WO2015092839A1 - Solar cell and method for manufacturing same - Google Patents

Solar cell and method for manufacturing same Download PDF

Info

Publication number
WO2015092839A1
WO2015092839A1 PCT/JP2013/007517 JP2013007517W WO2015092839A1 WO 2015092839 A1 WO2015092839 A1 WO 2015092839A1 JP 2013007517 W JP2013007517 W JP 2013007517W WO 2015092839 A1 WO2015092839 A1 WO 2015092839A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
solar cell
silicon
manufacturing
aluminum wire
Prior art date
Application number
PCT/JP2013/007517
Other languages
French (fr)
Japanese (ja)
Inventor
大西 康之
Original Assignee
日下 安人
吉岡 純大郎
謝敷 佳明
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日下 安人, 吉岡 純大郎, 謝敷 佳明 filed Critical 日下 安人
Priority to PCT/JP2013/007517 priority Critical patent/WO2015092839A1/en
Publication of WO2015092839A1 publication Critical patent/WO2015092839A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/0445PV modules or arrays of single PV cells including thin film solar cells, e.g. single thin film a-Si, CIS or CdTe solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0236Special surface textures
    • H01L31/02366Special surface textures of the substrate or of a layer on the substrate, e.g. textured ITO/glass substrate or superstrate, textured polymer layer on glass substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0392Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate
    • H01L31/03921Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate including only elements of Group IV of the Periodic Table
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/20Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof such devices or parts thereof comprising amorphous semiconductor materials
    • H01L31/202Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof such devices or parts thereof comprising amorphous semiconductor materials including only elements of Group IV of the Periodic Table
    • H01L31/204Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof such devices or parts thereof comprising amorphous semiconductor materials including only elements of Group IV of the Periodic Table including AIVBIV alloys, e.g. SiGe, SiC
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a solar cell and a manufacturing method thereof, and in particular, realizes high conversion efficiency by increasing the irradiation area of sunlight and depositing a silicon layer, a p-type layer, and an n-type layer in a thin film shape.
  • the present invention relates to a solar cell and a manufacturing method thereof.
  • Solar cells convert light energy emitted from the sun into electrical energy, but there is a fact that the energy conversion efficiency of solar power generation is low compared to other power generation systems. In other words, since it depends on sunlight, how efficiently power is generated when sunlight is irradiated directly affects the performance of the solar cell.
  • a substrate, a reflective electrode layer stacked on the substrate, and a stacked layer on the reflective electrode layer are used.
  • a transparent electrode layer laminated on the light absorption layer, and a technology for providing nanoparticles on the electrode layer is disclosed.
  • the nanoparticles the light scattering effect of the reflective electrode layer is disclosed. Is maximized, so that a large amount of sunlight can be collected in the light absorption layer, and a technique for improving the photoelectric conversion efficiency is disclosed.
  • Japanese Patent Application Laid-Open No. 2010-262979 includes a first conductivity type first doping region and a second conductivity type second doping region as a technique related to a back electrode type solar cell with improved conversion efficiency and reliability.
  • a technology relating to a back electrode type solar cell including a first electrode formed on a first doping region and a second electrode formed on a second doping region is disclosed.
  • the two electrodes are fired electrodes, and at least the first electrode of the first electrode and the second electrode discloses a technique relating to a solar cell having a conductive coating layer on the surface thereof.
  • the present invention provides a solar cell and a method for manufacturing the solar cell that are provided to solve the above-described problem, and in particular, increase the irradiation area of sunlight, and each layer of a silicon layer, a p-type layer, and an n-type layer on an aluminum wire.
  • the present invention relates to a high conversion efficiency solar cell formed by vapor deposition and lamination in a thin film shape and a method for manufacturing the same.
  • a method for manufacturing a solar cell according to the present invention is a method for manufacturing a solar cell formed of an aluminum plate and a spiral aluminum wire mounted on the aluminum plate at regular intervals.
  • the solar cell manufacturing method includes a first silicon vapor deposition step of depositing a silicon film on the spirally formed aluminum wire to form a first silicon layer, and an aluminum wire formed with the first silicon layer.
  • a second silicon deposition step for forming the second silicon layer an insulating film deposition step for depositing an insulating film on the aluminum wire formed with the second silicon layer to form an insulating layer, and insulation
  • a transparent conductive layer deposition process for forming a transparent conductive film The transparent conductive layer was deposited on the aluminum wire by depositing a structure comprising.
  • the thickness of the deposited silicon film is 2000 to 3000 mm.
  • the p-type layer deposition step has a configuration in which boron (B) is mixed into gaseous silane (SiH 4 ) to perform a deposition process.
  • the n-type layer deposition step is a configuration in which phosphorus (P) is mixed into gaseous silane (SiH 4 ) to perform a deposition process.
  • the second silicon vapor deposition step has a configuration in which the thickness of the silicon film to be vapor deposited is 500 mm.
  • the manufacturing method of a solar cell is the structure which provided the ITO vapor deposition process which vapor-deposits indium tin oxide (ITO) and forms an indium tin oxide layer.
  • the ITO vapor deposition step is configured to vapor deposit indium tin oxide composed of 90% indium and 10% tin oxide or 10% zinc oxide.
  • the ITO vapor deposition step may be configured such that the thickness of the indium tin oxide layer to be vapor deposited is 500 to 1000 mm.
  • the solar cell according to the present invention is formed of an aluminum plate and a spiral aluminum wire mounted on the aluminum plate at regular intervals, and the spiral aluminum wire includes a first silicon layer, , A p-type layer, an n-type layer, a second silicon layer, an insulating layer, and a transparent conductive layer are deposited.
  • the solar cell is formed of an aluminum plate and a sword mountain type aluminum wire mounted on the aluminum plate at regular intervals, the sword mountain type aluminum wire includes a first silicon layer, a p-type layer, It is also a configuration in which an n-type layer, a second silicon layer, an insulating layer, and a transparent conductive layer are formed by vapor deposition.
  • the present invention is configured as described in detail above, the following effects are obtained.
  • the solar cell is formed of an aluminum plate and a spiral aluminum wire mounted on the aluminum plate at regular intervals, it is possible to secure a large irradiation area of sunlight, and light of shorter wavelength than usual. Conversion is possible, and high conversion efficiency can be achieved.
  • the first silicon layer, the p-type layer, the n-type layer, the second silicon layer, the insulating layer, and the transparent conductive layer in this order on the aluminum wire formed in a spiral shape it is uniformly deposited on the aluminum wire, It is possible to configure a solar cell with high conversion efficiency.
  • the thickness of the silicon film deposited in the first silicon deposition process is 2000 to 3000 mm, stable conversion efficiency can be realized.
  • gaseous silane (SiH 4) is mixed in gaseous silane (SiH 4) in the p-type layer deposition step and vapor deposition is performed, a solar cell can be easily configured using an optimum material as a p-type impurity. 4).
  • gaseous silane (SiH4) is mixed with phosphorus (P) for deposition, so that an optimum material can be used as an n-type impurity and a solar cell can be easily configured. Become.
  • the thickness of the silicon film deposited in the second silicon deposition process is 500 mm, a solar cell having more stable conversion efficiency can be configured. 6). Since the ITO vapor deposition process for vapor-depositing indium tin oxide (ITO) to form the indium tin oxide layer is provided, the conductivity is improved, and a more stable solar cell having high conversion efficiency can be configured.
