WO2015064490A1 - Display apparatus - Google Patents

Display apparatus Download PDF

Info

Publication number
WO2015064490A1
WO2015064490A1 PCT/JP2014/078301 JP2014078301W WO2015064490A1 WO 2015064490 A1 WO2015064490 A1 WO 2015064490A1 JP 2014078301 W JP2014078301 W JP 2014078301W WO 2015064490 A1 WO2015064490 A1 WO 2015064490A1
Authority
WO
WIPO (PCT)
Prior art keywords
display
image
size
control unit
unit
Prior art date
Application number
PCT/JP2014/078301
Other languages
French (fr)
Japanese (ja)
Inventor
北田宏明
井上貴文
加納英和
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Priority to JP2015544965A priority Critical patent/JP5975183B2/en
Publication of WO2015064490A1 publication Critical patent/WO2015064490A1/en

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/048Interaction techniques based on graphical user interfaces [GUI]
    • G06F3/0484Interaction techniques based on graphical user interfaces [GUI] for the control of specific functions or operations, e.g. selecting or manipulating an object, an image or a displayed text element, setting a parameter value or selecting a range
    • G06F3/04845Interaction techniques based on graphical user interfaces [GUI] for the control of specific functions or operations, e.g. selecting or manipulating an object, an image or a displayed text element, setting a parameter value or selecting a range for image manipulation, e.g. dragging, rotation, expansion or change of colour
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0445Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using two or more layers of sensing electrodes, e.g. using two layers of electrodes separated by a dielectric layer
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/048Interaction techniques based on graphical user interfaces [GUI]
    • G06F3/0487Interaction techniques based on graphical user interfaces [GUI] using specific features provided by the input device, e.g. functions controlled by the rotation of a mouse with dual sensing arrangements, or of the nature of the input device, e.g. tap gestures based on pressure sensed by a digitiser
    • G06F3/0488Interaction techniques based on graphical user interfaces [GUI] using specific features provided by the input device, e.g. functions controlled by the rotation of a mouse with dual sensing arrangements, or of the nature of the input device, e.g. tap gestures based on pressure sensed by a digitiser using a touch-screen or digitiser, e.g. input of commands through traced gestures
    • G06F3/04883Interaction techniques based on graphical user interfaces [GUI] using specific features provided by the input device, e.g. functions controlled by the rotation of a mouse with dual sensing arrangements, or of the nature of the input device, e.g. tap gestures based on pressure sensed by a digitiser using a touch-screen or digitiser, e.g. input of commands through traced gestures for inputting data by handwriting, e.g. gesture or text
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04105Pressure sensors for measuring the pressure or force exerted on the touch surface without providing the touch position
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/048Indexing scheme relating to G06F3/048
    • G06F2203/04806Zoom, i.e. interaction techniques or interactors for controlling the zooming operation

