WO2015079652A1 - Display body and method for manufacturing same - Google Patents

Display body and method for manufacturing same Download PDF

Info

Publication number
WO2015079652A1
WO2015079652A1 PCT/JP2014/005787 JP2014005787W WO2015079652A1 WO 2015079652 A1 WO2015079652 A1 WO 2015079652A1 JP 2014005787 W JP2014005787 W JP 2014005787W WO 2015079652 A1 WO2015079652 A1 WO 2015079652A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
convex
wavelength
concavo
light
Prior art date
Application number
PCT/JP2014/005787
Other languages
French (fr)
Japanese (ja)
Inventor
雅史 川下
Original Assignee
凸版印刷株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 凸版印刷株式会社 filed Critical 凸版印刷株式会社
Publication of WO2015079652A1 publication Critical patent/WO2015079652A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/18Diffraction gratings
    • G02B5/1809Diffraction gratings with pitch less than or comparable to the wavelength
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B3/00Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form
    • B32B3/26Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by a particular shape of the outline of the cross-section of a continuous layer; characterised by a layer with cavities or internal voids ; characterised by an apertured layer
    • B32B3/30Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by a particular shape of the outline of the cross-section of a continuous layer; characterised by a layer with cavities or internal voids ; characterised by an apertured layer characterised by a layer formed with recesses or projections, e.g. hollows, grooves, protuberances, ribs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/40Properties of the layers or laminate having particular optical properties
    • B32B2307/418Refractive
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/20Displays, e.g. liquid crystal displays, plasma displays

Definitions

  • the present invention relates to a display body whose color tone changes according to a change in observation angle using structural coloring, and a manufacturing method thereof.
  • the structural coloration typified by Morpho butterfly scales and iridescent epidermis is not the coloration associated with the energy transition of the electronic state of molecules such as dyes and pigments, but the coloration caused by the action of optical phenomena such as light diffraction, interference, and scattering. It is a phenomenon.
  • Multilayer film interference occurs when reflected light generated at each interface of the laminate interferes with each other, and an optical path difference caused by each layer is an important factor.
  • This optical path difference depends on the refractive index of the constituent material in addition to the physical film thickness of each layer, and also changes depending on the incident angle. Therefore, the structural color development due to multilayer film interference is characterized in that the color tone of the reflected light changes depending on the incident angle of light.
  • JP 2013-122567 A Japanese Patent No. 4228058
  • the color tone of the reflected light by the multilayer laminate as described above is basically determined by the material constituting each layer of the laminate and the physical film thickness, and the color tone change due to the change in observation angle is monotonous. End up.
  • the color tone change of reflected light due to the change in observation angle is moderated.
  • the main effect is to increase the reflectance at a specific angle, and when the structure of the multi-layer laminate is the same, it is difficult to express various color tone changes.
  • the present invention has been made to solve such problems, and has a simple design and a display body having a high design property such that a change in color tone of reflected light due to a change in observation angle varies depending on a pixel region.
  • An object of the present invention is to provide a manufacturing method thereof.
  • One aspect of the present invention is a display body including a base material, a multilayer laminate formed on the surface of the base material, and a fine uneven layer formed on the surface of the multilayer laminate, wherein the multilayer laminate is a laminate of two or more layers. And at least the multilayer laminate and the fine concavo-convex layer are transparent to light of a predetermined wavelength region, and each layer constituting the multilayer laminate is adjacent to the adjacent layer within the predetermined wavelength region. It is composed of materials that have different refractive indices with respect to light of the wavelength, and each layer that constitutes the multilayer laminate and the material that constitutes the fine concavo-convex layer is an optical represented by the product of the respective refractive index and physical film thickness.
  • the film thickness is less than 7/4 times the shortest wavelength in the predetermined wavelength region, and the fine concavo-convex layer has a height difference below the physical film thickness by partially reducing the physical film thickness of the fine concavo-convex layer.
  • It is a display body in which a concavo-convex structure including a convex portion and a concave portion is formed.
  • a one-dimensional diffractive structure composed of a linear concavo-convex structure with a constant period or a two-dimensional diffractive structure composed of a lattice-shaped concavo-convex structure with a constant period may be formed on the surface of the fine concavo-convex layer.
  • the refractive index for light having a wavelength within the wavelength region of the material constituting the fine uneven layer is larger than the refractive index for light having the wavelength of the material constituting the uppermost layer of the multilayer laminate.
  • the uppermost layer of the multilayer laminate and the fine concavo-convex layer is made of a material having a refractive index larger than that of the material constituting the fine concavo-convex layer, with a physical film thickness and refractive index.
  • the optical film thickness which is the product of the above, has a waveguiding layer that is less than 7/4 times the shortest wavelength in the wavelength region. It may be equal to the film thickness.
  • the wavelength region is a visible light wavelength region, and a plurality of pixel regions arranged on a matrix having at least one side of 10 ⁇ m or more are formed on the surface of the fine concavo-convex layer, and each pixel region has a structural period of 200 nm or more and A first one-dimensional diffractive structure having a linear concavo-convex structure of 800 nm or less, in which the linear concavo-convex structure is arranged in a first direction, and a linear concavo-convex structure having a structure period of 200 nm or more and 800 nm or less.
  • a second one-dimensional diffractive structure in which linear concavo-convex structures are arranged in a second direction different from the first direction, and a lattice-like concavo-convex structure having a structural period of 200 nm or more and 800 nm or less, At least one of the two-dimensional diffractive structures may be formed by arranging the lattice-shaped concavo-convex structure in the first direction and the second direction.
  • each layer of the multilayer laminate, and the fine uneven layer are preferably made of a material having an extinction coefficient of 0.1 or less with respect to light in the visible light wavelength region.
  • each layer of the multilayer laminate, the fine uneven layer, and the waveguide layer are made of a material having a refractive index with respect to light having a wavelength in the visible light wavelength region of 1.3 or more and 2.6 or less.
  • the refractive index difference between adjacent layers is preferably at least 0.05.
  • Another aspect of the present invention is a step of forming a multilayer laminate having transparency to visible light wavelength region light on the substrate surface and different refractive indexes in adjacent layers by sequentially laminating each layer. And a step of applying a photocurable resin to the surface of the multilayer laminate, and a step of forming a desired uneven shape on the photocurable resin by an optical nanoimprint method.
  • the refractive index of the light curable resin with respect to light having a wavelength in the visible light wavelength region is larger than the refractive index with respect to the visible light wavelength region of the material constituting the surface of the multilayer laminate.
  • the manufacturing method of the display body includes a step of preparing a base material, and a laminate that has transparency to light having a wavelength in the visible light region on the surface of the base material and has a different refractive index in each adjacent layer.
  • the manufacturing method of the display body includes a step of preparing a base material, and a laminate that has transparency to light having a wavelength in the visible light region on the surface of the base material and has a different refractive index in each adjacent layer. Including a step of sequentially laminating and forming each layer, a step of applying a thermoplastic resin layer to the surface of the uppermost layer of the multilayer laminate, and a step of forming a desired uneven shape on the thermoplastic resin layer by a thermal nanoimprint method. Good.
  • the refractive index of the thermoplastic resin layer with respect to light having a wavelength in the visible light region is larger than the refractive index with respect to light having a wavelength of the material constituting the outermost surface of the multilayer laminate.
  • the method of manufacturing the display body includes a step of preparing a base material, and a laminated body that is transparent to light having a wavelength in the visible light wavelength region on the surface of the base material and has a different refractive index in each adjacent layer. Are formed by sequentially laminating each layer, a step of forming a waveguiding layer on the surface of the multilayer laminate, and a wavelength within the visible light wavelength region than the material constituting the waveguiding layer on the surface of the waveguiding layer.
  • a fine concavo-convex layer having a region in which a one-dimensional or two-dimensional diffractive structure is formed is provided on the surface of a multilayer laminate that is structurally colored by multilayer film interference, and the fine concavo-convex layer further relates to multilayer film interference.
  • the film thickness was designed to be As a result, it is possible to obtain a display body in which reflected light exhibits a unique color tone change due to a change in observation angle using multilayer film interference and diffraction phenomenon, thereby improving the design of the design displayed by the display body. An effect is obtained.
  • the effect of guided mode resonance can be given by designing the structure of the display body optimally. For this reason, it becomes possible to produce the effect of further improving the design of the display object.
  • FIG. 1 is a schematic view of a cross section of a display body according to a first embodiment of the present invention.
  • FIG. 2 is a schematic view of a cross section of a display body according to the second embodiment of the present invention.
  • FIG. 3 is a schematic view of a cross section of a display body according to the third embodiment of the present invention.
  • the wavelength region of light is not particularly limited.
  • the light wavelength region is observed in the visible light wavelength region, or by an ultraviolet camera or an infrared camera.
  • the wavelength region can be limited to the corresponding ultraviolet region or infrared region.
  • a display body that can be visually observed by a person will be described.
  • FIG. 1 is a schematic view of a cross-section of a display body 1 according to a first embodiment of the present invention.
  • a multilayer laminate 21 is formed on a base material 11, and on the multilayer laminate 21, A fine uneven layer 31 is formed.
  • the material of the base material 11 is not particularly limited. However, in order to perform color expression only by structural color development due to multilayer film interference, a material having high transparency in the visible light wavelength region is preferable. Examples thereof include synthetic quartz glass and polyethylene terephthalate. In the first embodiment, the base material 11 is a synthetic quartz glass substrate.
  • the multilayer laminate 21 is formed by laminating materials having different refractive indexes. As a material for forming each layer, the display body 1 needs to be transmissive to light in a wavelength region for displaying a design.
  • a material having high transparency with respect to the visible light wavelength region for example, TiO 2 , Nb 2 O 5 , Ta 2 O 5 , Al 2 O 3 , SiO 2 , Fe 2 O 3 , HfO 2 , MgO, ZrO , SnO 2, Sb 2 O 3 , CeO 3, WO 3, PbO, In 2 O 3, CdO, BaTiO 3, ITO, LiF, BaF 2, CaF 2, MgF 2, AlF 3, CeF 3, ZnS, PbCl 2
  • An inorganic dielectric material such as an organic resin material such as an acrylic resin, a phenol resin, or an epoxy resin can be used.
  • the multilayer laminate 21 is a laminate of TiO 2 and SiO 2 .
  • TiO 2 is formed on the surface of the base material 11 made of synthetic quartz glass.
  • a film forming method for example, a known method such as a vacuum evaporation method, sputtering, or an atomic layer deposition method can be used.
  • SiO 2 is formed on the surface of the formed TiO 2 film.
  • a film forming method for example, a known method such as a vacuum evaporation method, sputtering, or an atomic layer deposition method can be used.
  • the number of layers to be stacked and the physical film thickness of each layer need to be designed so as to obtain a desired reflected light spectrum.
  • a known coating method such as a spin coating method may be used.
  • the physical film thickness it is necessary to design the film thickness within an appropriate range in order to obtain a display body that effectively uses multilayer film interference.
  • Light having a wavelength ⁇ satisfying ⁇ ⁇ / n is strengthened.
  • the physical film thickness of the thin film increases, there are many combinations of m and ⁇ that satisfy the equation, and a plurality of wavelengths in the visible light wavelength region are strengthened, so that color recognition may become unclear.
  • the optical film thickness represented by the product of the refractive index n and the physical film thickness d of each layer of the laminate that structurally develops color by multilayer interference is the target wavelength region. It is preferably designed to be less than 7/4 times the shortest wavelength. Furthermore, in order to recognize a color clearly, it is more preferable that it is less than 5/4 times.
  • the upper limit value of the optical film thickness of each layer forming the multilayer laminate 21 is visible light because it is for the visible light wavelength region.
  • the film thickness of TiO 2 is 160 nm, and the film thickness of SiO 2 is 275 nm. Further, the number of layers to be laminated is 5 layers of TiO 2 and 4 layers of SiO 2 . Therefore, the uppermost layer of the multilayer laminate 21 is TiO 2 .
  • the term “film thickness” simply means a physical film thickness.
  • the fine uneven layer 31 is formed on the multilayer laminate 21.
  • the fine concavo-convex layer 31 also needs to be made of a material that is transparent to the target wavelength region, like the multilayer laminate 21.
  • the optical film thickness which is the product of the refractive index and the physical film thickness, of the fine uneven layer 31 less than 7/4 times the shortest wavelength in the visible light wavelength region in the same manner as each layer of the multilayer laminate 21, Structural coloration by multilayer film interference including the concavo-convex layer 31 can be realized, and a display body with high design can be obtained.
  • the refractive index of the material constituting the fine uneven layer 31 may be larger than the refractive index of the material constituting the uppermost layer of the multilayer laminate 21.
  • the multilayer laminate 21 and the fine uneven layer 31 are preferably made of a material having an extinction coefficient of 0.1 or less with respect to visible light, for example.
  • the concavo-convex structure formed on the fine concavo-convex layer 31 is formed by partially reducing the physical film thickness of the fine concavo-convex layer 31 to form the concavo-convex, and is dimensioned so that incident light is diffracted.
