WO2015053393A1 - Imaging cell sorter - Google Patents

Imaging cell sorter Download PDF

Info

Publication number
WO2015053393A1
WO2015053393A1 PCT/JP2014/077198 JP2014077198W WO2015053393A1 WO 2015053393 A1 WO2015053393 A1 WO 2015053393A1 JP 2014077198 W JP2014077198 W JP 2014077198W WO 2015053393 A1 WO2015053393 A1 WO 2015053393A1
Authority
WO
WIPO (PCT)
Prior art keywords
cell
cells
image
cluster
chip
Prior art date
Application number
PCT/JP2014/077198
Other languages
French (fr)
Japanese (ja)
Inventor
安田 賢二
賢徹 金
服部 明弘
英之 寺薗
Original Assignee
公益財団法人神奈川科学技術アカデミー
一般社団法人オンチップ・セロミクス・コンソーシアム
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 公益財団法人神奈川科学技術アカデミー, 一般社団法人オンチップ・セロミクス・コンソーシアム filed Critical 公益財団法人神奈川科学技術アカデミー
Priority to JP2015541651A priority Critical patent/JPWO2015053393A1/en
Publication of WO2015053393A1 publication Critical patent/WO2015053393A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume, or surface-area of porous materials
    • G01N15/02Investigating particle size or size distribution
    • G01N15/0205Investigating particle size or size distribution by optical means, e.g. by light scattering, diffraction, holography or imaging
    • G01N15/0227Investigating particle size or size distribution by optical means, e.g. by light scattering, diffraction, holography or imaging using imaging, e.g. a projected image of suspension; using holography
    • G01N15/1433
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume, or surface-area of porous materials
    • G01N15/10Investigating individual particles
    • G01N15/14Electro-optical investigation, e.g. flow cytometers
    • G01N15/1468Electro-optical investigation, e.g. flow cytometers with spatial resolution of the texture or inner structure of the particle
    • G01N15/147Electro-optical investigation, e.g. flow cytometers with spatial resolution of the texture or inner structure of the particle the analysis being performed on a sample stream
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume, or surface-area of porous materials
    • G01N15/10Investigating individual particles
    • G01N15/14Electro-optical investigation, e.g. flow cytometers
    • G01N15/1484Electro-optical investigation, e.g. flow cytometers microstructural devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/574Immunoassay; Biospecific binding assay; Materials therefor for cancer
    • G01N33/57484Immunoassay; Biospecific binding assay; Materials therefor for cancer involving compounds serving as markers for tumor, cancer, neoplasia, e.g. cellular determinants, receptors, heat shock/stress proteins, A-protein, oligosaccharides, metabolites
    • G01N33/57492Immunoassay; Biospecific binding assay; Materials therefor for cancer involving compounds serving as markers for tumor, cancer, neoplasia, e.g. cellular determinants, receptors, heat shock/stress proteins, A-protein, oligosaccharides, metabolites involving compounds localized on the membrane of tumor or cancer cells
    • G01N15/149
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume, or surface-area of porous materials
    • G01N15/10Investigating individual particles
    • G01N2015/1006Investigating individual particles for cytology
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume, or surface-area of porous materials
    • G01N15/10Investigating individual particles
    • G01N15/14Electro-optical investigation, e.g. flow cytometers
    • G01N2015/1493Particle size
    • G01N2015/1495Deformation of particles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume, or surface-area of porous materials
    • G01N15/10Investigating individual particles
    • G01N15/14Electro-optical investigation, e.g. flow cytometers
    • G01N2015/1497Particle shape