  • ITO indium tin oxide
  • the solar cell is formed of an aluminum plate and a spiral aluminum wire mounted on the aluminum plate at regular intervals, it is possible to secure a large solar radiation area and is shorter than usual. Wavelength light can also be converted, and high conversion efficiency can be achieved. 10. Since the solar cell is formed of an aluminum plate and a sword mountain type aluminum wire mounted on the aluminum plate at regular intervals, it is possible to secure a larger irradiation area of sunlight.
  • FIG. 1 is a diagram showing a flow of a solar cell manufacturing method according to the present invention
  • FIG. 2 is a cross-sectional view of a solar cell using a spiral aluminum wire
  • FIG. 3 is a cross-sectional view of a solar cell using a sword mountain type aluminum wire
  • FIG. 4 is a cross-sectional view of the aluminum wire.
  • the solar cell manufacturing method of the present invention includes a first silicon deposition step 110, a p-type layer deposition step 120, an n-type layer deposition step 130, a second silicon deposition step 140, and an insulation. It consists of a film deposition process 150 and a transparent conductive film deposition process 160. Further, the solar cell of the present invention is composed of an aluminum plate 200 and an aluminum wire 210, and the aluminum wire 210 is a spiral aluminum wire 212a or a sword-mount aluminum wire 212b as shown in FIG. 2 or FIG. It is configured.
  • the first silicon deposition step 110 is a step of depositing a silicon film on the aluminum wire 210.
  • a silicon film is deposited on the spirally formed aluminum wire 212a to form the first silicon layer 220.
  • the electrical conversion rate is 5 to 8%, which is said to be about 6% on average.
  • Single crystal silicon is said to have an electrical conversion rate of 10 to 25%, and polycrystal is said to be 15 to 18%.
  • Solar cells made of amorphous silicon have a relatively low electrical conversion rate.
  • the aluminum wire 212a formed in a spiral shape By using the aluminum wire 212a formed in a spiral shape, it becomes possible to secure a wide irradiation area of sunlight of 8 times or more, and when surface processing is performed by each process described later, the electrical conversion rate is at least more than a normal shape. Since it is possible to secure about twice, it is possible to solve the above problems and realize a high electric conversion rate. Further, it is effective to horizontally crush the spiral to form a flat surface.
  • a solar cell that does not employ a normal spiral shape can convert light of 800 to 600 nm, but has a problem that light having a wavelength of 600 nm or less cannot be converted electrically by reflection or the like.
  • electrical conversion of light with a wavelength of 600 nm or less is possible by using a spiral shape.
  • light having a wavelength of 600 nm or less becomes strong energy because of its short wavelength, and thus a higher electrical conversion rate can be realized.
  • the thickness of the first silicon layer 220 made of the deposited silicon film can be 2000 to 3000 mm. Thereby, the stable conversion efficiency is realizable.
  • the thickness is preferably 2000 to 3000 mm, but is not limited to this, and an optimum thickness can be selected.
  • the p-type layer deposition step 120 is a step of depositing the p-type layer 230 on the aluminum wire 210 on which the first silicon layer 220 is formed.
  • boron (B) is mixed in gaseous silane (SiH 4 ), and this is vapor deposited on the aluminum wire 210.
  • SiH 4 gaseous silane
  • vapor deposition can be easily performed using a substance optimum as a p-type impurity.
  • boron is used as the p-type impurity.
  • the present invention is not limited to this, and other optimum substances can be selected and used.
  • the n-type layer deposition step 130 is a step of depositing the n-type layer 240 on the aluminum wire 210 on which the p-type layer 230 is deposited.
  • phosphorus (P) is mixed in gaseous silane (SiH 4), and this is vapor deposited on the aluminum wire 210.
  • SiH 4 gaseous silane
  • phosphorus is used as the n-type impurity.
  • the present invention is not limited to this, and other optimum substances can be selected and used.
  • the second silicon deposition step 140 is a step of forming a second silicon layer 250 by further depositing a silicon film on the aluminum wire 210 on which the n-type layer 240 is deposited.
  • the second silicon layer 250 can be configured with the thickness of the deposited silicon film being 500 mm. Thereby, the solar cell which has more stable conversion efficiency can be comprised.
  • the thickness of the second silicon layer 250 is preferably 500 mm, but is not limited to this, and an optimum thickness can be selected.
  • the insulating film vapor deposition step 150 is an incomplete step of forming an insulating layer 260 by vapor-depositing an insulating film on the aluminum wire 210 on which the second silicon layer 250 is formed.
  • the insulating layer 260 serves as a protective film, and it is possible to prevent the semiconductor characteristics from deteriorating due to the semiconductor layer 270 formed of the stacked body of the layers contacting air.
  • the transparent conductive film deposition step 160 is a step of forming a transparent conductive layer 280 by depositing a transparent conductive film on the aluminum wire 210 on which an insulating layer 260 made of an insulating film is deposited. Thereby, the solar cell is configured without blocking incident light.
  • the method for manufacturing a solar cell according to the present invention can further include an ITO vapor deposition step 170 for vapor-depositing indium tin oxide (ITO) to form an indium tin oxide layer 290.
  • ITO indium tin oxide
  • the ITO vapor deposition step 170 can be configured to vapor-deposit indium tin oxide composed of 90% indium and 10% tin oxide or 10% zinc oxide. Thereby, it becomes possible to constitute a solar cell having higher and stable conversion efficiency.
  • the thickness of the deposited indium tin oxide layer 290 can be 500 to 1000 mm. By adopting this configuration, it is possible to improve the conductivity at a high level and to configure a solar cell having stable conversion efficiency. Note that the thickness of the indium tin oxide layer 290 is preferably 500 to 1000 mm, but is not limited thereto, and an optimum thickness can be selected.
  • FIG. 4 shows a cross-sectional view of the aluminum wire 210 constituted by the above steps. Since the first silicon layer 220, the p-type layer 230, the n-type layer 240, the second silicon layer 250, the insulating layer 260, the transparent conductive layer 280, and the indium tin oxide layer 290 are sequentially deposited on the aluminum wire, a wide irradiation area is secured. Thus, it is possible to form a solar cell with high conversion efficiency.
  • the solar cell 10 is formed of an aluminum plate 210 and a spiral aluminum wire 212 a mounted on the aluminum plate 210 at regular intervals, and preferably a spiral aluminum A structure in which the wire 212a is crushed horizontally to form a flat surface while being spiral is more effective in obtaining an irradiation surface per area.
  • a spiral aluminum wire 212a is formed by vapor-depositing a first silicon layer 220, a p-type layer 230, an n-type layer 240, a second silicon layer 250, an insulating layer 260, and a transparent conductive layer 280. It is a configuration. Thereby, it becomes possible to ensure a large irradiation area of sunlight. Furthermore, light having a wavelength shorter than usual can be converted, and a solar cell having high conversion efficiency can be configured.
  • the solar cell 10 may be formed of an aluminum plate 210 and a sword mountain type aluminum wire 212 b mounted on the aluminum plate 210 at regular intervals. This shape also makes it possible to secure a larger sunlight irradiation area and to configure a solar cell having high conversion efficiency.
  • Solar cell 110 1st silicon vapor deposition process 120 p-type layer vapor deposition process 130 n-type layer vapor deposition process 140 2nd silicon vapor deposition process 150 Insulating film vapor deposition process 160 Transparent conductive film vapor deposition process 170 ITO vapor deposition process 200
  • Aluminum plate 210 Aluminum wire 212a Spiral Shaped aluminum wire 212b Kenyama aluminum wire 220 first silicon layer 230 p-type layer 240 n-type layer 250 second silicon layer 260 insulating layer 270 semiconductor layer 280 transparent conductive layer 290 indium tin oxide layer