  • a one-dimensional diffractive structure composed of a linear concavo-convex structure having a constant period and a two-dimensional diffractive structure composed of a lattice-shaped concavo-convex structure having a constant period are suitable. By forming this structure, it is possible to obtain a display body 1 with higher design by utilizing the diffraction effect generated in the fine uneven layer 31.
  • the height from the concave surface to the convex surface of the concavo-convex structure is the physical film of the fine concavo-convex layer 31. Thickness (H2) or less.
  • the structural period of the diffractive structure may be a structural period that diffracts light in the target wavelength region.
  • the structural period may be, for example, 200 nm or more and 800 nm or less.
  • a plurality of pixel regions are arranged on the surface of the fine concavo-convex layer 31 and the structural period is changed for each pixel, thereby enabling image display with various color tone changes.
  • one side is arranged on a matrix of 10 ⁇ m or more in order to make a display body that can be visually confirmed by a person. Let it be a pixel area.
  • the constituent material of the fine concavo-convex layer 31 is SiO 2 and the film thickness of the fine concavo-convex layer 31 including the height of the concavo-convex structure is 300 nm.
  • the structures to be formed are a two-dimensional diffractive structure composed of a lattice-like concavo-convex structure with a structure period of 700 nm and a one-dimensional diffractive structure composed of a linear concavo-convex structure with a structure period of 350 nm, and sandwiches a region where no fine structure is formed Form in each individual area.
  • the height of the concave / convex pattern is 200 nm.
  • corrugated layer 31 is a photocurable resin or a thermoplastic resin, for example, it may be only a resin coating step and a fine structure forming step by a photo nanoimprint method or a thermal nanoimprint method.
  • corrugated layer 31 can be simplified. Moreover, the refractive index with respect to the light of the wavelength of visible light wavelength region of the photocurable resin or thermoplastic resin constituting the fine uneven layer 31 is the refractive index with respect to the visible light wavelength region of the material constituting the surface of the multilayer laminate 21. Is preferably larger.
  • a two-dimensional diffractive structure that is a lattice-shaped concavo-convex structure whose arrangement direction matches these one-dimensional diffractive structures may be formed.
  • Various patterns can be configured by appropriately forming a plurality of one-dimensional diffractive structures having different arrangement directions as described above, or two-dimensional diffractive structures arranged in two arrangement directions among them.
  • the multilayer laminated body 21 that expresses the structural color by multilayer film interference is formed on the substrate 1, and the fine uneven layer 31 is further formed, so that diffraction according to the diffraction structure formed on the fine uneven layer 31 is achieved. It is possible to obtain a display body 1 having a unique color tone change to which a phenomenon is given.
  • FIG. 2 is a schematic view of a cross section of the display body 2 according to the second embodiment of the present invention.
  • a multilayer laminate 22 is formed on the substrate 12, and the multilayer laminate 22 is A waveguide layer 42 is formed, and a fine uneven layer 32 is formed on the waveguide layer 42.
  • the guided mode resonance occurs when the light diffracted by the one-dimensional diffractive structure satisfies the phase matching condition for propagating through the waveguide layer 42, and only the wavelength satisfying the guided mode resonance condition is incident. This is an optical phenomenon that reflects to the side. However, this guided mode resonance is most efficient when light is incident vertically, and the viewing angle at which the guided mode resonance can be obtained is very narrow.
  • the material used for the waveguide layer 42 is preferably selected from materials having higher refractive indexes than the outermost surface of the adjacent multilayer stack 22 and the fine uneven layer 32.
  • the film thicknesses of the waveguide layer 42 and the fine uneven layer 32 are preferably limited to those in the first embodiment, and are designed to be optimum film thickness values that satisfy the waveguide mode resonance condition. That is, it is preferable that the optical film thickness, which is the product of the refractive index of the waveguide layer 42 and the physical film thickness, be less than 7/4 times the shortest wavelength in the visible light wavelength region.
  • the film thickness of the fine uneven layer 32 and the height of the uneven structure formed in the fine uneven layer 32 need to match. That is, it is preferable that the waveguide layer 42 is exposed in the recess.
  • Constraints on materials constituting the base material 12, the multilayer laminate 22, and the fine uneven layer 32 are the same as those in the first embodiment. Further, restrictions on the film thicknesses of the layers constituting the multilayer laminate 22 are the same as those in the first embodiment.
  • the method for forming the multilayer laminate 22 on the substrate 12 may be the same as that of the first embodiment.
  • the waveguiding layer 42 if the constituent material is an inorganic dielectric material, a known method such as a vacuum deposition method, sputtering, or an atomic layer deposition method can be used.
  • a known coating method such as a coating method can be used.
  • the method for forming the fine uneven layer 31 in the first embodiment can be applied.
  • the film thickness of the fine concavo-convex layer 32 in the second embodiment is preferably equal to the height of the concavo-convex structure formed in the fine concavo-convex layer 32, for example, when forming the structure by plasma etching, Etching is preferably performed until the surface of the adjacent waveguide layer 42 is exposed. In this case, it is preferable that the material constituting the waveguide layer 42 is resistant to plasma for etching the fine uneven layer 32.
  • the optical nanoimprint method or the thermal nanoimprint method can be more preferably used as a method for forming the fine uneven layer 32.
  • the surface of the waveguide layer 42 can be exposed in the concave portion by performing a residual film removal process using plasma.
  • the material constituting the waveguide layer 42 is resistant to the plasma from which the remaining film is removed.
  • a one-dimensional diffractive structure composed of a linear concavo-convex structure with a constant period is preferable.
  • the wavelength of reflected light due to guided mode resonance is determined by the structure period of the structure.
  • the refractive index of the material constituting the uppermost layer of the multilayer laminate 22 is about 1.45
  • the refractive index of the material constituting the waveguide layer 42 is about 2.0
  • the refractive index of the material forming the fine uneven layer 32 Is approximately 1.7 nm
  • the thickness of the waveguide layer 42 is approximately 100 nm
  • the thickness of the fine uneven layer 32 is approximately 150 nm
  • the structural period of the fine uneven layer 32 is approximately 265 nm, approximately 330 nm, and approximately 370 nm.
  • the reflected light due to the waveguide mode resonance cannot be observed if the display body is tilted more than a certain angle.
  • the periodic structure of the structure formed in the fine uneven layer 32 is less than or equal to the visible light wavelength region, structural coloration by the multilayer laminate 22, the waveguide layer 42, and the fine uneven layer 32 is observed.
  • a diffraction phenomenon due to the one-dimensional diffractive structure acts, and a unique color change different from that in the structure non-formation region is observed in the structure formation region.
  • Each layer of the multilayer laminate 22, the fine concavo-convex layer 32, and the waveguide layer 42 are made of a material having a refractive index with respect to light in the visible light wavelength region of 1.3 or more and 2.6 or less, and are adjacent to each other. It is preferable that the refractive index difference of each layer is at least 0.05 or more.
  • FIG. 3 is a schematic cross-sectional view of the display body 3 according to the third embodiment of the present invention.
  • a multilayer laminate 23 is formed on the base material 13, and a fine laminate is formed on the multilayer laminate 23.
  • An uneven layer 33 is formed.
  • guided mode resonance is used as in the second embodiment.
  • the waveguide layer 42 provided in the second embodiment is not provided, and the film thickness of the fine uneven layer 33 is set to the height of the structure formed in the fine uneven layer 33. By designing the thickness to be thick, the remaining film plays the role of the waveguide layer 42 provided in the second embodiment, and the display body 3 that can use guided mode resonance can be obtained.
  • the material constituting the fine uneven layer 33 needs to be selected from materials having a higher refractive index than the material constituting the uppermost layer of the multilayer laminate 23.
  • the film thickness of the fine concavo-convex layer 33 is further restricted than the film thickness of the fine concavo-convex layer 31 in the first embodiment, and is designed to have a film thickness and a structure height of the fine concavo-convex layer 33 satisfying the waveguide mode resonance condition. It is preferred that
  • the method for forming the fine uneven layer 31 in the first embodiment can be applied.
  • the optical nanoimprint method or the thermal nanoimprint method can be more preferably used as a method for forming the fine uneven layer 33.
  • the remaining film formed by the optical nanoimprint method or the thermal nanoimprint method can serve as the waveguide layer 42 provided in the second embodiment.
  • the structure formed in the fine uneven layer 33 is about 200 nm
  • the thickness of the fine concavo-convex layer 33 is about 300 nm
  • the fine concavo-convex layer 33 has a structural period of about 300 nm and about 350 nm
  • the value obtained by dividing the convex dimension by the structural period is 0.5.
  • Display bodies 3 each having a one-dimensional diffractive structure composed of a linear concavo-convex structure formed in each of the individual regions sandwiching the region where the fine structure is not formed were observed from the front.
  • the blue color is reflected by the guided mode resonance in the region having the structural period of about 300 nm and the green color is reflected by the guided mode resonance in the region having the structural period of about 350 nm
  • a structural color development different from the region where the fine structure is not formed is observed.
  • the display body is observed with a certain angle tilted in the arrangement direction of the linear concavo-convex structure
  • the reflected light due to the waveguide mode resonance cannot be observed if the display body is tilted more than a certain angle.
  • the periodic structures of the structures formed in the fine uneven layer 33 are all in the visible light wavelength region or less, structural coloration due to the multilayer laminate 23 and the fine uneven layer 33 is observed.
  • the display body 3 that exhibits a unique color tone change in which waveguide mode resonance and the effect of the diffraction effect are imparted to the multilayer film interference.
  • Example 1 a display body in which a fine uneven layer made of SiO 2 is formed on the surface of a multilayer laminate made of TiO 2 and SiO 2 by sputtering, charged particle beam exposure and dry etching will be described.
  • a synthetic quartz glass substrate, a synthetic quartz glass substrate and a SiO 2 of the TiO 2 and the thickness 95nm of thickness 45nm are stacked one by four layers alternately by sputtering, and finally the TiO 2 having a thickness of 45nm other Layers were formed to form a multilayer laminate.
  • SiO 2 having a thickness of 300nm was formed on the surface of the multilayer stack was deposited film thickness 50nm chrome (Cr) layer by sputtering SiO 2 layer surface.
  • Both the TiO 2 layer and the SiO 2 layer were formed by reactive sputtering using a metal target.
  • the gases used for the film formation were argon (Ar) and oxygen (O 2 ), both of which were sputtering in an oxide mode.
  • the Cr layer was sputtered with only Ar using a metal target.
  • FEP171 (made by Fuji Film Electronics Materials Co., Ltd.), which is a charged particle beam exposure resist, was applied to the Cr layer surface by 200 nm, and a pattern was drawn on the resist by a variable shaped beam type electron beam.
  • the drawn pattern is a one-dimensional diffractive structure composed of a linear concavo-convex structure having a structure period of 350 nm and a convex dimension divided by the structural period, a structure period of 700 nm, and a convex dimension of the structure period.
  • the dose of electron beam irradiation was 10 ⁇ C / cm 2, and post-exposure baking was performed for 10 minutes on a hot plate heated to 100 ° C.
  • a TMAH aqueous solution was used as a developing solution, and pure water was used as a rinsing solution.
  • an etching process using plasma using a mixed gas of chlorine and oxygen was performed, and the resist pattern was transferred to the Cr film.
  • An ICP dry etching apparatus was applied to the etching process. After introducing 50 sccm of chlorine and 10 sccm of oxygen and setting the pressure in the plasma chamber to 1 Pa, ICP power 500 W and RIE power 50 W were applied to cause plasma discharge.
  • an etching process using plasma using a mixed gas of hexafluoroethane and helium was performed, and the pattern formed on the Cr film was transferred to the SiO 2 layer.
  • An ICP dry etching apparatus was applied to the etching process. Ethane hexafluoride and helium were introduced at 50 sccm at a time, the pressure in the plasma chamber was set to 1 Pa, and then ICP power 500 W and RIE power 200 W were applied to cause plasma discharge. The etching depth of SiO 2 was 200 nm.
  • Example 2 In Example 2, a display body in which the uppermost layer of a multilayer laminate made of TiO 2 and SiO 2 is made of SiO 2 and a fine uneven layer made of a photocurable resin is formed by an ultraviolet nanoimprint method will be described.
  • a one-dimensional diffractive structure consisting of a linear concavo-convex structure having a structure period of 350 nm, a structure height of 200 nm, and a value obtained by dividing the convex dimension by the structure period is 0.5.
  • a pattern composed of a one-dimensional diffractive structure composed of a linear concavo-convex structure having a structure period of 400 nm, a structure height of 200 nm, and a value obtained by dividing the convex dimension by the structure period is 0.5.
  • An ultraviolet nanoimprint mold was prepared, which was formed in a 1 cm square region and each pattern region was arranged without overlapping.
  • Optool registered trademark
  • HD-1100Z manufactured by Daikin Industries, Ltd.
  • a 4-inch synthetic quartz glass wafer was prepared, and a multilayer laminate was formed by alternately stacking TiO 2 having a thickness of 40 nm and SiO 2 having a thickness of 60 nm on the synthetic quartz glass wafer by sputtering. .
  • a photocurable resin MUR-6 manufactured by Maruzen Petrochemical Co., Ltd.
  • a photocurable resin MUR-6 manufactured by Maruzen Petrochemical Co., Ltd.
  • a release agent is applied.
  • the mold surface was brought into contact, a pressure of 2 MPa was applied, and ultraviolet light having a wavelength of 365 nm was irradiated from the back surface of the ultraviolet nanoimprint mold to cure the photocurable resin.
  • the treatment was performed at room temperature, and the exposure amount of ultraviolet light was 100 mJ / cm 2 .
  • the synthetic quartz glass wafer was peeled from the ultraviolet nanoimprint mold to obtain a display body on which a fine uneven layer made of a photocurable resin was formed.
  • the display body of the present invention can be used for display objects with high design properties.
  • it is expected to be suitably used in the field of anti-counterfeiting technology.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Diffracting Gratings Or Hologram Optical Elements (AREA)
  • Laminated Bodies (AREA)
  • Optical Filters (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)

