WO2015092886A1 - Internal combustion engine control circuit and internal combustion engine control method - Google Patents

Internal combustion engine control circuit and internal combustion engine control method Download PDF

Info

Publication number
WO2015092886A1
WO2015092886A1 PCT/JP2013/083938 JP2013083938W WO2015092886A1 WO 2015092886 A1 WO2015092886 A1 WO 2015092886A1 JP 2013083938 W JP2013083938 W JP 2013083938W WO 2015092886 A1 WO2015092886 A1 WO 2015092886A1
Authority
WO
WIPO (PCT)
Prior art keywords
switch
capacitor
battery
combustion engine
internal combustion
Prior art date
Application number
PCT/JP2013/083938
Other languages
French (fr)
Japanese (ja)
Inventor
章広 岡本
達也 新井
Original Assignee
新電元工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新電元工業株式会社 filed Critical 新電元工業株式会社
Priority to CN201380016265.4A priority Critical patent/CN104884784B/en
Priority to JP2014537394A priority patent/JP5933729B2/en
Priority to PCT/JP2013/083938 priority patent/WO2015092886A1/en
Publication of WO2015092886A1 publication Critical patent/WO2015092886A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N11/00Starting of engines by means of electric motors
    • F02N11/08Circuits or control means specially adapted for starting of engines
    • F02N11/0862Circuits or control means specially adapted for starting of engines characterised by the electrical power supply means, e.g. battery
    • F02N11/0866Circuits or control means specially adapted for starting of engines characterised by the electrical power supply means, e.g. battery comprising several power sources, e.g. battery and capacitor or two batteries
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N11/00Starting of engines by means of electric motors
    • F02N11/04Starting of engines by means of electric motors the motors being associated with current generators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N11/00Starting of engines by means of electric motors
    • F02N11/08Circuits or control means specially adapted for starting of engines
    • F02N2011/0881Components of the circuit not provided for by previous groups
    • F02N2011/0885Capacitors, e.g. for additional power supply

