WO2015072548A1 - Charging device and changing device for battery of flying object - Google Patents

Charging device and changing device for battery of flying object Download PDF

Info

Publication number
WO2015072548A1
WO2015072548A1 PCT/JP2014/080211 JP2014080211W WO2015072548A1 WO 2015072548 A1 WO2015072548 A1 WO 2015072548A1 JP 2014080211 W JP2014080211 W JP 2014080211W WO 2015072548 A1 WO2015072548 A1 WO 2015072548A1
Authority
WO
WIPO (PCT)
Prior art keywords
flying object
battery
flying
charging device
guide
Prior art date
Application number
PCT/JP2014/080211
Other languages
French (fr)
Japanese (ja)
Inventor
山田 学
七奈 高橋
Original Assignee
国立大学法人名古屋工業大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2014008191A external-priority patent/JP6344791B2/en
Priority claimed from JP2014106695A external-priority patent/JP6308550B2/en
Application filed by 国立大学法人名古屋工業大学 filed Critical 国立大学法人名古屋工業大学
Publication of WO2015072548A1 publication Critical patent/WO2015072548A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C37/00Convertible aircraft
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U10/00Type of UAV
    • B64U10/10Rotorcrafts
    • B64U10/13Flying platforms
    • B64U10/14Flying platforms with four distinct rotor axes, e.g. quadcopters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U10/00Type of UAV
    • B64U10/70Convertible aircraft, e.g. convertible into land vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U20/00Constructional aspects of UAVs
    • B64U20/30Constructional aspects of UAVs for safety, e.g. with frangible components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U50/00Propulsion; Power supply
    • B64U50/30Supply or distribution of electrical power
    • B64U50/37Charging when not in flight
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U50/00Propulsion; Power supply
    • B64U50/30Supply or distribution of electrical power
    • B64U50/39Battery swapping
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U60/00Undercarriages
    • B64U60/70Movable wings, rotor supports or shrouds acting as ground-engaging elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U2101/00UAVs specially adapted for particular uses or applications
    • B64U2101/30UAVs specially adapted for particular uses or applications for imaging, photography or videography