Definitions

  • the present invention relates to a display device including a touch panel including a sensor that detects contact of a user's finger and a frame, and a control circuit that controls display contents of a display unit in accordance with a user's touch operation received by the touch panel. Is.
  • a portable terminal that includes a touch panel that detects contact of a user's finger and a control circuit that controls display content of a display unit such as a liquid crystal display in accordance with a user's touch operation received by the touch panel. .
  • a mobile electronic device (portable terminal) shown in Patent Document 1 includes a touch screen in which a touch panel and a display unit are integrated, and a module (control circuit) that controls display content of the touch screen.
  • the control circuit enlarges or reduces the content (image) displayed on the display unit by accepting a double tap operation, a pinch out operation, and a pinch in operation on the touch panel.
  • the double tap operation is an operation in which a short touch operation is performed twice in succession.
  • the pinch-out operation is an operation that widens between two touch positions.
  • the pinch-in operation is an operation for narrowing between two touch positions.
  • the mobile terminal In the pinch-out operation or the pinch-in operation, the mobile terminal displays an enlarged or reduced image at a magnification according to the distance between touch positions. In addition, when the mobile terminal receives a double tap operation, the mobile terminal executes either an enlarged display or a reduced display of the image in a predetermined size.
  • the image size is finely adjusted according to the distance between the two touch positions. Therefore, in the pinch-out operation and the pinch-in operation, it is difficult to switch the image display size to a desired size.
  • a double tap operation may be erroneously recognized as a single tap operation. Furthermore, the mobile terminal cannot distinguish whether the user is instructing to enlarge or reduce the image by a double tap operation.
  • an object of the present invention is to provide a display device that can switch the display size of an image displayed on a display unit to a desired size.
  • the display device includes a position detection unit that detects a plurality of positions where a touch operation on the operation surface is performed, a press operation detection unit that detects a press operation on the operation surface, and the plurality of the plurality of positions detected by the position detection unit.
  • a distance calculation unit that calculates a distance between the positions, a display control unit, a display unit that displays an image according to the control of the display control unit, and a storage unit that stores information on the display size of the image.
  • the display control unit corresponds to the display size information read from the storage unit when the distance calculated by the distance calculation unit changes and the pressing operation detection unit detects a pressing operation. Change the display size of.
  • the position detecting means detects an operation of the user trying to touch the operation receiving unit as a touch operation. That is, the position detection means detects not only an actual contact with the operation receiving unit but also a non-contact touch operation.
  • the non-contact touch operation is detected by, for example, providing a capacitive touch panel or an optical sensor in the operation receiving unit.
  • the display size information includes, for example, the number of pixels corresponding to the display area of the display unit.
  • the display size information is not limited to the number of pixels corresponding to the display area of the display unit, and may be a magnification based on the size of the current image.
  • the display device of the present invention switches to the display size read from the storage unit when the pressing operation is performed and the distance between the touch positions is changed, that is, when the pressing operation and the pinch-out operation or the pinch-in operation are performed. To display the image. Therefore, the user can display an image with a desired display size by a pressing operation and a pinch-out operation or a pinch-in operation.
  • the display device finely adjusts the size of the image according to the distance between the touch positions as the first process, and the pinch-out operation or the pinch-in operation without the pressing operation
  • the image may be displayed in a desired display size as the second process.
  • the storage unit may store a plurality of pieces of information about the display size of the image, and the display control unit may read out information about the display size according to the amount of change in distance detected by the distance calculation unit.
  • the image is enlarged and displayed stepwise in a size of 2 times, 3 times, 4 times as the user widens the touch positions.
  • the pressing operation detection unit detects a pressing amount of the pressing operation
  • the storage unit stores a plurality of pieces of information on the display size of the image
  • the display control unit detects the pressing operation detection unit. Information on the display size corresponding to the pressing amount may be read from the storage unit.
  • the image is enlarged and displayed in a stepwise manner with a double size, a triple size, and a quadruple size according to the pressing amount given by the user.
  • the pressing operation detection means may include a piezoelectric film formed of a chiral polymer.
  • Chiral polymer has a helical structure in the main chain.
  • the chiral polymer generates an electric charge when the piezoelectric film is pressed. Since the piezoelectric properties of the chiral polymer are due to the molecular structure, no polling is required compared to a ferroelectric polymer such as PVDF (polyvinylidene fluoride).
  • the chiral polymer may be polylactic acid, or the polylactic acid may be stretched in a uniaxial direction.
  • Polylactic acid has a high piezoelectric output constant among chiral polymers.
  • L-type polylactic acid (PLLA) stretched in a uniaxial direction has a high piezoelectric output constant among polylactic acids.
  • the pressing operation detecting means can accept the pressing operation with high sensitivity.
  • Polylactic acid has very little pyroelectricity, such as PVDF. Therefore, a piezoelectric film formed of polylactic acid is suitable as a configuration of a pressing operation detection unit that transmits the temperature of a finger.
  • the display device can display an image by switching to the display size of the user's desired size without fine adjustment by the user only by pinch-out operation or pinch-in operation.
  • FIG. 1 is an external perspective view of a mobile terminal 1 according to an embodiment of the present invention.
  • (A) is an AA cross-sectional view of the mobile terminal 1 according to the embodiment of the present invention
  • (B) is a plan view of the electrostatic sensor 12.
  • It is a block diagram which shows a part of structure of the portable terminal 1 which concerns on embodiment of this invention.
  • (A) is a figure which shows the example of a display of the display input part 10
  • (B) is a figure which shows the example which detects two touch positions.
  • FIG. 4 is a diagram showing an enlargement operation for the mobile terminal 1.
  • (A) is a figure which shows the content memorize
  • (B) is a figure which shows the example of a display after expansion operation with respect to the portable terminal 1.
  • (A) And (B) is a figure which shows the example of a display after enlargement operation with respect to the portable terminal 1, or after reduction operation, respectively.
  • 3 is a flowchart showing the operation of a control unit 14.
  • 3 is a flowchart showing the operation of a control unit 14. It is a flowchart which shows the process which concerns on the modification of step S6.
  • (A) And (B) is a figure for demonstrating the modification of the process of step S6, respectively.
  • FIG. 1 is an external perspective view of the mobile terminal 1.
  • FIG. 2A is a cross-sectional view of the mobile terminal 1 along AA.
  • FIG. 2B is a plan view of the electrostatic sensor 12.
  • FIG. 3 is a block diagram illustrating a part of the configuration of the mobile terminal 1.
  • the mobile terminal 1 includes a substantially rectangular parallelepiped housing 30 as shown in FIG.
  • the surface of the housing 30 is open.
  • the X direction shown in FIG. 1 is the width direction of the housing 30, the Y direction is the height direction, and the Z direction is the thickness direction.
  • the width of the housing 30 is shorter than the height of the housing 30 is shown.
  • the housing 30 may have the same width and height, or the width may be longer than the height.
  • the display input unit 10 is exposed to the outside through the opening of the housing 30. Thereby, the Z-side surface of the display input unit 10 becomes an operation surface.
  • the housing 30 has the display input unit 10 and the arithmetic circuit module 40 disposed therein.
  • the arithmetic circuit module 40 and the display input unit 10 are sequentially arranged in the thickness direction.
  • the display input unit 10 includes a display unit 11, an electrostatic sensor 12, a piezoelectric sensor 20, and an insulating film 124 as shown in FIG.
  • the display unit 11, the electrostatic sensor 12, and the piezoelectric sensor 20 have substantially the same shape as viewed from the front side of the housing 30.
  • the display unit 11 includes a liquid crystal panel 111, a front polarizing plate 112, a back polarizing plate 113, and a backlight 114, as shown in FIG.
  • the backlight 114, the back polarizing plate 113, the liquid crystal panel 111, the piezoelectric sensor 20, the insulating film 124, the electrostatic sensor 12, and the surface polarizing plate 112 are sequentially arranged in the thickness direction.
  • the piezoelectric sensor 20 and the electrostatic sensor 12 may be disposed in reverse.
  • the electrostatic sensor 12 includes a base film 121, a plurality of capacitance detection electrodes 122, and a plurality of capacitance detection electrodes 123.
  • the base film 121 is made of a material having translucency and a predetermined dielectric constant.
  • Each of the plurality of capacitance detection electrodes 122 and the plurality of capacitance detection electrodes 123 has a long shape and is made of a light-transmitting conductive material.
  • the plurality of capacitance detection electrodes 122 are arranged on the first main surface (the surface on the + Z side) of the base film 121 at a predetermined interval.
  • the plurality of capacitance detection electrodes 123 are arrayed on the second main surface (the surface on the ⁇ Z side) of the base film 121 at a predetermined interval.
  • the arrangement direction of the plurality of capacitance detection electrodes 122 and the arrangement direction of the plurality of capacitance detection electrodes 123 are approximately when viewed from the normal direction of the first main surface or the second main surface of the base film 121. It is set to be orthogonal.
  • the position detection unit 13 detects the touch position by specifying a set of the capacitance detection electrode 122 and the capacitance detection electrode 123 whose capacitance has changed.
  • the position detection unit 13 detects a plurality of touch positions by specifying a plurality of sets of the capacitance detection electrode 122 and the capacitance detection electrode 123 whose capacitance has changed.
  • the change in capacitance can be detected even if the finger is not actually in contact with the surface polarizing plate 112.
  • the touch position can be detected by using an optical sensor that detects the approach of the finger to the surface polarizing plate 112 instead of the electrostatic sensor 12.
  • the position detection unit 13 When the position detection unit 13 detects the touch position, the position detection unit 13 outputs information on the touch position to the control unit 14.
  • the piezoelectric sensor 20 includes a piezoelectric film 201, a piezoelectric detection electrode 202, and a piezoelectric detection electrode 203 as shown in FIG.
  • the piezoelectric film 201, the piezoelectric detection electrode 202, and the piezoelectric detection electrode 203 each have a flat film shape.
  • the piezoelectric detection electrode 202 is formed on the first main surface (+ Z side surface) of the piezoelectric film 201.
  • the piezoelectric detection electrode 203 is formed on the second main surface (the surface on the ⁇ Z side) of the piezoelectric film 201.
  • the piezoelectric detection electrode 202 and the piezoelectric detection electrode 203 are formed of any one of an organic electrode mainly composed of ITO, ZnO, and polythiophene, an organic electrode mainly composed of polyaniline, a silver nanowire electrode, and a carbon nanotube electrode, respectively. , Has translucency.
  • the piezoelectric film 201 is made of, for example, uniaxially stretched polylactic acid and has translucency. Further, when the piezoelectric film 201 is pressed in the ⁇ Z direction, it generates electric charges on the first main surface and the second main surface. A potential difference between the piezoelectric detection electrode 202 and the piezoelectric detection electrode 203 is generated by generating charges on the first main surface and the second main surface of the piezoelectric film 201.
  • the level of the potential difference (for example, mV) corresponds to the pressing amount (or the pressing amount, for example, several tens of ⁇ m) of the piezoelectric film 201.
  • the piezoelectric sensor 20 outputs a potential difference between the piezoelectric detection electrode 202 and the piezoelectric detection electrode 203 as a sensor signal.
  • the sensor signal output from the piezoelectric sensor 20 is input to the piezoelectric sensor result detection unit 21 as shown in FIG.
  • the piezoelectric sensor result detection unit 21 obtains the level LSS (mV) of the input sensor signal.
  • the piezoelectric sensor result detection unit 21 determines whether or not a pressing operation is performed on the piezoelectric sensor 20 according to the obtained level LSS. For example, if the level LSS is less than 20 mV, the piezoelectric sensor result detection unit 21 determines that no pressing operation is performed on the piezoelectric sensor 20 of the display input unit 10.
  • the piezoelectric sensor result detection unit 21 determines that a pressing operation has been performed on the piezoelectric sensor 20 of the display input unit 10. Since the piezoelectric sensor result detection unit 21 determines the presence or absence of the pressing operation based on the threshold value, it is easy to distinguish the touch operation and the pressing operation on the display input unit 10.
  • the piezoelectric sensor result detection unit 21 outputs information on the presence or absence of a pressing operation to the control unit 14.
  • the piezoelectric sensor result detection unit 21 also outputs information on the level LSS (corresponding to the pressing amount) to the control unit 14.
  • the light output from the backlight 114 sequentially passes through the back polarizing plate 113, the liquid crystal panel 111, the piezoelectric sensor 20, the insulating film 124, the electrostatic sensor 12, and the surface polarizing plate 112.
  • the liquid crystal panel 111 transmits the received light as it is or with the vibration direction changed (polarized) as controlled by the display control unit 15.
  • the display content of the display unit 11 is changed by controlling the backlight 114 and the liquid crystal panel 111.
  • the piezoelectric sensor 20 Since the piezoelectric sensor 20 has translucency, even if it is arranged on the + Z side with respect to the backlight 114, the transmission of light from the backlight 114 is not hindered.
  • control unit 14 is input with information on the touch position on the display input unit 10, information on the presence / absence of the pressing operation, and information on the level LSS (corresponding to the pressing amount).
  • the control unit 14 performs various processes based on the input information.
  • Information on processing related to display is output from the control unit 14 to the display control unit 15.
  • the display control unit 15 controls the display input unit 10 (display unit 11) so that the display content corresponds to the processing information related to the display output by the control unit 14.
  • GUI Graphical User Interface
  • Such a portable terminal 1 makes it possible to implement the following GUI.
  • FIG. 4A is a diagram illustrating a display example of the display input unit 10.
  • FIG. 4B is a diagram illustrating an example of detecting two touch positions.
  • FIG. 5 is a diagram illustrating an enlargement operation on the mobile terminal 1.
  • FIG. 6A is a diagram showing the contents stored in the database 140.
  • FIGS. 6B, 7 ⁇ / b> A, and 7 ⁇ / b> B are diagrams illustrating display examples after the enlargement operation or the reduction operation on the mobile terminal 1, respectively.
  • 8 and 9 are flowcharts showing the operation of the control unit 14.
  • control unit 14 performs the display shown in FIG. 4A at the start of the flowchart shown in FIG. That is, the display input unit 10 displays the image 901 at the start of the flowchart shown in FIG.
  • the image 901 is not limited to a still image but may be a moving image.
  • the screen size is a size defined by the number of pixels of the width and height of the display area of the display input unit 10.
  • the image size is a size unique to an image regardless of display, and is defined by the number of pixels of width and height.
  • the display size of the image is a size defined by the number of pixels of the width and height at which the image is to be displayed. Therefore, the image size and the display size of the image are different when the image is enlarged or reduced.
  • the screen size of the display input unit 10 is 1080 pixels in width (X direction) and 1920 pixels in height (Y direction).
  • the image size of the image 901 is 675 pixels in width (X direction) and 1200 pixels in height (Y direction).
  • the display size of the image 901 is the same as the image size of the image 901 in the example shown in FIG.
  • the flowchart shown in FIG. 8 starts when the control unit 14 acquires information on a plurality of touch positions from the position detection unit 13 (start).
  • start the operation of the control unit 14 will be described using the example shown in FIG.
  • the user touches the display input unit 10 with the thumb TBRH of the right hand and the index finger FFRH of the right hand.
  • one of the touch positions is a touch position FTP
  • the other touch position is a touch position STP.
  • the control unit 14 acquires information on coordinates (Fx, Fy) as information on the touch position FTP and information on coordinates (Sx, Sy) as information on the touch position STP from the position detection unit 13.
  • the position detection unit 13 uses the coordinates (Fx, Fy) and the reference position S (0, 0) of the coordinates (Sx, Sy) as the ⁇ X direction and the ⁇ Y direction in the display area of the display input unit 10, for example. The position of the corner. Further, the position detection unit 13 sets the units of the coordinates (Fx, Fy) and the coordinates (Sx, Sy) as millimeters (mm).
  • the reference position S may be any position in the display area of the display input unit 10, and the coordinate unit is not limited to millimeters (mm) and may be the number of pixels.
  • the control unit 14 calculates a distance Dis between the two touch positions (S1).
  • the distance Dis is a distance between the touch position FTP and the touch position STP. That is, the distance Dis (mm) is obtained by the following equation.
  • Sqrt ((Fx ⁇ Sx) 2 + (Fy ⁇ Sy) 2 )
  • Sqrt is a function that takes a square root.
  • the control unit 14 determines whether or not there is a pressing operation on the display input unit 10 (S2). More specifically, the control unit 14 acquires information on the presence or absence of a pressing operation from the piezoelectric sensor result detection unit 21 and determines whether or not there is a pressing operation. When it is determined that the pressing operation is performed on the display input unit 10 (S2: YES), the control unit 14 proceeds to step S3 and starts the display size switching process. When it is determined that the pressing operation is not performed on the display input unit 10 (S2: NO), the control unit 14 proceeds to step S10 and starts the display size changing process.
  • control unit 14 determines that the pressing operation is performed on the display input unit 10 (S2: YES)
  • the control unit 14 acquires the touch position information from the position detection unit 13 again (S3).
  • the control unit 14 determines whether or not the touch position has changed (S4). More specifically, when the control unit 14 determines that any one of the touch positions acquired again has changed from the touch position acquired first (start time) (S4: YES), the control unit 14 proceeds to step S5. . If the control unit 14 determines that any one of the touch positions acquired again has not changed from the touch position acquired first (S4: NO), the control unit 14 returns to step S3 and continues until the touch position changes. The process of S3 and the process of step S4 are repeated. However, when the number of touch positions acquired again decreases from the number of touch positions acquired first, the control unit 14 finishes the repetition process of step S3 and step S4 and performs another operation input reception process. Also good.
  • the control unit 14 calculates a change amount Diff of the distance Dis (S5).
  • the change amount Diff is a difference distance (mm) between the distance Dis and the distance Dis ′.
  • the distance Dis ′ is a distance between the changed touch positions.
  • steps S2 to S5 will be described with reference to FIG.
  • the enlargement operation is a pinch that performs a pressing operation of pressing the display input unit 10 at the touch position FTP or the touch position STP, and releases the right thumb TBRH and the right index finger FFRH. It is assumed that the operation is an out operation.
  • the touch position FTP changes to the touch position FTP ′ after the pinch-out operation
  • the touch position STP changes to the touch position STP ′ after the pinch-out operation.
  • the touch position FTP ′ is coordinates (Fx ′, Fy ′)
  • the touch position STP ′ is coordinates (Sx ′, Sy ′).
  • the control unit 14 determines that the pressing operation is performed (S2: YES), and then displays the information on the touch position FTP ′ and the touch position STP ′. Obtained from the position detector 13 (S3), it is determined that each touch position has changed from the touch position FTP and the touch position STP (S4: YES).
  • control part 14 calculates distance Dis' based on the information of the touch position acquired again in order to calculate variation
  • the calculation method of the distance Dis ′ is the same as the calculation method of the distance Dis.
  • control unit 14 calculates the amount of change Diff by subtracting the distance Dis from the distance Dis' (S5).
  • the change amount Diff is a positive value in the enlargement operation shown in FIG.
  • the example shown in FIG. 5 is an example of the enlargement operation, but the user may perform the reduction operation.
  • the reduction operation is an operation of performing a pressing operation of pressing the display input unit 10 at the touch position FTP or the touch position STP, and performing a pinch-in operation of bringing the right thumb TBRH and the right index finger FFRH closer.
  • a negative value is calculated as the change amount Diff.
  • control unit 14 when the control unit 14 calculates the change amount Diff, the control unit 14 proceeds to step S ⁇ b> 6 and displays the image 901 with a display size corresponding to the calculated change amount Diff. More specifically, the control unit 14 refers to the database 140 with the calculated change amount Diff and specifies the display size of the image 901.
  • the database 140 stores a change amount Diff (mm) and a display size in association with each other as shown in FIG.
  • the display size is defined by the number of pixels of width and height.
  • the display size having a width of 1080 pixels and a height of 1920 pixels is the same as the screen size of the display input unit 10.
  • the display size having a width of 2160 pixels and a height of 3840 pixels is twice as large as the width and height of the screen size of the display input unit 10 respectively.
  • a display size having a width of 3240 pixels and a height of 5760 pixels has a width and a height that are three times the width and height of the screen size of the display input unit 10, respectively.
  • a display size having a width of 540 pixels and a height of 960 pixels has a width and a height that are 1 ⁇ 2 times the width and height of the screen size of the display input unit 10, respectively.
  • the display size is not limited to being defined by the number of pixels corresponding to the screen size of the display input unit 10, but may be defined by a magnification based on the width and height of the image size.
  • the display size may be defined by a magnification based on the width and height of the current display size of the image 901.
  • control part 14 outputs the information of the process which displays the image 901 by the specified display size to the display control part 15 (S6).
  • control unit 14 may return to step S3 after step S6. Thereby, the user can continuously switch and display the display size of the image 901 by continuously performing the pinch-in operation or the pinch-out operation.
  • step S6 A processing example of step S6 will be described with reference to FIG.
  • the control unit 14 refers to the database 140 and specifies the display size of the image 901 as having a width of 1080 pixels and a height of 1920 pixels. That is, the specified display size is the same as the screen size of the display input unit 10.
  • control unit 14 outputs information on processing for displaying the image 901 with the specified display size to the display control unit 15.
  • the display control unit 15 performs a process of enlarging the image 901 because the specified display size is larger than the image size of the image 901.
  • the display control unit 15 can use a general processing method as the enlargement process.
  • the display control unit 15 performs a mathematical process as follows.
  • the display control unit 15 images 1.6 times (1080 pixels / 675 pixels).
  • the width and height of 901 are expanded.
  • the image 901 is enlarged and displayed with a width of 1080 pixels and a height of 1920 pixels.
  • the control unit 14 may calculate the magnification of the enlarged display based on the heights of the display size and the image size. Further, the control unit 14 may calculate the magnification of the enlarged display by using both the width and the height of the display size and the image size.
  • the display control unit 15 also performs a process of displaying the image 901 at the center of the display area of the display input unit 10 in addition to the enlargement process of the image 901.
  • the image 901 is arranged and displayed so that the center position of the display size matches the center position of the display area of the display input unit 10.
  • the image 901 displays the image 901 in the entire display area of the display input unit 10 as shown in FIG.
  • it is not essential to place the center position of the display size of the image 901 at the center position of the display area of the display input unit 10.
  • the control unit 14 calculates a larger amount of change Diff (30 mm) than the above example, the width and height of the screen size of the display input unit 10 are each doubled as shown in FIG.
  • the image 901 is displayed with the large display size. However, in this case, only a part of the image 901 is displayed because the display size is larger than the screen size.
  • the portable terminal 1 has a negative value (for example, ⁇ 10 mm).
  • the image 901 is displayed with a display size that is 1 ⁇ 2 times the width and height of the screen size of the display input unit 10.
  • the mobile terminal 1 executes the display size switching process. That is, the mobile terminal 1 switches and displays the display size of the image 901 according to the change amount Diff and the presence or absence of the pressing operation. Therefore, the user can quickly display the image 901 in a desired display size with the same operation feeling as the pinch-out operation or the pinch-in operation.
  • calculating the change amount Diff is not an essential configuration of the present invention.
  • the portable terminal 1 displays the image 901 with a display size of a predetermined size (for example, the same size as the screen size of the display input unit 10) only by accepting a pressing operation and determining that the change amount Diff is not 0 mm. May be.
  • the enlargement operation and the reduction operation are clearly different because the moving directions of the right thumb TBRH and the right index finger FFRH are opposite to each other.
  • the mobile terminal 1 executes the display size switching process according to clearly different enlargement operations and reduction operations. Accordingly, unlike the conventional double-tap operation, the mobile terminal 1 does not execute different processing (enlarged display or reduced display) by the same operation, and therefore can execute the process as intended by the user.
  • control unit 14 determines that the pressing operation is not performed on the display input unit 10 (S2: NO)
  • the control unit 14 proceeds to step S10 and starts the display size changing process.
  • or step S15 is the same as the process of step S3 thru
  • step S16 the display control unit 15 changes and displays the display size of the image at a magnification that is proportional or inversely proportional to the change amount Diff.
  • the display control unit 15 obtains the magnification m by the following equation using the calculated change amount Diff.
  • magnification m Diff ⁇ k1 (Diff> 0)
  • m k2 / Diff (Diff ⁇ 0) That is, the magnification m is a value obtained by multiplying the predetermined coefficient k1 and the change amount Diff when the change amount Diff is positive, and a value obtained by dividing the predetermined coefficient k2 by the change amount Diff when the change amount Diff is negative. It becomes.
  • the magnification m is a value proportional to the change amount Diff in the case of the enlargement operation shown in FIG. 5, and is a value inversely proportional to the change amount Diff in the case of the reduction operation.
  • the display control unit 15 sets the size obtained by multiplying the width and height of the image 901 by m times as the display size of the image 901.
  • the mobile terminal 1 executes the display size changing process, and sequentially changes the display size of the image 901 at a magnification proportional to or inversely proportional to the amount of change in the distance between touch positions.
  • the user switches the display size of the image 901 by performing an enlargement operation or a reduction operation on the display input unit 10 and performs only a pinch-out operation or a pinch-in operation on the display input unit 10 without pressing.
  • the display size of the image 901 can be finely adjusted at a magnification proportional to or inversely proportional to the amount of change between touch positions in the operation.
  • the portable terminal 1 determines that the pressing operation is performed (S2: YES)
  • the mobile terminal 1 performs a display size changing process (processing after step S13 in FIG. 9) and determines that the pressing operation is not performed (S2). : NO)
  • display size switching processing processing after step S3 in FIG. 8 may be performed.
  • the portable terminal 1 uses the pressing operation as a trigger for starting the display size switching process (S2: YES), but uses a change in the distance between touch positions as a trigger for starting the display size switching process. If there is a pressing operation following the change in the distance between the touch positions, the image 901 may be displayed by switching to the image display size.
  • the control unit 14 acquires information about three or more touch positions from the position detection unit 13, the control unit 14 calculates a distance Dis between the touch positions. That is, the control unit 14 calculates a plurality of distances Dis. In this case, the control unit 14 calculates a plurality of distances Dis' again in step S5 or step S15. Then, the control unit 14 subtracts the sum of the plurality of distances Dis from the sum of the plurality of distances Dis ′ to calculate one change amount Diff. Then, in step S6 or step S16, the control unit 14 specifies the display size according to the change amount Diff. Note that since the change amount Diff corresponding to three or more touch positions may be larger than the change amount Diff of the two touch positions, it is desirable to average the number of touch positions.
  • the control unit 14 specifies a display size having a width of 1080 pixels and a height of 1920 pixels when the change amount Diff is 0 mm or more and less than 20 mm, and when the change amount Diff is 20 mm or more and less than 40 mm, although the display size of 2160 pixels wide and 3840 pixels high is specified, the display size is specified according to the level LSS (corresponding to the pressing amount to the display input unit 10) without depending on the change amount Diff. Also good. In this case, the database 140 stores the level LSS size (mV) and the display size in association with each other.
  • mV level LSS size
  • control unit 14 determines that the pressing operation is performed on the display input unit 10 (S2: YES)
  • the control unit 14 acquires information on the level LSS from the piezoelectric sensor result detection unit 21.
  • the control part 14 may specify the display size of the magnitude
  • the piezoelectric film 201 is a film formed from a chiral polymer.
  • polylactic acid (PLA) particularly L-type polylactic acid (PLLA) is used as the chiral polymer.
  • PLLA is uniaxially stretched.
  • PLLA is suitable for the piezoelectric sensor 20 because it belongs to a very high piezoelectric constant among polymers.
  • PLLA has no pyroelectricity unlike other ferroelectric piezoelectric materials (such as PVDF). Therefore, the PLLA is suitable for a configuration in which the temperature of the finger is transmitted by a touch operation, like the piezoelectric sensor 20 of the display input unit 10.
  • PLLA is made of a chiral polymer and therefore has a higher light transmissivity than PVDF or the like. Therefore, the PLLA is suitable for a configuration in which the PLLA is disposed on the + Z side from the backlight 114 like the piezoelectric sensor 20 of the display input unit 10.
  • the piezoelectric sensor 20 may use a piezoelectric film 201 made of, for example, PVDF.
  • FIG. 10 is a flowchart showing a modification of the process of step S6 of the flowchart shown in FIG.
  • FIG. 11A and FIG. 11B are diagrams for explaining modifications of the process of step S6 shown in FIG.
  • step S6 whether the image is enlarged or reduced based on the width of the specified display size according to the level LSS (corresponding to the pressing amount), or the specified display It differs from the processing shown in step S6 shown in FIG. 8 in that it is determined whether to enlarge or reduce the image using both the width and height of the size.
  • control unit 14 acquires the information of the level LSS from the piezoelectric sensor result detection unit 21 in advance in step S2 of the flowchart shown in FIG. Further, it is assumed that the change amount Diff is calculated to be 15 mm in step S5.
  • the control unit 14 specifies a display size corresponding to the calculated change amount Diff (15 mm) (S61).
  • the control unit 14 refers to the database 140 with the calculated change amount Diff, and specifies a display size having a width of 1080 pixels and a height of 1920 pixels.
  • the control unit 14 determines whether or not the acquired level LSS is, for example, 30 mV or more (S62). When the level LSS is, for example, 30 mV or higher (S62: YES), the control unit 14 proceeds to step S63. If the level LSS is less than 30 mV, for example (S62: NO), the control unit 14 proceeds to step S64.
  • control unit 14 When the level LSS is, for example, 30 mV or higher (S62: YES), the control unit 14 performs an image enlargement process based on the specified display size width (S63).
  • step S63 will be described using the example shown in FIGS. 10 (A) and 10 (B).
  • the screen size of the display input unit 10 is 1080 pixels in width and 1920 pixels in height. That is, the aspect ratio of the screen size of the display input unit 10 is 9:16.
  • the display input unit 10 displays an image 902 in the display example shown in FIG.
  • the image size of the image 902 is 600 pixels wide and 800 pixels high. That is, the aspect ratio of the image size of the image 902 is 3: 4, which is different from the aspect ratio of the screen size of the display input unit 10.
  • the display control unit 15 executes a process of enlarging and displaying the image 902 at 1.8 times (1080 pixels / 600 pixels).
  • the display size of the image 902 is a size obtained by multiplying both the width and height of the image size by 1.8 times.
  • the display input unit 10 enlarges and displays the image 902 while maintaining the aspect ratio of the image size of the image 902.
  • the display control unit 15 may obtain the magnification of the enlarged display using the height of the specified display size.
  • the display control unit 15 When the acquired level LSS is less than 30 mV, for example (S62: NO), the display control unit 15 performs an enlargement process of the image 902 using both the width and height of the specified display size (S64).
  • the display control unit 15 enlarges the image 902 by making the width 1.8 times (1080 pixels / 600 pixels) and the height 2.4 times (1920 pixels / 800 pixels). Display size. Then, the display input unit 10 enlarges and displays the image 902 in the entire display area.
  • this modification displays an enlarged image while maintaining or changing the aspect ratio according to the level LSS.
  • this modification can also be implemented for reduced display.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • User Interface Of Digital Computer (AREA)
  • Telephone Function (AREA)