Definitions

  • the present invention relates to a cell recovery apparatus.
  • cell differentiation 1) Visual morphological cell classification: For example, examination of bladder cancer and urethral cancer by examination of atypical cells appearing in urine, classification of atypical cells in blood, cancer examination by cytology in tissues, etc. Can give. 2) Cell classification by cell surface antigen (marker) staining by the fluorescent antibody method: Cell surface antigens generally called CD markers are stained with a specific fluorescently labeled antibody. Cell sorting by cell sorters, flow cytometers and tissues Used for cancer screening by staining. Of course, these are widely used not only for medical purposes but also for cell physiology research and industrial cell utilization.
  • stem cells containing stem cells are roughly separated using a fluorescent dye incorporated into the cells as a reporter, and then the target stem cells are separated by actually culturing. This is because an effective marker for stem cells has not yet been established, and the target cells are substantially separated by using only those actually cultured and differentiated.
  • Such separation and recovery of specific cells in the culture medium is an important technique in biological and medical analysis.
  • the cells When the cells are separated based on the difference in specific gravity of the cells, they can be separated by a velocity sedimentation method. However, if there is almost no difference in specific gravity between cells that distinguishes unsensitized cells from sensitized cells, the cells are separated one by one based on information stained with fluorescent antibodies or visual information. There is a need to.
  • the cell sorter isolates and drops cells after fluorescence staining in a charged droplet in units of one cell, and based on the presence or absence of fluorescence in the droplet and the amount of light scattering, In the process of dropping, a high electric field is applied in any direction in the normal direction to the direction of drop, and the drop direction of the drop is controlled and fractionated into multiple containers placed underneath.
  • Non-patent document 1 Kamarck, ME, Methods Enzymol. Vol. 151, p150-165 1987 (1987)).
  • the cell sorter created using this microfabrication technique has a slow response speed of sample separation to the observation means, and in order to put it to practical use, a separation processing method that does not damage the sample and has a faster response is required. there were.
  • the separation efficiency of the device cannot be sufficiently increased even at a dilute cell concentration. If the sample is concentrated in a separate device, it is not only difficult to recover the concentrated solution without loss, but it is also desirable for regenerative medicine where cells are contaminated in a complicated pretreatment stage. The problem was that no problems occurred.
  • Patent Document 1 JP 2003-107099
  • Patent Document 2 JP 2004-85323
  • Patent Document 3 WO 2004 / 101731
  • These are well-practical cell sorters at the laboratory level, but for general use for regenerative medicine, new technological development is required for pretreatment such as liquid transport, recovery, and sample preparation. is there.
  • CTCs peripheral blood circulating cancer cells
  • anticancer agents for specific targets have been developed one after another, and if the type of malignant tumor in the blood can be identified, it has become possible to select an anticancer agent that effectively destroys the cells. If technology to monitor CTCs flowing in the blood is realized, the presence of malignant tumor cells that cause metastatic cancer flowing in the blood can be quantitatively measured, thereby quantifying the effect of the administered anticancer drug. This is the realization of the world's first method that can be continuously evaluated and can not only prevent the administration of unnecessary and excessive anticancer drugs, but also detect the presence or absence of recurrence.
  • PCR polymerase chain reaction
  • DNA templates such as complementary DNA reverse transcribed from genomic DNA or messenger RNA in a mixture of various types of nucleic acids, two or more primers, a thermostable enzyme, a salt such as magnesium, and four types
  • dATP, dCTP, dGTP, dTTP deoxyribonucleoside triphosphates
  • the step of separating the nucleic acid into single strands the step of binding the primer to the separated nucleic acid, and the primer bound by a thermostable enzyme
  • a specific nucleic acid sequence can be amplified by repeating the hybridization step using a nucleic acid as a template at least once.
  • a thermal cycle is used by raising and lowering the temperature of a reaction vessel used for a DNA amplification reaction.
  • temperature change mechanisms used there, for example, a mechanism for changing the temperature of the reaction vessel containing the sample by a heater or Peltier element, heat exchange using hot air, and a heater block with different temperatures for the reaction vessel.
  • a mechanism for changing the temperature by alternately contacting the liquid bath and a mechanism for changing the temperature by flowing a sample in a flow path having regions of different temperatures.
  • a light cycler Light Cycler manufactured by Roche Corporation is one of the fastest commercially available devices.
  • the light cycler introduces a sample, a DNA polymerase, a DNA piece serving as a primer, and a fluorescent labeling dye for measurement into each of a plurality of glass capillary tubes, and the temperature of a minute droplet in the capillary tube is set to 55 degrees and 95 degrees, for example. These two temperatures are changed by blowing warm air at the same temperature as the droplet to be changed, and at the same time, this glass capillary tube is irradiated with excitation light of a fluorescent dye, and the obtained fluorescence intensity is measured. It has a mechanism that makes it possible.
  • the current analysis means using cells has a problem that it does not have a means for analyzing whether the target cell is in a state of apoptosis or the like at the time of cell recovery.
  • the narrowing of the sample aqueous solution using the side sheath liquid has a risk of causing dilution of the sample aqueous solution.
  • JP2011-257241-A as a means for detecting the presence or absence of cancer cells in blood, fluorescent dyes are used for antibodies that selectively bind to molecules (cancer markers) present only on the surface of cancer cells.
  • a technique for detecting a cancer cell by causing a cancer cell to emit fluorescence when a cancer cell is present in the blood by reacting with a blood cell is shown.
  • the means and device configuration after irradiating the blood containing cancer cells flowing through the microchip with fluorescence excitation light, the fluorescence emitted from the cancer cells is reflected only by light of a specific wavelength and other wavelengths are reflected.
  • the light passes through a mirror (dichroic mirror) that passes through multiple times, extracts fluorescence with a specific wavelength width at each step, and measures the amount of fluorescence with a photodetector for each fluorescence of that wavelength width.
  • a mirror dichroic mirror
  • the amount of fluorescence from cancer cells that should be detected when passing through the dichroic mirror also attenuates according to the number of passes through the dichroic mirror
  • the fluorescence intensity measured at each wavelength width is caused by the passage through the dichroic mirror. In particular, it was difficult to detect faint fluorescence at a later stage wavelength, and it was difficult to quantitatively detect multiple stained cancer marker molecules.
  • the fluorescence wavelength and the excitation wavelength overlap. Since the light must be decomposed for each wavelength by passing through a plurality of dichroic mirrors, the device configuration becomes complicated, and each wavelength band needs to be narrowed, not only the signal fluorescence is further attenuated, but also the wavelength In principle, it was difficult to separate light with close bands.
  • the present inventors provide a cell analyzer capable of rapidly identifying the type and state of cancer cells flowing in the blood with metastatic ability and the number (concentration). That is, the present invention provides the following apparatuses, systems, and methods.
  • A a first device for concentrating, staining, and washing a cell sample solution from a subject;
  • B a second device for concentrating, separating and purifying the stained cell sample solution from the first device;
  • C a third device for performing gene analysis / expression analysis of purified cells in the cell sample solution from the second device;
  • D a fourth device for continuously feeding the cell sample solution over the first to third devices;
  • E A cell analyzer system comprising a control / analyzer that controls the operation of each of the devices and analyzes the cell sample,
  • the first device is A chamber with a filter for concentrating, staining, and washing cells in the cell sample solution; Containers for storing the cell sample solution, staining solution and washing solution, respectively;
  • the second device is A cell sorter chip having a flow path for flowing a cell sample solution containing cells including target cells, wherein the flow path includes a first flow path in which the cells are concentrated, and detection
  • a cell sorter chip including a second flow path branched from the first flow path, wherein the target cells are selected, and An external force is applied to the cells flowing through the channels so that the cells flowing through the channels are concentrated in the first channel and converged in a desired direction in the second channel.
  • a mechanism to give An optical system including light irradiation means for irradiating the cells flowing in the second flow path, and a high-speed camera for acquiring an image of the cells at an image capture rate of at least 200 frames / second;
  • the third device is A reaction vessel to which a sample solution is added and reacted;
  • a heat exchange tank for exchanging heat with the reaction tank;
  • a temperature control mechanism for controlling the temperature of the heat exchange tank;
  • a cell analyzer system comprising: (2) Contents of the cells conveyed by the fourth device for feeding the cell sample solution before the third device for performing gene analysis / expression analysis of purified cells in the cell sample solution A cell disruption mechanism that elutes the sample solution by cell disruption,
  • the control / analyzer transports the cell sample solution from the second device to the cell disruption mechanism by the fourth device for feeding the cell sample solution, and the sample solution is disrupted by the cell disruption mechanism.
  • the cell disruption mechanism is A container for containing the cell sample; A crushing rotating body for crushing cells in the container, An abrasive for crushing cells in the container, The cell sample and the abrasive are added to the inside of the container, and the cell sample is crushed by the movement of the crushing rotating body in which rotation and revolution are strictly controlled.
  • Cell analyzer system (4)
  • the cell disruption mechanism further includes a rotating shaft, When the crushing rotating body is pressed from above by the rotating shaft, the crushing rotating body rotates inside the container, and the frictional force and slippage between the crushing rotating body and the rotating shaft are different from those of the crushing rotating body.
  • the cell analyzer system according to (3) which is controlled by the pressure between the rotating shafts.
  • the cell crushing mechanism can generate a force for pressing the crushing rotating body in a direction perpendicular to the side surface of the container by shifting the rotating shaft of the crushing rotating body and the rotating shaft of the rotating shaft.
  • the cell analyzer system according to (4) above comprising a mechanism.
  • the cell crushing mechanism is a mechanism that allows the crushing rotating body to be lifted from the inside of the container and removed by the magnetic force of the rotating shaft, electrostatic force, or suction force due to gas pressure difference.
  • the cell analyzer system according to (4) comprising: (7) In the cell disruption mechanism described above, contamination between different cell samples can be eliminated by providing a drive mechanism equipped with a plurality of containers capable of automatic replacement of the containers.
  • the cell analyzer system according to any one of (6).
  • the crushing rotator is sealed and sealed inside the unused container by a confidential seal, and the container and the crushing rotator are placed at the time of crushing the cell sample.
  • a cell sorter chip including a flow path for flowing a cell sample solution containing cells including target cells, wherein the flow path includes a first flow path in which the cells are concentrated, and the concentration A cell sorter chip including a second flow path branched from the first flow path, wherein the detection of the cells and the selection of the target cells are performed, (ii) The cells flowing through each of the channels are concentrated in the first channel and converged in a desired direction in the second channel.
  • a mechanism for applying external force to the (iii) an optical system including a light irradiation means for irradiating the cells flowing in the second flow path, and a high-speed camera for acquiring an image of the cells at an image capture rate of at least 200 frames / second; (iv) a control / analysis unit that controls the operation of each unit and analyzes an image of each cell captured by the optical system;
  • An image detection type single cell separation / purification apparatus comprising: (10) The apparatus according to (9), wherein the external force is ultrasonic radiation pressure, gravity, electrostatic force, or dielectric electrophoresis force. (11) The device according to (9) or (10), wherein the cell sample containing the target cell is derived from blood.
  • the device according to any one of (9) to (11), wherein the target cell includes a cancer cell.
  • the control / analysis unit binarizes the cell image obtained from the optical system, and is selected from the group consisting of the luminance centroid, area, perimeter, major axis, and minor axis of the binarized image.
  • the device according to any one of (9) to (12) above, wherein each of the cells is detected and identified at a single cell level by at least one index.
  • the cells in the cell sample solution are fluorescently labeled, the optical system further includes fluorescence detection means, and information on the fluorescence image of the cells is used as an additional index by the control / analysis unit.
  • the apparatus according to (13) above.
  • the present invention provides the following on-chip cell sorter and on-chip cell sorter system.
  • One sample channel having the same length and cross-sectional area and two buffer liquid channels disposed symmetrically on both sides of the sample channel are arranged to merge, and after the merge, the center of the same length and cross-sectional area is again downstream.
  • the ratio of the cross-sectional area of the sheath liquid reservoir that is distributed to the recovery flow path and the two waste liquid flow paths on both sides and covers the inlets of the three upstream flow paths and the sample liquid reservoir that fills the sample therein
  • the ratio of the number of channels is 2: 1, so that even if the liquid flows, the liquid level of both is the same.
  • the electric field is only applied to the cells that are placed in the I applied it was characterized by the on-chip cell sorter.
  • a stopper disposed on the top surface of the sheath liquid reservoir, means for applying compressed air through the stopper, means for continuously supplying liquid to the sheath liquid reservoir and the sample reservoir,
  • the cell sorter according to (15) above, further comprising an electric sensor capable of measuring the liquid level height in both the sheath liquid reservoir and the reagent reservoir.
  • Flash time Pixel size / flow velocity
  • An on-chip cell sorter system characterized by deciding on the relationship of (20)
  • An on-chip cell sorter system characterized by using an optical system that can maintain the depth of field and the depth of field up to the height of the microchannel by combining an objective lens having a numerical aperture of 0.3 or less and a zoom lens. .
  • (21) An on-chip cell sorter system characterized in that the sample liquid is arranged so as to flow vertically from above to below.
  • An on-chip cell sorter system characterized in that the inner wall surface of the microchannel facing the surface on which the electrode for generating repulsive force is arranged on the sample fine particles has a convex shape.
  • a pair of gel electrodes having a structure in which struts are repeatedly arranged at a certain distance that can prevent the leakage of the liquid into the flow path due to the surface tension of the liquid when the gel is in a sol state.
  • An on-chip cell sorter system characterized by being arranged.
  • An on-chip cell sorter system From the shape of the cells obtained by image recognition, , An on-chip cell sorter system characterized by purifying cells with R less than 1.1 as cardiomyocytes.
  • An on-chip cell sorter system characterized in that oil having a specific gravity lighter than water and not mixed with water is used for the side sheath liquid.
  • An on-chip cell sorter system characterized by using a solution in which the conductivity of the sample aqueous solution is 10 2 ⁇ S / cm or less when collecting the sample fine particles in the aqueous solution.
  • a cell sorter chip including a first flow path for flowing a sample liquid containing cells including target cells, wherein the first flow path is a downstream branch point and includes the target cells.
  • a cell sorter chip branching into a target cell recovery flow path for recovering the liquid and a waste liquid recovery flow path for recovering a liquid containing cells other than the target cells;
  • An optical system for acquiring a digital image of a cell in the sample solution flowing in the first flow path in a first region upstream from the branch point and identifying the target cell by digital analysis of the image
  • a target cell flowing through the first flow path or a cell other than the target cell in a second region substantially coincident with the first region upstream from the branch point
  • An external force is applied to the cell to shift the traveling direction of the cell by applying an external force to the target cell recovery channel, and an external force applying mechanism for guiding cells other than the target cell to the waste liquid recovery channel;
  • An on-chip cell sorter system comprising: a control unit that controls operations of the
  • a cell sorter chip including a first flow path for flowing a sample solution containing cells including target cells, wherein the first flow path is a downstream branch point and includes the target cells.
  • a cell sorter chip branching into a target cell recovery flow path for recovering the liquid and a waste liquid recovery flow path for recovering a liquid containing cells other than the target cells;
  • An optical system for acquiring a digital image of a cell in the sample solution flowing in the first flow path in a first region upstream from the branch point and identifying the target cell by digital analysis of the image
  • a target cell that flows in the first flow path based on the result of cell identification by the image analysis in a second region that substantially matches or is downstream of the first region upstream from the branch point.
  • an external force is applied to a cell other than the target cell to shift the traveling direction of the cell, and the target cell is guided to the target cell recovery channel and a cell other than the target cell is guided to the waste liquid recovery channel.
  • An external force application mechanism for A control unit for controlling the operation of the optical system and the external force application mechanism An on-chip cell sorter system, wherein the optical system includes a microscope having an objective lens having a numerical aperture of 0.3 or less and a zoom lens optically coupled to the objective lens.
  • the optical system includes a microscope having an objective lens having a numerical aperture of 0.3 or less and a zoom lens optically coupled to the objective lens.
  • a cell sorter chip including a first flow path for flowing a sample solution containing cells including target cells, wherein the first flow path is a downstream branch point and includes the target cells.
  • a cell sorter chip branching into a target cell recovery flow path for recovering the liquid and a waste liquid recovery flow path for recovering a liquid containing cells other than the target cells;
  • An optical system for acquiring a digital image of a cell in the sample solution flowing in the first flow path in a first region upstream from the branch point and identifying the target cell by digital analysis of the image
  • a target cell that flows in the first flow path based on the result of cell identification by the image analysis in a second region that substantially matches or is downstream of the first region upstream from the branch point.
  • an external force is applied to a cell other than the target cell to shift the traveling direction of the cell, and the target cell is guided to the target cell recovery channel and a cell other than the target cell is guided to the waste liquid recovery channel.
  • An external force application mechanism A control unit for controlling the operation of the optical system and the external force application mechanism,
  • the cell sorter chip is arranged so that the first flow path is substantially parallel to the direction of gravity so that the sample liquid flows substantially vertically downward from the upstream side to the downstream side of the first flow path.
  • An on-chip cell sorter system An on-chip cell sorter system. [5] A cell sorter chip including a first flow path for flowing a sample solution containing cells including target cells, wherein the first flow path is a downstream branch point and includes the target cells.
  • a cell sorter chip branching into a target cell recovery flow path for recovering the liquid and a waste liquid recovery flow path for recovering a liquid containing cells other than the target cells;
  • An optical system for acquiring a digital image of a cell in the sample solution flowing in the first flow path in a first region upstream from the branch point and identifying the target cell by digital analysis of the image
  • a target cell that flows in the first flow path based on the result of cell identification by the image analysis in a second region that substantially matches or is downstream of the first region upstream from the branch point.
  • an external force is applied to a cell other than the target cell to shift the traveling direction of the cell, and the target cell is guided to the target cell recovery channel and a cell other than the target cell is guided to the waste liquid recovery channel.
  • An external force application mechanism A control unit for controlling the operation of the optical system and the external force application mechanism,
  • the external force applying mechanism includes a gel electrode or a metal electrode for applying an electric force to fine particles including cells flowing through the first flow path, and the conductivity of the sample solution is 10 2 ⁇ S / cm or less.
  • Chip cell sorter system An external force for aligning cells in the sample solution flowing in the first channel in the third region upstream of the first region upstream of the first channel is applied to the cells.
  • the on-chip cell sorter system according to any one of the above [1] to [5], further comprising a further external force applying mechanism applied to the.
  • Chip cell sorter system [8] A cell sorter chip including a first flow path for flowing a sample solution containing cells including target cells, wherein the first flow path is a downstream branch point and includes the target cells.
  • a cell sorter chip branching into a target cell recovery flow path for recovering the liquid and a waste liquid recovery flow path for recovering a liquid containing cells other than the target cells;
  • An optical system for acquiring a digital image of a cell in the sample solution flowing in the first flow path in a first region upstream from the branch point and identifying the target cell by digital analysis of the image
  • a target cell that flows in the first flow path based on the result of cell identification by the image analysis in a second region that substantially matches or is downstream of the first region upstream from the branch point.
  • an external force is applied to a cell other than the target cell to shift the traveling direction of the cell, and the target cell is guided to the target cell recovery channel and a cell other than the target cell is guided to the waste liquid recovery channel.
  • An external force application mechanism A control unit for controlling the operation of the optical system and the external force application mechanism, further, A reservoir fluidly connected to the upstream side of the first flow path and storing a buffer solution for sheath liquid; A sample solution introduction channel fluidly connected to the upstream side of the channel for introducing a sample solution containing cells into the first channel, An on-chip-chip, wherein a tip end portion of the sample solution introduction channel on the side fluidly connected to the first channel extends to a downstream side of the introduction portion of the buffer solution to the first channel.
  • Cell sorter system [9] A cell sorter chip including a first flow path for flowing a sample solution containing cells including target cells, wherein the first flow path is a downstream branch point and includes the target cells.
  • a cell sorter chip branching into a target cell recovery flow path for recovering the liquid and a waste liquid recovery flow path for recovering a liquid containing cells other than the target cells;
  • a first external force applying mechanism for applying to the cells an external force for aligning the cells in the sample solution flowing through the first flow path in a preliminary region upstream from the branch point;
  • a digital image of the cells in the sample solution flowing in the first flow path in a first region upstream of the branch point and downstream of the preliminary region is obtained, and the digital analysis of the image
  • An optical system for identifying a target cell A target cell that flows in the first flow path based on the result of cell identification by the image analysis in a second region that substantially matches or is downstream of the first region upstream from the branch point.
  • an external force is applied to a cell other than the target cell to shift the traveling direction of the cell, and the target cell is guided to the target cell recovery channel and a cell other than the target cell is guided to the waste liquid recovery channel.
  • a second external force application mechanism A controller that controls the operation of the optical system and the first and second external force application mechanisms,
  • the first external force applying mechanism is a comb-shaped electrode for generating repulsive force on microparticles containing cells in a sample solution arranged along one surface of the first flow path, and the first flow path
  • An on-chip cell sorter system in which the cross section perpendicular to the flow path is tapered or convex toward the center of the surface opposite to the surface on which the electrodes are arranged in order to promote alignment of the fine particles .
  • a cell sorter chip including a first flow path for flowing a sample solution containing cells including target cells, wherein the first flow path is a downstream branch point and includes the target cells.
  • a cell sorter chip branching into a target cell recovery flow path for recovering the liquid and a waste liquid recovery flow path for recovering a liquid containing cells other than the target cells;
  • a first external force applying mechanism for applying to the cells an external force for aligning the cells in the sample solution flowing through the first flow path in a preliminary region upstream from the branch point;
  • a digital image of the cells in the sample solution flowing in the first flow path in a first region upstream of the branch point and downstream of the preliminary region is obtained, and the digital analysis of the image
  • An optical system for identifying a target cell A target cell that flows in the first flow path based on the result of cell identification by the image analysis in a second region that substantially matches or is downstream of the first region upstream from the branch point.
  • an external force is applied to a cell other than the target cell to shift the traveling direction of the cell, and the target cell is guided to the target cell recovery channel and a cell other than the target cell is guided to the waste liquid recovery channel.
  • a second external force application mechanism A controller that controls the operation of the optical system and the first and second external force application mechanisms,
  • the second external force applying mechanism is a gel electrode disposed so as to come into contact with the sample liquid on both side surfaces of the first flow path, and when the gel is in a sol state, the sol liquid is In order not to leak into the flow path, the sol liquid is provided on both side surfaces along the first flow path at regular intervals so that the surface tension of the sol liquid can prevent the sol liquid from leaking into the flow path.
  • An on-chip cell sorter system configured to contact the sample solution through an array of slits.
  • a cell sorter chip including a first flow path for flowing a sample solution containing cells including target cells, wherein the first flow path is a downstream branch point and includes the target cells.
  • a cell sorter chip branching into a target cell recovery flow path for recovering the liquid and a waste liquid recovery flow path for recovering a liquid containing cells other than the target cells;
  • a first external force applying mechanism for applying to the cells an external force for aligning the cells in the sample solution flowing through the first flow path in a preliminary region upstream from the branch point;
  • a digital image of the cells in the sample solution flowing in the first flow path in a first region upstream of the branch point and downstream of the preliminary region is obtained, and the digital analysis of the image
  • An optical system for identifying a target cell A target cell that flows in the first flow path based on the result of cell identification by the image analysis in a second region that substantially matches or is downstream of the first region upstream from the branch point.
  • an external force is applied to a cell other than the target cell to shift the traveling direction of the cell, and the target cell is guided to the target cell recovery channel and a cell other than the target cell is guided to the waste liquid recovery channel.
  • a second external force application mechanism A controller that controls the operation of the optical system and the first and second external force application mechanisms,
  • the first external force application mechanism includes a pair of flow paths for flowing a side sheath liquid for generating a side sheath flow that is fluidly connected to the upstream side of the first flow path.
  • An on-chip cell sorter system that is light in specific gravity and does not mix with water.
  • the external force applying mechanism that guides the cell to each recovery flow path includes a gel electrode or a metal electrode for applying an electric force to the cell.
  • the target cell is a cardiomyocyte
  • the on-chip cell sorter system according to any one of [1] to [13] above, wherein a cell having R of less than 1.1 is identified as a cardiomyocyte by [15]
  • the present invention provides the following on-chip cell sorter system, a method for identifying candidate cells of blood cancer cells from a cell sample solution derived from a subject using the system, and an optical module.
  • a cell sorter chip provided with a flow path for flowing a sample solution containing fluorescently stained cells derived from a subject;
  • An optical system including a bright-field light source and a fluorescent light source for irradiating the cells;
  • a detection system for simultaneously acquiring a bright field image of the cells in the sample solution flowing through the flow path of the cell sorter chip, a fluorescence intensity of a fluorescent labeling substance bound to the cells, and a fluorescence image of the cells;
  • Control / analyzing means for identifying multinucleated cells and / or cell clusters flowing in the flow path based on the bright field image, the fluorescence intensity, and the fluorescence image;
  • An on-chip cell sorter system comprising: means for selectively recovering the identified multinucleated cells and / or cell clusters.
  • the control / analysis means is i) one or more data selected from the group consisting of the size (area) of the cell, the perimeter, and the value of R indicating the degree of unevenness of the surface of the cell obtained by the area and the perimeter, and ii) 1 selected from the group consisting of the fluorescence wavelength and intensity spectrum of the labeling substance bound to the cell, and the barycentric coordinates and area of each of one or more regions fluorescently stained in the cell.
  • the on-chip cell sorter system according to the above ⁇ 1>, wherein two or more data are acquired, and multinucleated cells and / or cell clusters flowing in the flow path are identified based on the data.
  • ⁇ 3> The on-chip cell sorter system according to the above ⁇ 1> or ⁇ 2>, further comprising means for measuring a nucleic acid sequence of a gene derived from the selectively collected multinucleated cells and / or cell clusters.
  • ⁇ 4> Any one of the above ⁇ 1> to ⁇ 3>, comprising an image dividing mechanism having a function of dividing and displaying the bright field image and the fluorescent image on the light receiving surface of one high-speed camera at the same time.
  • ⁇ 5> The on-chip cell sorter system according to ⁇ 4>, further including a mechanism that adjusts the magnification of the bright field image and the fluorescent image so that the magnification of the image differs.
  • ⁇ 6> The on-chip cell sorter system according to any one of the above ⁇ 1> to ⁇ 5>, which is used for identifying candidate cells of blood cancer cells.
  • ⁇ 7> A method for identifying candidate cancer cells in blood from a cell sample solution derived from a subject using the on-chip cell sorter system according to any one of ⁇ 1> to ⁇ 6> above.
  • the method comprising the step of identifying and selectively recovering from cancer cells by analysis combined with the presence of fluorescence intensity of a fluorescent antibody against one or more biomarkers of cancer cells.
  • a first dichroic mirror with an angle adjustment function capable of adjusting the direction in which light is reflected in three dimensions A filter system in which light including image data reflected by the dichroic mirror is introduced;
  • An image size adjustment system comprising a movable shielding plate for adjusting the image size, into which light is introduced through the filter system, Light introduced through the image size adjustment system is introduced, a second dichroic mirror with an angle adjustment function capable of three-dimensionally adjusting the direction in which the light is reflected, and light introduced through the second dichroic mirror
  • An optical module for use in an optical bright field / fluorescence microscope system comprising an optical lens system for correcting differences in imaging position, An optical module configured such that the image can be enlarged and reduced by the optical lens system, and an image having a different magnification rate can be generated between a bright-field image and a fluorescent image.
  • the present invention provides the following on-chip cell sorter system.
  • a cell sorter chip provided with a flow path for flowing a sample solution containing fluorescently stained cells derived from a subject;
  • An optical system including a bright-field light source for irradiating the cells, one or more fluorescent light sources, an optical fiber that conducts light of each wavelength, and a condensing lens that focuses the light on the observation target at the irradiation site;
  • a detection system that simultaneously acquires the fluorescence intensity of the fluorescent labeling substance bound to the cells, comprising a bandpass filter and a fluorescence detector that pass the fluorescence wavelength of A detection system for simultaneously acquiring a bright field image of the cell and a fluorescence image of the cell; Control /
  • the present invention provides the following on-chip cell sorter system.
  • the present invention provides the following on-chip cell sorter system.
  • the ratio R of the perimeter derived from the perimeter of the cell (cluster) and the area as a circular approximation (1 / R) is 0.9 or more
  • the cell (cluster) is an isolated single cell, (1 / R ) Is less than 0.9
  • the on-chip cell sorter system is characterized in that a cell (cluster) is composed of a cluster of two or more cells as a criterion for determining the number of cells in the cell cluster.
  • optical branching module of one unit which is the minimum structural unit, a pair of optical path systems for input / output of image light on the both bottom surfaces of the container and two pairs on the side surface for branching a two-dimensionally developed optical path system
  • Four optical path holes for introducing mirror-reflected light, and six optical path covers that can be freely attached to and detached from each other are arranged, and light is introduced into the holes of the optical path for introducing two-to-four mirror-reflected light on these side surfaces.
  • each of these mirrors can finely adjust the traveling direction of the reflected light, and this makes it possible to connect with the camera.
  • the image position can be freely moved, and the mirror holder can be equipped with a total reflection mirror, high-pass filter, low-pass filter, etc.
  • Two removable adjustable adjustments A removable optical path window is arranged between the mirror holders with a function, the sectional area of the transmitted light can be adjusted, and a removable filter 4304 is arranged.
  • incident light introduced so as to have an area equal to or smaller than (total area of light receiving surface of image acquisition camera system to be measured / parallel light introducing module)
  • a parallel light introducing module for introducing an image optical image in which an optical window filter that cuts out a cross-sectional area of In the first-stage optical branching module connected to the parallel light introducing module, the (wavelength) high-pass filter or the (wavelength) low-pass filter b is introduced into the mirror holder,
  • the transmitted light of the incident light branched into two wavelengths is reflected by the total reflection mirror, and is the same as the first filter of the optical branching module of the second stage (first stage).
  • the light reflected by the filter of the first-stage optical branching module is introduced into the first filter of the second-stage optical branching module, and similarly up to the n-th optical branching module.
  • wavelength band splitting is performed, and for each branch wavelength, positioning to adjust the direction of the optical path so that the images in each wavelength band do not overlap with the light receiving surface of the camera can be performed with each mirror holder with detachable movable adjustment function
  • a total reflection mirror is used for the first filter
  • the first filter in the previous-stage optical branching module is used
  • the high-pass filter or low-pass filter is arranged in the order of the monotonically increasing or monotonically decreasing wavelength for the branch wavelength, and the same filter is used for the first filter in the previous stage and the second filter in the next stage.
  • the image branching display device is characterized in that a total reflection mirror is used for the first-stage second filter and the last-stage first filter.
  • An imaging cell sorter that observes and separates cells in water droplets that are generated in the air and dropped on the water-repellent substrate.
  • a mechanism for producing and dropping water droplets of an optimal size by discharging the sample solution at a constant pressure from the thin tube at the tip of the water droplet forming module with a cell reservoir, in the sample solution, Water droplets are desired by charging the electrostatic field coil that covers from the area where the water just before the water drops are linked to the reservoir to the area where the water drops are just formed, to the opposite charge to the water charge.
  • a mechanism that can be charged with an electric charge A mechanism in which the formed water droplets are dropped onto an optically transparent water-repellent insulating substrate having a Teflon (registered trademark) resin processed on the surface of glass or the like, and rolled down in the direction of inclination of the substrate, , A mechanism in which a high-speed camera capable of measuring a bright field image and a fluorescent image on the back surface of the substrate on the path where the water drops fall and an optical measurement module capable of measuring scattered light intensity, fluorescent intensity, etc.
  • Teflon registered trademark
  • a mechanism to determine whether the target cell is in a water drop After identifying the type of the target cell according to the determination, the charge opposite to the water droplet is transferred to a specific one of the one or more water droplet movement direction control electrostatic field guides for changing the position from the direction in which the water droplet falls.
  • a mechanism to change the drop direction of the water droplets, and to guide to the fractional water droplet reservoir in the subsequent stage A mechanism that can apply the electrostatic field guide for each water droplet movement direction control to the electrode in accordance with the analysis result of the analysis control module, and each electrode is a static for the water droplet movement direction control when not controlled by this mechanism.
  • the electric field guide has a mechanism that does not affect the movement of water drops by grounding
  • a similar electrostatic field guide for controlling the water droplet movement direction is arranged, or a pair of rail-shaped three-dimensional structures sandwiched between the bottom surfaces of water repellent surfaces such as Teflon coat are added.
  • the observation area and the water droplet fractionation start area have means that can arrange water drops closely at equal distances in the falling direction by making the inclination horizontal (perpendicular to gravity) so that the water drops move at a constant speed.
  • a mechanism for controlling the temperature of water droplets that have made minimal contact in a water-repellent state by adjusting the temperature of the substrate In order to selectively collect target cells in the water droplet according to the reaction result, the reaction liquid reservoir water droplet formation mechanism is used to collide the reaction liquid with the sample water droplet and observe and measure the mixed liquid droplet at a certain post-reaction time.
  • a cell sorter that creates reaction droplets with weakly applied reverse charges to the sample water droplets, and can guide the reaction solution to the sample water droplets by the same electrostatic field guide for controlling the direction of water droplet movement.
  • the present invention also includes a process of collecting blood and a cell cluster (cluster) having an area of about 250 ⁇ m 2 or more in the blood, which is collected and cultured, or subjected to genetic mutation test or expression analysis test.
  • the progression of the cancer is presumed to be early in the beginning of metastasis from the primary cancer, and there are many different mutation points while the history of mutations in each cluster is the same.
  • a procedure for recovering cells that are larger in size than normal, especially for phagocytic leukocytes such as macrophages, and examining and identifying genes of heterologous cells such as bacteria in the cells, and B cells From the procedure to diagnose what the immune system is reacting by selectively recovering those whose internal shape has become complicated due to activation of, and those whose size has increased and clarifying the antigen of the B cell A cell cluster diagnostic technique is provided.
  • the present invention also allows the patient's blood to be refluxed using a cell cluster (cluster) removal mechanism such as a membrane filter that removes a cell cluster (cluster) having a cross-sectional area of approximately 250 ⁇ m 2 or more that does not exist in healthy blood.
  • a cell cluster (cluster) removal mechanism such as a membrane filter that removes a cell cluster (cluster) having a cross-sectional area of approximately 250 ⁇ m 2 or more that does not exist in healthy blood.
  • a metastatic cancer treatment device that suppresses the onset and progression of metastatic cancer by effectively removing metastatic cancer cells in blood by a physical technique.
  • the present invention relates to the following on-chip cell sorter system, a method for identifying cancer cell candidate cells in a subject-derived cell sample solution, an optical branching module, an imaging cell sorter, and a cell cluster in blood.
  • a medical treatment apparatus for preventing metastatic cancer progression by physical removal and a method for diagnosing metastatic cancer, organ abnormality, or infection using detection of a cell mass in blood.
  • An on-chip cell sorter system used for identifying cancer cell candidate cells, A cell sorter chip provided with a flow path for flowing a sample solution containing fluorescently stained cells derived from a subject; An optical system including a bright-field light source and a fluorescent light source for irradiating the cells; A detection system for simultaneously acquiring a bright field image of the cells in the sample solution flowing through the flow path of the cell sorter chip, a fluorescence intensity of a fluorescent labeling substance bound to the cells, and a fluorescence image of the cells; Control / analyzing means for identifying multinucleated cells and / or cell clusters flowing in the flow path based on the bright field image, the fluorescence intensity, and the fluorescence image; Means for selectively recovering the identified multinucleated cells and / or cell clusters,
  • the above control / analysis means is provided by the following (i) to (iii): (I) The area of the nucleus of the lump or cluster obtained from the fluorescence image of the nucleus
  • the area of the lump or cluster obtained from a bright field image of a lump of cells or clusters is 250 ⁇ m 2 or more, or (iii) the number of nuclei in the lump of cells or clusters is 3 or more If one condition is met, or (i) and (ii), (i) and (iii), (ii) and (iii), or (i), (ii) and (iii) are met , Judge that cancer cells are likely to be present in the cell sample solution, On-chip cell sorter system.
  • the control / analysis means is About the perimeter ratio R derived as a circular approximation from the perimeter and area of cells (clusters), (I) When (1 / R) is 0.9 or more, the cell (cluster) is an isolated cell, or (ii) When (1 / R) is less than 0.9, the cell (cluster) is 2 cells. Consisting of a cluster of cells, As described above, the on-chip cell sorter system according to the above [1], wherein the value of (1 / R) is used as a criterion for determining the presence or absence of clusters in the cell sample solution.
  • An on-chip cell sorter system used for identifying cancer cell candidate cells, A cell sorter chip provided with a flow path for flowing a sample solution containing fluorescently stained cells derived from a subject; An optical system including a bright-field light source and a fluorescent light source for irradiating the cells; A detection system for simultaneously acquiring a bright field image of the cells in the sample solution flowing through the flow path of the cell sorter chip, a fluorescence intensity of a fluorescent labeling substance bound to the cells, and a fluorescence image of the cells; Control / analyzing means for identifying multinucleated cells and / or cell clusters flowing in the flow path based on the bright field image, the fluorescence intensity, and the fluorescence image; Means for selectively recovering the identified multinucleated cells and / or cell clusters, The control / analysis means is About the perimeter ratio R derived as a circular approximation from the perimeter and area of cells (clusters), (I) When (1 / R) is 0.9 or more,
  • an on-chip cell sorter system in which the value of (1 / R) is used as a criterion for determining the presence or absence of clusters in the cell sample solution.
  • the on-chip cell sorter system according to any one of the above [1] to [3], further comprising means for measuring a nucleic acid sequence of a gene derived from the selectively recovered multinucleated cells and / or cell clusters.
  • the on-chip cell sorter system according to item.
  • [8] A method for identifying candidate cells of cancer cells in a cell sample solution derived from a subject using the on-chip cell sorter system according to any one of [1] to [7], Flowing a sample solution containing fluorescently-stained cells from a subject through the flow path of the cell sorter chip; Irradiating the cells with light from a bright-field light source and a fluorescent light source, Obtaining a bright field image of the cells in the sample solution flowing through the flow path of the cell sorter chip, a fluorescence intensity of a fluorescent labeling substance bound to the cells, and a fluorescence image of the cells; Based on the bright field image, the fluorescence intensity, and the fluorescence image, a step of identifying a multinucleated cell and / or cell cluster flowing through the flow path, and selectively identifying the identified multinucleated cell and / or cell cluster Including the step of collecting, In identifying the multinucleated cells and / or cell clusters, (I) The area of the nucle
  • the area of the lump or cluster obtained from a bright field image of a lump of cells or clusters is 250 ⁇ m 2 or more, or (iii) the number of nuclei in the lump of cells or clusters is 3 or more If one condition is met, or (i) and (ii), (i) and (iii), (ii) and (iii), or (i), (ii) and (iii) are met.
  • An optical branching module A substantially rectangular parallelepiped housing; An optical path system including a pair of mirrors for input / output of a pair of image light provided symmetrically on the bottom surface in the housing; Two-to-four openings for introducing mirror reflected light provided on the side surface of the casing, two on the side in the longitudinal direction and one on the side in the short side An aperture formed, 6 optical path covers that can be freely attached to and detached from each of the 2 to 4 openings, A pair of removable movable mirror holders capable of adjusting the mirror so that light is introduced into each of the two to four openings; A detachable optical path window arranged between the pair of mirrors and capable of adjusting a cross-sectional area of the transmitted light, A detachable filter disposed between the pair of mirrors and capable of adjusting a wavelength bandwidth of light; An optical branching module.
  • the bright field image of the cell in the sample solution containing the fluorescence-stained cell, the fluorescence intensity of the fluorescent labeling substance bound to the cell, and the fluorescence image of the cell are used to simultaneously acquire the above [ The optical branching module according to any one of 9] to [12].
  • a water droplet formation module comprising a sample solution reservoir for holding a sample solution containing cells and a thin tube connected to the reservoir; An electrostatic field coil for charging water droplets formed by the water droplet forming module; A substrate having a water-repellent surface for dropping the formed water droplets, the substrate being optically transmissive, A substrate tilt control mechanism for adjusting the tilt angle of the substrate surface; An optical measurement module including a camera capable of measuring a bright-field image and a fluorescent image, disposed on the opposite side of the substrate surface on which the water droplets are dropped, and the water droplets formed on the water-repellent surface can be controlled thereon; An electrostatic field guide for controlling the direction of movement of water droplets, which is one or a plurality of guides for movement, and is charged with a charge opposite to that of the water droplets; A fractionated water droplet reservoir disposed in the subsequent stage of each of the plurality of water droplet movement direction control electrostatic field guides; An electric field switching mechanism for electrostatic field guide for controlling the direction of movement of water droplets
  • a plurality of electrostatic field guides for controlling the direction of movement of the water droplets are provided, at least one of which is for improving the initial water droplet positioning accuracy, and the other guides include water droplets containing target cells and water droplets not containing them.
  • the guide for improving the initial water droplet positioning accuracy is located upstream of the movement of the water droplet, and the guide for selecting the water droplet containing the target cell and the water droplet not containing the target cell is located downstream thereof.
  • the imaging cell sorter described in the above.
  • a metastasis cancer treatment apparatus having a cell mass (cluster) removal mechanism including a membrane filter that removes a cell mass (cluster) having a cross-sectional area of about 250 ⁇ m 2 or more that is not present in healthy blood, the blood of a patient
  • a metastatic cancer treatment device that suppresses the onset and progression of metastatic cancer by effectively removing the metastatic cancer cells in the blood by a physical technique.
  • An on-chip cell sorter system according to any one of the above [1] to [7] used in a diagnostic method for The above diagnostic method is This cell cluster is identified from the selected cell mass by culture, gene mutation test, or expression analysis test, When the identified cell is a metastatic cancer cell in the blood, the gene mutation is confirmed in each cluster unit, and when each cluster is the same mutant, the degree of progression of cancer is If the metastasis from primary cancer is presumed to be early, or if the history of mutations in each cluster is the same but there are many different mutation points, the location of the metastatic cancer Is estimated to be in many areas, If the cell cluster that flows in the blood can be identified as an organ tissue fragment, organ disease is presumed, or for phagocytic leukocytes including macrophages
  • a cell cluster diagnostic method for metastatic cancer, organ abnormality, or infectious disease using detection of a cell mass in blood In a blood sample derived from a subject, a cell cluster (cluster) having an area of 250 ⁇ m 2 or more is selected, This cell cluster is identified from the selected cell mass by culture, gene mutation test, or expression analysis test, When the identified cell is a metastatic cancer cell in the blood, the gene mutation is confirmed in each cluster unit, and when each cluster is the same mutant, the degree of progression of cancer is If the metastasis from primary cancer is presumed to be early, or if the history of mutations in each cluster is the same but there are many different mutation points, the location of the metastatic cancer Is estimated to be in many areas, If the cell cluster that flows in the blood can be identified as an organ tissue fragment, organ disease is presumed, or for phagocytic leukocytes including macrophages, cells larger in size than normal are collected, and By examining and identifying genes of heterologous cells such as bacteria, selectively recovering those whose