Definitions

  • the present invention relates to a battery charging device and an exchange device for an aircraft.
  • Non-Patent Document 5 As a conventional technique related to an automatic charging device for a flying object, as shown in Non-Patent Document 5, a system for automatically replacing and charging a battery has been proposed.
  • the tether is lowered to a predetermined length from the reel mounted on the airframe body, and the weight at the tip of the tether is locked by the tether capturing mechanism provided in the ground charging device.
  • This is a method of winding a tether and landing it at a specified position.
  • it is necessary to install a device on the aircraft body that can automatically control the winding of the tether and weight.
  • whether or not charging is possible is determined by the landing position accuracy and posture accuracy, and the movement to the landing point is performed by winding the tether, thereby improving the reliability compared to the method based on the motion capture system.
  • the flying body is greatly beaten by the wind generated by the aircraft, and it is easy to cause instability, making it difficult to land at an accurate position and posture.
  • the tether capture device that catches the tether and weight of the flying object is composed of two long arms. The longer the tether capture device, the higher the probability of catching, but the larger the device.
  • the current lithium polymer battery takes time to charge.
  • Parrot's AR-DRONE2.0 total length 0.5mX0.5m, mass 425g
  • a WiFi-controlled 4-rotor helicopter with the highest sales volume in the world has a flight time of 90 minutes.
  • the battery operating efficiency is as low as about 12%.
  • the charging device or the exchange device that achieves the above object includes a guide that contacts the protection frame and guides the flying object to the charging device, a stopper that stops the flying object by hitting the protection frame, and a flight that occurs when the protection frame hits the stopper.
  • FIG. 1 is an overall configuration diagram of a flying object according to a first embodiment.
  • FIG. The figure of the other Example of a flying body. The figure which shows the mechanism of the free aerial movement by the overcoming of the obstacle using free movement in air flight, ensuring safety
  • the figure of the charging device with which a guidance part contacts the frame part of a protection frame The figure of the process which charges a flying body with a charging device.
  • the figure of the process which charges a flying body with a charging device The figure of the system which guides a flying body with the transceiver (transmission function) installed in the charging device, and the transceiver (camera as a reception function) mounted in the flying body.
  • the arrow view and three-plane figure which show the structure of the attachment part of the battery of a charge exchange apparatus.
  • the figure of the structure which takes out a battery from a flying body by a charge exchange apparatus.
  • the figure of the structure which attaches a battery to a flying body by a charge exchange apparatus.
  • the figure of the structure holding a battery by the hand part of a charge exchange apparatus.
  • exchanging the battery of a flying body with a charge exchange apparatus The arrow view and three-plane figure which show the structure of the attachment part of the battery of a charge exchange apparatus.
  • the block diagram of the flying body in 8th Embodiment The figure which shows the case where a flying body travels horizontally on a vertical wall. A state diagram of force when the flying object travels horizontally (Y direction) on a vertical wall.
  • the schematic diagram of the locking mechanism of the flying body The schematic diagram of the mechanism locked again in the locking mechanism of the flying body.
  • the flying object capable of traveling on land and water according to the present invention is a rolling motion by thrust generated in the main body part 1 consisting of the control part 1-1 and the battery part 1-2, the main body part consisting of the propulsion part 2 and the propulsion part 2. It consists of one or two protection frames that can move freely on land and water.
  • the features of the main body 1 of the aircraft, the propulsion unit 2, and the protection frames 5 and 6 attached to the aircraft will be described below.
  • the “aircraft” refers to a form including a main body and a protection frame. (First embodiment) As a first embodiment of the present invention, an air vehicle capable of traveling on land will be described with reference to FIGS.
  • the aircraft body is a 4-rotor type small helicopter and the two protection frames attached to the aircraft body are hemispheres.
  • the protection frame covers the flying body in three dimensions (three-dimensional) or disk shape (two-dimensional), and can be rotated as a shape. Requirements are optional.
  • FIG. 1 shows the configuration of this embodiment.
  • the flying body is composed of a flying body main body including a main body 1 and a propulsion unit 2 and two right and left protection frames 5 and 6.
  • FIG. 2 shows the configuration of the aircraft body. It consists of a main body 1 and a propulsion unit 2.
  • the main body 1 includes a control unit 1-1 and a battery unit 1-2.
  • the controller 1-1 is mounted in the main body 1 (not shown).
  • the battery unit 1-2 is mounted in the main body 1 or on the lower surface of the main body 1.
  • the control unit controls the propulsion unit 2 according to a command from the operation unit from a place different from the flying object such as the land.
  • the propulsion unit 2 includes a propeller 2-1 and a motor 2-2 (not shown). Although it consists of four propulsion parts in FIG. 2, the number is arbitrary.
  • a cross-shaped rod-shaped frame is formed around the main body, and four propulsion parts are fixed to the ends.
  • the four propellers 2-1 are arranged on one plane. When the rotation speeds of the four propellers are the same, the aircraft body flies vertically.
  • the horizontal movement of the flying body lowers the number of rotations of the two propellers in the direction of movement among the four propellers.
  • the flying vehicle body flies while tilting so that the end in the moving direction is lowered.
  • the rotation speed of the left and right propellers is changed. This horizontal movement is the basic operation for land and water travel.
  • the two fixed shafts 3 to which the protect frames 5 and 6 are attached have a rod shape.
  • the fixed shaft 3 is configured such that one end is fixed to the left and right of the main body portion and the rotating portion 4 is provided at the other end so as not to interfere with the four propulsion portions.
  • the two fixing shafts are fixed to the main body 1 so that the two fixing portions are coaxial.
  • the mounting direction of the fixed shaft is preferably perpendicular to the main traveling direction in the basic operation of the aircraft on land (and on the water if possible). This is because when traveling on land or water using the contour portions 5-1 and 6-1 of the protect frames 5 and 6 as wheels, the traveling direction by the rotation of the contour portion coincides with the main traveling direction, and energy efficiency is good. Therefore, in the case of the four-rotor type small helicopter shown in FIGS. 1 and 2, the main traveling direction of the flying object as a wheel is two front and rear directions from the basic movement of the horizontal movement as the flying object body.
  • the main body of the flying object has a main propeller mounted on the upper part of the main body on which a person rides like a normal helicopter
  • the direction in which the cockpit is located is the traveling direction during horizontal movement. Therefore, the fixed shaft is attached to the left and right of the main body portion perpendicular to the traveling direction. At this time, since the propeller is at the upper part of the main body, the fixed shaft does not interfere with the propeller.
  • the size of the protective frame covers the aircraft body (especially the propeller) in three dimensions (three-dimensional) and covers the aircraft body (especially the propeller) during a crash, takeoff, landing, and flight. It is large enough not to hit the land or obstacles.
  • the protection frames 5 and 6 In order to enclose the flying object in three dimensions, the protection frames 5 and 6 have a concave shape (including a disk shape) with respect to the main body 1 and the propulsion unit 2.
  • the shape of the protection frame is a shape that is easy to roll when landing in any posture (for example, a hemisphere or a cylindrical shape when viewed from the traveling direction of the aircraft body, in a direction parallel to the traveling direction and extending the fixed shaft 3
  • the cross-sectional shape orthogonal to each other is circular (including a disk shape) or a hexahedron or more polyhedron, etc.) and has a sufficient clearance so as not to obstruct the air flow of the internal flying body.
  • the weight of the protection frame should be sufficiently light below the payload of the flying body, and the flying body including the protection frame should be able to move freely in the air, including takeoff.
  • the left and right protect frames 5 or 6 are configured as shown in FIG.
  • the contour portions 5-1 and 6-1 of the protect frame are formed in a circular shape with a thin plate having a certain width serving as a ground contact surface. This serves as a wheel.
  • the frame parts 5-2 and 6-2 of the protect frame are formed by bending a thin plate material into a semicircular arc shape and connecting both ends to the contour part 5-1 or 6-1.
  • the skeleton part 5-2 or 6-2 is composed of a plurality of pieces, and the tops of semicircular arc shapes are overlapped.
  • the top of the overlap is the rotation center of the outline 5-1 or 6-1 of the protect frame.
  • the left and right protect frames 5 or 6 connect the respective rotation center portions to the rotation portion 4 at the end of the fixed shaft 3 so as to cover the flying body.
  • a space is provided between the contour portions 5-1 and 6-1 of the protect frame, which is the center of the flying object.
  • the two contour portions 5-1 and 6-1 may have the same shape, and may be arranged coaxially and parallel to each other. This is to ensure stability as the left and right wheels when the flying object travels on the land with two wheels (hereinafter referred to as a two-wheeled vehicle) and to ensure visibility when the camera 9 is mounted on the flying object body. .
  • Protect frame is made of flexible and tough resin by integral molding. Each contour part and skeleton part are produced by bonding with adhesives, welding, etc. It may also be produced by mechanically joining with rivets or the like.
  • the resin is preferably a polypropylene material or a material reinforced with carbon fiber.
  • the left and right protect frames are attached to the rotating parts 4 at both ends of the flying object fixed shaft 3, respectively, but only one axis is configured to be freely rotatable.
  • the following three embodiments (A), (B), and (C) are preferably made possible.
  • the left and right protection frames 5 and 6 cover and cover the main body 1 and the propulsion unit 2 of the aircraft body, and the ground surface, obstacles and people during landing, takeoff, flight and crash.
  • the aircraft body especially the propulsion unit 2 is not large enough to hit.
  • the main body 1 of the flying object and the two fixed shafts 3 are fixed, and the rotating portion 4 is coaxial with the other end of the two fixed shafts 3.
  • the top part which is the rotation center of the rotation part 4 and the two protect frames 5 or 6 is connected to each other. As a result, the protect frame 5 or 6 can freely rotate uniaxially around the fixed shaft 3.
  • the weight 8 in FIG. 1 allows the aircraft to roll in any posture, including landing and crash, when there is no thrust, and the flying body faces vertically upwards, regardless of the shape of the ground surface, and is in a convenient posture at takeoff. Calm down.
  • all or part of the battery unit 1-2 of the main body unit 1 may be transferred to the weight 8.
  • a heavy object such as a camera 9 and an environment measurement device 10 described later may be used as a weight and mounted on a vertically lower portion in the vicinity of the weight 8. At this time, the mounted object such as the weight 8 does not protrude from the contour portion 5-1 or 6-1 of the protect frame.
  • FIG. 3 shows another embodiment of the flying object. This is because there are four stays, or two pairs, in a cross shape from the main body to mount the propulsion unit as the main body of the flying body, and fixed shafts are connected to the left and right ends of the pair of stays. is there. It is the same structure that protect frames are attached to both ends of the fixed shaft. According to such a configuration, since it is not necessary to attach a fixed shaft to the main body, the degree of freedom in designing the main body is increased.
  • the movement function of the flying object is equipped with two or more propulsion units, and by controlling each propulsion unit individually, all movements such as flying and traveling in all directions are possible.
  • the movement function of the flying object is equipped with two or more propulsion units, and by controlling each propulsion unit individually, all movements such as flying and traveling in all directions are possible.
  • FIG. 4 (side view) shows a mechanism of free flight in the air, ensuring safety and overcoming obstacles using rolling. .
  • the flying body (particularly a propeller such as a propeller) can continue to move without being damaged by the protection frame surrounding the obstacle.
  • the flying object of the present invention can ensure free movement and safety during air flight.
  • the frame rolls on the wall surface by adjusting the flying object and its direction, and can continue to move safely. That is, in FIG. 4, since the wall surface stands in the vertical direction, the direction of the weight is made parallel to the wall surface by making the rotation speeds of the four propellers the same. By increasing the number of revolutions, the flying body rolls over the wall and rises.
  • the flying object of the present invention also enables free air movement by overcoming obstacles using rolling.
  • FIG. 5 shows a case where a rotational force in the yaw direction is applied to the flying object.
  • the energy for rolling on land is 10-25% of the energy of air flight.
  • FIG. 6 is a right side view of the right protect frame 7 for running on water. This is composed of the contour portion 5-1 and the skeleton portion 5-2 of the protection frame for land traveling, and the contour portion 7-1 for water traveling is added to the outside of the contour portion 5-1. .
  • the outer contour portion 7-1 is formed into a hollow tube shape with a resin material such as foamed polyethylene (apparent density 0.0227 g / cm 3 ). Alternatively, it may be solidly molded with a foaming resin such as foamed polystyrene (apparent density 0.0169 g / cm 3 ). That is, the outer contour portion 7-1 sets the apparent density smaller than that of water in order to obtain buoyancy.
  • a resin material such as foamed polyethylene (apparent density 0.0227 g / cm 3 ).
  • foaming resin such as foamed polystyrene (apparent density 0.0169 g / cm 3 ). That is, the outer contour portion 7-1 sets the apparent density smaller than that of
  • a water-borne contour portion 7-2 made of a hollow structure or foam material may be formed inside the contour portion 5-1. That is, as a structure for obtaining buoyancy, the outer contour portion 7-1 and / or the inner contour portion 7-2 are configured using a hollow tube and / or foaming resin. Further, if the structure for obtaining buoyancy has mechanical strength as a protect frame and wheels, the contour portion may be configured only by the structure for obtaining buoyancy.
  • the left and right protect frame contours (corresponding to tires) smaller than the water density.
  • it may be hollow like a tube of a tire or may be made of a foamed resin.
  • hollowing and foaming resin may be used in combination.
  • the foaming resin for example, foamed polyethylene (apparent density 0.0227 g / cm 3) or the like, foamed styrene (apparent density 0.0169 g / cm 3), or the like may be used.
  • the present embodiment not only flying but also stable and safe by rolling, it can run freely on the water as well as on land, and the force to lift the flying object is not necessary when rolling on land or water Therefore, depending on the situation, flight and land or water can be used properly, so less energy is required compared to conventional aerial flight, and high energy saving, versatility and high functionality are possible.
  • a propulsion unit that generates a propulsion force a main body unit that includes a control unit that controls the propulsion unit, a protect frame that surrounds the main body unit and the propulsion unit, and the protect frame for the propulsion unit
  • a flying body comprising a shaft for attaching the protect frame to the main body so as to be rotatable, and the protect frame is configured to float on water
  • Propulsion for generating propulsive force A main body unit including a control unit for controlling the propulsion unit, a protect frame surrounding the main body unit and the propulsion unit, and the protect frame so that the protect frame can rotate with respect to the propulsion unit.
  • a flying body comprising a shaft attached to the main body, wherein the density of the protection frame is equal to or less than the density of water [Invention W3] Flight of the invention W1 or W2, characterized in that b Detect frame is hollow.
  • invention W4 The flying object of Invention W1 or W2, wherein the protect frame includes a foamed resin.
  • FIG. 7 shows an invention in which various functional parts are mounted on a flying object and a plurality of flying objects function in conjunction with each other in the third embodiment of the present invention.
  • FIG. 7 shows a configuration in which a position information detection device 11 (not shown) is mounted on the control unit 1-1 of the flying object, and a camera 9 and an environment measurement device 10 are mounted on a vertically lower portion of the main body unit 1.
  • the environment measuring device 10 is a device for measuring radiation, gas, or temperature.
  • the ground computer 12-1 (measurement control device installed on the ground, composed of a computer and a CPU board that can write a control program) and the calculation control device on the flying object (equipped in the control unit 1-1), You can control equipment mounted on the aircraft from the ground. Accordingly, the flying object can be controlled to move automatically or manually.
  • a position information detection device 10 As the measurement control device 12, a position information detection device 10, a camera 9, and an environment measurement device 11 are mounted on each of a plurality of flying objects, and the control unit 1-1 and the ground computer 12-1 on the flying object are wirelessly or wired. Connecting.
  • the camera 9 is mounted with the lens direction set between two protection frames so that the outside of the flying object can be photographed.
  • the ground computer 12-1 makes it possible to perform coordinated cooperative work by linking a plurality of flying objects, thereby realizing simultaneous monitoring, simultaneous observation from various angles on land and in the air, and coordinated conveyance of heavy objects.
  • the flying body side charging terminal (1-3) is provided below the battery part (1-2). It is an automatic charging device.
  • the charging device includes a charging unit and an induction unit.
  • the guide portion has guide portions that abut on the outer shape of the right and left protect frames of the flying object. The flying object is guided to the guide unit and set in the charging device.
  • FIG. This is a guide that uses the shape of the contour of the protect frame of the flying object.
  • the pair of guides (14-1) abut one another so that one end thereof is convex with respect to the direction in which the flying object advances toward the charging device.
  • the other end is in contact with one end of the other pair of guides (14-2).
  • the pair of guides (14-2) are set in parallel to each other, and the interval is set so as to fit in the interval between the contour portions of the right and left protect frames of the flying object.
  • the other end of the pair of guides (14-2) abuts against a wall (stopper 14-3), and the wall serves as a stopper that stops the flight of the flying object.
  • the height of the wall is set higher than the radius of the contour portion of the protection frame of the flying object.
  • the guide guide portions (14-1, 14-2) may have a height that plays the role of a guide rail that guides the flying object by contacting the contour portion. Further, since the linear portion of the side portion of the guide guide and the arc portion of the contour portion of the spherical protect frame are in point contact, the frictional force is small and the flying object is smoothly guided.
  • the flying object travels toward the charging device, if the convex portion of the guide guide (14-1) is within the interval of the contour portion, the flying object is guided to the guide guide (14-1), and the guide guide (14-1) 14-2) is led outside.
  • FIG. 9 shows an embodiment in which setting is performed by contacting the frame portion of the protect frame and the guide guide.
  • the guide part (14-1) is installed in a square shape so as to be concave in the direction in which the flying object travels, that is, spread outward. If the range of travel of the flying object to the charging device is within the range of both ends of the guidance guide (14-1) that are open in the letter C, the flying object is guided to the charging device along the guidance guide.
  • the contour portion (5-1) is formed from the end portion of the guide guide (14-1) on the corresponding side of the guide portion, which is open to the C-shape. If in the inner range, the aircraft is guided to the charging device.
  • the linear portion at the top of the guide and the spherical portion of the spherical skeleton are in point contact, the frictional force is small and the flying object is guided smoothly.
  • the charging of the flying object by the charging device will be described with reference to FIG. Note that the control of the aircraft in the following process is performed remotely from the ground.
  • the flying object approaches the charging device while the protect frame abuts against the guide guides (14-1, 14-2) and rotates.
  • the flying object stops when the protect frame hits the stopper (14-3).
  • the switch (13-4) is pushed by the dead weight of the flying object, and the charging power supply unit (13-1) is raised by the movable mechanism (movable base, 13-3).
  • the flying object is lifted, the flying object side charging terminal (1-3) of the flying object is connected to the feeding side charging terminal (13-2) of the charging device, and charging is started.
  • the adjustment guide (13-5) provided around the charging power supply unit (13-1) guides the two charging terminals to be securely connected.
  • the charging power supply unit (13-1) is lowered by the movable mechanism (13-3).
  • the flying object lands.
  • the protect frame rolls away from the charging device.
  • the fifth embodiment of the present invention is a vehicle according to the first to third embodiments, and a charging device according to the fourth embodiment.
  • the present invention relates to a system that detects the position of a charging device and the position of a flying object, controls a flying object propulsion device by a ground computer, and reliably connects the flying object side charging terminal and the power supply side charging terminal. .
  • An example of this embodiment is shown in FIG.
  • the guidance part of the charging device of FIG. 11 is a case where it guides with the outline part of FIG.
  • the flying object side charging terminal (1-3) of the flying object battery is provided beside the battery part (1-2) in front of the traveling direction.
  • the power supply side charging terminal (13-2) of the charging device is provided in a direction facing the flying object side charging terminal (1-3) of the flying object.
  • the charging power supply unit (13-1) to which the power supply side charging terminal (13-2) is attached is movable in the left-right direction of FIG. 11, that is, the front-rear direction of the flying object by the movable mechanism (13-3).
  • the switch (13-4) is operated, and the movable mechanism (13-3) and the elevating part (13-7) are operated.
  • the elevating part (13-7) ascends and comes into contact with the rear part of the flying object and serves as a stopper for fixing the flying object to the charging device in the front-rear direction.
  • the process of charging the flying object by the charging device according to the present embodiment will be described with reference to FIG.
  • the vehicle can be controlled by the autopilot in the following process.
  • the flying object detects a signal indicating the position of the charging device from the transmitter installed in the charging device by the mounted receiver, and controls the propulsion unit by the control unit to approach the charging device.
  • the protect frame moves in contact with the guides 1 and 2 (14-1 and 14-2) while rotating.
  • the flying object stops when the protect frame hits the stopper (14-3).
  • the switch (13-4) is turned on by the dead weight of the flying object, and the elevating part (13-7) is lifted to contact the rear part of the body part 1 of the flying object and fix the flying object.
  • the rear portion of the main body 1 includes rear end portions of mounted cameras, transceivers, and the like.
  • the charging power supply unit (13-1) moves toward the flying object, and the flying object side charging terminal (1-3) and the feeding side charging terminal (13-2) are connected to start charging. You may charge by non-contact and electromagnetic induction.
  • the charging mechanism (13-1) is moved in the opposite direction to the flying body by the movable mechanism (13-3), and the flying body side charging terminal (1-3) and the feeding side charging terminal (13 -2) leaves.
  • the elevating part (13-7) descends to release the fixed vehicle.
  • the signal (radio wave or light) is transmitted, and the signal is received by the reception function of the transmitter / receiver (15-1) mounted on the aircraft.
  • a method for guiding the flying object to the charging device will be described with reference to FIGS.
  • FIG. 13 adopts a wireless sign (13-6) having a transmission function as a transceiver (15-2) provided in the charging device.
  • the wireless sign (13-6) transmits radio waves or light as a signal, but in this example, it transmits light.
  • a camera (9) is mounted on the flying object as a transceiver (15-1), thereby detecting light from the wireless sign.
  • the position and direction of the charging device are read by the light detected by the camera (9), and the propulsion unit is controlled by the control unit of the flying object and guided to the charging device.
  • the relative position of the flying object and the charging device is calculated from the relative size relationship of the light source, that is, the light source becomes larger as the flying object approaches the charging device.
  • the body can also be guided to the charging device.
  • FIG. 14 shows an example in which radio waves are transmitted as signals as the transceiver (15-2).
  • radio waves are transmitted as signals as the transceiver (15-2).
  • infrared rays can be used as the radio signal.
  • FIG. 15 shows a method of guiding the flying object to the charging device by a signal sent from the flying object.
  • the position signal of the flying object is transmitted using the transmission function of the transceiver (15-1) of the flying object.
  • the signal is received using the reception function of the transmitter / receiver (15-2) of the charging device.
  • the received position signal of the flying object is transmitted to the ground computer (12-1) wirelessly or by wire.
  • the control signal calculation of the flying object such as the route for appropriately guiding the flying object to the charging device from the position signal of the flying object and the charging device or the relative position information between the flying object and the charging device.
  • a signal is transmitted wirelessly to the control unit (1-1) of the flying object.
  • the flight vehicle is appropriately guided to the charging device by the flight operation control. That is, the ground computer (12-1) plays a role of the control tower of the flying object.
  • ground computer (12-1) plays the role of the control tower, it is possible to reduce the computational equipment mounted on the flying object and reduce the weight of the flying object and the burden of power consumption.
  • invention A is a charging device for a flying object, comprising a guiding unit and a charging unit, wherein the guiding unit moves on the land and moves the flying object at the position of the charging unit.
  • the charging device is characterized in that the power supply side charging terminal of the charging unit and the flying object side charging terminal of the flying object are connected and can be automatically charged.
  • the feature of the present invention is that the approach to the charging part is performed by rolling on the land with a protection frame, so the approach by flight like the conventional method is unnecessary, and destabilization occurs even if it receives disturbance such as wind This makes it possible to make an accurate approach to the charging unit and to ensure that the flying object is electrically connected to the charging device. As a result, the problems (1) and (2) can be solved.
  • Invention B is the charging device according to claim 10, wherein the guide portion is provided with a guide and a stopper that come into contact with the protect frame.
  • the outer shape of the protect frame can be used as a guide to ensure that the flying object can be set in the charging device.
  • Invention C includes a switch that is activated by the position or mass of the flying body to activate a movable base, and the flying body-side charging terminal and the feeding-side charging terminal are connected by the movable base.
  • the charging device and the flying object can be electrically connected reliably.
  • Invention D mounts a transmitter / receiver on the flying object and the charging device, and performs control for guiding the flying object to the charging device by a transmission function of one of the transmitter / receiver and a reception signal of the other transmitter / receiver.
  • a charging device according to any one of inventions A to C, wherein: Since the accurate relative position between the charging device and the flying object is detected, the flying object can be guided to the charging device even at a long distance, and the automatic charging operation of the flying object can be performed reliably.
  • the invention E includes a propulsion unit that generates a propulsion force, a main body unit including a control unit that controls the propulsion unit, a protect frame that surrounds the main body unit and the propulsion unit, and the protect frame is provided to the propulsion unit.
  • An aircraft including a shaft for attaching the protection frame to the main body so as to be rotatable. As described above, the protect frame attached to the main body is rotatable with respect to the propulsion unit, so that the protect frame can roll while maintaining the direction in which the propulsive force is applied.
  • the automatic battery charge exchange apparatus of 6th, 7th embodiment is an apparatus which replaces
  • the sixth and seventh embodiments relate to an apparatus for automatically exchanging a battery, taking advantage of functional features such as a vehicle wheel of a protection frame of a flying object.
  • the flying object 1 according to the sixth and seventh embodiments is the same as that of the first to fifth embodiments.
  • a plurality of batteries (for example, 10) are installed and charged in an automatic battery charging and exchanging apparatus. Each time it is used, the battery is returned to the automatic battery charge exchange device and automatically exchanged within the time when the electric capacity of the battery runs out.
  • FIG. 16 is a diagram showing an air vehicle with a protection frame and an automatic battery charge exchange device in the present embodiment.
  • the automatic battery charge exchange device includes a charge exchange unit and an induction unit.
  • the guide portion has guide portions that abut on the outer shape of the right and left protect frames of the flying object. The flying object is guided to the guide unit and set in the automatic battery charge exchange device.
  • the pair of guide guides 5X2-2-1 abuts each other such that one end thereof is convex with respect to the direction in which the flying object travels toward the automatic battery charge exchange device. .
  • the other end is in contact with one end of another pair of guides 5X2-2-2.
  • the pair of guides 5X2-2-2 are set in parallel to each other, and the interval is set so as to fit in the interval between the contour portions of the left and right protect frames of the flying object.
  • the other end of the pair of guides 5X2-2-2 abuts against a stopper (wall), and the stopper plays a role of stopping the progress of the flying object. Therefore, the height of the wall is set higher than the radius of the contour portion of the protection frame of the flying object.
  • the guide guide 5X2-2-1 and the guide guide 5X2-2-2 may have a height that serves as a guide rail that abuts the contour portion and guides the flying object. Further, since the linear portion of the side surface portion of the guiding guide 5X2-2-1 and the arc portion of the contour portion of the spherical protect frame are in point contact, the frictional force is small and the flying object is smoothly guided.
  • the flying object travels on land or water toward the automatic battery charge exchange device, if the projecting portion of the guide guide 5X2-2-1 is within the distance between the outlines of the two protection frames, the flying object Is guided to the guiding guide 5X2-2-1, and is guided to the outside of the guiding guide 5X2-2-2. That is, since the movement control of the flying object moves on the ground as compared with the flight, the control can be stably performed. Further, even if variations occur in the control position of the flying object, they are corrected by the guidance guide 5X2-2-1.
  • the guide 5X2-2-1 may be installed so as to be concave in the direction in which the flying object travels, that is, spread outward. If the range of travel of the flying object to the automatic battery charging and exchanging device is within the range of both ends of the guiding guide 5X2-2-1, the flying object is guided to the charging device along the guiding guide. In the case of an integral protection frame, this guiding portion is used.
  • the process of exchanging the battery of the flying object by the automatic battery charge exchange device of this embodiment will be described with reference to FIG.
  • the control of the flying object in the following process is mainly performed automatically by remote control from the ground.
  • the flying object detects a signal sent from the transmitter / receiver of the automatic battery charging / exchange apparatus, and the protect frame rotates and approaches the ground or water.
  • the flying object approaches the charging exchange unit while the protect frame abuts on the guide guide 5X2-2-1 and the guide guide 5X2-2-2 and rotates.
  • the switch is pushed by the dead weight of the flying object, the hand part rises and takes the battery.
  • the hand part is lowered and the rotating part rotates.
  • the hand unit takes the fully charged battery and attaches the battery to the flying object.
  • the flying object leaves the automatic battery charging and exchanging apparatus while rotating the protect frame by applying thrust in the direction opposite to that in the above (1).
  • Rotating part of this embodiment is a stand that is installed horizontally and circular. A plurality of batteries are installed on the table at almost equal intervals. It is electrically connected and charged on the table.
  • FIG. 18 is a diagram showing the relationship between the wheel stopper and the protect frame of the flying object in the automatic battery charge exchange device.
  • the protect frame gets over the wheel stopper, the protect frame hits the stopper and the flying object stops. At this time, the wheel stopper prevents the flying body from moving in the reverse direction due to the reaction.
  • the wheel stopper is stored below the land line, lifted by a switch that operates due to the weight of the flying object, abuts against the rear part of the protecting frame of the flying object, and stops the flying object It may be fixed in the direction.
  • FIG. 19 is an arrow view and a three-sided view showing the structure of the battery mounting portion of the automatic battery charge exchange device in the present embodiment.
  • the battery cover has holes on the side and top, and a pair of L-shaped brackets are attached.
  • a pair of L-shaped brackets constitute a connecting portion and are connected via an elastic body. When both sides of the connecting portion are compressed, the upper portion of the connecting portion also approaches.
  • the upper part of the connection part has a hook part. That is, the battery mounting portion is composed of a connecting portion and an elastic body, and is fitted to the battery cover.
  • the connecting part when attaching the battery to the flying body, compress both sides of the connecting part with the hand part and compress the hook part on the upper part of the connecting part. When it is inserted into the mounting part of the flying object and the compressive force is released, the connecting part spreads and is fastened to the mounting part of the flying object.
  • a terminal portion (battery + -electrode) below the hook portion at the top of the battery connection portion.
  • the battery body is electrically connected to the + and-electrodes of the battery.
  • FIG. 20 is a plan view of a battery mounting portion of the automatic battery charge exchange device according to the present embodiment.
  • the elastic body is a spring material such as a coil spring, a leaf spring, or rubber.
  • FIG. 21 is a diagram for explaining a structure for taking out the battery from the flying object by the automatic battery charge exchange device according to the present embodiment.
  • the process from the upper right figure to the lower right figure in the counterclockwise direction will be described.
  • the hand part moves up to the position of the battery in order to remove and collect the battery mounted on the flying body (airframe).
  • the connecting portion of the battery is pushed and compressed from both sides (left and right) by the hand.
  • the elastic body spring or the like
  • the hook portion of the connecting portion is smaller than the hole of the mounting portion of the flying object.
  • the battery can be removed from the flying object and recovered by lowering the hand part.
  • FIG. 22 is a diagram for explaining a structure for attaching a battery to a flying object by the automatic battery charge / exchange apparatus according to the present embodiment.
  • the process from the upper right figure to the lower right figure in the counterclockwise direction will be described.
  • the hand portion holds the battery and rises with respect to the mounting portion of the flying object. Since the elastic body is compressed in the connecting portion of the battery, the upper portion thereof is convex (triangular), so that it easily enters the mounting portion groove of the flying object.
  • the connecting part spreads left and right by the elastic body and is mechanically pressed and fitted to the mounting part of the flying object. Therefore, electrical connection is also ensured.
  • FIG. 23 is a diagram illustrating a structure in which the battery is held by the hand unit of the automatic battery charge / exchange apparatus according to the present embodiment.
  • the left figure shows a state where the elastic body of the connecting portion is compressed. It is also open electrically.
  • the right figure shows a state where the elastic body of the connecting part is released from the compression of the hand part.
  • the flying object and the battery are mechanically and electrically connected.
  • the electric wire of a battery changes in length, the design which gave allowance in length is required.
  • FIG. 24 is a diagram illustrating the structure of the holding unit 5X2-1-4 that holds the battery in the rotating unit of the automatic battery charge exchange device according to this embodiment.
  • the rotating part is horizontally installed in a disk shape, and a plurality of batteries are attached and charged thereon.
  • a battery holding part (place) for each battery is provided via a column with a space between the disk upper surface and the battery holding part lower surface.
  • the pillar is held in a state where one side is opened.
  • the hand part enters the open lower space, moves from here to the upper part, and performs operations such as compressing and lifting the battery connecting part.
  • the battery holding part has walls on four sides to prevent the battery from falling.
  • the battery charging method is performed, for example, by having a charging terminal on the lower surface of the battery and electrically connecting to a terminal on the upper surface of the battery holding unit. Moreover, you may charge by non-contact and electromagnetic induction.
  • FIG. 25 is a diagram showing the positional relationship between the battery and the hand unit of the rotating unit of the automatic battery charge exchange device according to the present embodiment.
  • the hand part indicates the time when the battery is not moved. It is located in the space (gap) between the upper surface of the disk and the lower surface of the battery holding part, and interferes with the pillar that supports the battery holding part when the disk rotates during battery replacement. It is supposed not to.
  • the feature of the seventh embodiment of the present invention is that the rotating part rotates on a vertical plane, while the disk of the rotating part of the sixth embodiment is placed horizontally and the movement at the time of battery replacement rotates on a horizontal plane. This operation is to replace the battery. Therefore, a hand part is unnecessary. This will be described with reference to FIGS.
  • FIG. 26 is a diagram showing an air vehicle with a protection frame and an automatic battery charge / exchange device in the present embodiment.
  • the rotating part is a donut-shaped belt, and a plurality of battery holding parts are attached to the outside.
  • the holding part has a charging terminal.
  • the height of the battery holding portion above the belt and the height of the battery position of the flying vehicle traveling on the ground are substantially the same level. Others are the same as FIG.
  • FIG. 27 is a diagram for explaining a process of replacing the battery of the flying object by the automatic battery charge / exchange device according to the present embodiment.
  • the flying object detects a signal sent from the transmitter / receiver of the automatic battery charging / exchange apparatus, and the protect frame rotates and approaches the ground or water.
  • the flying object approaches the rotating part of the automatic battery charge exchange device while the protect frame rotates while contacting the guiding guide 5X2-2-1 and the guiding guide 5X2-2-2.
  • the flying object stops when the protect frame hits the stopper.
  • the switch is pushed by the weight of the flying object, the rotating part rotates, and the holding part on the belt engages with the battery of the flying object to remove the battery from the flying object and start charging.
  • the holding part holding the battery whose rotating part is rotated and charging on the belt is completed attaches the battery to the attachment part at the lower part of the flying object. This completes the battery replacement and stops the rotation of the rotating part.
  • the flying object leaves the automatic battery charging and exchanging device while rotating the protect frame by applying a thrust in the direction opposite to that in the above (1).
  • FIG. 28 is an arrow view and a three-sided view showing the structure of the battery mounting portion of the automatic battery charge exchange device in the present embodiment.
  • the shape of the hooking portion of the connecting portion is a triangle with chamfered front and rear sides. When the elastic body is compressed, the connecting portion has a triangular shape that protrudes forward or backward in the direction of rotation.
  • the other structure of the battery unit is the same as that of the sixth embodiment.
  • FIG. 29 is a detailed view of an attaching portion for attaching and detaching the battery to the flying body by the automatic battery charging and exchanging apparatus in the present embodiment.
  • FIG. 30 is a plan view of the battery connection part and the flying object attachment part of the automatic battery charge exchange device according to the present embodiment. The battery attaching / detaching mechanism will be described with reference to FIGS. 29 and 30.
  • FIG. 30 shows a state where the battery is completely attached to the attachment part of the flying object.
  • the battery holding part is opened. The battery is now attached to the aircraft from the automatic battery charge exchange device.
  • FIG. 31 is a diagram for explaining a structure for holding a battery in the rotating part of the automatic battery charge exchange device according to the present embodiment.
  • the invention F includes a main body unit including a control unit and a battery unit, a propulsion unit, and a shaft unit attached to the main body unit or the propulsion unit so as to be perpendicular to a main traveling direction, and is rotatable on the shaft.
  • a battery charge exchange device comprising a guide unit and a charge exchange unit for a flying body comprising a body frame and a protection frame that wraps the propulsion unit three-dimensionally. The body is stopped at the position of the exchange unit by rolling movement of the protect frame on land or water, and the battery of the battery unit of the flying body and the battery of the charge exchange unit are automatically exchanged.
  • the invention G is the automatic battery charge exchange device according to the invention F, characterized in that the guide part is provided with a guide and a stopper that contact the protect frame.
  • Invention H comprises a switch that is activated by the position or mass of the flying object to activate the hand, and allows the battery of the flying object and the battery of the charge exchange unit to be exchanged by the hand.
  • This is an automatic battery exchange device.
  • the invention I is the automatic battery exchange device according to any one of the inventions F to H, wherein the charge exchange unit has a rotating unit that detachably holds a plurality of batteries.
  • the invention J is a battery characterized in that the battery has an attachment part having a connecting part and an elastic body, and is detachable from the flying object and the automatic battery exchange device.
  • the invention K is characterized in that the attachment portion has a connection terminal and is connected to the connection terminal of the flying object or the automatic battery exchange device by being urged by the elastic body. It is a battery.
  • FIG. 32 shows the configuration of an aircraft capable of traveling on land in the eighth embodiment of the present invention.
  • the flying body includes a main body 6X1 having a control function, a propulsion unit 6X3, a battery 6X5 positioned below the main body 6X1, and an inspection device 6X7 mounted on the main body 6X1. These can be removed with a tool or the like during maintenance, but are fixed integrally.
  • the two protect frames 6X9 are rotatably attached to both ends of the shaft portion 6X11.
  • the two protect frames 6X9 function as wheels and cover the flying body in three dimensions.
  • the protection frame can move freely on land by a rolling motion by the thrust generated by the propulsion unit 3 of the flying body.
  • the main body 6X1 and the shaft 6X11 of the flying body are assembled via an elastic body 6X13 and a damper 6X15.
  • the elastic body 6X13 (the first elastic body and the second elastic body) and the damper 6X15 (the first damper and the second damper) are bent by the weight of the flying body.
  • the elastic body 6X13 and the damper 6X15 are preferably attached at two locations that are line-symmetric with respect to the flying object. This is because the bending of the main body 6X1 in the horizontal direction with respect to the shaft 6X11 can be suppressed and the bending can be made only in the vertical direction. Thus, the effect of this invention can be exhibited more by restraining two-dimensionally and attaching.
  • the elastic characteristic of the elastic body 6X13 is based on the fact that a useful amount of deflection occurs due to the total mass of the main body 6X1, the propulsion unit 6X3, the battery 6X5, and the inspection device 6X7 of the flying object.
  • the effective amount of deflection varies depending on the size of the aircraft.
  • Other characteristics of the flying object are the same as those of the first to seventh embodiments.
  • FIG. 33 shows a case where the flying object in this embodiment travels horizontally on a vertical wall.
  • the vertical direction is the X axis and the horizontal direction is the Y axis.
  • the protect frame 9 is in contact with a vertical wall, and the flying object travels in the horizontal direction (Y-axis direction) by the propulsive force of the propulsion unit 3.
  • the protect frame 6X9 is in contact with the wall, and the flying object travels in the Y-axis direction. Since the Y direction is the main traveling direction, the propulsion unit 3 is inclined with respect to the Y-axis direction to generate a propulsive force (lift).
  • the protect frame 6X9 is in contact with the wall, and the flying object is traveling in the Y-axis direction.
  • the main body 6X1 and the shaft 6X11 of the flying body are assembled via an elastic body 6X13 and a damper 6X15, and the elastic body 6X13 and the damper 6X15 extend due to gravity due to the mass of the flying body. be able to.
  • the propulsion unit 6X3 can be inclined two-dimensionally in the X-axis direction, and generates a propulsive force (lift) above the X-axis.
  • FIG. 34 shows a state of force when the flying object in the present embodiment travels horizontally (Y direction) on a vertical wall.
  • the propulsion unit 6X3 generates lift (vector display) perpendicular to the propulsion unit 6X3. Since the propulsion unit 6X3 is inclined in the traveling direction, a Y-axis direction component of lift is generated in the horizontal direction. In addition, a lift force that presses the protective frame against the wall is also generated in the wall direction. Therefore, the flying object can travel on the vertical wall in the horizontal direction.
  • FIG. 35 shows a state of force when the flying object in the present embodiment travels upward (X direction) on a vertical wall.
  • the propulsion unit 6X3 generates lift (vector) perpendicular to the propulsion unit 6X3.
  • the main body portion 6X1 and the shaft portion 6X11 of the flying body are assembled via the elastic body 6X13 and the damper 6X15, and the elastic body 6X13 and the damper 6X15 can be extended by the gravity due to the mass of the flying body.
  • the propulsion unit 6X3 can also be two-dimensionally inclined in the X-axis direction, which is the vertical upward direction, and generates an X-axis direction component of lift above the X-axis.
  • a lift force that presses the protective frame against the wall is also generated in the wall direction. Therefore, the flying body can travel in the horizontal direction on the vertical wall without falling due to gravity due to the component of the lift in the X-axis direction.
  • the elastic body 6X13 and the damper 6X15 connect the shaft 6X11 and the main body 6X1 at two locations, the lower elastic body 6X13 and the damper 6X15 are compressed, and the upper elastic body 6X13 and the damper 6X15 are tensioned. .
  • the effect of this invention can be exhibited more by restraining two-dimensionally and attaching.
  • FIG. 36 shows a case where the flying object in the present embodiment ascends in the air, hits the ceiling, and travels on the ceiling.
  • (1) shows a state where the flying object is on land.
  • the propulsion unit 6X3 is horizontal, a vertical upward lift is working, and the flying object floats toward the ceiling.
  • (2) shows the moment when the flying object reaches the horizontal ceiling. If there is a convex portion on the ceiling, the protect frame on one side of the flying body rides on the convex portion, and the shaft portion 6X11 and the main body portion 6X1 do not become horizontal.
  • the inspection device (camera etc.) mounted on the main body 1 can inspect the ceiling horizontally with the ceiling surface.
  • FIG. 37 shows a state in which an impact is absorbed when the flying object in the present embodiment crashes on land.
  • the protect frame 6X9 collides with the land.
  • the protect frame 6X9 is elastic and can absorb the impact of a collision.
  • the main body portion 6X1 and the shaft portion 6X11 of the flying body are assembled via an elastic body 6X13 and a damper 6X15. Therefore, since the impact of the collision can be further absorbed, the control device, the propulsion unit 6X3, the battery 6X5, and the inspection device 6X7 mounted on the main body 1 can be more effectively protected.
  • the elastic body 6X13 is a spring mechanism such as a coil spring, a leaf spring, or a torsion spring, or / and a material having elastic force such as rubber.
  • FIG. 38 shows an aircraft in the ninth embodiment of the present invention.
  • a torsion spring 6X17 first elastic body
  • the shaft portion 6X11 and the main body portion 6X1 are preferably connected at two or more locations by the elastic body 6X13 and the damper 6X15 according to the eighth embodiment.
  • the positional relationship of the part 6X1 is specified, and the flying body main body can be kept horizontal with respect to the shaft part 6X11 by the gravity of the flying body or appropriate gravity.
  • FIG. 39 shows an elastic torsion spring used for the flying object in the ninth embodiment of the present invention.
  • the torsion spring since the torsion spring is normally compressed and used, the main body 6X1 is assembled to the upper arm 6X17a and the shaft 6X11 is assembled to the lower arm 6X17b.
  • the arm 6X17a and the arm 6X17b of the torsion spring 6X17 are connected in one place because the operation direction is two-dimensionally restricted.
  • the mechanical characteristics of the torsion spring 6X17 are selected in accordance with the mass of the flying body, the size of the flying body, and the like.
  • the prior art aircraft body has the following problems. That is, the aircraft body having the propulsion device (propeller drive device, jet type propulsion device, etc.) disclosed in Non-Patent Documents 1 to 4 and the aircraft body disclosed in Patent Document 1 have the following problems. is there.
  • the inventors made an invention (hereinafter referred to as a flying body) in which a three-dimensional protection frame for protecting a necessary part of an existing flying body is attached to the flying body.
  • a flying body in which a three-dimensional protection frame for protecting a necessary part of an existing flying body is attached to the flying body.
  • This does not cause damage to the aircraft body even if it collides with an obstacle that exists in three-dimensional space, reduces damage during landing or crash, and protects the aircraft body and the mounting equipment attached to it Is the body. Therefore, even if the flying object is landed or crashed, it can travel on all directions on the land. Since it can move on land, it does not have to lift the flying object, and the travel time can be extended. Therefore, the problem of the above-mentioned flying body can be solved.
  • This invention can be applied to the inspection of aging tunnels, bridge ceilings, walls, etc.
  • inspection equipment such as cameras and contact sensors can be mounted on the flying object to collect data such as photographing the surface of tunnels and bridges.
  • the shaft part for attaching the protection frame is fixedly attached to the main body of the aircraft body on which the inspection equipment is mounted.
  • the flying object of the present invention travels with the propulsion unit (aircraft body) tilted in the traveling direction. Therefore, when traveling horizontally on a vertical wall, the propulsion unit is tilted in the horizontal direction to obtain propulsive force (lift), but there is no vertical upward force, so the gravity of the airframe body causes it to slide horizontally while sliding down the wall surface. Travel in the direction.
  • the present invention is to solve the problems 1 and 2 described above, and the invention K is a circumferential direction centered on the main body part and one propulsion part arranged at the center of the main body part or the main body part.
  • a plurality of propulsion parts that are evenly arranged, a battery part located at the lower part of the main body part, a shaft part attached to the main body part so as to be perpendicular to the main traveling direction, and rotatable on the shaft part
  • a protection frame that three-dimensionally wraps the main body portion and the propulsion portion, wherein the shaft portion is attached to the main body portion via an elastic body and a damper.
  • the invention L is the flying body of the invention K characterized in that the shaft portion is two-dimensionally restrained and attached to the main body portion.
  • Invention K is characterized in that the shaft portion for attaching the protection frame and the main body portion of the flying vehicle body on which the inspection equipment is mounted are attached via an elastic body and a damper. Therefore, when the flying object travels horizontally on a vertical wall, the propulsion unit is inclined in the horizontal direction.
  • the propulsion unit since a heavy battery is mounted on the lower part of the main body and vertical downward gravity is working, the propulsion unit can also be two-dimensionally inclined vertically upward by gravity to obtain upward lift. . Therefore, the flying object can travel horizontally on the vertical wall.
  • the propulsion unit can also be two-dimensionally inclined vertically upward by gravity to obtain upward lift. . Therefore, the flying object can travel horizontally on the vertical wall.
  • it is possible to protect the flying body and the mounted inspection equipment by the function of absorbing the shock and vibration of the elastic body and the damper.
  • the shaft portion is two-dimensionally restrained and attached to the main body portion, so that the main body portion is restrained from bending in the horizontal direction with respect to the shaft portion and is bent only in the vertical direction. Is.
  • FIG. 41 is an arrow view showing the configuration of the tenth embodiment of the flying object 7X1.
  • the wheel portion 7X10 includes an axle 7X11, a pair of wheels 7X12, and an axle fixing portion 7X13.
  • the pair of wheels 7X12 are rotatably attached to both ends of the axle 7X11.
  • the pair of wheels 7X12 three-dimensionally covers the flying body 7X20 of the flying body to protect the flying body.
  • the pair of wheels 7X12 may be an integral circle, an ellipse, or a polygon.
  • the pair of wheels 7X12 may be two-dimensional wheels (general bicycle wheels, automobile tires, etc.).
  • the flying object can move freely on land by a rolling motion of the pair of wheels 7X12 by the thrust generated by the propulsion unit 7X21 of the flying object body 7X20.
  • the flying body 7X20 includes a propulsion unit 7X21, a roll shaft 7X22, and a roll shaft bearing 7X23.
  • the flying body 7X20 has a control unit for controlling the lock mechanism 7X30, the propulsion unit 7X21 of the flying object 7X1, and a mounting space for mounting inspection equipment such as a battery and a camera.
  • the flying body 7X1 includes a roll shaft bearing 7X23 fixed to the flying body main body 7X20 and a roll shaft 7X22 rotatably fitted to the roll shaft bearing 7X23.
  • the roll shaft 7X22 and the axle 7X11 are orthogonal to each other, and the flying body main body 7X20 is characterized by rotating around a roll shaft 7X22 with respect to the axle 7X11.
  • the roll shaft 7X22 and the axle 7X11 are orthogonal to each other because of the twist, but a through portion may be provided on the axle 7X11 so that the roll shaft 7X22 and the axle 7X11 intersect.
  • the flying body 7X20 rotates about the axle 7X11 to obtain lift, and the wheel 7X12 rotates to move two-dimensionally in the traveling direction of the wheel 7X12. Lift is not generated. Since the flying body 7X20 further rotates about the roll shaft 7X22 with respect to the axle 7X11, the flying body 7X1 also generates lift in the direction of the axle 7X11.
  • the flying body 7X20 rotates about the roll shaft 7X22 with respect to the axle 7X11, so that lift is also generated in the direction of the axle 7X11 and supports the weight of the flying body 7X1. Can do. Therefore, the vehicle can travel in the horizontal or vertical direction on the vertical wall.
  • FIG. 42 schematically shows the configuration of the tenth embodiment of the flying object 7X1.
  • FIG. 42B is a front view and FIG. 42A is a plan view.
  • the frame on which the propulsion unit 7X21 is mounted is H-shaped. That is, the propulsion unit 7X21 is mounted on four H-shaped corners, and the H-shaped horizontal bar portion corresponds to the roll shaft 7X22 and the roll shaft bearing 7X23.
  • the roll shaft 7X22 is orthogonal to the axle 7X11 in terms of a twist.
  • FIG. 42 (b) front view the flying vehicle body 7X20 including the propulsion unit 7X21 rotates about the roll shaft 7X22.
  • FIG. 43 schematically shows the configuration of the eleventh embodiment of the flying object 7X1.
  • FIG. 43B is a front view
  • FIG. 43A is a plan view.
  • the frame on which the propulsion unit 7X21 is mounted has an X shape. That is, the propulsion unit 7X21 is mounted on four X-type corners, and the X-type intersection corresponds to the roll shaft 7X22 and the roll shaft bearing 7X23.
  • the roll shaft 7X22 is orthogonal to the axle 7X11 in terms of a twist.
  • FIG. 43 (b) front view the flying vehicle body 7X20 including the propulsion unit 7X21 rotates about the roll shaft 7X22.
  • FIG. 44 shows a locking mechanism in the tenth embodiment of the flying object 7X1.
  • (A) is an overall view
  • (b) is an enlarged view at the time of locking
  • (c) is an enlarged view at the time of unlocking.
  • the wheel portion 7X10 includes an axle 7X11, a two-dimensional wheel 7X12, and an axle fixing portion 7X13.
  • the flying body 7X20 includes four propulsion units 7X21 having a propeller, a roll shaft 7X22, and a roll shaft bearing 7X23.
  • FIG. 44 (b) shows an enlarged view when the lock mechanism 7X30 is locked.
  • the flying body 7X20 has a lock part 7X32, a coil spring elastic body 7X35, and an elastic body fixing part 7X36
  • the wheel part 7X10 has a lock shaft 7X31 parallel to the axle 7X11.
  • the lock shaft 7X31 is fitted in the groove 7X33 of the lock portion 7X32. Therefore, the roll shaft 7X22 cannot rotate around the axle 7X11.
  • FIG. 44 (c) shows an enlarged view when the lock mechanism 7X30 is unlocked.
  • the flying body 7X20 has a lock part 7X32, a coil spring elastic body 7X35, and an elastic body fixing part 7X36
  • the wheel part 7X10 has a lock shaft 7X31 parallel to the axle 7X11.
  • the lock shaft 7X31 is not fitted in the groove 7X33 of the lock portion 7X32. Therefore, the roll shaft 7X22 can rotate around the axle 7X11.
  • FIG. 45 schematically shows the lock mechanism 7X30 of the flying object 7X1 as the axle 7X11 with the lock shaft 7X31 omitted.
  • FIG. 45A shows a state where the roll shaft 7X22 is locked so as not to rotate with respect to the axle 7X11.
  • FIG. 45B shows a state where the lock is released so that the roll shaft 7X22 can rotate with respect to the axle 7X11.
  • the lock mechanism 7X30 fixes the lock portion 7X32 to the roll shaft 7X22, and fixes the axle 7X11 or the lock shaft 7X31 parallel to the axle to the lock portion 7X32 by the urging force of the elastic body 7X35.
  • the lock portion 7X32 includes a V-shaped groove 7X33 and a guide 7X34, and the axle 7X11 or the lock shaft 7X31 parallel to the axle is pressed into the groove 7X33 by an urging force of the elastic body 7X35.
  • the groove 7X33 is a circular groove that matches the outer diameter of the axle 7X11 or the lock shaft 7X31 parallel to the axle, and the groove 7X33 and the axle 7X11 (or the lock shaft 7X31 parallel to the axle) are fitted to be locked. It is preferable because it is maintained.
  • the flying object 7X1 is in a locked state in order to stabilize the moving posture while flying or traveling on land.
  • FIG. 46 schematically shows a mechanism for locking again in the lock mechanism 7X30 of the flying object 7X1.
  • the lock portion 7X32 rotates with respect to the axle 7X11 or the lock shaft 7X31 parallel to the axle. Therefore, the groove 7X33 and the axle 7X11 or the lock shaft 7X31 parallel to the axle are in a twisted relationship. Therefore, the guide 7X34 is provided in the groove 7X33, and the axle 7X11 or the lock shaft 7X31 parallel to the axle is guided to the groove 7X33 by the urging force of the elastic body 7X35.
  • FIG. 47 schematically shows a state in which the flying object 7X1 travels horizontally after traveling vertically on a vertical wall.
  • the vertical direction on the wall surface is the Z axis
  • the horizontal direction on the wall surface is the Y axis
  • the vertical direction with respect to the wall surface is the X axis.
  • the lift vector generated by the propulsion unit 7X21 is represented by Fz above the Z axis, Fy on the right side of the Y axis, and Fx in the direction of pressing the wall surface.
  • the propulsion unit 7X21 is inclined (inclined 1) with respect to the moving axle 7X11 in the vertical direction (Z axis) on the wall surface, and Fz and Fx are generated.
  • the propulsion unit 7X21 is inclined with respect to the axle 7X11, presses the wheel 7X12 against the wall surface by Fx, and rotates the wheel 7X12 above the Z axis in the vertical direction by Fz to move.
  • the roll shaft 7X22 is rotated with respect to the axle 7X11, and the propulsion unit 7X21 is tilted by rotation around the X axis (inclination 2), so that the size of Fz is maintained and the flying object 7X1 is not dropped.
  • Fy and Fx are generated by the inclination 1 and Fz and Fx are generated by the inclination 2 by the inclination 1.
  • Fx presses the wheel 7X12 against the wall surface, and Fy rotates the wheel 7X12 to advance the flying object 7X1 to the right in the horizontal direction.
  • Fz functions to prevent the flying object 7X1 from dropping in the vertical direction.
  • a flying object having wheels as shown in FIG. 48 cannot travel horizontally on a vertical wall. That is, the flying object travels with the propulsion unit (aircraft body) tilted in the traveling direction with respect to the axle.
  • the propulsion unit aircraft body
  • the lift by the propulsion unit is generated in the traveling direction (Y-axis) and the wall direction (X-axis), but not in the vertical direction (Z-axis).
  • gravity due to the weight of the flying object acts below the Z axis, and the friction of the wheel above the Z axis due to the lift in the wall direction (X axis). Power works.
  • this frictional force is smaller than the gravity due to the weight of the flying object. Accordingly, the flying object travels in the horizontal direction (Y axis) while sliding down the wall surface.
  • the present invention has the following effects.
  • the invention S1 is arranged symmetrically with respect to the axle 7X11 attached so as to be perpendicular to the main traveling direction of the flying body 7X20, and one propulsion unit 7X21 disposed at the center of the flying body 7X20, or the main traveling direction.
  • a roll shaft 7X22 rotatably fitted to the shaft bearing 7X23, the roll shaft 7X22 and the axle 7X11 are orthogonal to each other, and the flying body 7X20 rotates about the roll shaft 7X22 with respect to the axle 7X11. It is a flying body characterized by this.
  • the flying object 7X1 having the wheels 7X12 can travel horizontally on a vertical wall.
  • the propulsion unit 7X21 of the flying object 7X1 tilts in the horizontal direction of the traveling direction of the wheel 7X12, which is the main traveling direction, and also tilts in the vertical direction of the right angle direction, and tilts in two directions, so that lift generated in the propulsion unit 7X21 is generated. This is because it can be divided into a horizontal direction, a vertical direction, and a direction in which the wall is pressed.
  • the flying object 7X1 is prevented from falling by its own weight due to the lifting force in the vertical direction
  • the wheel 7X12 is pressed against the wall by the lifting force in the direction of pressing the wall, and the wheel 7X12 is rotated horizontally by the lifting force in the horizontal direction.
  • the vertical and inclined walls can be moved not only horizontally in the horizontal direction but also obliquely upward and downward.
  • Invention S2 is the flying object according to Invention S1, characterized in that the flying object body 7X20 has a lock mechanism 7X30 for stopping rotation.
  • the lock mechanism 7X30 is provided so as not to rotate around the roll shaft 7X22 with respect to the axle 7X11 during normal traveling that does not travel horizontally on the vertical wall. Thereby, the traveling of the flying object can be stabilized during normal traveling.
  • the invention S3 is characterized in that the lock mechanism 7X30 fixes the lock portion 7X32 to the roll shaft 7X22, and fixes the lock shaft 7X11 or the lock shaft 7X31 parallel to the axle to the lock portion 7X32 by the urging force of the elastic body 7X35.
  • This is the flying object described in invention S2.
  • the lock mechanism 7X30 can be configured with a simple structure.
  • Invention S4 is the flying object according to invention S3, wherein the lock mechanism 7X30 is released when the wheel 7X12 abuts against a wall or the like and a force in a direction opposite to the urging force is generated.
  • the lock mechanism 7X30 can be released by contacting a wall or the like, so that the actual usability is improved.
  • this aircraft can be used to inspect ceilings and walls of buildings such as buildings. That is, it is possible to collect data such as photographing the surface of a building by mounting inspection equipment such as a camera and a contact sensor on the flying object.
  • a propulsion unit that generates propulsive force and a main body unit including a battery that is a power source of the propulsion unit;
  • the shaft A protect frame or a wheel rotatably attached to the shaft portion;
  • An aircraft including a mechanism (6X13, 6X15, 6X17, 7X23) for assembling the shaft and the main body so that the propulsion unit is movable with respect to the shaft.
  • invention P2 The mechanism includes a first elastic body, The flying body according to invention P1, wherein the shaft portion and the main body portion are assembled via the first elastic body.
  • the mechanism further includes a first damper, The flying body according to the invention P2, wherein the shaft portion and the main body portion are assembled through the first elastic body and the damper.
  • the mechanism further includes a second elastic body, The shaft portion and the main body portion are assembled via the first elastic body and the second elastic body, and the main body portion is 2 by the first elastic body and the second elastic body.
  • invention P6 A roll shaft that rotates integrally with the propulsion unit, The aircraft according to the invention P1, wherein the mechanism includes a bearing that rotatably supports the roll shaft with respect to the shaft portion.
  • invention P7 The flying object according to Invention P1 or P6, further comprising a lock mechanism that restricts the propulsion unit from being movable relative to the shaft by the mechanism.
  • SYMBOLS 1 Main-body part, 1-1 ... Control part, 1-2 ... Battery part, 1-3 ... Aircraft side charge terminal, 2 ... Propulsion part, 2-1 ... Propeller, 2-2 ... Motor, 3 ... Fixed shaft, 4 ... rotating part, 5 ... protect frame R, 5-1 ... contour part of protect frame R, 5-2 ... skeleton part of protect frame R, 6 ... protect frame L, 6-1 ... contour part of protect frame L, 6-2: Skeletal part of the protect frame L, 7: Protect frame for traveling on the water, 7-1 ... Outer contour for traveling on the water, 2-2 ... Inner contour for traveling on the water, 8 ... Weight, 9 ... Camera, 10 ... environmental measuring device, 11 ...
  • position information detecting device 12 ... measurement control device, 12-1 ... ground computer (measurement control device installed on land), 13 ... charging unit of charging device, 13-1 ... charging power source unit, 13-2: Charging side charging terminal, 13-3: movable mechanism 13-4 ... switch, 13-5 ... adjustment guide, 13-6 ... wireless sign (induction sensor), 13-7 ... elevating part, 14 ... induction part of charging device, 14-1 ... induction guide 1, 14-2 ... guide guides 2, 14-3 ... stopper, 15 ... transceiver, 15-1 ... aircraft transceiver, 15-2 ... charger transceiver.
  • Battery unit 5X3-1 ... Battery body, 5X3-2 ... Battery cover, 5X3-3 ... Elastic body, 5X3-4 ... Connecting part, 5X3-4-1 ... Cut Part, 5X3-5 ... terminal part (electric Bruno + - electrode), the portion connecting to the terminal from 5X3-6 ... wiring (battery).
  • 6X1 ... main body, 6X3 ... propulsion unit, 6X5 ... battery, 6X7 ... inspection device, 6X9 ... protect frame, 6X11 ... shaft, 6X13 ... elastic body, 6X15 ... damper, 6X17 ... rotating spring, 6X17a, 6X17b ... arm.