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Photovoltaic Devices (AREA)

Abstract

The purpose of the present invention is to provide a solar cell and a method for manufacturing the solar cell, said solar cell having high conversion efficiency, being increased in the area that is irradiated with sunlight, and being obtained by forming and laminating, on an aluminum wire rod, a silicon layer, a p-type layer and an n-type layer in the form of thin films by means of vapor deposition. The present invention is a method for manufacturing a solar cell which is composed of an aluminum plate (200) and an aluminum wire rod (212a) that is helically fitted to the aluminum plate (200) at a specific distance. This method for manufacturing a solar cell is configured of a first silicon vapor deposition step, a p-type layer vapor deposition step, an n-type layer vapor deposition step, a second silicon vapor deposition step, an insulating film vapor deposition step and a transparent conductive film vapor deposition step.

Description

太陽電池及びその製造方法Solar cell and manufacturing method thereof
 本発明は、太陽電池及びその製造方法に関し、特に、太陽光の照射面積を増加するとともにシリコン層、p型層、n型層の各層を薄い皮膜状に蒸着することにより、高い変換効率を実現した太陽電池及びその製造方法に関する。 The present invention relates to a solar cell and a manufacturing method thereof, and in particular, realizes high conversion efficiency by increasing the irradiation area of sunlight and depositing a silicon layer, a p-type layer, and an n-type layer in a thin film shape. The present invention relates to a solar cell and a manufacturing method thereof.
 従来より、光起電力効果を利用して光エネルギーを電力に変換する太陽電池が数多く開発され利用されており、様々な特性を有する太陽電池が開発されている。 Conventionally, many solar cells that convert light energy into electric power using the photovoltaic effect have been developed and used, and solar cells having various characteristics have been developed.
 太陽電池は、太陽から発せられる光エネルギーを電気的エネルギーに変換するものであるが、太陽光発電のエネルギー変換効率は他の発電システムと比較して低いという実情があった。すなわち、太陽光に依存しているため、太陽光が照射されているときに如何に効率よく発電するかが太陽電池の性能に直結することとなる。 Solar cells convert light energy emitted from the sun into electrical energy, but there is a fact that the energy conversion efficiency of solar power generation is low compared to other power generation systems. In other words, since it depends on sunlight, how efficiently power is generated when sunlight is irradiated directly affects the performance of the solar cell.
 このような太陽電池に関する技術として、例えば、特開2013-98527号では、光電変換効率を高めるための太陽電池として、基板と、基板上に積層される反射電極層と、反射電極層上に積層される光吸収層と、光吸収層上に積層される透明電極層とを含み、電極層上にナノ粒子設ける技術が開示されており、ナノ粒子を利用することによって反射電極層の光散乱効果が極大化されるため、光吸収層により多くの太陽光を集めることができ、光電変換効率を向上させる技術が開示されている。 As a technique related to such a solar cell, for example, in Japanese Patent Application Laid-Open No. 2013-98527, as a solar cell for increasing the photoelectric conversion efficiency, a substrate, a reflective electrode layer stacked on the substrate, and a stacked layer on the reflective electrode layer are used. And a transparent electrode layer laminated on the light absorption layer, and a technology for providing nanoparticles on the electrode layer is disclosed. By using the nanoparticles, the light scattering effect of the reflective electrode layer is disclosed. Is maximized, so that a large amount of sunlight can be collected in the light absorption layer, and a technique for improving the photoelectric conversion efficiency is disclosed.
 確かにこの方法によると、光電変換効率を向上させることが可能となるが、太陽光の照射角等によって光散乱効果が変化し、光電変換効率が不安定になることが想定され、充分とは言えなかった。 Certainly, according to this method, it is possible to improve the photoelectric conversion efficiency, but it is assumed that the light scattering effect changes depending on the irradiation angle of sunlight, etc., and the photoelectric conversion efficiency becomes unstable. I could not say it.
 また、特開2010-262979号では、変換効率および信頼性の向上した裏面電極型太陽電池に関する技術として、第1導電型の第1ドーピング領域と、第2導電型の第2ドーピング領域とを備えており、第1ドーピング領域上に形成された第1電極と、第2ドーピング領域上に形成された第2電極とを含む裏面電極型太陽電池に関する技術が開示されており、第1電極と第2電極とは焼成電極であり、第1電極および第2電極のうち少なくとも第1電極は、その表面に導電性被覆層を備えた太陽電池に関する技術が開示されている。 Japanese Patent Application Laid-Open No. 2010-262979 includes a first conductivity type first doping region and a second conductivity type second doping region as a technique related to a back electrode type solar cell with improved conversion efficiency and reliability. A technology relating to a back electrode type solar cell including a first electrode formed on a first doping region and a second electrode formed on a second doping region is disclosed. The two electrodes are fired electrodes, and at least the first electrode of the first electrode and the second electrode discloses a technique relating to a solar cell having a conductive coating layer on the surface thereof.
 この技術によると、高い信頼性、高い変換効率を有する太陽電池を構成する事が可能になると考えられるが、太陽電池を構成するためのコストの観点からは充分とは言えず、また、太陽光の照射角等によっては変換効率が不充分になることが想定され、充分とは言えなかった。 According to this technology, it is considered possible to construct a solar cell having high reliability and high conversion efficiency, but it cannot be said that it is sufficient from the viewpoint of cost for constructing the solar cell. Depending on the irradiation angle, it was assumed that the conversion efficiency would be insufficient and could not be said to be sufficient.
 そこで、そこで、構造が複雑になり過ぎず、かつ、高い変換効率を有する太陽電池及びその製造方法の開発が望まれていた。
特開2013-98527号公報 特開2010-262979号公報
Therefore, there has been a demand for the development of a solar cell having a high conversion efficiency and a method for manufacturing the solar cell without excessively complicated structure.
JP 2013-98527 A JP 2010-262979 A
 本発明は上記問題を解決するために提供する太陽電池及びその製造方法であって、特に、太陽光の照射面積を増加させるとともに、アルミニウム線材にシリコン層、p型層、n型層の各層を薄い皮膜状に蒸着積層形成した高い変換効率の太陽電池及びその製造方法に関する。 The present invention provides a solar cell and a method for manufacturing the solar cell that are provided to solve the above-described problem, and in particular, increase the irradiation area of sunlight, and each layer of a silicon layer, a p-type layer, and an n-type layer on an aluminum wire. The present invention relates to a high conversion efficiency solar cell formed by vapor deposition and lamination in a thin film shape and a method for manufacturing the same.