  • a method for confirming the presence of abnormal cells in blood Measuring a cell size in a blood sample from a subject containing blood cells excluding red blood cells, Based on the result of the measurement step, a step of obtaining a cell size distribution spectrum of the blood sample, and whether the cell size distribution spectrum has one peak or two or more peaks in the cell size distribution spectrum.
  • a method comprising the step of identifying.
  • a step of selectively recovering cells larger than the threshold from the blood sample with the peak on the large cell side as a threshold when it is identified that there are two or more peaks as a result of the identification step The method according to [22], further comprising: [24] The above [22] or [23], wherein in the step of measuring the cell size and the step of collecting the cells, an on-chip cell sorter chip having a flow path for flowing the blood sample is used. The method described in 1. [25] The method according to [24] above, wherein the on-chip cell sorter chip is part of the on-chip cell sorter system according to any one of [1] to [7].
  • a water droplet formation module comprising a sample solution reservoir for holding a sample solution containing cells and a thin tube connected to the reservoir; A substrate having a water-repellent surface formed by joining regions having two or more different inclination angles for dropping the formed water droplets; A substrate tilt control mechanism for adjusting a tilt angle of a surface having two or more different tilt angles of the substrate; A measurement module for measuring the state of the water droplet and the state inside the water droplet; Means for separating water droplets in a plurality of traveling directions based on the measurement results; An imaging cell sorter for observing and separating cells in water droplets.
  • the means for separating the water droplets in a plurality of traveling directions includes one or more guides for controllably moving the water droplets formed on the water repellent surface,
  • the present invention it is possible to purify a minute amount of target cells in blood in units of one cell, and to analyze accurate gene information and expression information of the target cells.
  • the present invention it is possible to identify whether or not the cells to be examined are clustered (whether or not they are isolated single cells).
  • only the target cells can be separated and purified and collected in real time.
  • the present invention it is possible to measure the intracellular state of only the collected cells at the single cell level, and perform genome analysis and expression analysis at the single cell level.
  • the collected cells can be re-cultured.
  • cell information such as a difference in cell size, a size ratio between the nucleus inside the cell and the cytoplasm, etc. can be acquired, and the cell can be purified by discrimination based on the result.
  • the present invention by collecting cells that are dividing in the blood, it is possible to collect cells having a dividing ability such as blood cancer cells and stem cells.
  • the present invention makes it possible to effectively recover multinucleated cells and cell clusters that are candidates for cancer cells circulating in the blood. According to the present invention, it becomes possible to simultaneously excite cells labeled with fluorescent antibodies of multiple wavelengths with excitation light of multiple wavelengths and simultaneously detect the emitted multiple fluorescences, and effectively recover target cells. It becomes possible. According to the present invention, cancer cells and diseased organ tissue sections can be identified and recovered quantitatively from image data from blood cells. According to the present invention, metastatic cancer cell clusters can be removed from blood cells to prevent the progression of metastatic cancer.
  • FIG. 1 It is a schematic diagram which shows notionally an example of the means in the apparatus corresponding to the whole process of the cell analysis performed using the cell analyzer apparatus of this invention, and each process. It is a figure which shows typically one example of the whole structure of the cell analyzer system of this invention in FIG. It is a figure which shows typically an example of a structure of the cell concentration / staining / decolorization module in FIG. It is a figure which shows typically an example of a structure of the image detection type 1-cell separation and refinement
  • FIG. 7 It is a schematic diagram which shows notionally an example of the means in the apparatus corresponding to the whole process in the case of including the cell destruction process in the cell analysis performed using the cell analyzer apparatus of this invention, and each process. It is a figure which shows typically an example of the crushing mechanism comprised in the cell destruction process in the process shown in FIG. 7 comprised from a container, a rotary body, and a rotating shaft. It is a figure which shows typically the various variations of the basic cell crushing mechanism shown in FIG. The mechanism which ensures the adhesiveness of a container and a rotary body is illustrated. It is a schematic diagram which shows the example of the various shapes of the rotary body of a cell crushing mechanism used in this invention, and a rotating shaft.
  • FIG. 16 is a diagram schematically showing an example of a cell purification process in the image detection type 1-cell separation / purification (cell sorter) module of FIG. 15.
  • FIG. 19 shows typically the image recognition of the disappearance process of the nucleus at the time of the cell division which is one of the identification indexes of the cell purification in the image detection type 1-cell separation / purification (cell sorter) module of FIG. It is a figure which shows typically an example of the light emission timing of the high-speed flash light source for preventing the image blurring in an image detection type 1 cell separation and refinement
  • FIG. 19B shows typically an example of a structure of the optical system for preventing the image blurring in an image detection type
  • FIG. 19A shows typically an example of a structure of the optical system for preventing the image blurring in an image detection type
  • FIG. 19A shows typically an example of a structure of the optical system for preventing the image blurring in an image detection type
  • FIG. 19A shows typically an example of a structure of the optical system for preventing the image blurring in an image detection type
  • FIG. 19A shows typically an example of a structure of the optical system for preventing the image blurring in an image detection type
  • FIG. 19 shows a comparison between an image of fine particles observed with a conventional optical system (FIG. 19B) and an example of an image of fine particles observed with an optical system of the present invention (FIG. 19C).
  • FIG. 19B shows typically an example of the structure which has arrange
  • FIG. 19C shows typically an example of the structure which has arrange
  • FIG. 19 shows typically an example of a structure of the part where the sample solution and buffer solution of a cell sorter chip merge.
  • FIG. 1 It is a figure which shows typically an example of a structure of the chip
  • FIG. 4 is a schematic diagram showing an example of a process for identifying cardiomyocytes and fibroblasts to be separated by an image in an image recognition type cell sorter system. It is a schematic diagram which shows an example of a structure of the cell sorter system which combined water and oil. It is a schematic diagram which shows an example of a structure of the joint area
  • FIG. 41A is a distribution diagram of the area of cell nuclei when blood cancer cells are measured by the apparatus of the present invention, and a bright field photograph and a fluorescence photograph of cells in each distribution region.
  • FIG. 41B is a graph showing the ratio of the peripheral length of cells (clusters) measured by the apparatus of the present invention and the peripheral length derived by circular approximation from the area of the cells (clusters) when blood cancer cells are measured. .
  • FIG. 43B and 43C and FIG. 43C are examples showing an example of image acquisition of a plurality of images captured by the camera shown in FIG. 43B.
  • FIG. 44A is a diagram schematically illustrating an example of a configuration of an imaging cell sorter that observes and separates cells in water droplets. 44B is a diagram of the configuration of the chip illustrated in FIG. 44A as viewed from above.
  • Figure (A) schematically showing an example of a process for detecting and analyzing a cell cluster in human blood, and an example of an integrated measurement analysis system for realizing the process shown in Figure 45A It is the figure (B and C) shown typically.
  • Figure (A) schematically showing an example of a process for detecting and analyzing a cell cluster in human blood, and an example of an integrated measurement analysis system for realizing the process shown in Figure 45A It is the figure (B and C) shown typically. It is the figure which showed typically an example of the method of removing the cell lump (cluster) in the blood beyond a fixed size as a metastatic cancer treatment technique.
  • the distribution spectrum of blood cell size is determined for each of normal blood (FIG.
  • FIG. 47A schematically shows a method using a substrate having an acceleration region and a constant velocity moving region by having two inclination angles in the means for moving the water droplet dropped on the water repellent substrate described above with reference to FIG. FIG.
  • the cell analyzer of the present invention generally comprises: (1) Cell concentration / staining / decolorization part that continuously performs processes including cell concentration, fluorescent antibody labeling (or staining and washing with reversible fluorescent labeling markers such as aptamers if necessary) , (2) Obtain image data of about 10,000 images of cells per second from cells flowing through the microchannel formed on the chip substrate, and purify 10,000 cells per second in real time based on the analysis result of the image information An image detection type 1 cell separation / purification (cell sorter) unit, (3) a 1-cell genome analysis / expression analysis unit that measures the intracellular state at the 1-cell level; (4) a liquid feeding part for carrying the sample liquid between the above parts, (5) A control analysis unit for controlling the operation of each unit and performing the analysis.
  • a typical embodiment of the cell analyzer of the present invention is characterized in that the three modules (1) to (3) are continuously combined in the order described above, and the cells are continuously connected by the flow path. Therefore, a small amount of cells can be eliminated by contamination or manipulation.
  • the presence or absence of fluorescent labeling of the cells is detected and confirmed at the single cell level, and the fluorescence-labeled cells are confirmed to be isolated single cells that are not clustered. In addition, it can be determined whether apoptosis is occurring in the cells. Therefore, according to the cell analyzer of the present invention, cells can be separated and purified based on an index that cannot be identified by the conventional scattered light detection type cell sorter technique.
  • cells that are stained accurately in units of 1 cell are selectively collected, and cell states such as apoptosis of the cells to be collected are confirmed, and fluorescence information and cell state information of each cell are confirmed.
  • cell genetic information and expression information can be analyzed.
  • the cell concentration / staining / decoloring part (1) above a small amount of cells contained in the reaction solution continuously sent from the previous module by the non-contact force is continuously captured and concentrated, and a certain number of cells is obtained.
  • the cell label staining solution is introduced and the cells are stained, the unbound reagent is washed away, and then the cells are delivered to the next module at a constant concentration.
  • cell capture / concentration using the feature that cells gather by “dielectrophoretic force” created by an alternating electric field by a metal electrode created in a microchannel as a non-contact force
  • the means for performing separation / purification in units of one cell based on the result of the image detection of (2) above details such as the difference in cell size, the ratio of the nucleus inside the cell to the cytoplasm, etc.
  • Cell information is acquired as image information, and the cell is purified based on the result.
  • a high-speed camera is used, the light emission of the light source is adjusted in accordance with the shutter cycle of the high-speed camera, and light from the light source is emitted for a certain period of time during which each shutter is released.
  • the shutter speed is 1 / 10,000th of a second
  • illuminate the target cells with a light source that can be controlled at high speed, such as an LED light source or a pulsed laser light source, for a period of 1 / 10th of the shutter speed.
  • a light source that can be controlled at high speed, such as an LED light source or a pulsed laser light source, for a period of 1 / 10th of the shutter speed.
  • the present invention makes it possible to completely prevent cross-contamination of the device by making the main part of the cell sorter into a chip, and to separate cells without cross-contamination essential in the medical field, particularly in the field of regenerative medicine. Provide a system.
  • the cells assumed as detection targets in the present invention are bacteria for small ones and animal cells (for example, cancer cells) for large ones. Therefore, the cell size typically ranges from about 0.5 ⁇ m to about 30 ⁇ m.
  • the first problem is the channel width (cross-sectional shape).
  • the channel is formed in a substantially two-dimensional plane using a space of about 10 to about 100 ⁇ m in the thickness direction of the substrate on one of the substrate surfaces. In terms of cell size, the most typical size is about 5 to about 10 ⁇ m in the thickness direction for bacteria, and about 10 to about 50 ⁇ m in the thickness direction for animal cells.
  • the cell analyzer of the present invention typically comprises a cell concentrating unit having a function of concentrating cells, a cell arrangement unit having a function of separating and purifying cells, and a cell separation / purification in the same chip. And an optical analysis unit for identifying and judging cells to be separated and purified.
  • a sample solution that has not been subjected to concentration treatment is introduced into the cell concentration section from one inlet, and the sample solution is discharged from a discharge section disposed downstream of the cell concentration section.
  • ultrasonic radiation pressure, gravity, electrostatic force, dielectric electrophoretic force and the like can be used, but are not limited thereto.
  • an arrangement is used in which these external forces can be applied in a direction perpendicular to the flow of the sample solution in the concentration section and in the direction of the concentrated cell recovery port.
  • all cells should flow in one of the two channels that are branched into two downstreams by applying external force to the cells so that the cells are arranged in the center of the channel where the cells are flowing. Subsequently, by applying an external force to only the cells to be collected out of the arranged cells and moving the flow position of the cells, the external force is applied to the flow path branched into the above two. Only when the cells are introduced into another channel.
  • the external force means for arranging cells into nodes of standing waves by ultrasonic radiation pressure can be used.
  • a means for arranging cells at the position of the apex of the wedge can be used by combining wedge-shaped electrode arrays.
  • the cell detection function of the cell analyzer of the present invention resides in the image detection type 1-cell separation / purification part (2) above.
  • a part to be observed by a CCD camera is provided upstream of the flow path branching part, and a cell separation region is provided downstream of the part if necessary.
  • the cells passing through the flow path are irradiated with a laser or the like, and when the cells cross and the scattered light or the cells are modified with fluorescence, the fluorescence can be detected with a photodetector.
  • a separation channel point that becomes a cell separation region is installed downstream of the detection unit.
  • the sorting unit which is a cell separation region
  • a pair of comb-shaped electrodes is used as a means for moving the cells by applying external force to the cells from the outside, for example, when using a dielectrophoretic force.
  • a pair of comb-shaped electrodes is used. Install and provide a flow path that can separate and drain cells.
  • electrostatic force a voltage is applied to the electrode to change the position of the cell in the flow path. At this time, since the cell is generally charged negatively, it moves toward the positive electrode.
  • the waste liquid outlet (outlet 213) of the cell concentrating unit 215 and the purified cell of the cell sorting unit 217 It is desirable that the pressure at the outlet (cell recovery unit 224) and the outlet of the waste liquid of the cell sorting unit (waste liquid recovery unit 223) be substantially the same (see FIG. 4B).
  • a flow path resistance adjusting portion for pressure adjustment is arranged immediately before each outlet such as a thin flow path or a long S-shaped flow path.
  • the cell recognition and separation algorithm has the following characteristics.
  • the cell image is first binarized and its center of gravity is obtained.
  • the luminance center of gravity, area, perimeter length, major axis, minor axis of the binarized cells are obtained, and each cell is numbered using these parameters. It is possible to automatically save each cell image as an image at this point because it is beneficial to the user.
  • the separation index may be information such as the luminance center of gravity, area, circumference length, major axis, minor axis, or the like, or information using fluorescence may be obtained by using fluorescence detection separately from the image. In any case, the cells obtained by the detection unit are separated according to the numbering.
  • the movement speed (V) of the numbered cells is calculated from the image captured every predetermined time, and the distance from the detection unit to the selection unit with respect to the cell movement speed (V) (L),
  • the application timing from (L / V) to (L / V + T) depending on the application time (T) the cells are electrically distributed and separated when the cells of the target number come between the electrodes.
  • the means for high-speed single-cell genome analysis / expression analysis of (3) used in the present invention for example, the reaction control device used, For a plurality of temperatures to be changed, means for changing a plurality of liquids having different heat capacities at a high speed at high speed using a liquid having a large heat capacity maintained at each temperature as a heat exchange medium, and a liquid having a large heat capacity And a microreaction tank in which heat exchange with the sample liquid is performed quickly.
  • the reaction control device used in the present invention includes a reaction vessel that has a structure and material suitable for heat exchange, and a reaction that circulates a liquid having a temperature suitable for each reaction outside the reaction vessel.
  • Liquid is transferred from any liquid reservoir tank to the outside of the reaction tank to rapidly change the temperature of the tank heat exchange tank, heat sources that maintain the temperature of the liquid with high accuracy, and the temperature of the micro reaction tank And a mechanism for preventing the mixing of liquids at different temperatures when the valve system is switched.
  • Advantages of controlling the temperature of the reaction vessel with the refluxing liquid include the following points. First, the temperature overshoot problem can be solved. Since the temperature of the liquid that is constantly refluxing is constant, the temperature of the reaction vessel surface and the temperature of the liquid are instantaneously equilibrated. Since the heat capacity of the reaction vessel and the sample is insignificant compared to the liquid being refluxed, the liquid flows continuously even if heat is locally deprived from the liquid. Basically does not occur. Of course, the temperature of the reaction vessel does not exceed the temperature of the liquid. It is possible to change the temperature by 30 degrees or more within 0.5 seconds by sequentially pouring liquids of different temperatures into the reaction tank heat exchange tank.
  • FIG. 1 illustrates an example of a procedure from collection of a blood sample to analysis performed using the cell analyzer of the present invention.
  • the blood sample collected from the patient is directly introduced into the cell concentration / staining part.
  • a fluorescent labeling agent such as a fluorescent cancer marker
  • the excess fluorescent labeling agent that did not react is washed away.
  • the cells are introduced into the image detection type 1-cell separation and purification unit in a form adjusted to the optimum cell concentration and solution for the next image detection type 1-cell separation and purification unit.
  • the primary detection the presence or absence of fluorescence emission based on the fluorescent label at the 1-cell level is confirmed. Thereby, it can be confirmed by a conventional labeling technique whether the cell is a target cell.
  • the cells emitting fluorescence are isolated cells or become cell clusters with other cells 2) Determine whether the cells emitting fluorescence are in a healthy state or in a state such as apoptosis in which the cell nucleus and cell shape are deformed, and depending on the purpose, Recover healthy cells or recover cells that are undergoing apoptosis, and perform gene analysis and expression analysis on the next stage so that gene analysis and expression analysis can be performed separately for each cell morphology. Can be introduced into the department. In particular, in the case of a cell mass, since cells other than the target cell are mixed, collection is not performed even when there are cells that emit fluorescence.
  • the cells identified and purified at this stage can be re-cultured in a contamination-free manner in purified cells, in addition to being introduced into the gene analysis / expression analysis section.
  • the gene analysis / expression analysis unit converts the introduced cells into a small amount of cells, as one cell that is identified as the same cell based on information from the image detection type 1 cell separation and purification unit, or a group of the same cells Gene identification or expression identification is performed in units.
  • FIG. 2 shows an example of an overall image of the cell analyzer system 1 that realizes the procedure shown in FIG.
  • the apparatus system 1 includes a concentration / staining / decoloring module 10 that introduces a blood sample and pretreats cells, an image detection type 1-cell separation / purification module 20 that identifies and purifies cells in units of cells, and is purified.
  • 1-cell genome analysis / expression analysis module 30 for performing gene analysis and expression analysis of the collected cells
  • liquid feeding module 40 for transporting samples between modules, and controlling the operation of the entire system and analyzing the analysis results
  • a control / analysis module (computer) 50 is provided.
  • 3 to 6 show an example of the configuration of each module in the example shown in FIG.
  • FIG. 3 shows an example of the configuration of the cell concentration / staining / decoloring module 10 that introduces a blood sample derived from a subject (eg, cancer patient) and pretreats the cells.
  • the cell concentration / staining / decoloring module 10 is integrally disposed on the chassis 114, and each solution of the sample cell sample, the staining agent, and the cleaning agent is held in the module.
  • a sample cell sample such as blood is introduced into the concentration chamber 108, and the liquid component is discharged through the filter to the waste liquid collection tube 110 by the pressure pump 109, thereby concentrating the cells.
  • the dyeing solution is introduced using the dispensing head 104 and reacted for a predetermined time, and then the dyeing solution is discharged again by the pressure pump 109.
  • a decolorizing agent into the concentration chamber 108, excess dyeing agent is washed and discharged.
  • a diluent also serving as a cleaning agent is introduced to dilute the cells to a desired concentration, and the cells are introduced into the collection tube 112 through the collection head 111 having the collection tip 113 at the tip. Yes.
  • FIG. 4 shows an example of the configuration of the image detection type 1-cell separation / purification module 20 for identifying and purifying cells in units of one cell.
  • the image detection type 1-cell separation / purification module 20 includes a light source 201, a mirror 202, a condensing lens 203, a dichroic mirror 204, a filter 205, a light detection element 206 for fluorescence detection, a high-speed camera 207, And a cell sorter chip 209 for introducing a cell sample.
  • a light source 201 such as a pulse laser or a high-intensity LED light source
  • a light detection element 208 such as a photodiode that detects passage of cells with scattered light, and fluorescence are detected for cells passing through the cell sorter chip 209.
  • a plurality of pieces of information can be detected simultaneously by a high-sensitivity light detection element 206 such as a photomultiplier, a high-speed camera 207, or the like.
  • the light emitted from the light source continuous light may be emitted, but in order to increase the spatial resolution of the image without blurring, pulse light is generated in synchronization with the shutter cycle of the high-speed camera 207.
  • the processing using an image and the processing using fluorescence or scattered light may be used in combination.
  • the image data obtained by the high-speed camera 207 can be displayed on the monitor of the computer 50 for use by the user.
  • the filter 205 is appropriately adjusted to transmit a plurality of excitation lights, and a wavelength that does not overlap with the fluorescence wavelength for fluorescence detection in the lower stage is selected to light the cells.
  • a plurality of devices to which devices from the dichroic mirror 204 to the filter 205 and the fluorescence detector 206 are added in accordance with the type of fluorescence to be observed.
  • the cell recognition and separation algorithm has the following characteristics.
  • the cell image is first binarized and its center of gravity is obtained.
  • the luminance center of gravity, area, perimeter length, major axis, minor axis of the binarized cells are obtained, and each cell is numbered using these parameters. It is possible to automatically save each cell image as an image at this point because it is beneficial to the user.
  • the separation index may be information such as the luminance center of gravity, area, circumference length, major axis, minor axis, or the like, or information using fluorescence may be obtained by using fluorescence detection separately from the image. In any case, the cells obtained by the detection unit are separated according to the numbering.
  • the movement speed (V) of the numbered cells is calculated from the image captured every predetermined time, and the distance from the detection unit to the selection unit with respect to the cell movement speed (V) (L),
  • the application timing from (L / V) to (L / V + T) depending on the application time (T) the cells are electrically distributed and separated when the cells of the target number come between the electrodes.
  • An example of the configuration for cell separation and purification is as follows. A series of microfabricated channels arranged in a two-dimensional manner on a planar chip, from concentration to arrangement and purification of cells in the sample solution, and force applied to the cells incorporated in the chip Consists of means.
  • FIG. 4B schematically shows an example of a cell sorter chip 209 configured on such a chip.
  • a microchannel 211 is provided inside the chip substrate 210, and an opening communicating with the channel is provided on the upper surface to serve as a supply port for a sample and a necessary buffer solution (medium).
  • the flow path can be created by so-called injection molding in which a plastic such as PMMA is poured into a mold, or can be created by bonding a plurality of glass substrates.
  • the size of the chip is, for example, 50 ⁇ 70 ⁇ 1 mm (t), but is not limited thereto.
  • the cells envisaged in the present invention are bacteria at a small size, and animal cells at a large size, such as cancer cells. Therefore, the cell size is typically in the range of about 0.5 ⁇ m to 30 ⁇ m, but is not strictly limited to this range, and cells of any size can be used as long as the present invention is effectively used. Can be done.
  • the first problem is the flow channel width (cross-sectional shape).
  • the channel 211 is formed on one of the substrate surfaces in a substantially two-dimensional plane in a space typically 10 to 100 ⁇ m in the thickness direction of the substrate. The appropriate size is 5 to 10 ⁇ m in the thickness direction for bacteria and 10 to 50 ⁇ m in the thickness direction for animal cells based on the cell size.
  • the sample solution is introduced from the inlet 212 into the microchannel 211 by a syringe pump or cell introduction means that does not generate a pulsating flow such as air pressure.
  • the sample liquid containing the cells introduced into the microchannel 211 flows along the streamline of the particle flow 218 before application toward the outlet 213 downstream, and is discharged.
  • means for continuously applying an external force to the cells is introduced so that the cells are concentrated toward the cell concentrate inlet 214 arranged in a part of the side wall of the microchannel 211.
  • the cells are concentrated along the cell flow 219 after application, and a cell concentrate having a concentration 100 times or more the cell concentration introduced at the inlet 212 is introduced into the cell concentrate inlet 214.
  • ultrasonic radiation pressure gravity, electrostatic force, dielectric electrophoretic force
  • a traveling wave of ultrasonic waves is generated in the direction of the cell concentrate inlet 214 and orthogonal to the flow of the sample liquid, and is applied by the ultrasonic radiation pressure after application.
  • a cell stream 219 can be generated.
  • a PZT-based piezoelectric element may be adhered to the surface of the chip 209, or a comb-shaped electrode array is disposed on the surface of the piezoelectric element so that surface acoustic waves are generated in the cell concentration unit 215 This may be applied to the surface of the cell concentrating unit 215, and the fact that the soaked ultrasonic waves are introduced into the cell concentrating unit 215 may be used.
  • the spatial arrangement of the chip 209 may be adjusted so that the direction of the concentrated liquid inlet 214 is perpendicular to the flow of the sample liquid and the direction of the concentrated liquid inlet 214 is the direction of gravity, or
  • the chip 209 may be arranged on a disc that can rotate, perpendicular to the flow of the sample solution, and the cell concentrate in the same direction as the radial direction of the disc.
  • electrostatic force an electrode is arranged on the side wall of the microchannel 211 so that the cell receives an external force toward the side wall. In that case, the cell of the target cell It may be determined which charge is applied depending on whether the surface potential is positive or negative.
  • the flow path distance of the micro flow path 211 must be flexibly adjusted according to the type and strength of the external force applied to the cell, for example, sufficiently long in the case of electrostatic force It must be a thing.
  • the dielectrophoretic force is used as an external force, the dielectrophoretic force is applied in the cell concentration unit 215 so as to be orthogonal to the flow of the sample liquid and in the direction of the concentrate inlet 214.
  • An electrode may be disposed.
  • the concentrated cell liquid into which the cell concentrated liquid has been introduced into the concentrated liquid inlet 214 is arranged in a line along the flow in the solution at the converging unit 216. Specifically, it has means for generating an external force so that cells are attracted to the central part of the flow path of the converging unit 216 by using a dielectric electrophoretic force or a standing wave mode of ultrasonic radiation pressure. is there.
  • the cells arranged in a straight line in the center in this way are measured in the cell detection region 218 arranged in the preceding stage of the cell sorting unit 217, and after determining the type of each cell, from upstream to downstream.
  • the wedge-shaped electrodes (converging V-shaped comb electrodes) 225 are alternately arranged. And applying an alternating voltage to the converging V-shaped comb electrode contact allows the cell to be directed toward the position of the wedge-shaped apex, thereby applying an external force to the cell. As a result, the position of the wedge-shaped apex Cells can be continuously concentrated.
  • the shape of the electrode arranged in the flow path that the electrode has an angle toward the downstream side, and that this electrode has a sharp tip instead of a straight line, and Because of the comb-shaped electrode array that has the shape of the axis, the cell that receives the dielectric electrophoretic force is affected by the flow regardless of whether it receives a repulsive force or an attractive force.
  • the cells are guided and arranged at the acute electrode tip portion by the resultant force of the force swept downstream and the force applied to the cell toward the sharp tip portion.
  • the cell is forced to flow downstream by the flow and the dielectric electrophoresis directed toward this acute angle tip direction.
  • the resultant force and force gather at the acute angle tip.
  • FIG. 5 illustrates an example of the configuration of a one-cell genome analysis / expression analysis module 30 that performs gene analysis and expression analysis of purified cells.
  • the reaction tank 301 is composed of a thin plate of aluminum, nickel, or gold having a plurality of depressions. The thickness of the thin plate in the depression region is about 10 to 30 microns, and the region between adjacent depressions has a thickness of 100 to 500 microns in order to ensure overall strength.
  • the reaction vessel 301 is fixed to the bottom surface of a square or circular reaction vessel frame, and has a structure that can be easily detached from the reaction vessel heat exchange vessel 302. The temperature of the liquid introduced into the reaction tank heat exchange tank 302 is overheated by a heat source disposed inside the liquid reservoir tank 303.
  • An agitation mechanism is provided to quickly remove heat from the surface of the heat source and to make the temperature inside the liquid reservoir tank 303 uniform.
  • the liquid in the liquid reservoir tank is guided inside the flow path by the pump 304.
  • the liquid is led to the reaction tank heat exchange tank 302 by the switching valve 305 or directly returned to the liquid reservoir tank 303 by being led to the bypass flow path. If necessary, the temperature of the liquid is slightly controlled by the auxiliary temperature control mechanism 306 so as to suppress temperature fluctuation in the liquid reservoir tank 303.
  • the basic configuration of the reaction tank heat exchange tank 302 includes an inlet A (307) and an inlet B (308) for introducing liquids having different temperatures.
  • the number corresponding to the plurality of temperatures for which the temperature of the sample solution is to be changed will be prepared as a plurality of two temperatures or more.
  • the number is three. It is not limited to two.
  • a plurality of outlets, outlet A (309) and outlet B (310) are provided in order to return the liquid in the reaction tank heat exchange tank 302 to the liquid reservoir tank 303.
  • the number is not limited to two.
  • Various types of reaction vessels can be used, and reaction vessel A, reaction vessel B, reaction vessel C, and reaction vessel D are shown as an example.
  • water may be used, but a liquid having a large heat capacity and low viscosity may be used.
  • liquid ammonia For example, liquid ammonia.
  • the sample liquid is surely set to 100 degrees, or the liquid having a lower freezing point than water is used. It is also possible to reliably change the temperature up to the freezing point of water while preventing freezing of the circulating liquid.
  • the reaction vessel frame can measure the change in fluorescence intensity of the fluorescent dye in the sample solution, which changes due to the reaction of the sample solution 311 in the reaction vessel 301, for each of the one or more reaction vessels 301.
  • An optical window that transmits the excitation light of the fluorescent dye and the fluorescence is arranged, and the fluorescence detector 312 is arranged to measure the temporal change of the measured fluorescence intensity of each reaction vessel 301. it can.
  • each of the plurality of fluorescence detectors 312 includes an excitation light irradiation mechanism and a fluorescence detection mechanism, and each of a plurality of reaction vessels 301 to which different primers or different sample solutions are dropped.
  • the fluorescence intensity data acquired by the fluorescence detector 312 is recorded by the control analysis unit 313 and has a function of estimating the amount of DNA or mRNA in the sample solution obtained by the PCR reaction. Further, the control analysis unit 313 obtains the switching information of the switching valve 305, thereby estimating whether the temperature change of the sample liquid 311 after the valve switching has reached the target temperature from the change in fluorescence intensity over time, And a mechanism for controlling valve switching based on the result.
  • one detector is arranged in each reaction vessel 301.
  • the fluorescence intensity change in a plurality of reaction vessels can be changed by combining a fluorescent example light source and a camera capable of quantitative fluorescence detection such as a cooled CCD camera. You may measure.
  • the fluorescence intensity of all reaction vessels can be measured by combining a mechanical drive mechanism that can move at high speed on the XY plane with the detectors. You may do it.
  • a freeze-dried reagent it is convenient to freeze and dry the reagents necessary for the reaction. It is possible to prepare a freeze-dried reagent at the bottom of the reaction vessel. Further, if a plug-like freeze-dried reagent is formed inside a dispensing tip used when dispensing a sample, the reagent can be dissolved in the sample by moving the sample up and down. Alternatively, it is also possible to dissolve the freeze-dried reagent by forming a freeze-dried reagent on the surface of the fiber ball on which nylon fibers or the like are bundled, and inserting the sample into a sample inside the reaction vessel and stirring.
  • the reaction vessel frame is preferably formed of a heat-insulating material such as polystyrene, polycarbonate, PEEK, acrylic, and the like, and the reaction area of the reaction vessel 301 can be controlled quickly and with high accuracy. Is desirable.
  • a thread is formed on the surface of the reaction tank frame and the reaction tank frame is screwed. In order to maintain watertightness, it is desirable to attach a seal to the opening.
  • valve switching mechanism There are an inlet valve A and an inlet valve B for introducing a liquid into the reaction tank 301, and an outlet valve A and an outlet valve B for introducing the liquid to the outside.
  • the liquid guided from the inlet valve A returns from the outlet valve A to the liquid reservoir tank, and the liquid guided from the inlet valve A returns from the outlet bawl B to another liquid reservoir tank.
  • the sample in the reaction vessel can be reacted.
  • the inlet valve B and the outlet valve A, or the inlet valve A and the outlet valve B are simultaneously opened for a moment so that liquids of different temperatures are mixed.
  • the conditions for PCR are, for example, reaction buffer 1.0 ⁇ L, 2 mM dNTP (dATP, dCTP, dGTP, dTTP) 1 ⁇ L, 25 mM magnesium sulfate 1.2 ⁇ L, 10% fetal bovine serum 0.125 ⁇ L, SYBR Green I 0.5 ⁇ L, primer Two types can be used: 0.6 ⁇ L each, sterilized water 3.725 ⁇ L, KOD plus polymerase 0.25 ⁇ L, and genomic DNA 1.0 ⁇ L.
  • As the temperature condition first, 95 ° C. for 10 seconds, and then temperature change of 95 ° C. for 1 second and 60 ° C. for 3 seconds can be measured in 40 cycles.
  • FIG. 6 illustrates an example of a configuration of a liquid feeding module 40 that transports a sample between the modules. It has a dispensing head 401 and a dispensing tip 402 for exchanging liquid between each module arranged on the chassis 406, and controls the height direction of the dispensing head in the Z-axis direction.
  • the Z-axis movement guide 403 and the Z-axis movement motor 404 as functions and the arm rotation motor 405 as an arm rotation mechanism have a function of controlling the position of the dispensing head 401 on the XY plane.
  • FIG. 7 shows cell expression of a sample in which a nucleic acid component in a cell is not easily eluted into a sample solution by a shell covering a cell such as an anthrax spore in a cell analysis performed using the cell analyzer of the present invention.
  • An example of a procedure from collection of a sample into which a procedure for crushing a shell covering a cell is introduced before an analysis procedure is shown.
  • the present cell analyzer can analyze cells such as spores of Bacillus anthracis by means similar to the means for analyzing blood cells described above.
  • FIG. 8 schematically shows an example of a basic structure for automatically crushing a shell of a spore or the like covering a small amount of sample cells in order to analyze intracellular genes and expression information for cells having spores such as anthrax.
  • a minute sample 802 is dispensed into the container 801, and a rotating body 803 for crushing is placed inside the container 801.
  • the rotating body 803 is pressed against the container 801 by the rotating shaft 804.
  • the sample 805 in the minute sample is ground by the abrasive 806.
  • the processed sample 805 can be easily recovered by removing the rotating body 803. Since the rotating body 803 and the container 1 have a simple structure, there is no problem even if they are handled as consumables.
  • FIG. 9 schematically shows various variations of the basic cell disruption mechanism shown in FIG.
  • the container 811 including the rotating body 810 is held by a flexible structure 812 such as rubber. Since the tip portion 814 of the shaft 813 is cut obliquely, when the shaft 813 is pressed against the rotating body 810, the rotating body 810 presses the container 811 downward and laterally, and the flexible structure 812 By deforming, pressure is absorbed. As a result, the sample can be crushed while holding the rotating body 810 and the container 811 closely without giving excessive stress to the rotating shaft 813.
  • FIG. 9B as a method of releasing stress, it is possible to incorporate a spring mechanism 815 that deforms vertically and laterally inside the rotating shaft.
  • FIG. 10 shows the possibility of rotating bodies and rotating shafts of various shapes in the cell disruption mechanism used in the present invention.
  • the shaft whose tip is cut obliquely (FIG. 10a)
  • it may be recessed in a gently curved surface (FIG. 10b), bowl-shaped (FIG. 10c), or the like.
  • the rotating body does not have to be a true sphere, and may have a structure in which the shaft and the rotating body are gently engaged with each other (FIG. 10d).
  • the hemisphere may be rotated with a rotating shaft cut diagonally (FIG. 10e).
  • it may have an egg-shaped rotating body (FIG. 10f) or a protruding structure that meshes with the rotating shaft (FIG. 10g). It is also possible to rotate a dish-like rotating body with a shaft (FIG. 10h).
  • FIG. 11 shows an example of the cell disruption step in the present invention.
  • a rotating body 831 and an abrasive 832 are enclosed in the container 830 (FIG. 11a).
  • the seal 833 is broken (FIG. 11b), and a sample 834 containing cells is dispensed into the container 830 (FIG. 11c).
  • the cells in the sample are crushed by the abrasive 832 and the component 836 is eluted (FIG. 11e).
  • the sample can be easily collected by removing the rotating body 831 from the container 830 (FIG. 11f).
  • negative pressure, magnetic force, and electrostatic force can be used, and such a mechanism can be incorporated in the rotating shaft.
  • a special mechanism may be prepared separately.
  • FIG. 12 shows a conceptual diagram of a mechanism that can be used when the cell disruption process in the present invention is automated.
  • a plurality of containers 840 are integrally formed, and a rotating body is sealed in advance in each container.
  • a rotating shaft In order to break the seal, it is possible to directly press and tear the rotating shaft (FIG. 12A), or to break with the opening cutter 841 attached to the rotating shaft (FIG. 12B).
  • the relative position of the shaft and the container can be automatically changed, and a plurality of samples can be crushed one after another.
  • FIG. 13 shows an example of the on-chip cell sorter chip of the present invention that can also be used in the cell analyzer system of the present invention.
  • the cell sorter chip 1301 three axial flow paths are arranged symmetrically on the upstream side (1302, 1304, 1306) and downstream side (1303, 1305, 1307) on the chip substrate.
  • the three flow paths merge while maintaining a laminar flow, and maintain the state as it is and branch to the three downstream flow paths. Therefore, the upstream side 1302 of the central flow path through which the sample flows is changed to the downstream central flow path 1303, and the upstream side flow path 1304 to the downstream side 1305, and the upstream flow path 1306, respectively, for the two side sheath flows.
  • the inlets of the three upstream channels are connected to inlet openings 1308, 1309, and 1310, respectively.
  • the inlet opening 1308 upstream of the flow path through which the sample flows is connected to the sample reservoir 1322, typically (but not limited to) by adding a small annular cap (or stopper).
  • the inlet openings 1309 and 1310 of the flow path for flowing the sheath liquid stored in the sheath liquid reservoir 1311 are separated from each other and are arranged so that the sample solution does not diffuse.
  • the downstream reservoir is also arranged in the same manner as the upstream side, and the waste liquid reservoir 1312 is connected to the outlet openings 1313 and 1314 of the flow path through which the two side sheath liquids flow. Is connected to the outlet opening 1315 of the recovered purified sample, and typically (but not limited to) a small annular cap is added to the outlet opening 1315 to recover the recovered purified sample. Does not diffuse into the waste reservoir.
  • the flow rate is generated using a gravity type that utilizes the difference between the liquid level of the sample reservoir and the sheath liquid reservoir and the liquid level of the waste / recovered liquid reservoir, or pressurized air with a cap attached to the upper surface of the reservoir.
  • a gravity type that utilizes the difference between the liquid level of the sample reservoir and the sheath liquid reservoir and the liquid level of the waste / recovered liquid reservoir, or pressurized air with a cap attached to the upper surface of the reservoir.
  • the ratio of the cross-sectional area of the side sheath flow (or waste liquid) reservoir to the cross-sectional area of the inner sample / recovery sample reservoir is 1 (sample / recovery reservoir): 2 (side sheath liquid reservoir / waste liquid reservoir). It is desirable. This is because if the change in the liquid level of each reservoir is different, the rate of decrease in the liquid level will be different, which will eventually destroy the generation of laminar flow at the confluence. It is. Therefore, since the flow rate of the liquid flow per unit time is 1: 2 in the sheath liquid having two inlets with respect to the sample inlet 1, the cross-sectional area of each reservoir is adjusted so that the liquid level is the same. The ratio was set to 1: 2. To make this universal, it is desirable that the ratio of the total cross-sectional areas of the flow paths coupled to the respective reservoirs matches the ratio of the cross-sectional areas of the respective reservoirs.
  • an electrode is arranged at a point where three laminar flows without walls join, where all six channels join.
  • the electrode is typically composed of a gel electrode.
  • a gel electrode for example, an agarose gel in which NaCl is dissolved so that the electrolyte becomes a current carrier is used.
  • the gel is placed in a Y-shaped channel 1316 for gel filling so that the gel tip can be in contact with the agarose gel in a sol state from the inlet 1317 so that the gel can be directed to the outlet 1318.
  • the gel does not penetrate into the cell sorter flow path and stops at the boundary line due to surface tension.
  • a wire 1319 such as a platinum wire connected to a power source 1320 to apply an electric field to this gel introduction point, at the gel electrode boundary in contact with the flow path, a normal metal electrode Even if the bubbles are raised to a voltage higher than the voltage generated in the flow path, no bubbles are generated and a current can be applied.
  • the on-off of the electric field application can be adjusted using the switch 1321, for example.
  • FIG. 14 schematically shows an example of the cross section of the upstream reservoir, particularly in the AA cross section of FIG.
  • a flow path 1409 is embedded in the cell sorter chip 1401.
  • the upper surface of the outer sheath fluid reservoir 1403 is blocked by the cap 1402, so that air pressure at an appropriate flow rate is supplied from the pressurized air introduction pipe 1405.
  • the flow path 1409 through which the sample flows is connected to the sample reservoir 1404 so that the sample liquid and the sheath liquid are not mixed.
  • the ratio of the cross-sectional area between the sample reservoir and the sheath fluid reservoir is 1: 2 because the ratio of the number of channels is 1: 2, and the ratio of each reservoir connected to each channel is The liquid level is adjusted to be the same.
  • a mechanism for supplying liquid can be added so that a larger amount of sample can be processed.
  • This includes a sample solution introduction tube 1406 or a sheath liquid introduction tube 1407, and a water level measurement sensor 1408 using conductivity measurement on the wall surface of each reservoir.
  • the water level measurement sensor 1408 can be configured by electrodes or electrode pairs disposed at the lower limit of the water level and the upper limit of the water level, which are desired to be set.
  • FIG. 15 shows an example of another configuration for handling a large amount of sample in the cell sorter of the present invention.
  • Three large reservoirs 1502 are arranged on the chip 1501 upstream of each of the three flow paths, and these are distributed more flexibly using the distribution valve 1505 from the air pressure application device 1503 through the pressure sensor 1504. can do.
  • sample collection both the sorted (purified) sample and the waste liquid are collected in the sorted sample collection reservoir 1506 and the waste liquid collection reservoir 1507, respectively, disposed at positions below the chip.
  • FIG. 16 schematically shows a procedure for collecting an actual sample in the chip.
  • the sample solution stream 1601 flowing from the upstream is sandwiched between the two side sheath solution streams 1602 and 1603 and proceeds to the cell monitoring region 1604 while maintaining the arrangement. Therefore, the shape discrimination of each cell, the presence or absence of a fluorescent label, etc. are confirmed, and cell separation is performed downstream based on the results.
  • the cells to be collected flow, they flow as they are to the downstream sorted sample collection flow channel 1606, and when the cells or fine particles to be discarded flow, they are arranged to face each other regardless of whether the charge is positive or negative.
  • the two gel electrodes 1605 by applying a voltage to the two gel electrodes 1605, the gel can move to one of the two side sheath flows 1607 and be eliminated.
  • FIG. 17 is a schematic diagram for explaining one of the indices of cell recovery in the image processing cell sorter.
  • the cell is in the G0 cycle and has a nucleus (FIG. 17A (a)), which is clearly image-recognized as a black sphere inside the cell (FIG. 17B (a)).
  • FIG. 17A (b) since the nucleus of the cell in the division phase has disappeared (FIG. 17A (b)), the nucleus cannot be confirmed even if the cell is image-recognized (FIG. 17B (b)).
  • conventional labeling techniques such as antibody labeling, it is difficult to confirm the state of the cell.
  • the presence or absence of a nucleus in the cell Dividing cells can be recovered.
  • most normal cells flowing in the blood are already terminally differentiated, but by collecting cells that have undergone cell division in the blood according to the present invention, blood cancer cells, stem cells, etc. It becomes possible to collect cells having the ability to divide.
  • FIG. 18 is an example of an operation timing chart when using a flash light source when actually operating the image recognition type cell sorter of the present invention.
  • the pixel size of a 1/2000 second camera is 12 ⁇ m ⁇ 12 ⁇ m
  • the pixel resolution when viewed with a 20 ⁇ objective lens is 0.6 ⁇ m / pixel. If an LED light source that can perform flash firing at a high speed is used, it is possible to actually obtain an image without blurring.
  • the present invention also provides an on-chip cell sorter system that describes exemplary aspects below.
  • control of each part for example, image acquisition and analysis by an optical system, external force addition by an external force application device, etc.
  • a control device including a personal computer or the like as in the above embodiment. be able to.
  • FIG. 19 is a diagram schematically showing an example of the configuration of an optical system for preventing image blur in the image detection type 1-cell separation / purification (cell sorter) module.
  • the magnification ratio of the object image is determined only by the magnification of the objective lens. It depends on the magnification and numerical aperture of the objective lens. The higher the magnification of the objective lens, the shallower the focal depth and depth of field of the optical system.
  • an objective lens and a zoom lens may be combined and this magnified image may be captured by an image acquisition device such as a CCD camera.
  • the image can be obtained up to about 15 ⁇ m without any problem. You can get that.
  • an objective lens with a numerical aperture of 20 times 20 times and an objective lens with a numerical aperture of 0.6 and magnification of 40 times an image with a blur of only about 5 ⁇ m can be acquired.
  • the image is a combination of an objective lens 10 ⁇ and a zoom lens 1 ⁇ combined image, an objective lens 10 ⁇ combined with a zoom lens 2 ⁇ image, and an objective lens 10 ⁇ combined with a zoom lens 4 ⁇ image. It can be seen that when the depth and the depth of field are combined and the image is not blurred, the image can be sufficiently observed even when the magnification of the zoom lens is different up to 25 ⁇ m.
  • This result is obtained by combining a 10 ⁇ objective lens with a 4 ⁇ zoom lens when an image processing cell sorter system obtains an image with the same magnification as that conventionally observed with a 40 ⁇ objective lens.
  • An example of a configuration that can obtain an image that is optimal for cell sorting and that has no blur in the height direction of the flow path is shown.
  • the cell sorter chip 2001 in the cell sorter system is vertically arranged as shown in FIG. 20, and the upstream of the flow is installed upward, and the downstream is installed downward.
  • the buffer introduction device 2003 and the sample solution introduction device 2006 are arranged. The sample solution and the buffer solution whose pressures are controlled by the pressure sensor 2004 are introduced into each solution reservoir 2002 connected to the upper surface of the chip.
  • the flow of each flow path can be finely adjusted by finely adjusting the open / closed state of the distribution valve 2005 according to the pressure and state of each reservoir.
  • the liquids introduced from the reservoir are joined via the sample liquid channel 2007 or the buffer channel 2008, and the quantitative measurement of the amount of fluorescence and the amount of light scattering such as image acquisition of the cell type or labeling measurement such as fluorescence.
  • the cell is moved vertically in the flow direction in the flow path by the sorting external force applying mechanism 2009, and as a result, the cells can be collected by the plurality of downstream reservoirs 20101, 20102, and 20103.
  • FIG. 21 shows an example of another configuration of the cell sorter arranged in the vertical type shown in FIG.
  • the cell sorter chip 2101 in the cell sorter system is arranged vertically as in FIG. 20, and the upstream of the flow is installed upward and the downstream thereof is installed downward.
  • the sample liquid and the buffer solution are introduced into the solution reservoir 2102 connected to the upper surface of the chip.
  • the sample solution introduced after passing through is introduced into the flow path 2107 while being sandwiched between the buffer solutions.
  • the sort of external force application mechanism 2109 sorts the cells in the flow path in accordance with the determination based on the result of quantitative measurement of the amount of fluorescence and light scattering, such as image acquisition of fluorescence or other labeling measurement. As a result, the plurality of downstream reservoirs 21101 and 21102 can be collected.
  • FIG. 22 is a diagram schematically showing an example of the configuration of the portion where the sample solution and the buffer solution of the cell sorter chip shown in FIG. 21 merge.
  • the sample liquid is introduced into the flow path 2107 by the capillary tube 21061
  • the buffer liquid is introduced into the reservoir 2102 connected to the upper surface of the end point of the flow path 2107
  • the buffer liquid is arranged to be introduced into the flow path 2107.
  • the outlet of the capillary tube 21061 is disposed downstream of the reservoir portion, so that the sample solution can be introduced into a desired position in the buffer flow path.
  • the flow of the sample solution is arranged in the buffer channel using the capillary tube.
  • the capillary tube is not particularly used.
  • the same effect can be obtained by combining the flow paths configured by microfabrication.
  • FIG. 23 is a diagram schematically showing an example of a chip configuration incorporating a cell sorting mechanism in the cell sorter system.
  • a sample introduction port 23002 is arranged upstream in the chip 23001.
  • target particles 23003 to be collected and unnecessary particles 23004 to be discarded are mixed.
  • the sample solution flows through the microchannel 23005 and is first introduced into the particle alignment mechanism 23006.
  • a particle alignment external force input (electric force or sheath flow) 23007 is arranged.
  • a gel electrode is introduced on both sides of the flow path 23005 to introduce an electric field.
  • a buffer solution is introduced.
  • the type of particles is identified by the particle detection mechanism 23008, and the particles are separated by the particle purification mechanism 23009 which is the next step.
  • a particle purification external force input (gel or metal) electrode + electric force) 23010 is arranged, and an electric force can be applied to the position of the particle purification mechanism 23009 using a gel electrode or a metal electrode. it can.
  • the particle purification mechanism 23009 the particle is allowed to flow downstream without applying an external force and collected at the collection port 23011.
  • the particles other than the particle to be collected have arrived, By applying an external force, the particles can be guided to unnecessary particle reservoirs 23012 and 23013.
  • FIG. 24 is a diagram showing an example of the arrangement of electrodes for applying an external force in the flow path of the cell sorter system.
  • the metal thin film electrode first layer 24002 and the metal thin film electrode The two comb-shaped electrode portions of the two-layer 24003 are arranged so as to be slightly shifted from each other with the insulating film layer 24004 interposed therebetween, and the second-layer electrode 24003 is in direct contact with the sample channel 24005.
  • FIG. 24 (c) shows a photograph of an example in which the comb-shaped electrode array is actually arranged on the bottom surface of the channel with such a configuration.
  • FIG. 25 is a diagram showing an example of the arrangement of electrode arrays for applying an external force in the flow path of the cell sorter system.
  • FIG. 25 (a) shows a case where the sample particles 25004 introduced into the sample introduction port 25001 flow through the micro flow channel 25002, and the metal thin film stacked parallel type having the configuration as shown in FIG.
  • the sample particles 25004 are directed to the upper surface by the dielectric electrophoretic force.
  • FIG. 25 (a) shows a case where the sample particles 25004 introduced into the sample introduction port 25001 flow through the micro flow channel 25002, and the metal thin film stacked parallel type having the configuration as shown in FIG.
  • FIG. 25 (d) when the cross-sectional shape of the flow path receives repulsive force from the bottom surface and the particles progress to the top surface, the semicircular cross-sectional configuration is such that the particles gather at a specific top surface position. It has become. Although a semicircular shape is used here, a triangular cross-sectional configuration may be used.
  • FIG. 25 (b) uses a metal thin film laminated type V-shaped comb electrode 25005. Similarly, by generating repulsive force from the bottom electrode 25007, particles are induced to the top wall, Depending on the shape, the fine particles can be arranged in a line in the center of the flow path.
  • FIG. 25 (c) shows an arrangement of fine particles by adding a buffer fluid sheath channel 25006 from both sides of the channel 25002.
  • FIG. 26 is a schematic diagram showing an example of a cell purification process in the flow path of the cell sorter system. The following cell purification process after cell identification is described.
  • the target particles 26001, unnecessary particles (negatively charged) 26002, unnecessary particles (positively charged) 26003 are arranged in a line and flow through the microchannel 26004, where the target particles are in the region of the particle purification electrode 26005, Since the electrode is OFF, the target particles are guided to the flow 26006 to the target particle recovery port.
  • FIG. 27 is a schematic diagram showing an example of the arrangement of gel electrodes that give an external electric field in the flow path of the cell sorter system, and a photograph of an example of an actual chip.
  • the electrode gel liquid junction part 27004 is arranged adjacent to the microchannel 27001.
  • the electrode gel liquid junction part 27004 which is a boundary separating the flow path 27001 and the gel, introduces the gel from the electrode gel inlet 27002 to the electrode gel passage 27003 and fills the electrode gel outlet 27005.
  • the gel is prevented from leaking out by surface tension so that the gel does not flow out to the channel 27001.
  • the side surface of the flow path 27001 has a structure in which a large number of columns are arranged instead of walls, and the gel and the liquid flowing through the channel are in contact with each other through the space between the columns.
  • the width is preferably 500 ⁇ m or less.
  • the end point of the gel filled with the electrolyte is connected to the metal wire 27006, and bubbles and the like generated when an electric field is applied to the electrode are generated not at the flow path but at the position of the electrode wire.
  • This electrode is connected to a DC voltage source 27007 and controls ON / OFF based on the observation result of particles flowing by the voltage application switching mechanism 27008.
  • the position of the particle in the flow path can be changed, whereby the fine particles can be purified.
  • the gel electrode is used here, the metal thin film electrode 27010 may be used when the applied voltage does not reach the potential at which bubbles are generated (FIGS. 27B and 27D).
  • FIG. 28 is a schematic diagram showing an example of a process for identifying cardiomyocytes and fibroblasts to be separated according to an image in the image recognition type cell sorter system.
  • the surface is very smooth (smooth surface) as can be seen from the image (upper: original image) taken by the image acquisition mechanism of the cell sorter in FIG. It can be seen that the surface is very uneven (rough surface).
  • This image is binarized like the image in the middle of FIG. 28 (binarized image) to clarify the image of the cell boundary surface.
  • the length l of the boundary line of the boundary is measured from the number of pixels of the boundary, and at the same time, the area S of the filled inner surface is calculated from the number of filled pixels.
  • the surface roughness (R) can be quantitatively quantified by comparing the actual perimeter length with the perimeter length when converted from the area into a circle.
  • the numerical value of R is shown in the lower part of FIG. 28, but by performing more detailed measurement, when the value of R is less than about 1.1, this cell is a cardiomyocyte, and when the value is larger than this, It is known to be another cell. In this way, by using a specific numerical value R for purifying cardiomyocytes by image recognition as an index, it becomes possible to identify cells based on the difference in unevenness of the cell surface.
  • FIG. 29 is a schematic diagram showing an example of the configuration of a cell sorter system in which water and oil are combined.
  • the sheath liquid reservoir 1311 is filled with oil having a specific gravity lower than that of water such as silicon oil, and when a sample aqueous solution is dropped into the sample inlet opening 1308, water containing the sample is obtained only in the channel 1302. Oil flows in the flow paths 1304 and 1306 on both sides.
  • water and oil are not mixed, it is not necessary to isolate the entrance of the sheath liquid and the sample liquid with a cap or the like.
  • FIG. 30 is a schematic diagram illustrating an example of a configuration of a water and oil merging region of a cell sorter system in which water and oil are combined.
  • oil is filled and the sample aqueous solution is introduced into the sample aqueous solution introduction port 3001, and the oil in the reservoir is introduced as it is into the remaining oil introduction ports 3002 and 3003.
  • the introduced sample aqueous solution and oil merge at the merge region 3004.
  • the sample aqueous solution 3005 is arranged as shown in FIG. 30B, the sample aqueous solution 3005 can be narrowed down by the oil 3006 as shown in FIG. .
  • the sample aqueous solution can be easily recovered without diluting.
  • FIG. 31 is a graph showing the relationship between the electrolytic mass (conductivity) in an aqueous solution under various solution conditions and the cell separation rate.
  • a solution composition with an ionic strength such that the conductivity of the aqueous sample solution is 10 2 ⁇ S / cm or less. By doing so, it becomes easy to move the fine particles in the sample liquid by the electric field.
  • a solution composition that maintains osmotic pressure while lowering ionic strength is particularly important when sorting cells alive.
  • molecules that do not directly contribute to the increase in ionic strength such as sugars and polymers, are desirably used as sample solutions during cell purification.
  • FIG. 32 is a diagram schematically showing an example of the configuration of an analysis system that simultaneously performs fluorescence intensity measurement and high-speed bright-field microscopic image acquisition.
  • Monochromatic light for observation emitted from a bright field light source 3200 such as an LED flash light source synchronized with a frame interval of a high-speed camera is collected by a condenser lens 3201, and the flow of target cells in blood as described above flows.
  • the cells in the cell sorting unit 3202 including the cell and the cell sorting chip incorporating the cell sorting mechanism are irradiated.
  • the cells in the channel can be focused with the objective lens 3203.
  • a depth-of-field improving technique incorporating the zoom lens system may be incorporated.
  • Fluorescence can be generated from the formed nucleus.
  • the intensity of the obtained fluorescence can be quantitatively measured by a fluorescence detection system 3205, 3207, 3209 including a fluorescence intensity measurement system such as a photomultiplier tube or a photodiode.
  • a plurality of fluorescences can be excited by a single excitation light, so that a plurality of free combinations are possible.
  • a bright field image of a cell can be simultaneously acquired by the high-speed camera 3210 while performing fluorescence detection of the cell.
  • FIG. 33 is a diagram schematically showing an example of a specific configuration of the analysis system that simultaneously performs the fluorescence intensity measurement and the high-speed bright-field microscopic image acquisition shown in FIG.
  • a high-intensity LED flash light source that emits monochromatic light in the infrared region is used as a light source for a bright field (high-speed camera), and lasers of 375 nm, 488 nm, and 515 nm are used as excitation light sources for fluorescent dyes.
  • the introduction of fluorescence into a fluorescence detector using a dichroic mirror is arranged so that the wavelength increases monotonically from short wavelength light to long wavelength light as shown in FIG.
  • the wavelength region is located in the high speed camera.
  • the fluorescence intensity at various wavelengths and the bright field image of the cells in the cell sorter chip disposed in the microchip holder can be simultaneously measured.
  • FIG. 34 is a diagram schematically showing an example of the configuration of an analysis system that simultaneously performs fluorescence intensity measurement, high-speed bright-field microscopic image acquisition, and high-speed fluorescent microscopic image acquisition in the apparatus system shown in FIG.
  • Monochromatic light for observation emitted from a bright field light source 3400 such as an LED flash light source synchronized with a frame interval of a high-speed camera is collected by a condenser lens 3401, and the flow of target cells in blood as described above flows.
  • the cells in the cell sorting unit 3402 including the path and the cell sorting chip incorporating the cell sorting mechanism are irradiated.
  • the cells in the channel can be focused with the objective lens 3403.
  • a depth-of-field improving technique incorporating the zoom lens system may be incorporated.
  • fluorescent excitation light irradiated to the objective lens from a plurality of fluorescent light sources 3404, 3406, 3408 such as monochromatic lasers, the fluorescent antibody bound to the cells in the flow path, or a nuclear staining fluorescent dye (DAPI, Hoechst33258, etc.)
  • DAPI nuclear staining fluorescent dye
  • Fluorescence can be generated from stained nuclei and the like.
  • the intensity of the obtained fluorescence can be quantitatively measured by a fluorescence detection system 3405, 3407, 3409 including a fluorescence intensity measurement system such as a photomultiplier tube or a photodiode.
  • an image dividing system 3410 for dividing an optical microscopic image into a bright field image and a fluorescent image and simultaneously acquiring a plurality of images with a single high-speed camera light receiving element will be described later with reference to FIG. Then, while detecting the fluorescence intensity of the cells in this way, a bright field image of the cells can be simultaneously acquired by the high speed camera 3411.
  • FIG. 35 is a diagram schematically showing an example of an apparatus configuration that simultaneously acquires high-speed bright-field microscopic image acquisition and high-speed fluorescence microscopic image acquisition with a single high-speed camera light-receiving surface.
  • the image data that has entered from the input optical path 3501 is first introduced into the first image dividing unit 3510.
  • the filter system 3512 includes an ND filter for intensity adjustment for aligning the bright field or fluorescence intensity to some extent on a high-speed camera, or a bandpass filter for obtaining a fluorescent image in a sharper wavelength band.
  • a plurality of divided images are finely adjusted three-dimensionally in the direction of reflection through an image size adjustment system 3513 including a movable shielding plate for reducing the image size so that the light receiving surface of the high-speed camera does not overlap.
  • a dichroic mirror 3514 with an adjustable angle function and an optical lens system 3515 for correcting a difference in image formation position from an image of another path caused by a path difference of an optical system including a wavelength difference of light to be further handled.
  • the second image dividing unit 3520 having the same configuration is introduced. Furthermore, the image 3502 that is introduced into the third image dividing unit 3530 having the same configuration and finally output is such that microscopic images composed of monochromatic light of different wavelengths do not overlap on the light receiving surface of the high-speed camera. They are arranged in a cut-out size.
  • three image dividing units having the same configuration are combined, but two or four or more may be used in combination.
  • the division system is “a dichroic mirror 3511 with an angle adjustment function capable of finely adjusting the reflection direction in three dimensions, a filter system 3512, and a movable shield for cutting and reducing the image size.
  • FIG. 36 is a diagram schematically illustrating an example of an image obtained by simultaneously acquiring a high-speed bright-field microscopic image and one high-speed fluorescence microscopic image with a single high-speed camera light-receiving surface, and an example of analysis information.
  • the image 3601 at the time of input to the divided system is data of the cell 3600 in which information of light of a plurality of wavelengths is superimposed.
  • the bright field image 3610 and The fluorescence image 3620 of the nucleus can be acquired simultaneously on one light receiving surface 3602.
  • the extra area on both sides of the input image is cut out by the image size adjustment system in the division system, so that a plurality of images can be acquired with a size that does not overlap on the light receiving surface.
  • the position of each image on the light-receiving surface of the high-speed camera can be freely adjusted by adjusting the surface position of a plurality of dichroic mirrors with an angle adjustment function that can be finely adjusted in three dimensions.
  • the optical lens system 3515 for enlarging or reducing the image of a bright field image or fluorescent image, it is possible to form images with different magnifications on one high-speed camera light receiving surface 3602.
  • An optical system combining images with different magnifications is a divided optical system shown in FIG. 35, “a dichroic mirror 3511 with an angle adjustment function that can finely adjust the reflecting direction in three dimensions, a filter system 3512, and a small image size.
  • An image size adjustment system 3513 composed of a movable shielding plate, a dichroic mirror 3514 with an angle adjustment function capable of finely adjusting the reflection direction in three dimensions, and an optical lens system 3515 for correcting a difference in imaging position.
  • the combined configuration is modularized and used as a set, it is not limited to the application to an imaging cell sorter, but is a general optical bright field / It can also be incorporated into a fluorescence microscope system.
  • the cell size (area) and the cell perimeter can be obtained from the total number of pixels in the area where the data remains after subtraction or the total number of pixels at the boundary of the area where the data remains. . Furthermore, using these two data, it is possible to obtain the degree R of the irregularities of the cell shown in the above-described equation 1. Here, if R is about 1.3 or more, the cell cluster can be determined only from the cell cluster and the bright field image.
  • a fluorescence image 3621 of the nucleus is obtained from the fluorescence image (nuclear staining) 3620, and the total number of nuclei, the area of the nucleus, and the fluorescence intensity, that is, the integrated value of luminance (comparable to the photomal data) is obtained. Can do. Further, since the bright field image and the fluorescent image are only taken at different wavelengths at the same place, the coordinate axes of both are the same. Therefore, although the shape of a cell cannot be measured with a fluorescent image, the relative position of a stained nucleus in a cell can be estimated using coordinates in a bright field image.
  • the relative coordinate system is similarly combined with a relative coordinate system that takes into account the difference in magnification rate with the same origin (image center) as the center. If used, the same processing can be performed.
  • FIG. 37 is a photograph showing an example of an image obtained by simultaneously obtaining a high-speed bright-field microscopic image and a high-speed fluorescence microscopic image stained with nuclear fluorescence with a single high-speed camera light-receiving surface.
  • the position of the nucleus that can be identified by the fluorescence image can be determined at any part of the cell image or cell cluster image of the bright field image. Whether nuclei are distributed can be collated using relative coordinates of each other. By comparing the relative coordinates, it can be seen that in normal cells, one nucleus shines with fluorescence in a smooth cell surface and a normal size cell.
  • (1) a method for identifying and selectively recovering cell clusters (lumps) that do not exist in healthy blood as blood cancer cell candidates, (2) healthy To identify and selectively collect polynuclear cells that do not exist in healthy blood as cancer cell candidates in blood, and (3) identify and select giant cells that do not exist in healthy blood as cancer cell candidates (4)
  • cancer cell biomarkers for example, EpCam antibody, K-ras antibody, site
  • Blood cancer cells instead of conventional molecular biomarkers by a method that identifies and selectively recovers cancer cells by analysis combined with the presence of fluorescence intensity of fluorescent antibodies against one or more of keratin antibodies) ,"cell It is possible to identify and select and collect a new biomarker such as an image of the shape, grouping state, or internal structure such as multinucleation.
  • blood cancer cell candidates collected by the above method can be combined with the above-described gene analysis means such as the PCR analysis technology for microcells, and finally measured for gene mutations. If it is a cancer cell, it is possible to finally identify the characteristics of the cancer cell.
  • evaluation by R> 1.3 using a bright-field image, or the number and distribution of nuclei by size and fluorescence image by a bright-field image that is, the distance between the centers of gravity of adjacent nuclei images is 3 ⁇ m It can be determined by the fact that they are far apart.
  • R ⁇ 1.3 is determined by the bright field image, and the number and distribution of nuclei (that is, the distance between the centroids of the images of adjacent nuclei is within 3 ⁇ m from each other). can do.
  • a combination of (1) to (3) above can be determined as a cancer cell if there is one or more matching conditions.
  • FIG. 38 shows an example of simultaneously irradiating a plurality of wavelengths of fluorescence excitation light to cells such as blood flowing in a microchip simultaneously using a fiber optic array, It is the figure which showed typically an example of the apparatus structure for acquiring a fluorescence image simultaneously.
  • the apparatus of the embodiment of FIG. 38 includes an excitation light source unit (3801-3807) including a fluorescent excitation light source for generating six different monochromatic excitation lights and a bright-field microscopic image light source.
  • Each excitation light source is connected to a controller 3808-3814 that can individually control the light emission timing, light emission time, and light emission intensity.
  • a light source combining a filter with an ordinary broadband light source such as a xenon lamp or a mercury lamp, or a laser light source such as a semiconductor excitation solid state laser or a He-Ne laser may be used.
  • an LED light source that has a narrow wavelength range of output light, can control the intensity stably, is small, and can easily control pulse emission in less than a millisecond.
  • a controller 3808-3814 connected to the excitation light source can control the intensity and output time of the excitation light source, and can irradiate light from continuous light to pulsed light.
  • the technique described in FIG. 18 can be used.
  • the excitation light source can be used for the purpose of exciting fluorescence, but one or more of them can be used as a bright field light source for acquiring a bright field microscopic image.
  • the sample can be irradiated with only light having a specific wavelength by the excitation light filter 3821.
  • each filter 3821 that optimizes the optical bandwidth of the excitation light of each light source 3801 to 3807 is arranged, and each lens 3822 is arranged at the subsequent stage.
  • Each excitation light generated by each excitation light source is focused and irradiated to the end face of each optical fiber 3824 for each excitation light, and the excitation light is introduced into each independent optical fiber 3824.
  • These optical fibers are bundled, irradiated from the opposite end face, and irradiated through the condensing microlens 3826 to the sample flowing through the microchannel in the microchip 3827.
  • the shape of the flow path of a typical microchip may be the one described in FIG.
  • the diameter of the optical fiber is typically 100 microns, and the width of the microchannel through which the sample cells in the microchip pass is typically 10 to 100 microns.
  • a microlens 3826 for condensing excitation light is disposed immediately above the microchip. By adjusting the focal position of the microlens 3826, it is possible to irradiate only the very narrow region of about 1 micron diameter of the microchannel in the microchip with the excitation light focused, and the irradiation region diameter is 100 microns. It is also possible to irradiate the entire microchannel width as a measure.
  • fluorescence of a specific wavelength is emitted from the sample such as a cancer cell in a spherical wave shape.
  • the fluorescence emitted in one hemispherical direction (in the embodiment of FIG. 38 in the direction of the upper surface of the chip) is guided to the end face where the optical fibers 3825 prepared for the number of fluorescence wavelength bands to be measured are bundled by the microlens 3826. Further, the light is guided to a fluorescence intensity detection unit that performs fluorescence intensity detection via an optical fiber.
  • a fluorescence intensity detection unit comprising fluorescence detectors 3815-3820 for detecting fluorescence intensities in six different fluorescence wavelength regions is mounted in this embodiment, and is emitted from the end face of each optical fiber 3825. Fluorescence can be measured by first guiding the fluorescence to the lens 3822 disposed at the end point of each optical fiber, and then guiding the fluorescence to the filter 3823 of each fluorescence wavelength to be measured and the fluorescence detector 3815-3820.
  • a fluorescence detector it is suitable to use a photomultiplier tube that can detect weak light and easily quantify the amount of received light. However, both the excitation light source and the fluorescence detector are suitable for the measurement target.
  • a fluorescent filter 3823 that can be exchanged according to measurement conditions can be mounted on the detection port of the fluorescence detector.
  • the detected fluorescence amount is analyzed and processed by the fluorescence detection control unit 3832, and a specific cell shape or cell cluster obtained from the specific fluorescence or the high-speed camera 3830 when a specific fluorescence or a combination of fluorescence is detected.
  • a feedback signal pulse voltage
  • a feedback signal is sent to the microchip 3827.
  • a threshold amount set in advance by the fluorescence detection control unit 3832
  • a feedback signal is transmitted to the microchip.
  • a voltage is applied to the electrodes mounted on the microchip to recover the target cancer cells.
  • Fluorescence emitted in the remaining hemispherical direction passes through the objective lens 3828, and then simultaneously acquires a bright-field microscopic image and a fluorescent microscopic image with a single high-speed camera light-receiving surface.
  • a bright-field microscopic image and a plurality of fluorescent microscopic images are obtained by passing through a device 3829 (multi-view system; device details are, for example, the configuration of the embodiment shown in FIG. 35 as an example) and being captured by the high-speed camera 3830. All can be acquired simultaneously.
  • the timing of the imaging of the high-speed camera and the excitation light source pulse irradiation can be synchronized.
  • a clear cell image without shape distortion can be acquired (for example, the configuration of the embodiment shown in FIG. 18 is an example of the details of synchronization).
  • FIG. 39 shows an example of six types of fluorescence excitation light sources and one type of bright-field microscopic image acquisition light source mounted on the apparatus of FIG.
  • an example of 6 wavelengths of fluorescence excitation, 1 wavelength of bright-field microscopic image light source, and 6 wavelengths of fluorescence detection is shown, but the number can be easily increased by increasing the number of light sources, detectors, and optical fibers.
  • the excitation light source central wavelengths are 370, 440, 465, 498, 533, 618 nm
  • the bright field microscopic image light source is 750 nm
  • the fluorescence center wavelengths are 488, 510, 580, 610, 640, and 660 nm.
  • the feature of the apparatus system configuration of the present embodiment is that a group of dichroic mirrors are arranged in the optical path system between the objective lens 3828 and the multi-view system 3829, the wavelength bands are divided, and the excitation light sources 3801-3807 and Instead of arranging the fluorescence detectors 3815-3820, as shown in the embodiment of FIG. 38, an optical fiber array is arranged on the opposite side of the objective lens, and each optical fiber of the optical fiber array has one wavelength band. Excitation light source 3801-3807 and fluorescence detector 3815-3820 are arranged. This avoids the problem that fluorescent light emitted from a sample such as cancer cells has been attenuated when passing through a dichroic mirror multiple times, and also eliminates the need for light separation for each wavelength.
  • FIG. 40 is a diagram schematically showing the configuration of the present embodiment whose example is shown in FIG.
  • Monochromatic light for observation emitted from a bright-field light source 4000 such as an LED flash light source synchronized with the frame interval of the high-speed camera is collected by the lens 4001 and the flow path through which target cells in the blood flow as described above.
  • the cells in the cell sorting unit 4002 including the cell sorting chip incorporating the cell sorting mechanism are irradiated.
  • the cells in the channel can be focused with the objective lens 4003.
  • a depth-of-field improving technique incorporating the zoom lens system may be incorporated.
  • Fluorescent light sources 4004, 4006, 4008 such as monochromatic lasers and the like, and fluorescence excitation light irradiated to the cell sorting unit 4002 from above, fluorescent antibodies bound to cells in the flow path, and nuclear staining fluorescent dyes (DAPI, Hoechst33258, etc.) ) Can generate fluorescence from nuclei stained with).
  • the intensity of the obtained fluorescence can be quantitatively measured by a fluorescence detection system 4005, 4007, 4009 including a fluorescence intensity measurement system such as a photomultiplier tube or a photodiode.
  • a plurality of fluorescences can be excited by a single excitation light, so that a plurality of free combinations are possible.
  • an image division system for dividing an optical microscopic image into a bright-field image and a fluorescent image and acquiring a plurality of images at the same time with a single high-speed camera light-receiving element is described in detail later in FIG. Through 4010, a bright field image of a cell can be simultaneously acquired by the high-speed camera 4011 while detecting the fluorescence intensity of the cell in this way.
  • the description is based on the combination with the image detection unit. However, naturally, it does not include the image detection unit using the high-speed camera, and the simultaneous detection of the multiple excitation light and the multiple fluorescence using only the optical fiber array. It can also be used as a system.
  • FIG. 41A shows an example of a distribution diagram of cell nucleus areas when blood cancer cells are measured by the apparatus of the present invention.
  • the area of each nucleus is compared between an image of cells in blood when cancer tissue is actually transplanted and an image of cells in healthy blood for comparison. From this result, it can be seen that the presence of cancer cells can be clearly identified as cancer cells when the area of the fluorescence image of the nucleus of about 150 ⁇ m 2 or more is observed.
  • (b) to (g) of FIG. 41A show the bright field image and the fluorescence image of typical cells at the respective nucleus sizes in the graph of FIG. (A).
  • the cells are clustered in the region where the area of the fluorescence image of the nucleus of 150 ⁇ m 2 or more is observed.
  • this is when measured by integrating the total area in the image for the nuclei in the cell clusters, in about 150 [mu] m 2 or less of conditions, and also shows that it is impossible to distinguish cancer cells and normal cells,
  • the above about 150 ⁇ m 2 or more is one of the sufficient conditions for the existence of cancer cell clusters. This index is also effective for identifying multinucleated cells that are characteristic of cancer cells.
  • FIG. 41B is a graph showing the ratio of the peripheral length of the blood cancer cells measured by the apparatus of the present invention to the peripheral length derived by circular approximation from the area of the cells (cluster).
  • An example is shown.
  • the isolated one cell has (1 / R)> about 0.9
  • the cluster of two or more cells has (1 / R) ⁇ about 0.9. From the result (1 / R), when this is about 0.9 or more, it can be determined that the cell is an isolated cell, and when it is less than about 0.9, two or more cells are clumped. It can be seen that it is a cell cluster.
  • FIG. 42 shows a table showing the distribution of cell (population) area and number of nuclei when blood cancer cells are measured with the apparatus of the present invention.
  • the bright field is compared.
  • the presence of cancer cells is clearly identified as a cancer cell cluster if the area of the bright field image of cells of approximately 250 ⁇ m 2 or more. You can see that you can.
  • the area of the nucleus of about 150 ⁇ m 2 or more of the cell (cluster) is measured from the acquired image (2)
  • the area of about 250 ⁇ m 2 or more of the cell (cluster) is measured from the acquired image (3)
  • the cell (cluster) The presence of three or more nuclei in (1) is measured from the acquired image, or a combination of the above three conditions in AND, that is, (1) and (2), or (1) and (3 ), (2) and (3), or (1), (2) and (3) may be used as criteria for determining the presence of blood cancer cells.
  • FIG. 43 schematically shows a more specific configuration for practical application of the device configuration for simultaneously acquiring microscopic images in a plurality of different wavelength bands with one high-speed camera light-receiving surface for the device shown in FIG.
  • FIG. 43A in FIG. 43A is a schematic view of the entire internal configuration of one unit of the optical branching module, which is the minimum configuration unit, as viewed from above.
  • This apparatus is a two-dimensionally developed optical path system viewed from the top, and as shown in the figure, a pair of image light input / output optical path systems symmetrically on both bottom surfaces of a rectangular parallelepiped container, and On the side surface, 2 to 4 holes for introducing optical paths of mirror reflected light are arranged, and six optical path covers 4301 that can be freely attached and detached are arranged on each side. Two detachable movable adjustment function mirror holders 4302 are arranged on these side surfaces so that light is introduced into the holes of the two to four mirror reflected light introduction optical paths. Adjustment enables the traveling direction of the reflected light to be moved minutely, so that the imaging position of the camera can be freely moved.
  • the mirror holder can be provided with a total reflection mirror, a high pass filter, a low pass filter, and the like.
  • a detachable optical path window 4303 is arranged between the two mirror holders 4302 with detachable movable adjustment function, and the cross-sectional area of the transmitted light can be adjusted.
  • a detachable filter 4304 is provided, and the wavelength bandwidth of light can be finely adjusted by a band pass filter or the like.
  • FIG. 43B schematically shows one of the embodiments for observing a combination of images of a plurality of wavelengths by actually connecting the units shown in FIG. 43A.
  • an image optical image to be observed is introduced from the parallel light introduction module 4305 to the first light branching module 4300.
  • the optical path cover 4301 in the optical path introduced here is removed, and is fixed to the parallel light introducing module 4305 in such a manner as to maintain hermeticity by the connecting portion.
  • the parallel light introducing module 4305 incorporates a lens system so that incident light is introduced into the light branching module 4300 as parallel light, and the cross-sectional area of the incident light to be introduced is set at the front stage of the lens system.
  • a small optical window filter may be arranged.
  • the cross-sectional area of the incident light cut out by the optical window is an image acquisition camera that is finally measured in order to project an independent image corresponding to the number of modules to be connected so as not to overlap the light receiving surface on the observation camera.
  • the area is adjusted to be equal to or smaller than (total area of the light receiving surface / parallel light introducing module).
  • the first-stage light branching module 4300 it is introduced into the mirror holder 4302 in which the (wavelength) high-pass filter or the (wavelength) low-pass filter b is incorporated, and the incident light is branched into two wavelengths.
  • the transmitted light is reflected by the total reflection mirror a, and is introduced into the second filter b of the second-stage light branching module 4300 (the same filter as the first filter of the preceding-stage (first-stage) light-branching module).
  • the light reflected by the filter b of the first-stage light branch module 4300 is introduced into the first filter c of the second-stage light branch module.
  • the same wavelength band branching is performed up to the fifth stage optical branching module, and the direction of the optical path is adjusted for each branch wavelength so that the images of the respective wavelength bands do not overlap on the light receiving surface of the camera.
  • Positioning is performed by each detachable movable adjustment function mirror holder 4302.
  • the total reflection mirror a is used for the first filter
  • the first filter e in the preceding-stage (fourth-stage) light branching module 4300 is used for the second filter.
  • b, c, d, and e which are high-pass filters or low-pass filters, are arranged in order of monotonically increasing or monotonically decreasing wavelengths (b ⁇ c ⁇ d ⁇ e or b> c> d> e), the same filter is used for the first filter in the previous stage and the second filter in the next stage, and a total reflection mirror is used in the second filter in the first stage and the first filter in the final stage. Shall be used.
  • FIG. 43C schematically shows how an actually input image is projected on the camera system 4306.
  • the acquired image (left figure) is 1 / of the size of the light receiving surface of the camera system by an optical window filter in the parallel light introducing module 4305 that cuts off the cross-sectional area of the incident light introduced in the previous stage of the lens system.
  • the image is cut into a size that allows an image having an area of 5 or less to pass through and is introduced into the optical branching module 4300 (center view).
  • the image forming positions on the light receiving surface of each light branch module are arranged so that there is no overlapping portion (right diagram).
  • images of each optical wavelength bandwidth created by the five optical branching modules are simultaneously formed on the light receiving surface of one camera, and particularly when a high-speed camera is used, a high-speed image of one image. Only by processing, comparative analysis of images of a plurality of wavelengths can be performed at one time.
  • FIG. 43D shows another application example in which an optical branching module is combined.
  • the second mirror holder of the optical branching module can be removed and another camera system can be connected here, or the light intensity measurement 4307 can be connected to measure the light intensity of a specific wavelength bandwidth. it can.
  • FIG. 44 is a diagram schematically showing an example of the configuration of an imaging cell sorter that observes and separates cells in water droplets.
  • the apparatus shown in FIG. 44A produces and drops water droplets of an optimal size by discharging cells in the sample solution from the thin tube at the tip of the water droplet forming module 4401 with a cell reservoir at a constant pressure. Can do.
  • the electrostatic field coil 4402 covering the region from the region where the water just before the water droplet is formed to the reservoir to the region where the water droplet is just formed to the opposite charge to the water droplet to be charged, Water droplets can be charged with a desired charge. For example, when it is desired to charge a water droplet with a negative charge, the coil may be charged with a positive charge.
  • the formed charged water droplet 4403 is dropped on an optically transparent water-repellent insulating substrate having a Teflon resin processed surface such as glass, and rolls down in the tilt direction of the substrate.
  • a high-speed camera capable of measuring bright field images and fluorescent images and an optical measurement module 4405 capable of measuring scattered light intensity, fluorescent intensity, etc. are arranged on the back of the substrate on the path where the water drops fall, and the acquired information is analyzed. By analyzing with the control module 4410, it can be determined whether the target cell is in a water droplet.
  • a charge opposite to the water droplet is given to one specific path among the plurality of water droplet movement direction control electrostatic field guides 4406 for changing the position from the water droplet falling direction.
  • the electric charge is applied so as to hold, and the falling direction of the water droplet is changed and guided to the fraction water droplet reservoir 4407 at the subsequent stage.
  • a plurality of water droplet movement direction control electrostatic field guides 4406 and a fractional water droplet reservoir 4407 may be arranged in accordance with the types of the targets.
  • the electrodes of the electrostatic field guides for controlling each water droplet movement direction are arranged in the lower stage of the substrate 4404, and each of these electrodes is connected to the electric field switching mechanism 4409 for electrostatic field guides for controlling the water droplet movement direction.
  • a control charge from 4410 can be applied.
  • the analysis control module analyzes the acquired image and calculates the cell (cluster) area and perimeter, the nucleus area and the number in the cell cluster by calculation, and the calculation result obtained (for example, a computer). It can be configured by a mechanism (for example, a computer and a power source) that identifies the types of cells to be collected in combination and applies an electric field to an electrode of a specific guide to give an electric charge.
  • the switching mechanism can be composed of a removable inset groove for fixing the substrate and an array of electrical contacts for applying electric charges from the analysis control module, which are aligned with the position of the electrode line of the substrate guide. .
  • each electrode has a mechanism that does not affect the movement of the water droplet by grounding the electrostatic field guide for controlling the direction of water droplet movement.
  • a similar water droplet movement direction control electrostatic field guide 4406 is disposed, or a pair of rails sandwiched between the lower surfaces of a water repellent surface such as a Teflon coat These three-dimensional structures may be added.
  • any material can be used as long as it can build a physical structure.
  • a material whose deformation and rigidity do not change significantly at a temperature of 150 ° C. or higher. Further, it is desirable that it is optically transparent or constant absorption in the wavelength region used for observation. Specifically, glass, SU8, PDMS, etc. are mentioned.
  • One of the features of this technology is that it has a substrate tilt control mechanism 4408 that can freely control the drop speed of water droplets, that is, the measurement time.
  • a mechanism in which a tilt mechanism is added to a flat plate is shown, but a substrate having a combination of different tilts may be used. For example, by using a steeper slope for the transport and separation of water drops and a gentle slope in the measurement area, it is possible to observe the water drops in a state where the distance between adjacent water drops is short and the moving speed is slow. Can do.
  • the water droplets in the observation region and the water droplet fractionation start region, can be arranged closely at equal distances in the falling direction by making them horizontal (perpendicular to gravity) so that the water droplets move at a constant speed. Further, if the substrate is lengthened under such a particularly horizontal condition, the distance for sequentially observing various measurements under the condition that the water droplet moving speed is the same can be made sufficiently long. Further, by adjusting the temperature of the substrate, it is possible to control the temperature of water droplets that have made minimal contact in a water-repellent state. Further, a temperature / humidity control container 4411 and a temperature / humidity control mechanism 4412 are added to prevent evaporation of water droplets.
  • temperature / humidity control container 4411 and the temperature / humidity control mechanism 4412 for example, an acrylic optically transparent container or a light-shielding metal container may be used, and temperature control by a Peltier element is possible. It can comprise with the air blower etc. to the said container.
  • reaction liquid reservoir water droplet formation mechanism 4413 creates a reaction liquid to which a charge opposite to that of the sample water droplet is weakly applied, and the liquid droplet movement direction control electrostatic field guide 4414 can guide the reaction liquid to the sample water droplet.
  • FIG. 44B is a diagram schematically showing the apparatus from the top in order to explain a mechanism for actually separating and collecting water droplets.
  • the water droplets falling on the straight line are arranged so as to overlap at the end points of the plurality of branching water droplet movement direction control electrostatic field guides 4406.
  • each guide 4406 is arranged so that a water droplet falls obliquely with a resultant force of gravity with an angle in the tilt direction, and when a charge opposite to the water droplet is applied to the guide, Is configured to move.
  • a fractional water droplet reservoir 4407 serving as a U-shaped water droplet receiver for capturing water droplets is disposed below.
  • each guide extends to the end of the substrate, and by arranging there, it is possible to easily apply a charge to each guide. It has a configuration.
  • FIG. 45A is a diagram schematically showing an example of a process for detecting a cell cluster in human blood and analyzing it for diagnosis.
  • 45B and C are diagrams schematically showing an example of an integrated measurement analysis system for realizing the process shown in FIG. 45A.
  • the degree of cancer progression is determined from the primary cancer. If there are many different mutation points while the history of mutations in each cluster is the same, the location of the metastatic cancer is spread over many regions. Can be estimated.
  • the cell cluster that flows in the blood can be identified as a liver tissue fragment, the liver disease can be estimated, and similarly, it can be identified from other organ sections It can be estimated that these are diseases of each organ.
  • FIG. 45B schematically shows the components of the system for enabling the measurement.
  • FIG. 45C shows an example of a configuration created to actually realize the concept of FIG. 45B.
  • the cell pretreatment mechanism is arranged in the upper stage, the imaging cell sorter is arranged in the middle stage, and the droplet type PCR apparatus is arranged in the lower stage.
  • FIG. 46 is a diagram schematically showing an example of a technique for removing cell clusters (clusters) in blood of a certain size or more as a metastatic cancer treatment technique.
  • the cell blood (cluster) removing mechanism 4601 such as a membrane filter that removes a cell mass (cluster) having a cross-sectional area of about 250 ⁇ m 2 or more that does not exist in healthy blood due to the above discovery is used to circulate the patient's blood. Therefore, a technique that suppresses the onset and progression of metastatic cancer by effectively removing metastatic cancer cells in the blood by physical methods without using drugs such as anticancer drugs is schematically shown. It is what.
  • the membrane filter to remove about 250 [mu] m 2 or more of the cross-sectional area of the cell mass (cluster) if a technique for removing about 250 [mu] m 2 or more of the cross-sectional area of the cell mass (cluster), physical A non-contact capture technique such as a ladder array for selective capture or capture by ultrasonic radiation pressure may be used.
  • a technique for removing about 250 [mu] m 2 or more of the cross-sectional area of the cell mass (cluster) physical A non-contact capture technique such as a ladder array for selective capture or capture by ultrasonic radiation pressure may be used.
  • the establishment of implantation / metastasis of cancer cells that have been clustered (clustered) can be performed in the blood with a weakly isolated single cell that easily causes apoptosis. This stems from an exponential increase in potential for flowing cancer cells.
  • FIG. 47 shows the distribution spectrum of blood cell size in the case of measuring the particle size distribution of leukocytes in blood for diagnosis of metastatic cancer in blood, normal blood (FIG. 47A), metastatic cancer cells.
  • FIG. 47B schematically shows each of the blood (FIGS. 47B and 47C) flowing.
  • the presence of abnormal cells such as cancer cells was measured based on the size of each cell relative to the absolute indicator of cell size.
  • the cell size distribution in the blood is plotted on the X axis.
  • the distribution curve (spectrum) is obtained with the quantity (or the ratio of the quantity to the whole) as the Y axis, and when the distribution has a monotonous single peak as shown in FIG. 47A, normal blood It is determined.
  • the value of the abnormal cell size peak larger than the peak of normal cells is used as an index (threshold), and blood is again
  • the cell size spectrum is measured in the first step, and the obtained abnormal cell size peak is obtained in the second step.
  • Accurate cell recovery can be realized in two steps for recovering cells that are equal to or greater than the threshold value (peak value of distribution: see arrows in FIG. 47B, C abnormal cell distribution portion).
  • the peak of abnormal cells corresponds to a giant cell or a cell cluster depending on the case.
  • FIG. 48 shows a method using a substrate having an acceleration region and a constant velocity moving region by having two inclination angles in the means for moving the water droplet dropped on the water repellent substrate described in FIG. 44 on the surface of the substrate.
  • the moving speed of the water droplet is adjusted by adjusting the inclination angle of one flat plate, but only one surface is “acceleration only” or “constant velocity motion only”.
  • the movement speed of the water droplet becomes too high with “acceleration alone”, and higher-speed processing is required for the subsequent measurement and separation.
  • the dropped water droplet 4801 is placed on a water repellent treated substrate whose inclination angle can be adjusted along the water droplet dropping direction 4802. For example, the moving speed is increased by using the inclined surface 4803 having the inclination ⁇ as an “acceleration region”. While rolling down. Then, on the horizontal plane 4804 having the function of adjusting the inclination angle that follows, the water droplet moves at a constant speed as the “constant velocity region”. In addition, after performing processing such as analysis and separation in the constant velocity region, the inclined surface may be newly set as an “acceleration region”.
  • the “constant velocity region” is basically leveled, but in actuality, when decelerating due to minute resistance on the surface of the water-repellent surface, a slight inclination angle is maintained to maintain the constant velocity of water droplets. You may give it.
  • the present invention is useful for purifying a minute amount of target cells in blood in units of one cell, and analyzing accurate gene information and expression information of the target cells.
  • the present invention is useful for purifying a very small amount of target cells having spores such as Bacillus anthracis per cell and analyzing accurate gene information and expression information of the target cells at high speed.
  • the present invention is also useful as a technique for identifying and / or collecting cancer cells circulating in the blood.

Abstract

The present invention provides a cell concentration and purification device having: a function to continuously concentrate cells; a function to subsequently and continuously arrange the cells on a specific region on a path; a function to simultaneously recognize the shape and the emission of fluorescence of the cells one cell at a time based on an image; and a function to separate and purify the cells by recognizing the cells on the basis of the information of the shape and the emission of fluorescence of the cells.

Description

イメージングセルソーターImaging cell sorter
 本発明は、細胞回収装置に関する。 The present invention relates to a cell recovery apparatus.
 多細胞生物における生体組織は種々細胞が役割を分担して全体として調和の取れた機能を維持している。あるいは、細胞の一部ががん化(ここでは腫瘍も含め、一括してがんと呼ぶことにする)すると、周辺領域と異なる新生物となるが、がん領域とそこから遠く離れた正常組織部分とはある境界を持って必ずしも区切れるものではなく、がん周辺領域も何らかの影響を受けている。したがって、臓器組織における機能を解析するには狭い領域に存在する少数の細胞を短時間のうちになるべく簡単に、かつ損失を最小にして分離して分析する必要がある。 In living tissues in multicellular organisms, various cells share the role and maintain a harmonious function as a whole. Or, if some of the cells become cancerous (we will refer to them collectively as cancer, including tumors), a neoplasm that is different from the surrounding area will appear, but the cancer area and normal far away from it. The tissue part is not necessarily separated by a certain boundary, and the area around the cancer is also affected in some way. Therefore, in order to analyze the function in the organ tissue, it is necessary to separate and analyze a small number of cells present in a narrow region as easily as possible in a short time and with a minimum loss.
 また、再生医療の分野では、組織の中から臓器幹細胞を分離し、これを再培養して分化誘導し目的の組織、ひいては臓器を再生しようとする試みがなされている。 Also, in the field of regenerative medicine, attempts have been made to regenerate target tissues, and thus organs, by isolating organ stem cells from tissues and reculturing them to induce differentiation.
 細胞を識別したり分離したりしようとすると、何らかの指標に従い区別する必要がある。一般に細胞の区別には、
1)目視による形態学的な細胞分類:例えば尿中に出現する異型細胞検査による膀胱がんや尿道のがんなどの検査や血中の異型細胞分類、組織中における細胞診によるがん検査などをあげることができる。
2)蛍光抗体法による細胞表面抗原(マーカー)染色による細胞分類:一般にCDマーカーと呼ばれる細胞表面抗原を、それに特異的な蛍光標識抗体で染色するもので、セルソーターによる細胞分離やフローサイトメーターや組織染色によるがん検査などに用いられている。もちろんこれらは、医療面のみならず、細胞生理研究用や、工業的な細胞利用の上でも多用されている。
3)あるいは、幹細胞の分離に関しては、細胞内に取り込まれる蛍光色素をレポーターとして幹細胞を含む細胞を大まかに分離し、更にその後で実際に培養を行うことで目的の幹細胞を分離する例がある。これは、幹細胞の有効なマーカーがまだ確立されていないので、実際に培養し、分化誘導したもののみを利用することで、実質的に目的細胞を分離しているのである。
In order to identify or separate cells, it is necessary to distinguish them according to some sort of index. In general, cell differentiation
1) Visual morphological cell classification: For example, examination of bladder cancer and urethral cancer by examination of atypical cells appearing in urine, classification of atypical cells in blood, cancer examination by cytology in tissues, etc. Can give.
2) Cell classification by cell surface antigen (marker) staining by the fluorescent antibody method: Cell surface antigens generally called CD markers are stained with a specific fluorescently labeled antibody. Cell sorting by cell sorters, flow cytometers and tissues Used for cancer screening by staining. Of course, these are widely used not only for medical purposes but also for cell physiology research and industrial cell utilization.
3) Alternatively, with regard to the separation of stem cells, there is an example in which cells containing stem cells are roughly separated using a fluorescent dye incorporated into the cells as a reporter, and then the target stem cells are separated by actually culturing. This is because an effective marker for stem cells has not yet been established, and the target cells are substantially separated by using only those actually cultured and differentiated.
 このように培養液中の特定の細胞を分離し回収することは、生物学・医学的な分析においては重要な技術である。細胞の比重の違いで細胞を分離する場合には速度沈降法によって分離することができる。しかし、未感作の細胞と感作した細胞とを見分けるような、細胞の比重の違いがほとんど無い場合には、蛍光抗体で染色した情報あるいは目視の情報を基に細胞を1つ1つ分離する必要がある。 Such separation and recovery of specific cells in the culture medium is an important technique in biological and medical analysis. When the cells are separated based on the difference in specific gravity of the cells, they can be separated by a velocity sedimentation method. However, if there is almost no difference in specific gravity between cells that distinguishes unsensitized cells from sensitized cells, the cells are separated one by one based on information stained with fluorescent antibodies or visual information. There is a need to.
 この技術については、例えば、セルソーターがある。セルソーターは、蛍光染色処理後の細胞を電荷を持たせた液滴中に1細胞単位で単離して滴下し、この液滴中の細胞の蛍光の有無、光散乱量の大小を基に、液滴が落下する過程で、落下方向に対して法平面方向に高電界を任意の方向に印加することで、液滴の落下方向を制御して、下部に置かれた複数の容器に分画して回収する技術である(非特許文献1:Kamarck,M.E., Methods Enzymol. Vol.151, p150-165 (1987))。 For example, there is a cell sorter. The cell sorter isolates and drops cells after fluorescence staining in a charged droplet in units of one cell, and based on the presence or absence of fluorescence in the droplet and the amount of light scattering, In the process of dropping, a high electric field is applied in any direction in the normal direction to the direction of drop, and the drop direction of the drop is controlled and fractionated into multiple containers placed underneath. (Non-patent document 1: Kamarck, ME, Methods Enzymol. Vol. 151, p150-165 1987 (1987)).
 しかし、この技術は高価であること、装置が大型であること、数千ボルトという高電界が必要であること、一定以上の濃度まで濃縮された試料が多量に必要であること、液滴を作成する段階で細胞に損傷を与える可能性があること、直接試料を観察できないことなどの問題がある。これらの問題を解決するため、近年、マイクロ加工技術を用いて微細な流路を作成し、流路内の層流中を流れる細胞を直接顕微鏡観察しながら分離するセルソーターが開発されている(非特許文献2:Micro Total Analysis, 98, pp.77-80 (Kluwer Academic Publishers, 1998);非特許文献3:Analytical Chemistry, 70, pp.1909-1915 (1998))。しかし、このマイクロ加工技術を用いて作成するセルソーターでは観察手段に対する試料分離の応答速度が遅く、実用化するためには、試料に損傷を与えず、かつ、より応答の速い分離処理方法が必要であった。また、利用するサンプル溶液中の細胞濃度も一定以上の濃度に事前に高めることをしないと、希薄な細胞濃度であっては、十分に装置の分離効率を高めることができないという問題点、さらに微量なサンプルの濃縮を別装置で行った場合には、その濃縮液をロスなく回収することが困難であるだけでなく、煩雑な前処理段階において、細胞が汚染されるなどの再生医療等では望ましくない問題が発生することが課題となっていた。 However, this technology is expensive, requires a large device, requires a high electric field of several thousand volts, requires a large amount of sample concentrated to a certain concentration, and creates droplets. There are problems such as the possibility of damaging the cells at the stage of performing, and the inability to directly observe the sample. In order to solve these problems, in recent years, a cell sorter has been developed in which a fine flow path is created using a micro-processing technique, and cells flowing in a laminar flow in the flow path are separated while directly observing under a microscope (non- Patent Document 2: Micro Total Analysis, 98, pp. 77-80 (Kluwer Academic Publishers, 1998); Non-Patent Document 3: Analytical Chemistry, 70, pp. 1909-1915 (1998)). However, the cell sorter created using this microfabrication technique has a slow response speed of sample separation to the observation means, and in order to put it to practical use, a separation processing method that does not damage the sample and has a faster response is required. there were. In addition, if the cell concentration in the sample solution to be used is not increased to a certain level in advance, the separation efficiency of the device cannot be sufficiently increased even at a dilute cell concentration. If the sample is concentrated in a separate device, it is not only difficult to recover the concentrated solution without loss, but it is also desirable for regenerative medicine where cells are contaminated in a complicated pretreatment stage. The problem was that no problems occurred.
 本発明者らは、このような問題点を解消するため、マイクロ加工技術を活用して、試料の微細構造と試料中の蛍光分布に基づいて試料を分画し、回収する試料に損傷を与えることなく、簡便に細胞試料を分析分離することのできる細胞分析分離装置を開発している(特許文献1:特開2003-107099;特許文献2:特開2004-85323;特許文献3:WO2004/101731)。これらは実験室レベルでは十分に実用的なセルソーターであるが、再生医療のために汎用的に使用するには、液搬送法や回収法、試料調製などの前処理について新たな技術開発が必要である。 In order to solve such problems, the present inventors use micromachining technology to fractionate a sample based on the microstructure of the sample and the fluorescence distribution in the sample, and damage the collected sample. And a cell analysis / separation apparatus that can easily analyze and separate a cell sample (Patent Document 1: JP 2003-107099; Patent Document 2: JP 2004-85323; Patent Document 3: WO 2004 / 101731). These are well-practical cell sorters at the laboratory level, but for general use for regenerative medicine, new technological development is required for pretreatment such as liquid transport, recovery, and sample preparation. is there.
 現在、癌組織の検出はMRI (核磁気共鳴画像法)やCT (コンピュータ断層撮影法)の改良によって飛躍的に改善されているが、良性・悪性腫瘍の同定については、バイオプシーによる評価を超える手法は存在していない。悪性腫瘍の問題点として、癌細胞自身の組織から血管あるいはリンパ管に浸潤する能力により他臓器に転移することが知られている。このように末梢血を循環する悪性腫瘍細胞は末梢血循環癌細胞(Circulating Tumor Cells: CTCs)と呼ばれ、血液細胞(赤血球を含む)10万細胞に数百細胞程度の癌細胞が存在すると考えられている。近年、特定のターゲットに対する制癌剤が次々と開発されており、血液中の悪性腫瘍の種類が同定できれば、その細胞を効果的に破壊する制癌剤を選択できるようになってきた。もし、血液中を流れるCTCsをモニターする技術が実現すれば、血液中を流れる転移癌の原因となる悪性腫瘍細胞の存在を定量的に計測することができ、それによって投与した制癌剤の効果を定量的に継続して評価することができ、不要な制癌剤の投与、過剰な制癌剤の投与を防ぐことができるのみならず、再発の有無についても検知することができる世界初の手法の実現となる。 Currently, the detection of cancerous tissue has improved dramatically by improving MRI (nuclear magnetic resonance imaging) and CT (computed tomography), but for the identification of benign and malignant tumors, the method exceeds the evaluation by biopsy. Does not exist. As a problem of malignant tumors, it is known that cancer cells metastasize to other organs by their ability to infiltrate blood vessels or lymph vessels from their own tissues. Malignant tumor cells that circulate in the peripheral blood are called peripheral blood circulating cancer cells (Circulating Tumor Cells: CTCs), and it is considered that there are several hundred cancer cells in 100,000 cells of blood cells (including red blood cells). ing. In recent years, anticancer agents for specific targets have been developed one after another, and if the type of malignant tumor in the blood can be identified, it has become possible to select an anticancer agent that effectively destroys the cells. If technology to monitor CTCs flowing in the blood is realized, the presence of malignant tumor cells that cause metastatic cancer flowing in the blood can be quantitatively measured, thereby quantifying the effect of the administered anticancer drug. This is the realization of the world's first method that can be continuously evaluated and can not only prevent the administration of unnecessary and excessive anticancer drugs, but also detect the presence or absence of recurrence.
 遺伝子診断や発現解析について、ポリメラーゼ連鎖反応(Polymerase chain reaction以下、PCRと略記する。)は、様々な種類の核酸の混合物から特定の塩基配列を増幅する方法である。PCRにおいては、様々な種類の核酸の混合物中にゲノムDNA あるいはメッセンジャーRNAから逆転写した相補的DNA等のDNAテンプレート、2種類以上のプライマー、熱安定性酵素、マグネシウムなどの塩、および4種類のデオキシリボヌクレオシド三リン酸(dATP、dCTP、dGTP、dTTP)を添加した後、核酸を一本鎖に分離させる工程と、プライマーを分離した核酸に結合させる工程と、熱安定性酵素によってプライマーが結合した核酸を鋳型としてハイブリダイゼーションさせる工程とを少なくとも一回繰り返すことによって、特定の核酸配列を増幅させることができる。PCRでは、DNA増幅反応に用いられる反応容器の温度を昇温、降温させることによる、熱サイクルを用いている。そこで用いられる温度変化用の機構は色々と挙げられるが、例えば、サンプルを含む反応容器の温度をヒーターないしペルチェ素子、温風を用いた熱交換で変化させる機構、反応容器を異なる温度のヒータブロックもしくは液体バスに交互に接触させることにより温度を変化させる機構、異なる温度の領域を有する流路中にサンプルを流して温度を変える機構などがある。現状の市販装置として最速なものとして、例えば、ロッシュ社のライトサイクラー(Light Cycler)がある。ライトサイクラーは、複数のガラスキャピラリー管の各々に試料とDNAポリメラーゼとプライマーとなるDNA小片および計測用の蛍光標識色素を導入し、このキャピラリー管内の微量液滴の温度を、例えば55度と95度の2つの温度など、変化させたい液滴の温度と同じ温度の温風を吹き付けることで変化させ、同時に、このガラスキャピラリー管に蛍光色素の励起光を照射し、得られた蛍光強度を計測することを可能にする機構を有する。 For gene diagnosis and expression analysis, the polymerase chain reaction (hereinafter abbreviated as PCR) is a method for amplifying a specific base sequence from a mixture of various types of nucleic acids. In PCR, DNA templates such as complementary DNA reverse transcribed from genomic DNA or messenger RNA in a mixture of various types of nucleic acids, two or more primers, a thermostable enzyme, a salt such as magnesium, and four types After adding deoxyribonucleoside triphosphates (dATP, dCTP, dGTP, dTTP), the step of separating the nucleic acid into single strands, the step of binding the primer to the separated nucleic acid, and the primer bound by a thermostable enzyme A specific nucleic acid sequence can be amplified by repeating the hybridization step using a nucleic acid as a template at least once. In PCR, a thermal cycle is used by raising and lowering the temperature of a reaction vessel used for a DNA amplification reaction. There are various temperature change mechanisms used there, for example, a mechanism for changing the temperature of the reaction vessel containing the sample by a heater or Peltier element, heat exchange using hot air, and a heater block with different temperatures for the reaction vessel. Alternatively, there are a mechanism for changing the temperature by alternately contacting the liquid bath, and a mechanism for changing the temperature by flowing a sample in a flow path having regions of different temperatures. For example, a light cycler (Light Cycler) manufactured by Roche Corporation is one of the fastest commercially available devices. The light cycler introduces a sample, a DNA polymerase, a DNA piece serving as a primer, and a fluorescent labeling dye for measurement into each of a plurality of glass capillary tubes, and the temperature of a minute droplet in the capillary tube is set to 55 degrees and 95 degrees, for example. These two temperatures are changed by blowing warm air at the same temperature as the droplet to be changed, and at the same time, this glass capillary tube is irradiated with excitation light of a fluorescent dye, and the obtained fluorescence intensity is measured. It has a mechanism that makes it possible.
 これらの方法によりサンプルの温度を繰り返し変化させることが可能である。 It is possible to change the temperature of the sample repeatedly by these methods.
特開2003-107099号公報JP 2003-107099 A 特開2004-85323号公報JP 2004-85323 A 国際公開第2004/101731号パンフレットInternational Publication No. 2004/101731 Pamphlet
 臨床現場において、CTCsは癌転移に関して存在を確認する事が重要視されているにも拘わらず、これを癌転移の指標とした診断基準は、現状確立されていない。理由として、それ自体の多様性・希少性のため、採血後の試料を均一な組織と見なし、その中の稀少な変異遺伝子の存在の有無を検査する従来方法では検出感度の高さを非常に求められる点が挙げられる。 In clinical practice, despite the importance of confirming the presence of CTCs in relation to cancer metastasis, diagnostic criteria using this as an index for cancer metastasis have not been established. The reason for this is that due to the diversity and rarity of the sample itself, the conventional method of examining the presence or absence of rare mutant genes in the sample after taking the collected blood as a uniform tissue has a very high detection sensitivity. The point required is mentioned.
 特にこれまでは、蛍光標識した血中の癌細胞が他の細胞と細胞塊となっているか、あるいは孤立した1細胞であるかを確認せず細胞内の遺伝子、発現解析を行っていたため、ターゲットとなる癌細胞以外の細胞の情報を含んだ集団平均としての情報を獲得していた。そのため、対象となる癌細胞の正確な情報が得られないという課題があった。 In particular, until now, we have analyzed the intracellular genes and expressions without confirming whether the cancer cells in the blood that have been fluorescently labeled are in a cell mass with other cells or are isolated cells. We obtained information as a population average including information on cells other than cancer cells. Therefore, there has been a problem that accurate information on the target cancer cells cannot be obtained.
 また、1細胞単位での回収手段に加えて、稀少な細胞を選別・濃縮後、微量の細胞単位で遺伝子診断、発現解析する手段によって、よりS/N比の高い診断を行う必要があった。
また、現在の、細胞を用いた解析手段については、対象となる細胞がアポトーシス等の状態となっているかどうか、細胞回収時に解析をする手段を有していないという課題があった。
Moreover, in addition to the means for collecting in units of one cell, it was necessary to perform diagnosis with a higher S / N ratio by means of genetic diagnosis and expression analysis in a small amount of cells after sorting and concentrating rare cells .
Further, the current analysis means using cells has a problem that it does not have a means for analyzing whether the target cell is in a state of apoptosis or the like at the time of cell recovery.
 また、炭疽菌の芽胞等の細胞の表面に硬い殻を有する細胞については、細胞内容物の分析をするためには、細胞の殻を何らかの方法で除去することが出来ない限り、細胞の内容物は試料液に溶出しないという問題があった。そのため、通常は、芽胞細胞を培養することで発芽させて、発芽することで通常の細胞と同じ手順でも細胞の内容物が試料液に溶出できるようになることから、細胞培養を行う手段を分析手段に組み込むことで細胞分析が行われているが、この場合には、細胞培養に少なくとも数時間程度、長い場合には一昼夜の培養が必要となるため、培養過程による計測時間の遅延、手順の煩雑化、コンタミネーションの発生などの問題が発生していた。また、高速での分析を行う手法としてガラスボール等の破砕媒体とサンプルの混合物を破砕容器に入れ、超音波振動などを加えることでランダムに衝突をさせることで細胞破砕をする等の破壊手法が存在しているが、これらについては振動による試料溶液の加熱が発生するにも関わらず効果的な破砕効率が得られないという問題と、試料溶液およびサンプル量が多量に必要であり、極微量の細胞の細胞破砕を行う場合には、試料回収効率の問題があった。 In addition, for cells having a hard shell on the surface of cells such as spores of Bacillus anthracis, in order to analyze the cell contents, the contents of the cell must be used unless the cell shell can be removed by any method. Had a problem of not eluting into the sample solution. For this reason, spore cells are usually germinated by culturing, and by sprouting, the contents of the cells can be eluted into the sample solution even in the same procedure as normal cells. In this case, cell analysis is performed, but in this case, cell culture requires at least several hours, and if it is long, one day and night culture is required. Problems such as complications and contamination have occurred. In addition, as a technique for high-speed analysis, there is a destruction technique such as crushing cells by putting a mixture of a crushing medium such as a glass ball and a sample into a crushing container and randomly colliding them by applying ultrasonic vibration etc. However, there is a problem in that effective crushing efficiency cannot be obtained despite the occurrence of heating of the sample solution due to vibration, and a large amount of sample solution and sample are required. When cells are disrupted, there is a problem of sample recovery efficiency.
 マイクロ流路中を流れる試料のサイズが大きい場合は、流路の高さを大きくする必要があるが、これに伴って画像で試料を観察する場合には、像がぼけるという問題があった。 When the size of the sample flowing through the microchannel is large, it is necessary to increase the height of the channel. However, when the sample is observed with an image, there is a problem that the image is blurred.
 また、水平に配置した流路中を試料が長時間にわたって水平に流れる場合には、徐々に試料が沈降して最終的には流路を塞ぐ危険性があった。 Also, when the sample flows horizontally for a long time in the horizontally arranged flow path, there is a risk that the sample gradually settles and eventually blocks the flow path.
 細胞等の微粒子を精製回収する場合に、斥力によって細胞に外力を加える場合には、細胞を流路中の一カ所に集めることが難しかった。 When purifying and collecting fine particles such as cells, when applying external force to the cells by repulsion, it was difficult to collect the cells in one place in the flow path.
 一点のピンポイントでの外電場の印加では、十分な外力を試料に与えることができず十分に細胞を移動させることができない危険性があった。 When applying an external electric field at a single pinpoint, there was a risk that sufficient external force could not be applied to the sample and cells could not be moved sufficiently.
 画像認識によって心筋細胞を精製するための具体的数値化した指標が自動化する観点で不明瞭であった。 The specific numerical index for purifying cardiomyocytes by image recognition was unclear in terms of automation.
 サイドシース液を用いた試料水溶液の絞り込みは、試料水溶液の希釈を発生させる危険性があった。 The narrowing of the sample aqueous solution using the side sheath liquid has a risk of causing dilution of the sample aqueous solution.
 水溶液中の試料微粒子を回収する際に、試料溶液の電解質のイオン強度が一定以上となると電場による移動が困難になる可能性があった。 When collecting the sample fine particles in the aqueous solution, if the ionic strength of the electrolyte of the sample solution exceeds a certain level, it may be difficult to move by the electric field.
 一方、がん細胞を確認する手法としては、本発明者らがすでに出願した細胞クラスターの画像認識による識別技術(特開2011-257241)があるが、画像ベースで認識できるがん細胞の特徴である多核化の現象については、上記技術では確認をすることができなかった。また、上記技術では、既存のがん細胞マーカーによる染色手法と組み合わせた評価をすることはできなかった。また、複数の波長の顕微画像を同時に取得する手段についても、本発明者らは、吸光イメージングスペクトロスコピー技術を吸光顕微鏡として考案し、特開2012-055267およびWO2012/060163として出願しているが、これらの技術では、複数の蛍光量の強度計測技術が含まれていなかった。 On the other hand, as a method for confirming cancer cells, there is an identification technology (Japanese Patent Laid-Open No. 2011-257241) based on image recognition of cell clusters that has already been filed by the present inventors. The multinucleation phenomenon could not be confirmed by the above technique. In addition, the above technique cannot be evaluated in combination with a staining method using an existing cancer cell marker. As for means for simultaneously acquiring microscopic images of a plurality of wavelengths, the present inventors have devised an absorption imaging spectroscopy technique as an absorption microscope, and have applied for them as JP2012-0555267 and WO2012 / 060163. These techniques did not include a plurality of fluorescence intensity measurement techniques.
 また特開2011-257241では、血液中のがん細胞の存在有無を検出するための手段として、がん細胞の表面のみに存在する分子(がんマーカー)と選択的に結合する抗体に蛍光色素を取り付けたものを血液と作用させて、血中にがん細胞が存在する場合はがん細胞が蛍光を発するようにすることで検出する技術が示されている。その手段と装置構成としては、マイクロチップ中を流れるがん細胞を含む血液に蛍光励起光を照射した後、がん細胞から発せられた蛍光を、特定の波長の光のみ反射してその他の波長の光は通過させる鏡(ダイクロイックミラー)を複数回通過させて各ステップでの特定の波長幅の蛍光を抽出し、その波長幅の蛍光の各々について光検出器で蛍光量を測定する仕組みとなっているが、ダイクロイックミラーを通過する際に検出すべきがん細胞からの蛍光量もダイクロイックミラーを通過する回数に応じて減衰するため、各波長幅での計測する蛍光強度にダイクロイックミラー通過に起因した違いが発生し、特に後段の波長での微弱な蛍光を検出することが難しく、そのため多重染色したがんマーカー分子の定量的な検出が困難であった。また、多数の蛍光色素を同時に利用するために波長の異なる複数の励起光をがん細胞に照射し、さらに発せられた複数波長の蛍光を同時に検出するためには、蛍光波長と励起波長が重複する複数のダイクロイックミラーを通過させて光を波長毎に分解せねばならないため、装置構成が複雑になり、また、各波長帯域も狭くする必要があり、シグナル蛍光が一層減衰するばかりでなく、波長帯が近い光を分離することは原理的にも困難であった。 In JP2011-257241-A, as a means for detecting the presence or absence of cancer cells in blood, fluorescent dyes are used for antibodies that selectively bind to molecules (cancer markers) present only on the surface of cancer cells. A technique for detecting a cancer cell by causing a cancer cell to emit fluorescence when a cancer cell is present in the blood by reacting with a blood cell is shown. As the means and device configuration, after irradiating the blood containing cancer cells flowing through the microchip with fluorescence excitation light, the fluorescence emitted from the cancer cells is reflected only by light of a specific wavelength and other wavelengths are reflected. The light passes through a mirror (dichroic mirror) that passes through multiple times, extracts fluorescence with a specific wavelength width at each step, and measures the amount of fluorescence with a photodetector for each fluorescence of that wavelength width. However, since the amount of fluorescence from cancer cells that should be detected when passing through the dichroic mirror also attenuates according to the number of passes through the dichroic mirror, the fluorescence intensity measured at each wavelength width is caused by the passage through the dichroic mirror. In particular, it was difficult to detect faint fluorescence at a later stage wavelength, and it was difficult to quantitatively detect multiple stained cancer marker molecules. In addition, in order to irradiate cancer cells with multiple excitation lights with different wavelengths in order to simultaneously use many fluorescent dyes, and to simultaneously detect emitted multiple wavelengths of fluorescence, the fluorescence wavelength and the excitation wavelength overlap. Since the light must be decomposed for each wavelength by passing through a plurality of dichroic mirrors, the device configuration becomes complicated, and each wavelength band needs to be narrowed, not only the signal fluorescence is further attenuated, but also the wavelength In principle, it was difficult to separate light with close bands.
 このような状況に鑑み、本発明者らは、転移能力を持って血中を流れる癌細胞の種類と状態、そして数(濃度)を高速に同定することができる細胞分析装置を提供する。
 すなわち、本発明は、以下の装置、システムおよび方法を提供する。
In view of such a situation, the present inventors provide a cell analyzer capable of rapidly identifying the type and state of cancer cells flowing in the blood with metastatic ability and the number (concentration).
That is, the present invention provides the following apparatuses, systems, and methods.
(1)(A) 被験体からの細胞試料液を濃縮、染色、洗浄する第1の装置と、
 (B) 上記第1の装置からの染色された細胞の試料液を濃縮・分離・精製する第2の装置と、
 (C) 上記第2の装置からの細胞試料液中の精製された細胞の遺伝子解析・発現解析を行う第3の装置と、
 (D) 上記第1~第3の装置にわたって連続的に上記細胞試料液を送液する第4の装置と、
 (E) 上記各装置の動作を制御し、上記細胞試料の解析を行う制御・解析部と
を備える細胞分析装置システムであって、
  (a) 上記第1の装置が、
   上記細胞試料液中の細胞を濃縮、染色、洗浄するフィルターを備えたチャンバーと、
   上記細胞試料液、染色液および洗浄液をそれぞれ収容する容器と、
   各上記容器中の各液を上記チャンバー中に順次導入する機構と、
  を備え、
  (b) 上記第2の装置が、
   対象細胞を含む細胞を含有する細胞試料液を流す流路を備えるセルソーターチップであって、上記流路が、上記細胞の濃縮が行われる第一の流路と、上記濃縮された上記細胞の検出および上記対象細胞の選別が行われる、上記第一の流路から分岐する第二の流路とを含む、セルソーターチップと、
   各上記流路を流れる上記細胞が、上記第一の流路において濃縮され、かつ上記第二の流路において所望の方向に収束されるように、各上記流路を流れる上記細胞に対して外力を与える機構と、
   上記第二の流路中を流れる上記細胞に光を照射する光照射手段と、少なくとも200フレーム/秒の画像取り込みレートで該細胞の画像を取得する高速カメラとを含む光学系と、
  を備え、
  (c) 上記第3の装置が、
   試料液を添加して反応させる反応槽と、
   上記反応槽との間で熱を交換する熱交換槽と、
   上記熱交換槽の温度を制御する温度制御機構と、
  を備える、細胞分析装置システム。
(2)上記細胞試料液中の精製された細胞の遺伝子解析・発現解析を行う第3の装置の前段に、上記細胞試料液を送液する第4の装置によって搬送された上記細胞の内容物を細胞破砕によって試料液に溶出させる細胞破砕機構をさらに含み、
 上記制御・解析部が、上記細胞試料液を送液する第4の装置によって上記第2の装置からの上記細胞試料液が上記細胞破砕機構へ搬送され、上記細胞破砕機構において破砕された試料液が、上記第4の装置によって上記第3の装置に搬送されるように上記各部を制御する、上記(1)に記載の細胞分析装置システム。
(3)上記細胞破砕機構が、
 上記細胞試料を容れるための容器と、
 上記容器内にて細胞を破砕するための破砕用回転体と、
 上記容器内にて細胞を破砕するための研磨剤とを含み、
  上記細胞試料と上記研磨剤とが上記容器の内部に添加され、自転および公転運動が厳密に制御された上記破砕用回転体の動きにより、上記細胞試料が破砕される、上記(2)に記載の細胞分析装置システム。
(4)上記細胞破砕機構がさらに回転シャフトを含み、
 上記破砕用回転体が上記回転シャフトにより上から押し付けられることによって、上記容器の内部で回転し、上記破砕用回転体と上記回転シャフト間の摩擦力および滑りの程度が、上記破砕用回転体と回転シャフト間の圧力により制御される、上記(3)に記載の細胞分析装置システム。
(5)上記細胞破砕機構が、破砕用回転体の回転軸と回転シャフトの回転軸をずらすことにより、容器の側面に対して直角方向に破砕用回転体を押し付ける力を発生させることが可能な機構を備える、上記(4)に記載の細胞分析装置システム。
(6)上記細胞破砕機構が、上記回転シャフトの磁力、静電気力、または気体の圧力差による吸引力により上記破砕用回転体が上記容器の内部から持ち上げられ、除去されることが可能な機構を備える、上記(4)に記載の細胞分析装置システム。
(7)上記細胞破砕機構において、上記容器の自動交換を可能とする複数の容器を搭載した駆動機構を備えることにより異なる細胞試料間での汚染を排除できることを特徴とする、上記(3)~(6)のいずれかに記載の細胞分析装置システム。
(8)上記細胞破砕機構において、未使用の上記容器の内部には上記破砕用回転体が機密性シールにより封印して容れられており、上記細胞試料破砕時には上記容器および上記破砕用回転体が汚染されていないことが保証できることを特徴とする、上記(3)~(7)のいずれかに記載の細胞分析装置システム。
(9)(i) 対象細胞を含む細胞を含有する細胞試料液を流す流路を備えるセルソーターチップであって、上記流路が、上記細胞の濃縮が行われる第一の流路と、上記濃縮された上記細胞の検出および上記対象細胞の選別が行われる、上記第一の流路から分岐する第二の流路とを含む、セルソーターチップと、
 (ii) 各上記流路を流れる上記細胞が、上記第一の流路において濃縮され、かつ上記第二の流路において所望の方向に収束されるように、各上記流路を流れる上記細胞に対して外力を与える機構と、
 (iii) 上記第二の流路中を流れる上記細胞に光を照射する光照射手段と、少なくとも200フレーム/秒の画像取り込みレートで該細胞の画像を取得する高速カメラとを含む光学系と、
 (iv)上記各部の動作を制御し、上記光学系により取り込まれた各上記細胞の画像を解析する制御・解析部と、
を備える、画像検出型一細胞分離・精製装置。
(10)上記外力が、超音波放射圧、重力、静電力、または誘電電気泳動力である、上記(9)に記載の装置。
(11)上記対象細胞を含む細胞試料が、血液に由来する、上記(9)または(10)に記載の装置。
(12)上記対象細胞が、癌細胞を含む、上記(9)~(11)のいずれかに記載の装置。
(13)上記制御・解析部が、上記光学系から得られる上記細胞の画像を2値化し、該2値化画像の輝度重心、面積、周囲長、長径、および短径からなる群から選択される少なくとも1つの指標によって、各上記細胞を一細胞レベルで検出し識別する、上記(9)~(12)のいずれかに記載の装置。
(14)上記細胞試料液中の上記細胞が蛍光標識されており、上記光学系が、蛍光検出手段をさらに含み、上記細胞の蛍光画像の情報が追加的な指標として上記制御・解析部により利用される、上記(13)に記載の装置。
(1) (A) a first device for concentrating, staining, and washing a cell sample solution from a subject;
(B) a second device for concentrating, separating and purifying the stained cell sample solution from the first device;
(C) a third device for performing gene analysis / expression analysis of purified cells in the cell sample solution from the second device;
(D) a fourth device for continuously feeding the cell sample solution over the first to third devices;
(E) A cell analyzer system comprising a control / analyzer that controls the operation of each of the devices and analyzes the cell sample,
(a) the first device is
A chamber with a filter for concentrating, staining, and washing cells in the cell sample solution;
Containers for storing the cell sample solution, staining solution and washing solution, respectively;
A mechanism for sequentially introducing each liquid in each container into the chamber;
With
(b) the second device is
A cell sorter chip having a flow path for flowing a cell sample solution containing cells including target cells, wherein the flow path includes a first flow path in which the cells are concentrated, and detection of the concentrated cells. A cell sorter chip including a second flow path branched from the first flow path, wherein the target cells are selected, and
An external force is applied to the cells flowing through the channels so that the cells flowing through the channels are concentrated in the first channel and converged in a desired direction in the second channel. A mechanism to give
An optical system including light irradiation means for irradiating the cells flowing in the second flow path, and a high-speed camera for acquiring an image of the cells at an image capture rate of at least 200 frames / second;
With
(c) the third device is
A reaction vessel to which a sample solution is added and reacted;
A heat exchange tank for exchanging heat with the reaction tank;
A temperature control mechanism for controlling the temperature of the heat exchange tank;
A cell analyzer system comprising:
(2) Contents of the cells conveyed by the fourth device for feeding the cell sample solution before the third device for performing gene analysis / expression analysis of purified cells in the cell sample solution A cell disruption mechanism that elutes the sample solution by cell disruption,
The control / analyzer transports the cell sample solution from the second device to the cell disruption mechanism by the fourth device for feeding the cell sample solution, and the sample solution is disrupted by the cell disruption mechanism. However, the cell analyzer system according to (1), wherein each unit is controlled so that the fourth apparatus is transported to the third apparatus by the fourth apparatus.
(3) The cell disruption mechanism is
A container for containing the cell sample;
A crushing rotating body for crushing cells in the container,
An abrasive for crushing cells in the container,
The cell sample and the abrasive are added to the inside of the container, and the cell sample is crushed by the movement of the crushing rotating body in which rotation and revolution are strictly controlled. Cell analyzer system.
(4) The cell disruption mechanism further includes a rotating shaft,
When the crushing rotating body is pressed from above by the rotating shaft, the crushing rotating body rotates inside the container, and the frictional force and slippage between the crushing rotating body and the rotating shaft are different from those of the crushing rotating body. The cell analyzer system according to (3), which is controlled by the pressure between the rotating shafts.
(5) The cell crushing mechanism can generate a force for pressing the crushing rotating body in a direction perpendicular to the side surface of the container by shifting the rotating shaft of the crushing rotating body and the rotating shaft of the rotating shaft. The cell analyzer system according to (4) above, comprising a mechanism.
(6) The cell crushing mechanism is a mechanism that allows the crushing rotating body to be lifted from the inside of the container and removed by the magnetic force of the rotating shaft, electrostatic force, or suction force due to gas pressure difference. The cell analyzer system according to (4), comprising:
(7) In the cell disruption mechanism described above, contamination between different cell samples can be eliminated by providing a drive mechanism equipped with a plurality of containers capable of automatic replacement of the containers. The cell analyzer system according to any one of (6).
(8) In the cell crushing mechanism, the crushing rotator is sealed and sealed inside the unused container by a confidential seal, and the container and the crushing rotator are placed at the time of crushing the cell sample. The cell analyzer system according to any one of the above (3) to (7), characterized in that it can be guaranteed that it is not contaminated.
(9) (i) A cell sorter chip including a flow path for flowing a cell sample solution containing cells including target cells, wherein the flow path includes a first flow path in which the cells are concentrated, and the concentration A cell sorter chip including a second flow path branched from the first flow path, wherein the detection of the cells and the selection of the target cells are performed,
(ii) The cells flowing through each of the channels are concentrated in the first channel and converged in a desired direction in the second channel. A mechanism for applying external force to the
(iii) an optical system including a light irradiation means for irradiating the cells flowing in the second flow path, and a high-speed camera for acquiring an image of the cells at an image capture rate of at least 200 frames / second;
(iv) a control / analysis unit that controls the operation of each unit and analyzes an image of each cell captured by the optical system;
An image detection type single cell separation / purification apparatus comprising:
(10) The apparatus according to (9), wherein the external force is ultrasonic radiation pressure, gravity, electrostatic force, or dielectric electrophoresis force.
(11) The device according to (9) or (10), wherein the cell sample containing the target cell is derived from blood.
(12) The device according to any one of (9) to (11), wherein the target cell includes a cancer cell.
(13) The control / analysis unit binarizes the cell image obtained from the optical system, and is selected from the group consisting of the luminance centroid, area, perimeter, major axis, and minor axis of the binarized image. The device according to any one of (9) to (12) above, wherein each of the cells is detected and identified at a single cell level by at least one index.
(14) The cells in the cell sample solution are fluorescently labeled, the optical system further includes fluorescence detection means, and information on the fluorescence image of the cells is used as an additional index by the control / analysis unit. The apparatus according to (13) above.
 さらに、本発明は、以下のオンチップ・セルソーターおよびオンチップ・セルソーターシステムを提供する。
(15)同じ長さと断面積の1つの試料流路とその両脇に対称に配置された2つのバッファ液流路が合流するように配置され、合流後に下流で再び同じ長さと断面積の中央の回収用流路とその両脇の2つの廃液流路に分配され、上流の3つの流路の入り口を覆うシース液リザーバーと、その中に試料を満たす試料液リザーバーが、その断面積の比が、流路数の比と同じ2:1となるように配置されており液が流れても両者の液面高さが一致するように構成されており、同様に下流でも廃液リザーバーと回収細胞用リザーバーの断面積の比が2:1となるように配置されており、合流点の上流に高速カメラおよび蛍光検出によって細胞を同定する機構を有し、合流点に対称にゲル電極が接するように配置されており、排除したい細胞にのみ電場を印加することを特徴としたオンチップ・セルソーター。
(16)上記セルソーターのリザーバーにおいて、シース液リザーバー上面に配置された栓と、栓を貫通して圧縮空気を印加する手段と、シース液リザーバーと試料リザーバーに液を連続して追加供給できる手段と、シース液リザーバーと試薬リザーバーの両者での液面高さを計測することができる電気センサーとを備えることを特徴とした上記(15)に記載のセルソーター。
(17)上記セルソーターのリザーバーにおいて、試薬液および2つのシース液を保存する個別の容器が、おのおの3つの流路の上流側入り口にそれぞれ配置されていることを特徴とした上記(15)に記載のセルソーター
(18)画像認識型セルソーターにおいて、細胞像の中での核の像の有無を基準として、選択的に細胞分裂中の細胞を回収することを特徴としたオンチップ・セルソーター。
(19)画像処理型セルソーターにおいて、像のブレを防ぐために、高速カメラの撮影各フレームレート速度において、各フレームで一回発火する時間について、
 
フラッシュ時間 = 画素サイズ/流速
 
の関係で決めることを特徴としたオンチップ・セルソーターシステム。
(20)開口数0.3以下の対物レンズとズームレンズを組み合わせた焦点深度と被写界深度がマイクロ流路の高さ程度まで維持できる光学系を用いる事を特徴としたオンチップ・セルソーターシステム。
(21)垂直に上方から鉛直下方向に試料液が流れるように配置した事を特徴としたオンチップ・セルソーターシステム。
(22)試料微粒子に斥力を発生させる電極が配置された面に対向するマイクロ流路の内壁面が凸状の形状となっている事を特徴としたオンチップ・セルソーターシステム。
(23)ゲルがゾル状態にあるときに液の表面張力で流路への液の漏出を防ぐことができる一定の距離で支柱が繰り返し並んだ構成の一対のゲル電極を流路に並行して配置されている事を特徴としたオンチップ・セルソーターシステム。
(24)画像認識によって得られた細胞の形状から、
Figure JPOXMLDOC01-appb-M000001

 
によって、Rが1.1未満の細胞を心筋細胞として精製する事を特徴としたオンチップ・セルソーターシステム。
(25)サイドシース液に水より比重が軽く水と混ざり合わない油を用いた事を特徴としたオンチップ・セルソーターシステム。
(26)水溶液中の試料微粒子を回収する際に、試料水溶液の伝導率が10μS/cm以下となる溶液を用いる事を特徴としたオンチップ・セルソーターシステム。
Furthermore, the present invention provides the following on-chip cell sorter and on-chip cell sorter system.
(15) One sample channel having the same length and cross-sectional area and two buffer liquid channels disposed symmetrically on both sides of the sample channel are arranged to merge, and after the merge, the center of the same length and cross-sectional area is again downstream. The ratio of the cross-sectional area of the sheath liquid reservoir that is distributed to the recovery flow path and the two waste liquid flow paths on both sides and covers the inlets of the three upstream flow paths and the sample liquid reservoir that fills the sample therein However, it is arranged so that the ratio of the number of channels is 2: 1, so that even if the liquid flows, the liquid level of both is the same. Is arranged so that the ratio of the cross-sectional area of the reservoir for the reservoir is 2: 1, and has a mechanism for identifying cells by a high-speed camera and fluorescence detection upstream of the junction, so that the gel electrode is in contact with the junction symmetrically The electric field is only applied to the cells that are placed in the I applied it was characterized by the on-chip cell sorter.
(16) In the reservoir of the cell sorter, a stopper disposed on the top surface of the sheath liquid reservoir, means for applying compressed air through the stopper, means for continuously supplying liquid to the sheath liquid reservoir and the sample reservoir, The cell sorter according to (15) above, further comprising an electric sensor capable of measuring the liquid level height in both the sheath liquid reservoir and the reagent reservoir.
(17) In the reservoir of the cell sorter, the individual containers for storing the reagent liquid and the two sheath liquids are respectively arranged at the upstream inlets of the three flow paths, respectively, (18) An on-chip cell sorter that selectively collects cells undergoing cell division based on the presence or absence of an image of a nucleus in a cell image.
(19) In the image processing type cell sorter, in order to prevent blurring of the image, the time to ignite once in each frame at the shooting frame rate speed of the high-speed camera,

Flash time = Pixel size / flow velocity
An on-chip cell sorter system characterized by deciding on the relationship of
(20) An on-chip cell sorter system characterized by using an optical system that can maintain the depth of field and the depth of field up to the height of the microchannel by combining an objective lens having a numerical aperture of 0.3 or less and a zoom lens. .
(21) An on-chip cell sorter system characterized in that the sample liquid is arranged so as to flow vertically from above to below.
(22) An on-chip cell sorter system characterized in that the inner wall surface of the microchannel facing the surface on which the electrode for generating repulsive force is arranged on the sample fine particles has a convex shape.
(23) A pair of gel electrodes having a structure in which struts are repeatedly arranged at a certain distance that can prevent the leakage of the liquid into the flow path due to the surface tension of the liquid when the gel is in a sol state. An on-chip cell sorter system characterized by being arranged.
(24) From the shape of the cells obtained by image recognition,
Figure JPOXMLDOC01-appb-M000001


, An on-chip cell sorter system characterized by purifying cells with R less than 1.1 as cardiomyocytes.
(25) An on-chip cell sorter system characterized in that oil having a specific gravity lighter than water and not mixed with water is used for the side sheath liquid.
(26) An on-chip cell sorter system characterized by using a solution in which the conductivity of the sample aqueous solution is 10 2 μS / cm or less when collecting the sample fine particles in the aqueous solution.
[1]対象細胞を含む細胞を含有する試料液を流すための第1の流路を備えるセルソーターチップであって、上記第1の流路が下流側の分岐点で、上記対象細胞を含む液を回収するための対象細胞回収用流路と、上記対象細胞以外の細胞を含む液を回収するための廃液回収用流路とに分岐している、セルソーターチップと、
 上記分岐点よりも上流の第1の領域で上記第1の流路を流れる上記試料液中の細胞のデジタル画像を取得して、該画像のデジタル解析により上記対象細胞を識別するための光学系と、
 上記分岐点よりも上流の上記第1の領域とほぼ一致する第2の領域で、上記画像解析による細胞識別結果に基づいて、上記第1の流路を流れる対象細胞または対象細胞以外の細胞に対して外力を加えて該細胞の進行方向をシフトさせ、上記対象細胞を上記対象細胞回収用流路へ、上記対象細胞以外の細胞を上記廃液回収用流路へ導くための外力付加機構と、
 上記光学系および上記外力付加機構の動作を制御する制御部と
を備える、オンチップ・セルソーターシステム。
[2]上記光学系による上記デジタル画像から上記細胞識別結果を得るタイミングと上記外力付加機構による上記外力を加えるタイミングとの間のタイムラグが最小となるように構成されている、上記[1]に記載のオンチップ・セルソーターシステム。
[3]対象細胞を含む細胞を含有する試料液を流すための第1の流路を備えるセルソーターチップであって、上記第1の流路が下流側の分岐点で、上記対象細胞を含む液を回収するための対象細胞回収用流路と、上記対象細胞以外の細胞を含む液を回収するための廃液回収用流路とに分岐している、セルソーターチップと、
 上記分岐点よりも上流の第1の領域で上記第1の流路を流れる上記試料液中の細胞のデジタル画像を取得して、該画像のデジタル解析により上記対象細胞を識別するための光学系と、
 上記分岐点よりも上流の上記第1の領域とほぼ一致するかまたはそれよりも下流の第2の領域で、上記画像解析による細胞識別結果に基づいて、上記第1の流路を流れる対象細胞または対象細胞以外の細胞に対して外力を加えて該細胞の進行方向をシフトさせ、上記対象細胞を上記対象細胞回収用流路へ、上記対象細胞以外の細胞を上記廃液回収用流路へ導くための外力付加機構と、
 上記光学系および上記外力付加機構の動作を制御する制御部と
を備え、
 上記光学系が、開口数0.3以下の対物レンズと、該対物レンズに光学的に結合されたズームレンズとを備えた顕微鏡を含む、オンチップ・セルソーターシステム。
[4]対象細胞を含む細胞を含有する試料液を流すための第1の流路を備えるセルソーターチップであって、上記第1の流路が下流側の分岐点で、上記対象細胞を含む液を回収するための対象細胞回収用流路と、上記対象細胞以外の細胞を含む液を回収するための廃液回収用流路とに分岐している、セルソーターチップと、
 上記分岐点よりも上流の第1の領域で上記第1の流路を流れる上記試料液中の細胞のデジタル画像を取得して、該画像のデジタル解析により上記対象細胞を識別するための光学系と、
 上記分岐点よりも上流の上記第1の領域とほぼ一致するかまたはそれよりも下流の第2の領域で、上記画像解析による細胞識別結果に基づいて、上記第1の流路を流れる対象細胞または対象細胞以外の細胞に対して外力を加えて該細胞の進行方向をシフトさせ、上記対象細胞を上記対象細胞回収用流路へ、上記対象細胞以外の細胞を上記廃液回収用流路へ導く外力付加機構と、
 上記光学系および上記外力付加機構の動作を制御する制御部と
を備え、
 上記第1の流路の上流側から下流側へほぼ鉛直下方向に試料液が流れるように、上記第1の流路が重力の向きに対してほぼ平行になるように上記セルソーターチップが配置されている、オンチップ・セルソーターシステム。
[5]対象細胞を含む細胞を含有する試料液を流すための第1の流路を備えるセルソーターチップであって、上記第1の流路が下流側の分岐点で、上記対象細胞を含む液を回収するための対象細胞回収用流路と、上記対象細胞以外の細胞を含む液を回収するための廃液回収用流路とに分岐している、セルソーターチップと、
 上記分岐点よりも上流の第1の領域で上記第1の流路を流れる上記試料液中の細胞のデジタル画像を取得して、該画像のデジタル解析により上記対象細胞を識別するための光学系と、
 上記分岐点よりも上流の上記第1の領域とほぼ一致するかまたはそれよりも下流の第2の領域で、上記画像解析による細胞識別結果に基づいて、上記第1の流路を流れる対象細胞または対象細胞以外の細胞に対して外力を加えて該細胞の進行方向をシフトさせ、上記対象細胞を上記対象細胞回収用流路へ、上記対象細胞以外の細胞を上記廃液回収用流路へ導く外力付加機構と、
 上記光学系および上記外力付加機構の動作を制御する制御部と
を備え、
 上記外力付加機構が上記第1の流路を流れる細胞を含む微粒子に電気力を付加するためのゲル電極または金属電極を含み、上記試料液の導電率が10μS/cm以下である、オンチップ・セルソーターシステム。
[6]上記第1の流路の上流側の上記第1の領域よりも上流の第3の領域で上記第1の流路を流れる上記試料液中の細胞を整列させるための外力を該細胞に付加するさらなる外力付加機構をさらに備える、上記[1]~[5]のいずれか一項に記載のオンチップ・セルソーターシステム。
[7]上記試料液中の細胞を整列させるための外力を該細胞に付加する上記さらなる外力付加機構が、電気力またはシース流により外力を付加するものである、上記[6]に記載のオンチップ・セルソーターシステム。
[8]対象細胞を含む細胞を含有する試料液を流すための第1の流路を備えるセルソーターチップであって、上記第1の流路が下流側の分岐点で、上記対象細胞を含む液を回収するための対象細胞回収用流路と、上記対象細胞以外の細胞を含む液を回収するための廃液回収用流路とに分岐している、セルソーターチップと、
 上記分岐点よりも上流の第1の領域で上記第1の流路を流れる上記試料液中の細胞のデジタル画像を取得して、該画像のデジタル解析により上記対象細胞を識別するための光学系と、
 上記分岐点よりも上流の上記第1の領域とほぼ一致するかまたはそれよりも下流の第2の領域で、上記画像解析による細胞識別結果に基づいて、上記第1の流路を流れる対象細胞または対象細胞以外の細胞に対して外力を加えて該細胞の進行方向をシフトさせ、上記対象細胞を上記対象細胞回収用流路へ、上記対象細胞以外の細胞を上記廃液回収用流路へ導く外力付加機構と、
 上記光学系および上記外力付加機構の動作を制御する制御部と
を備え、
 さらに、
  上記第1の流路の上流側に流体接続した、シース液用のバッファ液を溜めたリザーバと、
  上記第1の流路に細胞を含む試料液を導入するための、該流路の上流側に流体接続した試料液導入用流路と、を備え、
  上記試料液導入用流路の上記第1の流路に流体接続する側の先端部が、上記バッファ液の該第1の流路への導入部よりも下流側まで伸びている、オンチップ・セルソーターシステム。
[9]対象細胞を含む細胞を含有する試料液を流すための第1の流路を備えるセルソーターチップであって、上記第1の流路が下流側の分岐点で、上記対象細胞を含む液を回収するための対象細胞回収用流路と、上記対象細胞以外の細胞を含む液を回収するための廃液回収用流路とに分岐している、セルソーターチップと、
 上記分岐点よりも上流の予備的領域で上記第1の流路を流れる上記試料液中の細胞を整列させるための外力を該細胞に付加する第1の外力付加機構と、
 上記分岐点よりも上流の、上記予備的領域よりも下流の第1の領域で上記第1の流路を流れる上記試料液中の細胞のデジタル画像を取得して、該画像のデジタル解析により上記対象細胞を識別するための光学系と、
 上記分岐点よりも上流の上記第1の領域とほぼ一致するかまたはそれよりも下流の第2の領域で、上記画像解析による細胞識別結果に基づいて、上記第1の流路を流れる対象細胞または対象細胞以外の細胞に対して外力を加えて該細胞の進行方向をシフトさせ、上記対象細胞を上記対象細胞回収用流路へ、上記対象細胞以外の細胞を上記廃液回収用流路へ導く第2の外力付加機構と、
 上記光学系ならびに上記第1および第2の外力付加機構の動作を制御する制御部と
を備え、
 上記第1の外力付加機構が、上記第1の流路の一面に沿って配列された、試料液中の細胞を含む微粒子に斥力を発生させるための櫛形電極であり、上記第1の流路の該流路に垂直な断面が該微粒子の整列を促進するために上記電極が配置された上記面に対向する面の中央に向かってテーパー状または凸状となっている、オンチップ・セルソーターシステム。
[10]対象細胞を含む細胞を含有する試料液を流すための第1の流路を備えるセルソーターチップであって、上記第1の流路が下流側の分岐点で、上記対象細胞を含む液を回収するための対象細胞回収用流路と、上記対象細胞以外の細胞を含む液を回収するための廃液回収用流路とに分岐している、セルソーターチップと、
 上記分岐点よりも上流の予備的領域で上記第1の流路を流れる上記試料液中の細胞を整列させるための外力を該細胞に付加する第1の外力付加機構と、
 上記分岐点よりも上流の、上記予備的領域よりも下流の第1の領域で上記第1の流路を流れる上記試料液中の細胞のデジタル画像を取得して、該画像のデジタル解析により上記対象細胞を識別するための光学系と、
 上記分岐点よりも上流の上記第1の領域とほぼ一致するかまたはそれよりも下流の第2の領域で、上記画像解析による細胞識別結果に基づいて、上記第1の流路を流れる対象細胞または対象細胞以外の細胞に対して外力を加えて該細胞の進行方向をシフトさせ、上記対象細胞を上記対象細胞回収用流路へ、上記対象細胞以外の細胞を上記廃液回収用流路へ導く第2の外力付加機構と、
 上記光学系ならびに上記第1および第2の外力付加機構の動作を制御する制御部と
を備え、
 上記第2の外力付加機構が、上記第1の流路の両側面で試料液と接触するように配置されたゲル電極であり、ゲルがゾル状態にあるときに該ゾル液が上記第1の流路へ漏出しないように、該ゾル液の表面張力で該流路への該ゾル液の漏出を防ぐことができるように一定の間隔で上記第1の流路に沿って両側面に設けられたスリットのアレイを介して上記試料液と接触するように構成されている、オンチップ・セルソーターシステム。
[11]対象細胞を含む細胞を含有する試料液を流すための第1の流路を備えるセルソーターチップであって、上記第1の流路が下流側の分岐点で、上記対象細胞を含む液を回収するための対象細胞回収用流路と、上記対象細胞以外の細胞を含む液を回収するための廃液回収用流路とに分岐している、セルソーターチップと、
 上記分岐点よりも上流の予備的領域で上記第1の流路を流れる上記試料液中の細胞を整列させるための外力を該細胞に付加する第1の外力付加機構と、
 上記分岐点よりも上流の、上記予備的領域よりも下流の第1の領域で上記第1の流路を流れる上記試料液中の細胞のデジタル画像を取得して、該画像のデジタル解析により上記対象細胞を識別するための光学系と、
 上記分岐点よりも上流の上記第1の領域とほぼ一致するかまたはそれよりも下流の第2の領域で、上記画像解析による細胞識別結果に基づいて、上記第1の流路を流れる対象細胞または対象細胞以外の細胞に対して外力を加えて該細胞の進行方向をシフトさせ、上記対象細胞を上記対象細胞回収用流路へ、上記対象細胞以外の細胞を上記廃液回収用流路へ導く第2の外力付加機構と、
 上記光学系ならびに上記第1および第2の外力付加機構の動作を制御する制御部と
を備え、
 上記第1の外力付加機構が、上記第1の流路の上流側に流体接続する、サイドシース流を生成するためのサイドシース液を流す一対の流路を含み、上記サイドシース液が水より比重が軽く水と混ざり合わない油である、オンチップ・セルソーターシステム。
[12]上記光学系による上記デジタル画像から上記細胞識別結果を得るタイミングと上記第2の外力付加機構による上記外力を加えるタイミングとの間のタイムラグが最小となるように構成されている、上記[9]~[11]のいずれか一項に記載のオンチップ・セルソーターシステム。
[13]上記細胞を各回収用流路へ導く外力付加機構が、該細胞に電気力を付加するためのゲル電極または金属電極を含む、上記[1]~[12]のいずれか一項に記載のオンチップ・セルソーターシステム。
[14]上記対象細胞が心筋細胞であり、
 上記光学系により画像認識によって得られた細胞の形状から、下記式
Figure JPOXMLDOC01-appb-M000002

 
によって、Rが1.1未満の細胞を心筋細胞として識別する、上記[1]~[13]のいずれか一項に記載のオンチップ・セルソーターシステム。
[15]上記[1]~[14]のいずれか一項に記載のオンチップ・セルソーターシステムを用いて、試料液中の対象細胞を選別する方法。
[1] A cell sorter chip including a first flow path for flowing a sample liquid containing cells including target cells, wherein the first flow path is a downstream branch point and includes the target cells. A cell sorter chip branching into a target cell recovery flow path for recovering the liquid and a waste liquid recovery flow path for recovering a liquid containing cells other than the target cells;
An optical system for acquiring a digital image of a cell in the sample solution flowing in the first flow path in a first region upstream from the branch point and identifying the target cell by digital analysis of the image When,
Based on the result of cell identification by the image analysis, a target cell flowing through the first flow path or a cell other than the target cell in a second region substantially coincident with the first region upstream from the branch point An external force is applied to the cell to shift the traveling direction of the cell by applying an external force to the target cell recovery channel, and an external force applying mechanism for guiding cells other than the target cell to the waste liquid recovery channel;
An on-chip cell sorter system comprising: a control unit that controls operations of the optical system and the external force applying mechanism.
[2] In the above [1], the time lag between the timing of obtaining the cell identification result from the digital image by the optical system and the timing of applying the external force by the external force applying mechanism is minimized. The on-chip cell sorter system described.
[3] A cell sorter chip including a first flow path for flowing a sample solution containing cells including target cells, wherein the first flow path is a downstream branch point and includes the target cells. A cell sorter chip branching into a target cell recovery flow path for recovering the liquid and a waste liquid recovery flow path for recovering a liquid containing cells other than the target cells;
An optical system for acquiring a digital image of a cell in the sample solution flowing in the first flow path in a first region upstream from the branch point and identifying the target cell by digital analysis of the image When,
A target cell that flows in the first flow path based on the result of cell identification by the image analysis in a second region that substantially matches or is downstream of the first region upstream from the branch point. Alternatively, an external force is applied to a cell other than the target cell to shift the traveling direction of the cell, and the target cell is guided to the target cell recovery channel and a cell other than the target cell is guided to the waste liquid recovery channel. An external force application mechanism for
A control unit for controlling the operation of the optical system and the external force application mechanism,
An on-chip cell sorter system, wherein the optical system includes a microscope having an objective lens having a numerical aperture of 0.3 or less and a zoom lens optically coupled to the objective lens.
[4] A cell sorter chip including a first flow path for flowing a sample solution containing cells including target cells, wherein the first flow path is a downstream branch point and includes the target cells. A cell sorter chip branching into a target cell recovery flow path for recovering the liquid and a waste liquid recovery flow path for recovering a liquid containing cells other than the target cells;
An optical system for acquiring a digital image of a cell in the sample solution flowing in the first flow path in a first region upstream from the branch point and identifying the target cell by digital analysis of the image When,
A target cell that flows in the first flow path based on the result of cell identification by the image analysis in a second region that substantially matches or is downstream of the first region upstream from the branch point. Alternatively, an external force is applied to a cell other than the target cell to shift the traveling direction of the cell, and the target cell is guided to the target cell recovery channel and a cell other than the target cell is guided to the waste liquid recovery channel. An external force application mechanism;
A control unit for controlling the operation of the optical system and the external force application mechanism,
The cell sorter chip is arranged so that the first flow path is substantially parallel to the direction of gravity so that the sample liquid flows substantially vertically downward from the upstream side to the downstream side of the first flow path. An on-chip cell sorter system.
[5] A cell sorter chip including a first flow path for flowing a sample solution containing cells including target cells, wherein the first flow path is a downstream branch point and includes the target cells. A cell sorter chip branching into a target cell recovery flow path for recovering the liquid and a waste liquid recovery flow path for recovering a liquid containing cells other than the target cells;
An optical system for acquiring a digital image of a cell in the sample solution flowing in the first flow path in a first region upstream from the branch point and identifying the target cell by digital analysis of the image When,
A target cell that flows in the first flow path based on the result of cell identification by the image analysis in a second region that substantially matches or is downstream of the first region upstream from the branch point. Alternatively, an external force is applied to a cell other than the target cell to shift the traveling direction of the cell, and the target cell is guided to the target cell recovery channel and a cell other than the target cell is guided to the waste liquid recovery channel. An external force application mechanism;
A control unit for controlling the operation of the optical system and the external force application mechanism,
The external force applying mechanism includes a gel electrode or a metal electrode for applying an electric force to fine particles including cells flowing through the first flow path, and the conductivity of the sample solution is 10 2 μS / cm or less. Chip cell sorter system.
[6] An external force for aligning cells in the sample solution flowing in the first channel in the third region upstream of the first region upstream of the first channel is applied to the cells. The on-chip cell sorter system according to any one of the above [1] to [5], further comprising a further external force applying mechanism applied to the.
[7] The ON according to [6], wherein the further external force applying mechanism that applies an external force for aligning the cells in the sample solution to the cells applies an external force by an electric force or a sheath flow. Chip cell sorter system.
[8] A cell sorter chip including a first flow path for flowing a sample solution containing cells including target cells, wherein the first flow path is a downstream branch point and includes the target cells. A cell sorter chip branching into a target cell recovery flow path for recovering the liquid and a waste liquid recovery flow path for recovering a liquid containing cells other than the target cells;
An optical system for acquiring a digital image of a cell in the sample solution flowing in the first flow path in a first region upstream from the branch point and identifying the target cell by digital analysis of the image When,
A target cell that flows in the first flow path based on the result of cell identification by the image analysis in a second region that substantially matches or is downstream of the first region upstream from the branch point. Alternatively, an external force is applied to a cell other than the target cell to shift the traveling direction of the cell, and the target cell is guided to the target cell recovery channel and a cell other than the target cell is guided to the waste liquid recovery channel. An external force application mechanism;
A control unit for controlling the operation of the optical system and the external force application mechanism,
further,
A reservoir fluidly connected to the upstream side of the first flow path and storing a buffer solution for sheath liquid;
A sample solution introduction channel fluidly connected to the upstream side of the channel for introducing a sample solution containing cells into the first channel,
An on-chip-chip, wherein a tip end portion of the sample solution introduction channel on the side fluidly connected to the first channel extends to a downstream side of the introduction portion of the buffer solution to the first channel. Cell sorter system.
[9] A cell sorter chip including a first flow path for flowing a sample solution containing cells including target cells, wherein the first flow path is a downstream branch point and includes the target cells. A cell sorter chip branching into a target cell recovery flow path for recovering the liquid and a waste liquid recovery flow path for recovering a liquid containing cells other than the target cells;
A first external force applying mechanism for applying to the cells an external force for aligning the cells in the sample solution flowing through the first flow path in a preliminary region upstream from the branch point;
A digital image of the cells in the sample solution flowing in the first flow path in a first region upstream of the branch point and downstream of the preliminary region is obtained, and the digital analysis of the image An optical system for identifying a target cell;
A target cell that flows in the first flow path based on the result of cell identification by the image analysis in a second region that substantially matches or is downstream of the first region upstream from the branch point. Alternatively, an external force is applied to a cell other than the target cell to shift the traveling direction of the cell, and the target cell is guided to the target cell recovery channel and a cell other than the target cell is guided to the waste liquid recovery channel. A second external force application mechanism;
A controller that controls the operation of the optical system and the first and second external force application mechanisms,
The first external force applying mechanism is a comb-shaped electrode for generating repulsive force on microparticles containing cells in a sample solution arranged along one surface of the first flow path, and the first flow path An on-chip cell sorter system in which the cross section perpendicular to the flow path is tapered or convex toward the center of the surface opposite to the surface on which the electrodes are arranged in order to promote alignment of the fine particles .
[10] A cell sorter chip including a first flow path for flowing a sample solution containing cells including target cells, wherein the first flow path is a downstream branch point and includes the target cells. A cell sorter chip branching into a target cell recovery flow path for recovering the liquid and a waste liquid recovery flow path for recovering a liquid containing cells other than the target cells;
A first external force applying mechanism for applying to the cells an external force for aligning the cells in the sample solution flowing through the first flow path in a preliminary region upstream from the branch point;
A digital image of the cells in the sample solution flowing in the first flow path in a first region upstream of the branch point and downstream of the preliminary region is obtained, and the digital analysis of the image An optical system for identifying a target cell;
A target cell that flows in the first flow path based on the result of cell identification by the image analysis in a second region that substantially matches or is downstream of the first region upstream from the branch point. Alternatively, an external force is applied to a cell other than the target cell to shift the traveling direction of the cell, and the target cell is guided to the target cell recovery channel and a cell other than the target cell is guided to the waste liquid recovery channel. A second external force application mechanism;
A controller that controls the operation of the optical system and the first and second external force application mechanisms,
The second external force applying mechanism is a gel electrode disposed so as to come into contact with the sample liquid on both side surfaces of the first flow path, and when the gel is in a sol state, the sol liquid is In order not to leak into the flow path, the sol liquid is provided on both side surfaces along the first flow path at regular intervals so that the surface tension of the sol liquid can prevent the sol liquid from leaking into the flow path. An on-chip cell sorter system configured to contact the sample solution through an array of slits.
[11] A cell sorter chip including a first flow path for flowing a sample solution containing cells including target cells, wherein the first flow path is a downstream branch point and includes the target cells. A cell sorter chip branching into a target cell recovery flow path for recovering the liquid and a waste liquid recovery flow path for recovering a liquid containing cells other than the target cells;
A first external force applying mechanism for applying to the cells an external force for aligning the cells in the sample solution flowing through the first flow path in a preliminary region upstream from the branch point;
A digital image of the cells in the sample solution flowing in the first flow path in a first region upstream of the branch point and downstream of the preliminary region is obtained, and the digital analysis of the image An optical system for identifying a target cell;
A target cell that flows in the first flow path based on the result of cell identification by the image analysis in a second region that substantially matches or is downstream of the first region upstream from the branch point. Alternatively, an external force is applied to a cell other than the target cell to shift the traveling direction of the cell, and the target cell is guided to the target cell recovery channel and a cell other than the target cell is guided to the waste liquid recovery channel. A second external force application mechanism;
A controller that controls the operation of the optical system and the first and second external force application mechanisms,
The first external force application mechanism includes a pair of flow paths for flowing a side sheath liquid for generating a side sheath flow that is fluidly connected to the upstream side of the first flow path. An on-chip cell sorter system that is light in specific gravity and does not mix with water.
[12] The time lag between the timing of obtaining the cell identification result from the digital image by the optical system and the timing of applying the external force by the second external force applying mechanism is minimized. [9] The on-chip cell sorter system according to any one of [11] to [11].
[13] In any one of the above [1] to [12], the external force applying mechanism that guides the cell to each recovery flow path includes a gel electrode or a metal electrode for applying an electric force to the cell. The on-chip cell sorter system described.
[14] The target cell is a cardiomyocyte,
From the shape of the cells obtained by image recognition with the above optical system,
Figure JPOXMLDOC01-appb-M000002


The on-chip cell sorter system according to any one of [1] to [13] above, wherein a cell having R of less than 1.1 is identified as a cardiomyocyte by
[15] A method for selecting target cells in a sample solution using the on-chip cell sorter system according to any one of [1] to [14].
 さらに、本発明は、以下のオンチップ・セルソーターシステム、該システムを用いて被験体由来の細胞試料液から血中がん細胞の候補細胞を同定する方法および光学モジュールを提供する。
〈1〉被験体由来の蛍光染色された細胞を含む試料液を流すための流路を備えたセルソーターチップと、
 上記細胞に対して照射するための明視野光源および蛍光光源を含む光学系と、
 上記セルソーターチップの上記流路を流れる上記試料液中の上記細胞の明視野画像と上記細胞に結合した蛍光標識物質の蛍光強度および上記細胞の蛍光画像とを同時に取得する検出系と、
 上記明視野画像、上記蛍光強度、および上記蛍光画像に基づいて、上記流路を流れる多核細胞および/または細胞クラスターを同定する制御・解析手段と、
 上記同定された多核細胞および/または細胞クラスターを選択的に回収する手段と
を備えるオンチップ・セルソーターシステム。
〈2〉上記制御・解析手段が、
 i)上記細胞のサイズ(面積)、周囲長、および該面積と該周囲長によって得られる上記細胞の表面の凹凸の程度を示すRの値からなる群から選択される1つ以上のデータ、ならびに
 ii)上記細胞に結合した上記標識物質の蛍光の波長と強度のスペクトル、上記細胞内で蛍光染色された1つ以上の領域の細胞内での各重心座標および面積からなる群から選択される1つ以上のデータ
を取得し、上記データに基づいて上記流路を流れる多核細胞および/または細胞クラスターを同定する、上記〈1〉に記載のオンチップ・セルソーターシステム。
〈3〉上記選択的に回収した多核細胞および/または細胞クラスター由来の遺伝子の核酸配列を計測する手段をさらに備える、上記〈1〉または〈2〉に記載のオンチップ・セルソーターシステム。
〈4〉上記明視野画像と上記蛍光画像とを、1つの高速カメラの受光面上に、分割して同時に表示する機能を有する画像分割機構を備える上記〈1〉~〈3〉のいずれか一項に記載のオンチップ・セルソーターシステム。
〈5〉上記明視野画像と上記蛍光画像とで画像の拡大率が異なるように調整する機構を備える、上記〈4〉に記載のオンチップ・セルソーターシステム。
〈6〉血中がん細胞の候補細胞を同定するために使用される、上記〈1〉~〈5〉のいずれか一項に記載のオンチップ・セルソーターシステム。
〈7〉上記〈1〉~〈6〉のいずれか一項に記載のオンチップ・セルソーターシステムを用いて被験体由来の細胞試料液から血中がん細胞の候補細胞を同定する方法であって、
 以下の工程:
  (1)健常な血液中では存在しない細胞クラスター(塊)を血中がん細胞候補として同定して選択的に回収する工程、
  (2)健常な血液中では存在しない多核細胞を血中がん細胞候補として同定して選択的に回収する工程、
  (3)健常な血液中では存在しない巨大細胞を血中がん細胞候補として同定して選択的に回収する工程、および/または
  (4)上記(1)、(2)、または(3)に加えて、がん細胞のバイオマーカーの1つあるいは複数に対する蛍光抗体の蛍光強度の存在と組み合わせた解析でがん細胞と同定して選択的に回収する工程
を含む、方法。
〈8〉上記蛍光抗体が、EpCam抗体、K-ras抗体、またはサイトケラチン抗体である、上記〈7〉に記載の方法。
〈9〉さらに以下:
 上記(1)について、明視野像によるR>1.3による評価、あるいは、明視野像による上記細胞のサイズと蛍光像による核の数および分布(すなわち隣接する複数の核の像について、その重心の距離が互いに3μm以上離れている事)によって判別すること、
 上記(2)について、明視野像によってR<1.3で、かつ、核の数と分布(すなわち隣接する複数の核の像について、その重心間の距離が互いに3μm以内で離れている事)によって判別すること、
 上記(3)について、明視野像によって、R<1.3かつ、細胞サイズが直径に換算して20μmを超えている事によって判別すること、または
 上記(1)~(3)を組み合わせて、1つ以上の合致条件があったものをがん細胞として判定すること
を含む、上記〈7〉または〈8〉に記載の方法。
〈10〉光が反射する方向を3次元に調整可能な角度調整機能付きの第1のダイクロイックミラー、
 上記ダイクロイックミラーで反射した画像データを含む光が導入されるフィルター系、
 画像サイズを調整するための可動式の遮蔽板からなり、上記フィルター系を介した光が導入される画像サイズ調整系、
 上記画像サイズ調整系を介した光が導入される、光が反射する方向を3次元に調整可能な角度調整機能付きの第2のダイクロイックミラー、および
 上記第2のダイクロイックミラーを介した光が導入される、結像位置の差を補正するための光学レンズ系
を備える光学明視野/蛍光顕微鏡系で使用するための光学モジュールであって、
  上記光学レンズ系により上記画像の拡大および縮小が可能であり、明視野画像と蛍光画像との間で拡大率の異なる画像を生成することができるように構成されている光学モジュール。
〈11〉蛍光染色した細胞を含む試料液中の上記細胞の明視野画像と上記細胞に結合した蛍光標識物質の蛍光強度および上記細胞の蛍光画像とを同時に取得するために使用される、上記〈10〉に記載の光学モジュール。
Furthermore, the present invention provides the following on-chip cell sorter system, a method for identifying candidate cells of blood cancer cells from a cell sample solution derived from a subject using the system, and an optical module.
<1> a cell sorter chip provided with a flow path for flowing a sample solution containing fluorescently stained cells derived from a subject;
An optical system including a bright-field light source and a fluorescent light source for irradiating the cells;
A detection system for simultaneously acquiring a bright field image of the cells in the sample solution flowing through the flow path of the cell sorter chip, a fluorescence intensity of a fluorescent labeling substance bound to the cells, and a fluorescence image of the cells;
Control / analyzing means for identifying multinucleated cells and / or cell clusters flowing in the flow path based on the bright field image, the fluorescence intensity, and the fluorescence image;
An on-chip cell sorter system comprising: means for selectively recovering the identified multinucleated cells and / or cell clusters.
<2> The control / analysis means is
i) one or more data selected from the group consisting of the size (area) of the cell, the perimeter, and the value of R indicating the degree of unevenness of the surface of the cell obtained by the area and the perimeter, and ii) 1 selected from the group consisting of the fluorescence wavelength and intensity spectrum of the labeling substance bound to the cell, and the barycentric coordinates and area of each of one or more regions fluorescently stained in the cell. The on-chip cell sorter system according to the above <1>, wherein two or more data are acquired, and multinucleated cells and / or cell clusters flowing in the flow path are identified based on the data.
<3> The on-chip cell sorter system according to the above <1> or <2>, further comprising means for measuring a nucleic acid sequence of a gene derived from the selectively collected multinucleated cells and / or cell clusters.
<4> Any one of the above <1> to <3>, comprising an image dividing mechanism having a function of dividing and displaying the bright field image and the fluorescent image on the light receiving surface of one high-speed camera at the same time. The on-chip cell sorter system according to item.
<5> The on-chip cell sorter system according to <4>, further including a mechanism that adjusts the magnification of the bright field image and the fluorescent image so that the magnification of the image differs.
<6> The on-chip cell sorter system according to any one of the above <1> to <5>, which is used for identifying candidate cells of blood cancer cells.
<7> A method for identifying candidate cancer cells in blood from a cell sample solution derived from a subject using the on-chip cell sorter system according to any one of <1> to <6> above. ,
The following steps:
(1) A step of identifying and selectively recovering cell clusters (clumps) that do not exist in healthy blood as blood cancer cell candidates,
(2) a step of identifying and selectively recovering multinucleated cells that do not exist in healthy blood as blood cancer cell candidates;
(3) a step of identifying and selectively collecting giant cells that do not exist in healthy blood as blood cancer cell candidates, and / or (4) in (1), (2), or (3) above In addition, the method comprising the step of identifying and selectively recovering from cancer cells by analysis combined with the presence of fluorescence intensity of a fluorescent antibody against one or more biomarkers of cancer cells.
<8> The method according to <7>, wherein the fluorescent antibody is an EpCam antibody, a K-ras antibody, or a cytokeratin antibody.
<9> Further below:
As for (1) above, evaluation by R> 1.3 using a bright field image, or the number and distribution of nuclei by the cell size and the fluorescence image using a bright field image (that is, the distance between the centers of gravity of adjacent nuclear images Are separated from each other by 3 μm or more),
For (2) above, R <1.3 is determined by the bright field image, and the number and distribution of nuclei (that is, the distance between the centroids of the images of adjacent nuclei is within 3 μm from each other) To do,
As for (3) above, it is determined by R <1.3 by the bright field image and the cell size is converted to a diameter exceeding 20 μm, or a combination of the above (1) to (3). The method according to the above <7> or <8>, which comprises determining those having the above matching conditions as cancer cells.
<10> a first dichroic mirror with an angle adjustment function capable of adjusting the direction in which light is reflected in three dimensions;
A filter system in which light including image data reflected by the dichroic mirror is introduced;
An image size adjustment system comprising a movable shielding plate for adjusting the image size, into which light is introduced through the filter system,
Light introduced through the image size adjustment system is introduced, a second dichroic mirror with an angle adjustment function capable of three-dimensionally adjusting the direction in which the light is reflected, and light introduced through the second dichroic mirror An optical module for use in an optical bright field / fluorescence microscope system comprising an optical lens system for correcting differences in imaging position,
An optical module configured such that the image can be enlarged and reduced by the optical lens system, and an image having a different magnification rate can be generated between a bright-field image and a fluorescent image.
<11> A bright field image of the cells in a sample solution containing fluorescently stained cells, a fluorescence intensity of a fluorescent labeling substance bound to the cells, and a fluorescence image of the cells, which are used to simultaneously acquire 10>. The optical module according to 10>.
 さらに、本発明は、以下のオンチップ・セルソーターシステムを提供する。
〈1〉被験体由来の蛍光染色された細胞を含む試料液を流すための流路を備えたセルソーターチップと、
 上記細胞に対して照射するための明視野光源、1つ以上の蛍光光源、それぞれの波長の光を伝導する光ファイバー、および照射部位において観察対象に光を集束させる集光用レンズを含む光学系と、
 上記セルソーターチップの上記流路を流れる上記試料液中の上記細胞の蛍光強度を検出するための蛍光を伝導する、1つ以上の蛍光波長の各々に対応した光ファイバーと光ファイバーの後段に配置された特定の蛍光波長を通過させるバンドパスフィルターと蛍光検出器からなる上記細胞に結合した蛍光標識物質の蛍光強度を同時に取得する検出系と、
 上記細胞の明視野画像と上記細胞の蛍光画像とを同時に取得する検出系と、
 上記各系の動作を制御し、上記明視野画像、上記蛍光強度、および上記蛍光画像に基づいて、上記流路を流れる多核細胞および/または細胞クラスターを同定する制御・解析手段と、
 上記同定された対象物を選択的に回収する手段と
を備えるオンチップ・セルソーターシステム。
Furthermore, the present invention provides the following on-chip cell sorter system.
<1> a cell sorter chip provided with a flow path for flowing a sample solution containing fluorescently stained cells derived from a subject;
An optical system including a bright-field light source for irradiating the cells, one or more fluorescent light sources, an optical fiber that conducts light of each wavelength, and a condensing lens that focuses the light on the observation target at the irradiation site; ,
An optical fiber corresponding to each of one or more fluorescence wavelengths that conducts fluorescence for detecting the fluorescence intensity of the cells in the sample solution flowing through the flow path of the cell sorter chip, and a specific disposed at the subsequent stage of the optical fiber A detection system that simultaneously acquires the fluorescence intensity of the fluorescent labeling substance bound to the cells, comprising a bandpass filter and a fluorescence detector that pass the fluorescence wavelength of
A detection system for simultaneously acquiring a bright field image of the cell and a fluorescence image of the cell;
Control / analyzing means for controlling the operation of each system and identifying multinucleated cells and / or cell clusters flowing in the flow path based on the bright field image, the fluorescence intensity, and the fluorescence image;
An on-chip cell sorter system comprising means for selectively collecting the identified object.
 さらに、本発明は、以下のオンチップ・セルソーターシステムを提供する。
 (1)細胞(クラスター)の150μm以上の核の面積が取得画像から計測される
(2)細胞(クラスター)の250μm以上の面積が取得画像から計測される
(3)細胞(クラスター)の3つ以上の核の存在が取得画像から計測される
のいずれか1つあるいは、上記3つの条件のANDでの組み合わせ、すなわち(1)かつ(2)、あるいは、(1)かつ(3)、あるいは、(2)かつ(3)あるいは、(1)かつ(2)かつ(3)を、血中がん細胞の存在の判断基準として用いることを特長とするオンチップ・セルソーターシステム。
Furthermore, the present invention provides the following on-chip cell sorter system.
(1) The area of nuclei of 150 μm 2 or more of cells (cluster) is measured from the acquired image (2) The area of 250 μm 2 or more of cells (cluster) is measured from the acquired image (3) of cells (cluster) Any one of the presence of three or more nuclei measured from the acquired image, or a combination of the above three conditions in AND, that is, (1) and (2), or (1) and (3), Alternatively, an on-chip cell sorter system characterized by using (2) and (3) or (1) and (2) and (3) as criteria for determining the presence of blood cancer cells.
 さらに、本発明は、以下のオンチップ・セルソーターシステムを提供する。
 細胞(クラスター)の周囲長と面積から円近似として導出した周囲長の比Rについて、(1/R)が0.9以上となるときには、細胞(クラスター)が孤立1細胞であること、(1/R)が0.9未満となるときには、細胞(クラスター)が2細胞以上の細胞のクラスターからなることを、細胞クラスターの細胞数の判断基準とすることを特長とするオンチップ・セルソーターシステム。
Furthermore, the present invention provides the following on-chip cell sorter system.
When the ratio R of the perimeter derived from the perimeter of the cell (cluster) and the area as a circular approximation (1 / R) is 0.9 or more, the cell (cluster) is an isolated single cell, (1 / R ) Is less than 0.9, the on-chip cell sorter system is characterized in that a cell (cluster) is composed of a cluster of two or more cells as a criterion for determining the number of cells in the cell cluster.
 複数の異なる波長帯域の顕微画像取得を1つの高速カメラ受光面で同時に取得するために、
 構成最小単位となる1ユニットの光分岐モジュールにおいて、2次元に展開する光路系を分岐させるために容器の両底面に対象に1対の画像光の入力/出力用の光路系、側面に2対4個のミラー反射光の導入光路の穴、それぞれに自由に着脱が出来る6つの光路カバが配置され、これらの側面に2対4個のミラー反射光の導入光路の穴に光が導入されるように、2個の着脱式可動調整機能つきミラーホルダーが配置され、これらの各ミラーは微調整によって反射光の進行方向を微小に移動させることが可能となっており、これによってカメラでの結像位置を自由に移動操作することができる構成となっており、ミラーホルダーには、全反射ミラー、ハイパスフィルター、ローパスフィルターなどを設置することができ、2個の着脱式可動調整機能つきミラーホルダーの間には、着脱式光路ウインドウが配置され、透過してきた光の断面積を調整することができ、着脱式フィルター4304が配置されており、バンドパスフィルターなどによって光の波長帯域幅をより緻密に調整することができ、
 上記ユニットを連結して複数の波長の像を組み合わせて観察するために、(計測する画像取得カメラ系の受光面の全面積/平行光導入モジュール)以下となる面積となるように導入する入射光の断面積を小さく切り取る光学ウインドウフィルターが配置された画像光学イメージを導入する平行光導入モジュールと、
 上記、平行光導入モジュールに連結した第1段の上記光分岐モジュールにおいて、(波長)ハイパスフィルターあるいは(波長)ローパスフィルターbが組み込まれたミラーホルダーに導入されて、
 2つの波長に分岐される入射光の透過光は全反射ミラーによって反射され、第2段の光分岐モジュールの第2のフィルター(前段(第1段)の光分岐モジュールの第1のフィルターと同じフィルター)に導入され、他方、第1段の光分岐モジュールのフィルターによって反射した光は、第2段の光分岐モジュールの第1のフィルターに導入され、同様に、第n段の光分岐モジュールまで同様な、波長帯域分岐を行い、各分岐波長について、各波長帯域の画像がカメラの受光面で重ならないように光路の方向を調整する位置決めを各着脱式可動調整機能つきミラーホルダーで行うことができ、
 特に最終段の光分岐モジュールでは、第1のフィルターに全反射ミラーを用い、第2のフィルターには、前段の光分岐モジュールでの第1のフィルターを用い、
 ハイパスフィルター、あるいはローパスフィルターについては、その分岐波長について、単調増加、あるいは単調減少の波長の順番で配置するものとし、前段の第1フィルターと次段の第2フィルターには、同じフィルターを用い、かつ、初段の第2フィルターと最終段の第1フィルターには、全反射ミラーを用いるものとすることを特徴とした画像分岐表示装置。
In order to acquire microscopic images in multiple different wavelength bands simultaneously with one high-speed camera light receiving surface,
In the optical branching module of one unit, which is the minimum structural unit, a pair of optical path systems for input / output of image light on the both bottom surfaces of the container and two pairs on the side surface for branching a two-dimensionally developed optical path system Four optical path holes for introducing mirror-reflected light, and six optical path covers that can be freely attached to and detached from each other are arranged, and light is introduced into the holes of the optical path for introducing two-to-four mirror-reflected light on these side surfaces. In this way, two mirror holders with detachable movable adjustment function are arranged, and each of these mirrors can finely adjust the traveling direction of the reflected light, and this makes it possible to connect with the camera. The image position can be freely moved, and the mirror holder can be equipped with a total reflection mirror, high-pass filter, low-pass filter, etc. Two removable adjustable adjustments A removable optical path window is arranged between the mirror holders with a function, the sectional area of the transmitted light can be adjusted, and a removable filter 4304 is arranged. The width can be adjusted more precisely,
In order to connect the above units and observe images of a plurality of wavelengths in combination, incident light introduced so as to have an area equal to or smaller than (total area of light receiving surface of image acquisition camera system to be measured / parallel light introducing module) A parallel light introducing module for introducing an image optical image in which an optical window filter that cuts out a cross-sectional area of
In the first-stage optical branching module connected to the parallel light introducing module, the (wavelength) high-pass filter or the (wavelength) low-pass filter b is introduced into the mirror holder,
The transmitted light of the incident light branched into two wavelengths is reflected by the total reflection mirror, and is the same as the first filter of the optical branching module of the second stage (first stage). On the other hand, the light reflected by the filter of the first-stage optical branching module is introduced into the first filter of the second-stage optical branching module, and similarly up to the n-th optical branching module. Similarly, wavelength band splitting is performed, and for each branch wavelength, positioning to adjust the direction of the optical path so that the images in each wavelength band do not overlap with the light receiving surface of the camera can be performed with each mirror holder with detachable movable adjustment function Can
In particular, in the last-stage optical branching module, a total reflection mirror is used for the first filter, and for the second filter, the first filter in the previous-stage optical branching module is used,
The high-pass filter or low-pass filter is arranged in the order of the monotonically increasing or monotonically decreasing wavelength for the branch wavelength, and the same filter is used for the first filter in the previous stage and the second filter in the next stage. In addition, the image branching display device is characterized in that a total reflection mirror is used for the first-stage second filter and the last-stage first filter.
 空気中に生成し、撥水基板上に滴下した水滴中の細胞を観察し分離するイメージングセルソーターで、
 試料溶液中の細胞を細胞リザーバー付き水滴形成モジュールの先端の細管から一定の圧力で試料溶液を排出する事で最適なサイズの水滴を製造して滴下する機構と、
 水滴が掲載される直前の水がリザーバーと繋がっている領域から、水滴がちょうど形成される領域までを覆う静電場コイルに、水滴に帯電させたい電荷と逆の電荷を帯電させることで水滴を希望する電荷で帯電させることができ機構と、
 形成した帯電水滴を、たとえばガラス等の表面にテフロン(登録商標)樹脂加工をした光学的に透過性を持った撥水絶縁基板の上に滴下され、この基板の傾斜方向に向けて転げ落ちる機構と、
 この水滴が転げ落ちる経路上の基板背面に明視野像と蛍光像を計測できる高速カメラや散乱光強度、蛍光強度等を計測することができる光学計測モジュールが配置されている機構と、
 取得した情報を解析制御モジュールで解析することで、ターゲット細胞が水滴に有るかどうかを判断する機構と、
 前記判断によって、ターゲット細胞の種類を同定した後、水滴の落下方向から位置を変更するための1つ以上の水滴移動方向制御用静電場ガイドのうちの特定のひとつの経路に水滴と逆の電荷を持つように電荷を与えて、水滴の落下方向を変更し、その後段にある分画水滴リザーバーに誘導する機構と、
 各水滴移動方向制御用静電場ガイドの電極への印加を前記解析制御モジュールの解析結果にあわせて印加することが可能な機構と、本機構には制御しないときには各電極は水滴移動方向制御用静電場ガイドは接地することで水滴の移動には影響を与えない機構を有することと、
 滴下された水滴の落下方向について初期の位置決め制度を高めるために同様の水滴移動方向制御用静電場ガイドを配置、あるいは、テフロンコート等の撥水面の下面に挟み込む一対のレール状の立体構造を付加することと、
 水滴の落下速度すなわち計測時間を自在に制御できる基板傾斜制御機構を有する事と、異なる傾斜の組み合わせからなる基板を用いていることと、
 観察領域および水滴分画開始領域については水滴が等速移動をするように傾斜を水平(重力に垂直)にすることで、落下方向について等距離で細密に水滴を並ばせることができる手段を有する事と、
 基板の温度を調整することで撥水状態で最小限の接触をした水滴の温度を制御する機構と、
 試料水滴に反応液を衝突させて一定の反応後時間での混合液滴を観察計測して、反応結果に応じた水滴中のターゲット細胞を選択回収するために、反応液リザーバー水滴形成機構にて試料水滴と逆電荷を弱く印加した反応液滴を作成し、同様の水滴移動方向制御用静電場ガイドによって反応液を試料水滴に誘導することができるセルソーター。
An imaging cell sorter that observes and separates cells in water droplets that are generated in the air and dropped on the water-repellent substrate.
A mechanism for producing and dropping water droplets of an optimal size by discharging the sample solution at a constant pressure from the thin tube at the tip of the water droplet forming module with a cell reservoir, in the sample solution,
Water droplets are desired by charging the electrostatic field coil that covers from the area where the water just before the water drops are linked to the reservoir to the area where the water drops are just formed, to the opposite charge to the water charge. A mechanism that can be charged with an electric charge,
A mechanism in which the formed water droplets are dropped onto an optically transparent water-repellent insulating substrate having a Teflon (registered trademark) resin processed on the surface of glass or the like, and rolled down in the direction of inclination of the substrate, ,
A mechanism in which a high-speed camera capable of measuring a bright field image and a fluorescent image on the back surface of the substrate on the path where the water drops fall and an optical measurement module capable of measuring scattered light intensity, fluorescent intensity, etc. are arranged,
By analyzing the acquired information with the analysis control module, a mechanism to determine whether the target cell is in a water drop,
After identifying the type of the target cell according to the determination, the charge opposite to the water droplet is transferred to a specific one of the one or more water droplet movement direction control electrostatic field guides for changing the position from the direction in which the water droplet falls. A mechanism to change the drop direction of the water droplets, and to guide to the fractional water droplet reservoir in the subsequent stage,
A mechanism that can apply the electrostatic field guide for each water droplet movement direction control to the electrode in accordance with the analysis result of the analysis control module, and each electrode is a static for the water droplet movement direction control when not controlled by this mechanism. The electric field guide has a mechanism that does not affect the movement of water drops by grounding,
In order to enhance the initial positioning system for the dropping direction of the dropped water droplets, a similar electrostatic field guide for controlling the water droplet movement direction is arranged, or a pair of rail-shaped three-dimensional structures sandwiched between the bottom surfaces of water repellent surfaces such as Teflon coat are added. To do
Having a substrate tilt control mechanism that can freely control the drop speed of water droplets, that is, the measurement time, and using a substrate composed of a combination of different tilts,
The observation area and the water droplet fractionation start area have means that can arrange water drops closely at equal distances in the falling direction by making the inclination horizontal (perpendicular to gravity) so that the water drops move at a constant speed. And
A mechanism for controlling the temperature of water droplets that have made minimal contact in a water-repellent state by adjusting the temperature of the substrate;
In order to selectively collect target cells in the water droplet according to the reaction result, the reaction liquid reservoir water droplet formation mechanism is used to collide the reaction liquid with the sample water droplet and observe and measure the mixed liquid droplet at a certain post-reaction time. A cell sorter that creates reaction droplets with weakly applied reverse charges to the sample water droplets, and can guide the reaction solution to the sample water droplets by the same electrostatic field guide for controlling the direction of water droplet movement.
 本発明はまた、血液を採取するプロセスと、血液において約250μm以上の面積を持つ細胞塊(クラスター)を選別し、これを回収して、培養、あるいは遺伝子変異検査、あるいは発現解析検査、によって、この細胞クラスターを同定する手順と、同定された細胞が血中の転移がん細胞である場合には、各クラスター単位で、その遺伝子変異を確認する事で、各クラスターが同一変異物であった場合には、癌の進行程度が、原発性がんからの転移が開始したところの初期であることが推定され、また、各クラスターの変異の履歴が同一でありながら、多くの異なる変異点がある場合には、転移がんの所在が多数領域に及んでいる事が推定できる手順と、また血中を流れる細胞クラスターが臓器の組織片であると同定できる場合は臓器の疾患を推定することができる手順と、さらに、特にマクロファージ等の貪食性白血球について、サイズが通常より肥大した細胞を回収し、その細胞中のバクテリア等の異種細胞の遺伝子を検査同定する手順と、B細胞の活性化によって内部形状が複雑化したもの、サイズが増大したものを選択的に回収し、そのB細胞の抗原を明らかにする事で免疫系が何に反応しているのか診断を行う手順からなる細胞クラスター診断技術を提供する。 The present invention also includes a process of collecting blood and a cell cluster (cluster) having an area of about 250 μm 2 or more in the blood, which is collected and cultured, or subjected to genetic mutation test or expression analysis test. The procedure for identifying this cell cluster, and if the identified cell is a metastatic cancer cell in the blood, by confirming the gene mutation in each cluster unit, each cluster is the same mutant. The progression of the cancer is presumed to be early in the beginning of metastasis from the primary cancer, and there are many different mutation points while the history of mutations in each cluster is the same. If there is a procedure, it is possible to estimate that the location of metastatic cancer has spread to many areas, and if the cell cluster flowing in the blood can be identified as a tissue piece of the organ, the disease of the organ is estimated. A procedure for recovering cells that are larger in size than normal, especially for phagocytic leukocytes such as macrophages, and examining and identifying genes of heterologous cells such as bacteria in the cells, and B cells From the procedure to diagnose what the immune system is reacting by selectively recovering those whose internal shape has become complicated due to activation of, and those whose size has increased and clarifying the antigen of the B cell A cell cluster diagnostic technique is provided.
 本発明はまた、健常血液には存在しない約250μm以上の断面積の細胞塊(クラスター)を除去するメンブレンフィルター等の細胞塊(クラスター)除去機構を用いて、患者の血液を還流させる事で、血中の転移がん細胞を効果的に物理的手法によって除去することによって転移がんの発症・進行を抑制する転移がん治療装置を提供する。 The present invention also allows the patient's blood to be refluxed using a cell cluster (cluster) removal mechanism such as a membrane filter that removes a cell cluster (cluster) having a cross-sectional area of approximately 250 μm 2 or more that does not exist in healthy blood. A metastatic cancer treatment device that suppresses the onset and progression of metastatic cancer by effectively removing metastatic cancer cells in blood by a physical technique.
 より具体的には、本発明は以下のオンチップ・セルソーターシステム、被験体由来の細胞試料液中のがん細胞の候補細胞を同定する方法、光分岐モジュール、イメージングセルソーター、血中の細胞塊の物理的除去による転移がん進行防止の医療処理装置、ならびに血中の細胞塊の検出を用いた転移がん、臓器異常または感染症の診断方法を提供する。 More specifically, the present invention relates to the following on-chip cell sorter system, a method for identifying cancer cell candidate cells in a subject-derived cell sample solution, an optical branching module, an imaging cell sorter, and a cell cluster in blood. Disclosed are a medical treatment apparatus for preventing metastatic cancer progression by physical removal, and a method for diagnosing metastatic cancer, organ abnormality, or infection using detection of a cell mass in blood.
[1]がん細胞の候補細胞を同定するために使用されるオンチップ・セルソーターシステムであって、
 被験体由来の蛍光染色された細胞を含む試料液を流すための流路を備えたセルソーターチップと、
 上記細胞に対して照射するための明視野光源および蛍光光源を含む光学系と、
 上記セルソーターチップの上記流路を流れる上記試料液中の上記細胞の明視野画像と上記細胞に結合した蛍光標識物質の蛍光強度および上記細胞の蛍光画像とを同時に取得する検出系と、
 上記明視野画像、上記蛍光強度、および上記蛍光画像に基づいて、上記流路を流れる多核細胞および/または細胞クラスターを同定する制御・解析手段と、
 上記同定された多核細胞および/または細胞クラスターを選択的に回収する手段と
を備え、
 上記制御・解析手段が、以下の(i)~(iii):
  (i)一塊の細胞もしくはクラスターの核の蛍光画像から得られる該一塊もしくはクラスターの核の面積が150μm以上である、
  (ii)一塊の細胞もしくはクラスターの明視野画像から得られる該一塊もしくはクラスターの面積が250μm以上である、または
  (iii)一塊の細胞もしくはクラスター中の核の数が3以上である
のいずれか1つの条件を満たすか、あるいは(i)および(ii)、(i)および(iii)、(ii)および(iii)、または(i)、(ii)および(iii)の条件を満たす場合に、上記細胞試料液中にがん細胞が存在する可能性が高いと判断する、
オンチップ・セルソーターシステム。
[2]上記制御・解析手段が、
 細胞(クラスター)の周囲長と面積から円近似として導出した周囲長の比Rについて、
 (i)(1/R)が0.9以上となるときには、細胞(クラスター)が孤立1細胞であること、または
 (ii)(1/R)が0.9未満となるときには、細胞(クラスター)が2細胞以上の細胞のクラスターからなること、
のように、(1/R)の値を上記細胞試料液中のクラスターの有無の判断基準とする、上記[1]に記載のオンチップ・セルソーターシステム。
[3]がん細胞の候補細胞を同定するために使用されるオンチップ・セルソーターシステムであって、
 被験体由来の蛍光染色された細胞を含む試料液を流すための流路を備えたセルソーターチップと、
 上記細胞に対して照射するための明視野光源および蛍光光源を含む光学系と、
 上記セルソーターチップの上記流路を流れる上記試料液中の上記細胞の明視野画像と上記細胞に結合した蛍光標識物質の蛍光強度および上記細胞の蛍光画像とを同時に取得する検出系と、
 上記明視野画像、上記蛍光強度、および上記蛍光画像に基づいて、上記流路を流れる多核細胞および/または細胞クラスターを同定する制御・解析手段と、
 上記同定された多核細胞および/または細胞クラスターを選択的に回収する手段と
を備え、
 上記制御・解析手段が、
 細胞(クラスター)の周囲長と面積から円近似として導出した周囲長の比Rについて、
 (i)(1/R)が0.9以上となるときには、細胞(クラスター)が孤立1細胞であること、または
 (ii)(1/R)が0.9未満となるときには、細胞(クラスター)が2細胞以上の細胞のクラスターからなること、
のように、(1/R)の値を上記細胞試料液中のクラスターの有無の判断基準とする、オンチップ・セルソーターシステム。
[4]上記選択的に回収した多核細胞および/または細胞クラスター由来の遺伝子の核酸配列を計測する手段をさらに備える、上記[1]~[3]のいずれかに記載のオンチップ・セルソーターシステム。
[5]上記明視野画像と上記蛍光画像とを、1つの高速カメラの受光面上に、分割して同時に表示する機能を有する画像分割機構を備える上記[1]~[4]のいずれか一項に記載のオンチップ・セルソーターシステム。
[6]上記明視野画像と上記蛍光画像とで画像の拡大率が異なるように調整する機構を備える、上記[5]に記載のオンチップ・セルソーターシステム。
[7]上記被験体由来の細胞が、該被験体の血液由来の細胞である、上記[1]~[6]のいずれかに記載のオンチップ・セルソーターシステム。
[8]上記[1]~[7]のいずれか一項に記載のオンチップ・セルソーターシステムを用いて被験体由来の細胞試料液中のがん細胞の候補細胞を同定する方法であって、
 被験体由来の蛍光染色された細胞を含む試料液をセルソーターチップの流路に流す工程、
 上記細胞に対して明視野光源および蛍光光源から光を照射する工程、
 上記セルソーターチップの上記流路を流れる上記試料液中の上記細胞の明視野画像と上記細胞に結合した蛍光標識物質の蛍光強度および上記細胞の蛍光画像とを取得する工程、
 上記明視野画像、上記蛍光強度、および上記蛍光画像に基づいて、上記流路を流れる多核細胞および/または細胞クラスターを同定する工程、ならびに
 上記同定された多核細胞および/または細胞クラスターを選択的に回収する工程
を含み、
 上記多核細胞および/または細胞クラスターを同定する際に、
  (i)一塊の細胞もしくはクラスターの核の蛍光画像から得られる該一塊もしくはクラスターの核の面積が150μm以上である、
  (ii)一塊の細胞もしくはクラスターの明視野画像から得られる該一塊もしくはクラスターの面積が250μm以上である、または
  (iii)一塊の細胞もしくはクラスター中の核の数が3以上である
のいずれか1つの条件を満たすか、あるいは(i)および(ii)、(i)および(iii)、(ii)および(iii)、または(i)、(ii)および(iii)の条件を満たす場合に、上記細胞試料液中にがん細胞が存在する可能性が高いと判断する、方法。
[9]光分岐モジュールであって、
 略直方体の筐体と、
 上記筐体内の底面に、対称に備えられた一対の画像光の入力/出力のための一対のミラーを含む光路系と、
 上記筐体の側面に備えられたミラー反射光の導入光路のための2対4個の開口部であって、長手方向の側面にそれぞれ2つずつ、短手方向の側面にそれぞれ1つずつ設けられた開口部と、
 上記2対4個の開口部のそれぞれに対して自由に着脱可能な6つの光路カバーと、
 上記2対4個の開口部のそれぞれに対して光が導入されるように上記ミラーを調整可能な、一対の着脱式可動ミラーホルダーと、
 上記一対のミラーの間に配置され、透過してきた光の断面積を調整可能な着脱式光路ウインドウと、
 上記一対のミラーの間に配置され、光の波長帯域幅を調整可能な着脱式フィルターと、
を備える、光分岐モジュール。
[10]複数の上記光分岐モジュールを連結して使用する、上記[9]に記載の光分岐モジュール。
[11]複数の異なる波長帯域の顕微鏡画像を1つのカメラ受光面で同時に取得するために使用する、上記[10]に記載の光分岐モジュール。
[12]一部の上記光分岐モジュールの上記一対のミラーの1つを外して使用することができる、上記[9]~[11]のいずれかに記載の光分岐モジュール。
[13]蛍光染色した細胞を含む試料液中の上記細胞の明視野画像と上記細胞に結合した蛍光標識物質の蛍光強度および上記細胞の蛍光画像とを同時に取得するために使用される、上記[9]~[12]のいずれかに記載の光分岐モジュール。
[14]細胞を含む試料溶液を保持するための試料溶液リザーバーおよび該リザーバーに繋がる細管を備えた水滴形成モジュールと、
 上記水滴形成モジュールで形成される水滴に帯電させるための静電場コイルと、
 上記形成された水滴を滴下するための撥水性表面を有する基板であって、光学的に透過性である基板と、
 上記基板表面の傾斜角度を調節するための基板傾斜制御機構と、
 上記水滴を滴下した基板表面とは反対側に配置された、明視野像と蛍光像とを計測可能なカメラを含む光学計測モジュールと
 上記撥水性表面に形成された水滴をその上で制御可能に移動させるための1または複数のガイドであって、上記水滴とは反対の電荷を帯電させた水滴移動方向制御用静電場ガイドと、
 上記複数の水滴移動方向制御用静電場ガイドのそれぞれの後段に配置された分画水滴リザーバーと、
 上記水滴移動方向制御用静電場ガイドに接続された水滴移動方向制御用静電場ガイド用電場スイッチング機構であって、上記静電場ガイドに帯電させる電場を制御する機構と、
 上記光学計測モジュールおよび上記スイッチング機構に接続され、上記光学計測モジュールにより取得した画像データを解析し、上記水滴中のターゲット細胞の有無を判断し、それに基づいて上記スイッチング機構の動作を制御する、解析制御モジュールと
 を備える、水滴中の細胞を観察し分離するためのイメージングセルソーター。
[15]上記水滴移動方向制御用静電場ガイドを複数備え、そのうちの少なくとも1つが初期の水滴の位置決め精度を高めるためのものであり、その他のガイドがターゲット細胞を含む水滴と含まない水滴とを選別するためのものであり、
 初期の水滴の位置決め精度を高めるためのガイドが、上記水滴の移動の上流に位置し、ターゲット細胞を含む水滴と含まない水滴とを選別するためのガイドが、その下流に位置する、上記[14]に記載のイメージングセルソーター。
[16]上記光学計測モジュールが、上記初期の水滴の位置決め精度を高めるためのガイド上を移動する上記水滴中の細胞の画像を取得しうるように配置されている、上記[14]または[15]に記載のイメージングセルソーター。
[17]上記ターゲット細胞を含む水滴と含まない水滴とを選別するためのガイドの特定の1つに上記水滴とは反対の電荷を与えて、上記水滴の移動方向を制御し、該ガイドの後段に配置された分画水滴リザーバーに上記水滴を誘導するように構成されている、上記[14]~[16]のいずれかに記載のイメージングセルソーター。
[18]さらに上記水滴の蒸発を防ぐためのカバーで覆われている、上記[14]~[17]のいずれかに記載のイメージングセルソーター。
[19]健常血液には存在しない約250μm以上の断面積の細胞塊(クラスター)を除去するメンブレンフィルターを含む細胞塊(クラスター)除去機構を備える転移がん治療装置であって、患者の血液を還流させる事で、血中の転移がん細胞を効果的に物理的手法によって除去することによって転移がんの発症・進行を抑制するための、転移がん治療装置。
[20]被験体由来の血液試料において250μm以上の面積を持つ細胞塊(クラスター)を選別して血中の細胞塊の検出を用いた転移がん、臓器異常、または感染症の細胞クラスター診断するための診断方法に使用される上記[1]~[7]のいずれかに記載のオンチップ・セルソーターシステムであって、
 上記診断方法が、
  選別された細胞塊を、培養、遺伝子変異検査、もしくは発現解析検査によって、この細胞クラスターを同定し、
  該同定された細胞が血中の転移がん細胞である場合には、各クラスター単位で、その遺伝子変異を確認し、各クラスターが同一変異物であった場合には、癌の進行程度が、原発性がんからの転移が開始したところの初期であることが推定され、もしくは、各クラスターの変異の履歴が同一でありながら、多くの異なる変異点がある場合には、転移がんの所在が多数領域に及んでいる事が推定され、
  血中を流れる細胞クラスターが臓器の組織片であると同定できる場合には、臓器の疾患が推定され、または
  マクロファージを含む貪食性白血球について、サイズが通常より肥大した細胞を回収し、その細胞中のバクテリア等の異種細胞の遺伝子を検査同定し、B細胞の活性化によって内部形状が複雑化したもの、サイズが増大したものを選択的に回収し、そのB細胞の抗原を明らかにすることによって、免疫系が何に反応しているのか推定される、
ことを含む、オンチップ・セルソーターシステム。
[21]血中の細胞塊の検出を用いた転移がん、臓器異常、または感染症の細胞クラスター診断方法であって、
 被験体由来の血液試料において250μm以上の面積を持つ細胞塊(クラスター)を選別し、
 選別された細胞塊を、培養、遺伝子変異検査、もしくは発現解析検査によって、この細胞クラスターを同定し、
 該同定された細胞が血中の転移がん細胞である場合には、各クラスター単位で、その遺伝子変異を確認し、各クラスターが同一変異物であった場合には、癌の進行程度が、原発性がんからの転移が開始したところの初期であることが推定され、もしくは、各クラスターの変異の履歴が同一でありながら、多くの異なる変異点がある場合には、転移がんの所在が多数領域に及んでいる事が推定され、
 血中を流れる細胞クラスターが臓器の組織片であると同定できる場合には、臓器の疾患が推定され、または
 マクロファージを含む貪食性白血球について、サイズが通常より肥大した細胞を回収し、その細胞中のバクテリア等の異種細胞の遺伝子を検査同定し、B細胞の活性化によって内部形状が複雑化したもの、サイズが増大したものを選択的に回収し、そのB細胞の抗原を明らかにすることによって、免疫系が何に反応しているのか推定される、
細胞クラスター診断方法。
[22]血中の異常細胞の存在を確認する方法であって、
 赤血球を除く血液細胞を含む被験体由来の血液試料中の細胞サイズを計測する工程、
 前記計測工程の結果を元に、前記血液試料の細胞サイズ分布スペクトルを得る工程、および
 前記細胞サイズ分布スペクトルおいて、その細胞サイズ分布のピークが1つであるか、2つ以上となるかを識別する工程を含む、方法。
[23]前記識別工程の結果、2つ以上のピークがあると識別された場合には、大きい細胞の側のピークを閾値として、前記血液試料から該閾値より大きな細胞を選択的に回収する工程をさらに含む、上記[22]に記載の方法。
[24]前記細胞サイズを計測する工程および前記細胞を回収する工程において、前記血液試料を流すための流路を備えたオンチップ・セルソーターチップを用いることを含む、上記[22]または[23]に記載の方法。
[25]前記オンチップ・セルソーターチップが、上記[1]~[7]のいずれかに記載のオンチップ・セルソーターシステムの一部である、上記[24]に記載の方法。
[26]転移がん、臓器異常、または感染症の細胞診断に用いられる、上記[22]~[25]のいずれかに記載の方法。
[27]細胞を含む試料溶液を保持するための試料溶液リザーバーおよび該リザーバーに繋がる細管を備えた水滴形成モジュールと、
 前記形成された水滴を滴下するための2つ以上の異なる傾斜角度を持つ領域が接合されてなる撥水性表面を有する基板と、
 前記基板の2つ以上の異なる傾斜角度を有する表面の傾斜角度を調節するための基板傾斜制御機構と、
 前記水滴の状態および水滴内部の状態を計測する計測モジュールと、
 計測結果に基づいて水滴を複数の進行方向に分離する手段と、
 を備える、水滴中の細胞を観察し分離するためのイメージングセルソーター。
[28]前記水滴を複数の進行方向に分離する手段が、前記撥水性表面に形成された水滴をその上で制御可能に移動させるための1または複数のガイドを含み、
 前記ガイドが、前記水滴とは反対の電荷を帯電させた水滴移動方向制御用静電場ガイドである、上記[27]に記載のイメージングセルソーター。
[1] An on-chip cell sorter system used for identifying cancer cell candidate cells,
A cell sorter chip provided with a flow path for flowing a sample solution containing fluorescently stained cells derived from a subject;
An optical system including a bright-field light source and a fluorescent light source for irradiating the cells;
A detection system for simultaneously acquiring a bright field image of the cells in the sample solution flowing through the flow path of the cell sorter chip, a fluorescence intensity of a fluorescent labeling substance bound to the cells, and a fluorescence image of the cells;
Control / analyzing means for identifying multinucleated cells and / or cell clusters flowing in the flow path based on the bright field image, the fluorescence intensity, and the fluorescence image;
Means for selectively recovering the identified multinucleated cells and / or cell clusters,
The above control / analysis means is provided by the following (i) to (iii):
(I) The area of the nucleus of the lump or cluster obtained from the fluorescence image of the nucleus of the lump of cells or clusters is 150 μm 2 or more.
(Ii) The area of the lump or cluster obtained from a bright field image of a lump of cells or clusters is 250 μm 2 or more, or (iii) the number of nuclei in the lump of cells or clusters is 3 or more If one condition is met, or (i) and (ii), (i) and (iii), (ii) and (iii), or (i), (ii) and (iii) are met , Judge that cancer cells are likely to be present in the cell sample solution,
On-chip cell sorter system.
[2] The control / analysis means is
About the perimeter ratio R derived as a circular approximation from the perimeter and area of cells (clusters),
(I) When (1 / R) is 0.9 or more, the cell (cluster) is an isolated cell, or (ii) When (1 / R) is less than 0.9, the cell (cluster) is 2 cells. Consisting of a cluster of cells,
As described above, the on-chip cell sorter system according to the above [1], wherein the value of (1 / R) is used as a criterion for determining the presence or absence of clusters in the cell sample solution.
[3] An on-chip cell sorter system used for identifying cancer cell candidate cells,
A cell sorter chip provided with a flow path for flowing a sample solution containing fluorescently stained cells derived from a subject;