Definitions

  • the present invention relates to an internal combustion engine control circuit for controlling an internal combustion engine such as an engine, and an internal combustion engine control method using the internal combustion engine control circuit.
  • the internal combustion engine control circuit connected to the battery B includes a load control circuit 130 that controls a load 131, a rectifier circuit 140 that generates a rectified current from the current generated by the generator 141, a cell motor A drive circuit 145 for driving 146, and a control unit 150 connected to and controlling these load control circuit 130, rectifier circuit 140 and drive circuit 145.
  • a main switch 170 and a fuse 175 are connected between the battery B and the internal combustion engine control circuit.
  • battery B and second terminal 175b of fuse 175 are connected, first terminal 175a of fuse 175 and second terminal 170b of main switch 170 are connected, and first terminal 170a of main switch 170 and the internal combustion engine are connected.
  • An engine control circuit is connected.
  • Japanese Patent Laid-Open No. 2005-188444 discloses that in a starting power supply device, a battery and a power storage unit are electrically connected in series, and the battery, the power storage unit, and a starter are electrically connected via a starter switch. Is disclosed.
  • the battery and the power storage unit are electrically connected in series, whereby the capacity of the power storage unit as an auxiliary power source of the battery can be reduced, and the power storage unit can be reduced in size and weight. Costs can be reduced.
  • this Japanese Patent Application Laid-Open No. 2005-188444 also discloses that the battery and the power storage unit are always connected in series, and the connection is not released or switched to the parallel connection, so that reliability is improved and costs are reduced. Has been.
  • the present invention prevents an electric power stored in a battery and a capacitor from being reduced by a dark current, and makes it possible to make the device configuration compact and an internal combustion engine
  • An object is to provide a control method.
  • An internal combustion engine control circuit includes: An internal combustion engine control circuit for controlling an internal combustion engine, A main switch connected between a cell motor and a generator and a battery and a capacitor; a first switch connected between the main switch and one end of the battery; and a first switch and one end of the capacitor A control unit for controlling each of the second switches connected between the two; The other end of the capacitor is connected between the first switch and the main switch; The first switch switches between a state of connecting the battery and the main switch and a state of connecting the one end of the battery and the second switch, The second switch switches between a state of connecting the one end of the capacitor and the first switch and a state of disconnecting the one end of the capacitor and the first switch, The control unit is When the main switch is in an OFF state, the one end of the capacitor and the first switch are connected by the second switch, and the one end of the battery and the second switch are disconnected by the first switch.
  • the second switch connects the one end of the capacitor and the first switch, and the first switch connects the one end of the battery to the first switch.
  • the battery and the capacitor are connected in series, After the internal combustion engine is started, the one end of the capacitor and the first switch are connected by the second switch, and the one end of the battery and the second switch are disconnected by the first switch. .
  • the other end of the battery is grounded;
  • the second switch may ground the one end of the capacitor when disconnecting the one end of the capacitor and the first switch.
  • An internal combustion engine control circuit includes: A voltage detection circuit for detecting a voltage generated by the generator; When the main switch is in the ON state and the voltage generated by the generator is equal to or higher than the voltage when the battery is fully charged, the control unit causes the second switch to connect the one end of the capacitor.
  • the battery and the capacitor may be connected in parallel by grounding and connecting the one end of the battery and the main switch by the first switch.
  • the control unit When the main switch is in an ON state and the voltage generated by the generator is equal to or higher than the voltage at the time of full charge of the battery for a predetermined time, the control unit is controlled by the second switch.
  • the battery and the capacitor may be connected in parallel by grounding the one end of the capacitor and connecting the one end of the battery and the main switch by the first switch.
  • An internal combustion engine control circuit includes: A rotation speed detection circuit for detecting the rotation speed of the internal combustion engine; When the main switch is in an ON state and the rotational speed of the internal combustion engine is equal to or higher than a threshold rotational speed, the control unit grounds the one end of the capacitor by the second switch, and The battery and the capacitor may be connected in parallel by connecting the one end of the battery and the main switch with a first switch.
  • the control unit When the main switch is in an ON state and the rotational speed of the internal combustion engine becomes equal to or higher than a threshold rotational speed for a predetermined time, the control unit causes the second switch to connect the one end of the capacitor.
  • the battery and the capacitor may be connected in parallel by grounding and connecting the one end of the battery and the main switch by the first switch.
  • An internal combustion engine control circuit includes: At least the second switch connects the one end of the capacitor and the first switch, and the first switch connects the one end of the battery and the second switch to the other end of the battery.
  • a voltage detection circuit for detecting a voltage between the other end of the capacitor; When the second switch connects the one end of the capacitor and the first switch, and the first switch connects the one end of the battery and the second switch, the voltage detection circuit As a result of detecting the voltage between the other end of the battery and the other end of the capacitor, when the voltage is less than the startable voltage required to start the internal combustion engine, the second switch The one end and the first switch may be connected, and the one end of the battery and the second switch may be blocked by the first switch.
  • the control unit You may output the instruction
  • An external drive unit is connected to the internal combustion engine, and the internal drive engine can be started by driving the external drive unit.
  • the second switch connects the one end of the capacitor and the first switch
  • the first switch connects the one end of the battery and the second switch
  • the voltage detection circuit As a result of detecting the voltage between the other end of the battery and the other end of the capacitor, when the voltage is less than the startable voltage required to start the internal combustion engine, the control unit is A command that prompts the internal combustion engine to start by driving the unit may be output to the notification unit.
  • An external drive unit may be connected to the internal combustion engine, and the internal combustion engine may be started by driving the external drive unit.
  • the external driving unit may be a kick.
  • An internal combustion engine control method includes: An internal combustion engine control circuit for controlling an internal combustion engine, a main switch connected between a cell motor and a generator, a battery and a capacitor, a first switch connected between the main switch and one end of the battery, And an internal combustion engine control method using an internal combustion engine control circuit including a control unit that controls each of the second switches connected between the first switch and one end of the capacitor, The other end of the capacitor is connected between the first switch and the main switch, The first switch switches between a state of connecting the battery and the main switch and a state of connecting the one end of the battery and the second switch, The second switch is configured to switch between a state of connecting the one end of the capacitor and the first switch and a state of disconnecting the one end of the capacitor and the first switch, When the main switch is in an OFF state, the second switch connects the one end of the capacitor and the first switch, and the first switch disconnects the one end of the battery and the second switch.
  • the second switch connects the one end of the capacitor and the first switch, and the first switch connects the one end of the battery to the first switch.
  • the battery and the capacitor are connected in series, After the internal combustion engine is started, the one end of the capacitor and the first switch are connected by the second switch, and the one end of the battery and the second switch are disconnected by the first switch. .
  • the second switch when the main switch is in the OFF state, connects the one end of the capacitor and the first switch, and the first switch disconnects the one end of the battery and the second switch. Then, one end of the capacitor and one end of the battery are shut off. This prevents dark current from flowing between the battery and the capacitor when the main switch is in the OFF state, and reduces the power stored in the battery and the power stored in the capacitor. This can be prevented.
  • the second switch when the cell motor is started with the main switch turned on, the second switch connects the one end of the capacitor and the first switch, and the first switch connects the one end of the battery to the first switch.
  • the battery and the capacitor are connected in series by connecting the two switches. For this reason, the electric current which flows when starting a cell motor can be reduced.
  • one end of the capacitor and the first switch are connected by the second switch, and the one end of the battery and the second switch are disconnected by the first switch.
  • one end of the capacitor and one end of the battery are shut off. For this reason, it is possible to prevent the capacitor from being charged before the power generated by the generator is stabilized. As a result, the capacitor is not charged even though the power generated by the generator is not stable. As a result, it is possible to prevent the electric power supplied to the internal combustion engine control circuit from being lowered and becoming unstable.
  • FIG. 1 is a schematic configuration diagram showing an aspect when a main switch is in an OFF state in the internal combustion engine control circuit according to the first embodiment of the present invention.
  • FIG. 2 is a schematic configuration diagram showing an aspect when the main switch is turned on from the state of FIG.
  • FIG. 3 is a schematic configuration diagram showing an aspect when the internal combustion engine is started by starting the cell motor in the internal combustion engine control circuit according to the first embodiment of the present invention.
  • FIG. 4 is a schematic configuration diagram showing an aspect after the internal combustion engine is started in the internal combustion engine control circuit according to the first embodiment of the present invention.
  • FIG. 5 is a schematic configuration diagram showing an aspect different from FIG. 4 after the internal combustion engine is started in the internal combustion engine control circuit according to the first embodiment of the present invention.
  • FIG. 1 is a schematic configuration diagram showing an aspect when a main switch is in an OFF state in the internal combustion engine control circuit according to the first embodiment of the present invention.
  • FIG. 2 is a schematic configuration diagram showing an aspect when the main switch is turned on
  • FIG. 6 is a schematic configuration diagram showing an aspect when the capacitor of the internal combustion engine control circuit according to the first embodiment of the present invention is charged by an external power source.
  • FIG. 7 is a schematic configuration diagram showing an aspect corresponding to FIG. 5 in the internal combustion engine control circuit according to the second embodiment of the present invention.
  • FIG. 8 is a schematic configuration diagram of a conventional internal combustion engine control circuit.
  • FIG. 1 to FIG. 6 are diagrams for explaining an embodiment of the present invention.
  • the internal combustion engine control circuit 100 of the present embodiment is a circuit for controlling an internal combustion engine 60 such as an engine, for example, and is a circuit for controlling an engine of a motorcycle.
  • the internal combustion engine 60 of the present embodiment can be started by driving an external drive unit 65 such as a kick. Further, when the internal combustion engine 60 is started, the internal combustion engine 60 may be started by, for example, pushing the motorcycle vigorously without using such an external drive unit 65 (using so-called “push”). Can also).
  • the internal combustion engine control circuit 100 according to the present embodiment includes a capacitor C that can store electric power, a battery B that can store electric power, a generator 41 that can generate electric power, and an internal combustion engine 60.
  • a cell motor 46 to be started, a load 31 such as a lamp, and a notification unit 80 such as an indicator are connected.
  • the electric power generated by the generator 41 can charge the capacitor C and the battery B.
  • the electric power charged in the capacitor C and the battery B can be supplied to the internal combustion engine control circuit 100, the load 31, the cell motor 46, the notification unit 80, and the like via a main switch 70 and a fuse 75 described later.
  • the internal combustion engine control circuit 100 detects the voltage generated by the generator 41, the voltage of the battery B, the voltage when the battery B and the capacitor C are connected in parallel, and the voltage when the battery B and the capacitor C are connected in series. Based on the voltage detection circuit 20 and the voltage detected by the voltage detection circuit 20, the supply of the electric power generated by the generator 41 to the capacitor C and the battery B is controlled, and the cell motor 46, from the capacitor C and the battery B, And a control unit 50 such as an ECU that controls supply of electric power to the load 31, the notification unit 80, and the like. A capacitor C and a battery B are connected to the voltage detection circuit 20 and the control unit 50, and power can be supplied from the capacitor C and / or the battery B to the voltage detection circuit 20 and the control unit 50. It has become.
  • a main switch 70 and a fuse 75 are connected between the capacitor C and the internal combustion engine control circuit 100. More specifically, the second terminal Cb of the capacitor C (the other end of the capacitor C) and the second terminal 75b of the fuse 75 are connected, and the first terminal 75a of the fuse 75 and the second terminal 70b of the main switch 70 are connected. The first terminal 70a of the main switch 70 and the internal combustion engine control circuit 100 are connected.
  • the main switch 70 is connected between the cell motor 46 and the generator 41, the battery B, and the capacitor C. More specifically, the first terminal 70 a of the main switch 70 is connected to the internal combustion engine control circuit 100, and the internal combustion engine control circuit 100 is connected to the cell motor 46 and the generator 41. On the other hand, the second terminal 70b of the main switch 70 is connected to the second terminal Cb of the capacitor C via the fuse 75, and the first terminal Ba (the battery B of the battery B) is connected via the first switch 10 described later. One end).
  • the first switch 10 is connected between the second terminal 70 b of the main switch 70 and the first terminal Ba of the battery B, and the first terminal Ca (capacitor C) of the first switch 10 and the capacitor C.
  • the second switch 15 is connected to one end of the second switch 15. Further, as described above, the second terminal Cb of the capacitor C is connected between the first switch 10 and the main switch 70, and more specifically, the first switch 10 and the second terminal 75 b of the fuse 75. Connected between.
  • the second terminal Bb of the battery B (the other end of the battery B) is grounded.
  • the first switch 10 switches between a state in which the first terminal Ba of the battery B and the second terminal 70b of the main switch 70 are connected and a state in which the first terminal Ba of the battery B and the second switch 15 are connected.
  • the second switch 15 switches between a state in which the first terminal Ca of the capacitor C and the first switch 10 are connected and a state in which the first terminal Ca of the capacitor C and the first switch 10 are disconnected.
  • the first terminal Ca of the capacitor C is grounded when the first terminal Ca of the capacitor C and the first switch 10 are thus cut off (see FIG. 5).
  • a load control circuit 30 that controls the load 31 is connected to the load 31. Further, a control unit 50 is connected to the load control circuit 30, and the load control circuit 30 is controlled when the control unit 50 sends an operation command. Further, the load control circuit 30 is connected to the capacitor C and the battery B, and can be driven by the electric power charged in the capacitor C and / or the battery B.
  • a rectifier circuit 40 that generates a rectified current from the current generated by the generator 41 is connected to the generator 41.
  • the rectifier circuit 40 is connected to the capacitor C and the battery B, and the rectified current generated by the rectifier circuit 40 is supplied to the capacitor C and / or the battery B to charge the capacitor C and / or the battery B.
  • a driving circuit 45 for driving the cell motor 46 is connected to the cell motor 46.
  • the drive circuit 45 is connected to the capacitor C and the battery B, and can be driven by the electric power charged in the capacitor C and / or the battery B.
  • a control unit 50 is connected to each of the rectifier circuit 40 and the drive circuit 45, and the control unit 50 controls the rectifier circuit 40 and the drive circuit 45 by sending an operation command.
  • a super capacitor can be cited as an example of the capacitor C.
  • Supercapacitor is a general term for electric double layer capacitors.
  • the generator 41 and the cell motor 46 are described as separate bodies. However, the present invention is not limited to this, and the generator 41 may also serve as the cell motor 46.
  • the generator 41 of the present embodiment may be a single-phase generator or a multi-phase generator such as a three-phase generator.
  • the cell motor 46 of the present embodiment may be a single-phase motor or a multi-phase motor such as a three-phase motor.
  • the load 31, the notification unit 80, the voltage detection circuit 20, the load control circuit 30, the rectifier circuit 40, the drive circuit 45, and the internal combustion engine control circuit 100 The control unit 50 and the like are driven by electric power generated by the generator 41.
  • the control unit 50 described above also controls each of the first switch 10 and the second switch 15.
  • the control unit 50 when the main switch 70 is in an OFF state, the control unit 50 according to the present embodiment connects the first terminal Ca of the capacitor C with the second switch 15 as shown in FIG.
  • the first switch 10 is connected, and the first switch 10 connects the first terminal Ba of the battery B and the second terminal 70b of the main switch 70 via the fuse 75, whereby the first switch 10 connects the battery.
  • the B first terminal Ba and the second switch 15 are shut off.
  • the main switch 70 when the main switch 70 is in the OFF state, the first terminal Ca of the capacitor C and the first terminal Ba of the battery B are disconnected.
  • the control unit 50 is shown in FIG. As shown, the first terminal Ca of the capacitor C and the first switch 10 are connected by the second switch 15, and the first terminal Ba of the battery B and the second switch 15 are connected by the first switch 10. Thus, the battery B and the capacitor C are connected in series.
  • the voltage of the battery B and the capacitor C Is, for example, 24V.
  • control unit 50 connects the first terminal Ca of the capacitor C and the first switch 10 by the second switch 15 as shown in FIG.
  • the switch 10 connects the first terminal Ba of the battery B and the second terminal 70 b of the main switch 70 via the fuse 75. As a result, the current generated by the generator 41 is prevented from flowing into the capacitor C.
  • the control unit 50 when the main switch 70 is in the ON state and the voltage generated by the generator 41 becomes equal to or higher than the voltage at the time of full charge of the battery B, the control unit 50, as shown in FIG.
  • the first terminal Ca of the capacitor C is grounded by the two switches 15 and the first terminal Ba of the battery B and the second terminal 70b of the main switch 70 are connected via the fuse 75 by the first switch 10.
  • the battery B and the capacitor C are connected in parallel so that both the battery B and the capacitor C can be charged.
  • the voltage generated by the generator 41 is not set to such a connection form as soon as the voltage generated by the generator 41 becomes equal to or higher than the voltage when the battery B is fully charged.
  • the first terminal Ca of the capacitor C is grounded by the second switch 15 and the first switch 10 of the battery B is only connected to the second switch 15 only when the voltage of the battery B becomes equal to or higher than the fully charged voltage (for example, several seconds).
  • the battery B and the capacitor C may be connected in parallel by connecting the one terminal Ba and the second terminal 70b of the main switch 70 via the fuse 75.
  • the “predetermined time” in the present application is a time excluding the time until the two-wheeled vehicle starts running after the throttle is opened when the internal-combustion engine control circuit 100 controls the two-wheeled vehicle, for example.
  • the voltage detection circuit 20 detects the voltage when the battery B and the capacitor C are connected in series as shown in FIG. More specifically, as shown in FIG. 3, the voltage detection circuit 20 connects the first terminal Ca of the capacitor C and the first switch 10 by the second switch 15, and the battery by the first switch 10. When the first terminal Ba of B and the second switch 15 are connected, the voltage between the second terminal Bb of the battery B and the second terminal Cb of the capacitor C is detected. Since the second terminal Bb of the battery B is grounded, the voltage detection circuit 20 detects the voltage at the second terminal Cb of the capacitor C.
  • the voltage detection circuit 20 detects the voltage between the second terminal Bb of the battery B and the second terminal Cb of the capacitor C. 2 is less than the startable voltage required for starting the cell motor 46 and starting the internal combustion engine 60, the control unit 50 causes the first terminal of the capacitor C to be switched by the second switch 15, as shown in FIG. Ca is connected to the first switch 10, and the first switch 10 connects the first terminal Ba of the battery B and the second terminal 70 b of the main switch 70 via the fuse 75. The first terminal Ba of the battery B and the second switch 15 are disconnected.
  • the voltage detection circuit 20 detects the voltage between the second terminal Bb of the battery B and the second terminal Cb of the capacitor C, If the voltage is less than the startable voltage required to start the cell motor 46 and start the internal combustion engine 60, the control unit 50 issues a command to prompt the capacitor C to be charged by the external power supply 90, such as an indicator. You may output to the alerting
  • the voltage detection circuit 20 detects the voltage between the second terminal Bb of the battery B and the second terminal Cb of the capacitor C.
  • the voltage is less than the startable voltage required to start the cell motor 46 and start the internal combustion engine 60, and the battery B is sufficiently charged, the state shown in FIG.
  • the capacitor C may be charged with the electric power charged in the battery B.
  • the voltage detection circuit 20 detects the voltage of the first terminal Ba of the battery B. That's fine.
  • the second switch 15 connects the first terminal Ca of the capacitor C and the first switch 10, and the first switch 10 is connected to the first switch of the battery B.
  • the first switch Ba blocks the first terminal Ba and the second switch 15 of the battery B, and as a result, the capacitor The first terminal Ca of C and the first terminal Ba of the battery B are cut off.
  • the driver of the motorcycle turns the key to turn on the main switch 70 as shown in FIG. 2 and then starts the cell motor 46 by pressing the starter, etc.
  • the second switch 15 connects the first terminal Ca of the capacitor C and the first switch 10, and the first switch 10 By connecting the first terminal Ba of the battery B and the second switch 15, the battery B and the capacitor C are connected in series. Then, the cell motor 46 is started by the electric power of both the battery B and the capacitor C, and as a result, the internal combustion engine 60 is started.
  • the voltage detection circuit 20 detects the voltage between the second terminal Bb of the battery B and the second terminal Cb of the capacitor C, More specifically, the voltage of the second terminal Cb of the capacitor C is detected (since the second terminal Bb of the battery B is grounded). If the measured voltage is less than the startable voltage required to start the cell motor 46 and start the internal combustion engine 60, the second switch 15 is connected to the first terminal of the capacitor C as shown in FIG. Ca and the first switch 10 are connected, and the first switch 10 connects the first terminal Ba of the battery B and the second terminal 70b of the main switch 70 via the fuse 75, whereby the generator 41 is connected. Is prevented from flowing into the capacitor C.
  • an instruction or the like for prompting the capacitor C to be charged by the external power source 90 is displayed. May be output to the notification unit 80, or a command for starting the internal combustion engine 60 by driving the external drive unit 65 such as a kick may be output to the notification unit 80.
  • the notification unit 80 such as an indicator, for example, a predetermined indicator installed in a meter portion of the motorcycle is lit, flashing, etc.
  • the driver of the motorcycle can recognize that the capacitor C needs to be charged.
  • a motorcycle driver or the like connects the capacitor C to the external power supply 90, whereby the capacitor C is charged.
  • the second switch 15 connects the first terminal Ca of the capacitor C and the first switch 10 as shown in FIG. Connects the first terminal Ba of the battery B and the second terminal 70 b of the main switch 70 via the fuse 75.
  • the notification unit 80 such as an indicator
  • the notification unit 80 such as an indicator
  • the predetermined indicator is lit, flashing, etc., and it is possible to recognize that it is necessary to start the internal combustion engine 60 by driving the external drive unit 65 such as a kick to a motorcycle driver or the like.
  • the driver of the motorcycle drives the external drive unit 65 such as a kick, and the internal combustion engine 60 such as an engine is started.
  • the second switch 15 connects the first terminal Ca of the capacitor C and the first switch 10 as shown in FIG. Connects the first terminal Ba of the battery B and the second terminal 70b of the main switch 70 via the fuse 75, thereby preventing the current generated by the generator 41 from flowing into the capacitor C.
  • the voltage generated by the generator 41 is less than the voltage when the battery B is fully charged.
  • the second switch 15 When the main switch 70 is in the ON state and the voltage generated by the generator 41 is equal to or higher than the voltage when the battery B is fully charged, the second switch 15 is connected to the capacitor C as shown in FIG.
  • the first terminal Ca is grounded, and the first switch 10 connects the first terminal Ba of the battery B and the second terminal 70b of the main switch 70 via the fuse 75, so that the battery B and the capacitor C are connected in parallel. Connect to.
  • the connection mode is not immediately set, but the generator 41 generates power for a predetermined time (for example, several seconds).
  • a connection mode may be adopted when the voltage to be performed becomes equal to or higher than the voltage when the battery B is fully charged.
  • the second switch 15 connects the first terminal Ca of the capacitor C and the first switch 10, and the first switch
  • the first switch 10 connects the first terminal Ba of the battery B and the second terminal 70b of the main switch 70 via the fuse 75 so that the first switch Ba and the second switch 15
  • the first terminal Ca of the capacitor C and the first terminal Ba of the battery B are shut off.
  • the main switch 70 is in the OFF state, the dark current is prevented from flowing between the battery B and the capacitor C, and the electric power accumulated in the battery B and the capacitor C are accumulated. It is possible to prevent the power that is present from decreasing.
  • the cell motor 46 is started by, for example, turning on a main switch 70 as shown in FIG. 3, the second switch 15 connects the first terminal Ca of the capacitor C and the first switch 10, and the first switch 10 is connected to the first terminal Ba of the battery B and the second as shown in FIG. 3.
  • the switch 15 By connecting the switch 15, the battery B and the capacitor C are connected in series. For this reason, the electric current which flows when starting the cell motor 46 and starting the internal combustion engine 60 can be reduced. As a result, the apparatus configuration of the internal combustion engine control circuit 100 can be reduced in size.
  • the second switch 15 connects the first terminal Ca of the capacitor C and the first switch 10, and
  • the first switch 10 connects the first terminal Ba of the battery B and the second terminal 70b of the main switch 70 via the fuse 75, the first switch Ba and the second switch of the battery B are connected by the first switch 10.
  • the current generated by the generator 41 is prevented from flowing into the capacitor C.
  • the power supplied to the internal combustion engine control circuit 100 is drastically reduced due to charging of the capacitor C even though the power generated by the generator 41 is not stable. Can be prevented in advance.
  • the main switch 70 when the main switch 70 is in the ON state and the voltage generated by the generator 41 is equal to or higher than the voltage when the battery B is fully charged, as shown in FIG.
  • the second switch 15 grounds the first terminal Ca of the capacitor C, and the first switch 10 connects the first terminal Ba of the battery B and the second terminal 70b of the main switch 70 via the fuse 75.
  • the battery B and the capacitor C are connected in parallel.
  • the capacitor C can be charged after the electric power generated by the generator 41 is stabilized by driving the internal combustion engine 60.
  • the power supplied to the internal combustion engine control circuit 100 is drastically reduced due to charging of the capacitor C even though the power generated by the generator 41 is not stable. Can be prevented in advance.
  • connection mode when the voltage generated by the generator 41 becomes equal to or higher than the voltage at the time of full charge of the battery B, the connection mode is not used immediately, but the generator 41 generates power for a predetermined time (for example, several seconds).
  • a connection mode may be taken only when the voltage is equal to or higher than the voltage when the battery B is fully charged.
  • the capacitor C can be charged after the power generated by the generator 41 is reliably stabilized.
  • the power supplied to the internal combustion engine control circuit 100 is suddenly reduced by charging the capacitor C even more reliably, even though the power generated by the generator 41 is not stable. An unstable state can be prevented in advance.
  • the voltage detection circuit 20 is connected between the second terminal Bb of the battery B and the second terminal Cb of the capacitor C. More specifically, the voltage of the second terminal Cb of the capacitor C is detected.
  • the second switch 15 is connected to the capacitor as shown in FIG.
  • the first terminal Ca of C and the first switch 10 are connected, and the first switch 10 connects the first terminal Ba of the battery B and the second terminal 70b of the main switch 70 via the fuse 75.
  • the current generated by the generator 41 is prevented from flowing into the capacitor C.
  • the external drive unit 65 or the internal combustion engine 60 can be started by pushing, for example, an external such as a kick
  • the current generated by the generator 41 by driving the drive unit 65 or the current generated by the generator 41 by pushing the two-wheeled vehicle, for example, is absorbed by the capacitor C, and the internal combustion engine 60 may not be started.
  • the voltage detection circuit 20 is connected between the second terminal Bb of the battery B and the second terminal Cb of the capacitor C with the battery B and the capacitor C connected in series as shown in FIG.
  • the cell motor 46 when the cell motor 46 is started by turning on the main switch 70 and the battery B and the capacitor C are connected in series as shown in FIG.
  • the voltage is less than the startable voltage necessary for starting the cell motor 46 and starting the internal combustion engine 60.
  • the notification unit 80 such as an indicator.
  • the driver of the motorcycle can recognize that the capacitor C needs to be charged by the external power source 90.
  • the voltage when the battery B and the capacitor C are connected in series is shown.
  • the detection circuit 20 detecting the voltage between the second terminal Bb of the battery B and the second terminal Cb of the capacitor C, the voltage can be started to start the cell motor 46 and start the internal combustion engine 60.
  • the voltage is lower than the voltage, it is also possible to adopt a mode in which a command for urging the engine to start the internal combustion engine 60 by driving the external drive unit 65 such as a kick is output to the notification unit 80 such as an indicator.
  • the driver of the motorcycle can recognize that it is necessary to start the internal combustion engine 60 by driving the external drive unit 65 such as a kick.
  • the notification unit 80 when the notification unit 80 notifies that the capacitor C is charged by the external power supply 90 or the notification unit 80 notifies the start of the internal combustion engine 60 by driving the external drive unit 65, instead of charging the capacitor C with the power supply 90 or starting the internal combustion engine 60 with the external drive unit 65, the internal combustion engine 60 may be started by pushing.
  • the notification unit 80 outputs a command that prompts the capacitor C to be charged by the external power supply 90 and a command that prompts the internal combustion engine 60 to start by driving the external drive unit 65 such as a kick. It is also possible to combine with the mode of outputting to In this case, the content to be output may be changed in accordance with the remaining amount of power charged in the capacitor C. For example, when the capacitor C is charged only with power less than a certain threshold, the capacitor C A command to urge the external power supply 90 to charge is output to the notification unit 80, and the electric power charged in the capacitor C is equal to or higher than the threshold value, but the electric power charged in the capacitor C starts the cell motor 46. When the internal combustion engine 60 cannot be started, it is also possible to employ a mode in which a command for urging the internal combustion engine 60 to start by driving the external drive unit 65 is output to the notification unit 80.
  • FIG. 7 is a schematic configuration diagram showing an internal combustion engine control circuit 100 according to the second embodiment of the present invention, and shows an aspect corresponding to FIG.
  • the main switch 70 when the main switch 70 is in the ON state and the voltage generated by the generator 41 is equal to or higher than the voltage when the battery B is fully charged, as shown in FIG.
  • the first terminal Ca of the capacitor C is grounded by the two switches 15 and the first terminal Ba of the battery B and the second terminal 70b of the main switch 70 are connected via the fuse 75 by the first switch 10.
  • the battery B and the capacitor C are connected in parallel, and both the battery B and the capacitor C are charged.
  • a rotational speed detection circuit 95 that detects the rotational speed of the internal combustion engine 60 is provided.
  • the controller 50 causes the second switch 15 to switch the capacitor C, as shown in FIG.
  • the battery B and the capacitor C are connected in parallel by grounding the first terminal Ca and connecting the first terminal Ba of the battery B and the second terminal 70b of the main switch 70 via the fuse 75 by the first switch 10.
  • the battery B and the capacitor C are both charged.
  • a connection mode is not used immediately, but for a predetermined time (for example, several seconds).
  • the second switch 15 grounds the first terminal Ca of the capacitor C and the first switch 10 is the first terminal Ba of the battery B only when the rotational speed of the internal combustion engine 60 becomes equal to or higher than the threshold rotational speed.
  • the battery B and the capacitor C may be connected in parallel by connecting the second terminal 70 b of the main switch 70 via the fuse 75.
  • the above-described “threshold rotational speed” is, for example, about 1.5 to 2.0 times the rotational speed of the internal combustion engine 60 during idling.
  • the voltage generated by the generator 41 may be detected by the voltage detection circuit 20, and the rotational speed of the internal combustion engine 60 becomes equal to or higher than the threshold rotational speed.
  • the second switch 15 grounds the first terminal Ca of the capacitor C, and the first switch 10
  • the first terminal Ba of B and the second terminal 70b of the main switch 70 are connected via the fuse 75, so that the battery B and the capacitor C are connected in parallel, and both the battery B and the capacitor C are charged. It may be.
  • the other configurations are substantially the same as those in the first embodiment.
  • the same parts as those in the first embodiment are denoted by the same reference numerals, and detailed description thereof is omitted.
  • the main switch 70 when the main switch 70 is in the ON state and the rotational speed of the internal combustion engine 60 such as the engine becomes equal to or higher than the threshold rotational speed, as shown in FIG. Grounds the first terminal Ca of the capacitor C, and the first switch 10 connects the first terminal Ba of the battery B and the second terminal 70b of the main switch 70 via the fuse 75, so that the battery B and Capacitor C is connected in parallel. For this reason, it is possible to prevent the capacitor C from being charged before the electric power generated by the generator 41 is stabilized by driving the internal combustion engine 60. As a result, the power supplied to the internal combustion engine control circuit 100 is drastically reduced due to charging of the capacitor C even though the power generated by the generator 41 is not stable. Can be prevented in advance.
  • the connection mode is not immediately set, but for a predetermined time (for example, several seconds).
  • the second switch 15 grounds the first terminal Ca of the capacitor C and the first switch 10 is connected to the battery B only when the voltage generated by the generator 41 becomes equal to or higher than the voltage when the battery B is fully charged.
  • the battery B and the capacitor C may be connected in parallel by connecting the first terminal Ba and the second terminal 70b of the main switch 70 via the fuse 75. In this case, the capacitor C can be charged after the power generated by the generator 41 is reliably stabilized. As a result, the power supplied to the internal combustion engine control circuit 100 is suddenly reduced by charging the capacitor C even more reliably, even though the power generated by the generator 41 is not stable. An unstable state can be prevented in advance.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

When a main switch (70) is in an off state, a control unit (50) connects one end of a capacitor (C) to a first switch (10) by means of a second switch (15) and disconnects one end of a battery (B) and the second switch (15) from each other by means of the first switch (10). When a starter motor (46) is to be activated by bringing the main switch (70) into an on state, the one end of the capacitor (C) is connected to the first switch (10) by the second switch (15), and the one end of the battery (B) is connected to the second switch (15) by the first switch (10), thereby connecting the battery (B) to the capacitor (C) in series. Once the internal combustion engine (60) has started up, the one end of the capacitor (C) is connected to the first switch (10) by the second switch (15), and the one end of the battery (B) and the second switch (15) are disconnected from each other by the first switch (10).