 上記の目的を達成するために本発明に係る太陽電池の製造方法は、アルミニウム板と該アルミニウム板上に一定間隔で装着した螺旋状からなるアルミニウム線材で形成された太陽電池の製造方法であって、前記太陽電池の製造方法は、前記螺旋状に形成されたアルミニウム線材にシリコン膜を蒸着して第一シリコン層を形成する第一シリコン蒸着工程と、第一シリコン層を形成したアルミニウム線材にp型層を蒸着するp型層蒸着工程と、p型層を蒸着したアルミニウム線材にn型層を蒸着するn型層蒸着工程と、n型層を蒸着したアルミニウム線材に更にシリコン膜を蒸着して第二シリコン層を形成する第二シリコン蒸着工程と、第二シリコン層を形成したアルミニウム線材に絶縁膜を蒸着して絶縁層を形成する絶縁膜蒸着工程と、絶縁膜を蒸着したアルミニウム線材に透明導電膜を蒸着して透明導電層を形成する透明導電膜蒸着工程と、からなる構成である。 In order to achieve the above object, a method for manufacturing a solar cell according to the present invention is a method for manufacturing a solar cell formed of an aluminum plate and a spiral aluminum wire mounted on the aluminum plate at regular intervals. The solar cell manufacturing method includes a first silicon vapor deposition step of depositing a silicon film on the spirally formed aluminum wire to form a first silicon layer, and an aluminum wire formed with the first silicon layer. A p-type layer deposition process for depositing a mold layer, an n-type layer deposition process for depositing an n-type layer on an aluminum wire deposited with a p-type layer, and a silicon film deposited on the aluminum wire deposited with an n-type layer. A second silicon deposition step for forming the second silicon layer, an insulating film deposition step for depositing an insulating film on the aluminum wire formed with the second silicon layer to form an insulating layer, and insulation A transparent conductive layer deposition process for forming a transparent conductive film The transparent conductive layer was deposited on the aluminum wire by depositing a structure comprising.
 また、前記第一シリコン蒸着工程は、蒸着するシリコン膜の肉厚を2000乃至3000Åとした構成である。
 また、前記p型層蒸着工程は、気体状のシラン(SiH)にボロン(B)を混入して蒸着処理する構成である。
In the first silicon deposition step, the thickness of the deposited silicon film is 2000 to 3000 mm.
Further, the p-type layer deposition step has a configuration in which boron (B) is mixed into gaseous silane (SiH 4 ) to perform a deposition process.
 また、前記n型層蒸着工程は、気体状のシラン(SiH)に燐(P)を混入して蒸着処理する構成である。
 また、前記第二シリコン蒸着工程は、蒸着するシリコン膜の肉厚を500Åとした構成である。
In addition, the n-type layer deposition step is a configuration in which phosphorus (P) is mixed into gaseous silane (SiH 4 ) to perform a deposition process.
The second silicon vapor deposition step has a configuration in which the thickness of the silicon film to be vapor deposited is 500 mm.
 また、太陽電池の製造方法は、インジウムティンオキサイド(ITO)を蒸着してインジウムティンオキサイド層を形成するITO蒸着工程を設けた構成である。
 また、前記ITO蒸着工程は、インジウム90%と、酸化錫10%または酸化亜鉛10%と、からなるインジウムティンオキサイドを蒸着処理する構成である。
 更に、前記ITO蒸着工程は、蒸着するインジウムティンオキサイド層の肉厚を500乃至1000Åとした構成でもある。
Moreover, the manufacturing method of a solar cell is the structure which provided the ITO vapor deposition process which vapor-deposits indium tin oxide (ITO) and forms an indium tin oxide layer.
Further, the ITO vapor deposition step is configured to vapor deposit indium tin oxide composed of 90% indium and 10% tin oxide or 10% zinc oxide.
Further, the ITO vapor deposition step may be configured such that the thickness of the indium tin oxide layer to be vapor deposited is 500 to 1000 mm.
 また、本発明に係る太陽電池は、アルミニウム板と、該アルミニウム板上に一定間隔で装着した螺旋状からなるアルミニウム線材で形成されるとともに、前記螺旋状からなるアルミニウム線材は、第一シリコン層と、p型層と、n型層と、第二シリコン層と、絶縁層と、透明導電層と、を蒸着形成した構成である。
 また、太陽電池が、アルミニウム板と、該アルミニウム板上に一定間隔で装着した剣山型のアルミニウム線材で形成されるとともに、前記剣山型のアルミニウム線材は、第一シリコン層と、p型層と、n型層と、第二シリコン層と、絶縁層と、透明導電層と、を蒸着形成した構成でもある。
The solar cell according to the present invention is formed of an aluminum plate and a spiral aluminum wire mounted on the aluminum plate at regular intervals, and the spiral aluminum wire includes a first silicon layer, , A p-type layer, an n-type layer, a second silicon layer, an insulating layer, and a transparent conductive layer are deposited.
The solar cell is formed of an aluminum plate and a sword mountain type aluminum wire mounted on the aluminum plate at regular intervals, the sword mountain type aluminum wire includes a first silicon layer, a p-type layer, It is also a configuration in which an n-type layer, a second silicon layer, an insulating layer, and a transparent conductive layer are formed by vapor deposition.
 本発明は、上記詳述した通りの構成であるので、以下のような効果がある。
1.太陽電池を、アルミニウム板と該アルミニウム板上に一定間隔で装着した螺旋状からなるアルミニウム線材で形成したため、太陽光の照射面積を多く確保することが可能となるとともに、通常より短い波長の光も変換可能となり、高い変換効率とすることが可能となる。また、螺旋状に形成されたアルミニウム線材に第一シリコン層、p型層、n型層、第二シリコン層、絶縁層、透明導電層を順に蒸着するため、アルミニウム線材に万遍なく蒸着され、変換効率の高い太陽電池を構成することが可能となる。
2.第一シリコン蒸着工程で蒸着するシリコン膜の肉厚を2000乃至3000Åとしたため、安定した変換効率を実現できる。
Since the present invention is configured as described in detail above, the following effects are obtained.
1. Since the solar cell is formed of an aluminum plate and a spiral aluminum wire mounted on the aluminum plate at regular intervals, it is possible to secure a large irradiation area of sunlight, and light of shorter wavelength than usual. Conversion is possible, and high conversion efficiency can be achieved. Moreover, in order to deposit the first silicon layer, the p-type layer, the n-type layer, the second silicon layer, the insulating layer, and the transparent conductive layer in this order on the aluminum wire formed in a spiral shape, it is uniformly deposited on the aluminum wire, It is possible to configure a solar cell with high conversion efficiency.
2. Since the thickness of the silicon film deposited in the first silicon deposition process is 2000 to 3000 mm, stable conversion efficiency can be realized.
3.p型層蒸着工程で気体状のシラン(SiH4)にボロン(B)を混入して蒸着処理するため、p型不純物として最適な物質を利用して、容易に太陽電池を構成することが出来る。
4.n型層蒸着工程で気体状のシラン(SiH4)に燐(P)を混入して蒸着処理するため、n型不純物として最適な物質を利用するとともに、容易に太陽電池を構成することが可能となる。
3. Since boron (B) is mixed in gaseous silane (SiH 4) in the p-type layer deposition step and vapor deposition is performed, a solar cell can be easily configured using an optimum material as a p-type impurity.
4). In the n-type layer deposition step, gaseous silane (SiH4) is mixed with phosphorus (P) for deposition, so that an optimum material can be used as an n-type impurity and a solar cell can be easily configured. Become.
5.第二シリコン蒸着工程で蒸着するシリコン膜の肉厚を500Åとしたため、より安定した変換効率を有する太陽電池を構成することができる。
6.インジウムティンオキサイド(ITO)を蒸着してインジウムティンオキサイド層を形成するITO蒸着工程を設けたため、導電性が改善され、より安定した高い変換効率を有する太陽電池を構成することが可能となる。
5. Since the thickness of the silicon film deposited in the second silicon deposition process is 500 mm, a solar cell having more stable conversion efficiency can be configured.
6). Since the ITO vapor deposition process for vapor-depositing indium tin oxide (ITO) to form the indium tin oxide layer is provided, the conductivity is improved, and a more stable solar cell having high conversion efficiency can be configured.
7.インジウム90%と、酸化錫10%または酸化亜鉛10%とからなるインジウムティンオキサイドを蒸着処理するため、安定した変換効率を有する太陽電池となる。
8.ITO蒸着工程で蒸着するインジウムティンオキサイド層の肉厚を500乃至1000Åとしたため、導電性が高レベルで改善されるとともに、安定した変換効率を有する太陽電池を構成できる。
7). Since indium tin oxide composed of 90% indium and 10% tin oxide or 10% zinc oxide is vapor-deposited, a solar cell having stable conversion efficiency is obtained.
8). Since the thickness of the indium tin oxide layer deposited in the ITO deposition process is 500 to 1000 mm, the conductivity can be improved at a high level, and a solar cell having stable conversion efficiency can be configured.
9.太陽電池が、アルミニウム板と、該アルミニウム板上に一定間隔で装着した螺旋状からなるアルミニウム線材で形成されているため、太陽光の照射面積を多く確保することが可能となるとともに、通常より短い波長の光も変換可能となり、高い変換効率とすることが可能となる。
10.太陽電池が、アルミニウム板と、該アルミニウム板上に一定間隔で装着した剣山型のアルミニウム線材で形成されているため、太陽光の照射面積をより多く確保することが可能となる。