Abstract

Provided is a display body having strong design aesthetics using structural color developing. A display body including a substrate, a multilayered laminate formed on the substrate surface, and a fine uneven layer formed on the multilayered laminate surface, wherein: the multilayered laminate has two or more layers; at least the multilayered laminate and the fine uneven layer transmit light of a prescribed wavelength region; the layers constituting the multilayered laminate are composed of materials having different refractive indices than adjacent layers in relation to light having a wavelength within the prescribed wavelength region; the materials constituting the layers that constitute the multilayer laminate and the fine uneven layers each have an optical film thickness, represented by the product of the refractive index thereof and the physical film thickness, that is less than 7/4 of the shortest wavelength in the prescribed wavelength region; and the physical film thickness of the fine uneven layer is partially reduced in the fine uneven layer, thereby forming an irregularly structured body including convex parts and concave parts having a height difference that is equal to or less than the physical film thickness.

Description

表示体、および表示体の製造方法Display body and manufacturing method of display body
 本発明は、構造発色を利用した観察角度の変化により色調が変化する表示体、およびその製造方法に関する。 The present invention relates to a display body whose color tone changes according to a change in observation angle using structural coloring, and a manufacturing method thereof.
 近年、動植物の表皮などに見られる高い機能性を人工的に再現する生物模倣技術が注目されている。例えば、モルフォ蝶の鱗粉や玉虫の表皮に代表される構造発色は、色素や顔料などの分子の電子状態のエネルギー遷移に伴う発色ではなく、光の回折や干渉、散乱といった光学現象の作用による発色現象である。 In recent years, biomimetic technology that artificially reproduces the high functionality found in the epidermis of animals and plants has attracted attention. For example, the structural coloration typified by Morpho butterfly scales and iridescent epidermis is not the coloration associated with the energy transition of the electronic state of molecules such as dyes and pigments, but the coloration caused by the action of optical phenomena such as light diffraction, interference, and scattering. It is a phenomenon.
 構造発色の多くは、屈折率の異なる多層積層体の各界面での反射光が干渉して発生する多層膜干渉を基本としている。多層膜干渉は、積層体の各界面で発生する反射光が干渉することにより発生するため、各層によって生じる光路差が重要なファクターとなる。 Most of the structural coloration is based on multilayer film interference that occurs due to interference of reflected light at each interface of multilayer laminates having different refractive indexes. Multilayer film interference occurs when reflected light generated at each interface of the laminate interferes with each other, and an optical path difference caused by each layer is an important factor.
 この光路差は、各層の物理膜厚に加え、構成する材料の屈折率に依存し、また入射角によっても変化する。したがって、多層膜干渉による構造発色は、光の入射角度により、反射光の色調が変化するという特徴がある。 This optical path difference depends on the refractive index of the constituent material in addition to the physical film thickness of each layer, and also changes depending on the incident angle. Therefore, the structural color development due to multilayer film interference is characterized in that the color tone of the reflected light changes depending on the incident angle of light.
 この色調の入射角依存を利用して、例えば特許文献1に記載されているような、黒色層の上に多層膜干渉による構造発色を有する多層積層体を設け、見る角度により反射色が変化する複写防止印刷素材が発明されている。 By utilizing the dependency of the color tone on the incident angle, for example, as described in Patent Document 1, a multilayer laminate having a structural color due to multilayer film interference is provided on a black layer, and the reflection color changes depending on the viewing angle. A copy protection printing material has been invented.
 また、例えば特許文献2に記載されているような、多層膜干渉による構造発色を有する多層積層体を形成する基材表面に不均一な微細凹凸構造を形成することで、色調の入射角依存を制御した発色体が発明されている。 Further, for example, by forming a non-uniform fine concavo-convex structure on the surface of a base material that forms a multilayer laminate having structural color development due to multilayer film interference, as described in Patent Document 2, the incident angle dependence of color tone can be reduced. Controlled color bodies have been invented.
 これらの発明により、観察角度の変化により色調が変化する独特の色表現が可能となり意匠性の高い表示体が製造可能となった。 These inventions enable unique color expressions in which the color tone changes according to the change in the observation angle, making it possible to manufacture a display body with high design.
特開2013-122567号公報JP 2013-122567 A 特許第4228058号公報Japanese Patent No. 4228058
 しかしながら、前記のような多層積層体による反射光の色調は、基本的には積層体の各層を構成する材料と物理膜厚とによって決定されてしまい、観察角度の変化による色調の変化としては単調となってしまう。 However, the color tone of the reflected light by the multilayer laminate as described above is basically determined by the material constituting each layer of the laminate and the physical film thickness, and the color tone change due to the change in observation angle is monotonous. End up.
 多層積層体を形成する基材に不均一な微細凹凸構造を形成することで、色調変化や反射率に変調を付与することは可能であるものの、観察角度の変化による反射光の色調変化を緩やかにすることや、特定の角度における反射率を上げる効果が主であり、多層積層体の構造が同一である場合、多彩な色調の変化を表現することは困難である。 Although it is possible to modulate the color tone and reflectivity by forming a non-uniform fine concavo-convex structure on the base material that forms the multilayer laminate, the color tone change of reflected light due to the change in observation angle is moderated. The main effect is to increase the reflectance at a specific angle, and when the structure of the multi-layer laminate is the same, it is difficult to express various color tone changes.
 したがって、例えば、多層膜干渉による構造発色を利用して、観察角度の変化による反射光の色調の変化が画素領域によって異なるような意匠性の高い表示体を製造しようとする場合、画素領域ごとに構成材料や物理膜厚を変えた多層積層体を形成する必要が生じる。 Therefore, for example, in the case where an attempt is made to manufacture a display body with high design characteristics in which the change in the color tone of reflected light due to a change in the observation angle varies depending on the pixel region by utilizing structural coloration due to multilayer film interference, for each pixel region It is necessary to form a multilayer laminate with different constituent materials and physical film thickness.
 その場合、同一の色調変化を有する領域以外をマスキングする工程と、多層積層体を形成する工程とを必要回数繰り返さなくてはならなくなり、工程が複雑化してしまう。 In that case, the process of masking areas other than the areas having the same color change and the process of forming the multilayer laminate must be repeated as many times as necessary, which complicates the process.
 本発明は、このような課題を解決するためになされたものであり、簡単な構造により、観察角度の変化による反射光の色調の変化が画素領域によって異なるような高い意匠性を有する表示体と、その製造方法とを提供することを目的とする。 The present invention has been made to solve such problems, and has a simple design and a display body having a high design property such that a change in color tone of reflected light due to a change in observation angle varies depending on a pixel region. An object of the present invention is to provide a manufacturing method thereof.
 本発明の一局面は、基材と、基材表面に形成された多層積層体と、多層積層体表面に形成された微細凹凸層とを含む表示体において、多層積層体は2層以上の積層体であり、所定の波長領域の光に対して、少なくとも、多層積層体および微細凹凸層は透過性を有し、多層積層体を構成する各層は、隣接する層とは所定の波長領域内の波長の光に対して屈折率が異なる材料で構成されており、多層積層体を構成する各層および微細凹凸層を構成する材料は、それぞれの屈折率と物理膜厚との積で表される光学膜厚が、所定の波長領域における最短波長の7/4倍未満であり、微細凹凸層には、微細凹凸層の物理膜厚を部分的に減ずることで、物理膜厚以下の高低差を有する凸部及び凹部を含む凹凸構造体が形成されている、表示体である。 One aspect of the present invention is a display body including a base material, a multilayer laminate formed on the surface of the base material, and a fine uneven layer formed on the surface of the multilayer laminate, wherein the multilayer laminate is a laminate of two or more layers. And at least the multilayer laminate and the fine concavo-convex layer are transparent to light of a predetermined wavelength region, and each layer constituting the multilayer laminate is adjacent to the adjacent layer within the predetermined wavelength region. It is composed of materials that have different refractive indices with respect to light of the wavelength, and each layer that constitutes the multilayer laminate and the material that constitutes the fine concavo-convex layer is an optical represented by the product of the respective refractive index and physical film thickness. The film thickness is less than 7/4 times the shortest wavelength in the predetermined wavelength region, and the fine concavo-convex layer has a height difference below the physical film thickness by partially reducing the physical film thickness of the fine concavo-convex layer. It is a display body in which a concavo-convex structure including a convex portion and a concave portion is formed.
 また、微細凹凸層表面には一定周期の線状凹凸構造からなる一次元回折構造体、または一定周期の格子状凹凸構造からなる二次元回折構造体が形成されてもよい。 Also, a one-dimensional diffractive structure composed of a linear concavo-convex structure with a constant period or a two-dimensional diffractive structure composed of a lattice-shaped concavo-convex structure with a constant period may be formed on the surface of the fine concavo-convex layer.
 また、微細凹凸層を構成する材料の波長領域内の波長の光に対する屈折率が、多層積層体の最上層を構成する材料の波長の光に対する屈折率よりも大きいことが好ましい。 Further, it is preferable that the refractive index for light having a wavelength within the wavelength region of the material constituting the fine uneven layer is larger than the refractive index for light having the wavelength of the material constituting the uppermost layer of the multilayer laminate.
 また、多層積層体の最上層と微細凹凸層との間に、微細凹凸層を構成する材料よりも波長領域内の波長の光に対する屈折率が大きい材料で構成され、物理膜厚と屈折率との積である光学膜厚が波長領域における最短波長の7/4倍未満である導波層を有し、微細凹凸層の凹凸構造体の凸部及び凹部の高低差は、微細凹凸層の物理膜厚と等しくしてもよい。 In addition, between the uppermost layer of the multilayer laminate and the fine concavo-convex layer, it is made of a material having a refractive index larger than that of the material constituting the fine concavo-convex layer, with a physical film thickness and refractive index. The optical film thickness, which is the product of the above, has a waveguiding layer that is less than 7/4 times the shortest wavelength in the wavelength region. It may be equal to the film thickness.
 また、波長領域が可視光波長領域であり、微細凹凸層表面に、少なくとも一辺が10μm以上のマトリックス上に配置された画素領域が複数形成され、各画素領域には、構造周期が200nm以上、且つ800nm以下の線状凹凸構造体からなり、第1の方向に線状凹凸構造が配列される第1の一次元回折構造体と、構造周期が200nm以上、且つ800nm以下の線状凹凸構造体からなり、第1の方向とは異なる第2の方向に線状凹凸構造が配列される第2の一次元回折構造体と、構造周期が200nm以上、且つ800nm以下の格子状凹凸構造からなり、第1の方向及び第2の方向に格子状凹凸構造が配列され二次元回折構造体の少なくとも1つが形成されてもよい。 In addition, the wavelength region is a visible light wavelength region, and a plurality of pixel regions arranged on a matrix having at least one side of 10 μm or more are formed on the surface of the fine concavo-convex layer, and each pixel region has a structural period of 200 nm or more and A first one-dimensional diffractive structure having a linear concavo-convex structure of 800 nm or less, in which the linear concavo-convex structure is arranged in a first direction, and a linear concavo-convex structure having a structure period of 200 nm or more and 800 nm or less. And a second one-dimensional diffractive structure in which linear concavo-convex structures are arranged in a second direction different from the first direction, and a lattice-like concavo-convex structure having a structural period of 200 nm or more and 800 nm or less, At least one of the two-dimensional diffractive structures may be formed by arranging the lattice-shaped concavo-convex structure in the first direction and the second direction.
 また、基材と、多層積層体各層と、微細凹凸層とが、可視光波長領域の光に対して消衰係数が0.1以下である材料で構成されていることが好ましい。 Further, the base material, each layer of the multilayer laminate, and the fine uneven layer are preferably made of a material having an extinction coefficient of 0.1 or less with respect to light in the visible light wavelength region.
 また、基材と、多層積層体各層と、微細凹凸層と、導波層とが、可視光波長領域の波長の光に対する屈折率が1.3以上、且つ2.6以下である材料で構成され、隣接する各層の屈折率差が少なくとも0.05以上であることが好ましい。 In addition, the base material, each layer of the multilayer laminate, the fine uneven layer, and the waveguide layer are made of a material having a refractive index with respect to light having a wavelength in the visible light wavelength region of 1.3 or more and 2.6 or less. The refractive index difference between adjacent layers is preferably at least 0.05.
 本発明の他の局面は、基材表面に可視光波長領域の光に対して透過性を有し、且つ隣接する各層で屈折率が異なる多層積層体を、各層を順次積層して形成する工程と、多層積層体表面に光硬化性樹脂を塗布する工程と、光ナノインプリント法により、光硬化性樹脂に所望の凹凸形状を形成する工程とを含む、表示体の製造方法である。 Another aspect of the present invention is a step of forming a multilayer laminate having transparency to visible light wavelength region light on the substrate surface and different refractive indexes in adjacent layers by sequentially laminating each layer. And a step of applying a photocurable resin to the surface of the multilayer laminate, and a step of forming a desired uneven shape on the photocurable resin by an optical nanoimprint method.
 また、光硬化性樹脂の可視光波長領域の波長の光に対する屈折率が、多層積層体表面を構成する材料の可視光波長領域に対する屈折率よりも大きいことが好ましい。 Further, it is preferable that the refractive index of the light curable resin with respect to light having a wavelength in the visible light wavelength region is larger than the refractive index with respect to the visible light wavelength region of the material constituting the surface of the multilayer laminate.
 また、表示体の製造方法は、基材を用意する工程と、基材表面に可視光領域内の波長の光に対して透過性を有し、且つ隣接する各層で屈折率が異なる積層体を、各層を順次積層して形成する工程と、多層積層体表面に導波層を形成する工程と、導波層表面に該導波層を構成する材料よりも可視光領域内の波長の光に対する屈折率が小さい光硬化性樹脂を塗布する工程と、光ナノインプリント法により光硬化性樹脂に所望の凹凸形状を形成する工程とプラズマ暴露により残膜を除去する工程とを含んでもよい。 In addition, the manufacturing method of the display body includes a step of preparing a base material, and a laminate that has transparency to light having a wavelength in the visible light region on the surface of the base material and has a different refractive index in each adjacent layer. A step of sequentially laminating each layer, a step of forming a waveguiding layer on the surface of the multilayer laminate, and a light having a wavelength in the visible light region than the material constituting the waveguiding layer on the surface of the waveguiding layer. You may include the process of apply | coating photocurable resin with a small refractive index, the process of forming desired uneven | corrugated shape in photocurable resin by the photo nanoimprint method, and the process of removing a residual film by plasma exposure.
 また、表示体の製造方法は、基材を用意する工程と、基材表面に可視光領域内の波長の光に対して透過性を有し、且つ隣接する各層で屈折率が異なる積層体を、各層を順次積層して形成する工程と、多層積層体最上層表面に熱可塑性樹脂層を塗布する工程と、熱ナノインプリント法により熱可塑性樹脂層に所望の凹凸形状を形成する工程とを含んでもよい。 In addition, the manufacturing method of the display body includes a step of preparing a base material, and a laminate that has transparency to light having a wavelength in the visible light region on the surface of the base material and has a different refractive index in each adjacent layer. Including a step of sequentially laminating and forming each layer, a step of applying a thermoplastic resin layer to the surface of the uppermost layer of the multilayer laminate, and a step of forming a desired uneven shape on the thermoplastic resin layer by a thermal nanoimprint method. Good.
 また、熱可塑性樹脂層の可視光領域内の波長の光に対する屈折率が、多層積層体最表面を構成する材料の波長の光に対する屈折率よりも大きいことが好ましい。 Further, it is preferable that the refractive index of the thermoplastic resin layer with respect to light having a wavelength in the visible light region is larger than the refractive index with respect to light having a wavelength of the material constituting the outermost surface of the multilayer laminate.