Description

内燃機関制御回路及び内燃機関制御方法Internal combustion engine control circuit and internal combustion engine control method
 本発明は、エンジン等の内燃機関を制御する内燃機関制御回路と、内燃機関制御回路を用いた内燃機関制御方法に関する。 The present invention relates to an internal combustion engine control circuit for controlling an internal combustion engine such as an engine, and an internal combustion engine control method using the internal combustion engine control circuit.
 従来の内燃機関制御回路としては、図8に記載したようなものを挙げることができる。図8に示すように、バッテリBに接続された内燃機関制御回路は、負荷131を制御する負荷制御回路130と、発電機141で生成された電流から整流電流を生成する整流回路140と、セルモータ146を駆動させる駆動回路145と、これら負荷制御回路130、整流回路140及び駆動回路145に接続されてこれらを制御する制御部150とを備えている。なお、図8に示した態様では、バッテリBと内燃機関制御回路との間に、メインスイッチ170及びヒューズ175が接続されている。より具体的には、バッテリBとヒューズ175の第二端子175bが接続され、ヒューズ175の第一端子175aとメインスイッチ170の第二端子170bが接続され、メインスイッチ170の第一端子170aと内燃機関制御回路が接続されている。 As a conventional internal combustion engine control circuit, the one shown in FIG. 8 can be cited. As shown in FIG. 8, the internal combustion engine control circuit connected to the battery B includes a load control circuit 130 that controls a load 131, a rectifier circuit 140 that generates a rectified current from the current generated by the generator 141, a cell motor A drive circuit 145 for driving 146, and a control unit 150 connected to and controlling these load control circuit 130, rectifier circuit 140 and drive circuit 145. In the embodiment shown in FIG. 8, a main switch 170 and a fuse 175 are connected between the battery B and the internal combustion engine control circuit. More specifically, battery B and second terminal 175b of fuse 175 are connected, first terminal 175a of fuse 175 and second terminal 170b of main switch 170 are connected, and first terminal 170a of main switch 170 and the internal combustion engine are connected. An engine control circuit is connected.
 また、特開2005-188444号公報では、始動電源装置において、バッテリと蓄電体とを電気的に直列に接続し、これらバッテリ及び蓄電体とスタータとをスタータスイッチを介して電気的に接続することが開示されている。この特開2005-188444号公報では、バッテリと蓄電体とを電気的に直列に接続することで、バッテリの補助電源としての蓄電体の容量を小さくすることができ、蓄電体を小型化し軽量化しコストを低減させることができるとされている。また、この特開2005-188444号公報では、バッテリと蓄電体を常時直列接続し、これらの接続を解除したり並列接続に切り換えたりしないことから、信頼性が向上しコストが低下することも開示されている。 Japanese Patent Laid-Open No. 2005-188444 discloses that in a starting power supply device, a battery and a power storage unit are electrically connected in series, and the battery, the power storage unit, and a starter are electrically connected via a starter switch. Is disclosed. In Japanese Patent Laid-Open No. 2005-188444, the battery and the power storage unit are electrically connected in series, whereby the capacity of the power storage unit as an auxiliary power source of the battery can be reduced, and the power storage unit can be reduced in size and weight. Costs can be reduced. Further, this Japanese Patent Application Laid-Open No. 2005-188444 also discloses that the battery and the power storage unit are always connected in series, and the connection is not released or switched to the parallel connection, so that reliability is improved and costs are reduced. Has been.
 しかしながら、特開2005-188444号公報で開示されているように常にキャパシタ等の蓄電体を接続した状態にしておくと、いわゆる暗電流がバッテリと蓄電体との間で流れてしまい、バッテリに蓄積されている電力及び蓄電体に蓄積されている電力の各々が減少してしまう。 However, as disclosed in Japanese Patent Application Laid-Open No. 2005-188444, if a power storage unit such as a capacitor is always connected, a so-called dark current flows between the battery and the power storage unit and accumulates in the battery. Each of the electric power stored and the electric power stored in the power storage unit is reduced.
 このような点に鑑み、本発明は、バッテリ及びキャパシタに蓄積されている電力が暗電流で減ってしまうことを防止し、かつ、装置構成をコンパクトにすることができる内燃機関制御回路及び内燃機関制御方法を提供することを目的とする。 In view of such a point, the present invention prevents an electric power stored in a battery and a capacitor from being reduced by a dark current, and makes it possible to make the device configuration compact and an internal combustion engine An object is to provide a control method.
 本発明による内燃機関制御回路は、
 内燃機関を制御する内燃機関制御回路であって、
 セルモータ及び発電機とバッテリ及びキャパシタとの間で接続されたメインスイッチ、前記メインスイッチと前記バッテリの一端との間で接続された第一スイッチ、及び、前記第一スイッチと前記キャパシタの一端との間で接続された第二スイッチの各々を制御する制御部を備え、
 前記キャパシタの他端が、前記第一スイッチと前記メインスイッチとの間に接続され、
 前記第一スイッチは、前記バッテリと前記メインスイッチとを接続する状態と、前記バッテリの前記一端と前記第二スイッチとを接続する状態とを切り換え、
 前記第二スイッチが、前記キャパシタの前記一端と前記第一スイッチとを接続する状態と、前記キャパシタの前記一端と前記第一スイッチとを遮断する状態とを切り換え、
 前記制御部が、
  前記メインスイッチがOFF状態のときには、前記第二スイッチにより前記キャパシタの前記一端と前記第一スイッチとを接続し、かつ、当該第一スイッチにより前記バッテリの前記一端と前記第二スイッチとを遮断し、
  前記メインスイッチをON状態にして前記セルモータを始動させるときには、前記第二スイッチにより前記キャパシタの前記一端と前記第一スイッチとを接続し、かつ、当該第一スイッチにより前記バッテリの前記一端と前記第二スイッチとを接続することで、前記バッテリと前記キャパシタとを直列に接続し、
  前記内燃機関が始動した後で、前記第二スイッチにより前記キャパシタの前記一端と前記第一スイッチとを接続し、かつ、当該第一スイッチにより前記バッテリの前記一端と前記第二スイッチとを遮断する。
An internal combustion engine control circuit according to the present invention includes:
An internal combustion engine control circuit for controlling an internal combustion engine,
A main switch connected between a cell motor and a generator and a battery and a capacitor; a first switch connected between the main switch and one end of the battery; and a first switch and one end of the capacitor A control unit for controlling each of the second switches connected between the two;
The other end of the capacitor is connected between the first switch and the main switch;
The first switch switches between a state of connecting the battery and the main switch and a state of connecting the one end of the battery and the second switch,
The second switch switches between a state of connecting the one end of the capacitor and the first switch and a state of disconnecting the one end of the capacitor and the first switch,
The control unit is
When the main switch is in an OFF state, the one end of the capacitor and the first switch are connected by the second switch, and the one end of the battery and the second switch are disconnected by the first switch. ,
When the main motor is turned on to start the cell motor, the second switch connects the one end of the capacitor and the first switch, and the first switch connects the one end of the battery to the first switch. By connecting two switches, the battery and the capacitor are connected in series,
After the internal combustion engine is started, the one end of the capacitor and the first switch are connected by the second switch, and the one end of the battery and the second switch are disconnected by the first switch. .
 本発明による内燃機関制御回路において、
 前記バッテリの他端は接地され、
 前記第二スイッチは、前記キャパシタの前記一端と前記第一スイッチとを遮断するときに前記キャパシタの前記一端を接地してもよい。
In the internal combustion engine control circuit according to the present invention,
The other end of the battery is grounded;
The second switch may ground the one end of the capacitor when disconnecting the one end of the capacitor and the first switch.
 本発明による内燃機関制御回路は、
 前記発電機が発電する電圧を検出する電圧検出回路をさらに備え、
 前記メインスイッチがON状態であり、かつ、前記発電機が発電する電圧が前記バッテリの満充電時の電圧以上となった場合に、前記制御部が、前記第二スイッチにより前記キャパシタの前記一端を接地し、かつ、前記第一スイッチにより前記バッテリの前記一端と前記メインスイッチとを接続することで、前記バッテリ及び前記キャパシタを並列に接続してもよい。
An internal combustion engine control circuit according to the present invention includes:
A voltage detection circuit for detecting a voltage generated by the generator;
When the main switch is in the ON state and the voltage generated by the generator is equal to or higher than the voltage when the battery is fully charged, the control unit causes the second switch to connect the one end of the capacitor. The battery and the capacitor may be connected in parallel by grounding and connecting the one end of the battery and the main switch by the first switch.
 本発明による内燃機関制御回路において、
 前記メインスイッチがON状態であり、かつ、前記発電機が発電する電圧が、所定時間の間、前記バッテリの満充電時の電圧以上となった場合に、前記制御部が、前記第二スイッチにより前記キャパシタの前記一端を接地し、かつ、前記第一スイッチにより前記バッテリの前記一端と前記メインスイッチとを接続することで、前記バッテリ及び前記キャパシタを並列に接続してもよい。
In the internal combustion engine control circuit according to the present invention,
When the main switch is in an ON state and the voltage generated by the generator is equal to or higher than the voltage at the time of full charge of the battery for a predetermined time, the control unit is controlled by the second switch. The battery and the capacitor may be connected in parallel by grounding the one end of the capacitor and connecting the one end of the battery and the main switch by the first switch.
 本発明による内燃機関制御回路は、
 前記内燃機関の回転数を検出する回転数検出回路をさらに備え、
 前記メインスイッチがON状態であり、かつ、前記内燃機関の回転数が閾値回転数以上となった場合に、前記制御部が、前記第二スイッチにより前記キャパシタの前記一端を接地し、かつ、前記第一スイッチにより前記バッテリの前記一端と前記メインスイッチとを接続することで、前記バッテリ及び前記キャパシタを並列に接続してもよい。
An internal combustion engine control circuit according to the present invention includes:
A rotation speed detection circuit for detecting the rotation speed of the internal combustion engine;
When the main switch is in an ON state and the rotational speed of the internal combustion engine is equal to or higher than a threshold rotational speed, the control unit grounds the one end of the capacitor by the second switch, and The battery and the capacitor may be connected in parallel by connecting the one end of the battery and the main switch with a first switch.
 本発明による内燃機関制御回路において、
 前記メインスイッチがON状態であり、かつ、前記内燃機関の回転数が、所定時間の間、閾値回転数以上となった場合に、前記制御部が、前記第二スイッチにより前記キャパシタの前記一端を接地し、かつ、前記第一スイッチにより前記バッテリの前記一端と前記メインスイッチとを接続することで、前記バッテリ及び前記キャパシタを並列に接続してもよい。
In the internal combustion engine control circuit according to the present invention,
When the main switch is in an ON state and the rotational speed of the internal combustion engine becomes equal to or higher than a threshold rotational speed for a predetermined time, the control unit causes the second switch to connect the one end of the capacitor. The battery and the capacitor may be connected in parallel by grounding and connecting the one end of the battery and the main switch by the first switch.
 本発明による内燃機関制御回路は、
 少なくとも前記第二スイッチにより前記キャパシタの前記一端と前記第一スイッチとを接続し、かつ、当該第一スイッチにより前記バッテリの前記一端と前記第二スイッチとを接続した際に前記バッテリの他端と前記キャパシタの他端との間の電圧を検出する電圧検出回路をさらに備え、
 前記第二スイッチにより前記キャパシタの前記一端と前記第一スイッチとを接続し、かつ、当該第一スイッチにより前記バッテリの前記一端と前記第二スイッチとを接続した際に、前記電圧検出回路が前記バッテリの他端と前記キャパシタの他端との間の電圧を検出した結果、当該電圧が前記内燃機関を始動させるのに必要な始動可能電圧未満である場合に、前記第二スイッチにより前記キャパシタの前記一端と前記第一スイッチとを接続し、かつ、当該第一スイッチにより前記バッテリの前記一端と前記第二スイッチとを遮断してもよい。
An internal combustion engine control circuit according to the present invention includes:
At least the second switch connects the one end of the capacitor and the first switch, and the first switch connects the one end of the battery and the second switch to the other end of the battery. A voltage detection circuit for detecting a voltage between the other end of the capacitor;
When the second switch connects the one end of the capacitor and the first switch, and the first switch connects the one end of the battery and the second switch, the voltage detection circuit As a result of detecting the voltage between the other end of the battery and the other end of the capacitor, when the voltage is less than the startable voltage required to start the internal combustion engine, the second switch The one end and the first switch may be connected, and the one end of the battery and the second switch may be blocked by the first switch.
 本発明による内燃機関制御回路において、
 前記第二スイッチにより前記キャパシタの前記一端と前記第一スイッチとを接続し、かつ、当該第一スイッチにより前記バッテリの前記一端と前記第二スイッチとを接続した際に、前記電圧検出回路が前記バッテリの他端と前記キャパシタの他端との間の電圧を検出した結果、当該電圧が前記内燃機関を始動させるのに必要な始動可能電圧未満である場合に、前記制御部が、前記キャパシタを外部電源で充電するよう促す指令を報知部に出力してもよい。
In the internal combustion engine control circuit according to the present invention,
When the second switch connects the one end of the capacitor and the first switch, and the first switch connects the one end of the battery and the second switch, the voltage detection circuit As a result of detecting the voltage between the other end of the battery and the other end of the capacitor, if the voltage is less than the startable voltage required to start the internal combustion engine, the control unit You may output the instruction | command which prompts charging with an external power supply to an alerting | reporting part.
 本発明による内燃機関制御回路において、
 前記内燃機関に外部駆動部が連結され、当該外部駆動部を駆動することで前記内燃機関が始動可能となっており、
 前記第二スイッチにより前記キャパシタの前記一端と前記第一スイッチとを接続し、かつ、当該第一スイッチにより前記バッテリの前記一端と前記第二スイッチとを接続した際に、前記電圧検出回路が前記バッテリの他端と前記キャパシタの他端との間の電圧を検出した結果、当該電圧が前記内燃機関を始動させるのに必要な始動可能電圧未満である場合に、前記制御部が、前記外部駆動部を駆動することで前記内燃機関を始動するよう促す指令を報知部に出力してもよい。
In the internal combustion engine control circuit according to the present invention,
An external drive unit is connected to the internal combustion engine, and the internal drive engine can be started by driving the external drive unit.
When the second switch connects the one end of the capacitor and the first switch, and the first switch connects the one end of the battery and the second switch, the voltage detection circuit As a result of detecting the voltage between the other end of the battery and the other end of the capacitor, when the voltage is less than the startable voltage required to start the internal combustion engine, the control unit is A command that prompts the internal combustion engine to start by driving the unit may be output to the notification unit.
 本発明による内燃機関制御回路において、
 前記内燃機関に外部駆動部が連結され、当該外部駆動部を駆動することで前記内燃機関が始動可能となってもよい。
In the internal combustion engine control circuit according to the present invention,
An external drive unit may be connected to the internal combustion engine, and the internal combustion engine may be started by driving the external drive unit.
 本発明による内燃機関制御回路において、
 前記外部駆動部はキックであってもよい。
In the internal combustion engine control circuit according to the present invention,
The external driving unit may be a kick.
 本発明による内燃機関制御方法は、
 内燃機関を制御する内燃機関制御回路であって、セルモータ及び発電機とバッテリ及びキャパシタとの間で接続されたメインスイッチ、前記メインスイッチと前記バッテリの一端との間で接続された第一スイッチ、及び、前記第一スイッチと前記キャパシタの一端との間で接続された第二スイッチの各々を制御する制御部を備えた内燃機関制御回路を用いた内燃機関制御方法であって、
 前記キャパシタの他端は、前記第一スイッチと前記メインスイッチとの間に接続され、
 前記第一スイッチは、前記バッテリと前記メインスイッチとを接続する状態と、前記バッテリの前記一端と前記第二スイッチとを接続する状態とを切り換え、
 前記第二スイッチは、前記キャパシタの前記一端と前記第一スイッチとを接続する状態と、前記キャパシタの前記一端と前記第一スイッチとを遮断する状態とを切り換えるようになっており、
 前記メインスイッチがOFF状態のときに、前記第二スイッチにより前記キャパシタの前記一端と前記第一スイッチとを接続し、かつ、当該第一スイッチにより前記バッテリの前記一端と前記第二スイッチとを遮断し、
 前記メインスイッチをON状態にして前記セルモータを始動させるときに、前記第二スイッチにより前記キャパシタの前記一端と前記第一スイッチとを接続し、かつ、当該第一スイッチにより前記バッテリの前記一端と前記第二スイッチとを接続することで、前記バッテリと前記キャパシタとを直列に接続し、
 前記内燃機関が始動した後で、前記第二スイッチにより前記キャパシタの前記一端と前記第一スイッチとを接続し、かつ、当該第一スイッチにより前記バッテリの前記一端と前記第二スイッチとを遮断する。
An internal combustion engine control method according to the present invention includes:
An internal combustion engine control circuit for controlling an internal combustion engine, a main switch connected between a cell motor and a generator, a battery and a capacitor, a first switch connected between the main switch and one end of the battery, And an internal combustion engine control method using an internal combustion engine control circuit including a control unit that controls each of the second switches connected between the first switch and one end of the capacitor,
The other end of the capacitor is connected between the first switch and the main switch,
The first switch switches between a state of connecting the battery and the main switch and a state of connecting the one end of the battery and the second switch,
The second switch is configured to switch between a state of connecting the one end of the capacitor and the first switch and a state of disconnecting the one end of the capacitor and the first switch,
When the main switch is in an OFF state, the second switch connects the one end of the capacitor and the first switch, and the first switch disconnects the one end of the battery and the second switch. And
When the cell motor is started with the main switch turned on, the second switch connects the one end of the capacitor and the first switch, and the first switch connects the one end of the battery to the first switch. By connecting a second switch, the battery and the capacitor are connected in series,
After the internal combustion engine is started, the one end of the capacitor and the first switch are connected by the second switch, and the one end of the battery and the second switch are disconnected by the first switch. .
 本発明によれば、メインスイッチがOFF状態のときには、第二スイッチによりキャパシタの一端と第一スイッチとを接続し、かつ、当該第一スイッチによりバッテリの一端と第二スイッチとを遮断することで、キャパシタの一端とバッテリの一端とを遮断する。このため、メインスイッチがOFF状態となっている際に暗電流がバッテリとキャパシタとの間で流れてしまうことを防止し、バッテリに蓄積されている電力及びキャパシタに蓄積されている電力が減少することを防止することができる。 According to the present invention, when the main switch is in the OFF state, the second switch connects the one end of the capacitor and the first switch, and the first switch disconnects the one end of the battery and the second switch. Then, one end of the capacitor and one end of the battery are shut off. This prevents dark current from flowing between the battery and the capacitor when the main switch is in the OFF state, and reduces the power stored in the battery and the power stored in the capacitor. This can be prevented.
 また、本発明によれば、メインスイッチをON状態にしてセルモータを始動させるときに、第二スイッチによりキャパシタの一端と第一スイッチとを接続し、かつ、当該第一スイッチによりバッテリの一端と第二スイッチとを接続することで、バッテリとキャパシタとを直列に接続する。このため、セルモータを始動する際に流れる電流を低減することができる。 According to the present invention, when the cell motor is started with the main switch turned on, the second switch connects the one end of the capacitor and the first switch, and the first switch connects the one end of the battery to the first switch. The battery and the capacitor are connected in series by connecting the two switches. For this reason, the electric current which flows when starting a cell motor can be reduced.