Abstract

This display apparatus is provided with: a position detecting means for detecting a plurality of positions at which touch operations are performed with respect to an operation surface; a pressing operation detecting means for detecting pressing operations performed with respect to the operation surface; a distance calculation unit for calculating distances between the positions detected by means of the position detecting means; a display control unit; a display unit for displaying an image corresponding to control performed by means of the display control unit; and a storage unit for storing information of a display size of the image. The display apparatus displays the image by switching the display size to a display size read out from the storage unit, in the cases where the pressing operations are performed, and there is a change in the distances between the touch positions, namely in the cases where the pressing operations and a pinch-out operation or pinch-in operation are performed. Consequently, a user can display the image in a desired display size by performing the pressing operations and the pinch-out operation or the pinch-in operation.

Description

表示装置Display device
 本発明は、ユーザの指の接触を検知するセンサと枠体とからなるタッチパネルと、該タッチパネルで受け付けたユーザのタッチ操作に応じて表示部の表示内容を制御する制御回路とを備える表示装置に関するものである。 The present invention relates to a display device including a touch panel including a sensor that detects contact of a user's finger and a frame, and a control circuit that controls display contents of a display unit in accordance with a user's touch operation received by the touch panel. Is.
 従来、ユーザの指の接触を検知するタッチパネルと、該タッチパネルで受け付けたユーザのタッチ操作に応じて液晶ディスプレイ等の表示部の表示内容を制御する制御回路と、を備える携帯端末が知られている。 2. Description of the Related Art Conventionally, a portable terminal is known that includes a touch panel that detects contact of a user's finger and a control circuit that controls display content of a display unit such as a liquid crystal display in accordance with a user's touch operation received by the touch panel. .
 例えば、特許文献1に示すモバイルエレクトロニックデバイス(携帯端末)は、タッチパネルと表示部とが一体となったタッチスクリーンと、タッチスクリーンの表示内容を制御するモジュール(制御回路)と、を備えている。 For example, a mobile electronic device (portable terminal) shown in Patent Document 1 includes a touch screen in which a touch panel and a display unit are integrated, and a module (control circuit) that controls display content of the touch screen.
 特許文献1に示す携帯端末は、ダブルタップ操作、ピンチアウト操作、及びピンチイン操作をタッチパネルで受け付けることにより、制御回路が表示部で表示されているコンテンツ(画像)を拡大又は縮小する。ただし、ダブルタップ操作とは、短時間のタッチ操作を2回続けて行う操作である。ピンチアウト操作とは、2つのタッチ位置間を広げる操作である。ピンチイン操作とは、2つのタッチ位置間を狭める操作である。 In the mobile terminal shown in Patent Document 1, the control circuit enlarges or reduces the content (image) displayed on the display unit by accepting a double tap operation, a pinch out operation, and a pinch in operation on the touch panel. However, the double tap operation is an operation in which a short touch operation is performed twice in succession. The pinch-out operation is an operation that widens between two touch positions. The pinch-in operation is an operation for narrowing between two touch positions.
 携帯端末は、ピンチアウト操作又はピンチイン操作では、タッチ位置間の距離に応じた倍率で画像を拡大又は縮小して表示する。また、携帯端末は、ダブルタップ操作を受け付けると、画像を所定の大きさに拡大表示又は縮小表示のどちらかを実行する。 In the pinch-out operation or the pinch-in operation, the mobile terminal displays an enlarged or reduced image at a magnification according to the distance between touch positions. In addition, when the mobile terminal receives a double tap operation, the mobile terminal executes either an enlarged display or a reduced display of the image in a predetermined size.
特開2011-159291号公報JP 2011-159291 A
 しかしながら、ピンチアウト操作及びピンチイン操作では、2つのタッチ位置間の距離に応じて画像の大きさが細かく調整されてしまう。したがって、ピンチアウト操作及びピンチイン操作では、画像の表示サイズを所望の大きさに切り替えることは難しい。 However, in the pinch-out operation and the pinch-in operation, the image size is finely adjusted according to the distance between the two touch positions. Therefore, in the pinch-out operation and the pinch-in operation, it is difficult to switch the image display size to a desired size.
 また、一般的にダブルタップ操作は、シングルタップ操作として誤認識されてしまうことがある。さらに、携帯端末は、ダブルタップ操作によってユーザが画像の拡大表示か縮小表示のどちらを指示しているのか区別することができない。 In general, a double tap operation may be erroneously recognized as a single tap operation. Furthermore, the mobile terminal cannot distinguish whether the user is instructing to enlarge or reduce the image by a double tap operation.
 そこで、本発明の目的は、表示部で表示された画像の表示サイズを所望の大きさに切り替えることができる表示装置を提供することにある。 Therefore, an object of the present invention is to provide a display device that can switch the display size of an image displayed on a display unit to a desired size.
 本発明の表示装置は、操作面に対するタッチ操作がなされた複数の位置を検出する位置検出手段と、該操作面に対する押圧操作を検知する押圧操作検知手段と、前記位置検出手段が検出した前記複数の位置間の距離を算出する距離算出部と、表示制御部と、前記表示制御部の制御に従い画像を表示する表示部と、前記画像の表示サイズの情報を記憶する記憶部と、を備える。 The display device according to the present invention includes a position detection unit that detects a plurality of positions where a touch operation on the operation surface is performed, a press operation detection unit that detects a press operation on the operation surface, and the plurality of the plurality of positions detected by the position detection unit. A distance calculation unit that calculates a distance between the positions, a display control unit, a display unit that displays an image according to the control of the display control unit, and a storage unit that stores information on the display size of the image.
 そして、前記表示制御部は、前記距離算出部が算出した距離が変化し、かつ前記押圧操作検知手段が押圧操作を検知した場合、前記記憶部から読み出した表示サイズの情報に対応して前記画像の表示サイズを変更させる。 The display control unit corresponds to the display size information read from the storage unit when the distance calculated by the distance calculation unit changes and the pressing operation detection unit detects a pressing operation. Change the display size of.
 位置検出手段は、ユーザが操作受付部に触ろうとする操作をタッチ操作として検知する。すなわち、位置検出手段は、操作受付部に対する実接触に限らず、非接触のタッチ操作も検知する。非接触のタッチ操作は、例えば静電容量方式のタッチパネル又は光センサを操作受付部に備え付けることにより検知される。 The position detecting means detects an operation of the user trying to touch the operation receiving unit as a touch operation. That is, the position detection means detects not only an actual contact with the operation receiving unit but also a non-contact touch operation. The non-contact touch operation is detected by, for example, providing a capacitive touch panel or an optical sensor in the operation receiving unit.
 表示サイズの情報は、例えば表示部の表示領域に対応する画素数が含まれる。表示サイズの情報は、表示部の表示領域に対応する画素数に限らず、現在の画像のサイズを基準とした倍率であってもよい。 The display size information includes, for example, the number of pixels corresponding to the display area of the display unit. The display size information is not limited to the number of pixels corresponding to the display area of the display unit, and may be a magnification based on the size of the current image.
 本発明の表示装置は、押圧操作がされ、かつ、タッチ位置間の距離に変化がある場合、すなわち、押圧操作とピンチアウト操作又はピンチイン操作がされた場合、記憶部から読み出した表示サイズに切り替えて画像を表示する。したがって、ユーザは、押圧操作とピンチアウト操作又はピンチイン操作で、所望の大きさの表示サイズで画像を表示させることができる。 The display device of the present invention switches to the display size read from the storage unit when the pressing operation is performed and the distance between the touch positions is changed, that is, when the pressing operation and the pinch-out operation or the pinch-in operation are performed. To display the image. Therefore, the user can display an image with a desired display size by a pressing operation and a pinch-out operation or a pinch-in operation.
 なお、表示装置は、押圧操作とピンチアウト操作又はピンチイン操作が行われると、第1処理としてタッチ位置間の距離に応じて画像の大きさを細かく調整し、押圧操作なしにピンチアウト操作又はピンチイン操作が行われると、第2処理として所望の大きさの表示サイズで画像を表示する態様であっても構わない。 When the pressing operation and the pinch-out operation or the pinch-in operation are performed, the display device finely adjusts the size of the image according to the distance between the touch positions as the first process, and the pinch-out operation or the pinch-in operation without the pressing operation When the operation is performed, the image may be displayed in a desired display size as the second process.
 また、前記記憶部は、前記画像の表示サイズの情報を複数記憶し、前記表示制御部は、前記距離算出部が検出した距離の変化量に応じた表示サイズの情報を読み出してもよい。 Further, the storage unit may store a plurality of pieces of information about the display size of the image, and the display control unit may read out information about the display size according to the amount of change in distance detected by the distance calculation unit.
 これにより、例えば、画像は、ユーザがタッチ位置間を広げるに従って、2倍の大きさ、3倍の大きさ、4倍の大きさと段階的に拡大表示される。 Thereby, for example, the image is enlarged and displayed stepwise in a size of 2 times, 3 times, 4 times as the user widens the touch positions.
 また、前記押圧操作検知手段は、前記押圧操作の押圧量を検知し、前記記憶部は、前記画像の表示サイズの情報を複数記憶し、前記表示制御部は、前記押圧操作検知手段が検知した押圧量に応じた表示サイズの情報を前記記憶部から読み出してもよい。 Further, the pressing operation detection unit detects a pressing amount of the pressing operation, the storage unit stores a plurality of pieces of information on the display size of the image, and the display control unit detects the pressing operation detection unit. Information on the display size corresponding to the pressing amount may be read from the storage unit.
 これにより、例えば、画像は、ユーザにから与えられる押圧量に従って、2倍の大きさ、3倍の大きさ、4倍の大きさと段階的に拡大表示される。 Thereby, for example, the image is enlarged and displayed in a stepwise manner with a double size, a triple size, and a quadruple size according to the pressing amount given by the user.
 また、前記押圧操作検知手段は、キラル高分子によって形成された圧電フィルムを備えてもよい。 The pressing operation detection means may include a piezoelectric film formed of a chiral polymer.
 キラル高分子は、主鎖が螺旋構造を有する。キラル高分子は、圧電フィルムが押圧されると電荷を発生する。キラル高分子の圧電特性は、分子の構造に起因するため、PVDF(ポリフッ化ビニリデン)等の強誘電体のポリマーに比べて、ポーリングを不要とする。 Chiral polymer has a helical structure in the main chain. The chiral polymer generates an electric charge when the piezoelectric film is pressed. Since the piezoelectric properties of the chiral polymer are due to the molecular structure, no polling is required compared to a ferroelectric polymer such as PVDF (polyvinylidene fluoride).
 前記キラル高分子は、ポリ乳酸であってもよいし、前記ポリ乳酸は、一軸方向に延伸されていてもよい。 The chiral polymer may be polylactic acid, or the polylactic acid may be stretched in a uniaxial direction.
 ポリ乳酸(PLA)は、キラル高分子の中でも圧電出力定数が高い。特に一軸方向に延伸されたL型ポリ乳酸(PLLA)は、ポリ乳酸の中でも圧電出力定数が高い。圧電出力定数が高い材料を用いることにより、押圧操作検知手段は、感度よく押圧操作を受け付けることができる。また、ポリ乳酸は、PVDF等のように、焦電性が極小さい。したがって、ポリ乳酸によって形成された圧電フィルムは、指の温度が伝わってしまう押圧操作検知手段の構成として好適である。 Polylactic acid (PLA) has a high piezoelectric output constant among chiral polymers. In particular, L-type polylactic acid (PLLA) stretched in a uniaxial direction has a high piezoelectric output constant among polylactic acids. By using a material having a high piezoelectric output constant, the pressing operation detecting means can accept the pressing operation with high sensitivity. Polylactic acid has very little pyroelectricity, such as PVDF. Therefore, a piezoelectric film formed of polylactic acid is suitable as a configuration of a pressing operation detection unit that transmits the temperature of a finger.
 この発明によれば、表示装置は、ユーザがピンチアウト操作又はピンチイン操作だけで細かな調整をしなくても、ユーザの所望の大きさの表示サイズに切り替えて画像を表示することができる。 According to the present invention, the display device can display an image by switching to the display size of the user's desired size without fine adjustment by the user only by pinch-out operation or pinch-in operation.
本発明の実施形態に係る携帯端末1の外観斜視図である。1 is an external perspective view of a mobile terminal 1 according to an embodiment of the present invention. (A)は、本発明の実施形態に係る携帯端末1のA-A断面図であり、(B)は、静電センサ12の平面図である。(A) is an AA cross-sectional view of the mobile terminal 1 according to the embodiment of the present invention, and (B) is a plan view of the electrostatic sensor 12. 本発明の実施形態に係る携帯端末1の構成の一部を示すブロック図である。It is a block diagram which shows a part of structure of the portable terminal 1 which concerns on embodiment of this invention. (A)は、表示入力部10の表示例を示す図であり、(B)は、2箇所のタッチ位置を検出する例を示す図である。(A) is a figure which shows the example of a display of the display input part 10, (B) is a figure which shows the example which detects two touch positions. 携帯端末1に対する拡大化操作を示す図である。FIG. 4 is a diagram showing an enlargement operation for the mobile terminal 1. (A)は、データベース140に記憶される内容を示す図であり、(B)は、携帯端末1に対する拡大化操作後の表示例を示す図である。(A) is a figure which shows the content memorize | stored in the database 140, (B) is a figure which shows the example of a display after expansion operation with respect to the portable terminal 1. FIG. (A)及び(B)は、それぞれ携帯端末1に対する拡大化操作後又は縮小化操作後の表示例を示す図である。(A) And (B) is a figure which shows the example of a display after enlargement operation with respect to the portable terminal 1, or after reduction operation, respectively. 制御部14の動作を示すフローチャートである。3 is a flowchart showing the operation of a control unit 14. 制御部14の動作を示すフローチャートである。3 is a flowchart showing the operation of a control unit 14. ステップS6の変形例に係る処理を示すフローチャートである。It is a flowchart which shows the process which concerns on the modification of step S6. (A)及び(B)は、それぞれステップS6の処理の変形例を説明するための図である。(A) And (B) is a figure for demonstrating the modification of the process of step S6, respectively.
 本発明の実施形態に係る携帯端末1について、図1乃至図3を用いて説明する。図1は、携帯端末1の外観斜視図である。図2(A)は、携帯端末1のA-A断面図である。図2(B)は、静電センサ12の平面図である。図3は、携帯端末1の構成の一部を示すブロック図である。 A mobile terminal 1 according to an embodiment of the present invention will be described with reference to FIGS. FIG. 1 is an external perspective view of the mobile terminal 1. FIG. 2A is a cross-sectional view of the mobile terminal 1 along AA. FIG. 2B is a plan view of the electrostatic sensor 12. FIG. 3 is a block diagram illustrating a part of the configuration of the mobile terminal 1.
 携帯端末1は、図1に示すように、略直方体形状の筐体30を備える。筐体30の表面は開口している。なお、以下では、図1に示すX方向を筐体30の幅方向とし、Y方向を高さ方向とし、Z方向を厚み方向として説明する。また、本実施形態では、筐体30の幅が、筐体30の高さよりも短い場合を示している。しかしながら、筐体30は、幅と高さが同じ長さであっても、幅が高さより長くてもよい。 The mobile terminal 1 includes a substantially rectangular parallelepiped housing 30 as shown in FIG. The surface of the housing 30 is open. In the following description, it is assumed that the X direction shown in FIG. 1 is the width direction of the housing 30, the Y direction is the height direction, and the Z direction is the thickness direction. Further, in the present embodiment, a case where the width of the housing 30 is shorter than the height of the housing 30 is shown. However, the housing 30 may have the same width and height, or the width may be longer than the height.
 表示入力部10は、筐体30の開口部分を介して外部に露出している。これにより、表示入力部10のZ側の面は操作面となる。 The display input unit 10 is exposed to the outside through the opening of the housing 30. Thereby, the Z-side surface of the display input unit 10 becomes an operation surface.
 筐体30は、図2(A)に示すように、内部に表示入力部10及び演算回路モジュール40を配置する。演算回路モジュール40と表示入力部10とは、厚み方向に順に配置される。 As shown in FIG. 2A, the housing 30 has the display input unit 10 and the arithmetic circuit module 40 disposed therein. The arithmetic circuit module 40 and the display input unit 10 are sequentially arranged in the thickness direction.