9. Since the solar cell is formed of an aluminum plate and a spiral aluminum wire mounted on the aluminum plate at regular intervals, it is possible to secure a large solar radiation area and is shorter than usual. Wavelength light can also be converted, and high conversion efficiency can be achieved.
10. Since the solar cell is formed of an aluminum plate and a sword mountain type aluminum wire mounted on the aluminum plate at regular intervals, it is possible to secure a larger irradiation area of sunlight.
 以下、本発明に係る太陽電池及びその製造方法を、図面に示す実施例に基づいて詳細に説明する。図1は、本発明に係る太陽電池の製造方法のフローを示す図であり、図2は、螺旋状からなるアルミニウム線材を用いた太陽電池の断面図である。図3は、剣山型のアルミニウム線材を用いた太陽電池の断面図であり、図4は、アルミニウム線材の断面図である。 Hereinafter, the solar cell and the manufacturing method thereof according to the present invention will be described in detail based on the embodiments shown in the drawings. FIG. 1 is a diagram showing a flow of a solar cell manufacturing method according to the present invention, and FIG. 2 is a cross-sectional view of a solar cell using a spiral aluminum wire. FIG. 3 is a cross-sectional view of a solar cell using a sword mountain type aluminum wire, and FIG. 4 is a cross-sectional view of the aluminum wire.
 本発明の太陽電池の製造方法は、図1に示すように、第一シリコン蒸着工程110と、p型層蒸着工程120と、n型層蒸着工程130と、第二シリコン蒸着工程140と、絶縁膜蒸着工程150と、透明導電膜蒸着工程160とからなる。また、本発明の太陽電池は、アルミニウム板200と、アルミニウム線材210からなり、アルミニウム線材210は、図2または図3に示すように、螺旋状からなるアルミニウム線材212aまたは剣山型のアルミニウム線材212bで構成されている。 As shown in FIG. 1, the solar cell manufacturing method of the present invention includes a first silicon deposition step 110, a p-type layer deposition step 120, an n-type layer deposition step 130, a second silicon deposition step 140, and an insulation. It consists of a film deposition process 150 and a transparent conductive film deposition process 160. Further, the solar cell of the present invention is composed of an aluminum plate 200 and an aluminum wire 210, and the aluminum wire 210 is a spiral aluminum wire 212a or a sword-mount aluminum wire 212b as shown in FIG. 2 or FIG. It is configured.
 第一シリコン蒸着工程110は、アルミニウム線材210にシリコン膜を蒸着する工程である。本実施例では、螺旋状に形成されたアルミニウム線材212aにシリコン膜を蒸着処理して第一シリコン層220としている。通常の薄膜型アモルファス太陽電池では、電気変換率が5~8%となっており、平均で約6%といわれている。単結晶シリコンによると電気変換率が10~25%、多結晶では15~18%といわれており、上記アモルファスシリコンによる太陽電池は比較的電気変換率が低いこととなる。 The first silicon deposition step 110 is a step of depositing a silicon film on the aluminum wire 210. In the present embodiment, a silicon film is deposited on the spirally formed aluminum wire 212a to form the first silicon layer 220. In a normal thin film type amorphous solar cell, the electrical conversion rate is 5 to 8%, which is said to be about 6% on average. Single crystal silicon is said to have an electrical conversion rate of 10 to 25%, and polycrystal is said to be 15 to 18%. Solar cells made of amorphous silicon have a relatively low electrical conversion rate.
 螺旋状に形成されたアルミニウム線材212aを用いることにより、太陽光の照射面積を8倍以上と広く確保することが可能となり、後述の各工程により表面加工すると、電気変換率は少なくとも通常の形状より2倍ほど確保することが可能となるため、上記問題を解消して高い電気変換率を実現する事が可能となる。更に、螺旋状を水平に押し潰して平面に形成する事が効果的である。 By using the aluminum wire 212a formed in a spiral shape, it becomes possible to secure a wide irradiation area of sunlight of 8 times or more, and when surface processing is performed by each process described later, the electrical conversion rate is at least more than a normal shape. Since it is possible to secure about twice, it is possible to solve the above problems and realize a high electric conversion rate. Further, it is effective to horizontally crush the spiral to form a flat surface.
 また、螺旋状とすることにより、通常より短い波長の光の変換が可能となる。通常の螺旋状を採用していない太陽電池では、800~600nmの光を変換可能であるが、600nm以下の波長の光は、反射等によって電気変換する事ができないという問題があった。しかし、螺旋状とすることにより、600nm以下の波長の光の電気変換が可能となる。特に、600nm以下の光は波長が短いため強いエネルギーとなるため、より高い電気変換率を実現する事が可能となる。 Also, by using a spiral shape, it becomes possible to convert light having a shorter wavelength than usual. A solar cell that does not employ a normal spiral shape can convert light of 800 to 600 nm, but has a problem that light having a wavelength of 600 nm or less cannot be converted electrically by reflection or the like. However, electrical conversion of light with a wavelength of 600 nm or less is possible by using a spiral shape. In particular, light having a wavelength of 600 nm or less becomes strong energy because of its short wavelength, and thus a higher electrical conversion rate can be realized.
 第一シリコン蒸着工程110は、蒸着したシリコン膜からなる第一シリコン層220の肉厚を2000乃至3000Åとすることが可能である。これにより、安定した変換効率を実現できる。なお、前記肉厚は、2000乃至3000Åとすることが望ましいが、これに限定されることはなく、最適な厚みを選択する事が可能である。 In the first silicon deposition step 110, the thickness of the first silicon layer 220 made of the deposited silicon film can be 2000 to 3000 mm. Thereby, the stable conversion efficiency is realizable. The thickness is preferably 2000 to 3000 mm, but is not limited to this, and an optimum thickness can be selected.
 p型層蒸着工程120は、第一シリコン層220を形成したアルミニウム線材210にp型層230を蒸着する工程である。本実施例では、気体状のシラン(SiH)にボロン(B)を混入させ、これをアルミニウム線材210に蒸着処理している。これにより、p型不純物として最適な物質を利用して、容易に蒸着することができる。なお、p型不純物として本実施例ではボロンを使用しているが、これに限定されることはなく、他の最適な物質を選択して使用することが可能である。 The p-type layer deposition step 120 is a step of depositing the p-type layer 230 on the aluminum wire 210 on which the first silicon layer 220 is formed. In this embodiment, boron (B) is mixed in gaseous silane (SiH 4 ), and this is vapor deposited on the aluminum wire 210. Thereby, vapor deposition can be easily performed using a substance optimum as a p-type impurity. In this embodiment, boron is used as the p-type impurity. However, the present invention is not limited to this, and other optimum substances can be selected and used.
 n型層蒸着工程130は、p型層230を蒸着したアルミニウム線材210にn型層240を蒸着する工程である。本実施例では、気体状のシラン(SiH4)に燐(P)を混入させ、これをアルミニウム線材210に蒸着処理している。これにより、n型不純物として最適な物質を利用するとともに、容易に蒸着処理を施して太陽電池を構成することが可能となる。なお、n型不純物として本実施例では燐を使用しているが、これに限定されることはなく、他の最適な物質を選択して使用することが可能である。 The n-type layer deposition step 130 is a step of depositing the n-type layer 240 on the aluminum wire 210 on which the p-type layer 230 is deposited. In this embodiment, phosphorus (P) is mixed in gaseous silane (SiH 4), and this is vapor deposited on the aluminum wire 210. This makes it possible to configure a solar cell by using an optimum material as an n-type impurity and easily performing a vapor deposition process. In this embodiment, phosphorus is used as the n-type impurity. However, the present invention is not limited to this, and other optimum substances can be selected and used.