 また、表示体の製造方法は、基材を用意する工程と、基材表面に可視光波長領域内の波長の光に対して透過性を有し、且つ隣接する各層で屈折率が異なる積層体を、各層を順次積層して形成する工程と、多層積層体表面に導波層を形成する工程と、導波層表面に該導波層を構成する材料よりも可視光波長領域内の波長の光に対する屈折率が小さい熱可塑性樹脂層を塗布する工程と、熱ナノインプリント法により熱可塑性樹脂層に所望の凹凸形状を形成する工程と、プラズマ暴露により残膜を除去する工程とを含んでもよい。 In addition, the method of manufacturing the display body includes a step of preparing a base material, and a laminated body that is transparent to light having a wavelength in the visible light wavelength region on the surface of the base material and has a different refractive index in each adjacent layer. Are formed by sequentially laminating each layer, a step of forming a waveguiding layer on the surface of the multilayer laminate, and a wavelength within the visible light wavelength region than the material constituting the waveguiding layer on the surface of the waveguiding layer. You may include the process of apply | coating the thermoplastic resin layer with a small refractive index with respect to light, the process of forming a desired uneven | corrugated shape in a thermoplastic resin layer by a thermal nanoimprint method, and the process of removing a residual film by plasma exposure.
 本発明では、多層膜干渉により構造発色する多層積層体表面に、一次元、または二次元回折構造体を形成した領域を有する微細凹凸層を設けて、微細凹凸層がさらに多層膜干渉に関わることができる膜厚に設計した。これにより、多層膜干渉と回折現象を利用して、観察角度の変化により反射光が独特の色調変化を示す表示体とすることができるため、表示体により表示される図柄の意匠性を高めるという効果が得られる。 In the present invention, a fine concavo-convex layer having a region in which a one-dimensional or two-dimensional diffractive structure is formed is provided on the surface of a multilayer laminate that is structurally colored by multilayer film interference, and the fine concavo-convex layer further relates to multilayer film interference. The film thickness was designed to be As a result, it is possible to obtain a display body in which reflected light exhibits a unique color tone change due to a change in observation angle using multilayer film interference and diffraction phenomenon, thereby improving the design of the design displayed by the display body. An effect is obtained.
 また、表示体の構造を最適に設計することで効果に加え、導波モード共鳴による効果を付与することができる。このため、さらに表示物の意匠性をさらに高めるという効果を奏することが可能となる。 In addition to the effect, the effect of guided mode resonance can be given by designing the structure of the display body optimally. For this reason, it becomes possible to produce the effect of further improving the design of the display object.
図1は、本発明の第1の実施形態に係る表示体断面の概略図である。FIG. 1 is a schematic view of a cross section of a display body according to a first embodiment of the present invention. 図2は、本発明の第2の実施形態に係る表示体断面の概略図である。FIG. 2 is a schematic view of a cross section of a display body according to the second embodiment of the present invention. 図3は、本発明の第3の実施形態に係る表示体断面の概略図である。FIG. 3 is a schematic view of a cross section of a display body according to the third embodiment of the present invention.
 以下、本発明の第1から第3の実施形態について図面を用いながら説明する。また、本発明において光の波長領域は特に限定されるものではないが、例えば人が視覚的に観察可能な表示体とする場合は可視光波長領域に、また、紫外線カメラや赤外線カメラなどによって観察される場合は、対応する紫外線領域や赤外線領域の波長領域に限定することもできる。以下、第1、第2、第3の実施形態では人が視覚的に観察可能な表示体について説明する。 Hereinafter, first to third embodiments of the present invention will be described with reference to the drawings. In the present invention, the wavelength region of light is not particularly limited. For example, in the case of a display body that can be visually observed by a person, the light wavelength region is observed in the visible light wavelength region, or by an ultraviolet camera or an infrared camera. In such a case, the wavelength region can be limited to the corresponding ultraviolet region or infrared region. Hereinafter, in the first, second, and third embodiments, a display body that can be visually observed by a person will be described.
 (第1の実施形態)
 以下、本発明の第1の実施形態について図面を用いながら説明する。
(First embodiment)
Hereinafter, a first embodiment of the present invention will be described with reference to the drawings.
 図1は本発明の第1の実施形態における表示体1の断面の概略図であり、基材11の上には、多層積層体21が形成されており、多層積層体21の上には、微細凹凸層31が形成されている。 FIG. 1 is a schematic view of a cross-section of a display body 1 according to a first embodiment of the present invention. A multilayer laminate 21 is formed on a base material 11, and on the multilayer laminate 21, A fine uneven layer 31 is formed.
 本発明において、基材11の材質は特に限定されるものではない。但し、多層膜干渉による構造発色のみにより色表現を行うためには可視光波長領域に対して透過性の高い材料が好ましい。例えば合成石英ガラスやポリエチレンテレフタラートなどが挙げられる。第1の実施形態において基材11は合成石英ガラス基板とする。 In the present invention, the material of the base material 11 is not particularly limited. However, in order to perform color expression only by structural color development due to multilayer film interference, a material having high transparency in the visible light wavelength region is preferable. Examples thereof include synthetic quartz glass and polyethylene terephthalate. In the first embodiment, the base material 11 is a synthetic quartz glass substrate.
 多層積層体21は屈折率が異なる材料を積層することにより形成される。各層を形成する材料としては表示体1が図柄を表示する波長領域の光に対して透過性を有することが必要である。 The multilayer laminate 21 is formed by laminating materials having different refractive indexes. As a material for forming each layer, the display body 1 needs to be transmissive to light in a wavelength region for displaying a design.
 例えば、可視光波長領域に対して透過性の高い材料としては、例えばTiO、Nb、Ta、Al、SiO、Fe、HfO、MgO、ZrO、SnO、Sb、CeO、WO、PbO、In、CdO、BaTiO、ITO、LiF、BaF、CaF、MgF、AlF、CeF、ZnS、PbClなどの無機誘電体材料や、アクリル樹脂、フェノール樹脂、エポキシ樹脂などの有機樹脂材料を適用することができる。また、多層積層体21の各層を構成する材料に関しては、隣接する層で屈折率の差が大きいほど界面での反射強度が大きくなるため、少ない層数でも十分な反射強度を得ることができる。本発明の第1の実施形態では、多層積層体21はTiOとSiOとの積層体とする。 For example, as a material having high transparency with respect to the visible light wavelength region, for example, TiO 2 , Nb 2 O 5 , Ta 2 O 5 , Al 2 O 3 , SiO 2 , Fe 2 O 3 , HfO 2 , MgO, ZrO , SnO 2, Sb 2 O 3 , CeO 3, WO 3, PbO, In 2 O 3, CdO, BaTiO 3, ITO, LiF, BaF 2, CaF 2, MgF 2, AlF 3, CeF 3, ZnS, PbCl 2 An inorganic dielectric material such as an organic resin material such as an acrylic resin, a phenol resin, or an epoxy resin can be used. In addition, regarding the material constituting each layer of the multilayer laminate 21, since the reflection intensity at the interface increases as the difference in refractive index between adjacent layers increases, sufficient reflection intensity can be obtained even with a small number of layers. In the first embodiment of the present invention, the multilayer laminate 21 is a laminate of TiO 2 and SiO 2 .
 多層積層体21の形成方法の一例を説明する。初めに合成石英ガラスからなる基材11の表面に、TiOを成膜する。成膜方法としては例えば真空蒸着法やスパッタリング、原子層堆積法など既知の方法を利用することができる。続いて成膜したTiO膜の表面にSiOを成膜する。成膜方法としては例えば真空蒸着法やスパッタリング、原子層堆積法など既知の方法を利用することができる。TiOとSiOとの成膜を交互に行い、基材11の表面にTiOとSiOとが交互に積層された多層積層体21を形成する。積層する層の数や、各層の物理膜厚は、所望の反射光スペクトルが得られるように設計される必要がある。尚、積層する材料が有機化合物材料である場合は、スピンコート法などの既知の塗布方法を用いても良い。 An example of a method for forming the multilayer laminate 21 will be described. First, TiO 2 is formed on the surface of the base material 11 made of synthetic quartz glass. As a film forming method, for example, a known method such as a vacuum evaporation method, sputtering, or an atomic layer deposition method can be used. Subsequently, SiO 2 is formed on the surface of the formed TiO 2 film. As a film forming method, for example, a known method such as a vacuum evaporation method, sputtering, or an atomic layer deposition method can be used. Perform deposition of TiO 2 and SiO 2 alternately to form a multilayer stack 21 and TiO 2 and SiO 2 are alternately laminated on the surface of the substrate 11. The number of layers to be stacked and the physical film thickness of each layer need to be designed so as to obtain a desired reflected light spectrum. When the material to be laminated is an organic compound material, a known coating method such as a spin coating method may be used.
 特に、物理膜厚に関しては、多層膜干渉を効果的に用いた表示体とするためには、膜厚値を適切な範囲内で設計する必要がある。例えば、各層を単層に置き換えた場合の垂直入射の薄膜干渉について考えると、層を構成する材料の屈折率n、物理膜厚d、mを0以上の整数として、2×d=(m+1/2)×λ/nを満たす波長λの光が強められることになる。薄膜の物理膜厚が厚くなると、式を満足するmとλとの組み合わせが多数となり、可視光波長領域内の複数の波長が強められるため、色認識が不明瞭となる恐れがある。同様の現象が多層膜干渉でも生じるため、多層積層体21を構成する各層の膜厚は好適なものを選択する必要がある。そのため、第1の実施形態を含む本発明においては、多層膜干渉により構造発色する積層体各層の屈折率nと物理膜厚dとの積により表される光学膜厚が、対象とする波長領域内の最短波長の7/4倍未満となるように設計されることが好ましい。さらに色彩を明確に認識するためには、5/4倍未満であることがより好ましい。人が視覚的に観察可能な表示体を対象とした第1の実施形態においては、可視光波長領域を対象とするため、多層積層体21を形成する各層の光学膜厚の上限値は可視光波長領域内の最短波長の7/4倍未満とすることが好ましい。一方、光学膜厚の下限値については、薄膜干渉の強めあいの式を満足させるためには、m=0としてn×d=λ/4を満たす値とすることができるが、積層体の構成に依ってはn×d<λ/4でも多層膜干渉による構造発色が可能であるため、本発明においては限定しないものとする。 In particular, regarding the physical film thickness, it is necessary to design the film thickness within an appropriate range in order to obtain a display body that effectively uses multilayer film interference. For example, when considering thin-film interference at normal incidence when each layer is replaced with a single layer, the refractive index n of the material constituting the layer, the physical film thickness d, and m are integers of 0 or more, and 2 × d = (m + 1 / 2) Light having a wavelength λ satisfying × λ / n is strengthened. When the physical film thickness of the thin film increases, there are many combinations of m and λ that satisfy the equation, and a plurality of wavelengths in the visible light wavelength region are strengthened, so that color recognition may become unclear. Since the same phenomenon occurs in multilayer film interference, it is necessary to select a suitable film thickness for each layer constituting the multilayer stack 21. For this reason, in the present invention including the first embodiment, the optical film thickness represented by the product of the refractive index n and the physical film thickness d of each layer of the laminate that structurally develops color by multilayer interference is the target wavelength region. It is preferably designed to be less than 7/4 times the shortest wavelength. Furthermore, in order to recognize a color clearly, it is more preferable that it is less than 5/4 times. In the first embodiment for a display body that can be visually observed by a person, the upper limit value of the optical film thickness of each layer forming the multilayer laminate 21 is visible light because it is for the visible light wavelength region. It is preferable to be less than 7/4 times the shortest wavelength in the wavelength region. On the other hand, the lower limit value of the optical film thickness can be set to a value satisfying n × d = λ / 4 with m = 0 in order to satisfy the expression for strengthening thin film interference. Therefore, even in the case of n × d <λ / 4, structural color development by multilayer film interference is possible, and therefore it is not limited in the present invention.
 第1の実施形態では、TiOの膜厚を160nm、SiOの膜厚を275nmとする。また、積層する層の数としてはTiOを5層、SiOを4層とする。よって多層積層体21の最上層はTiOである。なお、本明細書で単に膜厚という場合、物理膜厚を意味する。 In the first embodiment, the film thickness of TiO 2 is 160 nm, and the film thickness of SiO 2 is 275 nm. Further, the number of layers to be laminated is 5 layers of TiO 2 and 4 layers of SiO 2 . Therefore, the uppermost layer of the multilayer laminate 21 is TiO 2 . In the present specification, the term “film thickness” simply means a physical film thickness.
 微細凹凸層31の形成方法の一例を説明する。多層積層体21の形成後に、多層積層体21の上に微細凹凸層31を形成する。微細凹凸層31も多層積層体21と同様に対象とする波長領域に対して透過性のある材料で構成される必要がある。微細凹凸層31の屈折率と物理膜厚との積である光学膜厚について、多層積層体21の各層と同様に可視光波長領域内の最短波長の7/4倍未満とすることにより、微細凹凸層31を含んだ多層膜干渉による構造発色が実現でき、意匠性の高い表示体とすることができる。また、微細凹凸層31を構成する材料の屈折率を多層積層体21の最上層を構成する材料の屈折率よりも大きくしてもよい。多層積層体21および微細凹凸層31は、可視光に対して、例えば、消衰係数が0.1以下の材料を用いることが好ましい。 An example of a method for forming the fine uneven layer 31 will be described. After the multilayer laminate 21 is formed, the fine uneven layer 31 is formed on the multilayer laminate 21. The fine concavo-convex layer 31 also needs to be made of a material that is transparent to the target wavelength region, like the multilayer laminate 21. By making the optical film thickness, which is the product of the refractive index and the physical film thickness, of the fine uneven layer 31 less than 7/4 times the shortest wavelength in the visible light wavelength region in the same manner as each layer of the multilayer laminate 21, Structural coloration by multilayer film interference including the concavo-convex layer 31 can be realized, and a display body with high design can be obtained. Further, the refractive index of the material constituting the fine uneven layer 31 may be larger than the refractive index of the material constituting the uppermost layer of the multilayer laminate 21. The multilayer laminate 21 and the fine uneven layer 31 are preferably made of a material having an extinction coefficient of 0.1 or less with respect to visible light, for example.
 さらに、微細凹凸層31に形成する凹凸構造体は、微細凹凸層31の物理膜厚を部分的に減じて、凹凸を形成することで形成され、入射する光が回折するように寸法設計される。例えば、一定周期の線状凹凸構造体からなる一次元回折構造体や、一定周期の格子状凹凸構造体からなる二次元回折構造体が適している。この構造体を形成することにより、微細凹凸層31にて生じる回折効果を利用して、さらに意匠性の高い表示体1とすることができる。本実施形態では、凹凸構造体は、微細凹凸層31にのみ形成されるため、凹凸構造体の凹部表面から凸部表面までの高さ(図1のH1)は、微細凹凸層31の物理膜厚(H2)以下である。 Furthermore, the concavo-convex structure formed on the fine concavo-convex layer 31 is formed by partially reducing the physical film thickness of the fine concavo-convex layer 31 to form the concavo-convex, and is dimensioned so that incident light is diffracted. . For example, a one-dimensional diffractive structure composed of a linear concavo-convex structure having a constant period and a two-dimensional diffractive structure composed of a lattice-shaped concavo-convex structure having a constant period are suitable. By forming this structure, it is possible to obtain a display body 1 with higher design by utilizing the diffraction effect generated in the fine uneven layer 31. In this embodiment, since the concavo-convex structure is formed only in the fine concavo-convex layer 31, the height from the concave surface to the convex surface of the concavo-convex structure (H1 in FIG. 1) is the physical film of the fine concavo-convex layer 31. Thickness (H2) or less.
 回折構造体の構造周期については、対象とする波長領域の光を回折する構造周期であれば良い。例えば、人が視覚的に確認できる表示体の場合、可視光波長領域の最短波長よりも構造周期が大きければ表示体を正面から観察した場合にも回折効果による色調変化が観測される。但し、構造周期が可視光波長領域の最短波長よりも小さい場合でも、表示体を斜めから観察することで可視光波長に対する回折現象が発生する。したがって、構造周期は例えば200nm以上かつ800nm以下であれば良い。尚、構造周期により回折効果が異なるため、微細凹凸層31表面に複数の画素領域を配置し、各画素で構造周期を変化させることで、多彩な色調変化による画像表示が可能となる。また、画素領域が細かいほど高解像な画像を表示することが可能となるが、本発明では、人が視覚的に確認できる表示体とするため例えば一辺が10μm以上のマトリックス上に配置された画素領域とする。 The structural period of the diffractive structure may be a structural period that diffracts light in the target wavelength region. For example, in the case of a display body that can be visually confirmed by a person, if the structure period is larger than the shortest wavelength in the visible light wavelength region, a change in color tone due to the diffraction effect is observed even when the display body is observed from the front. However, even when the structural period is smaller than the shortest wavelength in the visible light wavelength region, a diffraction phenomenon with respect to the visible light wavelength occurs by observing the display body from an oblique direction. Therefore, the structural period may be, for example, 200 nm or more and 800 nm or less. Since the diffraction effect varies depending on the structural period, a plurality of pixel regions are arranged on the surface of the fine concavo-convex layer 31 and the structural period is changed for each pixel, thereby enabling image display with various color tone changes. In addition, although it becomes possible to display a high-resolution image as the pixel area is fine, in the present invention, for example, one side is arranged on a matrix of 10 μm or more in order to make a display body that can be visually confirmed by a person. Let it be a pixel area.
 第1の実施形態では、微細凹凸層31の構成材料をSiOとし、凹凸構造体の高さを含む微細凹凸層31の膜厚を300nmとする。形成する構造体は、構造周期700nmの格子状凹凸構造からなる二次元回折構造体と構造周期350nmの線状凹凸構造からなる一次元回折構造体であり、微細構造体未形成領域の領域を挟み各々の個別の領域に形成する。また、凹凸パターン高さは200nmとする。 In the first embodiment, the constituent material of the fine concavo-convex layer 31 is SiO 2 and the film thickness of the fine concavo-convex layer 31 including the height of the concavo-convex structure is 300 nm. The structures to be formed are a two-dimensional diffractive structure composed of a lattice-like concavo-convex structure with a structure period of 700 nm and a one-dimensional diffractive structure composed of a linear concavo-convex structure with a structure period of 350 nm, and sandwiches a region where no fine structure is formed Form in each individual area. The height of the concave / convex pattern is 200 nm.