 表示入力部10は、図2(A)に示すように、表示部11、静電センサ12、圧電センサ20及び絶縁フィルム124を備える。表示部11、静電センサ12、及び圧電センサ20は、筐体30の表面側から視て、それぞれ略同じ形状である。 The display input unit 10 includes a display unit 11, an electrostatic sensor 12, a piezoelectric sensor 20, and an insulating film 124 as shown in FIG. The display unit 11, the electrostatic sensor 12, and the piezoelectric sensor 20 have substantially the same shape as viewed from the front side of the housing 30.
 表示部11は、図2(A)に示すように、液晶パネル111、表面偏光板112、背面偏光板113、及びバックライト114を備える。 The display unit 11 includes a liquid crystal panel 111, a front polarizing plate 112, a back polarizing plate 113, and a backlight 114, as shown in FIG.
 バックライト114、背面偏光板113、液晶パネル111、圧電センサ20、絶縁フィルム124、静電センサ12、及び表面偏光板112は、厚み方向に順に配置される。ただし、圧電センサ20と静電センサ12とは逆の配置であっても構わない。 The backlight 114, the back polarizing plate 113, the liquid crystal panel 111, the piezoelectric sensor 20, the insulating film 124, the electrostatic sensor 12, and the surface polarizing plate 112 are sequentially arranged in the thickness direction. However, the piezoelectric sensor 20 and the electrostatic sensor 12 may be disposed in reverse.
 静電センサ12は、図2(A)及び図2(B)に示すように、ベースフィルム121、複数の静電容量検出電極122、及び複数の静電容量検出電極123を備える。 As shown in FIGS. 2A and 2B, the electrostatic sensor 12 includes a base film 121, a plurality of capacitance detection electrodes 122, and a plurality of capacitance detection electrodes 123.
 ベースフィルム121は、透光性及び所定の誘電率を有する材質からなる。複数の静電容量検出電極122、及び複数の静電容量検出電極123は、それぞれ長尺状であり、透光性を有する導電性材料からなる。複数の静電容量検出電極122は、ベースフィルム121の第1主面(+Z側の面)に、所定の間隔で配列形成されている。複数の静電容量検出電極123は、ベースフィルム121の第2主面(-Z側の面)に、所定の間隔で配列形成されている。複数の静電容量検出電極122の配列方向と、複数の静電容量検出電極123の配列方向とは、ベースフィルム121の第1主面又は第2主面の法線方向から視ると、略直交するように設定される。 The base film 121 is made of a material having translucency and a predetermined dielectric constant. Each of the plurality of capacitance detection electrodes 122 and the plurality of capacitance detection electrodes 123 has a long shape and is made of a light-transmitting conductive material. The plurality of capacitance detection electrodes 122 are arranged on the first main surface (the surface on the + Z side) of the base film 121 at a predetermined interval. The plurality of capacitance detection electrodes 123 are arrayed on the second main surface (the surface on the −Z side) of the base film 121 at a predetermined interval. The arrangement direction of the plurality of capacitance detection electrodes 122 and the arrangement direction of the plurality of capacitance detection electrodes 123 are approximately when viewed from the normal direction of the first main surface or the second main surface of the base film 121. It is set to be orthogonal.
 静電センサ12に指が近づくと、静電容量は変化する。そこで、位置検出部13は、静電容量が変化した静電容量検出電極122と静電容量検出電極123との組を特定することにより、タッチ位置を検出する。また、位置検出部13は、静電容量が変化した静電容量検出電極122と静電容量検出電極123との組を複数特定することにより、タッチ位置を複数検出する。ただし、静電容量の変化は、指が表面偏光板112に実際に接触していなくても、検出可能である。また、タッチ位置の検出は、静電センサ12の代わりに、指の表面偏光板112への接近を検知する光センサを用いても可能である。 When the finger approaches the electrostatic sensor 12, the capacitance changes. Therefore, the position detection unit 13 detects the touch position by specifying a set of the capacitance detection electrode 122 and the capacitance detection electrode 123 whose capacitance has changed. The position detection unit 13 detects a plurality of touch positions by specifying a plurality of sets of the capacitance detection electrode 122 and the capacitance detection electrode 123 whose capacitance has changed. However, the change in capacitance can be detected even if the finger is not actually in contact with the surface polarizing plate 112. The touch position can be detected by using an optical sensor that detects the approach of the finger to the surface polarizing plate 112 instead of the electrostatic sensor 12.
 位置検出部13は、タッチ位置を検出すると、該タッチ位置の情報を制御部14に出力する。 When the position detection unit 13 detects the touch position, the position detection unit 13 outputs information on the touch position to the control unit 14.
 圧電センサ20は、図2(A)に示すように、圧電フィルム201、圧電検出電極202、及び圧電検出電極203を備える。 The piezoelectric sensor 20 includes a piezoelectric film 201, a piezoelectric detection electrode 202, and a piezoelectric detection electrode 203 as shown in FIG.
 圧電フィルム201、圧電検出電極202、及び圧電検出電極203は、それぞれ平膜形状である。 The piezoelectric film 201, the piezoelectric detection electrode 202, and the piezoelectric detection electrode 203 each have a flat film shape.
 圧電検出電極202は、圧電フィルム201の第1主面(+Z側の面)に、形成されている。圧電検出電極203は、圧電フィルム201の第2主面(-Z側の面)に、形成されている。圧電検出電極202及び圧電検出電極203は、それぞれITO、ZnO、ポリチオフェンを主成分とする有機電極、ポリアニリンを主成分とする有機電極、銀ナノワイヤ電極、カーボンナノチューブ電極のいずれかで形成されているため、透光性を有する。 The piezoelectric detection electrode 202 is formed on the first main surface (+ Z side surface) of the piezoelectric film 201. The piezoelectric detection electrode 203 is formed on the second main surface (the surface on the −Z side) of the piezoelectric film 201. The piezoelectric detection electrode 202 and the piezoelectric detection electrode 203 are formed of any one of an organic electrode mainly composed of ITO, ZnO, and polythiophene, an organic electrode mainly composed of polyaniline, a silver nanowire electrode, and a carbon nanotube electrode, respectively. , Has translucency.
 圧電フィルム201は、例えば一軸延伸されたポリ乳酸からなり、透光性を有する。また、圧電フィルム201は、-Z方向に押圧されると、第1主面及び第2主面に電荷を発生させる。圧電検出電極202と圧電検出電極203との間の電位差は、圧電フィルム201の第1主面及び第2主面に電荷が発生することにより、生じる。また、この電位差のレベル(例えばmV)は、圧電フィルム201の押圧量(又は押込量。例えば数十μm)に対応する。したがって、圧電検出電極202と圧電検出電極203との間の電位差のレベル(mV)を求めることにより、圧電センサ20に対する押圧操作の有無及び押圧量(μm)を求めることが可能となる。 The piezoelectric film 201 is made of, for example, uniaxially stretched polylactic acid and has translucency. Further, when the piezoelectric film 201 is pressed in the −Z direction, it generates electric charges on the first main surface and the second main surface. A potential difference between the piezoelectric detection electrode 202 and the piezoelectric detection electrode 203 is generated by generating charges on the first main surface and the second main surface of the piezoelectric film 201. The level of the potential difference (for example, mV) corresponds to the pressing amount (or the pressing amount, for example, several tens of μm) of the piezoelectric film 201. Therefore, by obtaining the level (mV) of the potential difference between the piezoelectric detection electrode 202 and the piezoelectric detection electrode 203, it is possible to obtain the presence / absence of a pressing operation on the piezoelectric sensor 20 and the pressing amount (μm).
 圧電センサ20は、圧電検出電極202と圧電検出電極203との間の電位差をセンサ信号として出力する。圧電センサ20から出力されたセンサ信号は、図3に示すように、圧電センサ結果検出部21に入力される。圧電センサ結果検出部21は、入力されたセンサ信号のレベルLSS(mV)を求める。圧電センサ結果検出部21は、求めたレベルLSSに応じて圧電センサ20に対する押圧操作の有無を判断する。例えば、圧電センサ結果検出部21は、レベルLSSが20mV未満であれば、表示入力部10の圧電センサ20に対して押圧操作がされていないと判断する。圧電センサ結果検出部21は、レベルLSSが20mV以上であれば、表示入力部10の圧電センサ20に対して押圧操作がされていると判断する。圧電センサ結果検出部21が閾値により押圧操作の有無を判断するため、表示入力部10に対するタッチ操作と押圧操作とを区別しやすくなる。圧電センサ結果検出部21は、押圧操作の有無の情報を制御部14に出力する。また、圧電センサ結果検出部21は、レベルLSS(押圧量に対応する。)の情報も制御部14に出力する。 The piezoelectric sensor 20 outputs a potential difference between the piezoelectric detection electrode 202 and the piezoelectric detection electrode 203 as a sensor signal. The sensor signal output from the piezoelectric sensor 20 is input to the piezoelectric sensor result detection unit 21 as shown in FIG. The piezoelectric sensor result detection unit 21 obtains the level LSS (mV) of the input sensor signal. The piezoelectric sensor result detection unit 21 determines whether or not a pressing operation is performed on the piezoelectric sensor 20 according to the obtained level LSS. For example, if the level LSS is less than 20 mV, the piezoelectric sensor result detection unit 21 determines that no pressing operation is performed on the piezoelectric sensor 20 of the display input unit 10. If the level LSS is 20 mV or higher, the piezoelectric sensor result detection unit 21 determines that a pressing operation has been performed on the piezoelectric sensor 20 of the display input unit 10. Since the piezoelectric sensor result detection unit 21 determines the presence or absence of the pressing operation based on the threshold value, it is easy to distinguish the touch operation and the pressing operation on the display input unit 10. The piezoelectric sensor result detection unit 21 outputs information on the presence or absence of a pressing operation to the control unit 14. The piezoelectric sensor result detection unit 21 also outputs information on the level LSS (corresponding to the pressing amount) to the control unit 14.
 表示部11の説明に戻り、バックライト114から出力された光は、背面偏光板113、液晶パネル111、圧電センサ20、絶縁フィルム124、静電センサ12、及び表面偏光板112を順に通過する。液晶パネル111は、表示制御部15の制御により、届いた光をそのまま、又は、振動方向を変えて(偏光させて)透過させる。このように、表示部11の表示内容は、バックライト114及び液晶パネル111を制御することにより、変更される。 Returning to the description of the display unit 11, the light output from the backlight 114 sequentially passes through the back polarizing plate 113, the liquid crystal panel 111, the piezoelectric sensor 20, the insulating film 124, the electrostatic sensor 12, and the surface polarizing plate 112. The liquid crystal panel 111 transmits the received light as it is or with the vibration direction changed (polarized) as controlled by the display control unit 15. As described above, the display content of the display unit 11 is changed by controlling the backlight 114 and the liquid crystal panel 111.
 圧電センサ20は、透光性を有するため、バックライト114より+Z側に配置されても、バックライト114からの光の透過を阻害しない。 Since the piezoelectric sensor 20 has translucency, even if it is arranged on the + Z side with respect to the backlight 114, the transmission of light from the backlight 114 is not hindered.
 以上のように、制御部14は、表示入力部10に対するタッチ位置の情報、押圧操作の有無の情報、及びレベルLSS(押圧量に対応する。)の情報が入力される。制御部14は、これら入力された情報に基づいて様々な処理を行う。表示に関する処理の情報は、制御部14から表示制御部15に出力される。表示制御部15は、制御部14が出力した表示に関する処理の情報に応じた表示内容となるように、表示入力部10(表示部11)を制御する。すなわち、携帯端末1は、所謂、GUI(;Graphical User Interface)を実現する。 As described above, the control unit 14 is input with information on the touch position on the display input unit 10, information on the presence / absence of the pressing operation, and information on the level LSS (corresponding to the pressing amount). The control unit 14 performs various processes based on the input information. Information on processing related to display is output from the control unit 14 to the display control unit 15. The display control unit 15 controls the display input unit 10 (display unit 11) so that the display content corresponds to the processing information related to the display output by the control unit 14. In other words, the mobile terminal 1 realizes a so-called GUI (; Graphical User Interface).
 このような携帯端末1によって、以下のようなGUIが実現可能となる。 Such a portable terminal 1 makes it possible to implement the following GUI.
 図4(A)は、表示入力部10の表示例を示す図である。図4(B)は、2か所のタッチ位置を検出する例を示す図である。図5は、携帯端末1に対する拡大化操作を示す図である。図6(A)は、データベース140に記憶される内容を示す図である。図6(B)、図7(A)及び図7(B)は、それぞれ携帯端末1に対する拡大化操作後又は縮小化操作後の表示例を示す図である。図8及び図9は、制御部14の動作を示すフローチャートである。 FIG. 4A is a diagram illustrating a display example of the display input unit 10. FIG. 4B is a diagram illustrating an example of detecting two touch positions. FIG. 5 is a diagram illustrating an enlargement operation on the mobile terminal 1. FIG. 6A is a diagram showing the contents stored in the database 140. FIGS. 6B, 7 </ b> A, and 7 </ b> B are diagrams illustrating display examples after the enlargement operation or the reduction operation on the mobile terminal 1, respectively. 8 and 9 are flowcharts showing the operation of the control unit 14.
 制御部14は、図8に示すフローチャートのスタート時点で、図4(A)に示す表示を行っているものとする。すなわち、表示入力部10は、図8に示すフローチャートのスタート時点で、画像901を表示している。画像901は、静止画に限らず、動画であってもよい。 Suppose that the control unit 14 performs the display shown in FIG. 4A at the start of the flowchart shown in FIG. That is, the display input unit 10 displays the image 901 at the start of the flowchart shown in FIG. The image 901 is not limited to a still image but may be a moving image.
 ここで、画面サイズとは、表示入力部10の表示領域の幅及び高さのそれぞれの画素数で定義されるサイズとする。画像サイズとは、表示に関わらない画像固有のサイズであり、幅及び高さのそれぞれの画素数で定義されるサイズとする。画像の表示サイズとは、画像が表示されるべき幅及び高さのそれぞれの画素数で定義されるサイズとする。したがって、画像サイズと、画像の表示サイズとは、画像が拡大表示又は縮小表示されると、異なる。 Here, the screen size is a size defined by the number of pixels of the width and height of the display area of the display input unit 10. The image size is a size unique to an image regardless of display, and is defined by the number of pixels of width and height. The display size of the image is a size defined by the number of pixels of the width and height at which the image is to be displayed. Therefore, the image size and the display size of the image are different when the image is enlarged or reduced.
 図4(A)に示す例では、表示入力部10の画面サイズは、幅(X方向)が1080画素であり、高さ(Y方向)が1920画素である。画像901の画像サイズは、幅(X方向)が675画素であり、高さ(Y方向)が1200画素である。画像901の表示サイズは、図4(A)に示す例では、画像901の画像サイズと同じである。 In the example shown in FIG. 4A, the screen size of the display input unit 10 is 1080 pixels in width (X direction) and 1920 pixels in height (Y direction). The image size of the image 901 is 675 pixels in width (X direction) and 1200 pixels in height (Y direction). The display size of the image 901 is the same as the image size of the image 901 in the example shown in FIG.
 図8に示すフローチャートは、制御部14が複数のタッチ位置の情報を位置検出部13から取得することにより始まる(スタート)。以下、図4(B)に示す例を用いて制御部14の動作を説明する。 The flowchart shown in FIG. 8 starts when the control unit 14 acquires information on a plurality of touch positions from the position detection unit 13 (start). Hereinafter, the operation of the control unit 14 will be described using the example shown in FIG.
 ユーザは、図4(B)に示すように、右手の親指TBRHと右手の人差し指FFRHとで表示入力部10をタッチする。ここで、タッチ位置の一方をタッチ位置FTPとし、他方のタッチ位置をタッチ位置STPとする。 As shown in FIG. 4B, the user touches the display input unit 10 with the thumb TBRH of the right hand and the index finger FFRH of the right hand. Here, one of the touch positions is a touch position FTP, and the other touch position is a touch position STP.
 すると、制御部14は、タッチ位置FTPの情報として座標(Fx、Fy)の情報と、タッチ位置STPの情報として座標(Sx、Sy)の情報とを、位置検出部13から取得する。ただし、位置検出部13は、座標(Fx、Fy)及び座標(Sx、Sy)の基準位置S(0、0)を、例えば表示入力部10の表示領域のうち、-X方向及び-Y方向の隅の位置としている。また、位置検出部13は、座標(Fx、Fy)及び座標(Sx、Sy)のそれぞれの単位を、ミリメートル(mm)としている。ただし、基準位置Sは表示入力部10の表示領域のどこの位置であってもよく、座標の単位もミリメートル(mm)に限らず画素数であっても構わない。 Then, the control unit 14 acquires information on coordinates (Fx, Fy) as information on the touch position FTP and information on coordinates (Sx, Sy) as information on the touch position STP from the position detection unit 13. However, the position detection unit 13 uses the coordinates (Fx, Fy) and the reference position S (0, 0) of the coordinates (Sx, Sy) as the −X direction and the −Y direction in the display area of the display input unit 10, for example. The position of the corner. Further, the position detection unit 13 sets the units of the coordinates (Fx, Fy) and the coordinates (Sx, Sy) as millimeters (mm). However, the reference position S may be any position in the display area of the display input unit 10, and the coordinate unit is not limited to millimeters (mm) and may be the number of pixels.