 第二シリコン蒸着工程140は、n型層240を蒸着したアルミニウム線材210に更にシリコン膜を蒸着して第二シリコン層250を形成する工程である。本実施例では、蒸着するシリコン膜の肉厚を500Åとして第二シリコン層250を構成することが可能である。これにより、より安定した変換効率を有する太陽電池を構成することができる。なお、前記第二シリコン層250の肉厚は、500Åとすることが望ましいが、これに限定されることはなく、最適な厚みを選択する事が可能である。 The second silicon deposition step 140 is a step of forming a second silicon layer 250 by further depositing a silicon film on the aluminum wire 210 on which the n-type layer 240 is deposited. In the present embodiment, the second silicon layer 250 can be configured with the thickness of the deposited silicon film being 500 mm. Thereby, the solar cell which has more stable conversion efficiency can be comprised. The thickness of the second silicon layer 250 is preferably 500 mm, but is not limited to this, and an optimum thickness can be selected.
 絶縁膜蒸着工程150は、第二シリコン層250を形成したアルミニウム線材210に絶縁膜を蒸着して絶縁層260を形成する絶工程である。これにより、絶縁層260が保護膜となり、前記各層の積層体で構成される半導体層270が空気に接する事によって半導体の特性が悪化することを防止することが可能となる。 The insulating film vapor deposition step 150 is an incomplete step of forming an insulating layer 260 by vapor-depositing an insulating film on the aluminum wire 210 on which the second silicon layer 250 is formed. As a result, the insulating layer 260 serves as a protective film, and it is possible to prevent the semiconductor characteristics from deteriorating due to the semiconductor layer 270 formed of the stacked body of the layers contacting air.
 透明導電膜蒸着工程160は、絶縁膜からなる絶縁層260を蒸着したアルミニウム線材210に透明導電膜を蒸着して透明導電層280を形成する工程である。これにより、入射光を遮ることなく太陽電池を構成している。 The transparent conductive film deposition step 160 is a step of forming a transparent conductive layer 280 by depositing a transparent conductive film on the aluminum wire 210 on which an insulating layer 260 made of an insulating film is deposited. Thereby, the solar cell is configured without blocking incident light.
 本発明に係る太陽電池の製造方法は、更に、インジウムティンオキサイド(ITO)を蒸着してインジウムティンオキサイド層290を形成するITO蒸着工程170を設けることが可能である。これにより、インジウムティンオキサイド層290を設けないものと比較して導電性が改善されることとなり、より安定した、高い変換効率を有する太陽電池を構成することが可能となる。ITO蒸着工程170は、インジウム90%と、酸化錫10%または酸化亜鉛10%と、からなるインジウムティンオキサイドを蒸着処理する構成とすることが可能である。これにより、より高く、安定した変換効率を有する太陽電池を構成することが可能となる。 The method for manufacturing a solar cell according to the present invention can further include an ITO vapor deposition step 170 for vapor-depositing indium tin oxide (ITO) to form an indium tin oxide layer 290. As a result, the conductivity is improved as compared with the case where the indium tin oxide layer 290 is not provided, and a more stable solar cell having high conversion efficiency can be configured. The ITO vapor deposition step 170 can be configured to vapor-deposit indium tin oxide composed of 90% indium and 10% tin oxide or 10% zinc oxide. Thereby, it becomes possible to constitute a solar cell having higher and stable conversion efficiency.
 ITO蒸着工程170は、蒸着するインジウムティンオキサイド層290の肉厚を500乃至1000Åとすることが可能である。この構成とすることにより、導電性が高レベルで改善されるとともに、安定した変換効率を有する太陽電池を構成することが可能となる。なお、インジウムティンオキサイド層290の肉厚は、500乃至1000Åとすることが望ましいが、これに限定されることはなく、最適な厚みを選択する事が可能である。 In the ITO vapor deposition step 170, the thickness of the deposited indium tin oxide layer 290 can be 500 to 1000 mm. By adopting this configuration, it is possible to improve the conductivity at a high level and to configure a solar cell having stable conversion efficiency. Note that the thickness of the indium tin oxide layer 290 is preferably 500 to 1000 mm, but is not limited thereto, and an optimum thickness can be selected.
 上記各工程によって積層構成されるアルミニウム線材210の断面図を図4に示す。アルミニウム線材に第一シリコン層220、p型層230、n型層240、第二シリコン層250、絶縁層260、透明導電層280、インジウムティンオキサイド層290を順に蒸着するため、照射面積を広く確保したアルミニウム線材210に万遍なく蒸着されることとなり、変換効率の高い太陽電池を構成することが可能となる。 FIG. 4 shows a cross-sectional view of the aluminum wire 210 constituted by the above steps. Since the first silicon layer 220, the p-type layer 230, the n-type layer 240, the second silicon layer 250, the insulating layer 260, the transparent conductive layer 280, and the indium tin oxide layer 290 are sequentially deposited on the aluminum wire, a wide irradiation area is secured. Thus, it is possible to form a solar cell with high conversion efficiency.
 本発明に係る太陽電池10は、図2に示すように、アルミニウム板210と、アルミニウム板210上に一定間隔で装着した螺旋状からなるアルミニウム線材212aで形成されており、望ましくは螺旋状のアルミニウム線材212aを水平に押し潰して螺旋状でありながら平面に形成した構造である方が面積当たりの照射面を得るのに効果的である。螺旋状からなるアルミニウム線材212aは、第一シリコン層220と、p型層230と、n型層240と、第二シリコン層250と、絶縁層260と、透明導電層280とを蒸着積層形成した構成である。これにより、太陽光の照射面積を多く確保することが可能となる。更に、通常より短い波長の光も変換可能となり、高い変換効率を有する太陽電池を構成することが可能となる。 As shown in FIG. 2, the solar cell 10 according to the present invention is formed of an aluminum plate 210 and a spiral aluminum wire 212 a mounted on the aluminum plate 210 at regular intervals, and preferably a spiral aluminum A structure in which the wire 212a is crushed horizontally to form a flat surface while being spiral is more effective in obtaining an irradiation surface per area. A spiral aluminum wire 212a is formed by vapor-depositing a first silicon layer 220, a p-type layer 230, an n-type layer 240, a second silicon layer 250, an insulating layer 260, and a transparent conductive layer 280. It is a configuration. Thereby, it becomes possible to ensure a large irradiation area of sunlight. Furthermore, light having a wavelength shorter than usual can be converted, and a solar cell having high conversion efficiency can be configured.
 本発明に係る太陽電池10は、図3に示すように、アルミニウム板210と、アルミニウム板210上に一定間隔で装着した剣山型のアルミニウム線材212bで形成する構成とすることが可能である。この形状によっても、太陽光の照射面積をより多く確保することが可能となり、高い変換効率を有する太陽電池を構成することが可能となる。 As shown in FIG. 3, the solar cell 10 according to the present invention may be formed of an aluminum plate 210 and a sword mountain type aluminum wire 212 b mounted on the aluminum plate 210 at regular intervals. This shape also makes it possible to secure a larger sunlight irradiation area and to configure a solar cell having high conversion efficiency.
本発明に係る太陽電池の製造方法のフローを示す図The figure which shows the flow of the manufacturing method of the solar cell which concerns on this invention 螺旋状からなるアルミニウム線材を用いた太陽電池の断面図Cross-sectional view of solar cell using spiral aluminum wire 剣山型のアルミニウム線材を用いた太陽電池の断面図Cross section of solar cell using Kenyama aluminum wire アルミニウム線材の断面図Cross section of aluminum wire
 10 太陽電池
 110 第一シリコン蒸着工程
 120 p型層蒸着工程
 130 n型層蒸着工程
 140 第二シリコン蒸着工程
 150 絶縁膜蒸着工程
 160 透明導電膜蒸着工程
 170 ITO蒸着工程
 200 アルミニウム板
 210 アルミニウム線材
 212a 螺旋状からなるアルミニウム線材
 212b 剣山型のアルミニウム線材
 220 第一シリコン層
 230 p型層
 240 n型層
 250 第二シリコン層
 260 絶縁層
 270 半導体層
 280 透明導電層
 290 インジウムティンオキサイド層
DESCRIPTION OF SYMBOLS 10 Solar cell 110 1st silicon vapor deposition process 120 p-type layer vapor deposition process 130 n-type layer vapor deposition process 140 2nd silicon vapor deposition process 150 Insulating film vapor deposition process 160 Transparent conductive film vapor deposition process 170 ITO vapor deposition process 200 Aluminum plate 210 Aluminum wire 212a Spiral Shaped aluminum wire 212b Kenyama aluminum wire 220 first silicon layer 230 p-type layer 240 n-type layer 250 second silicon layer 260 insulating layer 270 semiconductor layer 280 transparent conductive layer 290 indium tin oxide layer