Landscapes

  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Remote Sensing (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Toys (AREA)

Abstract

A charging device for charging a battery of a flying object that is capable of travelling on land and is equipped with a main body unit comprising a control part and the battery and one or more protective frames for protecting the main body unit. The charging device is equipped with: guides that come into contact with the protective frames and guide the flying object to the charging device; a stopper that stops the flying object by coming into contact with the protective frames; and a member that charges the battery of the flying object after the flying object is stopped when the protective frames come into contact with the stopper.

Description

飛行体のバッテリの充電装置および交換装置Aircraft battery charging device and replacement device
 本発明は飛行体のバッテリの充電装置および交換装置に関する。 The present invention relates to a battery charging device and an exchange device for an aircraft.
 飛行体の自動充電装置に関する従来技術は、非特許文献5に示すように自動でバッテリを交換・充電するシステムが提案されている。 As a conventional technique related to an automatic charging device for a flying object, as shown in Non-Patent Document 5, a system for automatically replacing and charging a battery has been proposed.
特開2011-046355号公報JP 2011-046355 A
 しかし飛行体本体の自動充電装置に関する従来技術には、以下の3件の問題点がある。 However, there are the following three problems in the conventional technology related to the automatic charging device of the flying body.
 (1)モーションキャプチャシステムに基づく手法では、複数台の高速高精度カメラなどで飛行中の3次元動作をリアルタイムで正確に測定し、フィードバック制御で障害物を回避し、充電のために指定させた位置に高精度で着陸させる方法であるため、それを実現するために高価な自動制御設備とカメラなどの設置スペースを必要とする。この手法では着陸の位置精度により充電の可否が決まるが、着陸地点までの移動は飛行であるため、風などの外乱の影響を受け易く、正確な位置の着陸が困難となり、確実性に乏しい。 (1) In the method based on the motion capture system, 3D motion during flight is accurately measured in real time with multiple high-speed high-precision cameras, etc., obstacles are avoided by feedback control, and specified for charging. Since this is a method of landing at high accuracy, it requires expensive automatic control equipment and installation space for cameras, etc. in order to achieve this. In this method, whether or not charging is possible is determined by the landing position accuracy. However, since the movement to the landing point is a flight, it is easily affected by disturbances such as wind, making it difficult to land at an accurate position and lacking certainty.
 (2)テザードランディングシステムに基づく手法では、飛行体本体に搭載したリールからテザーを所定の長さまで降ろし、地上の充電装置に備えられたテザーキャプチャリング機構により、テザー先端の錘をロックした後、テザーを巻き取り、指定された位置に着陸させる手法である。しかしテザーと錘の巻き取りを自動制御できる装置を飛行体本体に設置する必要がある。更にこの手法では、着陸の位置精度および姿勢精度により充電の可否が決まり、着陸地点までの移動をテザーの巻き取りで行うことで、モーションキャプチャシステムに基づく手法に比べて確実性を向上させているが、テザーの巻き取りの際、機体姿勢を正確に保持する姿勢制御とテザーの張力を一定に保つ張力制御の両方を同時に必要とするため、風などの影響を受け易く、特に低高度では自身で起こす風などにより飛行体は大きく煽られ、不安定化を起こし易く、正確な位置・姿勢の着陸が困難となりやすい。また飛行体のテザーと錘をキャッチするテザーキャプチャ装置は長い2本のアームで構成され、長いほどキャッチできる確率が高まるが、装置が大型化してしまう。 (2) In the method based on the tethered landing system, the tether is lowered to a predetermined length from the reel mounted on the airframe body, and the weight at the tip of the tether is locked by the tether capturing mechanism provided in the ground charging device. This is a method of winding a tether and landing it at a specified position. However, it is necessary to install a device on the aircraft body that can automatically control the winding of the tether and weight. Furthermore, in this method, whether or not charging is possible is determined by the landing position accuracy and posture accuracy, and the movement to the landing point is performed by winding the tether, thereby improving the reliability compared to the method based on the motion capture system. However, when winding up the tether, it requires both attitude control to accurately maintain the aircraft attitude and tension control to keep the tether tension constant at the same time. The flying body is greatly beaten by the wind generated by the aircraft, and it is easy to cause instability, making it difficult to land at an accurate position and posture. The tether capture device that catches the tether and weight of the flying object is composed of two long arms. The longer the tether capture device, the higher the probability of catching, but the larger the device.
 (3)現在のリチウムポリマーバッテリーでは、充電に時間を要する。例えば、世界中で最も有名で販売量が最も多いWiFiコントロールの4ローターヘリコプターであるParrot社のAR-DRONE2.0(全長0.5mX0.5m、質量425g)では、充電時間90分に対して飛行時間12分であり、バッテリの稼働効率が約12%と低い。 (3) The current lithium polymer battery takes time to charge. For example, Parrot's AR-DRONE2.0 (total length 0.5mX0.5m, mass 425g), a WiFi-controlled 4-rotor helicopter with the highest sales volume in the world, has a flight time of 90 minutes. The battery operating efficiency is as low as about 12%.
 上記点に鑑み、本発明はプロテクトフレームをガイドとし、充電装置または交換装置に確実に飛行体をセッティングして飛行体のバッテリを充電または交換する充電装置または交換装置を提供することを目的とする。 SUMMARY OF THE INVENTION In view of the above, it is an object of the present invention to provide a charging device or an exchange device that uses a protect frame as a guide and charges or replaces the battery of the aircraft by reliably setting the aircraft on the charging device or exchange device. .
 上記目的を達成する充電装置または交換装置は、プロテクトフレームに当接して飛行体を充電装置に導く誘導ガイドと、プロテクトフレームに当たることで飛行体を停止させるストッパと、プロテクトフレームがストッパに当たることにより飛行体が停止した後で、飛行体のバッテリに充電または交換を行う部材と、を備える。 The charging device or the exchange device that achieves the above object includes a guide that contacts the protection frame and guides the flying object to the charging device, a stopper that stops the flying object by hitting the protection frame, and a flight that occurs when the protection frame hits the stopper. A member that charges or replaces the battery of the flying object after the body stops.
第1実施形態である飛行体の全体構成図。1 is an overall configuration diagram of a flying object according to a first embodiment. 飛行体本体の全体構成図。FIG. 飛行体の他の実施例の図。The figure of the other Example of a flying body. 飛行体の動作1として、空中飛行中の自由な移動と安全の確保と転がりを利用した障害物の乗り越えによる自由な空中移動の仕組みを示す図。The figure which shows the mechanism of the free aerial movement by the overcoming of the obstacle using free movement in air flight, ensuring safety | security, and rolling as the operation 1 of a flying body. 飛行体の動作3として、回転も利用した任意方向の陸上移動の仕組みを示す図(上からみた図)。The figure (the figure seen from the top) which shows the mechanism of the land movement of the arbitrary direction which also used rotation as operation 3 of a flying object. 第2実施形態の、水上走行可能なプロテクトフレームの構造の図。The figure of the structure of the protect frame which can run on the water of 2nd Embodiment. 第3実施形態で飛行体本体の構成の図。The figure of the composition of the flying body in a 3rd embodiment. 第4実施形態で誘導部がプロテクトフレームの輪郭部に当接する飛行体の充電装置の図。The figure of the charging device of the flying body which a guidance part contact | abuts the outline part of a protection frame in 4th Embodiment. 誘導部がプロテクトフレームの骨格部に当接する充電装置の図。The figure of the charging device with which a guidance part contacts the frame part of a protection frame. 充電装置により、飛行体に充電する行程の図。The figure of the process which charges a flying body with a charging device. 第5実施形態の、飛行体および充電装置に搭載した送受信装置により、飛行体を充電装置に誘導する充電装置の図。The figure of the charging device which guides a flying body to a charging device with the transmitter / receiver mounted in the flying body and charging device of 5th Embodiment. 充電装置により、飛行体に充電する行程の図。The figure of the process which charges a flying body with a charging device. 充電装置に設置した送受信機(送信機能)と飛行体に搭載した送受信機(受信機能としてカメラ)により飛行体を誘導するシステムの図。The figure of the system which guides a flying body with the transceiver (transmission function) installed in the charging device, and the transceiver (camera as a reception function) mounted in the flying body. 充電装置に設置した送受信機(送信機能)と飛行体に搭載した送受信機(通信機能として電波)により飛行体を誘導するシステムの図。The figure of the system which guides a flying body with the transceiver (transmission function) installed in the charging device, and the transceiver (radio wave as a communication function) mounted in the flying body. 充電装置に設置した送受信機と飛行体に搭載した送受信機より、地上コンピュータの管制塔機能により飛行体を誘導するシステムの図。The figure of the system which guides a flying body by the control tower function of a ground computer from the transceiver installed in the charging device and the transceiver mounted in the flying body. 第6実施形態の自動バッテリ充電交換装置のバッテリの取付け部の構造を示す矢視図と三面図。The arrow view and three-plane figure which show the structure of the attachment part of the battery of the automatic battery charge exchange apparatus of 6th Embodiment. 充電交換装置による、飛行体のバッテリの交換行程図。The exchange process figure of the battery of a flying body by a charge exchange apparatus. プロテクトフレームと車輪ストッパとの関係を示す図。The figure which shows the relationship between a protection frame and a wheel stopper. 充電交換装置のバッテリの取付部の構造を示す矢視図と三面図。The arrow view and three-plane figure which show the structure of the attachment part of the battery of a charge exchange apparatus. 充電交換装置のバッテリの取付け部の平面図。The top view of the attachment part of the battery of a charge exchange apparatus. 充電交換装置により、飛行体からバッテリを取り出す構造の図。The figure of the structure which takes out a battery from a flying body by a charge exchange apparatus. 充電交換装置により、飛行体にバッテリを取り付ける構造の図。The figure of the structure which attaches a battery to a flying body by a charge exchange apparatus. 充電交換装置のハンド部によりバッテリを保持する構造の図。The figure of the structure holding a battery by the hand part of a charge exchange apparatus. 充電交換装置の回転部にバッテリを保持する構造の図。The figure of the structure holding a battery in the rotation part of a charge exchange apparatus. 充電交換装置の回転部のバッテリとハンド部の位置関係の図。The figure of the positional relationship of the battery and hand part of the rotation part of a charge exchange apparatus. 第7実施形態のプロテクトフレーム付き飛行体と充電交換装置の図。The figure of the flying object with a protection frame and charge exchange device of a 7th embodiment. 充電交換装置により、飛行体のバッテリを交換する行程の図。The figure of the process of replacing | exchanging the battery of a flying body with a charge exchange apparatus. 充電交換装置のバッテリの取付部の構造を示す矢視図と三面図。The arrow view and three-plane figure which show the structure of the attachment part of the battery of a charge exchange apparatus. 充電交換装置によりバッテリを飛行体に脱着する取付部の詳細図。The detailed view of the attaching part which attaches or detaches a battery to a flying body by a charge exchange apparatus. 充電交換装置のバッテリの連結部および飛行体の取付部の平面図。The top view of the connection part of the battery of a charge exchange apparatus, and the attachment part of a flying body. 充電交換装置の回転部にバッテリを保持する構造の図。The figure of the structure holding a battery in the rotation part of a charge exchange apparatus. 第8実施形態における飛行体の構成図。The block diagram of the flying body in 8th Embodiment. 飛行体が、鉛直の壁を水平に走行する場合を示す図。The figure which shows the case where a flying body travels horizontally on a vertical wall. 飛行体が鉛直の壁を水平(Y方向)に走行する場合の力の状態図。A state diagram of force when the flying object travels horizontally (Y direction) on a vertical wall. 飛行体が鉛直の壁を上方(X方向)に走行する場合の力の状態図。State diagram of force when the flying object travels upward (X direction) on a vertical wall. 飛行体が空中を上昇し、天井に当たり、天井を走行する場合の図。The figure when a flying body rises in the air, hits the ceiling, and travels on the ceiling. 飛行体が陸上に墜落した場合、衝撃を吸収する状態を示す図。The figure which shows the state which absorbs an impact, when a flying body crashes on land. 第9実施形態における飛行体を示す図。The figure which shows the flying body in 9th Embodiment. 飛行体に用いる弾性体のトーションバネの図。The figure of the elastic torsion spring used for a flying body. 従来例を示す図。The figure which shows a prior art example. 飛行体1の第10実施形態の構成を示す矢視図。The arrow line view which shows the structure of 10th Embodiment of the flying body 1. FIG. 飛行体1の第10実施形態の構成の模式図。The schematic diagram of the structure of 10th Embodiment of the flying body 1. FIG. 飛行体1の第11実施形態の構成の模式図。The schematic diagram of the structure of 11th Embodiment of the flying body. 飛行体1の第10実施形態におけるロック機構を示す図。The figure which shows the locking mechanism in 10th Embodiment of the flying body. 飛行体1のロック機構の模式的図。The schematic diagram of the locking mechanism of the flying body. 飛行体1のロック機構において、再度ロックする機構の模式図。The schematic diagram of the mechanism locked again in the locking mechanism of the flying body. 飛行体1が鉛直の壁を鉛直に走行し、水平に走行する状態の模式図。The schematic diagram of the state which the flying body 1 drive | works the vertical wall vertically, and drive | works horizontally. 従来の飛行体が鉛直の壁を水平に走行不能なことを示す模式図。The schematic diagram which shows that the conventional flying body cannot run horizontally on a vertical wall.
 本発明の陸上および水上を走行可能な飛行体は、制御部1-1とバッテリ部1-2からなる本体部1、推進部2からなる飛行体本体と推進部2で発生する推力による転がり運動で自由な陸上及び水上移動ができる1つまたは2つのプロテクトフレームで構成される。飛行体の本体部1、推進部2、飛行体に取り付けるプロテクトフレーム5及び6の特徴を以下に説明する。以下、「飛行体」とは、飛行体本体とプロテクトフレームを含む形態をいう。
(第1実施形態)
 本発明の第1実施形態として、陸上を走行可能とする飛行体について、図1、2により説明する。ただしこれらの図は一例であり、説明の簡単のため、飛行体本体は4ロータ型小型ヘリコプタとし、飛行体本体に取り付ける2つのプロテクトフレームを半球体としたが、本発明では任意の飛行体を対象とし、プロテクトフレームは大きさとして飛行体本体を立体的(3次元的)または、円盤形状的(2次元的)に覆い、形状として回転可能であり、軽量である条件を満たせば、その他の要件は任意である。
The flying object capable of traveling on land and water according to the present invention is a rolling motion by thrust generated in the main body part 1 consisting of the control part 1-1 and the battery part 1-2, the main body part consisting of the propulsion part 2 and the propulsion part 2. It consists of one or two protection frames that can move freely on land and water. The features of the main body 1 of the aircraft, the propulsion unit 2, and the protection frames 5 and 6 attached to the aircraft will be described below. Hereinafter, the “aircraft” refers to a form including a main body and a protection frame.
(First embodiment)
As a first embodiment of the present invention, an air vehicle capable of traveling on land will be described with reference to FIGS. However, these figures are only examples, and for the sake of simplicity of explanation, the aircraft body is a 4-rotor type small helicopter and the two protection frames attached to the aircraft body are hemispheres. As a target, the protection frame covers the flying body in three dimensions (three-dimensional) or disk shape (two-dimensional), and can be rotated as a shape. Requirements are optional.
 図1に本実施形態の構成を示す。飛行体は、本体部1及び推進部2からなる飛行体本体と、2つの左右のプロテクトフレーム5及び6からなる。図2に飛行体本体の構成を示す。本体部1及び推進部2からなる。本体部1は、制御部1-1とバッテリ部1-2からなる。制御部1-1は本体部1内に搭載される(図示せず)。バッテリ部1-2は本体部1内又は本体部1の下面に搭載される。制御部は陸上等飛行体とは別の場所から操作部からの指令により推進部2の制御を行う。推進部2はプロペラ2-1及びモータ2-2からなる(図示せず)。図2では4つの推進部からなるが個数は任意である。 FIG. 1 shows the configuration of this embodiment. The flying body is composed of a flying body main body including a main body 1 and a propulsion unit 2 and two right and left protection frames 5 and 6. FIG. 2 shows the configuration of the aircraft body. It consists of a main body 1 and a propulsion unit 2. The main body 1 includes a control unit 1-1 and a battery unit 1-2. The controller 1-1 is mounted in the main body 1 (not shown). The battery unit 1-2 is mounted in the main body 1 or on the lower surface of the main body 1. The control unit controls the propulsion unit 2 according to a command from the operation unit from a place different from the flying object such as the land. The propulsion unit 2 includes a propeller 2-1 and a motor 2-2 (not shown). Although it consists of four propulsion parts in FIG. 2, the number is arbitrary.
 例えば本体部を中心に十字形状の棒状のフレームを構成し、その端部に4つの推進部を固定する。4つのプロペラ2-1は一つの平面上に配置される。4つのプロペラの回転数が同じ場合飛行体本体は鉛直方向に飛行する。 For example, a cross-shaped rod-shaped frame is formed around the main body, and four propulsion parts are fixed to the ends. The four propellers 2-1 are arranged on one plane. When the rotation speeds of the four propellers are the same, the aircraft body flies vertically.
 飛行体本体の水平方向の移動は、4つのプロペラの内、移動したい方向の2つのプロペラの回転数を下げる。飛行体本体は移動方向の端部が下がるように傾き飛行する。左右方向へ曲がる際は左右のプロペラの回転数を変化させることにより行う。この水平移動は陸上及び水上走行の基本動作となる。 The horizontal movement of the flying body lowers the number of rotations of the two propellers in the direction of movement among the four propellers. The flying vehicle body flies while tilting so that the end in the moving direction is lowered. When turning in the left-right direction, the rotation speed of the left and right propellers is changed. This horizontal movement is the basic operation for land and water travel.
 プロテクトフレーム5及び6を取り付ける2つの固定軸3は、棒状の形態をしている。固定軸3は、4つの推進部に干渉しないように、一方の端部を本体部の左右に固定し、他方の端部に回転部4を有するように構成する。2つの固定部は同軸になるように2つの固定軸を本体部1に固定する。固定軸の取付け方向は、飛行体の陸上(および可能な場合は水上)での基本的な動作において主たる進行方向に対して垂直方向が望ましい。陸上又は水上をプロテクトフレーム5および6の輪郭部5-1および6-1を車輪として走行する際、輪郭部の回転による進行方向と主たる進行方向が一致しエネルギー効率が良いからである。よって、図1、2に示す4ロータ型小型ヘリコプタの場合、飛行体本体としての水平移動の基本的な動作より、車輪としての飛行体の主たる進行方向は前後2方向となる。 The two fixed shafts 3 to which the protect frames 5 and 6 are attached have a rod shape. The fixed shaft 3 is configured such that one end is fixed to the left and right of the main body portion and the rotating portion 4 is provided at the other end so as not to interfere with the four propulsion portions. The two fixing shafts are fixed to the main body 1 so that the two fixing portions are coaxial. The mounting direction of the fixed shaft is preferably perpendicular to the main traveling direction in the basic operation of the aircraft on land (and on the water if possible). This is because when traveling on land or water using the contour portions 5-1 and 6-1 of the protect frames 5 and 6 as wheels, the traveling direction by the rotation of the contour portion coincides with the main traveling direction, and energy efficiency is good. Therefore, in the case of the four-rotor type small helicopter shown in FIGS. 1 and 2, the main traveling direction of the flying object as a wheel is two front and rear directions from the basic movement of the horizontal movement as the flying object body.
 飛行体本体が、通常のヘリコプタの様に人が乗る本体部の上部に主たるプロペラを搭載する形態の場合、操縦席がある方向が水平移動時の進行方向となる。よって固定軸は進行方向に垂直に本体部の左右に取り付けられる。この際プロペラは本体部の上部にあるので固定軸はプロペラと干渉しない。 In the case where the main body of the flying object has a main propeller mounted on the upper part of the main body on which a person rides like a normal helicopter, the direction in which the cockpit is located is the traveling direction during horizontal movement. Therefore, the fixed shaft is attached to the left and right of the main body portion perpendicular to the traveling direction. At this time, since the propeller is at the upper part of the main body, the fixed shaft does not interfere with the propeller.
 プロテクトフレームの大きさ、形状、重量の特徴は以下の通り。プロテクトフレームの大きさは、飛行体本体(特に推進器)を立体的(3次元的)に囲んでカバーし、墜落時・離陸時・着陸時・飛行時において飛行体本体(特に推進器)が陸上や障害物に当たらないよう、十分な大きさを持つ。飛行体を立体的に包み込むため、プロテクトフレーム5,6は、本体部1および推進部2に対して凹形状(円盤形状も含む)となっている。プロテクトフレームの形状は、いかなる姿勢で着陸しても転がりやすい形状(例えば飛行体本体の進行方向から見た場合半球又は円筒形形状をしており、進行方向に平行かつ固定軸3の伸びる方向に直交する断面形状が円形(円盤形状も含む)又は6角形以上の多面体などが良い)とし、かつ内部の飛行体本体の空気の流れを妨げないよう、十分な隙間をもつようにする。プロテクトフレームの重量は、飛行体本体のペイロード以下で十分に軽量とし、プロテクトフレームを含めた飛行体が、離陸を含め空中で自由に運動できるものを選ぶ。 Protective frame size, shape and weight are as follows. The size of the protective frame covers the aircraft body (especially the propeller) in three dimensions (three-dimensional) and covers the aircraft body (especially the propeller) during a crash, takeoff, landing, and flight. It is large enough not to hit the land or obstacles. In order to enclose the flying object in three dimensions, the protection frames 5 and 6 have a concave shape (including a disk shape) with respect to the main body 1 and the propulsion unit 2. The shape of the protection frame is a shape that is easy to roll when landing in any posture (for example, a hemisphere or a cylindrical shape when viewed from the traveling direction of the aircraft body, in a direction parallel to the traveling direction and extending the fixed shaft 3 The cross-sectional shape orthogonal to each other is circular (including a disk shape) or a hexahedron or more polyhedron, etc.) and has a sufficient clearance so as not to obstruct the air flow of the internal flying body. The weight of the protection frame should be sufficiently light below the payload of the flying body, and the flying body including the protection frame should be able to move freely in the air, including takeoff.
 具体的に左右のプロテクトフレーム5又は6は図1に示すように構成する。プロテクトフレームの輪郭部5-1及び6-1は、接地面となる一定幅を有する薄板を円形に形成している。ここが車輪の役目を果たす。 Specifically, the left and right protect frames 5 or 6 are configured as shown in FIG. The contour portions 5-1 and 6-1 of the protect frame are formed in a circular shape with a thin plate having a certain width serving as a ground contact surface. This serves as a wheel.
 プロテクトフレームの骨格部5-2及び6-2は、薄板の板材を半円弧状に曲げ、両端部をそれぞれ輪郭部5-1又は6-1に接続する。骨格部5-2又は6-2は複数枚で構成し、半円弧形状の頂部を重ね合わせる。重ね合わせの頂部は、プロテクトフレームの輪郭部5-1又は6-1の回転中心とする。左右のプロテクトフレーム5又は6は、各々の回転中心部を、固定軸3の端部の回転部4に飛行体本体を覆うように接続する。飛行体の中央部であるプロテクトフレームの輪郭部5-1と6-1の間には間隔を設ける。また2つの輪郭部5-1と6-1は、同形状であり、かつ、同軸かつ互いに平行に配置されても良い。これは飛行体が陸上を2輪で走行する際(以下、2輪車両)、左右の車輪として安定性を確保すると共に、飛行体本体にカメラ9を搭載した際、視界を確保するためである。 The frame parts 5-2 and 6-2 of the protect frame are formed by bending a thin plate material into a semicircular arc shape and connecting both ends to the contour part 5-1 or 6-1. The skeleton part 5-2 or 6-2 is composed of a plurality of pieces, and the tops of semicircular arc shapes are overlapped. The top of the overlap is the rotation center of the outline 5-1 or 6-1 of the protect frame. The left and right protect frames 5 or 6 connect the respective rotation center portions to the rotation portion 4 at the end of the fixed shaft 3 so as to cover the flying body. A space is provided between the contour portions 5-1 and 6-1 of the protect frame, which is the center of the flying object. Further, the two contour portions 5-1 and 6-1 may have the same shape, and may be arranged coaxially and parallel to each other. This is to ensure stability as the left and right wheels when the flying object travels on the land with two wheels (hereinafter referred to as a two-wheeled vehicle) and to ensure visibility when the camera 9 is mounted on the flying object body. .
 プロテクトフレームは柔軟性があり強靭な樹脂で一体成型で制作する。各輪郭部、骨格部を接着材、溶着等で接合して制作する。またリベット等で機械的に接合して制作しても良い。樹脂としてはポリプロピレン系の材料やカーボンファイバーで補強した材料が良い。 Protect frame is made of flexible and tough resin by integral molding. Each contour part and skeleton part are produced by bonding with adhesives, welding, etc. It may also be produced by mechanically joining with rivets or the like. The resin is preferably a polypropylene material or a material reinforced with carbon fiber.
 左右2つのプロテクトフレームは飛行体固定軸3の両端の回転部4にそれぞれ取り付けられるが、一軸のみ自由回転できるように構成する。搭載方法として、つぎの(A)、(B)、(C)の3つの実施形態が可能なようにすると良い。 The left and right protect frames are attached to the rotating parts 4 at both ends of the flying object fixed shaft 3, respectively, but only one axis is configured to be freely rotatable. As a mounting method, the following three embodiments (A), (B), and (C) are preferably made possible.
 (A)着陸時や墜落時において、いかなる姿勢で着陸しても周りを囲った左右のプロテクトフレーム5又は6により、飛行体本体(特にプロペラなどの推進器)を破損せずに転がり、飛行体本体の姿勢を自動で回復し、最終的に離陸時に都合のよい姿勢となること。 (A) When landing or crashing, the left and right protection frames 5 or 6 surround the surroundings and roll without damaging the aircraft body (especially propellers and other propellers). The posture of the main body is automatically recovered, and finally it becomes a convenient posture at takeoff.
 (B)陸上において、推進部2を制御部1-1で制御し、飛行体本体を進みたい方向に傾ければ、飛行体本体は姿勢を保持したまま、プロテクトフレーム5又は6は回転し陸上を転がり走行する。左右2つのプロテクトフレーム5又は6の輪郭部5-1又は6-1が、2輪車両の車幅方向の車輪(タイヤ)の役割を果たすため、陸上走行時に飛行体はロール方向の動きが抑えられ、直進安定性が高い。 (B) On the land, if the propulsion unit 2 is controlled by the control unit 1-1 and tilted in the direction in which the aircraft body is desired to travel, the protection frame 5 or 6 rotates while the aircraft body maintains its attitude and the land Run on the road. The contour part 5-1 or 6-1 of the two left and right protect frames 5 or 6 serves as wheels (tires) in the width direction of the two-wheeled vehicle, so that the flying object is restrained from moving in the roll direction when traveling on land. And straight running stability is high.
 (C)陸上において、飛行体にヨー方向の回転力を与えれば、左右2つのプロテクトフレームの輪郭部5-1又は6-1が2輪車両の車輪として互いに反対向きに回転するので、飛行体はその場でヨー方向に容易に回転できる。そして飛行体に推力を与え、進みたい方向に傾けることにより、飛行体は陸上を安全かつあらゆる方向に移動できる。 (C) On the land, if the rotational force in the yaw direction is applied to the flying object, the contour portions 5-1 or 6-1 of the two left and right protection frames rotate in opposite directions as the wheels of the two-wheeled vehicle. Can easily rotate in the yaw direction on the spot. Then, by applying thrust to the flying object and tilting it in the desired direction, the flying object can move safely on the land in all directions.
 図1において、左右のプロテクトフレーム5及び6は、飛行体本体の本体部1及び推進部2を覆ってカバーしており、着陸時・離陸時・飛行時・墜落時に地表面や障害物や人に飛行体本体(特に推進部2)が当たらない十分な大きさをもつ。 In FIG. 1, the left and right protection frames 5 and 6 cover and cover the main body 1 and the propulsion unit 2 of the aircraft body, and the ground surface, obstacles and people during landing, takeoff, flight and crash. The aircraft body (especially the propulsion unit 2) is not large enough to hit.
 さらに、飛行体の本体部1と2つの固定軸3とは固定されており、2つの固定軸3の他方の端部には回転部4が同軸となるように構成される。当該回転部4と前記2つのプロテクトフレーム5又は6の回転中心である頂部はそれぞれ接続される。これによりプロテクトフレーム5又は6は固定軸3を中心に一軸自由回転できる。 Furthermore, the main body 1 of the flying object and the two fixed shafts 3 are fixed, and the rotating portion 4 is coaxial with the other end of the two fixed shafts 3. The top part which is the rotation center of the rotation part 4 and the two protect frames 5 or 6 is connected to each other. As a result, the protect frame 5 or 6 can freely rotate uniaxially around the fixed shaft 3.
 図1の重り8により、無推力時には着陸時や墜落時を含め、いかなる姿勢で着陸しても転がり、地表面の形状とは無関係に飛行体が鉛直上方を向き、離陸時に都合のよい姿勢に落ち着く。 The weight 8 in FIG. 1 allows the aircraft to roll in any posture, including landing and crash, when there is no thrust, and the flying body faces vertically upwards, regardless of the shape of the ground surface, and is in a convenient posture at takeoff. Calm down.
 また、重り8には本体部1のバッテリ部1-2の全部又は一部を移設しても良い。後述のカメラ9、環境測定装置10等の重量物を重りとして、重り8の近傍の鉛直下方部に搭載しても良い。この際、重り8等の搭載物はプロテクトフレームの輪郭部5-1又は6-1よりはみ出さないようにする。 Further, all or part of the battery unit 1-2 of the main body unit 1 may be transferred to the weight 8. A heavy object such as a camera 9 and an environment measurement device 10 described later may be used as a weight and mounted on a vertically lower portion in the vicinity of the weight 8. At this time, the mounted object such as the weight 8 does not protrude from the contour portion 5-1 or 6-1 of the protect frame.
 図3に飛行体の他の実施例を示す。これは、飛行体本体の本体部として推進部を搭載するためのステーが本体部から十字型に4本即ち2対あるが、この1対のステー部の左右両端に固定軸を接続するものである。固定軸の両端部にプロテクトフレームがつくのは同じ構造である。このような構成によれば、本体部に固定軸を取りつける必要がないので本体部の設計自由度が大きくなる。 FIG. 3 shows another embodiment of the flying object. This is because there are four stays, or two pairs, in a cross shape from the main body to mount the propulsion unit as the main body of the flying body, and fixed shafts are connected to the left and right ends of the pair of stays. is there. It is the same structure that protect frames are attached to both ends of the fixed shaft. According to such a configuration, since it is not necessary to attach a fixed shaft to the main body, the degree of freedom in designing the main body is increased.
 尚、飛行体の飛行や走行等のあらゆる移動については、バッテリの充電容量を考慮して移動行程をプログラム化して制御部(1-1)に入力しておく自動操縦を行うことが多いが、緊急時等の操縦の柔軟性を確保するために、手動による遠隔操縦で移動制御可能にしている。このような構成にすれば、指定された遠隔地や災害地や人が行きにくい場所などへ、瓦礫や障害物があっても無人で安全かつ確実に移動し、空撮、観測、監視などの作業を実施でき、自動充電装置または後述する自動バッテリ充電交換装置と組み合わせれば、半永久的な自動観測・監視システムも実現できる。 In addition, for all movements such as flight and running of the flying object, automatic maneuvering is often performed by programming the movement process and inputting it to the control unit (1-1) in consideration of the charge capacity of the battery. In order to ensure the flexibility of maneuvering in the event of an emergency, movement control can be performed by manual remote maneuvering. With such a configuration, even if there is rubble or obstacles, it is safe and reliable to move to designated remote areas, disaster areas, and places where people are difficult to go, such as aerial photography, observation, monitoring, etc. Work can be carried out, and a semi-permanent automatic observation / monitoring system can be realized when combined with an automatic charging device or an automatic battery charge exchange device described later.
 また、飛行体の運動機能は、推進部を2以上搭載し、各推進部を個々に制御することにより全方位の飛行や走行等のあらゆる移動が可能になる。その結果、陸上や水上を移動する際、2輪車両のように、前後進だけでなく、その場で回転もでき小回りがきくため、災害地の瓦礫などによる狭い場所での方向転換や、屋内の曲がりくねった迷路のような狭い場所での移動や、障害物を避けながら車庫入れするような位置と姿勢の制御なども可能となり、屋内や屋外などあらゆる場面での作業を実現できる。 In addition, the movement function of the flying object is equipped with two or more propulsion units, and by controlling each propulsion unit individually, all movements such as flying and traveling in all directions are possible. As a result, when moving on land or on the water, as in a two-wheeled vehicle, not only forward and backward, but also it can rotate on the spot and turn around, making it possible to change direction in a narrow place such as rubble in disaster areas, indoors It is possible to move in a narrow place such as a winding maze, and to control the position and posture such as entering the garage while avoiding obstacles, and it is possible to realize work in all scenes such as indoors and outdoors.
 (飛行体の動作1)
 本実施形態の動作1~5について、図4、5にて説明する。まず、本発明の飛行体の動作1として、空中飛行中の自由な飛行と安全の確保と転がりを利用した障害物の乗り越えによる自由な空中移動の仕組みを図4(横からみた図)に示す。
(1)飛行体に推力を与え進みたい方向に傾ければ、空中を自由に飛行できる。ここで、進みたい方向に傾けるとは、4つのプロペラの内、進みたい方向のプロペラ2つの回転数を他の2つに対して低くすることである。
(2)壁などの障害物に衝突しても、周りを囲ったプロテクトフレームにより、飛行体本体(特にプロペラなどの推進器)は破損せずに移動を続けることができる。このようにして本発明の飛行体は、空中飛行中の自由な移動と安全の確保ができる。
(3)飛行体は、どのような形状の障害物(壁面)であっても、飛行体とその方向の調整により、フレームは壁面を転がり、安全な移動を続けられる。即ち、図4では壁面は鉛直方向に立っているので、4つのプロペラの回転数を同じにすることにより重りの方向を壁面と平行にする。回転数を上げることで飛行体は壁面を転がって上昇する。この際、壁面に接触しながら移動するため、壁面との摩擦力により、横風があっても安定な移動ができるという効果があり、飛行体のプロペラからの傾きと回転数を調節し、壁の押しつけ力を大きくすれば、摩擦力も増大し、耐風性も向上する効果をもつ。
(4)壁通過後は(1)と同様、飛行体に推力を与え進みたい方向に傾ければ、再び空中を自由に飛行できる。このように本発明の飛行体は、転がりを利用した障害物の乗り越えによる自由な空中移動も可能にする。
(Aircraft motion 1)
Operations 1 to 5 of this embodiment will be described with reference to FIGS. First, as the operation 1 of the flying object of the present invention, FIG. 4 (side view) shows a mechanism of free flight in the air, ensuring safety and overcoming obstacles using rolling. .
(1) You can fly freely in the air if you give thrust to the flying object and tilt it in the direction you want to go. Here, tilting in the direction of travel is to lower the rotational speed of two propellers in the direction of travel out of the four propellers relative to the other two.
(2) Even when the vehicle collides with an obstacle such as a wall, the flying body (particularly a propeller such as a propeller) can continue to move without being damaged by the protection frame surrounding the obstacle. In this way, the flying object of the present invention can ensure free movement and safety during air flight.
(3) Regardless of the shape of the obstacle (wall surface) of the flying object, the frame rolls on the wall surface by adjusting the flying object and its direction, and can continue to move safely. That is, in FIG. 4, since the wall surface stands in the vertical direction, the direction of the weight is made parallel to the wall surface by making the rotation speeds of the four propellers the same. By increasing the number of revolutions, the flying body rolls over the wall and rises. At this time, because it moves while in contact with the wall surface, the frictional force with the wall surface has the effect of being able to move stably even in the presence of crosswinds, adjusting the inclination and rotation speed of the flying object from the propeller, Increasing the pressing force increases the frictional force and improves wind resistance.
(4) After passing through the wall, as in (1), if you tilt the aircraft in the direction you want to travel, you can fly again in the air. Thus, the flying object of the present invention also enables free air movement by overcoming obstacles using rolling.
 この際、飛行体にヨー方向の回転力を与えた場合を図5に示す。
(1)2輪車両の車輪のように、左右2つのプロテクトフレーム5及び6は互いに反対向きに回転するので、飛行体はその場でヨー方向に容易に回転できる。
(2)さらに、飛行体に推力を与え、進みたい方向に傾けることにより、飛行体は陸上を安全かつあらゆる方向に移動できる。
FIG. 5 shows a case where a rotational force in the yaw direction is applied to the flying object.
(1) Since the two left and right protect frames 5 and 6 rotate in opposite directions like the wheels of a two-wheeled vehicle, the flying object can easily rotate in the yaw direction on the spot.
(2) Furthermore, by applying thrust to the flying object and tilting it in the direction in which it wants to travel, the flying object can move safely on the land in all directions.
 また、陸上での転がり移動の際には、飛行体を持ち上げる力は不要であるため、従来の空中移動に比べてエネルギーは少なくてすむ。即ち、陸上の転がり走行のエネルギーは、空中飛行のエネルギーの10~25%で済む。 Also, when rolling on land, no force is required to lift the flying object, so less energy is required compared to conventional air movement. In other words, the energy for rolling on land is 10-25% of the energy of air flight.
 (第2実施形態)
 本発明の第2実施形態として、水上も走行可能とする飛行体について、図6により説明する。これは新たな推進部等の追加をすることなく、左右のプロテクトフレーム5又は6の輪郭部5-1又は6-1の変更のみで、第1実施形態の飛行体を陸上及び水上を走行可能化する。
(Second Embodiment)
As a second embodiment of the present invention, a flying object capable of traveling on water will be described with reference to FIG. This makes it possible to run the flying vehicle of the first embodiment on land and on the water by simply changing the contour portion 5-1 or 6-1 of the left and right protection frames 5 or 6 without adding a new propulsion unit or the like. Turn into.
 図6は水上走行用の右プロテクトフレーム7の右側面図を示す。これは、陸上走行用のプロテクトフレームの輪郭部5-1及び骨格部5-2を用いて、輪郭部5-1の外側に水上走行用輪郭部7-1を付けたもので構成されている。外側輪郭部7-1は、断面図A-Aに示す様に、発砲ポリエチレン(見かけ密度0.0227g/cm3)等の樹脂材料で中空のチューブ状にしている。また、発砲スチロール(見かけ密度0.0169g/cm3)等の発砲樹脂で中実に成形しても良い。即ち、外側輪郭部7-1は浮力を得るために見かけ密度を水と比べて小さく設定する。ここで内外を入れ替えて、輪郭部5-1の内側に中空構造又は発砲材料の水上走行用輪郭部7-2を構成しても良い。即ち、浮力を得るための構造として、中空チューブ及び/又は発砲樹脂を用いて、外側輪郭部7-1及び/又は内側輪郭部7-2を構成する。また、浮力を得るための構造に、プロテクトフレーム及び車輪としての機械的強度があれば、浮力を得るための構造のみで輪郭部を構成しても良い。 FIG. 6 is a right side view of the right protect frame 7 for running on water. This is composed of the contour portion 5-1 and the skeleton portion 5-2 of the protection frame for land traveling, and the contour portion 7-1 for water traveling is added to the outside of the contour portion 5-1. . As shown in the sectional view AA, the outer contour portion 7-1 is formed into a hollow tube shape with a resin material such as foamed polyethylene (apparent density 0.0227 g / cm 3 ). Alternatively, it may be solidly molded with a foaming resin such as foamed polystyrene (apparent density 0.0169 g / cm 3 ). That is, the outer contour portion 7-1 sets the apparent density smaller than that of water in order to obtain buoyancy. Here, the inside and outside may be interchanged, and a water-borne contour portion 7-2 made of a hollow structure or foam material may be formed inside the contour portion 5-1. That is, as a structure for obtaining buoyancy, the outer contour portion 7-1 and / or the inner contour portion 7-2 are configured using a hollow tube and / or foaming resin. Further, if the structure for obtaining buoyancy has mechanical strength as a protect frame and wheels, the contour portion may be configured only by the structure for obtaining buoyancy.
 このように、左右のプロテクトフレーム輪郭部(タイヤに相当)を、水の密度より小さくすることで水上走行が達成できる。例えば、タイヤのチューブように中空化したり、発砲した樹脂のようにしてもよい。また、中空化と発砲樹脂の併用でも良い。発砲樹脂としては、例えば発砲ポリエチレン(見かけ密度0.0227g/cm3)等、発砲スチロール(見かけ密度0.0169g/cm3)等を用いると良い。 In this way, water travel can be achieved by making the left and right protect frame contours (corresponding to tires) smaller than the water density. For example, it may be hollow like a tube of a tire or may be made of a foamed resin. Further, hollowing and foaming resin may be used in combination. As the foaming resin, for example, foamed polyethylene (apparent density 0.0227 g / cm 3) or the like, foamed styrene (apparent density 0.0169 g / cm 3), or the like may be used.
 飛行体本体約380g、プロテクトフレーム(左右)約170gのプロト機では、プロテクトフレームの輪郭部(直径500mm)が約65mm沈んだ状態で水上を走行した。 In a proto aircraft with a flying body of about 380 g and a protection frame (left and right) of about 170 g, the aircraft ran on the water with the outline of the protection frame (diameter 500 mm) sinking about 65 mm.
 本実施形態によれば、飛行だけでなく、転がることにより安定かつ安全に、陸上だけでなく水上を自由に走行でき、陸上又は水上での転がり走行の際には、飛行体を持ち上げる力は不要で、状況により飛行と陸上又は水上の走行を使い分けられるため、従来の空中飛行に比べてエネルギーは少なくてすみ、高い省エネルギー性と多用途化や高機能化を可能である。 According to the present embodiment, not only flying but also stable and safe by rolling, it can run freely on the water as well as on land, and the force to lift the flying object is not necessary when rolling on land or water Therefore, depending on the situation, flight and land or water can be used properly, so less energy is required compared to conventional aerial flight, and high energy saving, versatility and high functionality are possible.
 これにより、以下のような発明が把握できる。 This makes it possible to grasp the following inventions.
 [発明W1]推進力を発生する推進部と、前記推進部を制御する制御部を含む本体部と、前記本体部および前記推進部を囲むプロテクトフレームと、前記推進部に対して前記プロテクトフレームが回転可能なように、前記プロテクトフレームを前記本体部に取り付ける軸と、を備え、前記プロテクトフレームが水に浮く構造になっていることを特徴とする飛行体
 [発明W2]推進力を発生する推進部と、前記推進部を制御する制御部を含む本体部と、前記本体部および前記推進部を囲むプロテクトフレームと、前記推進部に対して前記プロテクトフレームが回転可能なように、前記プロテクトフレームを前記本体部に取り付ける軸と、を備え、前記プロテクトフレームの密度が水の密度以下であることを特徴とする飛行体
 [発明W3]前記プロテクトフレームは中空であることを特徴とする発明W1またはW2の飛行体。
[Invention W1] A propulsion unit that generates a propulsion force, a main body unit that includes a control unit that controls the propulsion unit, a protect frame that surrounds the main body unit and the propulsion unit, and the protect frame for the propulsion unit A flying body comprising a shaft for attaching the protect frame to the main body so as to be rotatable, and the protect frame is configured to float on water [Invention W2] Propulsion for generating propulsive force A main body unit including a control unit for controlling the propulsion unit, a protect frame surrounding the main body unit and the propulsion unit, and the protect frame so that the protect frame can rotate with respect to the propulsion unit. A flying body comprising a shaft attached to the main body, wherein the density of the protection frame is equal to or less than the density of water [Invention W3] Flight of the invention W1 or W2, characterized in that b Detect frame is hollow.
 [発明W4]前記プロテクトフレームは発泡樹脂を含むことを特徴とする発明W1またはW2の飛行体。 [Invention W4] The flying object of Invention W1 or W2, wherein the protect frame includes a foamed resin.
 (第3実施形態)
 本発明の第3実施形態における、飛行体に種々の機能部品を搭載して、複数の飛行体が連動して機能する発明について、図7を用いて示す。
図7に、飛行体の制御部1-1に、位置情報検出装置11(図示せず)、本体部1の鉛直下方部に、カメラ9、環境測定装置10を搭載した構成を示す。環境測定装置10は、放射線やガスや温度の測定装置などである。
(Third embodiment)
FIG. 7 shows an invention in which various functional parts are mounted on a flying object and a plurality of flying objects function in conjunction with each other in the third embodiment of the present invention.
FIG. 7 shows a configuration in which a position information detection device 11 (not shown) is mounted on the control unit 1-1 of the flying object, and a camera 9 and an environment measurement device 10 are mounted on a vertically lower portion of the main body unit 1. The environment measuring device 10 is a device for measuring radiation, gas, or temperature.
 地上コンピュータ12-1(陸上に設置した計測制御装置で、コンピュータや制御プログラムを書き込み可能なCPUボードなどで構成)および飛行体上の計算制御装置(同、制御部1-1に搭載)により、陸上より飛行体に搭載した機器を制御できる。よって、飛行体は自動操縦または手動による遠隔操縦で移動制御可能である。 By the ground computer 12-1 (measurement control device installed on the ground, composed of a computer and a CPU board that can write a control program) and the calculation control device on the flying object (equipped in the control unit 1-1), You can control equipment mounted on the aircraft from the ground. Accordingly, the flying object can be controlled to move automatically or manually.
 計測制御装置12として、複数の飛行体の各々に位置情報検出装置10、カメラ9、環境測定装置11を搭載し、飛行体上の制御部1-1と地上コンピュータ12-1を無線または有線で接続する。カメラ9は、飛行体の外部を撮影できるように、レンズの方向を2つのプロテクトフレームの間に設定して搭載する。 As the measurement control device 12, a position information detection device 10, a camera 9, and an environment measurement device 11 are mounted on each of a plurality of flying objects, and the control unit 1-1 and the ground computer 12-1 on the flying object are wirelessly or wired. Connecting. The camera 9 is mounted with the lens direction set between two protection frames so that the outside of the flying object can be photographed.
 更に、地上コンピュータ12-1が複数の飛行体を連動させることにより連携協調作業が可能となり、陸上および空中の様々な角度からの同時監視、同時観測、および重量物の協調搬送を実現できる。
(第4実施形態)
 本発明の第4実施形態は、第1実施形態から第3実施形態に係る飛行体において、飛行体側充電端子(1-3)がバッテリ部(1-2)の下部に備えつけられている場合の自動充電装置である。充電装置には、充電部と誘導部がある。誘導部は、飛行体の左右のプロテクトフレームの外形形状を利用して、これに当接するガイド部を有する。飛行体は、ガイド部に誘導されて充電装置にセッティングされる。
Further, the ground computer 12-1 makes it possible to perform coordinated cooperative work by linking a plurality of flying objects, thereby realizing simultaneous monitoring, simultaneous observation from various angles on land and in the air, and coordinated conveyance of heavy objects.
(Fourth embodiment)
According to the fourth embodiment of the present invention, in the flying body according to the first to third embodiments, the flying body side charging terminal (1-3) is provided below the battery part (1-2). It is an automatic charging device. The charging device includes a charging unit and an induction unit. The guide portion has guide portions that abut on the outer shape of the right and left protect frames of the flying object. The flying object is guided to the guide unit and set in the charging device.
 本実施形態の実施例を図8に示す。これは、飛行体のプロテクトフレームの輪郭部の形状を利用した誘導ガイドである。一対の誘導ガイド(14-1)は、その一方の端部を、飛行体が充電装置に向かって進行してくる方向に対して凸になるように互いに当接する。他方の端部は、もう一対の誘導ガイド(14-2)の一方の端部と当接する。一対の誘導ガイド(14-2)は、互いに平行に設定され、その間隔は、飛行体の左右のプロテクトフレームの輪郭部の間隔に、嵌合するように設定される。一対の誘導ガイド(14-2)の他方の端部は壁(ストッパ、14-3)に当接し、壁は飛行体の進行を止めるストッパの役割を果たす。よって、壁の高さは飛行体のプロテクトフレームの輪郭部の半径よりも高く設定する。一方、誘導ガイド部(14―1、14-2)は、輪郭部に当接して飛行体を誘導するガイドレールの役割を果たす高さで良い。また、誘導ガイドの側面部の直線部と球状のプロテクトフレームの輪郭部の円弧部は点接触しているので摩擦力は小さく、飛行体はスムーズに誘導される。 An example of this embodiment is shown in FIG. This is a guide that uses the shape of the contour of the protect frame of the flying object. The pair of guides (14-1) abut one another so that one end thereof is convex with respect to the direction in which the flying object advances toward the charging device. The other end is in contact with one end of the other pair of guides (14-2). The pair of guides (14-2) are set in parallel to each other, and the interval is set so as to fit in the interval between the contour portions of the right and left protect frames of the flying object. The other end of the pair of guides (14-2) abuts against a wall (stopper 14-3), and the wall serves as a stopper that stops the flight of the flying object. Therefore, the height of the wall is set higher than the radius of the contour portion of the protection frame of the flying object. On the other hand, the guide guide portions (14-1, 14-2) may have a height that plays the role of a guide rail that guides the flying object by contacting the contour portion. Further, since the linear portion of the side portion of the guide guide and the arc portion of the contour portion of the spherical protect frame are in point contact, the frictional force is small and the flying object is smoothly guided.
 飛行体が充電装置に向かって進行する際、輪郭部の間隔範囲内に誘導ガイド(14-1)の凸部があれば、飛行体は誘導ガイド(14-1)に導かれ、誘導ガイド(14-2)の外側に導かれる。 When the flying object travels toward the charging device, if the convex portion of the guide guide (14-1) is within the interval of the contour portion, the flying object is guided to the guide guide (14-1), and the guide guide (14-1) 14-2) is led outside.
 図9にプロテクトフレームの骨格部と誘導ガイドが当接してセッティングを行う実施例を示す。誘導ガイド部(14-1)は、飛行体が進行してくる方向に対して凹、即ち外側に向けて広がるようにハの字に開いて設置される。飛行体の充電装置への進行範囲が、誘導ガイド(14-1)のハの字に開いた両端の範囲内にあれば、飛行体は充電装置に誘導ガイドに沿って導かれる。具体的には、右側のプロテクトフレーム(5)で説明すると、輪郭部(5-1)が、誘導部の対応する側の誘導ガイド(14-1)のハの字に開いた端部より、内側の範囲にあれば、飛行体は充電装置に誘導される。また、誘導ガイドの上部の直線部と球状の骨格部の球面部は点接触しているので摩擦力は小さく、飛行体はスムーズに誘導される。 FIG. 9 shows an embodiment in which setting is performed by contacting the frame portion of the protect frame and the guide guide. The guide part (14-1) is installed in a square shape so as to be concave in the direction in which the flying object travels, that is, spread outward. If the range of travel of the flying object to the charging device is within the range of both ends of the guidance guide (14-1) that are open in the letter C, the flying object is guided to the charging device along the guidance guide. Specifically, with the protect frame (5) on the right side, the contour portion (5-1) is formed from the end portion of the guide guide (14-1) on the corresponding side of the guide portion, which is open to the C-shape. If in the inner range, the aircraft is guided to the charging device. In addition, since the linear portion at the top of the guide and the spherical portion of the spherical skeleton are in point contact, the frictional force is small and the flying object is guided smoothly.
 図10により、本実施形態による充電装置による飛行体への充電を説明する。尚、下記の行程における飛行体の制御は地上より遠隔操作で行う。
(1)飛行体は、プロテクトフレームが誘導ガイド(14-1、14-2)に当接し回転しながら充電装置に近づく。
(2)プロテクトフレームがストッパ(14-3)に当たり飛行体は停止する。飛行体の自重により、スイッチ(13-4)が押され、可動機構(可動台、13-3)により、充電電源部(13-1)が上昇する。
(3)飛行体が持ち上げられ、飛行体の飛行体側充電端子(1-3)と充電装置の給電側充電端子(13-2)が接続し、充電を開始する。この際、充電電源部(13-1)の周囲に設けられた調整ガイド(13-5)により、2つの充電端子が確実に接続するように誘導する。
(4)充電が完了すると、可動機構(13-3)により、充電電源部(13-1)が下降する。飛行体は着地する。
(5)飛行体本体に、上記(1)のときと逆方向の推力を与えることにより、プロテクトフレームが転がり、充電装置から離れる。
The charging of the flying object by the charging device according to the present embodiment will be described with reference to FIG. Note that the control of the aircraft in the following process is performed remotely from the ground.
(1) The flying object approaches the charging device while the protect frame abuts against the guide guides (14-1, 14-2) and rotates.
(2) The flying object stops when the protect frame hits the stopper (14-3). The switch (13-4) is pushed by the dead weight of the flying object, and the charging power supply unit (13-1) is raised by the movable mechanism (movable base, 13-3).
(3) The flying object is lifted, the flying object side charging terminal (1-3) of the flying object is connected to the feeding side charging terminal (13-2) of the charging device, and charging is started. At this time, the adjustment guide (13-5) provided around the charging power supply unit (13-1) guides the two charging terminals to be securely connected.
(4) When charging is completed, the charging power supply unit (13-1) is lowered by the movable mechanism (13-3). The flying object lands.
(5) By applying a thrust in the opposite direction to that in the above (1) to the flying body, the protect frame rolls away from the charging device.
 (第5実施形態)
 本発明の第5実施形態は、第1実施形態から第3実施形態にかかる飛行体と、第4実施形態に係る充電装置とにおいて、飛行体と充電装置に送信及び受信機能を持つ送受信機を搭載し、充電装置の位置と飛行体の位置を検出して、地上コンピュータにより、飛行体の推進器を制御して、飛行体側充電端子および給電側充電端子を確実に接続するシステムに関するものである。本実施形態の実施例を図11に示す。図11の充電装置の誘導部は、図8の輪郭部にてガイドする場合である。
(Fifth embodiment)
The fifth embodiment of the present invention is a vehicle according to the first to third embodiments, and a charging device according to the fourth embodiment. The present invention relates to a system that detects the position of a charging device and the position of a flying object, controls a flying object propulsion device by a ground computer, and reliably connects the flying object side charging terminal and the power supply side charging terminal. . An example of this embodiment is shown in FIG. The guidance part of the charging device of FIG. 11 is a case where it guides with the outline part of FIG.
 飛行体のバッテリの飛行体側充電端子(1-3)は、進行方向前方のバッテリ部(1-2)の横に備えつけられる。充電装置の給電側充電端子(13-2)は、飛行体の飛行体側充電端子(1-3)に対向する方向に備えられる。給電側充電端子(13-2)が取り付けられている充電電源部(13-1)は、可動機構(13-3)により、図11の左右方向即ち飛行体の進行の前後方向に可動する。また、飛行体がストッパ(14-3)に当接すると、スイッチ(13-4)が作動し、可動機構(13-3)と昇降部(13-7)が作動する。昇降部(13-7)は上昇して、飛行体の後部に当接し、充電装置に飛行体を前後方向で固定するストッパの役割を果たす。 The flying object side charging terminal (1-3) of the flying object battery is provided beside the battery part (1-2) in front of the traveling direction. The power supply side charging terminal (13-2) of the charging device is provided in a direction facing the flying object side charging terminal (1-3) of the flying object. The charging power supply unit (13-1) to which the power supply side charging terminal (13-2) is attached is movable in the left-right direction of FIG. 11, that is, the front-rear direction of the flying object by the movable mechanism (13-3). When the flying object comes into contact with the stopper (14-3), the switch (13-4) is operated, and the movable mechanism (13-3) and the elevating part (13-7) are operated. The elevating part (13-7) ascends and comes into contact with the rear part of the flying object and serves as a stopper for fixing the flying object to the charging device in the front-rear direction.
 図12により本実施形態による充電装置による飛行体への充電の行程を説明する。下記の行程における飛行体の制御は自動操縦で行うことができる。
(1)飛行体は、搭載した受信機により充電装置に設置した送信機からの充電装置の位置を知らせる信号を検知し、制御部で推進部を制御して充電装置に接近する。飛行体は、充電装置に到達すると、プロテクトフレームが誘導ガイド1、2(14-1、14-2)に当接し回転しながら移動する。
(2)プロテクトフレームがストッパ(14-3)に当たり飛行体は停止する。飛行体の自重によりスイッチ(13-4)がオンし、昇降部(13-7)が上昇して、飛行体の本体部1後部に当接し飛行体を固定する。尚、本体部1後部には、搭載したカメラ、送受信機等の後ろ端部も含まれる。
(3)充電電源部(13-1)が飛行体に向かって動き、飛行体側充電端子(1-3)、給電側充電端子(13-2)が接続し、充電を開始する。非接触で電磁誘導により充電してもよい。
(4)充電が完了すると、可動機構(13-3)により、充電電源部(13-1)が飛行体と反対方向に動き、飛行体側充電端子(1-3)と給電側充電端子(13-2)が離れる。
(5)昇降部(13-7)が下降し、飛行体の固定を解除する。
(6)飛行体本体に、上記(1)のときと逆方向の推力を与えることにより、プロテクトフレームが転がり、充電装置から離れる。
The process of charging the flying object by the charging device according to the present embodiment will be described with reference to FIG. The vehicle can be controlled by the autopilot in the following process.
(1) The flying object detects a signal indicating the position of the charging device from the transmitter installed in the charging device by the mounted receiver, and controls the propulsion unit by the control unit to approach the charging device. When the flying object reaches the charging device, the protect frame moves in contact with the guides 1 and 2 (14-1 and 14-2) while rotating.
(2) The flying object stops when the protect frame hits the stopper (14-3). The switch (13-4) is turned on by the dead weight of the flying object, and the elevating part (13-7) is lifted to contact the rear part of the body part 1 of the flying object and fix the flying object. The rear portion of the main body 1 includes rear end portions of mounted cameras, transceivers, and the like.
(3) The charging power supply unit (13-1) moves toward the flying object, and the flying object side charging terminal (1-3) and the feeding side charging terminal (13-2) are connected to start charging. You may charge by non-contact and electromagnetic induction.
(4) When charging is completed, the charging mechanism (13-1) is moved in the opposite direction to the flying body by the movable mechanism (13-3), and the flying body side charging terminal (1-3) and the feeding side charging terminal (13 -2) leaves.
(5) The elevating part (13-7) descends to release the fixed vehicle.
(6) By applying a thrust in the opposite direction to that in the above (1) to the flying body, the protect frame rolls away from the charging device.
 充電装置に備えた送受信機(15-2)の送信機能を使い、信号(電波又は光)を送信し、飛行体に搭載した送受信機(15-1)の受信機能により、信号を受信し、飛行体を充電装置へ誘導する手法を図13、図14、により説明する。 Using the transmission function of the transmitter / receiver (15-2) provided in the charging device, the signal (radio wave or light) is transmitted, and the signal is received by the reception function of the transmitter / receiver (15-1) mounted on the aircraft, A method for guiding the flying object to the charging device will be described with reference to FIGS.
 図13は、充電装置に備えた送受信機(15-2)として送信機能を有する無線標識(13-6)を採用している。無線標識(13-6)は、電波または光を信号として発信するが、この例では光を発信する。一方、飛行体に送受信機(15-1)としてカメラ(9)を搭載しており、これにより無線標識からの光を検知する。カメラ(9)の検知した光により、充電装置の位置、方向を読み取り、飛行体の制御部により推進部を制御し充電装置へ誘導する。ここで、光を信号として送信する場合、光源の相対的な大きさ関係、即ち飛行体が充電装置に近づくと光源が大きくなる関係より、飛行体と充電装置の相対位置を算出して、飛行体を充電装置に誘導することもできる。 FIG. 13 adopts a wireless sign (13-6) having a transmission function as a transceiver (15-2) provided in the charging device. The wireless sign (13-6) transmits radio waves or light as a signal, but in this example, it transmits light. On the other hand, a camera (9) is mounted on the flying object as a transceiver (15-1), thereby detecting light from the wireless sign. The position and direction of the charging device are read by the light detected by the camera (9), and the propulsion unit is controlled by the control unit of the flying object and guided to the charging device. Here, when transmitting light as a signal, the relative position of the flying object and the charging device is calculated from the relative size relationship of the light source, that is, the light source becomes larger as the flying object approaches the charging device. The body can also be guided to the charging device.
 図14は、送受信機(15-2)として電波を信号として通信する例を示している。電波信号として例えば赤外線等が利用できる。 FIG. 14 shows an example in which radio waves are transmitted as signals as the transceiver (15-2). For example, infrared rays can be used as the radio signal.
 図15に、飛行体から送られた信号により、飛行体を充電装置へ誘導する手法を示す。飛行体の送受信機(15-1)の送信機能を使い飛行体の位置信号を発信する。充電装置の送受信機(15-2)の受信機能を使いその信号を受信する。受信した飛行体の位置信号は、地上コンピュータ(12-1)へ無線または有線で送信される。地上コンピュータ(12-1)では、飛行体と充電装置の位置信号または飛行体と充電装置との相対的な位置情報等から飛行体を適切に充電装置に導く進路等の飛行体の制御信号計算し、無線で飛行体の制御部(1-1)へ信号を送信する。この飛行体の運行制御により、飛行体は充電装置へ適切に誘導される。即ち、地上コンピュータ(12-1)は飛行体の管制塔機能の役割を果たす。 FIG. 15 shows a method of guiding the flying object to the charging device by a signal sent from the flying object. The position signal of the flying object is transmitted using the transmission function of the transceiver (15-1) of the flying object. The signal is received using the reception function of the transmitter / receiver (15-2) of the charging device. The received position signal of the flying object is transmitted to the ground computer (12-1) wirelessly or by wire. In the ground computer (12-1), the control signal calculation of the flying object such as the route for appropriately guiding the flying object to the charging device from the position signal of the flying object and the charging device or the relative position information between the flying object and the charging device. Then, a signal is transmitted wirelessly to the control unit (1-1) of the flying object. The flight vehicle is appropriately guided to the charging device by the flight operation control. That is, the ground computer (12-1) plays a role of the control tower of the flying object.
 地上コンピュータ(12-1)が管制塔機能の役割を果たすことにより、飛行体に搭載する計算機器類を減らし、飛行体の重量や電力消費の負担を軽減することができる。 Since the ground computer (12-1) plays the role of the control tower, it is possible to reduce the computational equipment mounted on the flying object and reduce the weight of the flying object and the burden of power consumption.
 (第1~第5実施形態についてまとめ)
 第1~第5実施形態からは、以下の発明が把握できる。発明Aは、飛行体を対象とした、誘導部と充電部とからなる充電装置であって、前記誘導部は、前記飛行体が陸上を転がり移動し、前記飛行体を前記充電部の位置で停止させ、前記充電部の給電側充電端子と前記飛行体の飛行体側充電端子とが接続し、自動充電できることを特徴とする充電装置である。本発明の特徴は、充電部までの移動をプロテクトフレームによる陸上での転がり移動で行うため、従来法のような飛行によるアプローチは不要であり、風などの外乱を受けても不安定化は発生しにくく、充電部への正確なアプローチを可能にし、充電装置に飛行体が電気的に確実に接続できる。その結果、前記問題点(1)と(2)を解決できる。
(Summary of the first to fifth embodiments)
The following inventions can be understood from the first to fifth embodiments. Invention A is a charging device for a flying object, comprising a guiding unit and a charging unit, wherein the guiding unit moves on the land and moves the flying object at the position of the charging unit. The charging device is characterized in that the power supply side charging terminal of the charging unit and the flying object side charging terminal of the flying object are connected and can be automatically charged. The feature of the present invention is that the approach to the charging part is performed by rolling on the land with a protection frame, so the approach by flight like the conventional method is unnecessary, and destabilization occurs even if it receives disturbance such as wind This makes it possible to make an accurate approach to the charging unit and to ensure that the flying object is electrically connected to the charging device. As a result, the problems (1) and (2) can be solved.
 発明Bは、前記誘導部として、前記プロテクトフレームに当接する、誘導ガイドおよびストッパが備えられていることを特徴とする請求項10に記載の充電装置である。プロテクトフレームの外形形状を誘導ガイドとして、飛行体を充電装置に確実にセッティングできる。 Invention B is the charging device according to claim 10, wherein the guide portion is provided with a guide and a stopper that come into contact with the protect frame. The outer shape of the protect frame can be used as a guide to ensure that the flying object can be set in the charging device.
 発明Cは、前記飛行体の位置または質量により作動して可動台を起動させるスイッチを備え、前記可動台により前記飛行体側充電端子と前記給電側充電端子を接続させることを特徴とする発明AまたはBの充電装置である。充電装置と飛行体を電気的に確実に接続することができる。 Invention C includes a switch that is activated by the position or mass of the flying body to activate a movable base, and the flying body-side charging terminal and the feeding-side charging terminal are connected by the movable base. B charging device. The charging device and the flying object can be electrically connected reliably.
 発明Dは、前記飛行体および前記充電装置に送受信機を搭載し、一方の前記送受信機の送信機能と、他方の送受信機の受信信号により、前記飛行体を前記充電装置へ誘導する制御を行うことを特徴とする発明A~Cのいずれかの充電装置である。充電装置と飛行体の正確な相対位置を検出するため、遠距離にあっても飛行体を充電装置へ誘導でき、飛行体の自動充電作業を確実に行うことができる。 Invention D mounts a transmitter / receiver on the flying object and the charging device, and performs control for guiding the flying object to the charging device by a transmission function of one of the transmitter / receiver and a reception signal of the other transmitter / receiver. A charging device according to any one of inventions A to C, wherein: Since the accurate relative position between the charging device and the flying object is detected, the flying object can be guided to the charging device even at a long distance, and the automatic charging operation of the flying object can be performed reliably.
 発明Eは、推進力を発生する推進部と、前記推進部を制御する制御部を含む本体部と、前記本体部および前記推進部を囲むプロテクトフレームと、前記推進部に対して前記プロテクトフレームが回転可能なように、前記プロテクトフレームを前記本体部に取り付ける軸と、を備えた飛行体である。このように、本体に取り付けられたプロテクトフレームが、推進部に対して回転可能となっていることで、推進力のかかる方向が維持されながらプロテクトフレームが転がることが可能となる。 The invention E includes a propulsion unit that generates a propulsion force, a main body unit including a control unit that controls the propulsion unit, a protect frame that surrounds the main body unit and the propulsion unit, and the protect frame is provided to the propulsion unit. An aircraft including a shaft for attaching the protection frame to the main body so as to be rotatable. As described above, the protect frame attached to the main body is rotatable with respect to the propulsion unit, so that the protect frame can roll while maintaining the direction in which the propulsive force is applied.
 (第6、第7実施形態についての説明)
 第6、第7実施形態の自動バッテリ充電交換装置は、陸上および水上を走行可能な飛行体のバッテリ部を自動で交換する装置である。第6、第7実施形態は、飛行体のプロテクトフレームの自動車の車輪のような機能の特徴を活かした、自動でバッテリを交換する装置に関するものである。第6、第7実施形態の飛行体1は、第1~第5実施形態と同等のものを用いる。
(Explanation about the sixth and seventh embodiments)
The automatic battery charge exchange apparatus of 6th, 7th embodiment is an apparatus which replaces | exchanges the battery part of the flying body which can drive | work on land and the water automatically. The sixth and seventh embodiments relate to an apparatus for automatically exchanging a battery, taking advantage of functional features such as a vehicle wheel of a protection frame of a flying object. The flying object 1 according to the sixth and seventh embodiments is the same as that of the first to fifth embodiments.
 第6、第7実施形態では、バッテリの稼働効率が低い(約12%)問題の解消方法として、自動バッテリ充電交換装置に、バッテリを複数個設置(例10個)して充電し、1個づつ使用してバッテリの電気容量がなくなってくる時間内に、自動バッテリ充電交換装置に戻して自動交換する。 In the sixth and seventh embodiments, as a method for solving the problem of low battery operating efficiency (about 12%), a plurality of batteries (for example, 10) are installed and charged in an automatic battery charging and exchanging apparatus. Each time it is used, the battery is returned to the automatic battery charge exchange device and automatically exchanged within the time when the electric capacity of the battery runs out.
 (第6実施形態)
 本発明の第6実施形態を、図16から図25に示す。図16は、本実施形態における、プロテクトフレーム付き飛行体と自動バッテリ充電交換装置を示す図である。自動バッテリ充電交換装置には、充電交換部と誘導部がある。誘導部は、飛行体の左右のプロテクトフレームの外形形状を利用して、これに当接するガイド部を有する。飛行体は、ガイド部に誘導されて自動バッテリ充電交換装置にセッティングされる。
(Sixth embodiment)
A sixth embodiment of the present invention is shown in FIGS. FIG. 16 is a diagram showing an air vehicle with a protection frame and an automatic battery charge exchange device in the present embodiment. The automatic battery charge exchange device includes a charge exchange unit and an induction unit. The guide portion has guide portions that abut on the outer shape of the right and left protect frames of the flying object. The flying object is guided to the guide unit and set in the automatic battery charge exchange device.
 具体的には、一対の誘導ガイド5X2ー2ー1は、その一方の端部を、飛行体が自動バッテリ充電交換装置に向かって進行してくる方向に対して凸になるように互いに当接する。他方の端部は、もう一対の誘導ガイド5X2ー2ー2の一方の端部と当接する。一対の誘導ガイド5X2ー2ー2は、互いに平行に設定され、その間隔は、飛行体の左右のプロテクトフレームの輪郭部の間隔に、嵌合するように設定される。一対の誘導ガイド5X2ー2ー2の他方の端部はストッパ(壁)に当接し、ストッパは飛行体の進行を止める役割を果たす。よって、壁の高さは飛行体のプロテクトフレームの輪郭部の半径よりも高く設定する。一方、誘導ガイド5X2ー2ー1及び誘導ガイド5X2ー2ー2は、輪郭部に当接して飛行体を誘導するガイドレールの役割を果たす高さで良い。また、誘導ガイド5X2ー2ー1の側面部の直線部と球状のプロテクトフレームの輪郭部の円弧部は点接触しているので摩擦力は小さく、飛行体はスムーズに誘導される。 Specifically, the pair of guide guides 5X2-2-1 abuts each other such that one end thereof is convex with respect to the direction in which the flying object travels toward the automatic battery charge exchange device. . The other end is in contact with one end of another pair of guides 5X2-2-2. The pair of guides 5X2-2-2 are set in parallel to each other, and the interval is set so as to fit in the interval between the contour portions of the left and right protect frames of the flying object. The other end of the pair of guides 5X2-2-2 abuts against a stopper (wall), and the stopper plays a role of stopping the progress of the flying object. Therefore, the height of the wall is set higher than the radius of the contour portion of the protection frame of the flying object. On the other hand, the guide guide 5X2-2-1 and the guide guide 5X2-2-2 may have a height that serves as a guide rail that abuts the contour portion and guides the flying object. Further, since the linear portion of the side surface portion of the guiding guide 5X2-2-1 and the arc portion of the contour portion of the spherical protect frame are in point contact, the frictional force is small and the flying object is smoothly guided.
 このように飛行体が自動バッテリ充電交換装置に向かって陸上または水上を進行する際、2つのプロテクトフレームの輪郭部の間隔範囲内に誘導ガイド5X2ー2ー1の凸部があれば、飛行体は誘導ガイド5X2ー2ー1に導かれ、誘導ガイド5X2ー2ー2の外側に導かれる。即ち、飛行体の移動制御は、飛行するのに比べ地上を移動するので制御が安定して行える。また、飛行体の制御位置にバラツキが発生しても、誘導ガイド5X2ー2ー1により矯正される。 As described above, when the flying object travels on land or water toward the automatic battery charge exchange device, if the projecting portion of the guide guide 5X2-2-1 is within the distance between the outlines of the two protection frames, the flying object Is guided to the guiding guide 5X2-2-1, and is guided to the outside of the guiding guide 5X2-2-2. That is, since the movement control of the flying object moves on the ground as compared with the flight, the control can be stably performed. Further, even if variations occur in the control position of the flying object, they are corrected by the guidance guide 5X2-2-1.
 また、誘導ガイド5X2ー2ー1は、飛行体が進行してくる方向に対して凹、即ち外側に向けて広がるようにハの字に開いて設置しても良い。飛行体の自動バッテリ充電交換装置への進行範囲が、誘導ガイド5X2ー2ー1のハの字に開いた両端の範囲内にあれば、飛行体は充電装置に誘導ガイドに沿って導かれる。一体式プロテクトフレームの場合は、この誘導部を用いる。 Also, the guide 5X2-2-1 may be installed so as to be concave in the direction in which the flying object travels, that is, spread outward. If the range of travel of the flying object to the automatic battery charging and exchanging device is within the range of both ends of the guiding guide 5X2-2-1, the flying object is guided to the charging device along the guiding guide. In the case of an integral protection frame, this guiding portion is used.
 図17により、本実施形態の自動バッテリ充電交換装置による飛行体のバッテリを交換する行程を説明する。尚、下記の行程における飛行体の制御は地上より遠隔操作で主に自動で行う。
(1)飛行体は、自動バッテリ充電交換装置の送受信機から送られてくる信号を検知し、プロテクトフレームが地上または水上を回転して近づく。
(2)飛行体は、プロテクトフレームが誘導ガイド5X2ー2ー1及び誘導ガイド5X2ー2ー2に当接し回転しながら、充電交換部に近づく。
(3)プロテクトフレームがストッパに当たり飛行体は停止する。飛行体の自重により、スイッチが押され、ハンド部が上昇し、バッテリを取る。
(4)バッテリを回転部に置き、そのバッテリの充電を開始する。
(5)ハンド部を下にさげ、回転部が回転する。
(6)充電が完了しているバッテリをハンド部が取り、バッテリを飛行体に取り付ける。
(7)飛行体は上記(1)のときと逆方向の推力を与えることにより、プロテクトフレームを回転させながら、自動バッテリ充電交換装置から離れる。
The process of exchanging the battery of the flying object by the automatic battery charge exchange device of this embodiment will be described with reference to FIG. In addition, the control of the flying object in the following process is mainly performed automatically by remote control from the ground.
(1) The flying object detects a signal sent from the transmitter / receiver of the automatic battery charging / exchange apparatus, and the protect frame rotates and approaches the ground or water.
(2) The flying object approaches the charging exchange unit while the protect frame abuts on the guide guide 5X2-2-1 and the guide guide 5X2-2-2 and rotates.
(3) The flying object stops when the protect frame hits the stopper. The switch is pushed by the dead weight of the flying object, the hand part rises and takes the battery.
(4) Place the battery on the rotating part and start charging the battery.
(5) The hand part is lowered and the rotating part rotates.
(6) The hand unit takes the fully charged battery and attaches the battery to the flying object.
(7) The flying object leaves the automatic battery charging and exchanging apparatus while rotating the protect frame by applying thrust in the direction opposite to that in the above (1).
 本実施形態の回転部は水平に設置される台で円形である。台上に複数のバッテリがほぼ等間隔で設置される。台上で電気的に接続され充電される。 Rotating part of this embodiment is a stand that is installed horizontally and circular. A plurality of batteries are installed on the table at almost equal intervals. It is electrically connected and charged on the table.
 図18は、自動バッテリ充電交換装置における飛行体のプロテクトフレームとの車輪ストッパの関係を示す図である。プロテクトフレームが車輪ストッパを乗り越え、プロテクトフレームがストッパに当たり飛行体は停止する。この際車輪ストッパは、飛行体を反動により逆方向に移動するのを防ぐ。
また、車輪ストッパは、飛行体がいない場合、陸上ラインより下に収納され、飛行体の自重により作動するスイッチにて上昇し飛行体のプロテクトフレーム後部に当接して停止して、飛行体を前後方向で固定しても良い。
FIG. 18 is a diagram showing the relationship between the wheel stopper and the protect frame of the flying object in the automatic battery charge exchange device. The protect frame gets over the wheel stopper, the protect frame hits the stopper and the flying object stops. At this time, the wheel stopper prevents the flying body from moving in the reverse direction due to the reaction.
In addition, when there is no flying object, the wheel stopper is stored below the land line, lifted by a switch that operates due to the weight of the flying object, abuts against the rear part of the protecting frame of the flying object, and stops the flying object It may be fixed in the direction.
 図19は、本実施形態における自動バッテリ充電交換装置のバッテリの取付け部の構造を示す矢視図と三面図である。バッテリ本体にバッテリカバーを取り付ける。バッテリカバーには側面および上面に穴があいており、一対のL字形状ブラケットが取付けられている。一対のL字形状のブラケットにより連結部が構成され、弾性体を介して連結している。連結部の両側を圧縮すると連結部の上部も接近する。連結部の上部は、引っかけ部がある。即ち、バッテリの取付け部は、連結部と弾性体からなり、バッテリカバーに勘合したものである。 FIG. 19 is an arrow view and a three-sided view showing the structure of the battery mounting portion of the automatic battery charge exchange device in the present embodiment. Attach the battery cover to the battery body. The battery cover has holes on the side and top, and a pair of L-shaped brackets are attached. A pair of L-shaped brackets constitute a connecting portion and are connected via an elastic body. When both sides of the connecting portion are compressed, the upper portion of the connecting portion also approaches. The upper part of the connection part has a hook part. That is, the battery mounting portion is composed of a connecting portion and an elastic body, and is fitted to the battery cover.
 バッテリを飛行体から取り外す場合、ハンド部により連結部の両側を圧縮し、連結部上部の引っかけ部も圧縮もする。その後、飛行体の取付け部から下部に移動することで取り外す。 When removing the battery from the flying object, compress both sides of the connecting part with the hand part and compress the hook part on the upper part of the connecting part. Then, it removes by moving to the lower part from the attachment part of a flying body.
 また、バッテリを飛行体に取付ける場合、ハンド部により連結部の両側を圧縮し、連結部上部の引っかけ部を圧縮する。飛行体の取付け部に挿入し、圧縮力を解除すると連結部が広がり、飛行体の取付け部へ締結される。また、バッテリの連結部上部の引っかけ部の下には、端子部(バッテリの+-電極)がある。バッテリ本体の+-電極と電線により電気的に連結している。また、飛行体のバッテリの取付け部の、対応箇所にも端子部(バッテリの+-電極)がある。よって、弾性体により電気的な接合も確保できる。 Also, when attaching the battery to the flying body, compress both sides of the connecting part with the hand part and compress the hook part on the upper part of the connecting part. When it is inserted into the mounting part of the flying object and the compressive force is released, the connecting part spreads and is fastened to the mounting part of the flying object. In addition, there is a terminal portion (battery + -electrode) below the hook portion at the top of the battery connection portion. The battery body is electrically connected to the + and-electrodes of the battery. There is also a terminal portion (battery + -electrode) at the corresponding location of the flying battery attachment. Therefore, electrical connection can be secured by the elastic body.
 図20は、本実施形態における自動バッテリ充電交換装置のバッテリの取付け部の平面図である。バッテリの両側に出張っている連結部の下部を中央に圧縮すると、バッテリ本体の+-電極に連結している電線も動く。よって、これを見込んだ設計が必要である。ここで、弾性体は、コイルバネ、板バネ、ゴムなどのバネ性を有する材料などである。 FIG. 20 is a plan view of a battery mounting portion of the automatic battery charge exchange device according to the present embodiment. When the lower part of the connecting part traveling on both sides of the battery is compressed in the center, the electric wire connected to the + -electrode of the battery body also moves. Therefore, a design that anticipates this is necessary. Here, the elastic body is a spring material such as a coil spring, a leaf spring, or rubber.
 図21は、本実施形態における自動バッテリ充電交換装置により、飛行体からバッテリを取り出す構造を説明する図である。右上図から反時計周りに右下の図への工程で説明する。ハンド部が、飛行体(機体)に装着されているバッテリを取り外し回収するために、バッテリの位置まで上昇する。次に、ハンドにより、バッテリの連結部を両側(左右)から押して圧縮する。この際、弾性体(バネ等)は、圧縮される。連結部の引っかけ部が、飛行体の取付け部の穴より小さくなる。次に、ハンド部を下に下げることで、バッテリは飛行体から取り外され回収できる。 FIG. 21 is a diagram for explaining a structure for taking out the battery from the flying object by the automatic battery charge exchange device according to the present embodiment. The process from the upper right figure to the lower right figure in the counterclockwise direction will be described. The hand part moves up to the position of the battery in order to remove and collect the battery mounted on the flying body (airframe). Next, the connecting portion of the battery is pushed and compressed from both sides (left and right) by the hand. At this time, the elastic body (spring or the like) is compressed. The hook portion of the connecting portion is smaller than the hole of the mounting portion of the flying object. Next, the battery can be removed from the flying object and recovered by lowering the hand part.
 図22は、本実施形態における自動バッテリ充電交換装置により、飛行体にバッテリを取り付ける構造を説明する図である。右上図から反時計周りに右下の図への工程で説明する。ハンド部がバッテリを保持して、飛行体の取付け部に対して上昇する。バッテリの連結部は、弾性体が圧縮されているので、その上部は凸(三角形)になっているので、飛行体の取付け部の溝に入りやすい。次に、ハンド部が左右に開くことによって、弾性体によって連結部は左右に広がり、飛行体の取付け部に機械的に押しつけられ勘合する。よって、電気的接続も確保される。 FIG. 22 is a diagram for explaining a structure for attaching a battery to a flying object by the automatic battery charge / exchange apparatus according to the present embodiment. The process from the upper right figure to the lower right figure in the counterclockwise direction will be described. The hand portion holds the battery and rises with respect to the mounting portion of the flying object. Since the elastic body is compressed in the connecting portion of the battery, the upper portion thereof is convex (triangular), so that it easily enters the mounting portion groove of the flying object. Next, when the hand part opens left and right, the connecting part spreads left and right by the elastic body and is mechanically pressed and fitted to the mounting part of the flying object. Therefore, electrical connection is also ensured.
 図23は、本実施形態における自動バッテリ充電交換装置のハンド部によりバッテリを保持する構造を説明する図である。左図は、連結部の弾性体が圧縮された状態である。電気的にも開放されている。右図は、連結部の弾性体がハンド部の圧縮から開放された状態である。飛行体とバッテリは機械的にも電気的にも接続されている。尚、バッテリの電線は長さが変化するので、長さに余裕をもたせた設計が必要である。 FIG. 23 is a diagram illustrating a structure in which the battery is held by the hand unit of the automatic battery charge / exchange apparatus according to the present embodiment. The left figure shows a state where the elastic body of the connecting portion is compressed. It is also open electrically. The right figure shows a state where the elastic body of the connecting part is released from the compression of the hand part. The flying object and the battery are mechanically and electrically connected. In addition, since the electric wire of a battery changes in length, the design which gave allowance in length is required.
 図24は、本実施形態における自動バッテリ充電交換装置の回転部にバッテリを保持する保持部5X2ー1ー4の構造を説明する図である。回転部は円盤形状で水平に設置され、その上にバッテリは、複数個取り付けられ充電されている。回転部の円盤の上に、バッテリ毎にバッテリ保持部(置き場)が、円盤上面とバッテリ保持部下面とにスペースを確保して柱を介して設けてある。この際、柱は片方を開放した方持ち状態とする。開放下側のスペースにハンド部が入り、ここから上部へ移動し、バッテリの連結部をはさんで圧縮し持ち上げる等の操作を行う。バッテリ保持部には、四方に壁部がありバッテリが落ちないようにしている。バッテリの充電方法は、例えばバッテリの下面に充電端子があり、バッテリ保持部上面の端子と電気的に接続して行う。また、非接触で電磁誘導にて充電しても良い。 FIG. 24 is a diagram illustrating the structure of the holding unit 5X2-1-4 that holds the battery in the rotating unit of the automatic battery charge exchange device according to this embodiment. The rotating part is horizontally installed in a disk shape, and a plurality of batteries are attached and charged thereon. On the disk of the rotating part, a battery holding part (place) for each battery is provided via a column with a space between the disk upper surface and the battery holding part lower surface. At this time, the pillar is held in a state where one side is opened. The hand part enters the open lower space, moves from here to the upper part, and performs operations such as compressing and lifting the battery connecting part. The battery holding part has walls on four sides to prevent the battery from falling. The battery charging method is performed, for example, by having a charging terminal on the lower surface of the battery and electrically connecting to a terminal on the upper surface of the battery holding unit. Moreover, you may charge by non-contact and electromagnetic induction.
 図25は、本実施形態における自動バッテリ充電交換装置の回転部のバッテリとハンド部の位置関係を示す図である。ハンド部は、バッテリの移動操作を行わない時を示しており、円盤上面とバッテリ保持部下面とのスペース(すき間)に位置し、バッテリ交換時の円盤回転時に、バッテリ保持部を支える柱と干渉しないようになっている。 FIG. 25 is a diagram showing the positional relationship between the battery and the hand unit of the rotating unit of the automatic battery charge exchange device according to the present embodiment. The hand part indicates the time when the battery is not moved. It is located in the space (gap) between the upper surface of the disk and the lower surface of the battery holding part, and interferes with the pillar that supports the battery holding part when the disk rotates during battery replacement. It is supposed not to.
 (第7実施形態)
 本発明の第7実施形態の特徴は、回転部が、第6実施形態の回転部の円盤が水平に置かれ、バッテリ交換時の移動が水平面で回転するのに対して、垂直面で回転し、この動作でバッテリを交換することである。従って、ハンド部が不要である。図26から図32で説明する。
(Seventh embodiment)
The feature of the seventh embodiment of the present invention is that the rotating part rotates on a vertical plane, while the disk of the rotating part of the sixth embodiment is placed horizontally and the movement at the time of battery replacement rotates on a horizontal plane. This operation is to replace the battery. Therefore, a hand part is unnecessary. This will be described with reference to FIGS.
 図26は、本実施形態における、プロテクトフレーム付き飛行体と自動バッテリ充電交換装置を示す図である。回転部は、ドーナッツ状のベルトとなっており、外側にバッテリの保持部が複数個取り付けてある。保持部には充電用の端子がある。ベルト上部のバッテリ保持部の高さと地上を走行している飛行体のバッテリ位置の高さとはほぼ同レベルにある。その他は図16と同じである。 FIG. 26 is a diagram showing an air vehicle with a protection frame and an automatic battery charge / exchange device in the present embodiment. The rotating part is a donut-shaped belt, and a plurality of battery holding parts are attached to the outside. The holding part has a charging terminal. The height of the battery holding portion above the belt and the height of the battery position of the flying vehicle traveling on the ground are substantially the same level. Others are the same as FIG.
 図27は、本実施形態における自動バッテリ充電交換装置により、飛行体のバッテリを交換する行程を説明する図である。
(1)飛行体は、自動バッテリ充電交換装置の送受信機から送られてくる信号を検知し、プロテクトフレームが地上または水上を回転して近づく。
(2)飛行体は、プロテクトフレームが誘導ガイド5X2ー2ー1と誘導ガイド5X2ー2ー2に当接し回転しながら、自動バッテリ充電交換装置の回転部に近づく。
(3)プロテクトフレームがストッパに当たり飛行体は停止する。飛行体の自重によりスイッチが押され、回転部が回転しベルト上の保持部が、飛行体のバッテリと勘合して飛行体からバッテリを取り去り充電を開始する。
(4)更に、回転部が回転しベルト上の充電が完了しているバッテリを保持している保持部が、飛行体下部の取付け部にバッテリを取付ける。これでバッテリ交換が完了し、回転部の回転が停止する。
(5)飛行体は、上記(1)のときと逆方向の推力を与えることにより、プロテクトフレームを回転させながら自動バッテリ充電交換装置から離れる。
FIG. 27 is a diagram for explaining a process of replacing the battery of the flying object by the automatic battery charge / exchange device according to the present embodiment.
(1) The flying object detects a signal sent from the transmitter / receiver of the automatic battery charging / exchange apparatus, and the protect frame rotates and approaches the ground or water.
(2) The flying object approaches the rotating part of the automatic battery charge exchange device while the protect frame rotates while contacting the guiding guide 5X2-2-1 and the guiding guide 5X2-2-2.
(3) The flying object stops when the protect frame hits the stopper. The switch is pushed by the weight of the flying object, the rotating part rotates, and the holding part on the belt engages with the battery of the flying object to remove the battery from the flying object and start charging.
(4) Furthermore, the holding part holding the battery whose rotating part is rotated and charging on the belt is completed attaches the battery to the attachment part at the lower part of the flying object. This completes the battery replacement and stops the rotation of the rotating part.
(5) The flying object leaves the automatic battery charging and exchanging device while rotating the protect frame by applying a thrust in the direction opposite to that in the above (1).
 図28は、本実施形態における自動バッテリ充電交換装置のバッテリの取付け部の構造を示す矢視図と三面図である。連結部の引っかけ部の形状は、前方および後方に対して面取りをした三角形とする。弾性体を圧縮すると、連結部は、回転の進行方向の前方又は後方にたいして凸となる三角形の形状となる。バッテリ部のその他の構造は第6実施形態と同じである。 FIG. 28 is an arrow view and a three-sided view showing the structure of the battery mounting portion of the automatic battery charge exchange device in the present embodiment. The shape of the hooking portion of the connecting portion is a triangle with chamfered front and rear sides. When the elastic body is compressed, the connecting portion has a triangular shape that protrudes forward or backward in the direction of rotation. The other structure of the battery unit is the same as that of the sixth embodiment.
 図29は本実施形態における自動バッテリ充電交換装置によりバッテリを飛行体に脱着する取付け部の詳細図である。図30は本実施形態における自動バッテリ充電交換装置のバッテリの連結部および飛行体の取付け部の平面図である。図29、図30を用いてバッテリの脱着機構について説明する。 FIG. 29 is a detailed view of an attaching portion for attaching and detaching the battery to the flying body by the automatic battery charging and exchanging apparatus in the present embodiment. FIG. 30 is a plan view of the battery connection part and the flying object attachment part of the automatic battery charge exchange device according to the present embodiment. The battery attaching / detaching mechanism will be described with reference to FIGS. 29 and 30.
 飛行体へのバッテリ取付けの場合、バッテリは回転部(ベルト)上に、保持部により固定されている。この状態で飛行体の取付け部に当接すると、取付け部入り口の開口面積が小さいため、バッテリの連結部は、ベルトの移動に伴い弾性体が圧縮される。図30はバッテリが飛行体の取付け部に取付けが完了した状態を示す。ここでバッテリの保持部が開放される。これでバッテリは、自動バッテリ充電交換装置から飛行体に取付けられる。 When the battery is attached to the flying object, the battery is fixed on the rotating part (belt) by the holding part. In this state, when contacting the mounting portion of the flying object, the opening area of the mounting portion entrance is small, so that the elastic portion of the battery connection portion is compressed as the belt moves. FIG. 30 shows a state where the battery is completely attached to the attachment part of the flying object. Here, the battery holding part is opened. The battery is now attached to the aircraft from the automatic battery charge exchange device.
 一方、飛行体からバッテリを取り外す場合、回転部(ベルト)上にはバッテリは無く保持部がある。この状態で保持部が飛行体のバッテリ部に回転移動すると、保持部がバッテリを固定する。この際、ベルトが一時停止して固定を確実に行う。ベルトが再起動すると、バッテリの連結部は、図29のハンドが開いた状態から、飛行体の取付け部の出口側の開口部に向かって移動するので、弾性体は圧縮され連結部の引っかけ部の先端が凸になる。よって、バッテリは飛行体から取り外される。連結部の引っかけ部の下には、バッテリ側及び飛行体側の端子があり弾性体の力により接続している。 On the other hand, when removing the battery from the flying object, there is no battery on the rotating part (belt) and there is a holding part. When the holding unit rotates and moves to the battery unit of the flying object in this state, the holding unit fixes the battery. At this time, the belt is temporarily stopped and securely fixed. When the belt is restarted, the battery connecting portion moves from the state in which the hand of FIG. 29 is opened toward the opening on the outlet side of the mounting portion of the flying object, so that the elastic body is compressed and the hooking portion of the connecting portion is moved. The tip of becomes convex. Thus, the battery is removed from the aircraft. Below the hooking portion of the connecting portion, there are terminals on the battery side and the flying body side, which are connected by the force of the elastic body.
 図31は、本実施形態における自動バッテリ充電交換装置の回転部にバッテリを保持する構造を説明する図である。保持部には三角形状の凸部をつけ、対応するバッテリの連結部の当接する部位には三角形状の凹部をつけることで、保持部がバッテリを保持する際の位置決めが容易で可能となる。 FIG. 31 is a diagram for explaining a structure for holding a battery in the rotating part of the automatic battery charge exchange device according to the present embodiment. By attaching a triangular convex portion to the holding portion and attaching a triangular concave portion to a portion where the corresponding battery connecting portion abuts, positioning when the holding portion holds the battery can be easily performed.
 (第6、第7実施形態のまとめ)
 第6、第7実施形態からは、以下の発明が把握できる。発明Fは、制御部およびバッテリ部からなる本体部と、推進部と、前記本体部または前記推進部に、主たる進行方向に垂直となるように取り付けた軸部を備え、前記軸に回転可能で、前記本体部および前記推進部を立体的に包み込むプロテクトフレーム、とからなる飛行体を対象とした、誘導部と充電交換部とからなるバッテリ充電交換装置であって、前記誘導部において、前記飛行体を前記プロテクトフレームの陸上または水上の転がり移動により前記交換部の位置で停止させ、前記飛行体の前記バッテリ部のバッテリと、前記充電交換部のバッテリと、を自動で交換することを特徴とする自動バッテリ充電交換装置である。発明Gは、前記誘導部として、前記プロテクトフレームに当接する、誘導ガイドおよびストッパが備えられていることを特徴とする発明Fの自動バッテリ充電交換装置である。発明Hは、前記飛行体の位置または質量により作動してハンドを起動させるスイッチを備え、前記ハンドにより前記飛行体のバッテリと前記充電交換部のバッテリを交換せることを特徴とする発明FまたはGの自動バッテリ交換装置である。発明Iは、前記充電交換部には、複数のバッテリを着脱可能に保持する回転部を有することを特徴とする発明F~Hの何れかの自動バッテリ交換装置である。発明Jは、前記バッテリには連結部および弾性体を備えた取付け部を有し、前記飛行体および前記自動バッテリ交換装置と着脱可能なことを特徴とするバッテリである。発明Kは、前記取付け部には、接続端子を有し、前記飛行体または前記自動バッテリ交換装置の接続端子と、前記弾性体により付勢して接続していることを特徴とする発明Jのバッテリである。
(Summary of sixth and seventh embodiments)
The following inventions can be understood from the sixth and seventh embodiments. The invention F includes a main body unit including a control unit and a battery unit, a propulsion unit, and a shaft unit attached to the main body unit or the propulsion unit so as to be perpendicular to a main traveling direction, and is rotatable on the shaft. , A battery charge exchange device comprising a guide unit and a charge exchange unit for a flying body comprising a body frame and a protection frame that wraps the propulsion unit three-dimensionally. The body is stopped at the position of the exchange unit by rolling movement of the protect frame on land or water, and the battery of the battery unit of the flying body and the battery of the charge exchange unit are automatically exchanged. An automatic battery charge exchange device. The invention G is the automatic battery charge exchange device according to the invention F, characterized in that the guide part is provided with a guide and a stopper that contact the protect frame. Invention H comprises a switch that is activated by the position or mass of the flying object to activate the hand, and allows the battery of the flying object and the battery of the charge exchange unit to be exchanged by the hand. This is an automatic battery exchange device. The invention I is the automatic battery exchange device according to any one of the inventions F to H, wherein the charge exchange unit has a rotating unit that detachably holds a plurality of batteries. The invention J is a battery characterized in that the battery has an attachment part having a connecting part and an elastic body, and is detachable from the flying object and the automatic battery exchange device. The invention K is characterized in that the attachment portion has a connection terminal and is connected to the connection terminal of the flying object or the automatic battery exchange device by being urged by the elastic body. It is a battery.
 (第8実施形態)
 図32は、本発明の第8実施形態における陸上を走行可能な飛行体の構成を示す。ただし本体部6X1および推進部6X3を軸6X11の上部に設置してもよい。飛行体本体は、制御機能がある本体部6X1、推進部6X3、本体部6X1の下部に位置するバッテリ6X5および本体部6X1に搭載される検査機器6X7からなる。これらは、メンテナンス時に工具等で取り外しはできるが、一体で固定されている。
(Eighth embodiment)
FIG. 32 shows the configuration of an aircraft capable of traveling on land in the eighth embodiment of the present invention. However, you may install the main-body part 6X1 and the propulsion part 6X3 in the upper part of the axis | shaft 6X11. The flying body includes a main body 6X1 having a control function, a propulsion unit 6X3, a battery 6X5 positioned below the main body 6X1, and an inspection device 6X7 mounted on the main body 6X1. These can be removed with a tool or the like during maintenance, but are fixed integrally.
 2つのプロテクトフレーム6X9は軸部6X11の両端に回転自在に取り付けられている。2つのプロテクトフレーム6X9は車輪として機能すると共に、飛行体本体を立体的にカバーする。飛行体本体の推進部3で発生する推力によりプロテクトフレームは転がり運動で自由に陸上を移動ができる。 The two protect frames 6X9 are rotatably attached to both ends of the shaft portion 6X11. The two protect frames 6X9 function as wheels and cover the flying body in three dimensions. The protection frame can move freely on land by a rolling motion by the thrust generated by the propulsion unit 3 of the flying body.
 飛行体の本体部6X1と軸部6X11は、弾性体6X13およびダンパ6X15を介して組み付けられる。弾性体6X13(第1の弾性体および第2の弾性体)およびダンパ6X15(第1のダンパおよび第2のダンパ)は、飛行体本体の自重により撓んでいる。また、弾性体6X13およびダンパ6X15は、飛行体の線対称になる2カ所で取り付けると良い。軸部6X11に対して本体部6X1の水平方向への撓みを抑え、上下方向にのみ撓むようにできるからである。このように2次元的に拘束して、取り付けることにより、本発明の効果がより発揮できる。 The main body 6X1 and the shaft 6X11 of the flying body are assembled via an elastic body 6X13 and a damper 6X15. The elastic body 6X13 (the first elastic body and the second elastic body) and the damper 6X15 (the first damper and the second damper) are bent by the weight of the flying body. Further, the elastic body 6X13 and the damper 6X15 are preferably attached at two locations that are line-symmetric with respect to the flying object. This is because the bending of the main body 6X1 in the horizontal direction with respect to the shaft 6X11 can be suppressed and the bending can be made only in the vertical direction. Thus, the effect of this invention can be exhibited more by restraining two-dimensionally and attaching.
 弾性体6X13の弾性特性は、飛行体の本体部6X1、推進部6X3、バッテリ6X5および検査機器6X7の合計質量により、有用な撓み量が発生するのを目安とする。有効な撓み量は、飛行体の大きさで変わる。飛行体の他の特徴は、第1~第7実施形態と同等である。 The elastic characteristic of the elastic body 6X13 is based on the fact that a useful amount of deflection occurs due to the total mass of the main body 6X1, the propulsion unit 6X3, the battery 6X5, and the inspection device 6X7 of the flying object. The effective amount of deflection varies depending on the size of the aircraft. Other characteristics of the flying object are the same as those of the first to seventh embodiments.
 図33は、本実施形態における飛行体が、鉛直の壁を水平に走行する場合を示す。座標軸は、鉛直方向をX軸、水平方向をY軸とする。図33(b)の正面図において、プロテクトフレーム9は鉛直の壁に接し、推進部3の推進力により、飛行体は、水平方向(Y軸方向)に走行している。図33(a)の平面図において、プロテクトフレーム6X9は壁に接して、飛行体は、Y軸方向に走行している。Y方向が主たる進行方向であるので、推進部3はY軸方向に対して傾斜して推進力(揚力)を発生している。図33(c)の右側面図において、プロテクトフレーム6X9は壁に接して、飛行体は、Y軸方向に走行している。推進部3は、飛行体の本体部6X1と軸部6X11は、弾性体6X13およびダンパ6X15を介して組み付けられており、飛行体本体は、その質量による重力で、弾性体6X13およびダンパ6X15が伸びることができる。従って、推進部6X3は、X軸方向にも2次元的に傾斜することができ、X軸上方に推進力(揚力)を発生している。 FIG. 33 shows a case where the flying object in this embodiment travels horizontally on a vertical wall. As for the coordinate axes, the vertical direction is the X axis and the horizontal direction is the Y axis. In the front view of FIG. 33B, the protect frame 9 is in contact with a vertical wall, and the flying object travels in the horizontal direction (Y-axis direction) by the propulsive force of the propulsion unit 3. In the plan view of FIG. 33A, the protect frame 6X9 is in contact with the wall, and the flying object travels in the Y-axis direction. Since the Y direction is the main traveling direction, the propulsion unit 3 is inclined with respect to the Y-axis direction to generate a propulsive force (lift). In the right side view of FIG. 33C, the protect frame 6X9 is in contact with the wall, and the flying object is traveling in the Y-axis direction. In the propulsion unit 3, the main body 6X1 and the shaft 6X11 of the flying body are assembled via an elastic body 6X13 and a damper 6X15, and the elastic body 6X13 and the damper 6X15 extend due to gravity due to the mass of the flying body. be able to. Accordingly, the propulsion unit 6X3 can be inclined two-dimensionally in the X-axis direction, and generates a propulsive force (lift) above the X-axis.
 図34は、本実施形態における飛行体が、鉛直の壁を水平(Y方向)に走行する場合の力の状態を示す。推進部6X3により、推進部6X3に垂直に揚力(ベクトル表示)が発生する。推進部6X3が進行方向に傾斜していることにより、水平方向には揚力のY軸方向成分が発生する。また、壁方向にはプロテクトフレームを壁に押しつける揚力も発生する。よって、飛行体は鉛直の壁を水平方向に走行することができる。 FIG. 34 shows a state of force when the flying object in the present embodiment travels horizontally (Y direction) on a vertical wall. The propulsion unit 6X3 generates lift (vector display) perpendicular to the propulsion unit 6X3. Since the propulsion unit 6X3 is inclined in the traveling direction, a Y-axis direction component of lift is generated in the horizontal direction. In addition, a lift force that presses the protective frame against the wall is also generated in the wall direction. Therefore, the flying object can travel on the vertical wall in the horizontal direction.
 図35は、本実施形態における飛行体が、鉛直の壁を上方(X方向)に走行する場合の力の状態を示す。推進部6X3により、推進部6X3に垂直に揚力(ベクトル)が発生する。飛行体の本体部6X1と軸部6X11は、弾性体6X13およびダンパ6X15を介して組み付けられており、飛行体本体は、その質量による重力で、弾性体6X13およびダンパ6X15が伸びることができる。従って、推進部6X3は、鉛直上方向であるX軸方向にも2次元的に傾斜することができ、X軸上方に揚力のX軸方向成分を発生している。また、壁方向にはプロテクトフレームを壁に押しつける揚力も発生する。よって、揚力のX軸方向の成分により、飛行体は重力により落下することなく、鉛直の壁を水平方向に走行することができる。 FIG. 35 shows a state of force when the flying object in the present embodiment travels upward (X direction) on a vertical wall. The propulsion unit 6X3 generates lift (vector) perpendicular to the propulsion unit 6X3. The main body portion 6X1 and the shaft portion 6X11 of the flying body are assembled via the elastic body 6X13 and the damper 6X15, and the elastic body 6X13 and the damper 6X15 can be extended by the gravity due to the mass of the flying body. Accordingly, the propulsion unit 6X3 can also be two-dimensionally inclined in the X-axis direction, which is the vertical upward direction, and generates an X-axis direction component of lift above the X-axis. In addition, a lift force that presses the protective frame against the wall is also generated in the wall direction. Therefore, the flying body can travel in the horizontal direction on the vertical wall without falling due to gravity due to the component of the lift in the X-axis direction.
 ここで弾性体6X13およびダンパ6X15は、2カ所で軸部6X11と本体部6X1を連結し、下側の弾性体6X13およびダンパ6X15は圧縮され、上側の弾性体6X13およびダンパ6X15は引張されている。軸部6X11に対して本体部6X1の水平方向への撓みを抑え、上下方向にのみ撓むようにできるからである。このように2次元的に拘束して取り付けることにより、本発明の効果がより発揮できる。 Here, the elastic body 6X13 and the damper 6X15 connect the shaft 6X11 and the main body 6X1 at two locations, the lower elastic body 6X13 and the damper 6X15 are compressed, and the upper elastic body 6X13 and the damper 6X15 are tensioned. . This is because the bending of the main body 6X1 in the horizontal direction with respect to the shaft 6X11 can be suppressed and the bending can be made only in the vertical direction. Thus, the effect of this invention can be exhibited more by restraining two-dimensionally and attaching.
 図36は、本実施形態における飛行体が、空中を上昇し、天井に当たり、天井を走行する場合を示す。
(1)は、飛行体が陸上にいる状態を示す。推進部6X3が水平であり、鉛直上向きの揚力が働いており、飛行体は、天井に向かって浮上する。
(2)は、飛行体が水平な天井に到達した瞬間を示す。天井に凸部があると飛行体の片側のプロテクトフレームが、その凸部に乗り上げ、軸部6X11および本体部6X1は水平にはならない。
(3)は、飛行体本体の適切な重力により、弾性体6X13およびダンパ6X15が伸び縮みし、本体部1が水平になった状態を示す。本体1に搭載した検査機器(カメラ等)は、天井を天井面に水平に検査することができる。
FIG. 36 shows a case where the flying object in the present embodiment ascends in the air, hits the ceiling, and travels on the ceiling.
(1) shows a state where the flying object is on land. The propulsion unit 6X3 is horizontal, a vertical upward lift is working, and the flying object floats toward the ceiling.
(2) shows the moment when the flying object reaches the horizontal ceiling. If there is a convex portion on the ceiling, the protect frame on one side of the flying body rides on the convex portion, and the shaft portion 6X11 and the main body portion 6X1 do not become horizontal.
(3) shows a state in which the elastic body 6X13 and the damper 6X15 are expanded and contracted by the appropriate gravity of the flying body, and the main body 1 is horizontal. The inspection device (camera etc.) mounted on the main body 1 can inspect the ceiling horizontally with the ceiling surface.
 図37は、本実施形態における飛行体が陸上に墜落した場合、衝撃を吸収する状態を示す。飛行体が落下した場合、陸上にはプロテクトフレーム6X9が衝突する。プロテクトフレーム6X9は弾性力があり衝突の衝撃を吸収することができる。本発明は、飛行体の本体部6X1と軸部6X11は、弾性体6X13およびダンパ6X15を介して組み付けられている。よって、さらに衝突の衝撃を吸収することができるので、本体部1に搭載される制御機器、推進部6X3、バッテリ6X5および検査機器6X7を、より効果的に保護することができる。 FIG. 37 shows a state in which an impact is absorbed when the flying object in the present embodiment crashes on land. When the flying object falls, the protect frame 6X9 collides with the land. The protect frame 6X9 is elastic and can absorb the impact of a collision. In the present invention, the main body portion 6X1 and the shaft portion 6X11 of the flying body are assembled via an elastic body 6X13 and a damper 6X15. Therefore, since the impact of the collision can be further absorbed, the control device, the propulsion unit 6X3, the battery 6X5, and the inspection device 6X7 mounted on the main body 1 can be more effectively protected.
 弾性体6X13は、コイルバネ、板バネ、トーションバネ等のバネ機構、または/およびゴムなどの弾性力を有する材料などである。 The elastic body 6X13 is a spring mechanism such as a coil spring, a leaf spring, or a torsion spring, or / and a material having elastic force such as rubber.
 (第9実施形態)
 図38は、本発明の第9実施形態における飛行体を示す。本実施形態は、第8実施形態の弾性体6X13に対して、トーションバネ6X17(第1の弾性体)を採用したものである。第8実施形態の弾性体6X13およびダンパ6X15による、軸部6X11と本体部6X1の連結は、2カ所以上としたほうが良いが、トーションバネ6X17によれば、一カ所の連結で軸部6X11と本体部6X1の位置関係を特定し、飛行体本体の重力や適切な重力により、軸部6X11に対して、飛行体本体を水平に保てる。
(Ninth embodiment)
FIG. 38 shows an aircraft in the ninth embodiment of the present invention. In the present embodiment, a torsion spring 6X17 (first elastic body) is adopted with respect to the elastic body 6X13 of the eighth embodiment. The shaft portion 6X11 and the main body portion 6X1 are preferably connected at two or more locations by the elastic body 6X13 and the damper 6X15 according to the eighth embodiment. The positional relationship of the part 6X1 is specified, and the flying body main body can be kept horizontal with respect to the shaft part 6X11 by the gravity of the flying body or appropriate gravity.
 図39は、本発明の第9実施形態における飛行体に用いる弾性体のトーションバネを示す。ここでトーションバネは、通常圧縮して使用するので、上部のアーム6X17a側に本体部6X1、下側のアーム6X17bに軸部6X11を組み付けて使用する。トーションバネ6X17のアーム6X17aおよびアーム6X17bは、作動方向が2次元的に拘束されているので、一カ所の連結でも良い。また、トーションバネ6X17の機械的特性を飛行体本体の質量、飛行体の大きさ等に合わせて選定する。 FIG. 39 shows an elastic torsion spring used for the flying object in the ninth embodiment of the present invention. Here, since the torsion spring is normally compressed and used, the main body 6X1 is assembled to the upper arm 6X17a and the shaft 6X11 is assembled to the lower arm 6X17b. The arm 6X17a and the arm 6X17b of the torsion spring 6X17 are connected in one place because the operation direction is two-dimensionally restricted. The mechanical characteristics of the torsion spring 6X17 are selected in accordance with the mass of the flying body, the size of the flying body, and the like.
 (第8、第9実施形態のまとめ)
 第8、第9実施形態によれば、以下のような課題および発明が把握できる。従来技術の飛行体本体には以下の件の問題がある。即ち、非特許文献1~4で開示された推進器(プロペラ駆動装置やジェット型推進装置など)をもつ飛行体本体、および特許文献1で開示された飛行体本体には、以下の問題点がある。
(Summary of the eighth and ninth embodiments)
According to the eighth and ninth embodiments, the following problems and inventions can be grasped. The prior art aircraft body has the following problems. That is, the aircraft body having the propulsion device (propeller drive device, jet type propulsion device, etc.) disclosed in Non-Patent Documents 1 to 4 and the aircraft body disclosed in Patent Document 1 have the following problems. is there.
 (飛行体本体の問題点)
(1)移動するためには常に飛行するしかないため飛行体本体を持ち上げる力が常に必要である。故に多大なエネルギーを要し飛行時間も制限される。
(2)陸上を移動できない。
(Problems of the aircraft body)
(1) Since there is always a flight to move, a force to lift the flying body is always necessary. Therefore, it takes a lot of energy and the flight time is limited.
(2) Cannot move on land.
 発明者等は前記問題点を解決するため、既存の飛行体本体の必要な部分を保護する3次元のプロテクトフレームを飛行体本体に取り付ける発明(以下、飛行体)を行った。これは、3次元空間に存在する障害物に衝突しても飛行体本体の破損を生じず、着陸時や墜落時のダメージを軽減し、飛行体本体やこれに付加する搭載装置を保護する飛行体である。よって、飛行体が、着陸や墜落をしても、陸上を全方位走行できる。陸上を移動できるので、飛行体を持ち上げる必要がなく移動時間を長くできる。よって、前述の飛行体本体の問題点は解消できる。 In order to solve the above problems, the inventors made an invention (hereinafter referred to as a flying body) in which a three-dimensional protection frame for protecting a necessary part of an existing flying body is attached to the flying body. This does not cause damage to the aircraft body even if it collides with an obstacle that exists in three-dimensional space, reduces damage during landing or crash, and protects the aircraft body and the mounting equipment attached to it Is the body. Therefore, even if the flying object is landed or crashed, it can travel on all directions on the land. Since it can move on land, it does not have to lift the flying object, and the travel time can be extended. Therefore, the problem of the above-mentioned flying body can be solved.
 この発明は、飛行体の用途として老朽化したトンネルや橋梁の天井や壁などの検査に適用できる。即ち、飛行体にカメラや接触センサ等の検査機器を搭載して、トンネルや橋梁の表面の撮影等のデータ収集を行える。 This invention can be applied to the inspection of aging tunnels, bridge ceilings, walls, etc. In other words, inspection equipment such as cameras and contact sensors can be mounted on the flying object to collect data such as photographing the surface of tunnels and bridges.
 ここで、プロテクトフレームをつける軸部を、検査機器を搭載する飛行体本体の本体に固定して取り付けるため、以下の2点の課題がある。 Here, there are the following two problems because the shaft part for attaching the protection frame is fixedly attached to the main body of the aircraft body on which the inspection equipment is mounted.
 (課題1)鉛直の壁を水平に走行することができない。本発明の飛行体は、推進部(飛行体本体)を進行方向に傾けて進行する。よって、鉛直の壁を水平に走行する場合、推進部を水平方向に傾け推進力(揚力)を得るが、鉛直上方への揚力がないため、飛行体本体の重力により、壁面を滑り落ちながら水平方向に走行する。 (Problem 1) Cannot travel horizontally on a vertical wall. The flying object of the present invention travels with the propulsion unit (aircraft body) tilted in the traveling direction. Therefore, when traveling horizontally on a vertical wall, the propulsion unit is tilted in the horizontal direction to obtain propulsive force (lift), but there is no vertical upward force, so the gravity of the airframe body causes it to slide horizontally while sliding down the wall surface. Travel in the direction.
 (課題2)飛行体本体とプロテクトフレームは一体構造であるので、その姿勢は等しい。そのため、図40に示す様に、天井に凸凹により、車輪であるプロテクトフレームの軸部が傾くと、飛行体本体および搭載している検査機器(カメラ等)も傾く。よって、カメラでは水平に撮影できない。 (Problem 2) Since the aircraft body and the protect frame are integrated, their postures are the same. Therefore, as shown in FIG. 40, when the shaft portion of the protect frame, which is a wheel, is tilted due to unevenness on the ceiling, the flying body and the mounted inspection device (camera etc.) are also tilted. Therefore, the camera cannot shoot horizontally.
 本発明は、上記の課題1および課題2を解決することであり、発明Kは、本体部と、前記本体部の中心に配置した1個の推進部または前記本体部を中心とした円周方向に均等に配置される複数の推進部と、前記本体部の下部に位置するバッテリ部と、前記本体部に、主たる進行方向に垂直となるように取り付けた軸部と、前記軸部に回転可能で前記本体部および前記推進部を立体的に包み込むプロテクトフレームと、からなる飛行体において、前記軸部は、前記本体部に、弾性体およびダンパを介して、取り付けたことを特徴とする飛行体である。発明Lは、前記軸部を、前記本体部に、2次元的に拘束して、取り付けたことを特徴とする発明Kの飛行体である。 The present invention is to solve the problems 1 and 2 described above, and the invention K is a circumferential direction centered on the main body part and one propulsion part arranged at the center of the main body part or the main body part. A plurality of propulsion parts that are evenly arranged, a battery part located at the lower part of the main body part, a shaft part attached to the main body part so as to be perpendicular to the main traveling direction, and rotatable on the shaft part And a protection frame that three-dimensionally wraps the main body portion and the propulsion portion, wherein the shaft portion is attached to the main body portion via an elastic body and a damper. It is. The invention L is the flying body of the invention K characterized in that the shaft portion is two-dimensionally restrained and attached to the main body portion.
 発明Kは、プロテクトフレームをつける軸部と、検査機器を搭載する飛行体本体の本体部を、弾性体およびダンパを介して取り付けたことを特徴とする。よって、飛行体が鉛直の壁を水平に走行する場合、推進部は水平方向に傾いている。ここで、本体の下部には重量物であるバッテリが搭載され鉛直下向きの重力が働いているので、推進部は、重力により鉛直上向きにも2次元的に傾き、上向きの揚力を得ることができる。よって、飛行体は鉛直の壁を水平に走行することができる。また、天井面を走行してカメラ撮影をする場合、天井面に凹凸があっても、検査機器を搭載した飛行体本体を水平に保つことができる。加えて、弾性体およびダンパの衝撃や振動の吸収機能により、飛行体本体や搭載した検査機器を保護することができる。 Invention K is characterized in that the shaft portion for attaching the protection frame and the main body portion of the flying vehicle body on which the inspection equipment is mounted are attached via an elastic body and a damper. Therefore, when the flying object travels horizontally on a vertical wall, the propulsion unit is inclined in the horizontal direction. Here, since a heavy battery is mounted on the lower part of the main body and vertical downward gravity is working, the propulsion unit can also be two-dimensionally inclined vertically upward by gravity to obtain upward lift. . Therefore, the flying object can travel horizontally on the vertical wall. In addition, when taking a picture of a camera while traveling on the ceiling surface, it is possible to keep the flying body equipped with the inspection equipment horizontal even if the ceiling surface is uneven. In addition, it is possible to protect the flying body and the mounted inspection equipment by the function of absorbing the shock and vibration of the elastic body and the damper.
 発明Lは、前記軸部を、前記本体部に、2次元的に拘束して、取り付けることにより、軸部に対して本体部が、水平方向への撓みを抑え、上下方向にのみ撓むようにしたものである。 In the invention L, the shaft portion is two-dimensionally restrained and attached to the main body portion, so that the main body portion is restrained from bending in the horizontal direction with respect to the shaft portion and is bent only in the vertical direction. Is.
 (第10、11実施形態)
 以下、本発明の第10、11実施形態について説明する。図41は、飛行体7X1の第10実施形態の構成を示す矢視図である。車輪部7X10は、車軸7X11、一対の車輪7X12および車軸固定部7X13からなる。一対の車輪7X12は、車軸7X11の両端に回転自在に取り付けられている。一対の車輪7X12は、飛行体の飛行体本体7X20を立体的にカバーして飛行体本体を保護する。または、一対の車輪7X12は、一体の円または楕円形状または多角形状でも良い。更に、飛行体本体7X20を積極的に保護する必要がない環境で使用する場合、一対の車輪7X12は、2次元的な車輪(一般的な自転車の車輪、自動車のタイヤ等)でも良い。飛行体は、飛行体本体7X20の推進部7X21で発生する推力により、一対の車輪7X12は、転がり運動で自由に陸上を移動ができる。
(10th and 11th embodiments)
Hereinafter, tenth and eleventh embodiments of the present invention will be described. FIG. 41 is an arrow view showing the configuration of the tenth embodiment of the flying object 7X1. The wheel portion 7X10 includes an axle 7X11, a pair of wheels 7X12, and an axle fixing portion 7X13. The pair of wheels 7X12 are rotatably attached to both ends of the axle 7X11. The pair of wheels 7X12 three-dimensionally covers the flying body 7X20 of the flying body to protect the flying body. Alternatively, the pair of wheels 7X12 may be an integral circle, an ellipse, or a polygon. Further, when the aircraft body 7X20 is used in an environment where it is not necessary to actively protect the aircraft body 7X20, the pair of wheels 7X12 may be two-dimensional wheels (general bicycle wheels, automobile tires, etc.). The flying object can move freely on land by a rolling motion of the pair of wheels 7X12 by the thrust generated by the propulsion unit 7X21 of the flying object body 7X20.
 飛行体本体7X20は、推進部7X21、ロール軸7X22およびロール軸軸受7X23からなる。その他飛行体本体7X20には、図41には示さないが、ロック機構7X30や飛行体7X1の推進部7X21等を制御する制御部、バッテリ、カメラ等の検査機器を搭載する搭載スペース等がある。 The flying body 7X20 includes a propulsion unit 7X21, a roll shaft 7X22, and a roll shaft bearing 7X23. In addition, although not shown in FIG. 41, the flying body 7X20 has a control unit for controlling the lock mechanism 7X30, the propulsion unit 7X21 of the flying object 7X1, and a mounting space for mounting inspection equipment such as a battery and a camera.
 飛行体7X1は、飛行体本体7X20に固定したロール軸軸受7X23と、ロール軸軸受7X23に回転自在に嵌合したロール軸7X22とを備え、ロール軸7X22と車軸7X11は直交すると共に、飛行体本体7X20は、車軸7X11に対して、ロール軸7X22を中心として、回転することを特徴とする。ロール軸7X22と車軸7X11はねじれの関係で直交するが、車軸7X11に貫通部を設け、ロール軸7X22と車軸7X11が交わるようにすることもできる。 The flying body 7X1 includes a roll shaft bearing 7X23 fixed to the flying body main body 7X20 and a roll shaft 7X22 rotatably fitted to the roll shaft bearing 7X23. The roll shaft 7X22 and the axle 7X11 are orthogonal to each other, and the flying body main body 7X20 is characterized by rotating around a roll shaft 7X22 with respect to the axle 7X11. The roll shaft 7X22 and the axle 7X11 are orthogonal to each other because of the twist, but a through portion may be provided on the axle 7X11 so that the roll shaft 7X22 and the axle 7X11 intersect.
 従来例の飛行体は、飛行体本体7X20が車軸7X11を中心として回転し揚力を得て、車輪7X12を回転して車輪7X12の進行方向へ2次元的に移動するが、車軸7X11の方向には揚力は発生していない。飛行体7X1は、更に飛行体本体7X20が車軸7X11に対してロール軸7X22を中心として回転するので、車軸7X11の方向にも揚力が発生する。 In the flying body of the conventional example, the flying body 7X20 rotates about the axle 7X11 to obtain lift, and the wheel 7X12 rotates to move two-dimensionally in the traveling direction of the wheel 7X12. Lift is not generated. Since the flying body 7X20 further rotates about the roll shaft 7X22 with respect to the axle 7X11, the flying body 7X1 also generates lift in the direction of the axle 7X11.
 従って、鉛直の壁を水平に走行する場合、飛行体本体7X20が車軸7X11に対してロール軸7X22を中心として回転するので車軸7X11の方向にも揚力が発生し、飛行体7X1の自重を支えることができる。よって、鉛直の壁を水平もしくは上下自由な方向に走行することができる。 Therefore, when traveling horizontally on a vertical wall, the flying body 7X20 rotates about the roll shaft 7X22 with respect to the axle 7X11, so that lift is also generated in the direction of the axle 7X11 and supports the weight of the flying body 7X1. Can do. Therefore, the vehicle can travel in the horizontal or vertical direction on the vertical wall.
 図42に、飛行体7X1の第10実施形態の構成を模式的に示す。図42(b)は正面図、図42(a)は平面図を示す。図42(a)平面図において、推進部7X21を搭載するフレームはH型をしている。即ちH型の4コーナに推進部7X21を搭載し、H型の横バー部が、ロール軸7X22およびロール軸軸受7X23に該当する。ロール軸7X22は、車軸7X11とねじれの関係で直交する。図42(b)正面図において、推進部7X21を含む飛行体本体7X20は、ロール軸7X22を回転中心として回転する。 FIG. 42 schematically shows the configuration of the tenth embodiment of the flying object 7X1. FIG. 42B is a front view and FIG. 42A is a plan view. In the plan view of FIG. 42A, the frame on which the propulsion unit 7X21 is mounted is H-shaped. That is, the propulsion unit 7X21 is mounted on four H-shaped corners, and the H-shaped horizontal bar portion corresponds to the roll shaft 7X22 and the roll shaft bearing 7X23. The roll shaft 7X22 is orthogonal to the axle 7X11 in terms of a twist. In FIG. 42 (b) front view, the flying vehicle body 7X20 including the propulsion unit 7X21 rotates about the roll shaft 7X22.
 図43に、飛行体7X1の第11実施形態の構成を模式的を示す。図43(b)は正面図、図43(a)は平面図を示す。図43(a)平面図において、推進部7X21を搭載するフレームはX型をしている。即ちX型の4コーナに推進部7X21を搭載し、X型の交点部が、ロール軸7X22およびロール軸軸受7X23に該当する。ロール軸7X22は、車軸7X11とねじれの関係で直交する。図43(b)正面図において、推進部7X21を含む飛行体本体7X20は、ロール軸7X22を回転中心として回転する。 FIG. 43 schematically shows the configuration of the eleventh embodiment of the flying object 7X1. FIG. 43B is a front view, and FIG. 43A is a plan view. In the plan view of FIG. 43A, the frame on which the propulsion unit 7X21 is mounted has an X shape. That is, the propulsion unit 7X21 is mounted on four X-type corners, and the X-type intersection corresponds to the roll shaft 7X22 and the roll shaft bearing 7X23. The roll shaft 7X22 is orthogonal to the axle 7X11 in terms of a twist. In FIG. 43 (b) front view, the flying vehicle body 7X20 including the propulsion unit 7X21 rotates about the roll shaft 7X22.
 図44に飛行体7X1の第10実施形態におけるロック機構を示す。(a)は全体図(b)はロック時の拡大図(c)はロック解除時の拡大図を示す。図44(a)の全体図において、車輪部7X10は、車軸7X11、2次元的な車輪7X12、車軸固定部7X13からなる。また、飛行体本体7X20は、プロペラを有する4つの推進部7X21、ロール軸7X22、ロール軸軸受7X23からなる。 FIG. 44 shows a locking mechanism in the tenth embodiment of the flying object 7X1. (A) is an overall view (b) is an enlarged view at the time of locking (c) is an enlarged view at the time of unlocking. In the overall view of FIG. 44A, the wheel portion 7X10 includes an axle 7X11, a two-dimensional wheel 7X12, and an axle fixing portion 7X13. The flying body 7X20 includes four propulsion units 7X21 having a propeller, a roll shaft 7X22, and a roll shaft bearing 7X23.
 図44(b)はロック機構7X30のロック時の拡大図を示す。ロック機構7X30は、飛行体本体7X20に、ロック部7X32、コイルバネの弾性体7X35、弾性体固定部7X36があり、車輪部7X10に、車軸7X11に平行にロック軸7X31がある。ロック軸7X31は、ロック部7X32の溝7X33に嵌合している。よって、ロール軸7X22は車軸7X11周りに回転することができない。 FIG. 44 (b) shows an enlarged view when the lock mechanism 7X30 is locked. In the lock mechanism 7X30, the flying body 7X20 has a lock part 7X32, a coil spring elastic body 7X35, and an elastic body fixing part 7X36, and the wheel part 7X10 has a lock shaft 7X31 parallel to the axle 7X11. The lock shaft 7X31 is fitted in the groove 7X33 of the lock portion 7X32. Therefore, the roll shaft 7X22 cannot rotate around the axle 7X11.
 図44(c)はロック機構7X30のロック解除時の拡大図を示す。ロック機構7X30は、飛行体本体7X20に、ロック部7X32、コイルバネの弾性体7X35、弾性体固定部7X36があり、車輪部7X10に、車軸7X11に平行にロック軸7X31がある。ロック軸7X31は、ロック部7X32の溝7X33に嵌合していない。よって、ロール軸7X22は車軸7X11周りに回転することができる。 FIG. 44 (c) shows an enlarged view when the lock mechanism 7X30 is unlocked. In the lock mechanism 7X30, the flying body 7X20 has a lock part 7X32, a coil spring elastic body 7X35, and an elastic body fixing part 7X36, and the wheel part 7X10 has a lock shaft 7X31 parallel to the axle 7X11. The lock shaft 7X31 is not fitted in the groove 7X33 of the lock portion 7X32. Therefore, the roll shaft 7X22 can rotate around the axle 7X11.
 図45に、飛行体7X1のロック機構7X30を、ロック軸7X31を省略し車軸7X11で模式的に示す。図45(a)は、車軸7X11に対してロール軸7X22が回転しないようにロックした状態を示す。図45(b)は、車軸7X11に対してロール軸7X22が回転可能なようにロックを解除した状態を示す。 FIG. 45 schematically shows the lock mechanism 7X30 of the flying object 7X1 as the axle 7X11 with the lock shaft 7X31 omitted. FIG. 45A shows a state where the roll shaft 7X22 is locked so as not to rotate with respect to the axle 7X11. FIG. 45B shows a state where the lock is released so that the roll shaft 7X22 can rotate with respect to the axle 7X11.
 図45(a)においてロック機構7X30は、ロール軸7X22にロック部7X32を固定し、ロック部7X32に、車軸7X11または車軸に平行なロック軸7X31を、弾性体7X35による付勢力で固定する。ロック部7X32にはV型の溝7X33およびガイド7X34が構成されており、溝7X33に車軸7X11または車軸に平行なロック軸7X31を、弾性体7X35による付勢力で押しつけて固定する。溝7X33は、車軸7X11または車軸に平行なロック軸7X31の外径に合わせた円形の溝が、溝7X33と車軸7X11(又は車軸に平行なロック軸7X31)の嵌合をよくしてロック状態を維持するので好ましい。飛行体7X1は、飛行中または陸上を走行中の移動姿勢を安定させるためにロックした状態としている。 45A, the lock mechanism 7X30 fixes the lock portion 7X32 to the roll shaft 7X22, and fixes the axle 7X11 or the lock shaft 7X31 parallel to the axle to the lock portion 7X32 by the urging force of the elastic body 7X35. The lock portion 7X32 includes a V-shaped groove 7X33 and a guide 7X34, and the axle 7X11 or the lock shaft 7X31 parallel to the axle is pressed into the groove 7X33 by an urging force of the elastic body 7X35. The groove 7X33 is a circular groove that matches the outer diameter of the axle 7X11 or the lock shaft 7X31 parallel to the axle, and the groove 7X33 and the axle 7X11 (or the lock shaft 7X31 parallel to the axle) are fitted to be locked. It is preferable because it is maintained. The flying object 7X1 is in a locked state in order to stabilize the moving posture while flying or traveling on land.
 図45(b)において、車輪7X12が壁に当接し、弾性体7X35による付勢力と反対方向の力が発生すると、ロック機構7X30が解除される状態を示す。推進部7X21による揚力により、飛行体7X1の車輪7X12が壁等に当接し、弾性体7X35による付勢力と反対方向の力が発生すると、弾性体7X35は圧縮され、車軸7X11または車軸に平行なロック軸7X31は、ロック部7X32の溝7X33から外れ開放されロックが解除される。ここで、別途、車輪7X12が壁等に当接した力を感知してソレノイドで吸引してロックを解除しても良い。 45 (b) shows a state in which the lock mechanism 7X30 is released when the wheel 7X12 abuts against the wall and a force in a direction opposite to the biasing force by the elastic body 7X35 is generated. When the wheel 7X12 of the flying object 7X1 comes into contact with a wall or the like due to the lift by the propulsion unit 7X21 and a force in the direction opposite to the urging force by the elastic body 7X35 is generated, the elastic body 7X35 is compressed and locked in parallel with the axle 7X11 or the axle. The shaft 7X31 is released from the groove 7X33 of the lock portion 7X32 and is unlocked. Here, separately, the force with which the wheel 7X12 is in contact with the wall or the like may be sensed and sucked by a solenoid to release the lock.
 図46に飛行体7X1のロック機構7X30において再度ロックする機構を模式的に示す。車軸7X11または車軸に平行なロック軸7X31に対してロック部7X32は回転している。よって溝7X33と車軸7X11または車軸に平行なロック軸7X31はねじれた関係にある。よって、溝7X33にガイド7X34を設け、車軸7X11または車軸に平行なロック軸7X31を、弾性体7X35の付勢力により溝7X33に導く構造としている。 FIG. 46 schematically shows a mechanism for locking again in the lock mechanism 7X30 of the flying object 7X1. The lock portion 7X32 rotates with respect to the axle 7X11 or the lock shaft 7X31 parallel to the axle. Therefore, the groove 7X33 and the axle 7X11 or the lock shaft 7X31 parallel to the axle are in a twisted relationship. Therefore, the guide 7X34 is provided in the groove 7X33, and the axle 7X11 or the lock shaft 7X31 parallel to the axle is guided to the groove 7X33 by the urging force of the elastic body 7X35.
 図47に、飛行体7X1が鉛直の壁を鉛直に走行した後、水平に走行する状態を模式的に示す。座標軸は、壁面上の鉛直方向をZ軸、壁面上の水平方向をY軸、壁面にたいして垂直方向をX軸とする。推進部7X21により発生する揚力のベクトルを、Z軸の上方をFz、Y軸の右側方向をFy、壁面を押しつける方向をFxとする。 FIG. 47 schematically shows a state in which the flying object 7X1 travels horizontally after traveling vertically on a vertical wall. As for the coordinate axes, the vertical direction on the wall surface is the Z axis, the horizontal direction on the wall surface is the Y axis, and the vertical direction with respect to the wall surface is the X axis. The lift vector generated by the propulsion unit 7X21 is represented by Fz above the Z axis, Fy on the right side of the Y axis, and Fx in the direction of pressing the wall surface.
 (1)壁面上を鉛直方向(Z軸)に移動
車軸7X11に対して推進部7X21は傾斜(傾斜1)し、FzおよびFxが発生している。車軸7X11に対して推進部7X21は傾斜し、Fxにより車輪7X12を壁面に押しつけ、Fzにより、鉛直方向のZ軸上方に、車輪7X12を回転させて移動している。
(1) The propulsion unit 7X21 is inclined (inclined 1) with respect to the moving axle 7X11 in the vertical direction (Z axis) on the wall surface, and Fz and Fx are generated. The propulsion unit 7X21 is inclined with respect to the axle 7X11, presses the wheel 7X12 against the wall surface by Fx, and rotates the wheel 7X12 above the Z axis in the vertical direction by Fz to move.
 (2)壁面上で水平方向(Y軸)に方向転換
壁面上で水平方向(Y軸)に方向転換する場合、まず推進部7X21の推進力を弱め、飛行体7X1のZ軸上方の移動を停止する。Fzは飛行体の重量と釣り合った大きさである。次に、推進部7X21の内、右側の推進力を弱め、左側の推進力を強くすることで飛行体7X1は右側へ方向転換する。ここで右側への方向転換が完了すると、揚力FyとFxを発生させる。ロール軸7X22を車軸7X11に対して回転させ、推進部7X21をX軸まわり回転により傾け(傾斜2)、Fzの大きさを維持し飛行体7X1を落下させないようにする。
(2) When changing direction on the wall surface in the horizontal direction (Y-axis) and changing direction on the wall surface in the horizontal direction (Y-axis), the propulsive force of the propulsion unit 7X21 is first weakened, and the movement of the flying object 7X1 above the Z-axis is Stop. Fz is a size commensurate with the weight of the flying object. Next, in the propulsion unit 7X21, the right-side propulsive force is weakened, and the left-side propulsive force is increased, so that the flying object 7X1 turns to the right. When the direction change to the right side is completed, lifts Fy and Fx are generated. The roll shaft 7X22 is rotated with respect to the axle 7X11, and the propulsion unit 7X21 is tilted by rotation around the X axis (inclination 2), so that the size of Fz is maintained and the flying object 7X1 is not dropped.
 (3)平面上を水平方向(Y軸)に移動
推進部7X21による揚力を、傾斜1によりFyとFxを発生させ、傾斜2によりFzとFxを発生させる。
Fxは、車輪7X12を壁面に押しつけ、Fyにより車輪7X12を回転させ飛行体7X1を水平方向の右側へ進行させる。Fzは、飛行体7X1を鉛直方向に落下させない働きをする。
(3) In the horizontal direction (Y-axis) on the plane, Fy and Fx are generated by the inclination 1 and Fz and Fx are generated by the inclination 2 by the inclination 1.
Fx presses the wheel 7X12 against the wall surface, and Fy rotates the wheel 7X12 to advance the flying object 7X1 to the right in the horizontal direction. Fz functions to prevent the flying object 7X1 from dropping in the vertical direction.
 第10、第11実施形態に至るための課題は以下の通りである。図48に示すような車輪を有する飛行体は鉛直の壁を水平に走行することができない。即ち、飛行体は、推進部(飛行体本体)を、車軸に対して進行方向に傾けて進行する。しかし、鉛直の壁を水平方向(Y軸)に走行する場合、推進部による揚力は、進行方向(Y軸)と壁方向(X軸)に発生し、鉛直方向(Z軸)には発生しない。よって、鉛直方向(Z軸)の力の釣り合いを考えると、Z軸の下方には、飛行体の自重による重力が働き、壁方向(X軸)の揚力により、Z軸の上方に車輪の摩擦力が働く。しかし、この摩擦力は、飛行体の自重による重力に比べ小さい。従って、飛行体は、壁面を滑り落ちながら水平方向(Y軸)に走行する。 Issues to reach the tenth and eleventh embodiments are as follows. A flying object having wheels as shown in FIG. 48 cannot travel horizontally on a vertical wall. That is, the flying object travels with the propulsion unit (aircraft body) tilted in the traveling direction with respect to the axle. However, when traveling on a vertical wall in the horizontal direction (Y-axis), the lift by the propulsion unit is generated in the traveling direction (Y-axis) and the wall direction (X-axis), but not in the vertical direction (Z-axis). . Therefore, considering the balance of force in the vertical direction (Z axis), gravity due to the weight of the flying object acts below the Z axis, and the friction of the wheel above the Z axis due to the lift in the wall direction (X axis). Power works. However, this frictional force is smaller than the gravity due to the weight of the flying object. Accordingly, the flying object travels in the horizontal direction (Y axis) while sliding down the wall surface.
 本発明は以下の効果がある。発明S1は、飛行体本体7X20の主たる進行方向に垂直となるように取り付けた車軸7X11と、飛行体本体7X20の中心に配置した1個の推進部7X21または主たる進行方向に対して左右対称に配置される複数の推進部7X21と、車軸7X11に回転可能で飛行体本体7X20を立体的に包み込む車輪7X12と、を備えた飛行体7X1において、飛行体本体7X20に固定したロール軸軸受7X23と、ロール軸軸受7X23に回転自在に嵌合したロール軸7X22と、を備え、ロール軸7X22と車軸7X11は直交すると共に、飛行体本体7X20は、車軸7X11に対して、ロール軸7X22を中心として、回転することを特徴とする飛行体である。 The present invention has the following effects. The invention S1 is arranged symmetrically with respect to the axle 7X11 attached so as to be perpendicular to the main traveling direction of the flying body 7X20, and one propulsion unit 7X21 disposed at the center of the flying body 7X20, or the main traveling direction. A roll shaft bearing 7X23 fixed to the airframe body 7X20, a roll shaft bearing 7X23 fixed to the airframe body 7X20, and a roll shaft bearing 7X23 that includes a plurality of propulsion units 7X21 and wheels 7X12 that can rotate around the axle 7X11 and wrap around the airframe body 7X20 A roll shaft 7X22 rotatably fitted to the shaft bearing 7X23, the roll shaft 7X22 and the axle 7X11 are orthogonal to each other, and the flying body 7X20 rotates about the roll shaft 7X22 with respect to the axle 7X11. It is a flying body characterized by this.
 発明S1により、車輪7X12を有する飛行体7X1は鉛直の壁を水平に走行することができる。飛行体7X1の推進部7X21が主たる進行方向である車輪7X12の進行方向の水平方向に傾くと共に、その直角方向の鉛直方向にも傾き、2方向に傾くことにより、推進部7X21で発生する揚力を、水平方向、鉛直方向および壁を押しつける方向に分けることができるからである。即ち、飛行体7X1を、鉛直方向の揚力で飛行体7X1が自重により落下するのを防ぎ、壁を押しつける方向の揚力で車輪7X12を壁に押しつけ、水平方向の揚力で車輪7X12を回転させて水平方向へ移動させる。更に、鉛直や傾斜している壁等を、水平方向へ水平だけでなく斜め上方や下方へ制御して移動させることができる。 According to the invention S1, the flying object 7X1 having the wheels 7X12 can travel horizontally on a vertical wall. The propulsion unit 7X21 of the flying object 7X1 tilts in the horizontal direction of the traveling direction of the wheel 7X12, which is the main traveling direction, and also tilts in the vertical direction of the right angle direction, and tilts in two directions, so that lift generated in the propulsion unit 7X21 is generated. This is because it can be divided into a horizontal direction, a vertical direction, and a direction in which the wall is pressed. That is, the flying object 7X1 is prevented from falling by its own weight due to the lifting force in the vertical direction, the wheel 7X12 is pressed against the wall by the lifting force in the direction of pressing the wall, and the wheel 7X12 is rotated horizontally by the lifting force in the horizontal direction. Move in the direction. Furthermore, the vertical and inclined walls can be moved not only horizontally in the horizontal direction but also obliquely upward and downward.
 発明S2は、飛行体本体7X20に、回転を制止するロック機構7X30を有することを特徴とする発明S1に記載の飛行体である。発明S2により、鉛直の壁を水平に走行しない通常の走行時においては、車軸7X11に対してロール軸7X22を中心として回転しないようにロック機構7X30を有する。これにより通常の走行時は、飛行体の走行を安定にさせることができる。 Invention S2 is the flying object according to Invention S1, characterized in that the flying object body 7X20 has a lock mechanism 7X30 for stopping rotation. According to the invention S2, the lock mechanism 7X30 is provided so as not to rotate around the roll shaft 7X22 with respect to the axle 7X11 during normal traveling that does not travel horizontally on the vertical wall. Thereby, the traveling of the flying object can be stabilized during normal traveling.
 発明S3は、ロック機構7X30は、ロール軸7X22にロック部7X32を固定し、ロック部7X32に、車軸7X11または車軸に平行なロック軸7X31を、弾性体7X35による付勢力で固定することを特徴とする発明S2に記載する飛行体である。発明S3により、簡易な構造でロック機構7X30を構成することができる。 The invention S3 is characterized in that the lock mechanism 7X30 fixes the lock portion 7X32 to the roll shaft 7X22, and fixes the lock shaft 7X11 or the lock shaft 7X31 parallel to the axle to the lock portion 7X32 by the urging force of the elastic body 7X35. This is the flying object described in invention S2. According to the invention S3, the lock mechanism 7X30 can be configured with a simple structure.
 発明S4は、壁等に車輪7X12が当接し、付勢力と反対方向の力が発生すると、ロック機構7X30が解除されることを特徴とする発明S3に記載する飛行体である。発明S4により、壁等に接触することでロック機構7X30を解除することができるので、実際の使用勝手がよくなる。 Invention S4 is the flying object according to invention S3, wherein the lock mechanism 7X30 is released when the wheel 7X12 abuts against a wall or the like and a force in a direction opposite to the urging force is generated. According to the invention S4, the lock mechanism 7X30 can be released by contacting a wall or the like, so that the actual usability is improved.
 (産業上の利用可能性)
 この飛行体の用途として老朽化したトンネルや橋梁に加えビル等の建物の天井や壁などの検査に適用できる。即ち、飛行体にカメラや接触センサ等の検査機器を搭載して建物の表面の撮影等のデータ収集を行うことができる。
(Industrial applicability)
In addition to aging tunnels and bridges, this aircraft can be used to inspect ceilings and walls of buildings such as buildings. That is, it is possible to collect data such as photographing the surface of a building by mounting inspection equipment such as a camera and a contact sensor on the flying object.
 (第8~第11実施形態のまとめ)
 第8~第11実施形態によれば、以下のような発明が把握できる。
(Summary of the eighth to eleventh embodiments)
According to the eighth to eleventh embodiments, the following invention can be grasped.
 [発明P1]推進力を発生する推進部および前記推進部の電源であるバッテリを含む本体部と、
軸部と、
前記軸部に回転可能に取り付けられるプロテクトフレームまたは車輪と、
前記軸部に対して前記推進部が可動となるように前記軸部と前記本体部を組み付ける機構(6X13、6X15、6X17、7X23)と、を備えた飛行体。
[Invention P1] A propulsion unit that generates propulsive force and a main body unit including a battery that is a power source of the propulsion unit;
The shaft,
A protect frame or a wheel rotatably attached to the shaft portion;
An aircraft including a mechanism (6X13, 6X15, 6X17, 7X23) for assembling the shaft and the main body so that the propulsion unit is movable with respect to the shaft.
 [発明P2]前記機構は、第1の弾性体を備え、
前記軸部と前記本体部とは、前記第1の弾性体を介して組み付けられていることを特徴とする発明P1の飛行体。
[Invention P2] The mechanism includes a first elastic body,
The flying body according to invention P1, wherein the shaft portion and the main body portion are assembled via the first elastic body.
 [発明P3]前記機構は更に第1のダンパを備え、
前記軸部と前記本体部とは、前記第1の弾性体および前記ダンパを介して組み付けられていることを特徴とする発明P2の飛行体。
[Invention P3] The mechanism further includes a first damper,
The flying body according to the invention P2, wherein the shaft portion and the main body portion are assembled through the first elastic body and the damper.
 [発明P4]前記機構は更に第2の弾性体を備え、
前記軸部と前記本体部とは、前記第1の弾性体および前記第2の弾性体を介して組み付けられており、前記第1の弾性体および前記第2の弾性体によって前記本体部が2次元的に拘束されていることを特徴とする発明P2またはP3の飛行体。
[Invention P4] The mechanism further includes a second elastic body,
The shaft portion and the main body portion are assembled via the first elastic body and the second elastic body, and the main body portion is 2 by the first elastic body and the second elastic body. The flying object of the invention P2 or P3, characterized in that it is dimensionally constrained.
 [発明P5]発明6P1の飛行体において、前記第1の弾性体は、単独で前記本体部を2次元的に拘束できることを特徴とするP2の飛行体。 [Invention P5] The aircraft of P2 according to Invention 6P1, wherein the first elastic body is capable of restraining the main body two-dimensionally by itself.
 [発明P6]前記推進部と一体に回転するロール軸を備え、
前記機構は、前記ロール軸を前記軸部に対して回転自在に支える軸受を有することを特徴とする発明P1の飛行体。
[Invention P6] A roll shaft that rotates integrally with the propulsion unit,
The aircraft according to the invention P1, wherein the mechanism includes a bearing that rotatably supports the roll shaft with respect to the shaft portion.
 [発明P7]前記機構によって前記軸部に対して前記推進部が可動となることを制限するロック機構を備えたことを特徴とする発明P1またはP6の飛行体。 [Invention P7] The flying object according to Invention P1 or P6, further comprising a lock mechanism that restricts the propulsion unit from being movable relative to the shaft by the mechanism.
 1…本体部、1-1…制御部、1-2…バッテリ部、1-3…飛行体側充電端子、2…推進部、2-1…プロペラ、2-2…モータ、3…固定軸、4…回転部、5…プロテクトフレームR、5-1…プロテクトフレームRの輪郭部、5-2…プロテクトフレームRの骨格部、6…プロテクトフレームL、6-1…プロテクトフレームLの輪郭部、6-2…プロテクトフレームLの骨格部、7…水上走行用プロテクトフレーム、7-1…水上走行用外側輪郭部、7-2…水上走行用内側輪郭部、8…重り、9…カメラ、10…環境測定装置、11…位置情報検出装置、12…計測制御装置、12-1…地上コンピュータ(陸上に設置する計測制御装置)、13…充電装置の充電部、13-1…充電電源部、13-2…給電側充電端子、13-3…可動機構、13-4…スイッチ、13-5…調整ガイド、13-6…無線標識(誘導センサ)、13-7…昇降部、14…充電装置の誘導部、14-1…誘導ガイド1、14-2…誘導ガイド2、14-3…ストッパ、15…送受信機、15-1…飛行体の送受信機、15-2…充電装置の送受信機。 DESCRIPTION OF SYMBOLS 1 ... Main-body part, 1-1 ... Control part, 1-2 ... Battery part, 1-3 ... Aircraft side charge terminal, 2 ... Propulsion part, 2-1 ... Propeller, 2-2 ... Motor, 3 ... Fixed shaft, 4 ... rotating part, 5 ... protect frame R, 5-1 ... contour part of protect frame R, 5-2 ... skeleton part of protect frame R, 6 ... protect frame L, 6-1 ... contour part of protect frame L, 6-2: Skeletal part of the protect frame L, 7: Protect frame for traveling on the water, 7-1 ... Outer contour for traveling on the water, 2-2 ... Inner contour for traveling on the water, 8 ... Weight, 9 ... Camera, 10 ... environmental measuring device, 11 ... position information detecting device, 12 ... measurement control device, 12-1 ... ground computer (measurement control device installed on land), 13 ... charging unit of charging device, 13-1 ... charging power source unit, 13-2: Charging side charging terminal, 13-3: movable mechanism 13-4 ... switch, 13-5 ... adjustment guide, 13-6 ... wireless sign (induction sensor), 13-7 ... elevating part, 14 ... induction part of charging device, 14-1 ... induction guide 1, 14-2 ... guide guides 2, 14-3 ... stopper, 15 ... transceiver, 15-1 ... aircraft transceiver, 15-2 ... charger transceiver.
 5X1…飛行体、5X1-1…本体部、5X1-2…制御部、5X1-3…推進部、5X1-4…軸部、5X1-5…プロテクトフレーム、5X1-6…バッテリ取付け部、5X2…バッテリ充電交換装置、5X2-1…充電交換部、5X2-1-1…ハンド部、5X2-1-2…昇降部、5X2-1-3…回転部、5X2-1-4…保持部(充電端子)、5X2…誘導部、5X2-2-1…誘導ガイド1、5X2-2-2…誘導ガイド2、5X2-2-3…ストッパ、5X2-2-4…車輪ストッパ、5X2-2-5…スイッチ、5X2-3…送受信機、5X3…バッテリ部、5X3-1…バッテリ本体、5X3-2…バッテリカバー、5X3-3…弾性体、5X3-4…連結部、5X3-4-1…切り込み部、5X3-5…端子部(電池の+-電極)、5X3-6…配線(電池から端子に繋ぐ部分)。 5X1 ... aircraft, 5X1-1 ... main body, 5X1-2 ... control unit, 5X1-3 ... propulsion unit, 5X1-4 ... shaft, 5X1-5 ... protection frame, 5X1-6 ... battery mounting part, 5X2 ... Battery charge exchange device, 5X2-1 ... charge exchange unit, 5X2-1-1 ... hand unit, 5X2-1-2 ... lifting unit, 5X2-1-3 ... rotating unit, 5X2-1-4 ... holding unit (charging) Terminal), 5X2 ... guide section, 5X2-2-1 ... guide guide 1, 5X2-2-2 ... guide guide 2, 5X2-2-3 ... stopper, 5X2-2-4 ... wheel stopper, 5X2-2-5 ... Switch, 5X2-3 ... Transceiver, 5X3 ... Battery unit, 5X3-1 ... Battery body, 5X3-2 ... Battery cover, 5X3-3 ... Elastic body, 5X3-4 ... Connecting part, 5X3-4-1 ... Cut Part, 5X3-5 ... terminal part (electric Bruno + - electrode), the portion connecting to the terminal from 5X3-6 ... wiring (battery).
 6X1…本体部、6X3…推進部、6X5…バッテリ、6X7…検査機器、6X9…プロテクトフレーム、6X11…軸部、6X13…弾性体、6X15…ダンパ、6X17…回転バネ、6X17a、6X17b…アーム。 6X1 ... main body, 6X3 ... propulsion unit, 6X5 ... battery, 6X7 ... inspection device, 6X9 ... protect frame, 6X11 ... shaft, 6X13 ... elastic body, 6X15 ... damper, 6X17 ... rotating spring, 6X17a, 6X17b ... arm.
 7X-1…飛行体、7X-10…車輪部、7X-11…車軸、7X-12…車輪、7X-13…車軸固定部、7X-20…飛行体本体、7X-21…推進部、7X-22…ロール軸、7X-23…ロール軸軸受、7X-30…ロック機構、7X-31…ロック軸(車軸側)、7X-32…ロック部(飛行体本体側)、7X-33…溝、7X-34…ガイド、7X-35…弾性体、7X-36…弾性体固定部 7X-1 ... Aircraft, 7X-10 ... Wheel, 7X-11 ... Axle, 7X-12 ... Wheel, 7X-13 ... Axle fixing part, 7X-20 ... Aircraft body, 7X-21 ... Propulsion, 7X -22 ... roll shaft, 7X-23 ... roll shaft bearing, 7X-30 ... lock mechanism, 7X-31 ... lock shaft (axle side), 7X-32 ... lock part (aircraft body side), 7X-33 ... groove , 7X-34 ... Guide, 7X-35 ... Elastic body, 7X-36 ... Elastic body fixing part

Claims (10)

  1.  制御部およびバッテリから成る本体部および前記本体部を保護する1つ以上のプロテクトフレームを備えて陸上を走行可能な飛行体のバッテリに充電する充電装置であって、
     前記プロテクトフレームに当接して前記飛行体を当該充電装置に導く誘導ガイド(14ー1、14ー2、5X2ー2ー1、5X2-2-2)と、
     前記プロテクトフレームに当たることで前記飛行体を停止させるストッパ(14ー3、5X2-2-3)と、
     前記プロテクトフレームが前記ストッパに当たることにより前記飛行体が停止した後で、前記飛行体のバッテリに充電を行う部材(13ー2、5X2-1-4)と、を備えた充電装置。
    A charging device for charging a battery of a flying body capable of traveling on land with a main body unit comprising a control unit and a battery and one or more protection frames for protecting the main body unit,
    A guiding guide (14-1, 14-2, 5X2-2-1, 5X2-2-2) that contacts the protection frame and guides the flying vehicle to the charging device;
    A stopper (14-3, 5X2-2-3) that stops the flying object by hitting the protect frame;
    A charging device comprising: a member (13-2, 5X2-1-4) that charges the battery of the flying object after the flying object stops when the protect frame hits the stopper.
  2.  前記誘導ガイドは、前記飛行体が当該充電装置に向かって進行してくる方向に対して凸になった部分を有し、
     前記飛行体の前記プロテクトフレームが2個に分離している場合、それら2個の間に前記誘導ガイドが勘合することを特徴とする請求項1に記載の充電装置。
    The guidance guide has a portion that is convex with respect to the direction in which the flying object travels toward the charging device,
    2. The charging device according to claim 1, wherein when the protection frame of the flying object is divided into two, the guide guide is fitted between the two.
  3.  前記誘導ガイドは、前記飛行体が当該充電装置に向かって進行してくる方向に対して凹になった部分を有し、
     前記飛行体が前記凹になった部分の内側の範囲にある場合、前記飛行体が当該充電装置に導かれることを特徴とする請求項1に記載の充電装置。
    The guidance guide has a concave portion with respect to the direction in which the flying object travels toward the charging device,
    2. The charging device according to claim 1, wherein when the flying object is in a range inside the recessed portion, the flying object is led to the charging device.
  4.  可動機構(13-3、5X2-1-1、5X2-1-3)と、
     前記飛行体に当接したときに前記可動機構を起動させるスイッチ(13ー4、5X2ー2ー5)とを備え、
     前記可動機構が起動することにより、前記飛行体のバッテリに充電が行われることを特徴とする請求項1ないし3のいずれか1つに記載の充電装置。
    A movable mechanism (13-3, 5X2-1-1, 5X2-1-3),
    A switch (13-4, 5X2-2-5) that activates the movable mechanism when coming into contact with the flying object,
    The charging device according to any one of claims 1 to 3, wherein the battery of the flying object is charged when the movable mechanism is activated.
  5.  前記誘導ガイドの直線部が、前記プロテクトフレームの曲がった輪郭部に当接することにより、前記誘導ガイドが前記飛行体を当該充電装置に導くことを特徴とする請求項1ないし4のいずれか1つに記載の充電装置。 The linear guide portion of the guide guide abuts on a curved contour portion of the protect frame, so that the guide guide guides the flying body to the charging device. The charging device described in 1.
  6.  前記飛行体を当該充電装置に誘導する信号を送信する装置を有していることを特徴とする請求項1ないし5のいずれか1つに記載の充電装置。 6. The charging device according to claim 1, further comprising a device that transmits a signal for guiding the flying object to the charging device.
  7.  前記飛行体のバッテリを前記飛行体から取って充電すると共に、他のバッテリを前記飛行体に付けることを特徴とする請求項1ないし6のいずれか1つに記載の充電装置。 The charging device according to any one of claims 1 to 6, wherein a battery of the flying object is taken from the flying object and charged, and another battery is attached to the flying object.
  8.  前記飛行体のバッテリのバッテリカバーには、前記飛行体と結合する連結部と、前記連結部に接続する弾性体が取り付けられており、
     当該充電装置は、前記弾性体に力を加えることにより前記連結部を動かし、その結果、前記飛行体から前記バッテリを取り外すハンド部(5X2-1-1)を備えたことを特徴とする請求項7に記載の充電装置。
    The battery cover of the battery of the flying body is attached with a connecting portion coupled to the flying body and an elastic body connected to the connecting portion,
    The charging device includes a hand portion (5X2-1-1) for moving the connecting portion by applying a force to the elastic body and, as a result, removing the battery from the flying body. 8. The charging device according to 7.
  9.  環状のベルトと、前記ベルトの外側に配置された複数個の保持部(5X2-1-4)とを有し、
     前記複数個の保持部の1つが前記飛行体のバッテリと勘合した後に前記ベルトが回転することで、前記飛行体からバッテリを取り去ると共に前記複数個の保持部の他の1つに勘合するバッテリを前記飛行体に取り付けることを特徴とする請求項7に記載の充電装置。
    An annular belt and a plurality of holding portions (5X2-1-4) disposed outside the belt;
    A battery that removes the battery from the flying body and engages with the other one of the plurality of holding parts by rotating the belt after one of the plurality of holding parts is fitted with the battery of the flying object. The charging device according to claim 7, wherein the charging device is attached to the flying body.
  10.  制御部およびバッテリから成る本体部および前記本体部を保護する1つ以上のプロテクトフレームを備えて陸上を走行可能な飛行体のバッテリを交換する交換装置であって、
     前記プロテクトフレームに当接して前記飛行体を当該交換装置に導く誘導ガイド(5X2ー2ー1、5X2-2-2)と、
     前記プロテクトフレームに当たることで前記飛行体を停止させるストッパ(5X2-2-3)と、
     前記プロテクトフレームが前記ストッパに当たることにより前記飛行体が停止した後で、前記飛行体のバッテリの交換を行う部材(5X2-1-4)と、を備えた交換装置。
    An exchange device for exchanging a battery of a flying object capable of traveling on land, comprising a main body unit comprising a control unit and a battery and one or more protection frames for protecting the main body unit,
    A guiding guide (5X2-2-1, 5X2-2-2) that contacts the protection frame and guides the flying object to the exchange device;
    A stopper (5X2-2-3) that stops the flying object by hitting the protect frame;
    And a member (5X2-1-4) for exchanging a battery of the flying object after the flying object stops by the protection frame hitting the stopper.
PCT/JP2014/080211 2013-11-15 2014-11-14 Charging device and changing device for battery of flying object WO2015072548A1 (en)

Applications Claiming Priority (10)

Application Number Priority Date Filing Date Title
JP2013236548 2013-11-15
JP2013-236548 2013-11-15
JP2014008191A JP6344791B2 (en) 2013-01-23 2014-01-21 Aircraft with protection frame and automatic charger that can run on land (and over water if possible)
JP2014-008191 2014-01-21
JP2014-106695 2014-05-23
JP2014106695A JP6308550B2 (en) 2014-05-23 2014-05-23 Aircraft battery with protection frame that can run on land or water and its charge exchange device
JP2014131355 2014-06-26
JP2014-131355 2014-06-26
JP2014166767 2014-08-19
JP2014-166767 2014-08-19

Publications (1)

Publication Number Publication Date
WO2015072548A1 true WO2015072548A1 (en) 2015-05-21

Family

ID=53057482

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/080211 WO2015072548A1 (en) 2013-11-15 2014-11-14 Charging device and changing device for battery of flying object

Country Status (1)

Country Link
WO (1) WO2015072548A1 (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105539843A (en) * 2015-12-03 2016-05-04 杨珊珊 Electric unmanned plane and cruising ability estimating method thereof
CN105730166A (en) * 2016-04-05 2016-07-06 许祖勇 Spherical sea-land-air intelligent scout robot
CN105752353A (en) * 2016-02-26 2016-07-13 李俊明 Aircraft, pan-tilt and sprinkler
CN106043725A (en) * 2016-06-30 2016-10-26 张春生 Shipborne unmanned plane charging device
CN106114875A (en) * 2016-08-11 2016-11-16 包俊鸿 A kind of unmanned plane not being afraid of collision
JP6084675B1 (en) * 2015-12-07 2017-02-22 高木 賀子 Transportation system using unmanned air vehicle
JP2017124691A (en) * 2016-01-13 2017-07-20 公益財団法人鉄道総合技術研究所 System for inspecting remote structure using small sized unmanned aircraft
JP2017519671A (en) * 2015-06-01 2017-07-20 エスゼット ディージェイアイ テクノロジー カンパニー リミテッドSz Dji Technology Co.,Ltd Method, apparatus and kit for assembling a mobile platform
US9975624B1 (en) * 2015-06-09 2018-05-22 Brandebury Tool Company, Inc. Multicopter propeller guard system
JP6357602B1 (en) * 2017-04-21 2018-07-11 楽天株式会社 Battery mounting system, battery mounting method, and program
US20190263206A1 (en) * 2018-02-28 2019-08-29 Stmicroelectronics S.R.L. Multi-environment flexible vehicle
WO2019168079A1 (en) * 2018-02-28 2019-09-06 株式会社ナイルワークス Agricultural drone having improved safety
US10817000B2 (en) * 2016-09-13 2020-10-27 Fujitsu Limited Unmanned aerial vehicle and control method of unmanned aerial vehicle
JP2021519497A (en) * 2018-03-28 2021-08-10 ソニーグループ株式会社 Unmanned aerial vehicle
CN113320690A (en) * 2021-07-07 2021-08-31 张木念 Unmanned aerial vehicle bottom buffering floating base capable of amphibious landing

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010052713A (en) * 2009-03-05 2010-03-11 Technical Research & Development Institute Ministry Of Defence Globular aircraft and tail sitter machine
WO2012130856A1 (en) * 2011-03-29 2012-10-04 Institut Supérieur De L'aéronautique Et De L'espace Remotely controlled micro/nanoscale aerial vehicle comprising a system for traveling on the ground, vertical takeoff, and landing

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010052713A (en) * 2009-03-05 2010-03-11 Technical Research & Development Institute Ministry Of Defence Globular aircraft and tail sitter machine
WO2012130856A1 (en) * 2011-03-29 2012-10-04 Institut Supérieur De L'aéronautique Et De L'espace Remotely controlled micro/nanoscale aerial vehicle comprising a system for traveling on the ground, vertical takeoff, and landing

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017519671A (en) * 2015-06-01 2017-07-20 エスゼット ディージェイアイ テクノロジー カンパニー リミテッドSz Dji Technology Co.,Ltd Method, apparatus and kit for assembling a mobile platform
US10661900B2 (en) 2015-06-01 2020-05-26 SZ DJI Technology Co., Ltd. Method, apparatus, and kit for assembling a mobile platform
US9975624B1 (en) * 2015-06-09 2018-05-22 Brandebury Tool Company, Inc. Multicopter propeller guard system
CN105539843B (en) * 2015-12-03 2017-11-07 杨珊珊 A kind of electronic unmanned plane and its endurance method of estimation
CN105539843A (en) * 2015-12-03 2016-05-04 杨珊珊 Electric unmanned plane and cruising ability estimating method thereof
JP6084675B1 (en) * 2015-12-07 2017-02-22 高木 賀子 Transportation system using unmanned air vehicle
JP2017105242A (en) * 2015-12-07 2017-06-15 高木 賀子 Transport system using unmanned flying body
WO2017099058A1 (en) * 2015-12-07 2017-06-15 高木 邦夫 Transport system using unmanned aerial vehicle
JP2017124691A (en) * 2016-01-13 2017-07-20 公益財団法人鉄道総合技術研究所 System for inspecting remote structure using small sized unmanned aircraft
CN105752353A (en) * 2016-02-26 2016-07-13 李俊明 Aircraft, pan-tilt and sprinkler
CN105730166A (en) * 2016-04-05 2016-07-06 许祖勇 Spherical sea-land-air intelligent scout robot
CN106043725A (en) * 2016-06-30 2016-10-26 张春生 Shipborne unmanned plane charging device
CN106114875A (en) * 2016-08-11 2016-11-16 包俊鸿 A kind of unmanned plane not being afraid of collision
US10817000B2 (en) * 2016-09-13 2020-10-27 Fujitsu Limited Unmanned aerial vehicle and control method of unmanned aerial vehicle
JP6357602B1 (en) * 2017-04-21 2018-07-11 楽天株式会社 Battery mounting system, battery mounting method, and program
WO2019168079A1 (en) * 2018-02-28 2019-09-06 株式会社ナイルワークス Agricultural drone having improved safety
JPWO2019168079A1 (en) * 2018-02-28 2020-08-06 株式会社ナイルワークス Agricultural drone with improved safety
US20190263206A1 (en) * 2018-02-28 2019-08-29 Stmicroelectronics S.R.L. Multi-environment flexible vehicle
US11660920B2 (en) * 2018-02-28 2023-05-30 Stmicroelectronics S.R.L. Multi-environment flexible vehicle
JP2021519497A (en) * 2018-03-28 2021-08-10 ソニーグループ株式会社 Unmanned aerial vehicle
JP7377810B2 (en) 2018-03-28 2023-11-10 ソニーグループ株式会社 unmanned aerial vehicle
CN113320690A (en) * 2021-07-07 2021-08-31 张木念 Unmanned aerial vehicle bottom buffering floating base capable of amphibious landing
CN113320690B (en) * 2021-07-07 2023-08-15 苏州复晔科技有限公司 Unmanned aerial vehicle bottom buffering floating base capable of amphibious landing

Similar Documents

Publication Publication Date Title
WO2015072548A1 (en) Charging device and changing device for battery of flying object
JP6652266B2 (en) Charging device
US11407526B2 (en) Systems and methods for UAV docking
US10363826B2 (en) Systems and methods for UAV battery exchange
US10384777B1 (en) Tethering system for unmanned aerial vehicles
US11926415B2 (en) Long line loiter apparatus, system, and method
KR20200002265U (en) Suspended cargo stabilization systems and methods
EP3400171B1 (en) Multirotor aircraft
JP6308550B2 (en) Aircraft battery with protection frame that can run on land or water and its charge exchange device
CN107651212A (en) It is tethered at unmanned plane, is tethered at unmanned plane positioning following control system and its control method
CN110944909A (en) Rotorcraft
CN104709465A (en) Technical scheme and implementation method of triphibian collision-resistant aircraft
CA3219996A1 (en) Long line loiter apparatus, system, and method
CN204432279U (en) Dwell impact resistant humanoid robot in a kind of land, water and air three
JP2016043922A (en) Flying body capable of traveling on land
CN205022868U (en) Land, water and air no. 3 anti collision type aircraft of dwelling
KR101757368B1 (en) Two way flight possible the drones
JP2022095361A (en) Unmanned flying object
JP2020066371A (en) Flight vehicle

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14862039

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14862039

Country of ref document: EP

Kind code of ref document: A1