 まず、制御部14は、2箇所のタッチ位置間の距離Disを算出する(S1)。距離Disは、タッチ位置FTPとタッチ位置STPとの距離である。すなわち、以下の式によって、距離Dis(mm)は求められる。 First, the control unit 14 calculates a distance Dis between the two touch positions (S1). The distance Dis is a distance between the touch position FTP and the touch position STP. That is, the distance Dis (mm) is obtained by the following equation.
 Dis = Sqrt((Fx-Sx)+(Fy-Sy)
 ただし、Sqrtは、平方根を取る関数である。
Dis = Sqrt ((Fx−Sx) 2 + (Fy−Sy) 2 )
However, Sqrt is a function that takes a square root.
 次に、制御部14は、表示入力部10に対する押圧操作があるか否かを判断する(S2)。より具体的には、制御部14は、圧電センサ結果検出部21から押圧操作の有無の情報を取得して、押圧操作があるか否かを判断する。制御部14は、表示入力部10に対して押圧操作がされていると判断した場合(S2:YES)、ステップS3に進み、表示サイズ切替処理を開始する。制御部14は、表示入力部10に対して押圧操作がされていないと判断した場合(S2:NO)、ステップS10に進み、表示サイズ変更処理を開始する。 Next, the control unit 14 determines whether or not there is a pressing operation on the display input unit 10 (S2). More specifically, the control unit 14 acquires information on the presence or absence of a pressing operation from the piezoelectric sensor result detection unit 21 and determines whether or not there is a pressing operation. When it is determined that the pressing operation is performed on the display input unit 10 (S2: YES), the control unit 14 proceeds to step S3 and starts the display size switching process. When it is determined that the pressing operation is not performed on the display input unit 10 (S2: NO), the control unit 14 proceeds to step S10 and starts the display size changing process.
 そして、制御部14は、表示入力部10に対して押圧操作がされていると判断した場合(S2:YES)、再度、位置検出部13からタッチ位置の情報を取得する(S3)。 When the control unit 14 determines that the pressing operation is performed on the display input unit 10 (S2: YES), the control unit 14 acquires the touch position information from the position detection unit 13 again (S3).
 そして、制御部14は、タッチ位置が変化したか否かを判断する(S4)。より具体的には、制御部14は、再度取得したタッチ位置のいずれかのタッチ位置が最初(スタート時点)に取得したタッチ位置から変化したと判断した場合(S4:YES)、ステップS5に進む。制御部14は、再度取得したタッチ位置のいずれかのタッチ位置が最初に取得したタッチ位置から変化していないと判断した場合(S4:NO)、ステップS3に戻り、タッチ位置が変化するまでステップS3の処理とステップS4の処理とを繰り返す。ただし、制御部14は、再度取得したタッチ位置の数が最初に取得したタッチ位置の数から減ると、ステップS3とステップS4との繰り返し処理を終えて、別の操作入力の受付処理を行ってもよい。 Then, the control unit 14 determines whether or not the touch position has changed (S4). More specifically, when the control unit 14 determines that any one of the touch positions acquired again has changed from the touch position acquired first (start time) (S4: YES), the control unit 14 proceeds to step S5. . If the control unit 14 determines that any one of the touch positions acquired again has not changed from the touch position acquired first (S4: NO), the control unit 14 returns to step S3 and continues until the touch position changes. The process of S3 and the process of step S4 are repeated. However, when the number of touch positions acquired again decreases from the number of touch positions acquired first, the control unit 14 finishes the repetition process of step S3 and step S4 and performs another operation input reception process. Also good.
 制御部14は、タッチ位置が変化したと判断した場合(S4:YES)、距離Disの変化量Diffを算出する(S5)。変化量Diffは、距離Disと距離Dis’との差分距離(mm)である。ただし、距離Dis’は、変化したタッチ位置間の距離である。 When the control unit 14 determines that the touch position has changed (S4: YES), the control unit 14 calculates a change amount Diff of the distance Dis (S5). The change amount Diff is a difference distance (mm) between the distance Dis and the distance Dis ′. The distance Dis ′ is a distance between the changed touch positions.
 ここで、ステップS2乃至ステップS5の処理例について、図5を用いて説明する。 Here, a processing example of steps S2 to S5 will be described with reference to FIG.
 以下、拡大化操作とは、図5に示すように、タッチ位置FTP又はタッチ位置STPで表示入力部10を押圧する押圧操作を行い、かつ、右手の親指TBRHと右手の人差し指FFRHとを離すピンチアウト操作を行う操作とする。タッチ位置FTPは、ピンチアウト操作後にタッチ位置FTP’に変化し、タッチ位置STPは、ピンチアウト操作後にタッチ位置STP’と変化する。ただし、タッチ位置FTP’は、座標(Fx’、Fy’)であり、タッチ位置STP’は、座標(Sx’、Sy’)とする。 Hereinafter, as shown in FIG. 5, the enlargement operation is a pinch that performs a pressing operation of pressing the display input unit 10 at the touch position FTP or the touch position STP, and releases the right thumb TBRH and the right index finger FFRH. It is assumed that the operation is an out operation. The touch position FTP changes to the touch position FTP ′ after the pinch-out operation, and the touch position STP changes to the touch position STP ′ after the pinch-out operation. However, the touch position FTP ′ is coordinates (Fx ′, Fy ′), and the touch position STP ′ is coordinates (Sx ′, Sy ′).
 ユーザが図5に示す拡大化操作を行うと、制御部14は、押圧操作がされていると判断し(S2:YES)、次に、タッチ位置FTP’及びタッチ位置STP’のそれぞれの情報を位置検出部13から取得して(S3)、それぞれのタッチ位置がタッチ位置FTP及びタッチ位置STPから変化したと判断する(S4:YES)。 When the user performs the enlargement operation illustrated in FIG. 5, the control unit 14 determines that the pressing operation is performed (S2: YES), and then displays the information on the touch position FTP ′ and the touch position STP ′. Obtained from the position detector 13 (S3), it is determined that each touch position has changed from the touch position FTP and the touch position STP (S4: YES).
 そして、制御部14は、変化量Diffを算出する(S5)ために、再度取得したタッチ位置の情報に基づいて距離Dis’を算出する。距離Dis’の算出方法は、距離Disの算出方法と同じである。 And the control part 14 calculates distance Dis' based on the information of the touch position acquired again in order to calculate variation | change_quantity Diff (S5). The calculation method of the distance Dis ′ is the same as the calculation method of the distance Dis.
 そして、制御部14は、距離Dis’から距離Disを減算して変化量Diffを算出する(S5)。変化量Diffは、図5に示す拡大化操作では、プラスの値となる。 Then, the control unit 14 calculates the amount of change Diff by subtracting the distance Dis from the distance Dis' (S5). The change amount Diff is a positive value in the enlargement operation shown in FIG.
 図5に示す例は、拡大化操作の例であるが、ユーザは、縮小化操作を行ってもよい。縮小化操作とは、タッチ位置FTP又はタッチ位置STPで表示入力部10を押圧する押圧操作を行い、かつ、右手の親指TBRHと右手の人差し指FFRHとを近付けるピンチイン操作を行う操作である。この場合、変化量Diffは、マイナスの値が算出される。 The example shown in FIG. 5 is an example of the enlargement operation, but the user may perform the reduction operation. The reduction operation is an operation of performing a pressing operation of pressing the display input unit 10 at the touch position FTP or the touch position STP, and performing a pinch-in operation of bringing the right thumb TBRH and the right index finger FFRH closer. In this case, a negative value is calculated as the change amount Diff.
 図8に示すフローチャートの説明に戻り、制御部14は、変化量Diffを算出するとステップS6に進み、算出した変化量Diffに応じた表示サイズで画像901を表示する。より具体的には、制御部14は、算出した変化量Diffでデータベース140を参照し、画像901の表示サイズを特定する。 Returning to the description of the flowchart illustrated in FIG. 8, when the control unit 14 calculates the change amount Diff, the control unit 14 proceeds to step S <b> 6 and displays the image 901 with a display size corresponding to the calculated change amount Diff. More specifically, the control unit 14 refers to the database 140 with the calculated change amount Diff and specifies the display size of the image 901.
 データベース140は、図6(A)に示すように、変化量Diff(mm)と表示サイズとを対応付けて記憶している。表示サイズは、幅及び高さのそれぞれの画素数で定義されている。幅が1080画素で高さが1920画素の表示サイズは、表示入力部10の画面サイズと同じ大きさである。幅が2160画素で高さが3840画素の表示サイズは、幅及び高さがそれぞれ表示入力部10の画面サイズの幅及び高さの2倍の大きさである。幅が3240画素で高さが5760画素の表示サイズは、幅及び高さがそれぞれ表示入力部10の画面サイズの幅及び高さの3倍の大きさである。幅が540画素で高さが960画素の表示サイズは、幅及び高さがそれぞれ表示入力部10の画面サイズの幅及び高さの1/2倍の大きさである。ただし、表示サイズは、表示入力部10の画面サイズに対応した画素数で定義されるに限らず、画像サイズの幅及び高さを基準とした倍率で定義されてもよい。さらに、表示サイズは、画像901の現在の表示サイズの幅及び高さを基準とした倍率で定義されてもよい。 The database 140 stores a change amount Diff (mm) and a display size in association with each other as shown in FIG. The display size is defined by the number of pixels of width and height. The display size having a width of 1080 pixels and a height of 1920 pixels is the same as the screen size of the display input unit 10. The display size having a width of 2160 pixels and a height of 3840 pixels is twice as large as the width and height of the screen size of the display input unit 10 respectively. A display size having a width of 3240 pixels and a height of 5760 pixels has a width and a height that are three times the width and height of the screen size of the display input unit 10, respectively. A display size having a width of 540 pixels and a height of 960 pixels has a width and a height that are ½ times the width and height of the screen size of the display input unit 10, respectively. However, the display size is not limited to being defined by the number of pixels corresponding to the screen size of the display input unit 10, but may be defined by a magnification based on the width and height of the image size. Furthermore, the display size may be defined by a magnification based on the width and height of the current display size of the image 901.
 そして、制御部14は、特定した表示サイズで画像901を表示する処理の情報を表示制御部15に出力する(S6)。なお、制御部14は、ステップS6の次に、ステップS3に戻ってもよい。これにより、ユーザは、ピンチイン操作又はピンチアウト操作を続けて行うことにより、画像901の表示サイズを続けて切り替えて表示させることができる。 And the control part 14 outputs the information of the process which displays the image 901 by the specified display size to the display control part 15 (S6). Note that the control unit 14 may return to step S3 after step S6. Thereby, the user can continuously switch and display the display size of the image 901 by continuously performing the pinch-in operation or the pinch-out operation.
 ステップS6の処理例について、図5を用いて説明する。 A processing example of step S6 will be described with reference to FIG.
 制御部14は、変化量Diffが15mmと算出すると、データベース140を参照して、画像901の表示サイズを幅が1080画素で高さが1920画素であると特定する。すなわち、特定された表示サイズは、表示入力部10の画面サイズと同じである。 When the change amount Diff is calculated as 15 mm, the control unit 14 refers to the database 140 and specifies the display size of the image 901 as having a width of 1080 pixels and a height of 1920 pixels. That is, the specified display size is the same as the screen size of the display input unit 10.
 そして、制御部14は、特定した表示サイズで、画像901を表示させる処理の情報を表示制御部15に出力する。 Then, the control unit 14 outputs information on processing for displaying the image 901 with the specified display size to the display control unit 15.
 表示制御部15は、特定された表示サイズが画像901の画像サイズより大きいため、画像901を拡大する処理を行う。表示制御部15は、拡大処理として一般的な処理方法を用いることができるが、例えば以下のように数学的処理を行う。 The display control unit 15 performs a process of enlarging the image 901 because the specified display size is larger than the image size of the image 901. The display control unit 15 can use a general processing method as the enlargement process. For example, the display control unit 15 performs a mathematical process as follows.
 具体的には、表示制御部15は、特定された表示サイズが幅1080画素であり、かつ画像901の画像サイズが幅675画素であるため、1.6倍(1080画素/675画素)で画像901の幅及び高さを拡大する。これにより、画像901は、拡大されて、幅が1080画素で高さが1920画素の大きさで表示される。ただし、制御部14は、表示サイズ及び画像サイズのそれぞれの高さに基づいて、拡大表示の倍率を算出してもよい。また、制御部14は、表示サイズ及び画像サイズのそれぞれの幅及び高さの両方を用いて、拡大表示の倍率を算出してもよい。 Specifically, since the specified display size is 1080 pixels in width and the image size of the image 901 is 675 pixels in width, the display control unit 15 images 1.6 times (1080 pixels / 675 pixels). The width and height of 901 are expanded. As a result, the image 901 is enlarged and displayed with a width of 1080 pixels and a height of 1920 pixels. However, the control unit 14 may calculate the magnification of the enlarged display based on the heights of the display size and the image size. Further, the control unit 14 may calculate the magnification of the enlarged display by using both the width and the height of the display size and the image size.
 また、表示制御部15は、画像901の拡大処理に加えて、画像901を表示入力部10の表示領域の中央に表示する処理も行う。これにより、画像901は、表示サイズの中心位置と表示入力部10の表示領域の中心位置とが一致するように配置されて表示される。すると、画像901は、図6(B)に示すように、表示入力部10の全表示領域で、画像901を表示する。ただし、本実施形態において、画像901の表示サイズの中心位置を表示入力部10の表示領域の中心位置に配置することは必須ではない。 The display control unit 15 also performs a process of displaying the image 901 at the center of the display area of the display input unit 10 in addition to the enlargement process of the image 901. As a result, the image 901 is arranged and displayed so that the center position of the display size matches the center position of the display area of the display input unit 10. Then, the image 901 displays the image 901 in the entire display area of the display input unit 10 as shown in FIG. However, in the present embodiment, it is not essential to place the center position of the display size of the image 901 at the center position of the display area of the display input unit 10.
 制御部14は、上述の例よりも、さらに大きな変化量Diff(30mm)を算出すると、図7(A)に示すように、表示入力部10の画面サイズの幅及び高さがそれぞれ2倍の大きさの表示サイズで画像901を表示する。ただし、この場合、画像901は、表示サイズが画面サイズより大きいため、一部だけが表示される。 When the control unit 14 calculates a larger amount of change Diff (30 mm) than the above example, the width and height of the screen size of the display input unit 10 are each doubled as shown in FIG. The image 901 is displayed with the large display size. However, in this case, only a part of the image 901 is displayed because the display size is larger than the screen size.
 以上は、図5に示す拡大化操作の例であるが、携帯端末1は、縮小化操作が行われると、変化量Diffがマイナスの値(例えば-10mm)となるため、図7(B)に示すように、表示入力部10の画面サイズの幅及び高さのそれぞれ1/2倍の大きさの表示サイズで画像901を表示する。 The above is an example of the enlargement operation shown in FIG. 5. However, since the change amount Diff becomes a negative value (for example, −10 mm) when the reduction operation is performed, the portable terminal 1 has a negative value (for example, −10 mm). As shown, the image 901 is displayed with a display size that is ½ times the width and height of the screen size of the display input unit 10.
 このように、携帯端末1は、表示サイズ切替処理を実行する。すなわち、携帯端末1は、変化量Diffと、押圧操作の有無とに応じて、画像901の表示サイズを切り替えて表示する。したがって、ユーザは、ピンチアウト操作又はピンチイン操作と同じ操作感覚で、素早く所望の表示サイズで画像901を表示させることができる。ただし、変化量Diffを算出することは、本発明の必須の構成ではない。携帯端末1は、押圧操作を受け付け、かつ変化量Diffが0mmではないと判断しただけで、所定の大きさ(例えば表示入力部10の画面サイズと同じ大きさ)の表示サイズで画像901を表示してもよい。 In this way, the mobile terminal 1 executes the display size switching process. That is, the mobile terminal 1 switches and displays the display size of the image 901 according to the change amount Diff and the presence or absence of the pressing operation. Therefore, the user can quickly display the image 901 in a desired display size with the same operation feeling as the pinch-out operation or the pinch-in operation. However, calculating the change amount Diff is not an essential configuration of the present invention. The portable terminal 1 displays the image 901 with a display size of a predetermined size (for example, the same size as the screen size of the display input unit 10) only by accepting a pressing operation and determining that the change amount Diff is not 0 mm. May be.
 また、拡大化操作と縮小化操作とは、右手の親指TBRH及び右手の人差し指FFRHの移動方向がそれぞれ逆であることにより、明確に異なる。携帯端末1は、明確に異なる拡大化操作と縮小化操作とに応じて表示サイズ切替処理を実行する。したがって、携帯端末1は、従来のダブルタップ操作のように、異なる処理(拡大表示又は縮小表示)を同一の操作によって実行しないため、ユーザの意図通りの処理を実行できる。 Also, the enlargement operation and the reduction operation are clearly different because the moving directions of the right thumb TBRH and the right index finger FFRH are opposite to each other. The mobile terminal 1 executes the display size switching process according to clearly different enlargement operations and reduction operations. Accordingly, unlike the conventional double-tap operation, the mobile terminal 1 does not execute different processing (enlarged display or reduced display) by the same operation, and therefore can execute the process as intended by the user.