 微細凹凸層31の形成方法としては、微細凹凸層31を構成する材料がSiOなどの無機誘電体材料であれば、例えば、真空蒸着法やスパッタリング、原子層堆積法などの既知の方法を利用した成膜工程と、荷電粒子線露光法やナノインプリント法などの既知の方法を利用したエッチングマスク作製工程と、プラズマエッチングなどの既知の方法を利用したパターン形成工程と、プラズマアッシング法や薬剤を用いた洗浄など既知の方法を利用したマスク除去工程を設ければよい。また、微細凹凸層31を構成する材料が、例えば光硬化性樹脂または熱可塑性樹脂であれば、樹脂の塗布工程と光ナノインプリント法または熱ナノインプリント法による微細構造体形成工程のみでも良く、その場合微細凹凸層31の形成工程を簡素化することができる。また、微細凹凸層31を構成する光硬化性樹脂または熱可塑性樹脂の、可視光波長領域の波長の光に対する屈折率が、多層積層体21の表面を構成する材料の可視光波長領域に対する屈折率よりも大きいことが好ましい。 The method of forming a fine uneven layer 31, the material constituting the fine uneven layer 31 if an inorganic dielectric material such as SiO 2, for example, using known methods such as vacuum deposition or sputtering, atomic layer deposition Film formation process, etching mask manufacturing process using known methods such as charged particle beam exposure and nanoimprinting, pattern formation process using known methods such as plasma etching, plasma ashing and chemicals A mask removing process using a known method such as cleaning may be provided. Moreover, if the material which comprises the fine uneven | corrugated layer 31 is a photocurable resin or a thermoplastic resin, for example, it may be only a resin coating step and a fine structure forming step by a photo nanoimprint method or a thermal nanoimprint method. The formation process of the uneven | corrugated layer 31 can be simplified. Moreover, the refractive index with respect to the light of the wavelength of visible light wavelength region of the photocurable resin or thermoplastic resin constituting the fine uneven layer 31 is the refractive index with respect to the visible light wavelength region of the material constituting the surface of the multilayer laminate 21. Is preferably larger.
 第1の実施形態の表示体を人が視覚的に観測すると、微細構造体未形成領域では垂直方向からの観測で緑色~黄色の多層膜干渉による構造発色が、観察角度を水平方向に動かすことで徐々にブルーシフトすることが確認される。一方、構造周期700nmの格子状凹凸構造からなる二次元回折構造体を形成した領域を垂直方向から観測した場合、回折効果により微細構造体未形成領域とは異なる構造発色が観測される。さらに表示体を傾けて観察することにより回折効果が強調され、観察角度による固有の色調変化が観測される。また、構造周期350nmの線状凹凸構造からなる一次元回折構造体を形成した領域を垂直方向から観察した場合は、可視光波長領域の回折効果は得られないため、微細構造体未形成領域と類似した構造発色が観測されるが、表示体を線状凹凸構造の配列方向に傾けて観察することで可視光波長領域に対して回折効果が得られ、固有の色調変化が観測される。この一次元回折構造体を形成することによる色調変化は、当然ながら表示体を傾ける方向により変化するため、例えば、配列方向が90°異なる一次元回折構造体を別の領域に形成した場合、傾ける方向により表示される図柄が変化するチェンジングの効果を付加することも可能となる。また、さらに、配列方向がこれらの一次元回折構造体に合致する格子状の凹凸構造体である二次元回折構造体が形成されてもよい。このように配列方向が異なる複数の一次元回折構造体や、例えばこれらのうち2つの配列方向に配列される二次元回折構造体を適宜形成することで多様なパターンを構成できる。以上により、基材1上に多層膜干渉により構造発色を発現する多層積層体21を形成し、さらに微細凹凸層31を形成することで、微細凹凸層31に形成した回折構造体に応じた回折現象を付与した、固有の色調変化を有する表示体1を得ることができる。 When a person visually observes the display body of the first embodiment, structural coloration due to green-yellow multilayer interference is observed in the vertical direction in the fine structure non-formation region, and the observation angle is moved in the horizontal direction. It is confirmed that the blue shift gradually. On the other hand, when a region where a two-dimensional diffractive structure having a lattice-like concavo-convex structure with a structure period of 700 nm is formed is observed from the vertical direction, structural color development different from that of a region without a fine structure is observed due to the diffraction effect. Further, the diffraction effect is emphasized by observing the display body by tilting, and a unique color tone change depending on the observation angle is observed. In addition, when a region in which a one-dimensional diffraction structure composed of a linear concavo-convex structure having a structural period of 350 nm is formed is observed from the vertical direction, a diffraction effect in the visible light wavelength region cannot be obtained. Similar structural color development is observed, but when the display body is tilted in the arrangement direction of the linear concavo-convex structure, a diffraction effect is obtained in the visible light wavelength region, and an inherent color tone change is observed. The change in color tone due to the formation of the one-dimensional diffractive structure naturally changes depending on the direction in which the display body is tilted. For example, when the one-dimensional diffractive structure having a different arrangement direction of 90 ° is formed in another region, the color is changed. It is also possible to add a changing effect in which the symbol displayed changes depending on the direction. Furthermore, a two-dimensional diffractive structure that is a lattice-shaped concavo-convex structure whose arrangement direction matches these one-dimensional diffractive structures may be formed. Various patterns can be configured by appropriately forming a plurality of one-dimensional diffractive structures having different arrangement directions as described above, or two-dimensional diffractive structures arranged in two arrangement directions among them. As described above, the multilayer laminated body 21 that expresses the structural color by multilayer film interference is formed on the substrate 1, and the fine uneven layer 31 is further formed, so that diffraction according to the diffraction structure formed on the fine uneven layer 31 is achieved. It is possible to obtain a display body 1 having a unique color tone change to which a phenomenon is given.
 (第2の実施形態)
 以下、本発明の第2の実施形態について図面を用いながら説明する。
(Second Embodiment)
Hereinafter, a second embodiment of the present invention will be described with reference to the drawings.
 図2は本発明の第2の実施形態における表示体2の断面の概略図であり、基材12の上には、多層積層体22が形成されており、多層積層体22の上には、導波層42が形成され、導波層42の上には微細凹凸層32が形成されている。 FIG. 2 is a schematic view of a cross section of the display body 2 according to the second embodiment of the present invention. A multilayer laminate 22 is formed on the substrate 12, and the multilayer laminate 22 is A waveguide layer 42 is formed, and a fine uneven layer 32 is formed on the waveguide layer 42.
 第2の実施形態の表示体2では、導波層42を設けることで、導波層42と微細凹凸層32に形成する一次元回折構造体による導波モード共鳴を利用している。導波モード共鳴は、一次元回折構造体により回折された光が導波層42を伝搬するための位相整合条件を満足する場合に発生し、この導波モード共鳴条件を満たした波長のみが入射側に反射する光学現象である。但し、この導波モード共鳴は垂直に光が入射する場合が最も効率的であり、導波モード共鳴が得られる視野角は非常に狭い。 In the display body 2 of the second embodiment, by providing the waveguide layer 42, guided mode resonance by a one-dimensional diffractive structure formed in the waveguide layer 42 and the fine uneven layer 32 is used. The guided mode resonance occurs when the light diffracted by the one-dimensional diffractive structure satisfies the phase matching condition for propagating through the waveguide layer 42, and only the wavelength satisfying the guided mode resonance condition is incident. This is an optical phenomenon that reflects to the side. However, this guided mode resonance is most efficient when light is incident vertically, and the viewing angle at which the guided mode resonance can be obtained is very narrow.
 導波モード共鳴条件を満足するために、導波層42に用いる材料は隣接する多層積層体22の最表面、および微細凹凸層32の屈折率よりも高い材料から選択されることが好ましい。また、導波層42、および微細凹凸層32の膜厚は第1の実施形態より制約され、導波モード共鳴条件を満たす最適膜厚値に設計されることが好ましい。すなわち、導波層42の屈折率と物理膜厚との積である光学膜厚を可視光波長領域内の最短波長の7/4倍未満にすることが好ましい。また、第2の実施形態の表示体2においては、微細凹凸層32の膜厚と微細凹凸層32に形成される凹凸構造体の高さとが一致する必要がある。すなわち、凹部において、導波層42が露出していることが好ましい。 In order to satisfy the waveguide mode resonance condition, the material used for the waveguide layer 42 is preferably selected from materials having higher refractive indexes than the outermost surface of the adjacent multilayer stack 22 and the fine uneven layer 32. The film thicknesses of the waveguide layer 42 and the fine uneven layer 32 are preferably limited to those in the first embodiment, and are designed to be optimum film thickness values that satisfy the waveguide mode resonance condition. That is, it is preferable that the optical film thickness, which is the product of the refractive index of the waveguide layer 42 and the physical film thickness, be less than 7/4 times the shortest wavelength in the visible light wavelength region. In the display body 2 of the second embodiment, the film thickness of the fine uneven layer 32 and the height of the uneven structure formed in the fine uneven layer 32 need to match. That is, it is preferable that the waveguide layer 42 is exposed in the recess.
 基材12、多層積層体22、および微細凹凸層32を構成する材料に関する制約は第1の実施形態と同様である。また、多層積層体22を構成する各層の膜厚に関する制約についても第1の実施形態と同様である。 Constraints on materials constituting the base material 12, the multilayer laminate 22, and the fine uneven layer 32 are the same as those in the first embodiment. Further, restrictions on the film thicknesses of the layers constituting the multilayer laminate 22 are the same as those in the first embodiment.
 基材12上への多層積層体22の形成方法は第1の実施形態と同じとして良い。また、導波層42に関しても、構成する材料が無機誘電体材料であれば、例えば真空蒸着法やスパッタリング、原子層堆積法など既知の方法を利用することができ、有機化合物材料であればスピンコート法などの既知の塗布方法が利用できる。 The method for forming the multilayer laminate 22 on the substrate 12 may be the same as that of the first embodiment. As for the waveguiding layer 42, if the constituent material is an inorganic dielectric material, a known method such as a vacuum deposition method, sputtering, or an atomic layer deposition method can be used. A known coating method such as a coating method can be used.
 微細凹凸層32の形成方法としては、第1の実施形態における微細凹凸層31の形成方法を応用することができる。但し、第2の実施形態における微細凹凸層32の膜厚は、微細凹凸層32に形成される凹凸構造体の高さと等しいことが好ましいため、例えばプラズマエッチングによって構造体を形成する場合、凹部では隣接する導波層42表面が露出するまでエッチングすることが好ましい。この場合、微細凹凸層32をエッチングするプラズマに対して導波層42を構成する材料が耐性を有していることが好ましい。 As a method for forming the fine uneven layer 32, the method for forming the fine uneven layer 31 in the first embodiment can be applied. However, since the film thickness of the fine concavo-convex layer 32 in the second embodiment is preferably equal to the height of the concavo-convex structure formed in the fine concavo-convex layer 32, for example, when forming the structure by plasma etching, Etching is preferably performed until the surface of the adjacent waveguide layer 42 is exposed. In this case, it is preferable that the material constituting the waveguide layer 42 is resistant to plasma for etching the fine uneven layer 32.
 また、微細凹凸層32の形成方法としてさらに好ましくは、光ナノインプリント法または熱ナノインプリント法を用いることができる。この場合は、プラズマによる残膜除去処理を施すことで凹部において導波層42の表面を露出させることができる。但し、残膜除去を行うプラズマに対して導波層42を構成する材料が耐性を有していることが好ましい。 Further, as a method for forming the fine uneven layer 32, the optical nanoimprint method or the thermal nanoimprint method can be more preferably used. In this case, the surface of the waveguide layer 42 can be exposed in the concave portion by performing a residual film removal process using plasma. However, it is preferable that the material constituting the waveguide layer 42 is resistant to the plasma from which the remaining film is removed.
 また、微細凹凸層32に形成する構造体としては、一定周期の線状凹凸構造からなる一次元回折構造体が好ましい。構造体の構造周期により、導波モード共鳴による反射光の波長が決定される。 Further, as the structure formed in the fine concavo-convex layer 32, a one-dimensional diffractive structure composed of a linear concavo-convex structure with a constant period is preferable. The wavelength of reflected light due to guided mode resonance is determined by the structure period of the structure.
 例えば、多層積層体22の最上層を構成する材料の屈折率を1.45程度、導波層42を構成する材料の屈折率を2.0程度、微細凹凸層32を形成する材料の屈折率を1.7程度として、導波層42の膜厚を100nm程度、微細凹凸層32の膜厚を150nm程度として、微細凹凸層32に構造周期が265nm程度、330nm程度、370nm程度であり、且つ凸部寸法を構造周期で除した値が0.45である線状凹凸構造からなる一次元回折構造体を微細構造体未形成領域の領域を挟み各々の個別の領域に形成した表示体2を作成し正面から観察した。この場合、構造周期が265nm程度の領域では青色が、構造周期が330nm程度の領域では緑色が、構造周期が370nm程度の領域では赤色が導波モード共鳴により反射されるため、微細構造体未形成領域とはそれぞれ異なる構造発色が観測される。さらに、表示体を線状凹凸構造の配列方向に一定角度ずつ傾けて観察した場合、ある角度よりも傾けると導波モード共鳴による反射光は観測できなくなる。但し、微細凹凸層32に形成した構造体の周期構造が、いずれも可視光波長領域以下であることから、多層積層体22、導波層42、微細凹凸層32による構造発色が観測されることになるが、傾きを大きくするにつれ、一次元回折構造体による回折現象が作用し、構造体形成領域では、構造体未形成領域とは異なる固有の色調変化が観測される。以上により、多層膜干渉に、導波モード共鳴と回折効果の作用とを付与した独特な色調変化を有する表示体2を得ることができる。多層積層体22の各層と、微細凹凸層32と、導波層42とが、可視光波長領域の光に対する屈折率が1.3以上、且つ2.6以下である材料で構成され、隣接する各層の屈折率差が少なくとも0.05以上であることが好ましい。 For example, the refractive index of the material constituting the uppermost layer of the multilayer laminate 22 is about 1.45, the refractive index of the material constituting the waveguide layer 42 is about 2.0, and the refractive index of the material forming the fine uneven layer 32. Is approximately 1.7 nm, the thickness of the waveguide layer 42 is approximately 100 nm, the thickness of the fine uneven layer 32 is approximately 150 nm, the structural period of the fine uneven layer 32 is approximately 265 nm, approximately 330 nm, and approximately 370 nm. A display body 2 in which a one-dimensional diffractive structure composed of a linear concavo-convex structure having a value obtained by dividing a convex dimension by a structure period of 0.45 is formed in each individual region across a region where a fine structure is not formed. Created and observed from the front. In this case, blue is reflected by guided mode resonance in a region having a structural period of about 265 nm, green in a region having a structural period of about 330 nm, and red in a region having a structural period of about 370 nm. A structural color different from the region is observed. Further, when the display body is observed with a certain angle tilted in the arrangement direction of the linear concavo-convex structure, the reflected light due to the waveguide mode resonance cannot be observed if the display body is tilted more than a certain angle. However, since the periodic structure of the structure formed in the fine uneven layer 32 is less than or equal to the visible light wavelength region, structural coloration by the multilayer laminate 22, the waveguide layer 42, and the fine uneven layer 32 is observed. However, as the inclination is increased, a diffraction phenomenon due to the one-dimensional diffractive structure acts, and a unique color change different from that in the structure non-formation region is observed in the structure formation region. As described above, it is possible to obtain the display body 2 having a unique color change in which waveguide mode resonance and the effect of the diffraction effect are imparted to the multilayer film interference. Each layer of the multilayer laminate 22, the fine concavo-convex layer 32, and the waveguide layer 42 are made of a material having a refractive index with respect to light in the visible light wavelength region of 1.3 or more and 2.6 or less, and are adjacent to each other. It is preferable that the refractive index difference of each layer is at least 0.05 or more.
 (第3の実施形態)
 以下、本発明の第3の実施形態について図面を用いながら説明する。
(Third embodiment)
Hereinafter, a third embodiment of the present invention will be described with reference to the drawings.
 図3は本発明の第3の実施形態における表示体3の概略断面図であり、基材13の上には、多層積層体23が形成されており、多層積層体23の上には、微細凹凸層33が形成されている。 FIG. 3 is a schematic cross-sectional view of the display body 3 according to the third embodiment of the present invention. A multilayer laminate 23 is formed on the base material 13, and a fine laminate is formed on the multilayer laminate 23. An uneven layer 33 is formed.
 第3の実施形態においても、第2の実施形態と同様に導波モード共鳴を利用する。但し、第3の実施形態においては、第2の実施形態で設けた導波層42は設けず、微細凹凸層33に形成する構造体の高さに対して、微細凹凸層33の膜厚を厚く設計することで、残膜が第2の実施形態で設けた導波層42の役割を果たし、導波モード共鳴が利用できる表示体3とすることが可能となる。 Also in the third embodiment, guided mode resonance is used as in the second embodiment. However, in the third embodiment, the waveguide layer 42 provided in the second embodiment is not provided, and the film thickness of the fine uneven layer 33 is set to the height of the structure formed in the fine uneven layer 33. By designing the thickness to be thick, the remaining film plays the role of the waveguide layer 42 provided in the second embodiment, and the display body 3 that can use guided mode resonance can be obtained.