Claims (10)

  1.  アルミニウム板と該アルミニウム板上に一定間隔で装着した螺旋状からなるアルミニウム線材で形成された太陽電池の製造方法において、
     前記太陽電池の製造方法は、前記螺旋状に形成されたアルミニウム線材にシリコン膜を蒸着して第一シリコン層を形成する第一シリコン蒸着工程と、第一シリコン層を形成したアルミニウム線材にp型層を蒸着するp型層蒸着工程と、p型層を蒸着したアルミニウム線材にn型層を蒸着するn型層蒸着工程と、n型層を蒸着したアルミニウム線材に更にシリコン膜を蒸着して第二シリコン層を形成する第二シリコン蒸着工程と、第二シリコン層を形成したアルミニウム線材に絶縁膜を蒸着して絶縁層を形成する絶縁膜蒸着工程と、絶縁膜を蒸着したアルミニウム線材に透明導電膜を蒸着して透明導電層を形成する透明導電膜蒸着工程と、からなることを特徴とする太陽電池の製造方法。
    In a method of manufacturing a solar cell formed of an aluminum plate and a spiral aluminum wire mounted on the aluminum plate at regular intervals,
    The solar cell manufacturing method includes a first silicon deposition step of depositing a silicon film on the spirally formed aluminum wire to form a first silicon layer, and a p-type on the aluminum wire formed with the first silicon layer. A p-type layer deposition process for depositing a layer; an n-type layer deposition process for depositing an n-type layer on an aluminum wire deposited with a p-type layer; and a silicon film is further deposited on the aluminum wire deposited with an n-type layer. A second silicon deposition step for forming two silicon layers, an insulating film deposition step for depositing an insulating film on the aluminum wire formed with the second silicon layer to form an insulating layer, and a transparent conductive material for the aluminum wire deposited with the insulating film. A transparent conductive film deposition step of depositing a film to form a transparent conductive layer, and a method for manufacturing a solar cell.
  2.  前記第一シリコン蒸着工程は、蒸着するシリコン膜の肉厚を2000乃至3000Åとしたことを特徴とする請求項1記載の太陽電池の製造方法。 The method for manufacturing a solar cell according to claim 1, wherein the thickness of the silicon film to be deposited is 2000 to 3000 mm in the first silicon deposition step.
  3.  前記p型層蒸着工程は、気体状のシラン(SiH)にボロン(B)を混入して蒸着処理することを特徴とする請求項1記載の太陽電池の製造方法。 2. The method for manufacturing a solar cell according to claim 1, wherein the p-type layer deposition step performs vapor deposition by mixing boron (B) into gaseous silane (SiH 4 ). 3.
  4.  前記n型層蒸着工程は、気体状のシラン(SiH)に燐(P)を混入して蒸着処理することを特徴とする請求項1記載の太陽電池の製造方法。 The method for manufacturing a solar cell according to claim 1, wherein the n-type layer deposition step includes vapor deposition treatment by mixing phosphorus (P) into gaseous silane (SiH 4 ).
  5.  前記第二シリコン蒸着工程は、蒸着するシリコン膜の肉厚を500Åとしたことを特徴とする請求項1記載の太陽電池の製造方法。 The method for manufacturing a solar cell according to claim 1, wherein the thickness of the silicon film to be deposited is 500 mm in the second silicon deposition step.
  6.  太陽電池の製造方法は、インジウムティンオキサイド(ITO)を蒸着してインジウムティンオキサイド層を形成するITO蒸着工程を設けたことを特徴とする請求項1乃至請求項5記載の太陽電池の製造方法。 6. The method for manufacturing a solar cell according to claim 1, wherein the method for manufacturing a solar cell includes an ITO vapor deposition step of depositing indium tin oxide (ITO) to form an indium tin oxide layer.
  7.  前記ITO蒸着工程は、インジウム90%と、酸化錫10%または酸化亜鉛10%と、からなるインジウムティンオキサイドを蒸着処理することを特徴とする請求項6記載の太陽電池の製造方法。 The method for manufacturing a solar cell according to claim 6, wherein the ITO vapor deposition step deposits indium tin oxide consisting of 90% indium and 10% tin oxide or 10% zinc oxide.
  8.  前記ITO蒸着工程は、蒸着するインジウムティンオキサイド層の肉厚を500乃至1000Åとしたことを特徴とする請求項6または請求項7記載の太陽電池の製造方法。 The method for manufacturing a solar cell according to claim 6 or 7, wherein in the ITO vapor deposition step, a thickness of an indium tin oxide layer to be vapor deposited is 500 to 1000 mm.
  9.  太陽電池が、
     アルミニウム板と、該アルミニウム板上に一定間隔で装着した螺旋状からなるアルミニウム線材で形成されるとともに、前記螺旋状からなるアルミニウム線材は、第一シリコン層と、p型層と、n型層と、第二シリコン層と、絶縁層と、透明導電層と、を蒸着形成したことを特徴とする太陽電池。
    Solar cells
    The aluminum plate is formed of an aluminum plate and a spiral aluminum wire mounted on the aluminum plate at regular intervals, and the spiral aluminum wire includes a first silicon layer, a p-type layer, an n-type layer, A solar cell, wherein a second silicon layer, an insulating layer, and a transparent conductive layer are formed by vapor deposition.
  10.  太陽電池が、
     アルミニウム板と、該アルミニウム板上に一定間隔で装着した剣山型のアルミニウム線材で形成されるとともに、前記剣山型のアルミニウム線材は、第一シリコン層と、p型層と、n型層と、第二シリコン層と、絶縁層と、透明導電層と、を蒸着形成したことを特徴とする太陽電池。
    Solar cells
    An aluminum plate and a sword mountain type aluminum wire mounted on the aluminum plate at regular intervals, the sword mountain type aluminum wire includes a first silicon layer, a p-type layer, an n-type layer, A solar cell, wherein a two-silicon layer, an insulating layer, and a transparent conductive layer are formed by vapor deposition.
PCT/JP2013/007517 2013-12-20 2013-12-20 Solar cell and method for manufacturing same WO2015092839A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/007517 WO2015092839A1 (en) 2013-12-20 2013-12-20 Solar cell and method for manufacturing same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/007517 WO2015092839A1 (en) 2013-12-20 2013-12-20 Solar cell and method for manufacturing same