 制御部14は、表示入力部10に対して押圧操作がされていないと判断した場合(S2:NO)、ステップS10に進み、表示サイズ変更処理を開始する。 When the control unit 14 determines that the pressing operation is not performed on the display input unit 10 (S2: NO), the control unit 14 proceeds to step S10 and starts the display size changing process.
 表示サイズ変更処理は、図9に示すフローチャートに沿って行われる。ただし、ステップS13乃至ステップS15の処理は、それぞれステップS3乃至ステップS5の処理と同じである。したがって、これらステップの処理の説明は省略する。すなわち、表示サイズ変更処理は、表示サイズ切替処理と、ステップS16において相違する。 The display size changing process is performed according to the flowchart shown in FIG. However, the process of step S13 thru | or step S15 is the same as the process of step S3 thru | or step S5, respectively. Therefore, description of the process of these steps is omitted. That is, the display size changing process is different from the display size switching process in step S16.
 ステップS16では、表示制御部15は、変化量Diffに比例又は反比例する倍率で画像の表示サイズを変更して表示する。 In step S16, the display control unit 15 changes and displays the display size of the image at a magnification that is proportional or inversely proportional to the change amount Diff.
 例えば、表示制御部15は、算出された変化量Diffを用いて、以下の式によって倍率mを求める。 For example, the display control unit 15 obtains the magnification m by the following equation using the calculated change amount Diff.
 m = Diff × k1 (Diff > 0)
 m = k2 / Diff (Diff < 0)
 すなわち、倍率mは、変化量Diffがプラスの場合、所定の係数k1と変化量Diffとを乗算した値となり、変化量Diffがマイナスの場合、所定の係数k2を変化量Diffで割算した値となる。例えば、倍率mは、図5に示す拡大化操作の場合、変化量Diffに比例した値となり、縮小化操作の場合、変化量Diffに反比例した値となる。
m = Diff × k1 (Diff> 0)
m = k2 / Diff (Diff <0)
That is, the magnification m is a value obtained by multiplying the predetermined coefficient k1 and the change amount Diff when the change amount Diff is positive, and a value obtained by dividing the predetermined coefficient k2 by the change amount Diff when the change amount Diff is negative. It becomes. For example, the magnification m is a value proportional to the change amount Diff in the case of the enlargement operation shown in FIG. 5, and is a value inversely proportional to the change amount Diff in the case of the reduction operation.
 そして、表示制御部15は、画像901の画像サイズの幅及び高さのそれぞれをm倍した大きさを画像901の表示サイズとする。 Then, the display control unit 15 sets the size obtained by multiplying the width and height of the image 901 by m times as the display size of the image 901.
 このように、携帯端末1は、表示サイズ変更処理を実行し、タッチ位置間の距離の変化量に比例又は反比例した倍率で画像901の表示サイズを逐次変更する。 In this way, the mobile terminal 1 executes the display size changing process, and sequentially changes the display size of the image 901 at a magnification proportional to or inversely proportional to the amount of change in the distance between touch positions.
 ユーザは、表示入力部10に対して拡大化操作又は縮小化操作することにより、画像901の表示サイズを切り替え、表示入力部10に対して押圧操作なしにピンチアウト操作又はピンチイン操作だけを行うことにより、該操作でのタッチ位置間の変化量に比例又は反比例した倍率で画像901の表示サイズを細かく調整できる。 The user switches the display size of the image 901 by performing an enlargement operation or a reduction operation on the display input unit 10 and performs only a pinch-out operation or a pinch-in operation on the display input unit 10 without pressing. Thus, the display size of the image 901 can be finely adjusted at a magnification proportional to or inversely proportional to the amount of change between touch positions in the operation.
 ただし、携帯端末1は、押圧操作がされていると判断すると(S2:YES)、表示サイズ変更処理(図9のステップS13以降の処理)を行い、押圧操作がされていないと判断すると(S2:NO)、表示サイズ切替処理(図8のステップS3以降の処理)を行ってもよい。 However, if the portable terminal 1 determines that the pressing operation is performed (S2: YES), the mobile terminal 1 performs a display size changing process (processing after step S13 in FIG. 9) and determines that the pressing operation is not performed (S2). : NO), display size switching processing (processing after step S3 in FIG. 8) may be performed.
 また、携帯端末1は、押圧操作がされていることを(S2:YES)表示サイズ切替処理の開始のトリガとしているが、タッチ位置間の距離の変化を表示サイズ切替処理の開始のトリガとし、タッチ位置間の距離の変化に続けて押圧操作があると、画像の表示サイズに切り替えて画像901を表示してもよい。 In addition, the portable terminal 1 uses the pressing operation as a trigger for starting the display size switching process (S2: YES), but uses a change in the distance between touch positions as a trigger for starting the display size switching process. If there is a pressing operation following the change in the distance between the touch positions, the image 901 may be displayed by switching to the image display size.
 また、以上の例は、2箇所のタッチ位置FTP及びタッチ位置STPを検出しているが、3箇所以上のタッチ位置を検出してもよい。制御部14は、位置検出部13から3箇所以上のタッチ位置の情報を取得した場合、各タッチ位置間の距離Disを算出する。すなわち、制御部14は、複数の距離Disを算出する。この場合、制御部14は、ステップS5又はステップS15において、再度、複数の距離Dis’を算出する。そして、制御部14は、複数の距離Dis’の合計から、複数の距離Disの合計を減算し、1つの変化量Diffを算出する。そして、制御部14は、ステップS6又はステップS16において、変化量Diffに応じて表示サイズを特定する。なお、3箇所以上のタッチ位置に対応する変化量Diffは、2箇所のタッチ位置の変化量Diffに比べて大きくなることがあるため、タッチ位置の数で平均化されることが望ましい。 In the above example, two touch positions FTP and touch position STP are detected, but three or more touch positions may be detected. When the control unit 14 acquires information about three or more touch positions from the position detection unit 13, the control unit 14 calculates a distance Dis between the touch positions. That is, the control unit 14 calculates a plurality of distances Dis. In this case, the control unit 14 calculates a plurality of distances Dis' again in step S5 or step S15. Then, the control unit 14 subtracts the sum of the plurality of distances Dis from the sum of the plurality of distances Dis ′ to calculate one change amount Diff. Then, in step S6 or step S16, the control unit 14 specifies the display size according to the change amount Diff. Note that since the change amount Diff corresponding to three or more touch positions may be larger than the change amount Diff of the two touch positions, it is desirable to average the number of touch positions.
 以上の例では、制御部14は、変化量Diffが0mm以上20mm未満である場合、幅1080画素で高さ1920画素からなる表示サイズを特定し、変化量Diffが20mm以上40mm未満である場合、幅2160画素で高さ3840画素からなる表示サイズを特定しているが、変化量Diffに寄らず、レベルLSS(表示入力部10に対する押圧量に対応する。)に応じて表示サイズを特定してもよい。この場合、データベース140は、レベルLSSの大きさ(mV)と、表示サイズとを対応付けて記憶する。 In the above example, the control unit 14 specifies a display size having a width of 1080 pixels and a height of 1920 pixels when the change amount Diff is 0 mm or more and less than 20 mm, and when the change amount Diff is 20 mm or more and less than 40 mm, Although the display size of 2160 pixels wide and 3840 pixels high is specified, the display size is specified according to the level LSS (corresponding to the pressing amount to the display input unit 10) without depending on the change amount Diff. Also good. In this case, the database 140 stores the level LSS size (mV) and the display size in association with each other.
 例えば、制御部14は、表示入力部10に対して押圧操作がされていると判断した場合(S2:YES)、レベルLSSの情報を圧電センサ結果検出部21から取得する。そして、制御部14は、取得したレベルLSS(mV)でデータベース140を参照し、該レベルLSSに応じた大きさの表示サイズを特定してもよい(S6)。 For example, when the control unit 14 determines that the pressing operation is performed on the display input unit 10 (S2: YES), the control unit 14 acquires information on the level LSS from the piezoelectric sensor result detection unit 21. And the control part 14 may specify the display size of the magnitude | size according to this level LSS with reference to the database 140 by the acquired level LSS (mV) (S6).
 ここで、圧電フィルム201について説明する。圧電フィルム201は、キラル高分子から形成されるフィルムである。キラル高分子として、本実施形態では、ポリ乳酸(PLA)、特にL型ポリ乳酸(PLLA)を用いている。PLLAは、一軸延伸されている。 Here, the piezoelectric film 201 will be described. The piezoelectric film 201 is a film formed from a chiral polymer. In this embodiment, polylactic acid (PLA), particularly L-type polylactic acid (PLLA) is used as the chiral polymer. PLLA is uniaxially stretched.
 PLLAは、圧電定数が高分子の中で非常に高い部類に属するため、圧電センサ20に適している。 PLLA is suitable for the piezoelectric sensor 20 because it belongs to a very high piezoelectric constant among polymers.
 また、PLLAには、他の強誘電性の圧電体(PVDF等)と異なり、焦電性がない。したがって、PLLAは、表示入力部10の圧電センサ20のように、タッチ操作により指の温度が伝わってしまう構成に適している。 Also, PLLA has no pyroelectricity unlike other ferroelectric piezoelectric materials (such as PVDF). Therefore, the PLLA is suitable for a configuration in which the temperature of the finger is transmitted by a touch operation, like the piezoelectric sensor 20 of the display input unit 10.
 また、PLLAは、キラル高分子からなるため、PVDF等より高い透光性を有する。したがって、PLLAは、表示入力部10の圧電センサ20のように、バックライト114より+Z側に配置される構成に適している。 In addition, PLLA is made of a chiral polymer and therefore has a higher light transmissivity than PVDF or the like. Therefore, the PLLA is suitable for a configuration in which the PLLA is disposed on the + Z side from the backlight 114 like the piezoelectric sensor 20 of the display input unit 10.
 ただし、本実施形態において圧電フィルム201としてPLLAを用いることは必須ではない。圧電センサ20は、例えばPVDFからなる圧電フィルム201を用いてもよい。 However, it is not essential to use PLLA as the piezoelectric film 201 in this embodiment. The piezoelectric sensor 20 may use a piezoelectric film 201 made of, for example, PVDF.
 次に、図10は、図8に示すフローチャートのステップS6の処理の変形例を示すフローチャートである。図11(A)及び図11(B)は、それぞれ図8に示すステップS6の処理の変形例を説明するための図である。 Next, FIG. 10 is a flowchart showing a modification of the process of step S6 of the flowchart shown in FIG. FIG. 11A and FIG. 11B are diagrams for explaining modifications of the process of step S6 shown in FIG.
 本変形例は、図10に示すように、レベルLSS(押圧量に対応する。)に応じて、特定された表示サイズの幅に基づいて画像を拡大表示又は縮小表示するのか、特定された表示サイズの幅及び高さの両方を用いて画像を拡大表示又は縮小表示するのかを判断する点において、図8に示すステップS6に示す処理と相違する。 In the present modification, as shown in FIG. 10, whether the image is enlarged or reduced based on the width of the specified display size according to the level LSS (corresponding to the pressing amount), or the specified display It differs from the processing shown in step S6 shown in FIG. 8 in that it is determined whether to enlarge or reduce the image using both the width and height of the size.
 ただし、制御部14は、図8に示すフローチャートのステップS2において、予めレベルLSSの情報を圧電センサ結果検出部21から取得しているものとする。また、変化量Diffは、ステップS5において、15mmが算出されているものとする。 However, it is assumed that the control unit 14 acquires the information of the level LSS from the piezoelectric sensor result detection unit 21 in advance in step S2 of the flowchart shown in FIG. Further, it is assumed that the change amount Diff is calculated to be 15 mm in step S5.
 まず、制御部14は、図10に示すように、算出した変化量Diff(15mm)に応じた表示サイズを特定する(S61)。制御部14は、算出した変化量Diffでデータベース140を参照し、幅が1080画素で高さが1920画素の大きさの表示サイズを特定する。 First, as shown in FIG. 10, the control unit 14 specifies a display size corresponding to the calculated change amount Diff (15 mm) (S61). The control unit 14 refers to the database 140 with the calculated change amount Diff, and specifies a display size having a width of 1080 pixels and a height of 1920 pixels.
 次に、制御部14は、取得したレベルLSSが例えば30mV以上であるか否かを判断する(S62)。制御部14は、レベルLSSが例えば30mV以上の場合(S62:YES)、ステップS63に進む。制御部14は、レベルLSSが例えば30mV未満の場合(S62:NO)、ステップS64に進む。 Next, the control unit 14 determines whether or not the acquired level LSS is, for example, 30 mV or more (S62). When the level LSS is, for example, 30 mV or higher (S62: YES), the control unit 14 proceeds to step S63. If the level LSS is less than 30 mV, for example (S62: NO), the control unit 14 proceeds to step S64.
 制御部14は、レベルLSSが例えば30mV以上の場合(S62:YES)、特定した表示サイズの幅に基づいて、画像の拡大処理を行う(S63)。 When the level LSS is, for example, 30 mV or higher (S62: YES), the control unit 14 performs an image enlargement process based on the specified display size width (S63).
 図10(A)及び図10(B)に示す例を用いてステップS63の処理の説明を行う。 The processing of step S63 will be described using the example shown in FIGS. 10 (A) and 10 (B).
 上述のように、表示入力部10の画面サイズは、幅が1080画素で、高さが1920画素である。すなわち、表示入力部10の画面サイズのアスペクト比は、9:16である。 As described above, the screen size of the display input unit 10 is 1080 pixels in width and 1920 pixels in height. That is, the aspect ratio of the screen size of the display input unit 10 is 9:16.
 表示入力部10は、図10(A)に示す表示例では、画像902を表示している。画像902の画像サイズは、幅が600画素で、高さが800画素である。すなわち、画像902の画像サイズのアスペクト比は、3:4であり、表示入力部10の画面サイズのアスペクト比と相違する。 The display input unit 10 displays an image 902 in the display example shown in FIG. The image size of the image 902 is 600 pixels wide and 800 pixels high. That is, the aspect ratio of the image size of the image 902 is 3: 4, which is different from the aspect ratio of the screen size of the display input unit 10.
 表示制御部15は、図10(A)に示す例において、1.8倍(1080画素/600画素)で、画像902を拡大表示する処理を実行する。この場合、画像902の表示サイズは、画像サイズの幅と高さの両方がそれぞれ1.8倍された大きさとなる。すると、表示入力部10は、図10(B)に示すように、画像902の画像サイズのアスペクト比を保ったまま、画像902を拡大表示する。ただし、表示制御部15は、特定された表示サイズの高さを用いて拡大表示の倍率を求めてもよい。 In the example shown in FIG. 10A, the display control unit 15 executes a process of enlarging and displaying the image 902 at 1.8 times (1080 pixels / 600 pixels). In this case, the display size of the image 902 is a size obtained by multiplying both the width and height of the image size by 1.8 times. Then, as shown in FIG. 10B, the display input unit 10 enlarges and displays the image 902 while maintaining the aspect ratio of the image size of the image 902. However, the display control unit 15 may obtain the magnification of the enlarged display using the height of the specified display size.
 表示制御部15は、取得したレベルLSSが例えば30mV未満の場合(S62:NO)、特定した表示サイズの幅及び高さの両方を用いて、画像902の拡大処理を行う(S64)。 When the acquired level LSS is less than 30 mV, for example (S62: NO), the display control unit 15 performs an enlargement process of the image 902 using both the width and height of the specified display size (S64).
 表示制御部15は、図10(A)に示す例において、幅を1.8倍(1080画素/600画素)とし、高さを2.4倍(1920画素/800画素)として画像902を拡大した表示サイズとする。すると、表示入力部10は、全表示領域で画像902を拡大表示する。 In the example shown in FIG. 10A, the display control unit 15 enlarges the image 902 by making the width 1.8 times (1080 pixels / 600 pixels) and the height 2.4 times (1920 pixels / 800 pixels). Display size. Then, the display input unit 10 enlarges and displays the image 902 in the entire display area.
 以上のように、本変形例は、レベルLSSに応じて、アスペクト比を保ったまま又は変更して画像を拡大表示する。無論、本変形例は、縮小表示に対しても実施可能である。 As described above, this modification displays an enlarged image while maintaining or changing the aspect ratio according to the level LSS. Of course, this modification can also be implemented for reduced display.
1…携帯端末
10…表示入力部
11…表示部
12…静電センサ
13…位置検出部
14…制御部
15…表示制御部
20…圧電センサ
21…圧電センサ結果検出部
30…筐体
40…演算回路モジュール
111…液晶パネル
112…表面偏光板
113…背面偏光板
114…バックライト
121…ベースフィルム
122、123…静電容量検出電極
124…絶縁フィルム
140…データベース
201…圧電フィルム
202、203…圧電検出電極
901、902…画像
DESCRIPTION OF SYMBOLS 1 ... Portable terminal 10 ... Display input part 11 ... Display part 12 ... Electrostatic sensor 13 ... Position detection part 14 ... Control part 15 ... Display control part 20 ... Piezoelectric sensor 21 ... Piezoelectric sensor result detection part 30 ... Case 40 ... Calculation Circuit module 111 ... Liquid crystal panel 112 ... Front polarizing plate 113 ... Back polarizing plate 114 ... Backlight 121 ... Base film 122, 123 ... Capacitance detection electrode 124 ... Insulating film 140 ... Database 201 ... Piezoelectric film 202, 203 ... Piezoelectric detection Electrodes 901, 902 ... Image

Claims (7)

  1.  操作面に対するタッチ操作がなされた複数の位置を検出する位置検出手段と、
     該操作面に対する押圧操作を検知する押圧操作検知手段と、
     前記位置検出手段が検出した前記複数の位置間の距離を算出する距離算出部と、
     表示制御部と、
     前記表示制御部の制御に従い画像を表示する表示部と、
     前記画像の表示サイズの情報を記憶する記憶部と、
     を備え、
     前記表示制御部は、前記距離算出部が算出した距離が変化し、かつ前記押圧操作検知手段が押圧操作を検知した場合、前記記憶部から読み出した表示サイズの情報に対応して前記画像の表示サイズを変更させる、
     表示装置。
    Position detecting means for detecting a plurality of positions where a touch operation on the operation surface is performed;
    Pressing operation detecting means for detecting a pressing operation on the operation surface;
    A distance calculator that calculates distances between the plurality of positions detected by the position detector;
    A display control unit;
    A display unit for displaying an image according to the control of the display control unit;
    A storage unit for storing information on a display size of the image;
    With
    The display control unit displays the image corresponding to the display size information read from the storage unit when the distance calculated by the distance calculation unit changes and the pressing operation detection unit detects a pressing operation. To change the size,
    Display device.
  2.  操作面に対するタッチ操作がなされた複数の位置を検出する位置検出手段と、
     該操作面に対する押圧操作を検知する押圧操作検知手段と、
     前記位置検出手段が検出した前記複数の位置間の距離を算出する距離算出部と、
     表示制御部と、
     前記表示制御部の制御に従い画像を表示する表示部と、
     前記画像の表示サイズの情報を記憶する記憶部と、
     を備え、
     前記表示制御部は、前記距離算出部が算出した距離が変化し、かつ前記押圧操作検知手段が押圧操作を検知した場合、前記距離に比例する倍率で前記画像の表示サイズを変更させる第1処理を行い、前記距離算出部が算出した距離が変化し、かつ前記押圧操作検知手段が押圧操作を検知しない場合、前記記憶部から読み出した表示サイズの情報に対応して前記画像の表示サイズを変更させる第2処理を行う、
     表示装置。
    Position detecting means for detecting a plurality of positions where a touch operation on the operation surface is performed;
    Pressing operation detecting means for detecting a pressing operation on the operation surface;
    A distance calculator that calculates distances between the plurality of positions detected by the position detector;
    A display control unit;
    A display unit for displaying an image according to the control of the display control unit;
    A storage unit for storing information on a display size of the image;
    With
    The display control unit changes the display size of the image at a magnification proportional to the distance when the distance calculated by the distance calculation unit changes and the pressing operation detection unit detects the pressing operation. When the distance calculated by the distance calculation unit changes and the pressing operation detection unit does not detect the pressing operation, the display size of the image is changed according to the display size information read from the storage unit. To perform the second process
    Display device.
  3.  前記記憶部は、前記画像の表示サイズの情報を複数記憶し、
     前記表示制御部は、前記距離算出部が検出した距離の変化量に応じた表示サイズの情報を読み出す、
     請求項1又は2に記載の表示装置。
    The storage unit stores a plurality of pieces of information about the display size of the image,
    The display control unit reads information on a display size according to a distance change amount detected by the distance calculation unit.
    The display device according to claim 1.
  4.  前記押圧操作検知手段は、前記押圧操作の押圧量を検知し、
     前記記憶部は、前記画像の表示サイズの情報を複数記憶し、
     前記表示制御部は、前記押圧操作検知手段が検知した押圧量に応じた表示サイズの情報を前記記憶部から読み出す、
     請求項1に記載の表示装置。
    The pressing operation detection means detects a pressing amount of the pressing operation,
    The storage unit stores a plurality of pieces of information about the display size of the image,
    The display control unit reads information on a display size according to the pressing amount detected by the pressing operation detection unit from the storage unit.
    The display device according to claim 1.
  5.  前記画像の表示サイズの情報は、前記表示部の表示領域に対応する画素数が含まれる、
     請求項1乃至4のいずれかに記載の表示装置。
    The information on the display size of the image includes the number of pixels corresponding to the display area of the display unit.
    The display device according to claim 1.
  6.  前記押圧操作検知手段は、キラル高分子によって形成された圧電フィルムを備える、
     請求項1乃至5のいずれかに記載の表示装置。
    The pressing operation detection means includes a piezoelectric film formed of a chiral polymer.
    The display device according to claim 1.
  7.  前記キラル高分子は、一軸方向に延伸されたポリ乳酸である、
     請求項6に記載の表示装置。
    The chiral polymer is polylactic acid stretched in a uniaxial direction.
    The display device according to claim 6.
PCT/JP2014/078301 2013-11-01 2014-10-24 Display apparatus WO2015064490A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015544965A JP5975183B2 (en) 2013-11-01 2014-10-24 Display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013228269 2013-11-01
JP2013-228269 2013-11-01