 また、本発明によれば、内燃機関が始動した後で、第二スイッチによりキャパシタの一端と第一スイッチとを接続し、かつ、当該第一スイッチによりバッテリの一端と第二スイッチとを遮断することで、キャパシタの一端とバッテリの一端とを遮断する。このため、発電機で発電する電力が安定する前にキャパシタの充電が行われることを防止することができ、その結果、発電機で発電する電力が安定していないにもかかわらずキャパシタの充電が行われることにより内燃機関制御回路に供給される電力が低下してしまい不安定となってしまうことを未然に防止することができる。 According to the present invention, after the internal combustion engine is started, one end of the capacitor and the first switch are connected by the second switch, and the one end of the battery and the second switch are disconnected by the first switch. Thus, one end of the capacitor and one end of the battery are shut off. For this reason, it is possible to prevent the capacitor from being charged before the power generated by the generator is stabilized. As a result, the capacitor is not charged even though the power generated by the generator is not stable. As a result, it is possible to prevent the electric power supplied to the internal combustion engine control circuit from being lowered and becoming unstable.
図1は、本発明の第1の実施の形態による内燃機関制御回路において、メインスイッチがOFF状態となっている際の態様を示した概略構成図である。FIG. 1 is a schematic configuration diagram showing an aspect when a main switch is in an OFF state in the internal combustion engine control circuit according to the first embodiment of the present invention. 図2は、図1の状態からメインスイッチがON状態となった際の態様を示した概略構成図である。FIG. 2 is a schematic configuration diagram showing an aspect when the main switch is turned on from the state of FIG. 図3は、本発明の第1の実施の形態による内燃機関制御回路において、セルモータを始動させて内燃機関を始動させる際の態様を示した概略構成図である。FIG. 3 is a schematic configuration diagram showing an aspect when the internal combustion engine is started by starting the cell motor in the internal combustion engine control circuit according to the first embodiment of the present invention. 図4は、本発明の第1の実施の形態による内燃機関制御回路において、内燃機関を始動させた後の一態様を示した概略構成図である。FIG. 4 is a schematic configuration diagram showing an aspect after the internal combustion engine is started in the internal combustion engine control circuit according to the first embodiment of the present invention. 図5は、本発明の第1の実施の形態による内燃機関制御回路において、内燃機関を始動させた後であって、図4とは異なる態様を示した概略構成図である。FIG. 5 is a schematic configuration diagram showing an aspect different from FIG. 4 after the internal combustion engine is started in the internal combustion engine control circuit according to the first embodiment of the present invention. 図6は、本発明の第1の実施の形態による内燃機関制御回路のキャパシタが外部電源で充電されている際の態様を示した概略構成図である。FIG. 6 is a schematic configuration diagram showing an aspect when the capacitor of the internal combustion engine control circuit according to the first embodiment of the present invention is charged by an external power source. 図7は、本発明の第2の実施の形態による内燃機関制御回路において、図5に対応する態様を示した概略構成図である。FIG. 7 is a schematic configuration diagram showing an aspect corresponding to FIG. 5 in the internal combustion engine control circuit according to the second embodiment of the present invention. 図8は、従来の内燃機関制御回路の概略構成図である。FIG. 8 is a schematic configuration diagram of a conventional internal combustion engine control circuit.
第1の実施の形態
《構成》
 以下、本発明に係る内燃機関制御回路の第1の実施の形態について、図面を参照して説明する。ここで、図1乃至図6は本発明の実施の形態を説明するための図である。
First Embodiment << Configuration >>
Hereinafter, a first embodiment of an internal combustion engine control circuit according to the present invention will be described with reference to the drawings. Here, FIG. 1 to FIG. 6 are diagrams for explaining an embodiment of the present invention.
 本実施の形態の内燃機関制御回路100は例えばエンジン等の内燃機関60を制御するための回路であり、その一例としては二輪車のエンジンを制御するための回路である。後述するように、本実施の形態の内燃機関60は、キック等の外部駆動部65を駆動することで始動可能となっている。また、内燃機関60を始動する際にこのような外部駆動部65を利用することなく、例えば二輪車を勢いよく押すことで内燃機関60を始動させてもよい(いわゆる「押しがけ」を利用することもできる)。図1に示すように、本実施の形態の内燃機関制御回路100は、電力を蓄えることができるキャパシタC、電力を蓄えることができるバッテリB、発電することができる発電機41、内燃機関60を始動させるセルモータ46、ランプ等の負荷31及びインジケータ等の報知部80に接続されている。発電機41で発電される電力はキャパシタC及びバッテリBに充電可能となっている。他方、キャパシタC及びバッテリBに充電された電力は、後述するメインスイッチ70及びヒューズ75を介して、内燃機関制御回路100、負荷31、セルモータ46、報知部80等に供給可能となっている。 The internal combustion engine control circuit 100 of the present embodiment is a circuit for controlling an internal combustion engine 60 such as an engine, for example, and is a circuit for controlling an engine of a motorcycle. As will be described later, the internal combustion engine 60 of the present embodiment can be started by driving an external drive unit 65 such as a kick. Further, when the internal combustion engine 60 is started, the internal combustion engine 60 may be started by, for example, pushing the motorcycle vigorously without using such an external drive unit 65 (using so-called “push”). Can also). As shown in FIG. 1, the internal combustion engine control circuit 100 according to the present embodiment includes a capacitor C that can store electric power, a battery B that can store electric power, a generator 41 that can generate electric power, and an internal combustion engine 60. A cell motor 46 to be started, a load 31 such as a lamp, and a notification unit 80 such as an indicator are connected. The electric power generated by the generator 41 can charge the capacitor C and the battery B. On the other hand, the electric power charged in the capacitor C and the battery B can be supplied to the internal combustion engine control circuit 100, the load 31, the cell motor 46, the notification unit 80, and the like via a main switch 70 and a fuse 75 described later.
 内燃機関制御回路100は、発電機41が発電する電圧、バッテリBの電圧、バッテリB及びキャパシタCを並列に接続した際の電圧、バッテリB及びキャパシタCを直列に接続した際の電圧を検出する電圧検出回路20と、電圧検出回路20で検出された電圧に基づいて、発電機41で発電された電力のキャパシタC及びバッテリBに対する供給を制御し、かつ、キャパシタC及びバッテリBからセルモータ46、負荷31、報知部80等に対する電力の供給を制御するECU等の制御部50と、を備えている。なお、電圧検出回路20及び制御部50にはキャパシタC及びバッテリBが接続されており、これら電圧検出回路20及び制御部50にはキャパシタC及び/又はバッテリBから電力を供給することができるようになっている。 The internal combustion engine control circuit 100 detects the voltage generated by the generator 41, the voltage of the battery B, the voltage when the battery B and the capacitor C are connected in parallel, and the voltage when the battery B and the capacitor C are connected in series. Based on the voltage detection circuit 20 and the voltage detected by the voltage detection circuit 20, the supply of the electric power generated by the generator 41 to the capacitor C and the battery B is controlled, and the cell motor 46, from the capacitor C and the battery B, And a control unit 50 such as an ECU that controls supply of electric power to the load 31, the notification unit 80, and the like. A capacitor C and a battery B are connected to the voltage detection circuit 20 and the control unit 50, and power can be supplied from the capacitor C and / or the battery B to the voltage detection circuit 20 and the control unit 50. It has become.
 本実施の形態では、キャパシタCと内燃機関制御回路100との間に、メインスイッチ70及びヒューズ75が接続されている。より具体的には、キャパシタCの第二端子Cb(キャパシタCの他端)とヒューズ75の第二端子75bが接続され、ヒューズ75の第一端子75aとメインスイッチ70の第二端子70bが接続され、メインスイッチ70の第一端子70aと内燃機関制御回路100が接続されている。 In the present embodiment, a main switch 70 and a fuse 75 are connected between the capacitor C and the internal combustion engine control circuit 100. More specifically, the second terminal Cb of the capacitor C (the other end of the capacitor C) and the second terminal 75b of the fuse 75 are connected, and the first terminal 75a of the fuse 75 and the second terminal 70b of the main switch 70 are connected. The first terminal 70a of the main switch 70 and the internal combustion engine control circuit 100 are connected.
 図1に示すように、メインスイッチ70は、セルモータ46及び発電機41とバッテリB及びキャパシタCとの間で接続されている。より具体的には、メインスイッチ70の第一端子70aが内燃機関制御回路100に接続され、この内燃機関制御回路100がセルモータ46及び発電機41に接続されている。他方、メインスイッチ70の第二端子70bが、ヒューズ75を介してキャパシタCの第二端子Cbに接続され、かつ、後述する第一スイッチ10を介してバッテリBの第一端子Ba(バッテリBの一端)に接続されている。 As shown in FIG. 1, the main switch 70 is connected between the cell motor 46 and the generator 41, the battery B, and the capacitor C. More specifically, the first terminal 70 a of the main switch 70 is connected to the internal combustion engine control circuit 100, and the internal combustion engine control circuit 100 is connected to the cell motor 46 and the generator 41. On the other hand, the second terminal 70b of the main switch 70 is connected to the second terminal Cb of the capacitor C via the fuse 75, and the first terminal Ba (the battery B of the battery B) is connected via the first switch 10 described later. One end).
 図1に示すように、メインスイッチ70の第二端子70bとバッテリBの第一端子Baとの間に第一スイッチ10が接続され、第一スイッチ10とキャパシタCの第一端子Ca(キャパシタCの一端)との間に第二スイッチ15が接続されている。また上述したように、キャパシタCの第二端子Cbは、第一スイッチ10とメインスイッチ70との間に接続されており、より具体的には第一スイッチ10とヒューズ75の第二端子75bとの間に接続されている。なお、バッテリBの第二端子Bb(バッテリBの他端)は接地されている。 As shown in FIG. 1, the first switch 10 is connected between the second terminal 70 b of the main switch 70 and the first terminal Ba of the battery B, and the first terminal Ca (capacitor C) of the first switch 10 and the capacitor C. The second switch 15 is connected to one end of the second switch 15. Further, as described above, the second terminal Cb of the capacitor C is connected between the first switch 10 and the main switch 70, and more specifically, the first switch 10 and the second terminal 75 b of the fuse 75. Connected between. The second terminal Bb of the battery B (the other end of the battery B) is grounded.
 第一スイッチ10は、バッテリBの第一端子Baとメインスイッチ70の第二端子70bとを接続する状態と、バッテリBの第一端子Baと第二スイッチ15とを接続する状態とを切り換える。また、第二スイッチ15は、キャパシタCの第一端子Caと第一スイッチ10とを接続する状態と、キャパシタCの第一端子Caと第一スイッチ10とを遮断する状態とを切り換える。なお、本実施の形態では、このようにキャパシタCの第一端子Caと第一スイッチ10とを遮断するときに、キャパシタCの第一端子Caが接地されることとなる(図5参照)。 The first switch 10 switches between a state in which the first terminal Ba of the battery B and the second terminal 70b of the main switch 70 are connected and a state in which the first terminal Ba of the battery B and the second switch 15 are connected. The second switch 15 switches between a state in which the first terminal Ca of the capacitor C and the first switch 10 are connected and a state in which the first terminal Ca of the capacitor C and the first switch 10 are disconnected. In the present embodiment, the first terminal Ca of the capacitor C is grounded when the first terminal Ca of the capacitor C and the first switch 10 are thus cut off (see FIG. 5).
 図1に示すように、負荷31には負荷31を制御する負荷制御回路30が接続されている。また、この負荷制御回路30には制御部50が接続されており、制御部50が、動作指令を送ることで負荷制御回路30は制御される。また、負荷制御回路30はキャパシタC及びバッテリBに接続されており、キャパシタC及び/又はバッテリBに充電された電力で駆動可能となっている。 As shown in FIG. 1, a load control circuit 30 that controls the load 31 is connected to the load 31. Further, a control unit 50 is connected to the load control circuit 30, and the load control circuit 30 is controlled when the control unit 50 sends an operation command. Further, the load control circuit 30 is connected to the capacitor C and the battery B, and can be driven by the electric power charged in the capacitor C and / or the battery B.
 発電機41には、発電機41で生成された電流から整流電流を生成する整流回路40が接続されている。そして、この整流回路40はキャパシタC及びバッテリBに接続されており、整流回路40で生成された整流電流がキャパシタC及び/又はバッテリBに供給されてキャパシタC及び/又はバッテリBを充電する。 A rectifier circuit 40 that generates a rectified current from the current generated by the generator 41 is connected to the generator 41. The rectifier circuit 40 is connected to the capacitor C and the battery B, and the rectified current generated by the rectifier circuit 40 is supplied to the capacitor C and / or the battery B to charge the capacitor C and / or the battery B.
 セルモータ46には、セルモータ46を駆動させる駆動回路45が接続されている。そして、この駆動回路45はキャパシタC及びバッテリBに接続されており、キャパシタC及び/又はバッテリBに充電された電力で駆動可能となっている。 A driving circuit 45 for driving the cell motor 46 is connected to the cell motor 46. The drive circuit 45 is connected to the capacitor C and the battery B, and can be driven by the electric power charged in the capacitor C and / or the battery B.
 なお、整流回路40及び駆動回路45の各々には制御部50が接続されており、当該制御部50が、動作指令を送ることで整流回路40及び駆動回路45を制御する。ところで、キャパシタCの一例としては、スーパーキャパシタを挙げることができる。なお、スーパーキャパシタとは、電気二重層キャパシタの総称である。 A control unit 50 is connected to each of the rectifier circuit 40 and the drive circuit 45, and the control unit 50 controls the rectifier circuit 40 and the drive circuit 45 by sending an operation command. Incidentally, as an example of the capacitor C, a super capacitor can be cited. Supercapacitor is a general term for electric double layer capacitors.
 本実施の形態では、発電機41とセルモータ46は別体になった態様を用いて説明しているが、これに限られることはなく、発電機41がセルモータ46を兼ねてもよい。また、本実施の形態の発電機41は単相発電機であってもよいし三相発電機等の多相発電機であってもよい。また、本実施の形態のセルモータ46は単相モータであってもよいし三相モータ等の多相モータであってもよい。 In the present embodiment, the generator 41 and the cell motor 46 are described as separate bodies. However, the present invention is not limited to this, and the generator 41 may also serve as the cell motor 46. The generator 41 of the present embodiment may be a single-phase generator or a multi-phase generator such as a three-phase generator. Further, the cell motor 46 of the present embodiment may be a single-phase motor or a multi-phase motor such as a three-phase motor.
 なお、内燃機関60が始動されて駆動している際には、負荷31、報知部80、並びに、内燃機関制御回路100の電圧検出回路20、負荷制御回路30、整流回路40、駆動回路45及び制御部50等は、発電機41で発電される電力によって駆動されることとなる。 When the internal combustion engine 60 is started and driven, the load 31, the notification unit 80, the voltage detection circuit 20, the load control circuit 30, the rectifier circuit 40, the drive circuit 45, and the internal combustion engine control circuit 100 The control unit 50 and the like are driven by electric power generated by the generator 41.
 上述した制御部50は、第一スイッチ10及び第二スイッチ15の各々も制御するようになっている。具体的な制御態様の一例を挙げると、本実施の形態の制御部50は、メインスイッチ70がOFF状態のときには、図1に示すように、第二スイッチ15によりキャパシタCの第一端子Caと第一スイッチ10とを接続し、かつ、当該第一スイッチ10によりバッテリBの第一端子Baとメインスイッチ70の第二端子70bとをヒューズ75を介して接続することで第一スイッチ10によりバッテリBの第一端子Baと第二スイッチ15とを遮断している。その結果、メインスイッチ70がOFF状態のときには、キャパシタCの第一端子CaとバッテリBの第一端子Baとは遮断されている。 The control unit 50 described above also controls each of the first switch 10 and the second switch 15. As an example of a specific control mode, when the main switch 70 is in an OFF state, the control unit 50 according to the present embodiment connects the first terminal Ca of the capacitor C with the second switch 15 as shown in FIG. The first switch 10 is connected, and the first switch 10 connects the first terminal Ba of the battery B and the second terminal 70b of the main switch 70 via the fuse 75, whereby the first switch 10 connects the battery. The B first terminal Ba and the second switch 15 are shut off. As a result, when the main switch 70 is in the OFF state, the first terminal Ca of the capacitor C and the first terminal Ba of the battery B are disconnected.
 また、例えば二輪車の運転者がキーを回す等して図2に示すようにメインスイッチ70をON状態にし、スタータを押下する等してセルモータ46を始動するときには、制御部50は、図3に示すように、第二スイッチ15によりキャパシタCの第一端子Caと第一スイッチ10とを接続し、かつ、当該第一スイッチ10によりバッテリBの第一端子Baと第二スイッチ15とを接続することで、バッテリBとキャパシタCとを直列に接続する。なお、このようにバッテリBとキャパシタCとが直列に接続された際には、これらバッテリB及びキャパシタCによる電圧(バッテリBの第二端子BbとキャパシタCの第二端子Cbとの間の電圧)は例えば24Vとなっている。 Further, for example, when the cell motor 46 is started by turning on the main switch 70 as shown in FIG. 2 by, for example, turning the key of the motorcycle, and depressing the starter, the control unit 50 is shown in FIG. As shown, the first terminal Ca of the capacitor C and the first switch 10 are connected by the second switch 15, and the first terminal Ba of the battery B and the second switch 15 are connected by the first switch 10. Thus, the battery B and the capacitor C are connected in series. When the battery B and the capacitor C are connected in series as described above, the voltage of the battery B and the capacitor C (the voltage between the second terminal Bb of the battery B and the second terminal Cb of the capacitor C). ) Is, for example, 24V.
 また、制御部50は、内燃機関60が始動した後で、図4に示すように、第二スイッチ15によりキャパシタCの第一端子Caと第一スイッチ10とを接続し、かつ、当該第一スイッチ10によりバッテリBの第一端子Baとメインスイッチ70の第二端子70bとをヒューズ75を介して接続する。その結果、発電機41で生成された電流がキャパシタCに流れ込むことが防止される。 Further, after the internal combustion engine 60 is started, the control unit 50 connects the first terminal Ca of the capacitor C and the first switch 10 by the second switch 15 as shown in FIG. The switch 10 connects the first terminal Ba of the battery B and the second terminal 70 b of the main switch 70 via the fuse 75. As a result, the current generated by the generator 41 is prevented from flowing into the capacitor C.
 また、制御部50は、メインスイッチ70がON状態であり、かつ、発電機41が発電する電圧がバッテリBの満充電時の電圧以上となった場合には、図5に示すように、第二スイッチ15によりキャパシタCの第一端子Caを接地し、かつ、第一スイッチ10によりバッテリBの第一端子Baとメインスイッチ70の第二端子70bとをヒューズ75を介して接続することで、バッテリB及びキャパシタCを並列に接続し、これらバッテリB及びキャパシタCの両方を充電できるようにする。なお、この態様において、発電機41が発電する電圧がバッテリBの満充電時の電圧以上となったらすぐにこのような接続態様とするのではなく、発電機41が発電する電圧が、所定時間(例えば数秒)の間、バッテリBの満充電時の電圧以上となった場合にのみ、第二スイッチ15によりキャパシタCの第一端子Caを接地し、かつ、第一スイッチ10によりバッテリBの第一端子Baとメインスイッチ70の第二端子70bとをヒューズ75を介して接続することで、バッテリB及びキャパシタCを並列に接続するようにしてもよい。なお、本願における「所定時間」とは、例えば内燃機関制御回路100によって制御されるのが二輪車である場合には、スロットルをあけて二輪車が走り始めるまでの時間を除いた時間である。 Further, when the main switch 70 is in the ON state and the voltage generated by the generator 41 becomes equal to or higher than the voltage at the time of full charge of the battery B, the control unit 50, as shown in FIG. The first terminal Ca of the capacitor C is grounded by the two switches 15 and the first terminal Ba of the battery B and the second terminal 70b of the main switch 70 are connected via the fuse 75 by the first switch 10. The battery B and the capacitor C are connected in parallel so that both the battery B and the capacitor C can be charged. In this aspect, the voltage generated by the generator 41 is not set to such a connection form as soon as the voltage generated by the generator 41 becomes equal to or higher than the voltage when the battery B is fully charged. The first terminal Ca of the capacitor C is grounded by the second switch 15 and the first switch 10 of the battery B is only connected to the second switch 15 only when the voltage of the battery B becomes equal to or higher than the fully charged voltage (for example, several seconds). The battery B and the capacitor C may be connected in parallel by connecting the one terminal Ba and the second terminal 70b of the main switch 70 via the fuse 75. Note that the “predetermined time” in the present application is a time excluding the time until the two-wheeled vehicle starts running after the throttle is opened when the internal-combustion engine control circuit 100 controls the two-wheeled vehicle, for example.