Publications (1)

Publication Number Publication Date
WO2015092839A1 true WO2015092839A1 (en) 2015-06-25

Family

ID=53402235

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/007517 WO2015092839A1 (en) 2013-12-20 2013-12-20 Solar cell and method for manufacturing same

Country Status (1)

Country Link
WO (1) WO2015092839A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06326339A (en) * 1993-05-10 1994-11-25 Hideo Fukuda Control coil spring type photovoltaic power-generating set
JP2008135740A (en) * 2006-11-15 2008-06-12 General Electric Co <Ge> Amorphous-crystalline tandem nanostructured solar cell
JP2009200126A (en) * 2008-02-19 2009-09-03 Taiyo Yuden Co Ltd Power generation system, method and device for manufacturing the same, and solar cell
JP2010192870A (en) * 2009-02-18 2010-09-02 Korea Inst Of Industrial Technology Method for manufacturing silicon nano-wire, solar cell including the same, and method for manufacturing the solar cell
JP2011511464A (en) * 2008-02-03 2011-04-07 ンリテン エナジー コーポレイション Thin film photovoltaic device and related manufacturing method
JP2012186233A (en) * 2011-03-03 2012-09-27 Jsr Corp Device and manufacturing method therefor

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06326339A (en) * 1993-05-10 1994-11-25 Hideo Fukuda Control coil spring type photovoltaic power-generating set
JP2008135740A (en) * 2006-11-15 2008-06-12 General Electric Co <Ge> Amorphous-crystalline tandem nanostructured solar cell
JP2011511464A (en) * 2008-02-03 2011-04-07 ンリテン エナジー コーポレイション Thin film photovoltaic device and related manufacturing method
JP2009200126A (en) * 2008-02-19 2009-09-03 Taiyo Yuden Co Ltd Power generation system, method and device for manufacturing the same, and solar cell
JP2010192870A (en) * 2009-02-18 2010-09-02 Korea Inst Of Industrial Technology Method for manufacturing silicon nano-wire, solar cell including the same, and method for manufacturing the solar cell
JP2012186233A (en) * 2011-03-03 2012-09-27 Jsr Corp Device and manufacturing method therefor

Similar Documents

Publication Publication Date Title
TWI438904B (en) Method for obtaining high performance thin film devices deposited on highly textured substrates
US20130269771A1 (en) Solar cell
US20080236661A1 (en) Solar cell
US9349884B2 (en) Solar cell
US20120073641A1 (en) Solar cell apparatus having the transparent conducting layer with the structure as a plurality of nano-level well-arranged arrays
CN108963013B (en) Solar cell and method for manufacturing same
US20100263721A1 (en) Transparent solar cell
WO2013002102A1 (en) Photoelectric conversion device
US9310519B2 (en) See-through type photovoltaic module including 3-dimensional photonic crystal, manufacturing method thereof, and insulated glass unit including the same
KR102586115B1 (en) Bifacial silicon solar cell
US20120097227A1 (en) Solar cells
TW201308635A (en) Tandem solar cell with improved tunnel junction
US20110253213A1 (en) Thin film solar cell
TW201041165A (en) Solar battery and method for manufacturing the same
US20110259398A1 (en) Thin film solar cell and method for manufacturing the same
WO2015092839A1 (en) Solar cell and method for manufacturing same
JP7344593B2 (en) Semiconductor device, solar cell, and semiconductor device manufacturing method
JP2007059799A (en) Solar cell and its manufacturing method
KR101643132B1 (en) Method for fabricating solar cell using carbon substrate
WO2011125922A1 (en) Photoelectric conversion device
US20120055535A1 (en) Photovoltaic Devices With Textured Glass Superstrate
KR20110007499A (en) Solar cell and manufacturing mehtod of the same
JP2013535830A (en) Method for producing transparent electrode, method for producing photovoltaic cell, and structure
KR20120055133A (en) Thin film solar cell
EP2834856B1 (en) Thin film solar cell

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13899628

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13899628

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP