에 존재하는 물질은 "루테리온"으로 지칭된다. 식물의 경우에는 특히 줄기 부분에 다량 존재한다.
정상적인 루테리알 및 루테리온의 크기는 50~200nm이고, 변이 루테리알 및 변이 루테리온은 융합하여 변이체를 형성하여 수십 마이크로미터 크기를 가진다. 루테리알 및 루테리온은 mRNA와 miRNA를 포함하는(드물게, DNA도 포함) 미성숙 미토콘드리아 단계를 지칭하는 것일 수 있다. 루테리알 및 루테리온은 소화액에서 녹지 않고 혈액에 유입되는 특징이 있으며, 시그널링, 세포 분화, 세포 사멸 뿐 아니라 세포 사이클 및 세포 성장의 조절과도 관련이 있을 것으로 예상되는데, 본 발명자는 그 중에서도 루테리알이 암의 진단에 밀접한 관련이 있음을 발견하였다(PCT/KR2014/00393).
정상적인 루테리알 및 루테리온은 암세포의 성장을 막고, 세포를 건강한 면역체계로 되돌리는 역할을 하는 것으로 예상되는데, 그 역할은 유전자를 정상화시키는 가능성을 지닌 RNAi(RNA interference; RNA 간섭)에 의해 수행되는 것으로 추정된다.
정상 루테리알 및 루테리온 중 200nm 이하, 예를 들어 50-150nm의 크기를 가지는 루테리알은 암세포의 성장을 막고, 세포를 건강한 면역체계로 되돌리는 역할을 하는 것으로 예상되며, 그 역할은 유전자를 정상화시키는 가능성을 지닌 RNAi(RNA interference; RNA 간섭)에 의해 수행된다. 정상 루테리알의 RNA 내에 있는 정보체계가 정상궤도에서 벗어나 이상 질환을 유발하는 단백질을 생산하도록 지시할 경우 이를 인위적으로 간섭하여 암 등의 질병 발생을 억제하도록 작용하며, 크기가 200-500nm 이상으로 성숙하였을 때에는 에너지 대사에도 에너지 대사에도 관여하며, 특정한 파장을 조사하였을 때, 반응발현으로 빛 에너지 증폭 기능을 하며, 엽록체처럼 반응하는 것으로 확인된다. 이에, 이러한 루테리알이 정상적인 역할을 수행하지 못할 경우에는 항상성 및 ATP 생산에 결정적인 장애를 유발하여, 호흡 및 에너지 대사 모두에 질병을 야기시킬 수 있다.
루테리알은 다음의 특성을 가지는 것을 확인하였다:
(a) 정상의 경우, 적혈구보다 작은 크기(50~200nm)의 원형 내지 타원형으로, 운동성이 있음;
(b) 핵산 함유;
(c) 면역화학형광염색시 미토콘드리아와 유사한 반응을 나타냄;
(d) 퓨전(fusion) 및/또는 피전(fission) 생태양식을 나타냄;
(e) 퓨전이 없을 경우에는 크기가 300nm까지 성숙하고, DNA 함유 유사 미토콘드리아로 성숙하며, SEM 또는 TEM 전자현미경사진상에서 미토콘드리아와 유사한 구조를 나타냄;
(f) 퓨전이 발생할 경우에는 수천nm까지 크기가 커짐;
(g) 암 환자 유래의 경우, 정상 유래보다 크기(장직경 500nm 이상)가 크고, 형태가 불균일한 변이 루테리알 발생; 및
(h) 엑소좀과는 다른 빛 반응을 나타냄.
추가로, 다음의 특성 중 하나 이상을 가지는 것을 특징으로 할 수 있다:
(i) 자가형광 (autofluorescence)을 나타냄;
(j) 200~400nm 크기에서 ATP를 생산함;
(k) 부착성이 있음;
(l) 이중막 구조;
(m) 특정 조건에서 변이 루테리알은 bursting되고, bursting 이후에는 stemness를 가짐;
(n) p53 유전자 및 텔로미어 조절기능을 가짐; 및
(o) CD39 또는 CD73의 표면항원을 가짐.
이와 반대로, 정상적인 역할을 수행하지 못하는 암 환자 유래 루테리알은 크기나 형태가 다양하고, 정상 루테리알과는 상이한 생태 및 특성을 보인다 (도 2 및 도 3). 구체적으로, 정상적인 루테리알의 경우는 이중포자 (double-spore)를 형성한 후 더 이상 증식하지는 않으나, 암 환자나 만성 질병을 가지는 환자의 기 배출된 체액에서 발견되는 돌연변이 루테리알의 경우에는 줄기세포와 유사하게 무한히 증식하는 특성을 가져 800nm 이상부터, 200μm(200,000nm) 이상의 크기를 가진다. 또한, 바이러스와 유사하게 적혈구, 백혈구, 혈소판 등에 침입하여 생장하거나, 다른 루테리알과 응집하는 특성을 보인다 (PCT/KR2014/00393). 이러한 루테리알을 정상 루테리알과 구분하기 위하여 “변이 루테리알” “루테리알 변이체” "돌연변이 루테리알", "뮤턴트 루테리알" "Mutant Luterial"이라고 호칭한다.
한편, 사람 또는 동물의 혈액에서 유래한 루테리알의 경우에는 생체 외에서는 빠른 시간 내에 용해되어 소멸되거나 형태가 변하는 특성이 있어, 관찰 자체가 어려우며, 비정상적인 환경하에 두는 경우에는 24시간 이내에 정상적인 루테리알도 돌연변이 루테리알로 변이되어 질병의 치료에 이용하는데 어려움이 있다.
그러나, 식물 유래 루테리온은 혈액유래 루테리알과는 달리 실온에서도 빠른 시간 내에 용해되거나 소멸되지는 않으며, 장기간 보관하여도 퓨전(fusion)되어 돌연변이화 되지 않는 특성이 있다. 뿐만 아니라, 환자의 혈액 유래 돌연변이 루테리알과 반응하여 더 이상 퓨전(fussion)이 발생하지 않도록 그 생장을 억제하고, 환자의 혈액 유래의 성숙 단계에 있는 루테리알의 성숙을 억제하여 루테리알이 돌연변이되거나 퓨전(fusion)하여 생장하는 것을 억제할 수 있다.
상기 식물 유래 루테리온의 특성은 루테리온의 RNAi 기능에 의한 것으로 예상되는바, 이러한 RNAi 기능을 이용하여 특정 질병을 갖는 환자 유래의 루테리알의 돌연변이화 또는 성숙을 억제하거나 예방할 수 있어, 궁극적으로는 특정 질병을 치료하거나 예방하는 물질로 이용될 수 있을 것으로 예상된다.
본 발명에 따른 단계 (a)는 환자 또는 정상인에서 기 배출된 체액으로부터 루테리알 변이체를 분리하는 단계이다. 본 발명에서 사용된 "환자에서 기 배출된 체액"은 혈액, 타액, 림프관, 정액, 질액, 모유 (초유), 제대혈, 뇌세포, 척수 또는 골수일 수 있으나, 이에 제한되는 것은 아니다.
본 발명에 따른 "암"은 뇌종양, 두경부 종양, 유방암, 갑상선암, 폐암, 위암, 간암, 췌장암, 소장암, 대장(직장)암, 신장암, 전립선암, 자궁경부암, 자궁내막암 및 난소암으로 구성되는 군에서 선택되는 것이 바람직하나, 이에 한정되는 것은 아니다.
하나의 방법으로, 암 환자로부터 용이하게 수득 가능한 혈액으로부터 루테리알을 분리할 수 있으며, 혈액에 포함된 루테리알은 예를 들어 하기의 단계를 통해 분리될 수 있다.
혈액으로부터 루테리알을 분리하는 방법은 혈액에서 혈소판 및 혈소판 이상의 크기를 가지는 혈액 유래 물질을 분리하는 제1분리단계; 상기 혈소판 및 혈소판 이상의 크기를 가지는 혈액 유래 물질을 분리시킨 혈액을 원심분리하는 제2분리단계; 상기 원심분리에 의해 수득한 상등액으로부터 루테리알을 분리하는 제3분리단계; 및 상기 분리된 루테리알을 세정하는 단계를 포함할 수 있다.
더욱 자세하게, 상기 제1분리단계는 환자에게서 혈액을 채취하고 0.8-1.2μm의 공극을 가지는 필터를 통과시켜 필터링되지 않은 물질은 분리하는 단계를 포함할 수 있다. 상기 제2분리단계는, 1200~5000rpm에서 5~10분간 반복적으로 원심분리하여 엑소좀(exosome)과 같은 일반 마이크로 베지클을 제거하여 상등액을 획득하는 단계를 포함할 수 있다. 상기 제3분리단계는, 원심분리를 통해 수득한 상등액에 적외선을 조사하여 운동성을 가지며 모여드는 루테리알 입자를 피펫을 이용하여 분리하는 단계를 포함할 수 있다. 루테리알은 자가형광 및 운동성의 특성을 가지므로 상기와 같이 적외선을 조사시 상등액으로부터 루테리알 입자를 확인할 수 있다. 이때, 암시야 현미경 또는 공초점 현미경으로 움직이는 루테리알 입자를 확인하면서 피펫을 사용하여 분리할 수 있다. 상기 제3단계에서 분리된 루테리알을 50nm 직경의 공극을 구비하는 필터를 통과시켜 필터링되지 않은 부분만 PBS로 세척하여 루테리알을 수득할 수 있다. 루테리알은 장직경 약 50nm 이상의 크기를 가지므로 상기 과정을 통하여 루테리알 이외의 혈액 유래 미세 물질은 제거할 수 있다. 상기 과정에 의해 장직경 50-800nm인 루테리알을 수득할 수 있으며, 이는 암시야 현미경 또는 공초점 현미경을 통하여 관찰이 가능하다. 상기 수득한 루테리알은 각각 200nm, 400nm, 600nm, 800nm 및 1000nm 필터를 순차적으로 이용하여 크기에 따라 50-200nm (발생기)/200-400nm (성숙기)/400-600nm (분열기)/600-800nm (과분열기)/800nm 이상 (변이체)로 구분할 수 있다.
또 다른 방법으로, 혈액에 루테리알 표면항원에 특이적으로 결합하는 항체가 고정된 입자를 첨가하여 루테리알과 입자의 결합을 유도하고, 입자에 결합된 루테리알을 회수하여 분리할 수도 있다. 이 때, 루테리알 표면항원은 CD39 또는 CD73으로, 각 항원에 특이적으로 결합하는 항-CD39 또는 항-CD73 항체를 자성입자에 고정시키고, 자석을 이용하여 (자성을 가하여) 루테리알과 결합한 입자만을 분리한 다음, 루테리알을 회수함으로써, 루테리알을 수득할 수 있다 (대한민국 출원번호 제10-2015-0004287호).
건강한 사람 내의 정상적인 루테리알의 경우에는 단순히 이중포자(double-spore)를 형성(fission)할 뿐이지만, 만성질병이나 암 환자 내의 루테리알(변이 루테리알)의 경우에는 루테리알끼리 융합(fussion) 또는 응집(coagulation)하거나 폭발(bursting)하여 적혈구나 암세포 등의 세포에도 부착하여 그 형태 및 크기가 정상적인 루테리알과는 달리 비정상적으로 거대해지는 특징이 있다. 변이 루테리알은 부착 성향이 높아, 상기와 같은 cycle에 의하여 융합(fusion)은 더욱 가속화되어 그 크기가 장직경 및/또는 단직경이 약 800nm 이상으로 커지며, 그 중에서 어떤 것들은 200μm(200,000 nm) 이상의 크기를 가지기도 한다.
상기 (b)는 환자에서 기 배출된 체액으로부터 분리된 루테리알 변이체 또는 정상인에서 기 배출된 체액으로부터 분리된 루테리알에 항암제 또는 암 예방제 후보물질을 처리하는 단계이다.
하나의 실시예에서, 상기 후보물질은 루테리알의 정상 상태 유지 또는 비정상 상태의 억제, 감소 또는 회복시키는 제제의 집합일 수 있으며, 예를 들어 천연 추출물, 식품 또는 식물 유래 루테리온, RNAi, 압타머 및 화합물로 구성된 군에서 선택된 하나 이상일 수 있으나, 이에 한정되는 것은 아니다.
상기 후보물질은 예를 들어, 알러젠 제거 옻나무(Rhus Verniciflua Stokes) 추출물 또는 알러젠 제거 옻나무 추출물과 여러 추가 식품 또는 약용식물 유래 추출물의 조합일 수 있고, 더욱 구체적으로 상기 후보물질은 알러젠 제거 옻나무 유래 루테리온을 함유하는 추출물일 수 있다.
상기 알러젠 제거 옻나무 추출물은 옻나무를 채취하고, 옻나무 섭취시 독성으로 인한 알레르기의 생성을 방지하기 위하여 산소 농도가 25~100%(v/v)인 상태로 대기압보다 0.01~1기압 높게 유지하고, 온도를 25~100℃로 가열 처리함으로써 수득될 수 있다.
또한, 알러젠 제거 옻나무 추출물에 이와 다른 종류의 식품 또는 약용식물 유래 추출물 또는 이의 분획물을 공지의 방법을 통해 수득하고, 알러젠 제거 옻나무 추출물과 동일한 비율로 혼합할 수 있다.
하나의 실시예에서, 상기 후보물질은 RNAi (miRNA 또는 siRNA), 식품 또는 식물 유래 루테리온 또는 압타머일 수 있다. 구체적으로, 암세포에서 발현되는 특징적 miRNA에 대한 RNAi 분자 (안티센스 miRNA 또는 siRNA)일 수 있다. 식품 또는 식물 유래 루테리온은 RNAi 분자로, 장직경 및/또는 단직경 50-500nm 크기의 루테리온에 포함되어 RNA 간섭이 나타날 수 있고, 예를 들어 알러젠 제거 옻나무(Rhus Verniciflua Stokes)와 같은 식품 또는 약용식물 유래 루테리알에 포함된 RNAi 분자일 수 있다.
miRNA는 21-25 뉴클레오타이드의 단일쇄(single-stranded) non-coding RNA 분자로서 진핵생물의 유전자 발현을 제어하는 것으로, 특정 유전자의 mRNA 3' UTR(untranslated region)에 결합하여 유전자의 번역과정을 억제하는 것으로 알려져 있다. 실질적으로 동물에서 연구된 miRNA들은 특정 유전자의 mRNA 농도에 영향을 주지 않으면서 단백질 발현량을 감소시킨다. miRNA는 RISC(RNA-induced silencing complex)에 연결되어 특정 mRNA에 상보적으로 결합하지만, miRNA 중앙 부분은 미스매치(mismatch)로 남아있어 기존의 siRNA와는 달리 mRNA를 분해하지 않는다. 그러나, 이러한 동물 miRNA과는 달리, 식품 또는 식물 miRNA는 표적 mRNA와 완전히 일치하여 mRNA 분해를 유도함으로써 RNA 간섭현상을 유도한다.
siRNA는 RNA 간섭 (RNAi) 경로에서, 특히 이중 가닥 RNA (dsRNA)에 의해 촉진되는 서열 특이적 RNA 분해 과정인 RNA 침묵에서 소정의 역할을 한다. siRNA는 소형 3'-돌출부(overhang)를 갖는 이중 가닥이고 침묵을 유도하는 보다 긴 dsRNA 전구체로부터 유도된다. 이는 표적 RNA의 파괴를 인도하는 가이드(guide)로서 작용한다.
식품 또는 약용식물 유래 루테리온은 혈액에서와 분리된 루테리알과 유사한 방법을 이용하여 루테리온 함유 식품 또는 식물 추출물 또는 응축액으로부터 분리한 것을 의미한다. “루테리온(Luterion)”은 식물 또는 식품에 존재하는 생명인자(living organism)로서, 바이러스와 유사한 정도부터 약 500nm까지(정상 피션단계 50~500nm/ 비정상 퓨전단계 800nm 내외 혹은 그 이상)의 크기를 가지는 미세물질을 본 발명자가 명명한 것이다.
상기 루테리온은 DNA 및 RNA를 포함하며, 운동성과 부착성을 가진다는 점에서 엑소좀(exosome)이나 미소포(microvesicle)와는 구별된다. 미토콘드리아는 야누스 그린 B(Janus green B) 및 형광염색인 로다민123(Rhodamine123), 미토트랙커(Mitotracker), 및 DAPI에 의해 발색이 확인되는데, 미토콘드리아와 동일한 염색약에 의해 발색이 확인되었으며, 미토콘드리아와 유사하게 이중막을 가진 막구조로서 내부 크리스테(cristae) 구조를 완성하지 않은 상태의 구조를 가지고, 미토콘드리아와 동일한 레이저 파장 범위에서 관찰된다는 점에서 "유사 미토콘드리아", "미토콘드리아 유사체" 혹은 "미토콘드리아 전구체 (proto-mitochondria)"라고도 지칭할 수도 있다.
상기 식품 또는 식물 유래 루테리온은 혈액 유래 루테리알과는 달리 실온에서도 빠른 시간 내에 용해되거나 소멸되지는 않으며, 장기간 보관하여도 퓨전(fusion)하여 돌연변이화되지 않는 특성이 있다. 뿐만 아니라, 환자의 혈액 유래의 돌연변이된 루테리알과 반응하여 더 이상 퓨전(fussion)이 발생하지 않도록 그 생장을 억제하고, 환자의 혈액 유래의 성숙 단계에 있는 루테리알의 성숙을 억제하여 루테리알이 돌연변이되거나 퓨전(fusion)하여 생장하는 것을 억제할 수 있다.
상기 식품 또는 식물 유래 루테리온의 특성은 루테리온의 RNAi 기능에 의한 것으로 예상되는바, 이러한 RNAi 기능을 이용하여 특정 질병을 갖는 환자 유래 루테리알의 돌연변이화 또는 성숙을 억제하거나 예방할 수 있어, 궁극적으로는 특정 질병을 치료하거나 예방하는 물질로 이용될 수 있다.
상기 식품 또는 식물 유래 루테리온은 그 밀도가 1 이하로 지방 및 지질보다는 높은 밀도를 가지며 단백질보다는 낮은 밀도를 나타내므로, 수증기 증류법에 의하여 식물로부터 분리할 수 있으나, 이에 국한되는 것은 아니다.
예를 들어, 상기 식품 또는 식물 유래 루테리온은 다음의 단계를 포함하여 분리될 수 있다.
(a) 식품 또는 식물에 용매를 첨가하고, 50~90℃에서 공기 또는 산소를 이용하여 간헐적으로 버블링시키면서 진탕하는 단계; (b) 상기 진탕에 의해 기화되는 수증기 또는 가스를 포집한 다음, 냉각시켜 응축액을 수득하는 단계; (c) 0.8~1.2μm의 공극을 가지는 필터를 이용하여 상기 수득된 응축액을 필터링하는 단계; (d) 상기 필터링된 응축액을 원심분리하는 단계; 및 (e) 상기 원심분리된 상등액으로부터 식품 또는 식물 유래 루테리온을 분리하는 단계 (대한민국 출원번호 제10-2015-00001195호).
경우에 따라서, 루테리온을 함유하는 식품 또는 식물 추출물에 루테리온 표면항원에 특이적으로 결합하는 항체가 고정된 입자를 첨가하여 루테리온과 입자의 결합을 유도하고, 입자에 결합된 루테리온을 회수하여 분리할 수도 있다. 이 때, 루테리온 표면항원은 CD39 또는 CD73으로, 각 항원에 특이적으로 결합하는 항- CD39 또는 항-CD73 항체를 자성입자에 고정시키고, 자석을 이용하여 (자성을 가하여) 루테리온과 결합한 입자만을 분리한 다음, 루테리온을 회수함으로써, 루테리온을 수득할 수 있다 (대한민국 출원번호 제10-2015-0004288호).
위 단계를 통해 IR 광원에 반응하는 운동성 있는 장직경 및/또는 단직경이 50-800nm인 루테리온을 분리할 수 있으며, 암시야 현미경이나 컨포컬 현미경을 통해 운동성 관찰이 가능하다.
상기 과정에 의해 수득한 식품 또는 식물 유래의 루테리온은 암시야 현미경 또는 공초점 현미경을 통하여 관찰이 가능하며, 각각 200nm, 400nm, 600nm 및 800nm 필터를 순차적으로 이용하여 크기에 따라 50-200nm (발생기)/ 200-400nm (성숙기)/ 400-600nm (분열기)/ 600-800 nm (과분열기)로 구분할 수 있다.
상기와 같이 분리된 식품 또는 식물 유래 루테리온은 다음 특성을 가진다:
(a) 장직경 및/또는 단직경이 50~800nm인 원형 내지 타원형으로, 운동성이 있음;
(b) 핵산 함유;
(c) 면역화학형광염색시 미토콘드리아와 유사한 반응을 나타냄;
(d) 퓨전(fusion) 및/또는 피전(fission) 생태양식을 나타냄;
(e) 퓨전이 없을 경우 크기가 500nm까지 성숙하고, DNA 함유 유사 미토콘드리아로 성숙하며, SEM 또는 TEM 전자현미경사진상에서 미토콘드리아와 유사한 구조를 나타냄;
(f) 엑소좀과는 다른 빛 반응을 나타냄; 및
(g) IR 조사시 피전(fission)이 발생함.
경우에 따라서, 상기 루테리온은 다음의 특성 중 하나 이상을 추가로 가지는 것을 특징으로 할 수 있다:
(i) 자가형광 (autofluorescence)을 나타냄;
(j) 장직경 및/또는 단직경 200~400nm 크기에서 ATP를 생산함;
(k) 부착성이 있음;
(l) 혈액 유래 루테리알과 반응시, 혈액 유래 루테리알의 융합(fusion)을 억제하거나 피션(fission)을 촉진함; 및
(j) CD39 또는 CD73의 표면항원을 가짐.
상기 식품 또는 식물 유래 루테리온을 50-200nm/200-400nm/400-600nm/600-800nm 4 종류로 분류 보관할 수 있다. 루테리온을 분리한 이후 쉽게 용해되거나 형태가 변하는 특징이 있어 주의가 필요하며, 장기 보관시는 짧은 시간내에 영하 80℃ 이하로 냉동 보관하는 것이 바람직하다. 단기 보관시(라이브 상태)는 영상 4℃ 내외가 바람직하고, 식염수 용액 0.5% 에 담가 보관하며, 30cm 거리 내외에서 저온 IR을 조사해 주는 것이 바람직하다. 단기 보관시는 PBS 용액에 보관할 수 있으며, 밀폐 보관으로 질소 충진 팩킹할 수도 있다. 경우에 따라서, 식품 또는 식물 루테리온은 플라보노이드 피세틴, 부테인 및 설퍼레틴으로 이루어진 군에서 선택된 하나 이상의 보존제를 포함하여 보관할 수 있다.
경우에 따라서, 루테리온에 수분을 첨가하고 IR광선 조사하에 18~30℃에서 배양하여 식물 루테리온을 배양하거나, 장직경 및/또는 단직경 400nm~800nm 식물 유래 루테리온에 수분을 첨가하고 IR광선 조사하에 18~30℃ (바람직하게는 20~25℃)에서 배양(이에 의해 식물 루테리온의 피션(fission) 유도)할 수 있다. 상기 배양시 첨가되는 수분은 식염수 또는 PBS 용액일 수 있으나 이에 제한되지 않는다. 배양 전의 식물 유래 루테리온은 위에서 설명한 분리방법에 따라 수득할 수 있으며, 그 크기가 장직경 및/또는 단직경 50~500nm인 것을 사용할 수 있다. 상기 본 발명의 배양 방법에 따라 배양된 식물유래 루테리온의 배양 후 크기는 장직경 및/또는 단직경 300~500nm일 수 있다. 이때, 현미경으로 관찰하면서 루테리온의 크기가 장직경 및/또는 단직경 500 nm을 넘지 않도록 할 수 있으며, 배양이 끝나면 크기별로 분류하여 영하 80℃로 냉각하여 보관하거나 질소로 충진하여 보관 또는 영상에서 보관할 수 있으며 보관시 보존제를 첨가할 수 있다.
루테리온은 모든 식물에 존재하므로 제한되지는 않으나, 바람직하게 표 1~4에서 선택된 약용식물을 사용할 수 있다. 루테리온은 식물의 줄기 쪽에 다량 분포하는 것으로 예상되는바, 줄기 부분에서 루테리온을 분리하는 것이 바람직하다.
표 1
Figure PCTKR2015000405-appb-T000001
표 2
Figure PCTKR2015000405-appb-T000002
표 3
Figure PCTKR2015000405-appb-T000003
표 4
Figure PCTKR2015000405-appb-T000004
또한, 압타머는 고전적인 왓슨-클릭(Watson-Crick) 염기쌍 형성 이외의 상호작용을 통하여 분자에 대해 고도의 특이적 결합 친화도를 보이는 핵산 분자이다. 압타머는 선택된 표적에 특이적으로 결합하여 표적의 활성을 조정할 수 있는 것으로서, 예를 들면 압타머 결합을 통해 표적의 작용 능력을 차단할 수 있다. 압타머는 크기가 10∼15 kDa (30∼45 뉴클레오티드)으로서, 나노몰 이하의 친화도로 그 표적에 결합하며, 밀접하게 관련된 표적들에 대해 차별성을 나타낸다.
상기 후보물질은 합성 또는 천연화합물의 라이브러리로부터 얻을 수 있다. 화합물의 라이브러리를 얻는 방법은 당업계에 공지되어 있으며, Brandon Associates(Merrimack, NH) 및 Aldrich Chemical(Milwaukee, WI)로부터 상업적으로 입수될 수 있다. Biotics(Sussex, UK), Xenova(Slough, UK), Harbor Branch Oceangraphics Institute(Ft. Pierce, FIa.), 및 PharmaMar, U.S.A.(Cambridge, Mass.)를 포함하는 많은 출처로부터 박테리아, 진균, 식품 또는 약용식물, 및 동물 추출물 형태의 천연 화합물 라이브러리가 상업적으로 입수될 수 있다.
상기 (c)는 후보물질 처리 전 대조군과 비교하여, 루테리알 변이체의 크기를 감소시키거나, 형태를 변화시키거나 또는 운동성을 증가시키는 후보물질을 항암제로 선별하는 단계 또는 (c) 후보물질 처리 전 대조군과 비교하여, 루테리알의 크기 증가를 억제시키거나, 형태 변화를 최소화하거나 또는 운동성을 유지시키는 후보물질을 암 예방물질로 선별하는 단계이다.
정상 상태의 루테리알은 이중포자 (double-spore)를 형성한 후 더 이상 증식하지 않으나 (도 35), 암으로 확진받은 환자의 혈액 내에서 발견되는 루테리알 변이체는 줄기세포와 유사하게 무한히 증식하는 특성을 가져 800nm 이상부터 200μm(200,000nm) 이상의 크기를 가진다. 또한, 암으로 확진된 환자의 혈액 내에서 발견되는 루테리알 변이체는 운동성이 정상 상태의 루테리알에 비해 현저히 낮아진다. 이러한 루테리알의 운동성은 나노트래킹 속도를 통해 정량할 수 있다.
하나의 실시예에서, 후보물질 처리 전 루테리알 변이체 대조군과 비교하여, 루테리알 변이체의 크기를 감소시키는 후보물질을 항암제로 선별할 수 있다. 상기 단계 (c)에서 항암제 후보물질이 존재하지 않는 상태에서 암 환자의 루테리알 변이체는 변형된 군집 형태를 형성하는 현상으로 비정상적 융합을 나타내어 크기가 정상 루테리알에 비해 커진다. 그러나, 항암제 후보물질 존재에 의해 융합이 억제되어 크기가 감소하는 경우 항암제로 선택할 수 있다.
상기 단계 (c)에서 항암제 후보물질이 존재하지 않는 상태에서 암 환자 유래 루테리알 변이체는 예를 들어, 장직경 및/또는 단직경이 약 1000nm 이상인 크기에서 3500 nm 이하, 최대 200μm 크기를 가지는 것일 수 있다. 그러나, 후보물질 처리 30분 이상, 바람직하게 1시간 이상 후, 후보물질 처리 전 대조군과 비교하여, 200~2,000nm의 크기로 감소할 수 있다.
또한, 루테리알 변이체의 크기와 관련하여 후보물질 처리 30분 이상, 바람직하게 1시간 이상 후, 후보물질 처리 전 루테리알 변이체 직경의 약 70% 이하, 예를 들어 후보물질 처리 전 루테리알 변이체 장직경 또는 단직경의 약 10~70%로 감소하면, 후보물질을 유효한 항암제로 선별할 수 있다. 본 출원의 시험예 1에 따르면, 항암제 후보물질인 칠피, 연교, 백복령, 당귀 및 참다래 유래 루테리온 처리 1시간 후, 각 처리군에서 루테리알 변이체는 대조군에 비해 후보물질 처리 전 루테리알 변이체 장직경의 13~63%, 후보물질 처리 전 루테리알 변이체 단직경의 12~67%로 감소하였음을 확인하였다.
또 하나의 실시예에서, 후보물질 처리 전 대조군과 비교하여, 루테리알 변이체의 형태를 변화시키는 후보물질을 항암제로 선별할 수 있다.
항암제 후보물질 존재에 의해 암 환자의 루테리알에서 관찰되는 형태가 변형되는 경우 항암제로 선택할 수 있는데, 형태 변형 감소는 편모형, 미세관형, 매스형, 로드형 또는 복합형을 가지는 루테리알 변이체의 수가 감소하거나, 정상인의 루테리알 형태인 원형 또는 타원형으로 회복하는 것을 의미할 수 있다. 예를 들어, 항암제 후보물질이 존재하지 않는 대조군과 비교하여, 30분 이상, 바람직하게 1시간 이상 후, 편모형 (도 4), 미세관형 (도 5), 매스형 (도 6), 로드형 (도 7) 또는 복합형 루테리알이 80% 이하, 바람직하게 50% 이하, 더욱 바람직하게 30% 이하로 감소한다면 항암제로 선택할 수 있다. 이 때, 후보물질을 처리하여 편모형, 미세관형, 매스형, 로드형 또는 복합형을 가지는 루테리알 변이체의 수가 항암제 후보물질이 존재하지 않는 대조군과 비교하여 예를 들어, 5~80%, 바람직하게 10~50%, 더욱 바람직하게 10~30%로 존재한다면, 항암제로 선택할 수 있다.
상기 편모형의 루테리알이 발견된 종양 의심 환자의 경우 대부분의 4기암 진단받은 환자에게서 편모형의 종양이 발견되는 경향이 관찰되었다. 이에, 편모형의 형태 변형을 감소 또는 완화시키거나, 원형 또는 타원형으로 회복시키는 것으로 스크리닝된 치료제는 4기암 환자의 치료에 적합한 치료제일 수 있다.
상기 매스형의 루테리알이 발견된 종양 의심 환자의 경우 간, 대장, 소화기, 남성 직장, 및/또는 여성 자궁에 종양이 발견되는 경향이 관찰되었다. 이에, 매스형으로의 형태 변형을 감소 또는 완화시키거나, 원형 또는 타원형으로 회복시키는 것으로 스크리닝된 치료제는 간, 대장, 소화기, 남성 직장 및/또는 여성 자궁암에 적합한 치료제일 수 있다.
또한, 상기 로드형의 루테리알이 발견된 종양 의심 환자의 경우 폐, 췌장, 갑상선, 뼈, 뇌, 남성전립선, 여성 난소 및/또는 유방에 종양이 발견되는 경향이 관찰되었다. 이에, 로드형으로의 형태 변형을 감소 또는 완화시키거나, 원형 또는 타원형으로 회복시키는 것으로 스크리닝된 치료제는 폐, 췌장, 갑상선, 뼈, 뇌, 남성전립선, 여성 난소 및/또는 유방암에 적합한 치료제일 수 있다.
상기 매스형과 로드형이 복합된 복합형의 루테리알이 발견된 종양 의심 환자의 경우 4기 전이암으로 진단되었다. 이에, 복합형으로의 형태 변형을 감소 또는 완화시키거나, 원형 또는 타원형으로 회복시키는 것으로 스크리닝된 치료제는 4기 전이암의 예방 또는 치료에 적합할 수 있다.
또 다른 실시예에서, 루테리알 변이체에서는 운동성이 감소하여 나노 트랙킹 속도가 10nm/sec 미만에서 0.5nm/sec 내지 운동성이 없는 0nm/sec을 나타낼 수 있다. 그러나, 후보물질 처리 30분 이상, 바람직하게 1시간 이상 후, 운동성 저하도의 변화폭이 감소 또는 억제되거나, 나노 트랙킹 속도가 12nm/sec 이상, 예를 들어 50nm/sec 이상 600 nm/sec 이하, 바람직하게 100nm/sec 이상 500 nm/sec 이하로 회복된다면 유효한 항암제로 선택할 수 있다.
운동성과 관련하여, 본 발명에서는 전기영동이동도를 측정하여 후보물질 처리시 운동성 변화를 확인할 수 있다. 본 발명의 "전기영동이동도"란 전기영동에 의한 하전입자의 이동속도를 그 장소의 전장의 강도로 나누어서 얻어낸 값으로 입자의 이동속도가 높으면 입자의 운동성이 높다고 결정할 수 있다.
루테리알 변이체에서는 운동성이 감소하여 전기영동이동도가 0.5μm cm/Vs 미만에서 운동성이 없는 0 μm cm/Vs일 수 있다. 루테리알 변이체의 운동성과 관련하여 후보물질 처리 30분 이상, 바람직하게 1시간 이상 후, 운동성이 회복되어 후보물질 처리 전 루테리알 변이체 대조군과 비교하여 전기영동이동도가 30% 이상 증가, 예를 들어 30~300% 증가한다면 유효한 항암제로 선택할 수 있다. 본 출원의 시험예 1에 따르면, 항암제 후보물질인 칠피, 연교, 백복령, 당귀 및 참다래 유래 루테리온 처리 1시간 후, 각 처리군에서 루테리알 변이체는 대조군에 비해 전기영동이동도가 33~270% 증가하였음을 확인하였다.
본 출원의 발명자들은 크기가 1100~3100nm이고, 운동성이 극히 낮거나, 없는 상태인 암 환자 유래 루테리알 변이체를 이용하여 후보물질 투여에 따른 변화를 확인함으로써 항암제를 스크리닝한 결과, 후보물질 처리 1시간 경과 후 루테리알 변이체의 직경이 후보물질 처리 전 루테리알 변이체 직경의 70% 이하로 감소하여 크기가 감소하거나, 나노 트랙킹 속도가 100nm/sec 이상으로 회복, 전기영동이동도가 30% 이상 증가되어 운동성이 회복되면, 후보물질을 항암제로 선별할 수 있음을 보여주었다.
암 예방제 스크리닝은 (c) 후보물질 처리 전 대조군과 비교하여, 루테리알의 크기 증가를 억제시키거나, 형태 변화를 최소화하거나 또는 운동성을 유지시키는 후보물질을 암 예방물질로 선별하는 단계를 포함한다.
암 예방제를 스크리닝하는 경우 상기 단계 (c)는 암 예방제 후보물질을 처리한 군에서 정상인 유래 루테리알의 융합이 예를 들어, 30분 이상, 바람직하게 1시간 이상 동안 관찰되지 않아 크기가 유지되거나, 정상인 유래 루테리알의 장직경 또는 단직경이 암 예방제 후보물질 처리전 정상 유래 루테리알의 10% 이상 증가하지 않는 경우 후보물질을 암 예방물질로 선별할 수 있다.
또한, 암 예방제 후보물질을 처리한 군에서 30분 이상, 바람직하게 1시간 이상 동안 정상인 유래 루테리알이 원형 또는 타원형으로 유지 즉, 100%의 루테리알이 원형 또는 타원형이거나, 편모형, 미세관형, 매스형, 로드형 또는 복합형 루테리알로의 형태 변화를 최소화, 즉 편모형, 미세관형, 매스형, 로드형 또는 복합형 루테리알로 형태가 변화한 루테리알이 20% 이하인 경우 후보물질을 암 예방물질로 선별할 수 있다.
더욱이, 암 예방제 후보물질을 처리한 군에서 30분 이상, 바람직하게 1시간 이상 동안 운동성이 유지, 즉 나노 트랙킹 속도 100nm/sec 이상으로 유지되고 있다면 후보물질을 암 예방제로 선별할 수 있다.
경우에 따라서, 명확한 암 예방제 스크리닝을 위해 화학적 또는 물리적 처리를 통해 루테리알에 융합 (fusion)과 같은 변형을 유도 (negative control)하거나, 변이 유발 조건 예를 들어 36℃, 습도 50% 이상의 조건으로 변이 루테리알을 배양한 다음 후보물질을 처리하여 루테리알의 크기, 형태 또는 운동성 변화가 작거나 감소되는 것으로 관찰되는 경우의 후보물질을 암 예방제로 선별할 수 있다.
예를 들어, 리졸레시틴(lysolecithin)이나 폴리에틸렌글리콜 6000(polyethylen glycol 6000)과 같은 세포 융합 유도 물질을 처리하여 루테리알의 융합을 유도한 다음, 암 예방제 후보물질 존재하에서 배양하여, 루테리알의 크기 증가, 형태 변형 또는 운동성 저하도와 같은 변화를 감소시키거나 억제시키는 경우의 후보물질을 암 예방물질로 선별할 수 있다.
상기 후보물질에 의한 루테리알의 크기, 형태 또는 운동성 변화 여부는 예를 들어, 로다민 123 (Rhodamine 123), 미토트랙커 (Mito-tracker), 아크리딘 오렌지 (Acridine Orange), DAPI 및 야누스 그린 B (Janus green B)로 구성되는 군에서 선택되는 1 이상의 염색약으로 염색하여 발색이 확인되는 루테리알을 현미경 촬영함으로써 확인할 수 있다.
상기 루테리알의 융합 억제, 크기, 형태 또는 운동성 변화 여부 확인에 사용되는 현미경은 형광 발색을 확인할 수 있는 현미경이라면 특별히 제한되지 않으며, 당업자가 통상 사용하는 암시야 현미경 (Dark field micro-scope ; Ultra microscope), 라만 분광기(Raman spectrometer, 532nm의 파장 사용), Leica, AFM(Atomic Force Microscope), MFM(Magnetic force microscope), STM (Scanning tunneling microscope), CLSM (Confocal Laser Scanning Microscope), NSOM (Near-field scanning optical microscope), SEM (Scanning Electron Microscope) 또는 TEM (Transmission Electron Microscope) 등을 통해 확인할 수 있다.
실시예
이하, 실시예를 통하여 본 발명을 더욱 상세히 설명하고자 한다. 이들 실시예는 오로지 본 발명을 예시하기 위한 것으로서, 본 발명의 범위가 이들 실시예에 의해 제한되는 것으로 해석되지는 않는 것은 당업계에서 통상의 지식을 가진 자에게 있어서 자명할 것이다.
실시예 1: 루테리알 분리
표 5와 같이, (1) 폐암 환자, (2) 췌장암 환자, (3) 대장암 환자, (4) 간암 환자, (5) 전립선암 환자, (6) 유방암 환자, (7) 유두갑상선암 환자, (8) 신장암 환자, (9) 백혈병 환자, (10) 말기암(위암, 대장암, 당남암) 환자 및 (11) 4기 전이암(폐암, 전립선암, 유방암)으로 확진된 환자의 혈액에서 루테리알을 수득하였다. 암으로 확진된 환자에서 1차적으로 혈액 분리 후 원심분리하여 혈액 내 물질을 다운시키고 5-10 방치시킨 후 상층액을 피펫으로 분리한 다음, 혈액 100~200ul에 5ul의 CD39 항체-철자성나노입자 또는 CD73 항체-철자성나노입자를 첨가하여 30분간 결합시킨 후 자석분리기에 1~2분 놓아 두어 루테리알-자성나노입자를 모으고 상층액을 버려 세척하였다. 이후, 루테리알과 결합된 철자성나노입자에 0.033wt% BSA (Bovine Serum Albumin)/PBS완충용액을 가하여, 25℃에서 1 시간 동안 인큐베이팅 시킨 후, 자석을 이용하여 BSA가 흡착된 철자성나노입자 만을 분리하고, BSA가 흡착된 철자성나노입자에 다시 일정량의 PBS를 가해 인큐베이팅을 통해 탈착시켜 루테리알을 분리하였다. 분리된 루테리알은 FP-640 스펙트로플루오로미터 (spectroflurorometer) (JASCO)에 의해 280nm에서 표준 검량선법을 이용하여 정량분석하였다 (방출슬릿: 0.5nm, 흡수슬릿: 0.5 nm). 공초점 레이저 주사현미경을 이용하여 암 환자 유래 크기가 1,000~3,200nm인 루테리알 변이체를 수득하였다.
표 5
Figure PCTKR2015000405-appb-T000005
실시예 2: 후보물질 획득
약용식물인 칠피, 연교, 백복령, 당귀 및 참다래 각각 100g을 20-30배 크기 즉 2-3리터 용기 크기에 맞추어 절단하여 용기에 넣고, 식물의 5~8배인 500~800g (바람직하게는 식물의 6배 즉 600g)의 증류수를 용기에 투입한 후, 80℃에서 약 8시간 정도 전탕을 하여 열수 추출하였다. 100~200ul 열수추출물에 CD39 항체-철자성나노입자 또는 CD73 항체-철자성나노입자를 첨가하여 30분간 결합시킨 후 자석분리기에 1~2분 놓아 두어 루테리온-자성나노입자를 모으고 상층액을 버려 세척하였다. 이후, 루테리온과 결합된 철자성나노입자에 0.033wt% BSA (Bovine Serum Albumin)/PBS 완충용액을 가하여, 25℃에서 1 시간 동안 인큐베이팅 시킨 후, 자석을 이용하여 BSA가 흡착된 철자성나노입자 만을 분리하고, BSA가 흡착된 철자성나노입자에 다시 일정량의 PBS를 가해 인큐베이팅을 통해 탈착시켜 칠피, 연교, 백복령, 당귀 및 참다래 각각에서 유래한 루테리온을 분리하였다.
이러한 과정에 의해 장직경 50-500nm인 루테리온을 수득할 수 있으며, 이는 암시야 현미경 또는 공초점 현미경을 통하여 관찰 확인이 가능하였다. 위와 동일한 방법으로 표 1~4에 기재된 약용식물로부터 루테리온을 수득할 수 있다.
시험예 1: 항암제 스크리닝
실시예 2에서 PBS 용액 중 포함된 칠피, 연교, 백복령, 당귀 및 참다래 유래 루테리온 각각을 실시예 1에서 분리된 루테리알 변이체에 처리하였다. 연교, 백복령, 당귀 및 참다래 유래 루테리온을 1, 5, 10, 50, 100 및 500 μg/ml의 농도로 처리 (50 μg/ml의 경우, 약 7×108 개/ml의 루테리온 포함)하였으며, 칠피 유래 루테리온을 추가 희석하여 0.1, 0.5, 1, 5, 10 및 50 μg/ml의 농도로 처리 (5 μg/ml의 경우, 약 7x107 개/ml의 루테리온 포함)하였다.
PBS 중에 30℃, pH 7.3의 조건에서 30분 및 1시간 경과한 이후, 크기 및 운동성 변화를 확인하였다. 루테리알 변이체의 크기 변화는 공초점 레이저 주사현미경을 이용하여 루테리알 변이체의 직경 변화를 촬영하여 확인하였고, 운동성 변화는 미국 3i 사의 나노 트랙킹으로 루테리알 변이체 중심에 트랙킹을 설정하고 나노 트랙킹을 작동시켜 루테리알 변이체의 이동과 함께 실시간 이동궤적을 표기하여 초당 속도를 계산함으로써 나노 트랙킹 속도를 측정하였다. 또한, Malvern ZetaSizer Nano ZSP 장비를 이용하여 루테리알 변이체를 셀(Universal Dip Cell: ZEN1002)에 넣고, 전극 2개를 침지시킨 후, 하전된 입자가 반대 전하의 전극 쪽으로 이동하는 전기영동이동도(electrophoretic mobility) 값을 측정하였다.
표 6과 같이, 칠피 (루테리온 크기 장직경 X 단직경: 400nm × 350nm), 연교 (400nm × 370nm), 백복령 (450nm × 300nm), 당귀 (400nm × 300nm) 및 참다래 (420nm × 330nm) 유래 루테리온 각각 투여 전 루테리알 변이체 (대조군)와 비교하여, 칠피, 연교, 백복령, 당귀 및 참다래 유래 루테리온 각각 투여 후 암 환자 유래 루테리알 변이체의 크기가 감소하고, 운동성이 회복되었음을 확인하였다.
표 6
Figure PCTKR2015000405-appb-T000006
그 결과를 각각 도 36 내지 도 40에 나타내었으며, 도 36 내지 도 40에 따르면 칠피, 연교, 백복령, 당귀 및 참다래 유래 루테리온 각각을 처리하지 않은 암 환자 유래의 루테리알 변이체 대조군 (도 36 내지 도 40의 (a))에서는 i) 약 1,100~3,100nm의 크기 및 ii) 약 0~10 nm/sec의 나노 트랙킹 속도, 약 0~0.5μm cm/Vs의 전기영동이동도가 나타남을 확인하였다.
그러나, 칠피, 연교, 백복령, 당귀 및 참다래 유래 루테리온 각각을 처리한 군 (30분 경과 후: 도 36 내지 도 40의 (b) 및 1시간 경과 후: 도 36 내지 도 40의 (c))에서 1시간 경과 후 루테리알 변이체의 크기가 현저하게 감소하였으며, 일부는 정상 상태의 루테리알 (약 800nm 이하)로 크기가 감소하였음을 확인하였다.
칠피 유래 루테리온을 처리한 군 (도 36(c))에서는 1시간 경과 이후 루테리알 변이체(대조군) 장직경의 약 28%로 감소, 루테리알 변이체 단직경의 약 22%로 감소하였고, 연교 유래 루테리온을 처리한 군 (도 37(c))에서는 1시간 경과 이후 루테리알 변이체(대조군) 장직경의 약 63%로 감소, 루테리알 변이체 단직경의 약 67%로 감소하였으며, 백복령 유래 루테리온을 처리한 군 (도 38(c))에서는 1시간 경과 이후 루테리알 변이체(대조군) 장직경의 약 57%로 감소, 루테리알 변이체 단직경의 약 38%로 감소하였고, 당귀 유래 루테리온을 처리한 군 (도 39(c))에서는 1시간 경과 이후 루테리알 변이체(대조군) 장직경의 약 13%로 감소, 루테리알 변이체 단직경의 약 12%로 감소하였으며, 참다래 유래 루테리온을 처리한 군 (도 40(c))에서는 1시간 경과 이후 루테리알 변이체(대조군) 장직경의 약 27%로 감소, 루테리알 변이체 단직경의 약 30%로 감소하였음을 확인하였다.
운동성과 관련하여, 나노 트랙킹 속도는 루테리알 변이체에서 10 nm/sec 미만이었으나, 칠피, 연교, 백복령, 당귀 및 참다래 유래 루테리온 각각을 처리한 군에서 약 100-500 nm/sec의 운동성을 회복하였음을 확인하였다.
또한, 전기영동이동도 측정 결과, 루테리알 변이체에서 약 0~0.5 μm cm/Vs 미만의 전기영동도가 측정되었으나, 칠피, 연교, 백복령, 당귀 및 참다래 유래 루테리온 각각을 처리한 군에서 운동성이 회복되어, 칠피 유래 루테리온 처리군에서는 전기영동이동도가 약 0.73 μm cm/Vs로, 루테리알 변이체 (대조군)에 비해 약 46% 증가하였고, 연교 유래 루테리온 처리군에서는 약 0.4μm cm/Vs로, 루테리알 변이체 (대조군)에 비해 약 33% 증가하였으며, 백복령 유래 루테리온 처리군에서는 약 0.31 μm cm/Vs로, 루테리알 변이체 (대조군)에 비해 약 210% 증가하였음을 확인할 수 있고, 당귀 유래 루테리온 처리군에서는 약 0.37 μm cm/Vs로, 루테리알 변이체 (대조군)에 비해 약 270% 증가하였음을 확인할 수 있으며, 참다래 유래 루테리온 처리군에서는 약 0.86 μm cm/Vs로, 루테리알 변이체 (대조군)에 비해 약 72% 증가하였음을 확인할 수 있다.
결론적으로, 약용식물인 칠피, 연교, 백복령, 당귀 및 참다래 유래 루테리온 각각을 처리한 루테리알에서 대조군에 비해 응집을 감소시키고, 크기를 감소시키며, 형태 변화를 제어하할 뿐 아니라, 암 환자에서 발견되는 루테리알 운동성 저하를 회복시킬 수 있음을 확인할 수 있다. 따라서, 약용식물인 칠피, 연교, 백복령, 당귀 및 참다래 유래 루테리온 각각을 항암제로 선별하였다.
시험예 2: 선별된 후보물질의 in vitro 암세포주 viability 측정
시험예 1에서 항암 효과가 있는 것으로 확인된 칠피, 연교, 백복령, 당귀 및 참다래 유래 루테리온 각각에 대한 암세포주의 증식 억제 효과를 확인하였다. 한국세포주은행 (KCLB)에서 제공된 암세포주 AsPC-1 (Pancreatic cancer cell line), A549 (Lung cancer cell line) 및 BT-20 (Breast cancer cell line) 각각을 사용하였고, 10%의 송아지 혈청을 함유한 RPMI1640 과 DMEM 배지를 사용하여 배양하였다.
각 세포주를 성장속도에 따라 농도를 다르게 96-well plate에 seeding한 다음, 16~24시간 동안 37℃에서 배양한 다음, 실시예 2에서 분리된 칠피, 연교, 백복령, 당귀 및 참다래 유래 루테리온을 5가지 농도로 단계적으로 처리하였다.
72시간 후에 각 well에 15 ㎕ MTT 염색용액 (Promega)을 넣은 후 37℃에서 4시간 방치한 뒤 수용화 용액/정지용액 혼합물을 한 well당 100 ㎕씩 처리해 37℃에 밤새도록 두었다. 각 웰에 150 μl의 DMSO를 첨가한 후 590 nm 파장에서 마이크로플레이트 리더기(Bio-rad, 미국)를 사용하여, 각 세포주의 세포 생존력을 측정하였다.
그 결과, 도 41 내지 도 43에 나타난 바와 같이, 칠피, 연교, 백복령, 당귀 및 참다래 유래 루테리온 각각은 농도 의존적으로 AsPC-1 (Pancreatic cancer cell line), A549 (Lung cancer cell line) 및 BT-20 (Breast cancer cell line) 암세포주 각각의 생존력 감소, 즉 암세포주 각각의 증식을 유의적으로 억제시키는 것을 확인할 수 있었다.
이상으로 본 발명의 내용을 상세히 기술하였는바, 당 업계의 통상의 지식을 가진 자에게 있어서, 이러한 구체적 기술은 단지 바람직한 실시양태일 뿐이며, 이에 의해 본 발명의 범위가 제한되는 것이 아닌 점은 명백할 것이다. 따라서 본 발명의 실질적인 범위는 첨부된 청구항들과 그것들의 등가물에 의하여 정의된다고 할 것이다.
본 발명자들에 의해 신규 확인된, 암 환자에서 분리된 루테리알 변이체를 기반으로 항암제 또는 암 예방제를 스크리닝할 수 있는 방법을 제공함으로써, 항암제 또는 암 예방제 후보물질 처리시 나타나는 루테리알 변이체의 크기, 형태 또는 운동성 변화나, 정상 루테리알의 정상 상태 유지 여부를 관찰하여, 항암제 또는 암 예방제를 비교적 단시간에 용이하게 스크리닝할 수 있다.

Claims (15)

  1. (a) 환자에서 기 배출된 체액으로부터 루테리알 변이체 (mutant luterial)를 분리하는 단계;
    (b) 상기 분리된 루테리알 변이체에 항암제 후보물질을 처리하는 단계; 및
    (c) 후보물질 처리 전 대조군과 비교하여, 루테리알 변이체의 크기를 감소시키거나, 형태를 변화시키거나 또는 운동성을 증가시키는 후보물질을 항암제로 선별하는 단계를 포함하는 항암제 스크리닝 방법.
  2. (a) 정상인의 기 배출된 체액으로부터 루테리알을 분리하는 단계;
    (b) 암 예방 후보물질 존재하에 상기 분리된 루테리알을 배양하는 단계; 및
    (c) 후보물질 처리 전 대조군과 비교하여, 루테리알의 크기 증가를 억제시키거나, 형태 변화를 최소화하거나 또는 운동성을 유지시키는 후보물질을 암 예방물질로 선별하는 단계를 포함하는 암 예방제 스크리닝 방법.
  3. 제1항 또는 제2항에 있어서,
    상기 단계 (a)에서 기 배출된 체액은 혈액, 타액, 림프관, 정액, 질액, 모유, 초유, 제대혈, 뇌세포, 척수 및 골수로 구성된 군에서 선택되는 것을 특징으로 하는 스크리닝 방법.
  4. 제1항 또는 제2항에 있어서,
    상기 단계 (b)의 후보물질은 천연 추출물, 식품 또는 식물 유래 루테리온, RNAi, 압타머 및 화합물로 구성된 군에서 선택된 하나 이상인 것을 특징으로 하는 스크리닝 방법.
  5. 제4항에 있어서,
    상기 식물 유래 루테리온은 칠피, 연교, 백복령, 당귀 및 참다래로 이루어진 군에서 선택된 하나 이상의 약용식물인 것을 특징으로 하는 스크리닝 방법.
  6. 제4항에 있어서,
    상기 식물 유래 루테리온은 장직경 또는 단직경이 50-500nm인 것을 특징으로 하는 스크리닝 방법.
  7. 제1항에 있어서,
    상기 단계 (c)는 후보물질 처리 전 대조군과 비교하여 편모형, 미세관형, 매스형, 로드형 또는 복합형을 가지는 루테리알 변이체가 80% 이하로 감소하거나, 루테리알 변이체가 원형 또는 타원형의 루테리알로 회복되면 항암제 후보물질을 항암제로 선별하는 것을 특징으로 하는 스크리닝 방법.
  8. 제1항에 있어서,
    상기 단계 (c)는 후보물질 처리 1시간 후, 루테리알 변이체의 크기가 후보물질 처리 전 루테리알 변이체 직경의 70% 이하로 감소하면 항암제 후보물질을 항암제로 선별하는 것을 특징으로 하는 스크리닝 방법.
  9. 제8항에 있어서,
    후보물질 처리 1시간 후, 루테리알 변이체의 크기가 후보물질 처리 전 루테리알 변이체 장직경 및 단직경의 70% 이하로 감소하면 항암제 후보물질을 항암제로 선별하는 것을 특징으로 하는 스크리닝 방법.
  10. 제1항에 있어서,
    상기 단계 (c)는 후보물질 처리 전 대조군과 비교하여, 나노 트랙킹 속도가 12nm/sec 이상으로 회복되면 항암제 후보물질을 항암제로 선별하는 것을 특징으로 하는 스크리닝 방법.
  11. 제10항에 있어서,
    후보물질 처리 전 대조군과 비교하여, 나노 트랙킹 속도가 100~500nm/sec으로 회복되면 항암제 후보물질을 항암제로 선별하는 것을 특징으로 하는 스크리닝 방법.
  12. 제1항에 있어서,
    상기 단계 (c)는 후보물질 처리 전 대조군과 비교하여, 전기영동이동도가 30% 이상 증가하면 항암제 후보물질을 항암제로 선별하는 것을 특징으로 하는 스크리닝 방법.
  13. 제1항 또는 제2항에 있어서,
    상기 단계 (c)는 루테리알을 로다민123(Rhodamine123), 미토트랙커(Mito-tracker), 아크리딘 오렌지(Acridine Orange), DAPI 및 야누스 그린 B (Janus green B)로 구성되는 군에서 선택되는 1 이상의 염색약으로 염색하고 그 변화를 현미경으로 관찰하는 것을 특징으로 하는 스크리닝 방법.
  14. 제13항에 있어서,
    상기 루테리알을 암시야 현미경, 라만 분광기 (Raman spectrometer), Leica, AFM(Atomic Force Microscope), MFM(Magnetic force microscope), STM (Scanning tunneling microscope), CLSM (Confocal Laser Scanning Microscope), NSOM (Near-field scanning optical microscope), SEM (Scanning Electron Microscope) 또는 TEM (Transmission Electron Microscope)으로 관찰하는 것을 특징으로 하는 스크리닝 방법.
  15. 제14항에 있어서,
    상기 루테리알을 암시야 현미경, 라만 분광기 (Raman spectrometer), Leica, AFM(Atomic Force Microscope), MFM(Magnetic force microscope), STM (Scanning tunneling microscope), CLSM (Confocal Laser Scanning Microscope), NSOM (Near-field scanning optical microscope), SEM (Scanning Electron Microscope) 또는 TEM (Transmission Electron Microscope)으로 관찰하는 것을 특징으로 하는 스크리닝 방법.
PCT/KR2015/000405 2014-01-14 2015-01-14 루테리알의 형태특성을 이용한 암 예방제 또는 항암제의 스크리닝 방법 WO2015108342A1 (ko)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201580008493.6A CN106574927A (zh) 2014-01-14 2015-01-14 使用luterial的形态学特征筛选癌症预防剂或抗癌剂的方法
EP15737047.9A EP3096141A4 (en) 2014-01-14 2015-01-14 Method for screening cancer prevention agent or anticancer agent using morphological characteristics of luterial
JP2016564930A JP2017505448A (ja) 2014-01-14 2015-01-14 ルテリアルの形態特性を用いた癌予防剤または抗癌剤のスクリーニング方法
US15/111,183 US20160334389A1 (en) 2014-01-14 2015-01-14 Method for screening cancer prevention agent or anticancer agent using morphological characteristics of luterial
HK17105189.1A HK1231558A1 (zh) 2014-01-14 2017-05-22 使用 的形態學特徵篩選癌症預防劑或抗癌劑的方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2014-0004527 2014-01-14
KR20140004527 2014-01-14

Publications (1)

Publication Number Publication Date
WO2015108342A1 true WO2015108342A1 (ko) 2015-07-23

Family

ID=53543169

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2015/000405 WO2015108342A1 (ko) 2014-01-14 2015-01-14 루테리알의 형태특성을 이용한 암 예방제 또는 항암제의 스크리닝 방법

Country Status (7)

Country Link
US (1) US20160334389A1 (ko)
EP (1) EP3096141A4 (ko)
JP (2) JP2017505448A (ko)
KR (2) KR20150084688A (ko)
CN (1) CN106574927A (ko)
HK (1) HK1231558A1 (ko)
WO (1) WO2015108342A1 (ko)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018502152A (ja) * 2015-01-05 2018-01-25 ルテリオン カンパニー リミテッドLuterion Co., Ltd. ルテリオンを利用した癌細胞のテロメラーゼ抑制方法
JP2018502581A (ja) * 2015-01-06 2018-02-01 ルテリオン カンパニー リミテッドLuterion Co., Ltd. ルテリオンおよびその分離・培養方法

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014208987A1 (ko) 2013-06-24 2014-12-31 한화케미칼 주식회사 안정성이 개선된 항체-약물 결합체 및 이의 용도
JP2016526688A (ja) 2013-07-12 2016-09-05 クォン ヨンアKWON, Young Ah ルテリアルの形態学的特性を用いた疾病の診断方法
EP3095875A4 (en) * 2014-01-14 2018-01-03 Won Cheol Choi Luterial and method for isolating and culturing same
US10590384B2 (en) 2014-01-14 2020-03-17 Luterion Co., Ltd. Luterial and method for isolating and culturing the same
CN110846402B (zh) * 2019-11-07 2022-10-21 复旦大学附属儿科医院 hsa-circ-0004287作为治疗靶点在制备治疗特应性皮炎的药物中的应用

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030033134A (ko) * 2001-10-17 2003-05-01 장준근 적혈구의 물리적 특성을 이용한 질환 진단 장치 및 그진단 방법
KR20060011817A (ko) * 2002-09-12 2006-02-03 모노젠, 인크. 세포 수준 검출 및 질병 상태의 식별
US20100298151A1 (en) * 2007-07-25 2010-11-25 University Of Louisville Research Foundation, Inc. Exosome-associated microrna as a diagnostic marker
WO2012135844A2 (en) * 2011-04-01 2012-10-04 Cornell University Circulating exosomes as diagnostic/prognostic indicators and therapeutic targets of melanoma and other cancers
KR20150000119A (ko) 2013-06-24 2015-01-02 봉 문 김 경사진 콘크리트 배수로 계단용 발판
KR20150004287A (ko) 2013-07-02 2015-01-12 삼성전자주식회사 지향성 제어 장치 및 방법
KR20150004288A (ko) 2013-07-02 2015-01-12 쿨리케 앤드 소파 인더스트리즈, 인코포레이티드 열압축 본더들을 위한 본드 헤드들, 열압축 본더들 및 그 동작 방법들

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DK1498124T3 (da) * 1997-10-17 2007-11-05 Ark Therapeutics Ltd Anvendelse af inhibitorer i renin-angiotensinsystemet
JP4496362B2 (ja) * 2003-11-21 2010-07-07 学校法人日本医科大学 抗癌剤の効果を判定するミトコンドリアdnaの体細胞変異の検出
KR20050107352A (ko) * 2005-10-25 2005-11-11 (주)에이지아이 옻나무 추출물을 이용한 신규의 천연물 항암제
US8512961B2 (en) * 2007-11-19 2013-08-20 Bionovo, Inc. Methods of detecting and treatment of cancers using Scutellaria barbata extract
ES2703363T3 (es) * 2008-02-01 2019-03-08 Massachusetts Gen Hospital Uso de microvesículas en el diagnóstico y pronóstico de tumores cerebrales
DK2602623T3 (en) * 2008-02-25 2015-11-09 Nestec Sa METHOD OF DETECTING INTRACELLULAR TRUNCTED RECEPTORS
US20130203081A1 (en) * 2010-04-13 2013-08-08 Janusz Rak Tumor cell-derived microvesicles
JPWO2013039112A1 (ja) * 2011-09-12 2015-03-26 国立大学法人九州大学 二次元培養細胞を三次元培養又は生体内と同様に活性化する方法及びその利用
US9005888B2 (en) * 2012-06-14 2015-04-14 System Biosciences, Llc Methods for microvesicle isolation and selective removal
WO2014059126A1 (en) * 2012-10-10 2014-04-17 Beth Israel Deaconess Medical Center, Inc. Biomarkers and treatments for heart failure
JP2016526688A (ja) * 2013-07-12 2016-09-05 クォン ヨンアKWON, Young Ah ルテリアルの形態学的特性を用いた疾病の診断方法
EP3095875A4 (en) * 2014-01-14 2018-01-03 Won Cheol Choi Luterial and method for isolating and culturing same
KR101766373B1 (ko) * 2015-01-05 2017-08-09 권영아 루테리온을 이용한 암세포의 텔로머라아제 억제방법
CN107429226A (zh) * 2015-01-06 2017-12-01 株式会社露太利温 luterion及其分离和培养方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030033134A (ko) * 2001-10-17 2003-05-01 장준근 적혈구의 물리적 특성을 이용한 질환 진단 장치 및 그진단 방법
KR20060011817A (ko) * 2002-09-12 2006-02-03 모노젠, 인크. 세포 수준 검출 및 질병 상태의 식별
US20100298151A1 (en) * 2007-07-25 2010-11-25 University Of Louisville Research Foundation, Inc. Exosome-associated microrna as a diagnostic marker
WO2012135844A2 (en) * 2011-04-01 2012-10-04 Cornell University Circulating exosomes as diagnostic/prognostic indicators and therapeutic targets of melanoma and other cancers
KR20150000119A (ko) 2013-06-24 2015-01-02 봉 문 김 경사진 콘크리트 배수로 계단용 발판
KR20150004287A (ko) 2013-07-02 2015-01-12 삼성전자주식회사 지향성 제어 장치 및 방법
KR20150004288A (ko) 2013-07-02 2015-01-12 쿨리케 앤드 소파 인더스트리즈, 인코포레이티드 열압축 본더들을 위한 본드 헤드들, 열압축 본더들 및 그 동작 방법들

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
KOSAKA, N. ET AL.: "Circulating microRNA in body fluid: a new potential biomarker for cancer diagnosis and prognosis", CANCER SCIENCE, vol. 101, no. 10, October 2010 (2010-10-01), pages 2087 - 2092, XP055033304 *
See also references of EP3096141A4 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018502152A (ja) * 2015-01-05 2018-01-25 ルテリオン カンパニー リミテッドLuterion Co., Ltd. ルテリオンを利用した癌細胞のテロメラーゼ抑制方法
US10406188B1 (en) 2015-01-05 2019-09-10 Luterion Co., Ltd. Method for inhibiting telomerase in cancer cell using luterion
JP2018502581A (ja) * 2015-01-06 2018-02-01 ルテリオン カンパニー リミテッドLuterion Co., Ltd. ルテリオンおよびその分離・培養方法
JP2019205467A (ja) * 2015-01-06 2019-12-05 ルテリオン カンパニー リミテッドLuterion Co., Ltd. ルテリオンおよびその分離・培養方法
US10569194B2 (en) 2015-01-06 2020-02-25 Luterion Co., Ltd. Luterion and separating and culturing methods for same
JP2021180679A (ja) * 2015-01-06 2021-11-25 ルテリオン カンパニー リミテッドLuterion Co., Ltd. ルテリオンおよびその分離・培養方法

Also Published As

Publication number Publication date
JP2017505448A (ja) 2017-02-16
US20160334389A1 (en) 2016-11-17
JP2019023643A (ja) 2019-02-14
HK1231558A1 (zh) 2017-12-22
EP3096141A4 (en) 2017-09-06
KR20150084688A (ko) 2015-07-22
CN106574927A (zh) 2017-04-19
EP3096141A1 (en) 2016-11-23
KR20180000710A (ko) 2018-01-03

Similar Documents

Publication Publication Date Title
WO2015108342A1 (ko) 루테리알의 형태특성을 이용한 암 예방제 또는 항암제의 스크리닝 방법
Wei et al. FOXF1 mediates mesenchymal stem cell fusion-induced reprogramming of lung cancer cells
Bedoui et al. Cross-presentation of viral and self antigens by skin-derived CD103+ dendritic cells
Cinque et al. VSL# 3 probiotic differently influences IEC‐6 intestinal epithelial cell status and function
AU2011201605B2 (en) Stem cell fusion model of carcinogenesis
Guimarães et al. Epiisopilosine alkaloid has activity against Schistosoma mansoni in mice without acute toxicity
Lin et al. Transplantation of human umbilical mesenchymal stem cells attenuates dextran sulfate sodium‐induced colitis in mice
WO2019182372A1 (ko) 독성이 약화된 박테리아 세포밖 소포체 및 이의 용도
Ke et al. Human embryonic stem cell-derived extracellular vesicles alleviate retinal degeneration by upregulating Oct4 to promote retinal Müller cell retrodifferentiation via HSP90
Poli et al. Toxicity and pathophysiology of palytoxin congeners after intraperitoneal and aerosol administration in rats
Govin et al. Histone acetylation-mediated chromatin compaction during mouse spermatogenesis
Yang et al. Oral feeding of nanoplastics affects brain function of mice by inducing macrophage IL-1 signal in the intestine
WO2019198995A1 (ko) 엑소좀 기반의 면역세포의 교차분화 방법
Jin et al. In vitro induction and differentiation of umbilical cord mesenchymal stem cells into neuron-like cells by all-trans retinoic acid
Yao et al. In‐cytoplasm mitochondrial transplantation for mesenchymal stem cells engineering and tissue regeneration
Takahama et al. Retinal astrocytes and GABAergic wide-field amacrine cells express PDGFRα: connection to retinal ganglion cell neuroprotection by PDGF-AA
WO2015108246A1 (ko) 루테리알 및 그 분리·배양 방법
Amin et al. Differential regulation of CASZ1 protein expression during cardiac and skeletal muscle development
Deffieu et al. Occludin stalls HCV particle dynamics apart from hepatocyte tight junctions, promoting virion internalization
Wang et al. CXCR4‐enriched nano‐trap targeting CXCL12 in lung for early prevention and enhanced photodynamic therapy of breast cancer metastasis
Zhao et al. Antimicrobial effect of extracellular vesicles derived from human oral mucosal epithelial cells on candida albicans
Prünster et al. De novo neurogenesis in a budding chordate: Co-option of larval anteroposterior patterning genes in a transitory neurogenic organ
Yang et al. HBeAg expression suppressing/abolishing mutation elevated HBV DNA level in HBeAg‐negative patients with chronic HBV infection
Damke et al. Helicobacter pylori provokes STING immunosurveillance via trans-kingdom conjugation
WO2018147504A1 (ko) 섬유증 치료제의 개발에 유용한 간엽줄기세포주

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15737047

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15111183

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2016564930

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2015737047

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015737047

Country of ref document: EP