 導波モード共鳴を利用するためには、微細凹凸層33を構成する材料は、多層積層体23最上層を構成する材料よりも屈折率が高い材料から選択される必要がある。また、微細凹凸層33膜厚は第1の実施形態における微細凹凸層31の膜厚の制約よりもさらに制約され、導波モード共鳴条件を満たす微細凹凸層33の膜厚および構造体高さに設計されることが好ましい。 In order to use guided mode resonance, the material constituting the fine uneven layer 33 needs to be selected from materials having a higher refractive index than the material constituting the uppermost layer of the multilayer laminate 23. Further, the film thickness of the fine concavo-convex layer 33 is further restricted than the film thickness of the fine concavo-convex layer 31 in the first embodiment, and is designed to have a film thickness and a structure height of the fine concavo-convex layer 33 satisfying the waveguide mode resonance condition. It is preferred that
 微細凹凸層33の形成方法としては、第1の実施形態における微細凹凸層31の形成方法を適用することができる。 As a method for forming the fine uneven layer 33, the method for forming the fine uneven layer 31 in the first embodiment can be applied.
 また、微細凹凸層33の形成方法としてさらに好ましくは、光ナノインプリント法または熱ナノインプリント法を用いることができる。この場合、光ナノインプリント法または熱ナノインプリント法により形成される残膜が第2の実施形態で設けた導波層42の役割を果たすことが可能となる。 Further, as a method for forming the fine uneven layer 33, the optical nanoimprint method or the thermal nanoimprint method can be more preferably used. In this case, the remaining film formed by the optical nanoimprint method or the thermal nanoimprint method can serve as the waveguide layer 42 provided in the second embodiment.
 例えば、多層積層体23の最上層を構成する材料の屈折率を1.4程度、微細凹凸層33を形成する材料の屈折率を1.7程度とすると、微細凹凸層33に形成する構造体の高さを200nm程度、微細凹凸層33の膜厚を300nm程度として、微細凹凸層33に構造周期が300nm程度、350nm程度、且つ凸部寸法を構造周期で除した値が0.5である線状凹凸構造からなる一次元回折構造体を微細構造体未形成領域の領域を挟み各々の個別の領域に形成した表示体3を作成し正面から観察した。この場合、構造周期が300nm程度の領域では青色が、構造周期が350nm程度の領域では緑色が導波モード共鳴により反射されるため、微細構造体未形成領域とはそれぞれ異なる構造発色が観測される。さらに、表示体を線状凹凸構造の配列方向に一定角度ずつ傾けて観察した場合、ある角度よりも傾けると導波モード共鳴による反射光は観測できなくなる。但し、微細凹凸層33に形成した構造体の周期構造が、いずれも可視光波長領域以下であることから、多層積層体23、微細凹凸層33による構造発色が観測されることになるが、傾きを大きくするにつれ、一次元回折構造体による回折現象が作用し、構造体形成領域では、構造体未形成領域とは異なる固有の色調変化が観測される。以上により、多層膜干渉に、導波モード共鳴と回折効果の作用とを付与した独特な色調変化を示す表示体3を得ることができる。 For example, when the refractive index of the material constituting the uppermost layer of the multilayer laminate 23 is about 1.4 and the refractive index of the material forming the fine uneven layer 33 is about 1.7, the structure formed in the fine uneven layer 33 The height is about 200 nm, the thickness of the fine concavo-convex layer 33 is about 300 nm, the fine concavo-convex layer 33 has a structural period of about 300 nm and about 350 nm, and the value obtained by dividing the convex dimension by the structural period is 0.5. Display bodies 3 each having a one-dimensional diffractive structure composed of a linear concavo-convex structure formed in each of the individual regions sandwiching the region where the fine structure is not formed were observed from the front. In this case, since the blue color is reflected by the guided mode resonance in the region having the structural period of about 300 nm and the green color is reflected by the guided mode resonance in the region having the structural period of about 350 nm, a structural color development different from the region where the fine structure is not formed is observed. . Further, when the display body is observed with a certain angle tilted in the arrangement direction of the linear concavo-convex structure, the reflected light due to the waveguide mode resonance cannot be observed if the display body is tilted more than a certain angle. However, since the periodic structures of the structures formed in the fine uneven layer 33 are all in the visible light wavelength region or less, structural coloration due to the multilayer laminate 23 and the fine uneven layer 33 is observed. As the value increases, a diffraction phenomenon due to the one-dimensional diffractive structure acts, and an inherent color change different from that in the structure non-formation region is observed in the structure formation region. As described above, it is possible to obtain the display body 3 that exhibits a unique color tone change in which waveguide mode resonance and the effect of the diffraction effect are imparted to the multilayer film interference.
 (実施例1)
 実施例1では、TiOとSiOとからなる多層積層体表面に、SiOからなる微細凹凸層をスパッタリングによる成膜と荷電粒子線露光法とドライエッチングにより形成した表示体について説明する。
Example 1
In Example 1, a display body in which a fine uneven layer made of SiO 2 is formed on the surface of a multilayer laminate made of TiO 2 and SiO 2 by sputtering, charged particle beam exposure and dry etching will be described.
 合成石英ガラス基板を用意し、合成石英ガラス基板上に膜厚45nmのTiOと膜厚95nmのSiOとをスパッタリングにより交互に4層ずつ積層し、最後に膜厚45nmのTiOをもう1層成膜して多層積層体を形成した。さらに多層積層体の表面に膜厚300nmのSiOを成膜し、SiO層表面にスパッタリングにより膜厚50nmクロム(Cr)層を成膜した。TiO層とSiO層とは共に金属ターゲットを用いた反応性スパッタリングにより成膜した。成膜に使用したガスはアルゴン(Ar)と酸素(O)とで、いずれも酸化物モードでのスパッタリングとした。Cr層は金属ターゲットを用いてArのみでスパッタリングした。 Providing a synthetic quartz glass substrate, a synthetic quartz glass substrate and a SiO 2 of the TiO 2 and the thickness 95nm of thickness 45nm are stacked one by four layers alternately by sputtering, and finally the TiO 2 having a thickness of 45nm other Layers were formed to form a multilayer laminate. Further SiO 2 having a thickness of 300nm was formed on the surface of the multilayer stack was deposited film thickness 50nm chrome (Cr) layer by sputtering SiO 2 layer surface. Both the TiO 2 layer and the SiO 2 layer were formed by reactive sputtering using a metal target. The gases used for the film formation were argon (Ar) and oxygen (O 2 ), both of which were sputtering in an oxide mode. The Cr layer was sputtered with only Ar using a metal target.
 Cr層表面に荷電粒子線露光用レジストであるFEP171(富士フィルムエレクトロニクスマテリアルズ株式会社製)を200nm塗布し、可変成型ビーム方式の電子線によりレジスト上にパターンを描画した。描画したパターンは構造周期350nm、且つ凸部寸法を構造周期で除した値が0.5である線状凹凸構造からなる一次元回折構造体と、構造周期700nm、且つ凸部寸法を構造周期で除した値が0.5である線状凹凸構造とからなる一次元回折構造体であり、描画領域は各々一辺が1cmの正方形領域とし、各々のパターン領域は重なることなく配列した。電子線照射のドーズ量は10μC/cmとし、ポストエクスポージャーベークは100℃に加熱したホットプレートで10分間実施した。現像液にTMAH水溶液、リンス液には純水を用いた。 FEP171 (made by Fuji Film Electronics Materials Co., Ltd.), which is a charged particle beam exposure resist, was applied to the Cr layer surface by 200 nm, and a pattern was drawn on the resist by a variable shaped beam type electron beam. The drawn pattern is a one-dimensional diffractive structure composed of a linear concavo-convex structure having a structure period of 350 nm and a convex dimension divided by the structural period, a structure period of 700 nm, and a convex dimension of the structure period. This is a one-dimensional diffractive structure composed of a linear concavo-convex structure with a value obtained by dividing 0.5, and each drawing region is a square region having a side of 1 cm, and each pattern region is arranged without overlapping. The dose of electron beam irradiation was 10 μC / cm 2, and post-exposure baking was performed for 10 minutes on a hot plate heated to 100 ° C. A TMAH aqueous solution was used as a developing solution, and pure water was used as a rinsing solution.
 レジストに線状凹凸構造からなる一次元回折構造体パターンを形成後、塩素と酸素との混合ガスを用いたプラズマによるエッチング処理を実施し、レジストパターンをCr膜に転写した。エッチング処理にはICPドライエッチング装置を適用した。塩素を50sccm、酸素を10sccm導入し、プラズマチャンバ内の圧力を1Paに設定後、ICPパワー500W、RIEパワー50Wを印加し、プラズマ放電させた。 After forming a one-dimensional diffractive structure pattern consisting of a linear concavo-convex structure on the resist, an etching process using plasma using a mixed gas of chlorine and oxygen was performed, and the resist pattern was transferred to the Cr film. An ICP dry etching apparatus was applied to the etching process. After introducing 50 sccm of chlorine and 10 sccm of oxygen and setting the pressure in the plasma chamber to 1 Pa, ICP power 500 W and RIE power 50 W were applied to cause plasma discharge.
 さらに、六フッ化エタンとヘリウムとの混合ガスを用いたプラズマによるエッチング処理を実施し、Cr膜に形成されたパターンをSiO層に転写した。エッチング処理にはICPドライエッチング装置を適用した。六フッ化エタンとヘリウムとを50sccmずつ導入し、プラズマチャンバ内の圧力を1Paに設定後、ICPパワー500W、RIEパワー200Wを印加し、プラズマ放電させた。SiOのエッチング深さは200nmとした。 Further, an etching process using plasma using a mixed gas of hexafluoroethane and helium was performed, and the pattern formed on the Cr film was transferred to the SiO 2 layer. An ICP dry etching apparatus was applied to the etching process. Ethane hexafluoride and helium were introduced at 50 sccm at a time, the pressure in the plasma chamber was set to 1 Pa, and then ICP power 500 W and RIE power 200 W were applied to cause plasma discharge. The etching depth of SiO 2 was 200 nm.
 次に、NMP(N-メチル-2-ピロリドン)、MEA(モノエタノールアミン)などを用いた有機洗浄、硝酸2アンモニウムセリウムと硝酸との混合水溶液による残存Cr膜の除去、さらにアンモニア水と過酸化水素水との混液などを用いたアルカリ洗浄を行ない、構造体の高さが200nm、膜厚が300nmのSiOからなる微細凹凸層が形成された表示体を得た。 Next, organic cleaning using NMP (N-methyl-2-pyrrolidone), MEA (monoethanolamine), etc., removal of residual Cr film with a mixed aqueous solution of diammonium cerium nitrate and nitric acid, and aqueous ammonia and peroxidation Alkali cleaning using a mixed solution with hydrogen water or the like was performed to obtain a display body on which a fine uneven layer made of SiO 2 having a structure height of 200 nm and a film thickness of 300 nm was formed.
 表示体を正面から観察したところ、パターン未形成領域では緑~黄色の構造発色が確認され、表示体を傾けることで構造発色がブルーシフトすることが確認された。一方、構造周期700nmの一次元回折構造体が形成された領域を正面から観察したところ、パターン未形成流域と比較して青色が強い構造発色が確認された。さらに、線状凹凸構造の配列方向に傾けながら表示体を観察したところ、燈色の構造発色が観測され、一次元回折構造体による固有の色調変化が確認できた。また、構造周期350nmの一次元回折構造体が形成された領域を正面から観察したところ、パターン未形成領域とほぼ同じ構造発色であったが、線状凹凸構造の配列方向に傾けながら表示体を観察したところ、燈色の構造発色が観測され、一次元回折構造体による固有の色調変化が確認できた。 When the display was observed from the front, a green to yellow structural color was confirmed in the pattern-unformed region, and it was confirmed that the structural color was blue-shifted by tilting the display. On the other hand, when the region where the one-dimensional diffractive structure having a structure period of 700 nm was formed was observed from the front, structural color development with a strong blue color was confirmed as compared with the unformed pattern basin. Furthermore, when the display body was observed while tilting in the arrangement direction of the linear concavo-convex structure, an amber colored structure was observed, and an inherent color tone change due to the one-dimensional diffractive structure was confirmed. Further, when the region where the one-dimensional diffractive structure having a structure period of 350 nm was formed was observed from the front, the color formation was almost the same as that of the pattern-unformed region, but the display was tilted in the arrangement direction of the linear concavo-convex structure. As a result of observation, an amber colored structure was observed, and a unique color tone change due to the one-dimensional diffraction structure was confirmed.
 (実施例2)
 実施例2では、TiOとSiOとからなる多層積層体の最上層をSiOとし、光硬化性樹脂からなる微細凹凸層を紫外線ナノインプリント法により形成した表示体について説明する。
(Example 2)
In Example 2, a display body in which the uppermost layer of a multilayer laminate made of TiO 2 and SiO 2 is made of SiO 2 and a fine uneven layer made of a photocurable resin is formed by an ultraviolet nanoimprint method will be described.
 まず、合成石英ガラス基板上に、構造周期350nm、構造体の高さが200nm、且つ凸部寸法を構造周期で除した値が0.5である線状凹凸構造からなる一次元回折構造体と、構造周期400nm、構造体の高さが200nm、且つ凸部寸法を構造周期で除した値が0.5である線状凹凸構造からなる一次元回折構造体とからなるパターンが、各々一辺が1cmの正方形領域に形成され、各々のパターン領域は重なることなく配列されている紫外線ナノインプリント用モールドを用意した。 First, on a synthetic quartz glass substrate, a one-dimensional diffractive structure consisting of a linear concavo-convex structure having a structure period of 350 nm, a structure height of 200 nm, and a value obtained by dividing the convex dimension by the structure period is 0.5. A pattern composed of a one-dimensional diffractive structure composed of a linear concavo-convex structure having a structure period of 400 nm, a structure height of 200 nm, and a value obtained by dividing the convex dimension by the structure period is 0.5. An ultraviolet nanoimprint mold was prepared, which was formed in a 1 cm square region and each pattern region was arranged without overlapping.
 紫外線ナノインプリント用モールド表面に、離型剤としてオプツール(登録商標)HD-1100Z(ダイキン工業株式会社製)を塗布した。 Optool (registered trademark) HD-1100Z (manufactured by Daikin Industries, Ltd.) was applied as a release agent to the mold surface for ultraviolet nanoimprint.
 次に、4インチの合成石英ガラスウェハを用意し、合成石英ガラスウェハ上に膜厚40nmのTiOと膜厚60nmのSiOとをスパッタリングにより交互に5層ずつ積層し多層積層体を形成した。 Next, a 4-inch synthetic quartz glass wafer was prepared, and a multilayer laminate was formed by alternately stacking TiO 2 having a thickness of 40 nm and SiO 2 having a thickness of 60 nm on the synthetic quartz glass wafer by sputtering. .
 続いて、多層積層体が形成された合成石英ガラスウェハ上に、膜厚200nmの光硬化性樹脂MUR-6(丸善石油化学株式会社製)を塗布し、離型剤が塗布された紫外線ナノインプリント用モールド表面を接触させ、2MPaの圧力をかけ、紫外線ナノインプリント用モールドの裏面より波長365nmの紫外光を照射し、光硬化性樹脂を硬化させた。処理は室温で行い、紫外光の露光量は100mJ/cmとした。 Subsequently, for UV nanoimprinting, a photocurable resin MUR-6 (manufactured by Maruzen Petrochemical Co., Ltd.) having a film thickness of 200 nm is applied on a synthetic quartz glass wafer on which a multilayer laminate is formed, and a release agent is applied. The mold surface was brought into contact, a pressure of 2 MPa was applied, and ultraviolet light having a wavelength of 365 nm was irradiated from the back surface of the ultraviolet nanoimprint mold to cure the photocurable resin. The treatment was performed at room temperature, and the exposure amount of ultraviolet light was 100 mJ / cm 2 .
 次に、合成石英ガラスウェハを紫外線ナノインプリント用モールドから剥離し、光硬化性樹脂からなる微細凹凸層が形成された表示体を得た。 Next, the synthetic quartz glass wafer was peeled from the ultraviolet nanoimprint mold to obtain a display body on which a fine uneven layer made of a photocurable resin was formed.
 表示体を正面から観察したところ、パターン未形成領域では青~青緑色の構造発色が確認され、表示体を傾けることで構造発色がブルーシフトすることが確認された。一方、構造周期350nmの一次元回折構造体が形成された領域を正面から観察したところ、パターン未形成流域と比較して緑色が強い構造発色が確認された。さらに、線状凹凸構造の配列方向に傾けながら表示体を観察したところ、黄色の構造発色が観測され、一次元回折構造体による固有の色調変化が確認できた。構造周期400nmの一次元回折構造体が形成された領域を正面から観察したところ、パターン未形成流域と比較して黄色が強い構造発色が確認された。さらに、線状凹凸構造の配列方向に傾けながら表示体を観察したところ、黄色の構造発色が観測され、一次元回折構造体による固有の色調変化が確認できた。以上により、一次元回折構造体による固有の色調変化が確認された。 When the display body was observed from the front, blue to blue-green structural color was confirmed in the pattern-unformed region, and it was confirmed that the structural color was blue-shifted by tilting the display body. On the other hand, when a region where a one-dimensional diffractive structure having a structure period of 350 nm was formed was observed from the front, a structural color development with a stronger green color was confirmed as compared with a pattern-unformed basin. Furthermore, when the display body was observed while being tilted in the arrangement direction of the linear concavo-convex structure, yellow structural coloration was observed, and a unique color tone change due to the one-dimensional diffractive structure could be confirmed. When the region where the one-dimensional diffractive structure having a structure period of 400 nm was formed was observed from the front, a structural color development with a strong yellow color was confirmed as compared with the unpatterned basin. Furthermore, when the display body was observed while being tilted in the arrangement direction of the linear concavo-convex structure, yellow structural coloration was observed, and a unique color tone change due to the one-dimensional diffractive structure could be confirmed. As described above, the inherent color change due to the one-dimensional diffractive structure was confirmed.
 本発明の表示体は、意匠性の高い表示物に利用できる。特に、偽造防止技術分野等に好適に利用が期待される。 The display body of the present invention can be used for display objects with high design properties. In particular, it is expected to be suitably used in the field of anti-counterfeiting technology.
 1、2、3  表示体
 11、12、13  基材
 21、22、23  多層積層体
 31、32、33  微細凹凸層
 42  導波層
1, 2, 3 Display body 11, 12, 13 Base material 21, 22, 23 Multilayer laminate 31, 32, 33 Fine uneven layer 42 Waveguide layer