 上述したように、電圧検出回路20は、図3に示すようにバッテリB及びキャパシタCを直列に接続した際の電圧を検出する。より具体的には、電圧検出回路20は、図3に示すように、第二スイッチ15によりキャパシタCの第一端子Caと第一スイッチ10とを接続し、かつ、当該第一スイッチ10によりバッテリBの第一端子Baと第二スイッチ15とを接続した際に、バッテリBの第二端子BbとキャパシタCの第二端子Cbとの間の電圧を検出する。なお、バッテリBの第二端子Bbは接地されていることから、電圧検出回路20はキャパシタCの第二端子Cbの電圧を検出することとなる。 As described above, the voltage detection circuit 20 detects the voltage when the battery B and the capacitor C are connected in series as shown in FIG. More specifically, as shown in FIG. 3, the voltage detection circuit 20 connects the first terminal Ca of the capacitor C and the first switch 10 by the second switch 15, and the battery by the first switch 10. When the first terminal Ba of B and the second switch 15 are connected, the voltage between the second terminal Bb of the battery B and the second terminal Cb of the capacitor C is detected. Since the second terminal Bb of the battery B is grounded, the voltage detection circuit 20 detects the voltage at the second terminal Cb of the capacitor C.
 そして、上述のようにバッテリB及びキャパシタCを直列に接続した際に電圧検出回路20がバッテリBの第二端子BbとキャパシタCの第二端子Cbとの間の電圧を検出した結果、当該電圧がセルモータ46を始動して内燃機関60を始動するのに必要な始動可能電圧未満である場合には、制御部50は、図2に示すように、第二スイッチ15によりキャパシタCの第一端子Caと第一スイッチ10とを接続し、かつ、当該第一スイッチ10によりバッテリBの第一端子Baとメインスイッチ70の第二端子70bとをヒューズ75を介して接続して第一スイッチ10によりバッテリBの第一端子Baと第二スイッチ15とを遮断する。 When the battery B and the capacitor C are connected in series as described above, the voltage detection circuit 20 detects the voltage between the second terminal Bb of the battery B and the second terminal Cb of the capacitor C. 2 is less than the startable voltage required for starting the cell motor 46 and starting the internal combustion engine 60, the control unit 50 causes the first terminal of the capacitor C to be switched by the second switch 15, as shown in FIG. Ca is connected to the first switch 10, and the first switch 10 connects the first terminal Ba of the battery B and the second terminal 70 b of the main switch 70 via the fuse 75. The first terminal Ba of the battery B and the second switch 15 are disconnected.
 また、図3に示すようにバッテリB及びキャパシタCを直列に接続した際に電圧検出回路20がバッテリBの第二端子BbとキャパシタCの第二端子Cbとの間の電圧を検出した結果、当該電圧がセルモータ46を始動して内燃機関60を始動するのに必要な始動可能電圧未満である場合には、制御部50が、キャパシタCを外部電源90で充電するよう促す指令をインジケータ等の報知部80に出力してもよいし、キック等の外部駆動部65を駆動することで内燃機関60を始動するよう促す指令を報知部80に出力してもよい。 Further, as shown in FIG. 3, when the battery B and the capacitor C are connected in series, the voltage detection circuit 20 detects the voltage between the second terminal Bb of the battery B and the second terminal Cb of the capacitor C, If the voltage is less than the startable voltage required to start the cell motor 46 and start the internal combustion engine 60, the control unit 50 issues a command to prompt the capacitor C to be charged by the external power supply 90, such as an indicator. You may output to the alerting | reporting part 80, and you may output the instruction | command which prompts to start the internal combustion engine 60 by driving the external drive parts 65, such as a kick.
 また、図3に示すようにバッテリB及びキャパシタCを直列に接続した際に電圧検出回路20がバッテリBの第二端子BbとキャパシタCの第二端子Cbとの間の電圧を検出した結果、当該電圧がセルモータ46を始動して内燃機関60を始動するのに必要な始動可能電圧未満である場合であって、バッテリBに十分に電力が充電されているときには、図3に示した状態でバッテリBに充電された電力によってキャパシタCを充電するようにしてもよい。なお、バッテリBに電力が十分に充電されているか否かについては、図2に示すように、第二スイッチ15によりキャパシタCの第一端子Caと第一スイッチ10とを接続し、かつ、当該第一スイッチ10によりバッテリBの第一端子Baとメインスイッチ70の第二端子70bとをヒューズ75を介して接続した状態で、電圧検出回路20がバッテリBの第一端子Baの電圧を検出すればよい。 Further, as shown in FIG. 3, when the battery B and the capacitor C are connected in series, the voltage detection circuit 20 detects the voltage between the second terminal Bb of the battery B and the second terminal Cb of the capacitor C, When the voltage is less than the startable voltage required to start the cell motor 46 and start the internal combustion engine 60, and the battery B is sufficiently charged, the state shown in FIG. The capacitor C may be charged with the electric power charged in the battery B. Note that whether or not the battery B is sufficiently charged is connected to the first terminal Ca of the capacitor C and the first switch 10 by the second switch 15 as shown in FIG. With the first switch 10 connecting the first terminal Ba of the battery B and the second terminal 70b of the main switch 70 via the fuse 75, the voltage detection circuit 20 detects the voltage of the first terminal Ba of the battery B. That's fine.
《方法》
 次に、上述した内燃機関制御回路100を用いた内燃機関制御方法について説明する。
"Method"
Next, an internal combustion engine control method using the above-described internal combustion engine control circuit 100 will be described.
 図1に示すように、メインスイッチ70がOFF状態のときには、第二スイッチ15がキャパシタCの第一端子Caと第一スイッチ10とを接続し、かつ、当該第一スイッチ10がバッテリBの第一端子Baとメインスイッチ70の第二端子70bとをヒューズ75を介して接続することで、第一スイッチ10によりバッテリBの第一端子Baと第二スイッチ15とを遮断し、その結果、キャパシタCの第一端子CaとバッテリBの第一端子Baとを遮断している。 As shown in FIG. 1, when the main switch 70 is in the OFF state, the second switch 15 connects the first terminal Ca of the capacitor C and the first switch 10, and the first switch 10 is connected to the first switch of the battery B. By connecting the one terminal Ba and the second terminal 70b of the main switch 70 via the fuse 75, the first switch Ba blocks the first terminal Ba and the second switch 15 of the battery B, and as a result, the capacitor The first terminal Ca of C and the first terminal Ba of the battery B are cut off.
 例えば二輪車の運転者がキーを回す等して図2に示すようにメインスイッチ70をON状態にし、続いて、当該運転者がスタータを押下する等してセルモータ46を始動させ、内燃機関60を始動させるときには、セルモータ46を始動するのに先立ち、図3に示すように、第二スイッチ15がキャパシタCの第一端子Caと第一スイッチ10とを接続し、かつ、当該第一スイッチ10がバッテリBの第一端子Baと第二スイッチ15とを接続することで、バッテリBとキャパシタCとを直列に接続する。そして、バッテリB及びキャパシタCの両方の電力によってセルモータ46が始動され、その結果、内燃機関60が始動される。 For example, the driver of the motorcycle turns the key to turn on the main switch 70 as shown in FIG. 2 and then starts the cell motor 46 by pressing the starter, etc. When starting, prior to starting the cell motor 46, as shown in FIG. 3, the second switch 15 connects the first terminal Ca of the capacitor C and the first switch 10, and the first switch 10 By connecting the first terminal Ba of the battery B and the second switch 15, the battery B and the capacitor C are connected in series. Then, the cell motor 46 is started by the electric power of both the battery B and the capacitor C, and as a result, the internal combustion engine 60 is started.
 なお、このようにバッテリBとキャパシタCとが直列に接続された際には、電圧検出回路20がバッテリBの第二端子BbとキャパシタCの第二端子Cbとの間の電圧を検出し、より具体的には、(バッテリBの第二端子Bbが接地されていることから)キャパシタCの第二端子Cbの電圧を検出する。そして、測定した電圧がセルモータ46を始動して内燃機関60を始動するのに必要な始動可能電圧未満である場合には、図2に示すように、第二スイッチ15がキャパシタCの第一端子Caと第一スイッチ10とを接続し、かつ、当該第一スイッチ10がバッテリBの第一端子Baとメインスイッチ70の第二端子70bとをヒューズ75を介して接続することで、発電機41で生成された電流がキャパシタCに流れ込むことを防止する。 When the battery B and the capacitor C are connected in series as described above, the voltage detection circuit 20 detects the voltage between the second terminal Bb of the battery B and the second terminal Cb of the capacitor C, More specifically, the voltage of the second terminal Cb of the capacitor C is detected (since the second terminal Bb of the battery B is grounded). If the measured voltage is less than the startable voltage required to start the cell motor 46 and start the internal combustion engine 60, the second switch 15 is connected to the first terminal of the capacitor C as shown in FIG. Ca and the first switch 10 are connected, and the first switch 10 connects the first terminal Ba of the battery B and the second terminal 70b of the main switch 70 via the fuse 75, whereby the generator 41 is connected. Is prevented from flowing into the capacitor C.
 また、このように測定した電圧がセルモータ46を始動して内燃機関60を始動するのに必要な始動可能電圧未満である場合には、キャパシタCを外部電源90で充電するよう促す指令をインジケータ等の報知部80に出力してもよいし、キック等の外部駆動部65を駆動することで内燃機関60を始動するよう促す指令を報知部80に出力してもよい。 When the voltage measured in this way is less than the startable voltage necessary for starting the cell motor 46 and starting the internal combustion engine 60, an instruction or the like for prompting the capacitor C to be charged by the external power source 90 is displayed. May be output to the notification unit 80, or a command for starting the internal combustion engine 60 by driving the external drive unit 65 such as a kick may be output to the notification unit 80.
 上述したようにキャパシタCを外部電源90で充電するよう促す指令をインジケータ等の報知部80に出力した際には、例えば二輪車のメータ部分等に設置された所定のインジケータが点灯、点滅等し、二輪車の運転者等にキャパシタCへの充電が必要であることを認識させることができる。その結果、例えば図6に示すように二輪車の運転者等がキャパシタCを外部電源90に接続することで、キャパシタCへの充電が行われることとなる。なお、このようにキャパシタCへ充電する際には、図6に示すように、第二スイッチ15がキャパシタCの第一端子Caと第一スイッチ10とを接続し、かつ、当該第一スイッチ10がバッテリBの第一端子Baとメインスイッチ70の第二端子70bとをヒューズ75を介して接続する。 As described above, when a command to urge the capacitor C to be charged by the external power source 90 is output to the notification unit 80 such as an indicator, for example, a predetermined indicator installed in a meter portion of the motorcycle is lit, flashing, etc. The driver of the motorcycle can recognize that the capacitor C needs to be charged. As a result, for example, as shown in FIG. 6, a motorcycle driver or the like connects the capacitor C to the external power supply 90, whereby the capacitor C is charged. When charging the capacitor C in this manner, the second switch 15 connects the first terminal Ca of the capacitor C and the first switch 10 as shown in FIG. Connects the first terminal Ba of the battery B and the second terminal 70 b of the main switch 70 via the fuse 75.
 また、上述したようにキック等の外部駆動部65を駆動することで内燃機関60を始動するよう促す指令をインジケータ等の報知部80に出力した際には、例えば二輪車のメータ部分等に設置された所定のインジケータが点灯、点滅等し、二輪車の運転者等にキック等の外部駆動部65を駆動することで内燃機関60を始動することが必要であることを認識させることができる。その結果、二輪車の運転者等がキック等の外部駆動部65を駆動し、エンジン等の内燃機関60が始動される。 Further, as described above, when a command to start the internal combustion engine 60 by driving the external drive unit 65 such as a kick is output to the notification unit 80 such as an indicator, it is installed, for example, in a meter portion of a motorcycle. The predetermined indicator is lit, flashing, etc., and it is possible to recognize that it is necessary to start the internal combustion engine 60 by driving the external drive unit 65 such as a kick to a motorcycle driver or the like. As a result, the driver of the motorcycle drives the external drive unit 65 such as a kick, and the internal combustion engine 60 such as an engine is started.
 上述のようにして内燃機関60が始動した後は、図4に示すように、第二スイッチ15がキャパシタCの第一端子Caと第一スイッチ10とを接続し、かつ、当該第一スイッチ10がバッテリBの第一端子Baとメインスイッチ70の第二端子70bとをヒューズ75を介して接続することで、発電機41で生成された電流がキャパシタCに流れ込むことを防止する。なお、この際には、負荷31、報知部80、並びに、内燃機関制御回路100の電圧検出回路20、負荷制御回路30、整流回路40、駆動回路45及び制御部50等は、発電機41で発電される電力によって駆動されることとなるが、発電機41が発電する電圧はバッテリBの満充電時の電圧未満となっている。 After the internal combustion engine 60 is started as described above, the second switch 15 connects the first terminal Ca of the capacitor C and the first switch 10 as shown in FIG. Connects the first terminal Ba of the battery B and the second terminal 70b of the main switch 70 via the fuse 75, thereby preventing the current generated by the generator 41 from flowing into the capacitor C. At this time, the load 31, the notification unit 80, the voltage detection circuit 20 of the internal combustion engine control circuit 100, the load control circuit 30, the rectifier circuit 40, the drive circuit 45, the control unit 50, etc. Although driven by the generated power, the voltage generated by the generator 41 is less than the voltage when the battery B is fully charged.
 メインスイッチ70がON状態であり、かつ、発電機41が発電する電圧がバッテリBの満充電時の電圧以上となった場合には、図5に示すように、第二スイッチ15がキャパシタCの第一端子Caを接地し、かつ、第一スイッチ10がバッテリBの第一端子Baとメインスイッチ70の第二端子70bとをヒューズ75を介して接続することで、バッテリB及びキャパシタCを並列に接続する。この際、発電機41が発電する電圧がバッテリBの満充電時の電圧以上となったらすぐにこのような接続態様とするのではなく、所定時間(例えば数秒)の間、発電機41が発電する電圧がバッテリBの満充電時の電圧以上となった段階で、このような接続態様を取るようにしてもよい。 When the main switch 70 is in the ON state and the voltage generated by the generator 41 is equal to or higher than the voltage when the battery B is fully charged, the second switch 15 is connected to the capacitor C as shown in FIG. The first terminal Ca is grounded, and the first switch 10 connects the first terminal Ba of the battery B and the second terminal 70b of the main switch 70 via the fuse 75, so that the battery B and the capacitor C are connected in parallel. Connect to. At this time, when the voltage generated by the generator 41 becomes equal to or higher than the voltage at the time of full charge of the battery B, the connection mode is not immediately set, but the generator 41 generates power for a predetermined time (for example, several seconds). Such a connection mode may be adopted when the voltage to be performed becomes equal to or higher than the voltage when the battery B is fully charged.
《効果》
 次に、上述した構成からなる本実施の形態によって達成される効果であって、まだ述べていない効果又はとりわけ重要な効果について説明する。
"effect"
Next, effects achieved by the present embodiment having the above-described configuration, which have not yet been described, or particularly important effects will be described.
 本実施の形態によれば、図1に示すように、メインスイッチ70がOFF状態のときには、第二スイッチ15がキャパシタCの第一端子Caと第一スイッチ10とを接続し、かつ、当該第一スイッチ10がバッテリBの第一端子Baとメインスイッチ70の第二端子70bとをヒューズ75を介して接続することで、第一スイッチ10によりバッテリBの第一端子Baと第二スイッチ15とを遮断し、その結果、キャパシタCの第一端子CaとバッテリBの第一端子Baとを遮断する。このため、メインスイッチ70がOFF状態となっている際に暗電流がバッテリBとキャパシタCとの間で流れてしまうことを防止し、バッテリBに蓄積されている電力及びキャパシタCに蓄積されている電力が減少することを防止することができる。 According to the present embodiment, as shown in FIG. 1, when the main switch 70 is in the OFF state, the second switch 15 connects the first terminal Ca of the capacitor C and the first switch 10, and the first switch The first switch 10 connects the first terminal Ba of the battery B and the second terminal 70b of the main switch 70 via the fuse 75 so that the first switch Ba and the second switch 15 As a result, the first terminal Ca of the capacitor C and the first terminal Ba of the battery B are shut off. For this reason, when the main switch 70 is in the OFF state, the dark current is prevented from flowing between the battery B and the capacitor C, and the electric power accumulated in the battery B and the capacitor C are accumulated. It is possible to prevent the power that is present from decreasing.
 また、本実施の形態によれば、例えば二輪車の運転者がキーを回す等して図2に示すようにメインスイッチ70をON状態にし、続いて、スタータを押下する等してセルモータ46を始動させるときには、図3に示すように、第二スイッチ15がキャパシタCの第一端子Caと第一スイッチ10とを接続し、かつ、当該第一スイッチ10がバッテリBの第一端子Baと第二スイッチ15とを接続することで、バッテリBとキャパシタCとを直列に接続する。このため、セルモータ46を始動して内燃機関60を始動する際に流れる電流を低減することができ、ひいては、内燃機関制御回路100の装置構成を小型化することができる。 Further, according to the present embodiment, the cell motor 46 is started by, for example, turning on a main switch 70 as shown in FIG. 3, the second switch 15 connects the first terminal Ca of the capacitor C and the first switch 10, and the first switch 10 is connected to the first terminal Ba of the battery B and the second as shown in FIG. 3. By connecting the switch 15, the battery B and the capacitor C are connected in series. For this reason, the electric current which flows when starting the cell motor 46 and starting the internal combustion engine 60 can be reduced. As a result, the apparatus configuration of the internal combustion engine control circuit 100 can be reduced in size.
 また、本実施の形態によれば、内燃機関60が始動した後には、図4に示すように、第二スイッチ15がキャパシタCの第一端子Caと第一スイッチ10とを接続し、かつ、当該第一スイッチ10がバッテリBの第一端子Baとメインスイッチ70の第二端子70bとをヒューズ75を介して接続することで、第一スイッチ10によりバッテリBの第一端子Baと第二スイッチ15とを遮断し、その結果、発電機41で生成された電流がキャパシタCに流れ込むことを防止する。このため、内燃機関60を駆動することで発電機41によって発電される電力が安定する前にキャパシタCの充電が行われることを防止することができる。その結果、発電機41で発電する電力が安定していないにもかかわらずキャパシタCの充電が行われることにより内燃機関制御回路100に供給される電力が急激に低下してしまい、不安定な状態となることを未然に防止することができる。 Further, according to the present embodiment, after the internal combustion engine 60 is started, as shown in FIG. 4, the second switch 15 connects the first terminal Ca of the capacitor C and the first switch 10, and When the first switch 10 connects the first terminal Ba of the battery B and the second terminal 70b of the main switch 70 via the fuse 75, the first switch Ba and the second switch of the battery B are connected by the first switch 10. As a result, the current generated by the generator 41 is prevented from flowing into the capacitor C. For this reason, it is possible to prevent the capacitor C from being charged before the electric power generated by the generator 41 is stabilized by driving the internal combustion engine 60. As a result, the power supplied to the internal combustion engine control circuit 100 is drastically reduced due to charging of the capacitor C even though the power generated by the generator 41 is not stable. Can be prevented in advance.
 また、本実施の形態によれば、メインスイッチ70がON状態であり、かつ、発電機41が発電する電圧がバッテリBの満充電時の電圧以上となった場合に、図5に示すように、第二スイッチ15がキャパシタCの第一端子Caを接地し、かつ、第一スイッチ10がバッテリBの第一端子Baとメインスイッチ70の第二端子70bとをヒューズ75を介して接続することで、バッテリB及びキャパシタCを並列に接続する。このため、内燃機関60を駆動することで発電機41によって発電される電力が安定した後でキャパシタCへの充電を行うことができる。その結果、発電機41で発電する電力が安定していないにもかかわらずキャパシタCの充電が行われることにより内燃機関制御回路100に供給される電力が急激に低下してしまい、不安定な状態となることを未然に防止することができる。なお、発電機41が発電する電圧がバッテリBの満充電時の電圧以上となったらすぐにこのような接続態様とするのではなく、所定時間(例えば数秒)の間、発電機41が発電する電圧がバッテリBの満充電時の電圧以上となった場合にのみ、このような接続態様を取るようにしてもよい。この場合には、発電機41で発電する電力が確実に安定した状態となった後でキャパシタCへの充電を行うことができる。その結果、より確実に、発電機41で発電する電力が安定していないにもかかわらずキャパシタCの充電が行われることにより内燃機関制御回路100に供給される電力が急激に低下してしまい、不安定な状態となることを未然に防止することができる。 Further, according to the present embodiment, when the main switch 70 is in the ON state and the voltage generated by the generator 41 is equal to or higher than the voltage when the battery B is fully charged, as shown in FIG. The second switch 15 grounds the first terminal Ca of the capacitor C, and the first switch 10 connects the first terminal Ba of the battery B and the second terminal 70b of the main switch 70 via the fuse 75. Thus, the battery B and the capacitor C are connected in parallel. For this reason, the capacitor C can be charged after the electric power generated by the generator 41 is stabilized by driving the internal combustion engine 60. As a result, the power supplied to the internal combustion engine control circuit 100 is drastically reduced due to charging of the capacitor C even though the power generated by the generator 41 is not stable. Can be prevented in advance. In addition, when the voltage generated by the generator 41 becomes equal to or higher than the voltage at the time of full charge of the battery B, the connection mode is not used immediately, but the generator 41 generates power for a predetermined time (for example, several seconds). Such a connection mode may be taken only when the voltage is equal to or higher than the voltage when the battery B is fully charged. In this case, the capacitor C can be charged after the power generated by the generator 41 is reliably stabilized. As a result, the power supplied to the internal combustion engine control circuit 100 is suddenly reduced by charging the capacitor C even more reliably, even though the power generated by the generator 41 is not stable. An unstable state can be prevented in advance.
 また、本実施の形態では、図3に示すようにバッテリB及びキャパシタCを直列に接続した際に、電圧検出回路20がバッテリBの第二端子BbとキャパシタCの第二端子Cbとの間の電圧を検出し、より具体的にはキャパシタCの第二端子Cbの電圧を検出する。そして、電圧検出回路20が測定した電圧がセルモータ46を始動して内燃機関60を始動するのに必要な始動可能電圧未満である場合には、図2に示すように、第二スイッチ15がキャパシタCの第一端子Caと第一スイッチ10とを接続し、かつ、当該第一スイッチ10がバッテリBの第一端子Baとメインスイッチ70の第二端子70bとをヒューズ75を介して接続することで、発電機41で生成された電流がキャパシタCに流れ込むことを防止する。その結果、仮にキック等の外部駆動部65を駆動して内燃機関60を始動したり、例えば二輪車の押しがけをしたりする際に、例えば二輪車の運転者等にかかる労力を低減することができる。 In the present embodiment, as shown in FIG. 3, when the battery B and the capacitor C are connected in series, the voltage detection circuit 20 is connected between the second terminal Bb of the battery B and the second terminal Cb of the capacitor C. More specifically, the voltage of the second terminal Cb of the capacitor C is detected. When the voltage measured by the voltage detection circuit 20 is less than the startable voltage required to start the cell motor 46 and start the internal combustion engine 60, the second switch 15 is connected to the capacitor as shown in FIG. The first terminal Ca of C and the first switch 10 are connected, and the first switch 10 connects the first terminal Ba of the battery B and the second terminal 70b of the main switch 70 via the fuse 75. Thus, the current generated by the generator 41 is prevented from flowing into the capacitor C. As a result, for example, when the external drive unit 65 such as a kick is driven to start the internal combustion engine 60 or to push the two-wheeled vehicle, for example, it is possible to reduce the labor on the two-wheeled vehicle driver or the like. .
 この点について説明する。図3に示すように発電機41で生成された電流がキャパシタCに電流が流れ込む状態となっていると、外部駆動部65又は押しがけで内燃機関60を始動しようとしても、例えばキック等の外部駆動部65を駆動することにより発電機41で生成した電流や例えば二輪車を押すことにより発電機41で生成した電流がキャパシタCに吸われてしまい、内燃機関60を始動することができないことがある。この点、本実施の形態では、図3に示すようにバッテリB及びキャパシタCを直列に接続した状態で電圧検出回路20がバッテリBの第二端子BbとキャパシタCの第二端子Cbとの間の電圧を検出し、電圧検出回路20が測定した電圧がセルモータ46を始動して内燃機関60を始動するのに必要な始動可能電圧未満である場合には、図2に示すように発電機41で生成された電流がキャパシタCに供給されないようにすることができる。このため、キック等の外部駆動部65を駆動して内燃機関60を始動したり二輪車の押しがけをしたりする際に、例えば二輪車の運転者等にかかる労力を低減することができる。 This point will be explained. As shown in FIG. 3, when the current generated by the generator 41 is in a state where the current flows into the capacitor C, the external drive unit 65 or the internal combustion engine 60 can be started by pushing, for example, an external such as a kick The current generated by the generator 41 by driving the drive unit 65 or the current generated by the generator 41 by pushing the two-wheeled vehicle, for example, is absorbed by the capacitor C, and the internal combustion engine 60 may not be started. . In this regard, in the present embodiment, the voltage detection circuit 20 is connected between the second terminal Bb of the battery B and the second terminal Cb of the capacitor C with the battery B and the capacitor C connected in series as shown in FIG. When the voltage measured by the voltage detection circuit 20 is less than the startable voltage required to start the cell motor 46 and start the internal combustion engine 60, as shown in FIG. It is possible to prevent the current generated in step (1) from being supplied to the capacitor C. For this reason, when driving the external drive part 65, such as a kick, and starting the internal combustion engine 60 or pushing the two-wheeled vehicle, it is possible to reduce, for example, the labor required for the driver of the two-wheeled vehicle.
 上述したように本実施の形態では、メインスイッチ70をON状態にしてセルモータ46を始動させるときであって、図3に示すように、バッテリB及びキャパシタCを直列に接続した際に電圧検出回路20がバッテリBの第二端子BbとキャパシタCの第二端子Cbとの間の電圧を検出した結果、当該電圧がセルモータ46を始動して内燃機関60を始動するのに必要な始動可能電圧未満である場合に、キャパシタCを外部電源90で充電するよう促す指令をインジケータ等の報知部80に出力する態様を採用することができる。この場合には、例えば二輪車の運転者に外部電源90によってキャパシタCを充電する必要があることを認識させることができる。 As described above, in the present embodiment, when the cell motor 46 is started by turning on the main switch 70 and the battery B and the capacitor C are connected in series as shown in FIG. As a result of detecting a voltage between the second terminal Bb of the battery B and the second terminal Cb of the capacitor C, the voltage is less than the startable voltage necessary for starting the cell motor 46 and starting the internal combustion engine 60. In such a case, it is possible to adopt a mode in which a command for urging the capacitor C to be charged by the external power supply 90 is output to the notification unit 80 such as an indicator. In this case, for example, the driver of the motorcycle can recognize that the capacitor C needs to be charged by the external power source 90.
 また、上述したように本実施の形態は、メインスイッチ70をON状態にしてセルモータ46を始動させるときであって、図3に示すように、バッテリB及びキャパシタCを直列に接続した際に電圧検出回路20がバッテリBの第二端子BbとキャパシタCの第二端子Cbとの間の電圧を検出した結果、当該電圧がセルモータ46を始動して内燃機関60を始動するのに必要な始動可能電圧未満である場合に、キック等の外部駆動部65を駆動することで内燃機関60を始動するよう促す指令をインジケータ等の報知部80に出力する態様を採用することもできる。この場合には、例えば二輪車の運転者にキック等の外部駆動部65を駆動することで内燃機関60を始動する必要があることを認識させることができる。 Further, as described above, in the present embodiment, when the main motor 70 is turned on and the cell motor 46 is started, as shown in FIG. 3, the voltage when the battery B and the capacitor C are connected in series is shown. As a result of the detection circuit 20 detecting the voltage between the second terminal Bb of the battery B and the second terminal Cb of the capacitor C, the voltage can be started to start the cell motor 46 and start the internal combustion engine 60. When the voltage is lower than the voltage, it is also possible to adopt a mode in which a command for urging the engine to start the internal combustion engine 60 by driving the external drive unit 65 such as a kick is output to the notification unit 80 such as an indicator. In this case, for example, the driver of the motorcycle can recognize that it is necessary to start the internal combustion engine 60 by driving the external drive unit 65 such as a kick.
 ちなみに、報知部80により外部電源90でキャパシタCを充電する旨が報知されたり報知部80により外部駆動部65を駆動することで内燃機関60を始動する旨が報知されたりした場合には、外部電源90でキャパシタCを充電したり外部駆動部65で内燃機関60を始動したりする代わりに、押しがけすることによって内燃機関60を始動してやってもよい。 Incidentally, when the notification unit 80 notifies that the capacitor C is charged by the external power supply 90 or the notification unit 80 notifies the start of the internal combustion engine 60 by driving the external drive unit 65, Instead of charging the capacitor C with the power supply 90 or starting the internal combustion engine 60 with the external drive unit 65, the internal combustion engine 60 may be started by pushing.
 なお、報知部80において、キャパシタCを外部電源90で充電するよう促す指令を出力する態様と、キック等の外部駆動部65を駆動することで内燃機関60を始動するよう促す指令を報知部80に出力する態様とを組み合わせることもできる。この場合には、キャパシタCに充電された電力の残量に応じて出力する内容を変えてもよく、一例としては、ある閾値未満の電力しかキャパシタCに充電されていない場合には、キャパシタCを外部電源90で充電するよう促す指令を報知部80に出力し、キャパシタCに充電されている電力が上記閾値以上となっているがキャパシタCに充電されている電力ではセルモータ46を始動して内燃機関60を始動することができない場合には、外部駆動部65を駆動することで内燃機関60を始動するよう促す指令を報知部80に出力する態様を採用することもできる。 Note that the notification unit 80 outputs a command that prompts the capacitor C to be charged by the external power supply 90 and a command that prompts the internal combustion engine 60 to start by driving the external drive unit 65 such as a kick. It is also possible to combine with the mode of outputting to In this case, the content to be output may be changed in accordance with the remaining amount of power charged in the capacitor C. For example, when the capacitor C is charged only with power less than a certain threshold, the capacitor C A command to urge the external power supply 90 to charge is output to the notification unit 80, and the electric power charged in the capacitor C is equal to or higher than the threshold value, but the electric power charged in the capacitor C starts the cell motor 46. When the internal combustion engine 60 cannot be started, it is also possible to employ a mode in which a command for urging the internal combustion engine 60 to start by driving the external drive unit 65 is output to the notification unit 80.
第2の実施の形態
 次に、本発明の第2の実施の形態について説明する。なお、図7は、本発明の第2の実施の形態による内燃機関制御回路100を示した概略構成図であり、図5に対応する態様を示している。
Second Embodiment Next, a second embodiment of the present invention will be described. FIG. 7 is a schematic configuration diagram showing an internal combustion engine control circuit 100 according to the second embodiment of the present invention, and shows an aspect corresponding to FIG.
 第1の実施の形態では、メインスイッチ70がON状態であり、かつ、発電機41が発電する電圧がバッテリBの満充電時の電圧以上となった場合に、図5に示すように、第二スイッチ15によりキャパシタCの第一端子Caを接地し、かつ、第一スイッチ10によりバッテリBの第一端子Baとメインスイッチ70の第二端子70bとをヒューズ75を介して接続することで、バッテリB及びキャパシタCを並列に接続し、これらバッテリB及びキャパシタCの両方を充電する態様であった。この点、第2の実施の形態では、内燃機関60の回転数を検出する回転数検出回路95が設けられている。そして、メインスイッチ70がON状態であり、かつ、内燃機関60の回転数が閾値回転数以上となった場合に、図7に示すように、制御部50が、第二スイッチ15によりキャパシタCの第一端子Caを接地し、かつ、第一スイッチ10によりバッテリBの第一端子Baとメインスイッチ70の第二端子70bとをヒューズ75を介して接続することで、バッテリB及びキャパシタCを並列に接続し、これらバッテリB及びキャパシタCの両方を充電する態様となっている。なお、本実施の形態でも第1の実施の形態と同様、内燃機関60の回転数が閾値回転数以上となったらすぐにこのような接続態様とするのではなく、所定時間(例えば数秒)の間、内燃機関60の回転数が閾値回転数以上となった場合にのみ、第二スイッチ15がキャパシタCの第一端子Caを接地し、かつ、第一スイッチ10がバッテリBの第一端子Baとメインスイッチ70の第二端子70bとをヒューズ75を介して接続することで、バッテリB及びキャパシタCを並列に接続するようにしてもよい。ところで、上述した「閾値回転数」とは、例えばアイドリング時の内燃機関60の回転数の1.5倍~2.0倍程度の回転数となっている。 In the first embodiment, when the main switch 70 is in the ON state and the voltage generated by the generator 41 is equal to or higher than the voltage when the battery B is fully charged, as shown in FIG. The first terminal Ca of the capacitor C is grounded by the two switches 15 and the first terminal Ba of the battery B and the second terminal 70b of the main switch 70 are connected via the fuse 75 by the first switch 10. The battery B and the capacitor C are connected in parallel, and both the battery B and the capacitor C are charged. In this regard, in the second embodiment, a rotational speed detection circuit 95 that detects the rotational speed of the internal combustion engine 60 is provided. When the main switch 70 is in the ON state and the rotational speed of the internal combustion engine 60 is equal to or higher than the threshold rotational speed, the controller 50 causes the second switch 15 to switch the capacitor C, as shown in FIG. The battery B and the capacitor C are connected in parallel by grounding the first terminal Ca and connecting the first terminal Ba of the battery B and the second terminal 70b of the main switch 70 via the fuse 75 by the first switch 10. The battery B and the capacitor C are both charged. In the present embodiment as well, as in the first embodiment, when the rotational speed of the internal combustion engine 60 becomes equal to or higher than the threshold rotational speed, such a connection mode is not used immediately, but for a predetermined time (for example, several seconds). In the meantime, the second switch 15 grounds the first terminal Ca of the capacitor C and the first switch 10 is the first terminal Ba of the battery B only when the rotational speed of the internal combustion engine 60 becomes equal to or higher than the threshold rotational speed. The battery B and the capacitor C may be connected in parallel by connecting the second terminal 70 b of the main switch 70 via the fuse 75. By the way, the above-described “threshold rotational speed” is, for example, about 1.5 to 2.0 times the rotational speed of the internal combustion engine 60 during idling.
 ところで、第2の実施の形態でも、第1の実施の形態と同様、発電機41が発電する電圧を電圧検出回路20で検出してもよく、内燃機関60の回転数が閾値回転数以上となり、かつ、発電機41が発電する電圧がバッテリBの満充電時の電圧以上となった場合に、第二スイッチ15がキャパシタCの第一端子Caを接地し、かつ、第一スイッチ10がバッテリBの第一端子Baとメインスイッチ70の第二端子70bとをヒューズ75を介して接続することで、バッテリB及びキャパシタCを並列に接続し、これらバッテリB及びキャパシタCの両方を充電するようにしてもよい。 By the way, also in the second embodiment, as in the first embodiment, the voltage generated by the generator 41 may be detected by the voltage detection circuit 20, and the rotational speed of the internal combustion engine 60 becomes equal to or higher than the threshold rotational speed. When the voltage generated by the generator 41 becomes equal to or higher than the voltage when the battery B is fully charged, the second switch 15 grounds the first terminal Ca of the capacitor C, and the first switch 10 The first terminal Ba of B and the second terminal 70b of the main switch 70 are connected via the fuse 75, so that the battery B and the capacitor C are connected in parallel, and both the battery B and the capacitor C are charged. It may be.
 第2の実施の形態において、その他の構成は、第1の実施の形態と略同一の態様となっている。第2の実施の形態において、第1の実施の形態と同一部分には同一符号を付して詳細な説明は省略する。 In the second embodiment, the other configurations are substantially the same as those in the first embodiment. In the second embodiment, the same parts as those in the first embodiment are denoted by the same reference numerals, and detailed description thereof is omitted.
 本実施の形態でも、第1の実施の形態と同様の効果を奏することができる。第1の実施の形態で詳細に説明したことから、本実施の形態における効果の説明は、本実施の形態に固有のものに留める。 Also in this embodiment, the same effects as in the first embodiment can be obtained. Since it has been described in detail in the first embodiment, the description of the effects in this embodiment will be limited to those specific to this embodiment.
 本実施の形態によれば、メインスイッチ70がON状態であり、かつ、エンジン等の内燃機関60の回転数が閾値回転数以上となった場合に、図7に示すように、第二スイッチ15がキャパシタCの第一端子Caを接地し、かつ、第一スイッチ10がバッテリBの第一端子Baとメインスイッチ70の第二端子70bとをヒューズ75を介して接続することで、バッテリB及びキャパシタCを並列に接続する。このため、内燃機関60を駆動することで発電機41によって発電される電力が安定する前にキャパシタCの充電が行われることを防止することができる。その結果、発電機41で発電する電力が安定していないにもかかわらずキャパシタCの充電が行われることにより内燃機関制御回路100に供給される電力が急激に低下してしまい、不安定な状態となることを未然に防止することができる。 According to the present embodiment, when the main switch 70 is in the ON state and the rotational speed of the internal combustion engine 60 such as the engine becomes equal to or higher than the threshold rotational speed, as shown in FIG. Grounds the first terminal Ca of the capacitor C, and the first switch 10 connects the first terminal Ba of the battery B and the second terminal 70b of the main switch 70 via the fuse 75, so that the battery B and Capacitor C is connected in parallel. For this reason, it is possible to prevent the capacitor C from being charged before the electric power generated by the generator 41 is stabilized by driving the internal combustion engine 60. As a result, the power supplied to the internal combustion engine control circuit 100 is drastically reduced due to charging of the capacitor C even though the power generated by the generator 41 is not stable. Can be prevented in advance.
 なお、第1の実施の形態と同様、エンジン等の内燃機関60の回転数が閾値回転数以上となったらすぐにこのような接続態様とするのではなく、所定時間(例えば数秒)の間、発電機41が発電する電圧がバッテリBの満充電時の電圧以上となった場合にのみ、第二スイッチ15がキャパシタCの第一端子Caを接地し、かつ、第一スイッチ10がバッテリBの第一端子Baとメインスイッチ70の第二端子70bとをヒューズ75を介して接続することで、バッテリB及びキャパシタCを並列に接続するようにしてもよい。この場合には、発電機41で発電する電力が確実に安定した状態となった後でキャパシタCへの充電を行うことができる。その結果、より確実に、発電機41で発電する電力が安定していないにもかかわらずキャパシタCの充電が行われることにより内燃機関制御回路100に供給される電力が急激に低下してしまい、不安定な状態となることを未然に防止することができる。 As in the first embodiment, when the rotational speed of the internal combustion engine 60 such as the engine becomes equal to or higher than the threshold rotational speed, the connection mode is not immediately set, but for a predetermined time (for example, several seconds). The second switch 15 grounds the first terminal Ca of the capacitor C and the first switch 10 is connected to the battery B only when the voltage generated by the generator 41 becomes equal to or higher than the voltage when the battery B is fully charged. The battery B and the capacitor C may be connected in parallel by connecting the first terminal Ba and the second terminal 70b of the main switch 70 via the fuse 75. In this case, the capacitor C can be charged after the power generated by the generator 41 is reliably stabilized. As a result, the power supplied to the internal combustion engine control circuit 100 is suddenly reduced by charging the capacitor C even more reliably, even though the power generated by the generator 41 is not stable. An unstable state can be prevented in advance.
 最後になったが、上述した各実施の形態の記載及び図面の開示は、請求の範囲に記載された発明を説明するための一例に過ぎず、上述した実施の形態の記載又は図面の開示によって請求の範囲に記載された発明が限定されることはない。 Lastly, the description of each embodiment and the disclosure of the drawings described above are merely examples for explaining the invention described in the scope of claims, and the description of the embodiment or the disclosure of the drawings described above. The invention described in the scope of claims is not limited.
10    第一スイッチ
15    第二スイッチ
20    電圧検出回路
30    負荷制御回路
31    負荷
40    整流回路
41    発電機
45    駆動回路
46    セルモータ
50    制御部
60    内燃機関
65    外部駆動部
70    メインスイッチ
80    報知部
95    回転数検出回路
100   内燃機関制御回路
B     バッテリ
Ba    バッテリの第一端子(バッテリの一端)
Bb    バッテリの第二端子(バッテリの他端)
C     キャパシタ
Ca    キャパシタの第一端子(キャパシタの一端)
Cb    キャパシタの第二端子(キャパシタの他端)
DESCRIPTION OF SYMBOLS 10 1st switch 15 2nd switch 20 Voltage detection circuit 30 Load control circuit 31 Load 40 Rectifier circuit 41 Generator 45 Drive circuit 46 Cell motor 50 Control part 60 Internal combustion engine 65 External drive part 70 Main switch 80 Notification part 95 Rotation speed detection circuit 100 Internal combustion engine control circuit B Battery Ba First terminal of battery (one end of battery)
Bb Second terminal of battery (the other end of the battery)
C Capacitor Ca First terminal of the capacitor (one end of the capacitor)
Cb capacitor second terminal (the other end of the capacitor)

Claims (12)

  1.  内燃機関を制御する内燃機関制御回路であって、
     セルモータ及び発電機とバッテリ及びキャパシタとの間で接続されたメインスイッチ、前記メインスイッチと前記バッテリの一端との間で接続された第一スイッチ、及び、前記第一スイッチと前記キャパシタの一端との間で接続された第二スイッチの各々を制御する制御部を備え、
     前記キャパシタの他端は、前記第一スイッチと前記メインスイッチとの間に接続され、
     前記第一スイッチは、前記バッテリと前記メインスイッチとを接続する状態と、前記バッテリの前記一端と前記第二スイッチとを接続する状態とを切り換え、
     前記第二スイッチは、前記キャパシタの前記一端と前記第一スイッチとを接続する状態と、前記キャパシタの前記一端と前記第一スイッチとを遮断する状態とを切り換え、
     前記制御部は、
      前記メインスイッチがOFF状態のときには、前記第二スイッチにより前記キャパシタの前記一端と前記第一スイッチとを接続し、かつ、当該第一スイッチにより前記バッテリの前記一端と前記第二スイッチとを遮断し、
      前記メインスイッチをON状態にして前記セルモータを始動させるときには、前記第二スイッチにより前記キャパシタの前記一端と前記第一スイッチとを接続し、かつ、当該第一スイッチにより前記バッテリの前記一端と前記第二スイッチとを接続することで、前記バッテリと前記キャパシタとを直列に接続し、
      前記内燃機関が始動した後で、前記第二スイッチにより前記キャパシタの前記一端と前記第一スイッチとを接続し、かつ、当該第一スイッチにより前記バッテリの前記一端と前記第二スイッチとを遮断することを特徴とする内燃機関制御回路。
    An internal combustion engine control circuit for controlling an internal combustion engine,
    A main switch connected between a cell motor and a generator and a battery and a capacitor; a first switch connected between the main switch and one end of the battery; and a first switch and one end of the capacitor A control unit for controlling each of the second switches connected between the two;
    The other end of the capacitor is connected between the first switch and the main switch,
    The first switch switches between a state of connecting the battery and the main switch and a state of connecting the one end of the battery and the second switch,
    The second switch switches between a state of connecting the one end of the capacitor and the first switch and a state of disconnecting the one end of the capacitor and the first switch,
    The controller is
    When the main switch is in an OFF state, the one end of the capacitor and the first switch are connected by the second switch, and the one end of the battery and the second switch are disconnected by the first switch. ,
    When the main motor is turned on to start the cell motor, the second switch connects the one end of the capacitor and the first switch, and the first switch connects the one end of the battery to the first switch. By connecting two switches, the battery and the capacitor are connected in series,
    After the internal combustion engine is started, the one end of the capacitor and the first switch are connected by the second switch, and the one end of the battery and the second switch are disconnected by the first switch. An internal combustion engine control circuit.
  2.  前記バッテリの他端は接地され、
     前記第二スイッチは、前記キャパシタの前記一端と前記第一スイッチとを遮断するときに前記キャパシタの前記一端を接地することを特徴とする請求項1に記載の内燃機関制御回路。
    The other end of the battery is grounded;
    2. The internal combustion engine control circuit according to claim 1, wherein the second switch grounds the one end of the capacitor when the one end of the capacitor and the first switch are disconnected. 3.
  3.  前記発電機が発電する電圧を検出する電圧検出回路をさらに備え、
     前記メインスイッチがON状態であり、かつ、前記発電機が発電する電圧が前記バッテリの満充電時の電圧以上となった場合に、前記制御部が、前記第二スイッチにより前記キャパシタの前記一端を接地し、かつ、前記第一スイッチにより前記バッテリの前記一端と前記メインスイッチとを接続することで、前記バッテリ及び前記キャパシタを並列に接続することを特徴とする請求項2に記載の内燃機関制御回路。
    A voltage detection circuit for detecting a voltage generated by the generator;
    When the main switch is in the ON state and the voltage generated by the generator is equal to or higher than the voltage when the battery is fully charged, the control unit causes the second switch to connect the one end of the capacitor. The internal combustion engine control according to claim 2, wherein the battery and the capacitor are connected in parallel by grounding and connecting the one end of the battery and the main switch by the first switch. circuit.
  4.  前記メインスイッチがON状態であり、かつ、前記発電機が発電する電圧が、所定時間の間、前記バッテリの満充電時の電圧以上となった場合に、前記制御部が、前記第二スイッチにより前記キャパシタの前記一端を接地し、かつ、前記第一スイッチにより前記バッテリの前記一端と前記メインスイッチとを接続することで、前記バッテリ及び前記キャパシタを並列に接続することを特徴とする請求項3に記載の内燃機関制御回路。 When the main switch is in an ON state and the voltage generated by the generator is equal to or higher than the voltage at the time of full charge of the battery for a predetermined time, the control unit is controlled by the second switch. 4. The battery and the capacitor are connected in parallel by grounding the one end of the capacitor and connecting the one end of the battery and the main switch by the first switch. An internal combustion engine control circuit according to claim 1.
  5.  前記内燃機関の回転数を検出する回転数検出回路をさらに備え、
     前記メインスイッチがON状態であり、かつ、前記内燃機関の回転数が閾値回転数以上となった場合に、前記制御部が、前記第二スイッチにより前記キャパシタの前記一端を接地し、かつ、前記第一スイッチにより前記バッテリの前記一端と前記メインスイッチとを接続することで、前記バッテリ及び前記キャパシタを並列に接続することを特徴とする請求項2に記載の内燃機関制御回路。
    A rotation speed detection circuit for detecting the rotation speed of the internal combustion engine;
    When the main switch is in an ON state and the rotational speed of the internal combustion engine is equal to or higher than a threshold rotational speed, the control unit grounds the one end of the capacitor by the second switch, and The internal combustion engine control circuit according to claim 2, wherein the battery and the capacitor are connected in parallel by connecting the one end of the battery and the main switch by a first switch.
  6.  前記メインスイッチがON状態であり、かつ、前記内燃機関の回転数が、所定時間の間、閾値回転数以上となった場合に、前記制御部が、前記第二スイッチにより前記キャパシタの前記一端を接地し、かつ、前記第一スイッチにより前記バッテリの前記一端と前記メインスイッチとを接続することで、前記バッテリ及び前記キャパシタを並列に接続することを特徴とする請求項5に記載の内燃機関制御回路。 When the main switch is in an ON state and the rotational speed of the internal combustion engine becomes equal to or higher than a threshold rotational speed for a predetermined time, the control unit causes the second switch to connect the one end of the capacitor. 6. The internal combustion engine control according to claim 5, wherein the battery and the capacitor are connected in parallel by grounding and connecting the one end of the battery and the main switch by the first switch. circuit.
  7.  少なくとも前記第二スイッチにより前記キャパシタの前記一端と前記第一スイッチとを接続し、かつ、当該第一スイッチにより前記バッテリの前記一端と前記第二スイッチとを接続した際に前記バッテリの他端と前記キャパシタの他端との間の電圧を検出する電圧検出回路をさらに備え、
     前記第二スイッチにより前記キャパシタの前記一端と前記第一スイッチとを接続し、かつ、当該第一スイッチにより前記バッテリの前記一端と前記第二スイッチとを接続した際に、前記電圧検出回路が前記バッテリの他端と前記キャパシタの他端との間の電圧を検出した結果、当該電圧が前記内燃機関を始動させるのに必要な始動可能電圧未満である場合に、前記第二スイッチにより前記キャパシタの前記一端と前記第一スイッチとを接続し、かつ、当該第一スイッチにより前記バッテリの前記一端と前記第二スイッチとを遮断することを特徴とする請求項1乃至6のいずれか1項に記載の内燃機関制御回路。
    At least the second switch connects the one end of the capacitor and the first switch, and the first switch connects the one end of the battery and the second switch to the other end of the battery. A voltage detection circuit for detecting a voltage between the other end of the capacitor;
    When the second switch connects the one end of the capacitor and the first switch, and the first switch connects the one end of the battery and the second switch, the voltage detection circuit As a result of detecting the voltage between the other end of the battery and the other end of the capacitor, when the voltage is less than the startable voltage required to start the internal combustion engine, the second switch The one end and the first switch are connected, and the one end of the battery and the second switch are shut off by the first switch. Internal combustion engine control circuit.
  8.  前記第二スイッチにより前記キャパシタの前記一端と前記第一スイッチとを接続し、かつ、当該第一スイッチにより前記バッテリの前記一端と前記第二スイッチとを接続した際に、前記電圧検出回路が前記バッテリの他端と前記キャパシタの他端との間の電圧を検出した結果、当該電圧が前記内燃機関を始動させるのに必要な始動可能電圧未満である場合に、前記制御部が、前記キャパシタを外部電源で充電するよう促す指令を報知部に出力することを特徴とする請求項7に記載の内燃機関制御回路。 When the second switch connects the one end of the capacitor and the first switch, and the first switch connects the one end of the battery and the second switch, the voltage detection circuit As a result of detecting the voltage between the other end of the battery and the other end of the capacitor, if the voltage is less than the startable voltage required to start the internal combustion engine, the control unit The internal combustion engine control circuit according to claim 7, wherein a command for prompting charging with an external power source is output to the notification unit.
  9.  前記内燃機関に外部駆動部が連結され、当該外部駆動部を駆動することで前記内燃機関が始動可能となっており、
     前記第二スイッチにより前記キャパシタの前記一端と前記第一スイッチとを接続し、かつ、当該第一スイッチにより前記バッテリの前記一端と前記第二スイッチとを接続した際に、前記電圧検出回路が前記バッテリの他端と前記キャパシタの他端との間の電圧を検出した結果、当該電圧が前記内燃機関を始動させるのに必要な始動可能電圧未満である場合に、前記制御部が、前記外部駆動部を駆動することで前記内燃機関を始動するよう促す指令を報知部に出力することを特徴とする請求項7又は8のいずれかに記載の内燃機関制御回路。
    An external drive unit is connected to the internal combustion engine, and the internal drive engine can be started by driving the external drive unit.
    When the second switch connects the one end of the capacitor and the first switch, and the first switch connects the one end of the battery and the second switch, the voltage detection circuit As a result of detecting the voltage between the other end of the battery and the other end of the capacitor, when the voltage is less than the startable voltage required to start the internal combustion engine, the control unit is 9. The internal combustion engine control circuit according to claim 7, wherein a command to drive the internal combustion engine to drive the internal combustion engine is output to the notification unit.
  10.  前記内燃機関に外部駆動部が連結され、当該外部駆動部を駆動することで前記内燃機関が始動可能となっていることを特徴とする請求項1乃至9のいずれか1項に記載の内燃機関制御回路。 The internal combustion engine according to any one of claims 1 to 9, wherein an external drive unit is connected to the internal combustion engine, and the internal drive engine can be started by driving the external drive unit. Control circuit.
  11.  前記外部駆動部はキックであることを特徴とする請求項9又は10のいずれかに記載の内燃機関制御回路。 11. The internal combustion engine control circuit according to claim 9, wherein the external drive unit is a kick.
  12.  内燃機関を制御する内燃機関制御回路であって、セルモータ及び発電機とバッテリ及びキャパシタとの間で接続されたメインスイッチ、前記メインスイッチと前記バッテリの一端との間で接続された第一スイッチ、及び、前記第一スイッチと前記キャパシタの一端との間で接続された第二スイッチの各々を制御する制御部を備えた内燃機関制御回路を用いた内燃機関制御方法であって、
     前記キャパシタの他端は、前記第一スイッチと前記メインスイッチとの間に接続され、
     前記第一スイッチは、前記バッテリと前記メインスイッチとを接続する状態と、前記バッテリの前記一端と前記第二スイッチとを接続する状態とを切り換え、
     前記第二スイッチは、前記キャパシタの前記一端と前記第一スイッチとを接続する状態と、前記キャパシタの前記一端と前記第一スイッチとを遮断する状態とを切り換えるようになっており、
     前記メインスイッチがOFF状態のときに、前記第二スイッチにより前記キャパシタの前記一端と前記第一スイッチとを接続し、かつ、当該第一スイッチにより前記バッテリの前記一端と前記第二スイッチとを遮断し、
     前記メインスイッチをON状態にして前記セルモータを始動させるときに、前記第二スイッチにより前記キャパシタの前記一端と前記第一スイッチとを接続し、かつ、当該第一スイッチにより前記バッテリの前記一端と前記第二スイッチとを接続することで、前記バッテリと前記キャパシタとを直列に接続し、
     前記内燃機関が始動した後で、前記第二スイッチにより前記キャパシタの前記一端と前記第一スイッチとを接続し、かつ、当該第一スイッチにより前記バッテリの前記一端と前記第二スイッチとを遮断する、
     ことを特徴とする内燃機関制御方法。
    An internal combustion engine control circuit for controlling an internal combustion engine, a main switch connected between a cell motor and a generator, a battery and a capacitor, a first switch connected between the main switch and one end of the battery, And an internal combustion engine control method using an internal combustion engine control circuit including a control unit that controls each of the second switches connected between the first switch and one end of the capacitor,
    The other end of the capacitor is connected between the first switch and the main switch,
    The first switch switches between a state of connecting the battery and the main switch and a state of connecting the one end of the battery and the second switch,
    The second switch is configured to switch between a state of connecting the one end of the capacitor and the first switch and a state of disconnecting the one end of the capacitor and the first switch,
    When the main switch is in an OFF state, the second switch connects the one end of the capacitor and the first switch, and the first switch disconnects the one end of the battery and the second switch. And
    When the cell motor is started with the main switch turned on, the second switch connects the one end of the capacitor and the first switch, and the first switch connects the one end of the battery to the first switch. By connecting a second switch, the battery and the capacitor are connected in series,
    After the internal combustion engine is started, the one end of the capacitor and the first switch are connected by the second switch, and the one end of the battery and the second switch are disconnected by the first switch. ,
    An internal combustion engine control method.
PCT/JP2013/083938 2013-12-18 2013-12-18 Internal combustion engine control circuit and internal combustion engine control method WO2015092886A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201380016265.4A CN104884784B (en) 2013-12-18 2013-12-18 Internal combustion engine control circuit and internal combustion engine control method
JP2014537394A JP5933729B2 (en) 2013-12-18 2013-12-18 Internal combustion engine control circuit and internal combustion engine control method
PCT/JP2013/083938 WO2015092886A1 (en) 2013-12-18 2013-12-18 Internal combustion engine control circuit and internal combustion engine control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/083938 WO2015092886A1 (en) 2013-12-18 2013-12-18 Internal combustion engine control circuit and internal combustion engine control method

Publications (1)

Publication Number Publication Date
WO2015092886A1 true WO2015092886A1 (en) 2015-06-25

Family

ID=53402281

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/083938 WO2015092886A1 (en) 2013-12-18 2013-12-18 Internal combustion engine control circuit and internal combustion engine control method

Country Status (3)

Country Link
JP (1) JP5933729B2 (en)
CN (1) CN104884784B (en)
WO (1) WO2015092886A1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170031904A (en) * 2015-09-14 2017-03-22 주식회사 엘지화학 Battery Pack System Comprising Boost Pack and Capacitor Pack
CN111502882A (en) * 2020-04-27 2020-08-07 陕西沅安科技发展有限公司 Heavy vehicle starting emergency power supply system of ED L C capacitor
WO2020261478A1 (en) * 2019-06-27 2020-12-30 ヤマハ発動機株式会社 Leaning vehicle
WO2020261477A1 (en) * 2019-06-27 2020-12-30 ヤマハ発動機株式会社 Leaning vehicle
WO2020261475A1 (en) * 2019-06-27 2020-12-30 ヤマハ発動機株式会社 Leaning vehicle
WO2020261474A1 (en) * 2019-06-27 2020-12-30 ヤマハ発動機株式会社 Leaning vehicle
WO2020261476A1 (en) * 2019-06-27 2020-12-30 ヤマハ発動機株式会社 Leaning vehicle
JP2021518732A (en) * 2018-03-23 2021-08-02 ザップゴー リミテッド Electrical energy distribution system

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019064817A1 (en) * 2017-09-29 2019-04-04 本田技研工業株式会社 Vehicle control device
CN110803033A (en) * 2018-08-02 2020-02-18 上海汽车集团股份有限公司 Vehicle starting system and new energy vehicle
CN110816272B (en) * 2019-10-22 2021-04-27 湖南行必达网联科技有限公司 Dual-power-supply control device and fuel truck
WO2022095059A1 (en) * 2020-11-09 2022-05-12 深圳市大疆创新科技有限公司 Internal combustion charging system

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02259276A (en) * 1989-03-31 1990-10-22 Isuzu Motors Ltd Engine starter device
JPH0599103A (en) * 1991-06-03 1993-04-20 Isuzu Motors Ltd Engine starter
JPH05321798A (en) * 1992-05-26 1993-12-07 Yuasa Corp Engine starter
JP2005188444A (en) * 2003-12-26 2005-07-14 Komatsu Ltd Power supply for starting
WO2006121005A1 (en) * 2005-05-13 2006-11-16 Matsushita Electric Industrial Co., Ltd. Engine starting device and automobile using the same

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010110192A (en) * 2008-09-30 2010-05-13 Panasonic Corp Vehicle power supply unit
FR2966205B1 (en) * 2010-10-19 2018-01-12 Psa Automobiles Sa. METHOD FOR IMPLEMENTING A STARTING DEVICE EQUIPPED WITH AN ENGINE OF A MOTOR VEHICLE
CN104040827B (en) * 2012-11-08 2016-03-09 新电元工业株式会社 The engine control circuit of two wheeler and the engine control method of two wheeler

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02259276A (en) * 1989-03-31 1990-10-22 Isuzu Motors Ltd Engine starter device
JPH0599103A (en) * 1991-06-03 1993-04-20 Isuzu Motors Ltd Engine starter
JPH05321798A (en) * 1992-05-26 1993-12-07 Yuasa Corp Engine starter
JP2005188444A (en) * 2003-12-26 2005-07-14 Komatsu Ltd Power supply for starting
WO2006121005A1 (en) * 2005-05-13 2006-11-16 Matsushita Electric Industrial Co., Ltd. Engine starting device and automobile using the same

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170031904A (en) * 2015-09-14 2017-03-22 주식회사 엘지화학 Battery Pack System Comprising Boost Pack and Capacitor Pack
KR102144918B1 (en) * 2015-09-14 2020-08-14 주식회사 엘지화학 Battery Pack System Comprising Boost Pack and Capacitor Pack
JP2021518732A (en) * 2018-03-23 2021-08-02 ザップゴー リミテッド Electrical energy distribution system
WO2020261478A1 (en) * 2019-06-27 2020-12-30 ヤマハ発動機株式会社 Leaning vehicle
WO2020261477A1 (en) * 2019-06-27 2020-12-30 ヤマハ発動機株式会社 Leaning vehicle
WO2020261475A1 (en) * 2019-06-27 2020-12-30 ヤマハ発動機株式会社 Leaning vehicle
WO2020261474A1 (en) * 2019-06-27 2020-12-30 ヤマハ発動機株式会社 Leaning vehicle
WO2020261476A1 (en) * 2019-06-27 2020-12-30 ヤマハ発動機株式会社 Leaning vehicle
CN111502882A (en) * 2020-04-27 2020-08-07 陕西沅安科技发展有限公司 Heavy vehicle starting emergency power supply system of ED L C capacitor
CN111502882B (en) * 2020-04-27 2022-01-28 陕西沅安科技发展有限公司 Heavy vehicle starting emergency power supply system of EDLC capacitor

Also Published As

Publication number Publication date
JPWO2015092886A1 (en) 2017-03-16
CN104884784B (en) 2017-03-08
JP5933729B2 (en) 2016-06-15
CN104884784A (en) 2015-09-02

Similar Documents

Publication Publication Date Title
JP5933729B2 (en) Internal combustion engine control circuit and internal combustion engine control method
JP6107679B2 (en) Vehicle control device
JP5941019B2 (en) Vehicle power supply
JP5696585B2 (en) Vehicle power supply control device
CN110506159B (en) Engine start control device
JP2005045883A (en) Hybrid vehicle
JP6136792B2 (en) Vehicle power supply
JP6651605B2 (en) Control device for hybrid vehicle
TWM577183U (en) Apparatus for controlling the electrical connection and disconnection between a battery unit and a supercapacitor on an automobile
JP2006336628A5 (en)
KR20130042149A (en) Power system of fuel cell vehicle
JP6396604B2 (en) VEHICLE POWER SUPPLY DEVICE, VEHICLE POWER SUPPLY SYSTEM, AND CONTROL METHOD FOR VEHICLE POWER SUPPLY DEVICE
KR101984870B1 (en) Method and device for saving the operation of a vehicle
JP2010275896A (en) Engine starting device
JP2009268222A (en) Discharge apparatus for battery device applied to generator-motor driving device
JP2013091454A (en) Power feed system for idle stop vehicle
JP5859490B2 (en) Vehicle power supply
JP6079725B2 (en) Vehicle power supply control device
KR101713666B1 (en) Vehicle power managing apparatus
JPH0549101A (en) Power supply protective circuit for vehicle
JP2013001332A (en) Vehicle power supply apparatus
JP5397097B2 (en) Vehicle power supply
JP6428074B2 (en) Vehicle power supply control device
JP6851743B2 (en) Jumping start judgment device
WO2016021003A1 (en) Engine-starting control device, and engine-starting control method

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2014537394

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13899886

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13899886

Country of ref document: EP

Kind code of ref document: A1