Publications (1)

Publication Number Publication Date
WO2015064490A1 true WO2015064490A1 (en) 2015-05-07

Family

ID=53004096

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/078301 WO2015064490A1 (en) 2013-11-01 2014-10-24 Display apparatus

Country Status (2)

Country Link
JP (1) JP5975183B2 (en)
WO (1) WO2015064490A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170094076A (en) * 2016-02-08 2017-08-17 캐논 가부시끼가이샤 Information processing apparatus and information processing method
JP2019101814A (en) * 2017-12-04 2019-06-24 アルプスアルパイン株式会社 Input control device, input device, operated device, and program

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011028635A (en) * 2009-07-28 2011-02-10 Sony Corp Display control apparatus, display control method and computer program
JP2011053974A (en) * 2009-09-02 2011-03-17 Sony Corp Device and method for controlling operation, and computer program
JP2012203879A (en) * 2011-03-28 2012-10-22 Ntt Docomo Inc Display device, and display control method and program
JP2013134532A (en) * 2011-12-26 2013-07-08 Sony Corp Head-mounted display and information display
WO2013122070A1 (en) * 2012-02-15 2013-08-22 株式会社村田製作所 Touch-style input terminal
JP2013206180A (en) * 2012-03-28 2013-10-07 Kyocera Corp Electronic device and display method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011028635A (en) * 2009-07-28 2011-02-10 Sony Corp Display control apparatus, display control method and computer program
JP2011053974A (en) * 2009-09-02 2011-03-17 Sony Corp Device and method for controlling operation, and computer program
JP2012203879A (en) * 2011-03-28 2012-10-22 Ntt Docomo Inc Display device, and display control method and program
JP2013134532A (en) * 2011-12-26 2013-07-08 Sony Corp Head-mounted display and information display
WO2013122070A1 (en) * 2012-02-15 2013-08-22 株式会社村田製作所 Touch-style input terminal
JP2013206180A (en) * 2012-03-28 2013-10-07 Kyocera Corp Electronic device and display method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170094076A (en) * 2016-02-08 2017-08-17 캐논 가부시끼가이샤 Information processing apparatus and information processing method
KR102135167B1 (en) 2016-02-08 2020-07-17 캐논 가부시끼가이샤 Information processing apparatus and information processing method
US10802702B2 (en) 2016-02-08 2020-10-13 Canon Kabushiki Kaisha Touch-activated scaling operation in information processing apparatus and information processing method
JP2019101814A (en) * 2017-12-04 2019-06-24 アルプスアルパイン株式会社 Input control device, input device, operated device, and program
JP7037344B2 (en) 2017-12-04 2022-03-16 アルプスアルパイン株式会社 Input control device, input device, operation target device, and program

Also Published As

Publication number Publication date
JPWO2015064490A1 (en) 2017-03-09
JP5975183B2 (en) 2016-08-23

Similar Documents

Publication Publication Date Title
JP5808404B2 (en) Electronics
JP5852050B2 (en) Touch detection device, display device with touch detection function, and electronic device
WO2015068709A1 (en) Display device and program
US10007386B2 (en) Input device and program
JP5796695B2 (en) Touch input device
US10001851B2 (en) Electronic device and display method
JP5975183B2 (en) Display device
US10146380B2 (en) Touch input device and mobile display device
JP6222397B2 (en) Touch input device
WO2015159629A1 (en) Display device and program
JP6015866B2 (en) Display device for portable terminal
TW201344544A (en) Touch panel device having a divided ITO layer for reducing loading
WO2015076320A1 (en) Display device and program
JP5785891B2 (en) Display device
JP5954502B2 (en) Input device and program
JP5971430B2 (en) Touch input device
JP6079895B2 (en) Touch input device
JP2017204181A (en) Mobile terminal device
JP5983892B2 (en) Display device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14857578

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015544965

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14857578

Country of ref document: EP

Kind code of ref document: A1