Claims (13)

  1.  基材と、前記基材表面に形成された多層積層体と、前記多層積層体表面に形成された微細凹凸層とを含む表示体において、
     前記多層積層体は2層以上の積層体であり、
     所定の波長領域の光に対して、少なくとも、前記多層積層体および前記微細凹凸層は透過性を有し、
     前記多層積層体を構成する各層は、隣接する層とは前記所定の波長領域内の波長の光に対して屈折率が異なる材料で構成されており、
     前記多層積層体を構成する各層および前記微細凹凸層を構成する材料は、それぞれの屈折率と物理膜厚との積で表される光学膜厚が、前記所定の波長領域における最短波長の7/4倍未満であり、
     前記微細凹凸層には、前記微細凹凸層の物理膜厚を部分的に減ずることで、前記物理膜厚以下の高低差を有する凸部及び凹部を含む凹凸構造体が形成されている、表示体。
    In a display including a substrate, a multilayer laminate formed on the surface of the substrate, and a fine uneven layer formed on the surface of the multilayer laminate,
    The multilayer laminate is a laminate of two or more layers,
    For light of a predetermined wavelength region, at least the multilayer laminate and the fine uneven layer have transparency,
    Each layer constituting the multilayer laminate is made of a material having a refractive index different from that of an adjacent layer with respect to light having a wavelength in the predetermined wavelength region,
    Each layer constituting the multilayer laminate and the material constituting the fine concavo-convex layer has an optical film thickness represented by the product of the refractive index and the physical film thickness, which is 7 / of the shortest wavelength in the predetermined wavelength region. Less than 4 times,
    In the fine concavo-convex layer, a concavo-convex structure including a convex part and a concave part having a height difference equal to or less than the physical film thickness is formed by partially reducing the physical film thickness of the fine concavo-convex layer. .
  2.  前記微細凹凸層表面には一定周期の線状凹凸構造からなる一次元回折構造体、または一定周期の格子状凹凸構造からなる二次元回折構造体が形成されている、請求項1に記載の表示体。 2. The display according to claim 1, wherein a one-dimensional diffractive structure composed of a linear concavo-convex structure with a constant period or a two-dimensional diffractive structure composed of a lattice-shaped concavo-convex structure with a constant period is formed on the surface of the fine concavo-convex layer. body.
  3.  前記微細凹凸層を構成する材料の前記波長領域内の波長の光に対する屈折率が、前記多層積層体の最上層を構成する材料の前記波長の光に対する屈折率よりも大きい、請求項1または2に記載の表示体。 The refractive index with respect to the light of the wavelength in the said wavelength range of the material which comprises the said fine uneven | corrugated layer is larger than the refractive index with respect to the light of the said wavelength of the material which comprises the uppermost layer of the said multilayer laminated body. Display body described in 1.
  4.  前記多層積層体の最上層と前記微細凹凸層との間に、前記微細凹凸層を構成する材料よりも前記波長領域内の波長の光に対する屈折率が大きい材料で構成され、物理膜厚と屈折率との積である光学膜厚が前記波長領域における最短波長の7/4倍未満である導波層を有し、
     前記微細凹凸層の凹凸構造体の凸部及び凹部の高低差は、前記微細凹凸層の物理膜厚と等しい、請求項1または2に記載の表示体。
    Between the uppermost layer of the multilayer laminate and the fine concavo-convex layer, a material having a refractive index larger than that of the material constituting the fine concavo-convex layer, with respect to light having a wavelength in the wavelength region, and having a physical film thickness and a refractive A waveguide layer having an optical film thickness that is a product of the refractive index and less than 7/4 times the shortest wavelength in the wavelength region;
    The display body according to claim 1, wherein a difference in height between the convex and concave portions of the concavo-convex structure of the fine concavo-convex layer is equal to a physical film thickness of the fine concavo-convex layer.
  5.  前記波長領域が可視光波長領域であり、
     前記微細凹凸層表面に、少なくとも一辺が10μm以上のマトリックス上に配置された画素領域が複数形成され、
     各画素領域には、
     構造周期が200nm以上、且つ800nm以下の線状凹凸構造体からなり、第1の方向に線状凹凸構造が配列される第1の一次元回折構造体と、
     構造周期が200nm以上、且つ800nm以下の線状凹凸構造体からなり、前記第1の方向とは異なる第2の方向に線状凹凸構造が配列される第2の一次元回折構造体と、
     構造周期が200nm以上、且つ800nm以下の格子状凹凸構造からなり、前記第1の方向及び前記第2の方向に格子状凹凸構造が配列され二次元回折構造体との少なくとも1つが形成されている、請求項1乃至4のいずれかに記載の表示体。
    The wavelength region is a visible light wavelength region;
    A plurality of pixel regions arranged on a matrix having at least one side of 10 μm or more are formed on the surface of the fine uneven layer,
    Each pixel area
    A first one-dimensional diffractive structure comprising a linear concavo-convex structure having a structure period of 200 nm or more and 800 nm or less, wherein the linear concavo-convex structure is arranged in a first direction;
    A second one-dimensional diffractive structure comprising a linear concavo-convex structure having a structure period of 200 nm or more and 800 nm or less, wherein the linear concavo-convex structure is arranged in a second direction different from the first direction;
    It has a lattice-like uneven structure with a structure period of 200 nm or more and 800 nm or less, and the lattice-like uneven structure is arranged in the first direction and the second direction to form at least one of a two-dimensional diffraction structure. The display body according to any one of claims 1 to 4.
  6.  前記基材と、前記多層積層体各層と、前記微細凹凸層とが、可視光波長領域の光に対して消衰係数が0.1以下である材料で構成されている、請求項5に記載の表示体。 The said base material, each said multilayer laminated body layer, and the said fine uneven | corrugated layer are comprised with the material whose extinction coefficient is 0.1 or less with respect to the light of visible light wavelength range. The display body.
  7.  前記基材と、前記多層積層体各層と、前記微細凹凸層と、前記導波層とが、可視光波長領域の波長の光に対する屈折率が1.3以上、且つ2.6以下である材料で構成され、隣接する各層の屈折率差が少なくとも0.05以上である、請求項4に記載の表示体。 A material in which the base material, each layer of the multilayer laminate, the fine uneven layer, and the waveguide layer have a refractive index of 1.3 or more and 2.6 or less with respect to light having a wavelength in a visible light wavelength region. The display body according to claim 4, wherein the refractive index difference between adjacent layers is at least 0.05 or more.
  8.  基材表面に可視光波長領域の光に対して透過性を有し、且つ隣接する各層で屈折率が異なる多層積層体を、前記各層を順次積層して形成する工程と、
     前記多層積層体表面に光硬化性樹脂を塗布する工程と、
     光ナノインプリント法により、前記光硬化性樹脂に所望の凹凸形状を形成する工程とを含む、表示体の製造方法。
    A step of forming a multilayer laminate having transparency to light in a visible light wavelength region on the surface of the base material and having a different refractive index in each adjacent layer by sequentially laminating the layers;
    Applying a photocurable resin to the surface of the multilayer laminate;
    And a step of forming a desired concavo-convex shape on the photocurable resin by an optical nanoimprint method.
  9.  前記光硬化性樹脂の可視光波長領域の波長の光に対する屈折率が、前記多層積層体表面を構成する材料の可視光波長領域に対する屈折率よりも大きい、請求項8に記載の表示体の製造方法。 The display body according to claim 8, wherein a refractive index of the photocurable resin with respect to light having a wavelength in a visible light wavelength region is larger than a refractive index with respect to a visible light wavelength region of a material constituting the surface of the multilayer laminate. Method.
  10.  基材を用意する工程と、
     前記基材表面に可視光領域内の波長の光に対して透過性を有し、且つ隣接する各層で屈折率が異なる積層体を、前記各層を順次積層して形成する工程と、
     前記多層積層体表面に導波層を形成する工程と、
     前記導波層表面に該導波層を構成する材料よりも可視光領域内の波長の光に対する屈折率が小さい光硬化性樹脂を塗布する工程と、
     光ナノインプリント法により前記光硬化性樹脂に所望の凹凸形状を形成する工程と
     プラズマ暴露により残膜を除去する工程とを含む、表示体の製造方法。
    Preparing a substrate;
    A step of forming a laminated body having transparency to light having a wavelength in a visible light region on the surface of the base material and having different refractive indexes in adjacent layers by sequentially laminating the layers;
    Forming a waveguide layer on the surface of the multilayer laminate;
    A step of applying a photocurable resin having a refractive index smaller than that of a material constituting the waveguide layer on the surface of the waveguide layer with respect to light having a wavelength in the visible light region;
    A method for producing a display body, comprising: a step of forming a desired concavo-convex shape on the photocurable resin by a photo nanoimprint method; and a step of removing a residual film by plasma exposure.
  11.  基材を用意する工程と、
     前記基材表面に可視光領域内の波長の光に対して透過性を有し、且つ隣接する各層で屈折率が異なる積層体を、前記各層を順次積層して形成する工程と、
     前記多層積層体最上層表面に熱可塑性樹脂層を塗布する工程と、
     熱ナノインプリント法により前記熱可塑性樹脂層に所望の凹凸形状を形成する工程とを含む、表示体の製造方法。
    Preparing a substrate;
    A step of forming a laminated body having transparency to light having a wavelength in a visible light region on the surface of the base material and having different refractive indexes in adjacent layers by sequentially laminating the layers;
    Applying a thermoplastic resin layer to the top surface of the multilayer laminate;
    Forming a desired concavo-convex shape on the thermoplastic resin layer by a thermal nanoimprint method.
  12.  前記熱可塑性樹脂層の可視光領域内の波長の光に対する屈折率が、前記多層積層体最表面を構成する材料の前記波長の光に対する屈折率よりも大きい、請求項11記載の表示体の製造方法。 12. The display body according to claim 11, wherein a refractive index of the thermoplastic resin layer with respect to light having a wavelength in a visible light region is larger than a refractive index with respect to light having the wavelength of a material constituting the outermost surface of the multilayer laminate. Method.
  13.  基材を用意する工程と、
     前記基材表面に可視光波長領域内の波長の光に対して透過性を有し、且つ隣接する各層で屈折率が異なる積層体を、前記各層を順次積層して形成する工程と、
     前記多層積層体表面に導波層を形成する工程と、
     前記導波層表面に該導波層を構成する材料よりも可視光波長領域内の波長の光に対する屈折率が小さい熱可塑性樹脂層を塗布する工程と、
     熱ナノインプリント法により前記熱可塑性樹脂層に所望の凹凸形状を形成する工程と、プラズマ暴露により残膜を除去する工程とを含む、表示体の製造方法。
    Preparing a substrate;
    A step of forming a laminate having transparency to light having a wavelength in a visible light wavelength region on the surface of the base material and having a different refractive index in each adjacent layer by sequentially stacking the layers;
    Forming a waveguide layer on the surface of the multilayer laminate;
    Applying a thermoplastic resin layer having a smaller refractive index to light having a wavelength in the visible wavelength region than the material constituting the waveguide layer on the surface of the waveguide layer;
    A method for producing a display body, comprising: a step of forming a desired uneven shape on the thermoplastic resin layer by a thermal nanoimprint method; and a step of removing a remaining film by plasma exposure.
PCT/JP2014/005787 2013-11-26 2014-11-18 Display body and method for manufacturing same WO2015079652A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-243986 2013-11-26
JP2013243986A JP6364754B2 (en) 2013-11-26 2013-11-26 Display body and manufacturing method of display body

Publications (1)

Publication Number Publication Date
WO2015079652A1 true WO2015079652A1 (en) 2015-06-04

Family

ID=53198625

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/005787 WO2015079652A1 (en) 2013-11-26 2014-11-18 Display body and method for manufacturing same

Country Status (3)

Country Link
JP (1) JP6364754B2 (en)
TW (1) TW201527805A (en)
WO (1) WO2015079652A1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020195367A1 (en) * 2019-03-28 2020-10-01 凸版印刷株式会社 Display body
US11385382B2 (en) 2017-09-29 2022-07-12 Nike, Inc. Structurally-colored articles and methods for making and using structurally-colored articles
US11597996B2 (en) 2019-06-26 2023-03-07 Nike, Inc. Structurally-colored articles and methods for making and using structurally-colored articles
US11612208B2 (en) 2019-07-26 2023-03-28 Nike, Inc. Structurally-colored articles and methods for making and using structurally-colored articles
US11889894B2 (en) 2020-08-07 2024-02-06 Nike, Inc. Footwear article having concealing layer
US11987073B2 (en) 2020-05-29 2024-05-21 Nike, Inc. Structurally-colored articles having layers which taper in thickness
US11986042B2 (en) 2019-10-21 2024-05-21 Nike, Inc. Structurally-colored articles and methods for making and using structurally-colored articles
US11994649B2 (en) 2021-08-20 2024-05-28 Nike, Inc. Structurally-colored articles and methods for making and using structurally-colored articles

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102594844B1 (en) 2018-04-10 2023-10-27 주식회사 엘지화학 Decoration element
EP3933263A4 (en) * 2019-02-26 2022-07-27 Toppan Printing Co., Ltd. Wavelength selection filter, method of manufacturing wavelength selection filter, and display device
JP7379215B2 (en) 2020-03-03 2023-11-14 藤森工業株式会社 container

Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0272320A (en) * 1988-09-07 1990-03-12 Toppan Printing Co Ltd Display with diffraction grating pattern and its manufacture
JPH0667608A (en) * 1992-08-19 1994-03-11 Dainippon Printing Co Ltd Display using diffraction grating
JPH08201622A (en) * 1995-01-23 1996-08-09 Toppan Printing Co Ltd Concealing seal
JPH1024514A (en) * 1996-07-09 1998-01-27 Eeru Kasei Shoji:Kk Reflective film with hologram pattern
JP2003504680A (en) * 1999-07-08 2003-02-04 フレックス プロダクツ インコーポレイテッド Diffractive surface with color shift background
JP2003520986A (en) * 2000-01-21 2003-07-08 フレックス プロダクツ インコーポレイテッド Optical modulation security device
WO2004024439A1 (en) * 2002-09-13 2004-03-25 Nhk Spring Co., Ltd. Object identifying medium using multi-layer thin-film
JP2005085094A (en) * 2003-09-10 2005-03-31 Toppan Printing Co Ltd Counterfeit-preventing medium and counterfeit-preventing sticker
JP2006001050A (en) * 2004-06-15 2006-01-05 Sony Corp Film structure and its forming method
JP2008183832A (en) * 2007-01-30 2008-08-14 Toppan Printing Co Ltd Forging preventing medium and determining method
JP2008275737A (en) * 2007-04-26 2008-11-13 Toppan Printing Co Ltd Optical thin film layered product
JP2009515203A (en) * 2005-05-18 2009-04-09 ホッブズ,ダグラス,エス. Microstructured optical device for polarization and wavelength filter processing
JP2009092913A (en) * 2007-10-09 2009-04-30 Toppan Printing Co Ltd Optical thin film laminate
JP2010249982A (en) * 2009-04-14 2010-11-04 Toppan Printing Co Ltd Display body and information printed matter
JP2011059677A (en) * 2009-08-11 2011-03-24 Sumitomo Chemical Co Ltd Notch filter
WO2011033584A1 (en) * 2009-09-18 2011-03-24 株式会社 東芝 Mold
JP2012098513A (en) * 2010-11-02 2012-05-24 Kyoto Institute Of Technology Wavelength selection filter, and filter device and laser device provided with the same

Patent Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0272320A (en) * 1988-09-07 1990-03-12 Toppan Printing Co Ltd Display with diffraction grating pattern and its manufacture
JPH0667608A (en) * 1992-08-19 1994-03-11 Dainippon Printing Co Ltd Display using diffraction grating
JPH08201622A (en) * 1995-01-23 1996-08-09 Toppan Printing Co Ltd Concealing seal
JPH1024514A (en) * 1996-07-09 1998-01-27 Eeru Kasei Shoji:Kk Reflective film with hologram pattern
JP2003504680A (en) * 1999-07-08 2003-02-04 フレックス プロダクツ インコーポレイテッド Diffractive surface with color shift background
JP2003520986A (en) * 2000-01-21 2003-07-08 フレックス プロダクツ インコーポレイテッド Optical modulation security device
WO2004024439A1 (en) * 2002-09-13 2004-03-25 Nhk Spring Co., Ltd. Object identifying medium using multi-layer thin-film
JP2005085094A (en) * 2003-09-10 2005-03-31 Toppan Printing Co Ltd Counterfeit-preventing medium and counterfeit-preventing sticker
JP2006001050A (en) * 2004-06-15 2006-01-05 Sony Corp Film structure and its forming method
JP2009515203A (en) * 2005-05-18 2009-04-09 ホッブズ,ダグラス,エス. Microstructured optical device for polarization and wavelength filter processing
JP2008183832A (en) * 2007-01-30 2008-08-14 Toppan Printing Co Ltd Forging preventing medium and determining method
JP2008275737A (en) * 2007-04-26 2008-11-13 Toppan Printing Co Ltd Optical thin film layered product
JP2009092913A (en) * 2007-10-09 2009-04-30 Toppan Printing Co Ltd Optical thin film laminate
JP2010249982A (en) * 2009-04-14 2010-11-04 Toppan Printing Co Ltd Display body and information printed matter
JP2011059677A (en) * 2009-08-11 2011-03-24 Sumitomo Chemical Co Ltd Notch filter
WO2011033584A1 (en) * 2009-09-18 2011-03-24 株式会社 東芝 Mold
JP2012098513A (en) * 2010-11-02 2012-05-24 Kyoto Institute Of Technology Wavelength selection filter, and filter device and laser device provided with the same

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11609359B2 (en) 2017-09-29 2023-03-21 Nike, Inc. Structurally-colored articles and methods for making and using structurally-colored articles
US11385382B2 (en) 2017-09-29 2022-07-12 Nike, Inc. Structurally-colored articles and methods for making and using structurally-colored articles
US11988806B2 (en) 2017-09-29 2024-05-21 Nike, Inc. Structurally-colored articles and methods of making and using structurally-colored articles
US11391867B2 (en) 2017-09-29 2022-07-19 Nike, Inc. Structurally-colored articles and methods for making and using structurally-colored articles
US11397283B2 (en) 2017-09-29 2022-07-26 Nike, Inc. Structurally-colored articles and methods for making and using structurally-colored articles
US11402544B2 (en) 2017-09-29 2022-08-02 Nike, Inc. Structurally-colored articles and methods for making and using structurally-colored articles
US11402546B2 (en) 2017-09-29 2022-08-02 Nike, Inc. Structurally-colored articles and methods for making and using structurally-colored articles
US11402545B2 (en) 2017-09-29 2022-08-02 Nike, Inc. Structurally-colored articles and methods for making and using structurally-colored articles
US11614563B2 (en) 2017-09-29 2023-03-28 Nike, Inc. Structurally-colored articles and methods for making and using structurally-colored articles
JP7220211B2 (en) 2017-09-29 2023-02-09 ナイキ イノベイト シーブイ Structural color-imparted article and method for producing and using structural color-imparted article
CN113646671A (en) * 2019-03-28 2021-11-12 凸版印刷株式会社 Display body
CN113646671B (en) * 2019-03-28 2023-12-22 凸版印刷株式会社 Display body
WO2020195367A1 (en) * 2019-03-28 2020-10-01 凸版印刷株式会社 Display body
US11597996B2 (en) 2019-06-26 2023-03-07 Nike, Inc. Structurally-colored articles and methods for making and using structurally-colored articles
US11840755B2 (en) 2019-06-26 2023-12-12 Nike, Inc. Structurally-colored articles and methods for making and using structurally-colored articles
US11987873B2 (en) 2019-06-26 2024-05-21 Nike, Inc. Structurally-colored articles and methods for making and using structurally-colored articles
US11612208B2 (en) 2019-07-26 2023-03-28 Nike, Inc. Structurally-colored articles and methods for making and using structurally-colored articles
US11986042B2 (en) 2019-10-21 2024-05-21 Nike, Inc. Structurally-colored articles and methods for making and using structurally-colored articles
US11987073B2 (en) 2020-05-29 2024-05-21 Nike, Inc. Structurally-colored articles having layers which taper in thickness
US11987074B2 (en) 2020-05-29 2024-05-21 Nike, Inc. Structurally-colored articles having layers which taper in thickness
US11889894B2 (en) 2020-08-07 2024-02-06 Nike, Inc. Footwear article having concealing layer
US11994649B2 (en) 2021-08-20 2024-05-28 Nike, Inc. Structurally-colored articles and methods for making and using structurally-colored articles

Also Published As

Publication number Publication date
TW201527805A (en) 2015-07-16
JP2015101024A (en) 2015-06-04
JP6364754B2 (en) 2018-08-01

Similar Documents

Publication Publication Date Title
JP6364754B2 (en) Display body and manufacturing method of display body
Shen et al. Structural colors from Fano resonances
CN107850709B (en) Color developing structure and method for producing same
Kintaka et al. Antireflection microstructures fabricated upon fluorine-doped SiO 2 films
WO2018070431A1 (en) Optical device, display body, color filter, and optical device manufacturing method
JP6413300B2 (en) Display body and manufacturing method of display body
US20210294096A1 (en) Display and method of producing display
CN115461651B (en) Reflective optical super surface film
JP2017111248A (en) Coloring structure body and manufacturing method therefor
Carney et al. Fabrication methods for infrared resonant devices
Song et al. Disorder and broad-angle iridescence from Morpho-inspired structures
JP2018063305A (en) Display body and manufacturing method for display body
Baek et al. Solution-processable multi-color printing using UV nanoimprint lithography
JP6672585B2 (en) Display body
JP6500943B2 (en) Chromogenic structure, mold and method for producing chromogenic structure using mold
WO2017181442A1 (en) Optical anti-counterfeiting element and optical anti-counterfeiting product
Nishiyama et al. Microlens arrays of high-refractive-index glass fabricated by femtosecond laser lithography
Yu et al. Reduced wavelength-dependent quarter-wave plate fabricated by a multilayered subwavelength structure
JP6825238B2 (en) Display and its manufacturing method
JP7190249B2 (en) optical device
WO2016098329A1 (en) Display, and method for manufacturing display
JP6596820B2 (en) Indicator
CN113270037A (en) Graphene super-pixel display, preparation method thereof and graphene super-pixel color display system
KR20120058923A (en) Biomimetic security device and manufacturing method thereof
Srimathi et al. Fabrication of metal-oxide nano-hairs for effective index optical elements

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14866090

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14866090

Country of ref document: EP

Kind code of ref document: A1