An optical system including a bright-field light source and a fluorescent light source for irradiating the cells;
A detection system for simultaneously acquiring a bright field image of the cells in the sample solution flowing through the flow path of the cell sorter chip, a fluorescence intensity of a fluorescent labeling substance bound to the cells, and a fluorescence image of the cells;
Control / analyzing means for identifying multinucleated cells and / or cell clusters flowing in the flow path based on the bright field image, the fluorescence intensity, and the fluorescence image;
Means for selectively recovering the identified multinucleated cells and / or cell clusters,
The control / analysis means is
About the perimeter ratio R derived as a circular approximation from the perimeter and area of cells (clusters),
(I) When (1 / R) is 0.9 or more, the cell (cluster) is an isolated cell, or (ii) When (1 / R) is less than 0.9, the cell (cluster) is 2 cells. Consisting of a cluster of cells,
As described above, an on-chip cell sorter system in which the value of (1 / R) is used as a criterion for determining the presence or absence of clusters in the cell sample solution.
[4] The on-chip cell sorter system according to any one of the above [1] to [3], further comprising means for measuring a nucleic acid sequence of a gene derived from the selectively recovered multinucleated cells and / or cell clusters.
[5] Any one of the above [1] to [4] provided with an image dividing mechanism having a function of dividing and displaying the bright field image and the fluorescent image on the light receiving surface of one high-speed camera at the same time. The on-chip cell sorter system according to item.
[6] The on-chip cell sorter system according to [5], further including a mechanism that adjusts the magnification of the bright field image and the fluorescence image so that the magnification of the image differs.
[7] The on-chip cell sorter system according to any one of [1] to [6] above, wherein the cell derived from the subject is a cell derived from blood of the subject.
[8] A method for identifying candidate cells of cancer cells in a cell sample solution derived from a subject using the on-chip cell sorter system according to any one of [1] to [7],
Flowing a sample solution containing fluorescently-stained cells from a subject through the flow path of the cell sorter chip;
Irradiating the cells with light from a bright-field light source and a fluorescent light source,
Obtaining a bright field image of the cells in the sample solution flowing through the flow path of the cell sorter chip, a fluorescence intensity of a fluorescent labeling substance bound to the cells, and a fluorescence image of the cells;
Based on the bright field image, the fluorescence intensity, and the fluorescence image, a step of identifying a multinucleated cell and / or cell cluster flowing through the flow path, and selectively identifying the identified multinucleated cell and / or cell cluster Including the step of collecting,
In identifying the multinucleated cells and / or cell clusters,
(I) The area of the nucleus of the lump or cluster obtained from the fluorescence image of the nucleus of the lump of cells or clusters is 150 μm 2 or more.
(Ii) The area of the lump or cluster obtained from a bright field image of a lump of cells or clusters is 250 μm 2 or more, or (iii) the number of nuclei in the lump of cells or clusters is 3 or more If one condition is met, or (i) and (ii), (i) and (iii), (ii) and (iii), or (i), (ii) and (iii) are met A method for determining that cancer cells are likely to be present in the cell sample solution.
[9] An optical branching module,
A substantially rectangular parallelepiped housing;
An optical path system including a pair of mirrors for input / output of a pair of image light provided symmetrically on the bottom surface in the housing;
Two-to-four openings for introducing mirror reflected light provided on the side surface of the casing, two on the side in the longitudinal direction and one on the side in the short side An aperture formed,
6 optical path covers that can be freely attached to and detached from each of the 2 to 4 openings,
A pair of removable movable mirror holders capable of adjusting the mirror so that light is introduced into each of the two to four openings;
A detachable optical path window arranged between the pair of mirrors and capable of adjusting a cross-sectional area of the transmitted light,
A detachable filter disposed between the pair of mirrors and capable of adjusting a wavelength bandwidth of light;
An optical branching module.
[10] The optical branching module according to [9], wherein a plurality of the optical branching modules are connected and used.
[11] The optical branching module according to the above [10], which is used to simultaneously acquire a plurality of microscope images of different wavelength bands with one camera light receiving surface.
[12] The optical branching module according to any one of [9] to [11], wherein one of the pair of mirrors of some of the optical branching modules can be removed and used.
[13] The bright field image of the cell in the sample solution containing the fluorescence-stained cell, the fluorescence intensity of the fluorescent labeling substance bound to the cell, and the fluorescence image of the cell are used to simultaneously acquire the above [ The optical branching module according to any one of 9] to [12].
[14] A water droplet formation module comprising a sample solution reservoir for holding a sample solution containing cells and a thin tube connected to the reservoir;
An electrostatic field coil for charging water droplets formed by the water droplet forming module;
A substrate having a water-repellent surface for dropping the formed water droplets, the substrate being optically transmissive,
A substrate tilt control mechanism for adjusting the tilt angle of the substrate surface;
An optical measurement module including a camera capable of measuring a bright-field image and a fluorescent image, disposed on the opposite side of the substrate surface on which the water droplets are dropped, and the water droplets formed on the water-repellent surface can be controlled thereon An electrostatic field guide for controlling the direction of movement of water droplets, which is one or a plurality of guides for movement, and is charged with a charge opposite to that of the water droplets;
A fractionated water droplet reservoir disposed in the subsequent stage of each of the plurality of water droplet movement direction control electrostatic field guides;
An electric field switching mechanism for electrostatic field guide for controlling the direction of movement of water droplets connected to the electrostatic field guide for controlling the direction of movement of water droplets, the mechanism for controlling the electric field charged in the electrostatic field guide;
Analysis that is connected to the optical measurement module and the switching mechanism, analyzes image data acquired by the optical measurement module, determines the presence or absence of target cells in the water droplets, and controls the operation of the switching mechanism based on it An imaging cell sorter for observing and separating cells in water droplets, comprising a control module.
[15] A plurality of electrostatic field guides for controlling the direction of movement of the water droplets are provided, at least one of which is for improving the initial water droplet positioning accuracy, and the other guides include water droplets containing target cells and water droplets not containing them. For sorting,
[14] The guide for improving the initial water droplet positioning accuracy is located upstream of the movement of the water droplet, and the guide for selecting the water droplet containing the target cell and the water droplet not containing the target cell is located downstream thereof. ] The imaging cell sorter described in the above.
[16] The above [14] or [15], wherein the optical measurement module is arranged so as to be able to acquire an image of cells in the water droplet moving on a guide for increasing the initial water droplet positioning accuracy. ] The imaging cell sorter described in the above.
[17] Applying a charge opposite to the water droplet to a specific one of the guides for selecting the water droplet containing the target cell and the water droplet not containing the target cell to control the moving direction of the water droplet, The imaging cell sorter according to any one of the above [14] to [16], which is configured to guide the water droplets to a fractional water droplet reservoir disposed in the above.
[18] The imaging cell sorter according to any one of [14] to [17], further covered with a cover for preventing evaporation of the water droplets.
[19] A metastasis cancer treatment apparatus having a cell mass (cluster) removal mechanism including a membrane filter that removes a cell mass (cluster) having a cross-sectional area of about 250 μm 2 or more that is not present in healthy blood, the blood of a patient A metastatic cancer treatment device that suppresses the onset and progression of metastatic cancer by effectively removing the metastatic cancer cells in the blood by a physical technique.
[20] Diagnosis of cell cluster of metastatic cancer, organ abnormality, or infectious disease using selection of cell cluster (cluster) having an area of 250 μm 2 or more in a blood sample derived from a subject and detection of the cell cluster in blood An on-chip cell sorter system according to any one of the above [1] to [7] used in a diagnostic method for
The above diagnostic method is
This cell cluster is identified from the selected cell mass by culture, gene mutation test, or expression analysis test,
When the identified cell is a metastatic cancer cell in the blood, the gene mutation is confirmed in each cluster unit, and when each cluster is the same mutant, the degree of progression of cancer is If the metastasis from primary cancer is presumed to be early, or if the history of mutations in each cluster is the same but there are many different mutation points, the location of the metastatic cancer Is estimated to be in many areas,
If the cell cluster that flows in the blood can be identified as an organ tissue fragment, organ disease is presumed, or for phagocytic leukocytes including macrophages, cells larger in size than normal are collected, and By examining and identifying genes of heterologous cells such as bacteria, selectively recovering those whose internal shape has been complicated by the activation of B cells and those having increased in size, and clarifying the antigens of the B cells Guess what the immune system is reacting to,
On-chip cell sorter system.
[21] A cell cluster diagnostic method for metastatic cancer, organ abnormality, or infectious disease using detection of a cell mass in blood,
In a blood sample derived from a subject, a cell cluster (cluster) having an area of 250 μm 2 or more is selected,
This cell cluster is identified from the selected cell mass by culture, gene mutation test, or expression analysis test,
When the identified cell is a metastatic cancer cell in the blood, the gene mutation is confirmed in each cluster unit, and when each cluster is the same mutant, the degree of progression of cancer is If the metastasis from primary cancer is presumed to be early, or if the history of mutations in each cluster is the same but there are many different mutation points, the location of the metastatic cancer Is estimated to be in many areas,
If the cell cluster that flows in the blood can be identified as an organ tissue fragment, organ disease is presumed, or for phagocytic leukocytes including macrophages, cells larger in size than normal are collected, and By examining and identifying genes of heterologous cells such as bacteria, selectively recovering those whose internal shape has been complicated by the activation of B cells and those having increased in size, and clarifying the antigens of the B cells Guess what the immune system is reacting to,
Cell cluster diagnostic method.
[22] A method for confirming the presence of abnormal cells in blood,
Measuring a cell size in a blood sample from a subject containing blood cells excluding red blood cells,
Based on the result of the measurement step, a step of obtaining a cell size distribution spectrum of the blood sample, and whether the cell size distribution spectrum has one peak or two or more peaks in the cell size distribution spectrum. A method comprising the step of identifying.
[23] A step of selectively recovering cells larger than the threshold from the blood sample with the peak on the large cell side as a threshold when it is identified that there are two or more peaks as a result of the identification step The method according to [22], further comprising:
[24] The above [22] or [23], wherein in the step of measuring the cell size and the step of collecting the cells, an on-chip cell sorter chip having a flow path for flowing the blood sample is used. The method described in 1.
[25] The method according to [24] above, wherein the on-chip cell sorter chip is part of the on-chip cell sorter system according to any one of [1] to [7].
[26] The method according to any of [22] to [25] above, which is used for cytodiagnosis of metastatic cancer, organ abnormality, or infectious disease.
[27] a water droplet formation module comprising a sample solution reservoir for holding a sample solution containing cells and a thin tube connected to the reservoir;
A substrate having a water-repellent surface formed by joining regions having two or more different inclination angles for dropping the formed water droplets;
A substrate tilt control mechanism for adjusting a tilt angle of a surface having two or more different tilt angles of the substrate;
A measurement module for measuring the state of the water droplet and the state inside the water droplet;
Means for separating water droplets in a plurality of traveling directions based on the measurement results;
An imaging cell sorter for observing and separating cells in water droplets.
[28] The means for separating the water droplets in a plurality of traveling directions includes one or more guides for controllably moving the water droplets formed on the water repellent surface,
The imaging cell sorter according to [27] above, wherein the guide is an electrostatic field guide for controlling the direction of movement of a water droplet charged with a charge opposite to that of the water droplet.
 本発明により、血中の微量な対象細胞を1細胞単位で精製して、その対象細胞の正確な遺伝子情報、発現情報の解析が実現できる。 According to the present invention, it is possible to purify a minute amount of target cells in blood in units of one cell, and to analyze accurate gene information and expression information of the target cells.
 本発明により、被検対象の細胞が、クラスター化しているか否か(孤立一細胞であるか否か)を識別することができる。 According to the present invention, it is possible to identify whether or not the cells to be examined are clustered (whether or not they are isolated single cells).
 本発明により、細胞でアポトーシスが発生しているか否かを判定することができる。 According to the present invention, it is possible to determine whether apoptosis has occurred in a cell.
 本発明により、リアルタイムで対象となる細胞のみを分離精製して回収することができる。 According to the present invention, only the target cells can be separated and purified and collected in real time.
 本発明により、回収した細胞のみ、一細胞レベルで細胞内状態を計測し、一細胞レベルでゲノム解析および発現解析を行うことができる。 According to the present invention, it is possible to measure the intracellular state of only the collected cells at the single cell level, and perform genome analysis and expression analysis at the single cell level.
 本発明により、回収した細胞のみ、再培養することができる。 According to the present invention, only the collected cells can be re-cultured.
 本発明により、細胞のサイズの違い、細胞内部の核と細胞質とのサイズの比等の詳細な細胞の情報を取得して、その結果に基づいて判別をして細胞を精製することができる。 According to the present invention, detailed cell information such as a difference in cell size, a size ratio between the nucleus inside the cell and the cytoplasm, etc. can be acquired, and the cell can be purified by discrimination based on the result.
 本発明により、炭疽菌などの芽胞を有する細胞について、細胞内の物質の分析を高速にコンタミネーションを最小にして行うことができる。 According to the present invention, it is possible to analyze a substance in a cell at high speed and minimize contamination with respect to cells having spores such as anthrax.
 本発明により、血中で細胞分裂をしている細胞を回収することで、血中がん細胞や幹細胞などの分裂能をもった細胞を回収することが可能となる。 According to the present invention, by collecting cells that are dividing in the blood, it is possible to collect cells having a dividing ability such as blood cancer cells and stem cells.
 本発明により、血中を循環する癌細胞の候補となる多核細胞、細胞クラスターを効果的に回収することが可能となる。
 本発明により、複数波長の蛍光抗体で標識した細胞を複数波長の励起光で同時励起し、発せられた複数蛍光を同時検出することが可能となり、ターゲットとなる細胞を効果的に回収することが可能となる。
 本発明により、血中の細胞からの画像イメージデータから定量的にがん細胞および疾患臓器組織切片を同定し回収することができる。
 本発明により、血中の細胞から転移がん細胞クラスターを除去して、転移がんの進行を阻止することができる。
The present invention makes it possible to effectively recover multinucleated cells and cell clusters that are candidates for cancer cells circulating in the blood.
According to the present invention, it becomes possible to simultaneously excite cells labeled with fluorescent antibodies of multiple wavelengths with excitation light of multiple wavelengths and simultaneously detect the emitted multiple fluorescences, and effectively recover target cells. It becomes possible.
According to the present invention, cancer cells and diseased organ tissue sections can be identified and recovered quantitatively from image data from blood cells.
According to the present invention, metastatic cancer cell clusters can be removed from blood cells to prevent the progression of metastatic cancer.
本発明の細胞分析装置システムを用いて行われる細胞分析の全体のプロセス、ならびに個々の工程に対応する装置内の手段の一例を概念的に示す模式図である。It is a schematic diagram which shows notionally an example of the means in the apparatus corresponding to the whole process of the cell analysis performed using the cell analyzer apparatus of this invention, and each process. 図1における本発明の細胞分析装置システムの全体構成の1例を模式的に示す図である。It is a figure which shows typically one example of the whole structure of the cell analyzer system of this invention in FIG. 図2における細胞濃縮・染色・脱色モジュールの構成の1例を模式的に示す図である。It is a figure which shows typically an example of a structure of the cell concentration / staining / decolorization module in FIG. 図2における画像検出型1細胞分離・精製(セルソーター)モジュールの構成の1例を模式的に示す図である。It is a figure which shows typically an example of a structure of the image detection type 1-cell separation and refinement | purification (cell sorter) module in FIG. 図2における1細胞ゲノム解析・発現解析モジュールの構成の1例を模式的に示した図である。It is the figure which showed typically one example of the structure of the 1-cell genome analysis and expression analysis module in FIG. 図2における送液モジュールの構成の1例を模式的に示す図である。It is a figure which shows typically an example of a structure of the liquid feeding module in FIG. 本発明の細胞分析装置システムを用いて行われる細胞分析において細胞破壊工程を含む場合の全体のプロセス、ならびに個々の工程に対応する装置内の手段の一例を概念的に示す模式図である。It is a schematic diagram which shows notionally an example of the means in the apparatus corresponding to the whole process in the case of including the cell destruction process in the cell analysis performed using the cell analyzer apparatus of this invention, and each process. 図7に示す工程の中の細胞破壊工程で用いられる、容器、回転体、回転シャフトから構成される破砕機構の一例を模式的に示す図である。It is a figure which shows typically an example of the crushing mechanism comprised in the cell destruction process in the process shown in FIG. 7 comprised from a container, a rotary body, and a rotating shaft. 図8に示す基本的な細胞破砕機構の種々のバリエーションを模式的に示す図である。容器と回転体の密着性を担保する機構が例示されている。It is a figure which shows typically the various variations of the basic cell crushing mechanism shown in FIG. The mechanism which ensures the adhesiveness of a container and a rotary body is illustrated. 本発明において使用される細胞破砕機構の回転体と回転シャフトのさまざまな形状の例を示す模式図である。It is a schematic diagram which shows the example of the various shapes of the rotary body of a cell crushing mechanism used in this invention, and a rotating shaft. 本発明における細胞破砕工程のサンプル破砕の全工程を模式的に示した図である。It is the figure which showed typically the whole process of the sample crushing of the cell crushing process in this invention. 本発明における細胞破砕工程での細胞の連続破砕用の自動化構造の概念図を示す。The conceptual diagram of the automation structure for the continuous crushing of the cell in the cell crushing process in this invention is shown. 本発明におけるセルソーターモジュールのチップ構成の1例を模式的に示す図である。It is a figure which shows typically an example of the chip | tip structure of the cell sorter module in this invention. 本発明におけるセルソーターモジュールのサンプルリザーバー領域のチップ構成の1例を模式的に示す図である。It is a figure which shows typically an example of the chip | tip structure of the sample reservoir area | region of the cell sorter module in this invention. 画像検出型1細胞分離・精製(セルソーター)モジュールの構成の1例を模式的に示す図である。It is a figure which shows typically an example of a structure of an image detection type 1-cell separation and refinement | purification (cell sorter) module. 図15の画像検出型1細胞分離・精製(セルソーター)モジュールにおける細胞精製のプロセスの1例を模式的に示す図である。FIG. 16 is a diagram schematically showing an example of a cell purification process in the image detection type 1-cell separation / purification (cell sorter) module of FIG. 15. 図15の画像検出型1細胞分離・精製(セルソーター)モジュールにおける細胞精製の識別指標のひとつである、細胞分裂時の核の消失プロセスの画像認識を模式的に示す図である。It is a figure which shows typically the image recognition of the disappearance process of the nucleus at the time of the cell division which is one of the identification indexes of the cell purification in the image detection type 1-cell separation / purification (cell sorter) module of FIG. 画像検出型1細胞分離・精製(セルソーター)モジュールにおける画像ボケを防ぐための高速フラッシュ光源の発光タイミングの1例を模式的に示す図である。It is a figure which shows typically an example of the light emission timing of the high-speed flash light source for preventing the image blurring in an image detection type 1 cell separation and refinement | purification (cell sorter) module. 画像検出型1細胞分離・精製(セルソーター)モジュールにおける画像ボケを防ぐための光学系の構成の1例を模式的に示す図である(図19A)。また、従来の光学系で観察した微粒子の像(図19B)と、本発明の光学系で観察した微粒子の像の例(図19C)を比較して示した図である。It is a figure which shows typically an example of a structure of the optical system for preventing the image blurring in an image detection type | mold 1 cell separation and refinement | purification (cell sorter) module (FIG. 19A). FIG. 19 shows a comparison between an image of fine particles observed with a conventional optical system (FIG. 19B) and an example of an image of fine particles observed with an optical system of the present invention (FIG. 19C). 画像検出型1細胞分離・精製(セルソーター)モジュールにおける画像ボケを防ぐための光学系の構成の1例を模式的に示す図である(図19A)。また、従来の光学系で観察した微粒子の像(図19B)と、本発明の光学系で観察した微粒子の像の例(図19C)を比較して示した図である。It is a figure which shows typically an example of a structure of the optical system for preventing the image blurring in an image detection type | mold 1 cell separation and refinement | purification (cell sorter) module (FIG. 19A). FIG. 19 shows a comparison between an image of fine particles observed with a conventional optical system (FIG. 19B) and an example of an image of fine particles observed with an optical system of the present invention (FIG. 19C). 画像検出型1細胞分離・精製(セルソーター)モジュールにおける画像ボケを防ぐための光学系の構成の1例を模式的に示す図である(図19A)。また、従来の光学系で観察した微粒子の像(図19B)と、本発明の光学系で観察した微粒子の像の例(図19C)を比較して示した図である。It is a figure which shows typically an example of a structure of the optical system for preventing the image blurring in an image detection type | mold 1 cell separation and refinement | purification (cell sorter) module (FIG. 19A). FIG. 19 shows a comparison between an image of fine particles observed with a conventional optical system (FIG. 19B) and an example of an image of fine particles observed with an optical system of the present invention (FIG. 19C). セルソーターチップの配置を液体の流れが鉛直方向になるように配置した構成の1例を模式的に示す図である。It is a figure which shows typically an example of the structure which has arrange | positioned the arrangement | positioning of a cell sorter chip so that the flow of a liquid may become a perpendicular direction. セルソーターチップの配置を液体の流れが鉛直方向になるように配置した構成の1例を模式的に示す図である。It is a figure which shows typically an example of the structure which has arrange | positioned the arrangement | positioning of a cell sorter chip so that the flow of a liquid may become a perpendicular direction. セルソーターチップの試料溶液とバッファ液が合流する部分の構成の1例を模式的に示す図である。It is a figure which shows typically an example of a structure of the part where the sample solution and buffer solution of a cell sorter chip merge. セルソーターシステムのうちセルソーティングを行う機構を組み込んだチップの構成の1例を模式的に示す図である。It is a figure which shows typically an example of a structure of the chip | tip incorporating the mechanism which performs cell sorting among cell sorter systems. セルソーターシステムの流路中で外力を与えるための電極の配置の一例を示す図である。It is a figure which shows an example of arrangement | positioning of the electrode for giving external force in the flow path of a cell sorter system. セルソーターシステムの流路中での外力を与えるための電極の配置の例を示す図である。It is a figure which shows the example of arrangement | positioning of the electrode for giving the external force in the flow path of a cell sorter system. セルソーターシステムの流路中での細胞精製のプロセスの一例を示す模式図である。It is a schematic diagram which shows an example of the process of the cell purification in the flow path of a cell sorter system. セルソーターシステムの流路中で外電場を与えるゲル電極の配置の一例を示す模式図である。It is a schematic diagram which shows an example of arrangement | positioning of the gel electrode which gives an external electric field in the flow path of a cell sorter system. 画像認識型セルソーターシステムにおいて、画像によって心筋細胞と線維芽細胞を分離するために識別するプロセスの一例を示す模式図である。FIG. 4 is a schematic diagram showing an example of a process for identifying cardiomyocytes and fibroblasts to be separated by an image in an image recognition type cell sorter system. 水と油を組み合わせたセルソーターシステムの構成の一例を示す模式図である。It is a schematic diagram which shows an example of a structure of the cell sorter system which combined water and oil. 水と油を組み合わせたセルソーターシステムの水と油の合流領域の構成の一例を示す模式図である。It is a schematic diagram which shows an example of a structure of the joint area | region of the water and oil of the cell sorter system which combined water and oil. 水溶液中の電解質量(導電率)と、細胞分離可能速度との関係を示したグラフである。It is the graph which showed the relationship between the electrolytic mass (electric conductivity) in aqueous solution, and the cell separation possible speed. 蛍光強度計測と高速明視野顕微画像取得を同時に行う解析系の構成の一例を模式的に示した図である。It is the figure which showed typically an example of the structure of the analysis system which performs a fluorescence intensity measurement and high-speed bright-field microscopic image acquisition simultaneously. 図32で示した蛍光強度計測と高速明視野顕微画像取得を同時に行う解析系の構成の具体的な構成の一例を模式的に示した図である。It is the figure which showed typically an example of the specific structure of the structure of the analysis system which performs the fluorescence intensity measurement shown in FIG. 32, and high-speed bright-field microscopic image acquisition simultaneously. 蛍光強度計測と高速明視野顕微画像取得と高速蛍光顕微画像取得を同時に行う解析系の構成の一例を模式的に示した図である。It is the figure which showed typically an example of the structure of the analysis system which performs fluorescence intensity measurement, high-speed bright-field microscopic image acquisition, and high-speed fluorescence microscopic image acquisition simultaneously. 高速明視野顕微画像取得と高速蛍光顕微画像取得を1つの高速カメラ受光面で同時に取得する装置構成の一例を模式的に示した図である。It is the figure which showed typically an example of the apparatus structure which acquires high-speed bright-field microscopic image acquisition and high-speed fluorescence microscopic image acquisition simultaneously with one high-speed camera light-receiving surface. 高速明視野顕微画像取得と高速蛍光顕微画像取得を1つの高速カメラ受光面で同時に取得した画像の例と解析情報についての一例を模式的に示した図である。It is the figure which showed typically an example about the example and analysis information of the image which acquired high-speed bright-field microscopic image acquisition and high-speed fluorescence microscopic image acquisition simultaneously with one high-speed camera light-receiving surface. 高速明視野顕微画像取得と核蛍光染色した高速蛍光顕微画像取得を1つの高速カメラ受光面で同時に取得した画像の例を示した写真である。It is the photograph which showed the example of the image which acquired simultaneously the high-speed bright-field microscopic image acquisition and the high-speed fluorescence microscopic image acquisition which carried out the nuclear fluorescent dye with one high-speed camera light-receiving surface. 光ファイバーアレイを用いて複数波長の蛍光励起光を細胞へ同時に照射し、発せられた複数波長の蛍光量を同時取得し、かつ複数波長の蛍光画像を同時取得するための装置構成の一例を模式的に示した図である。Schematic example of a device configuration for simultaneously irradiating cells with multiple wavelengths of fluorescence excitation light using an optical fiber array, simultaneously acquiring the amount of fluorescence emitted from multiple wavelengths, and simultaneously acquiring fluorescent images of multiple wavelengths It is the figure shown in. 細胞に照射するための複数の蛍光励起光と検出する複数の蛍光の波長セットを選択した一例を模式的に示したスペクトル図である。It is the spectrum figure which showed typically an example which selected the several fluorescence excitation light for irradiating a cell, and the several fluorescence wavelength set to detect. 図38で一例を示した本実施例の構成を模式的に示した図であるIt is the figure which showed typically the structure of the present Example which showed an example in FIG. 図41Aは血中がん細胞を、本発明の装置で計測したときの細胞核の面積の分布図と各分布領域での細胞の明視野写真、蛍光写真である。FIG. 41A is a distribution diagram of the area of cell nuclei when blood cancer cells are measured by the apparatus of the present invention, and a bright field photograph and a fluorescence photograph of cells in each distribution region. 図41Bは血中がん細胞を、本発明の装置で計測したときの細胞(クラスター)の周囲長と細胞(クラスター)の面積から円近似によって導出した周囲長との比を示したグラフである。FIG. 41B is a graph showing the ratio of the peripheral length of cells (clusters) measured by the apparatus of the present invention and the peripheral length derived by circular approximation from the area of the cells (clusters) when blood cancer cells are measured. . 血中がん細胞を、本発明の装置で計測したときの細胞(集団)面積、核の数の分布を示した表である。It is the table | surface which showed cell (population) area when the blood cancer cell was measured with the apparatus of this invention, and distribution of the number of nuclei. 複数の異なる波長帯域の顕微画像取得を1つの高速カメラ受光面で同時に取得する装置構成のユニット構造の一例を模式的に示した図(A)および、このユニットを組み合わせた例を模式的に示した図(BおよびD)、そして図43Cは図43Bで示したカメラで撮像される複数の像のイメージ取得の一例を示す例である。A diagram (A) schematically showing an example of a unit structure of an apparatus configuration that simultaneously acquires microscopic images in a plurality of different wavelength bands with one light-receiving surface of a high-speed camera, and an example of a combination of these units. FIGS. 43B and 43C and FIG. 43C are examples showing an example of image acquisition of a plurality of images captured by the camera shown in FIG. 43B. 複数の異なる波長帯域の顕微画像取得を1つの高速カメラ受光面で同時に取得する装置構成のユニット構造の一例を模式的に示した図(A)および、このユニットを組み合わせた例を模式的に示した図(BおよびD)、そして図43Cは図43Bで示したカメラで撮像される複数の像のイメージ取得の一例を示す例である。A diagram (A) schematically showing an example of a unit structure of an apparatus configuration that simultaneously acquires microscopic images in a plurality of different wavelength bands with one light-receiving surface of a high-speed camera, and an example of a combination of these units. FIGS. 43B and 43C and FIG. 43C are examples showing an example of image acquisition of a plurality of images captured by the camera shown in FIG. 43B. 図44Aは、水滴中の細胞を観察し分離するイメージングセルソーターの構成の一例を模式的に示した図である。FIG. 44A is a diagram schematically illustrating an example of a configuration of an imaging cell sorter that observes and separates cells in water droplets. 図44Bは、図44Aで示したチップの構成を上面から見た図である。44B is a diagram of the configuration of the chip illustrated in FIG. 44A as viewed from above. ヒト血中の細胞クラスターを検出し診断のために解析するプロセスの一例を模式的に示した図(A)、および、図45Aで示したプロセスを実現するための一体化計測解析システムの一例を模式的に示した図(BおよびC)である。Figure (A) schematically showing an example of a process for detecting and analyzing a cell cluster in human blood, and an example of an integrated measurement analysis system for realizing the process shown in Figure 45A It is the figure (B and C) shown typically. ヒト血中の細胞クラスターを検出し診断のために解析するプロセスの一例を模式的に示した図(A)、および、図45Aで示したプロセスを実現するための一体化計測解析システムの一例を模式的に示した図(BおよびC)である。Figure (A) schematically showing an example of a process for detecting and analyzing a cell cluster in human blood, and an example of an integrated measurement analysis system for realizing the process shown in Figure 45A It is the figure (B and C) shown typically. 転移がん治療技術として、一定サイズ以上の血中の細胞塊(クラスター)を除去する手法の一例を模式的に示した図である。It is the figure which showed typically an example of the method of removing the cell lump (cluster) in the blood beyond a fixed size as a metastatic cancer treatment technique. 血中の転移がん診断を行うための手法の説明として、血中細胞サイズの分布スペクトルを正常血液(図47A)、転移がん細胞が流れている血液(図47B,C)のそれぞれについて、模式的に示した図である。As an explanation of a method for diagnosing metastatic cancer in blood, the distribution spectrum of blood cell size is determined for each of normal blood (FIG. 47A) and blood in which metastatic cancer cells are flowing (FIGS. 47B and C). It is the figure shown typically. 図44で述べた撥水基板上に滴下した水滴を基板表面で転がして移動する手段において、2つの傾斜角度を持つことで加速領域と等速移動領域を持つ基板を用いた手法を模式的に示した図である。44 schematically shows a method using a substrate having an acceleration region and a constant velocity moving region by having two inclination angles in the means for moving the water droplet dropped on the water repellent substrate described above with reference to FIG. FIG.
 本発明の細胞分析装置は、概して、
(1)細胞の濃縮、蛍光抗体標識(あるいは再培養を行う場合は必要に応じてアプタマー等の可逆蛍光標識マーカー)での染色、洗浄を含むプロセスを連続で行う細胞濃縮・染色・脱色部と、
(2)チップ基板上に形成したマイクロ流路を流れる細胞から、毎秒1万画像程度の細胞像の画像データを取得して、その画像情報の分析結果に基づいてリアルタイムで毎秒1万細胞を精製する画像検出型1細胞分離・精製(セルソーター)部と、
(3)1細胞レベルでの細胞内状態を計測する1細胞ゲノム解析・発現解析部と、
(4)上記各部の間での試料液の搬送を行うための送液部と、
(5)上記各部の動作を制御し、上記解析を行うための制御解析部と
を備える。
The cell analyzer of the present invention generally comprises:
(1) Cell concentration / staining / decolorization part that continuously performs processes including cell concentration, fluorescent antibody labeling (or staining and washing with reversible fluorescent labeling markers such as aptamers if necessary) ,
(2) Obtain image data of about 10,000 images of cells per second from cells flowing through the microchannel formed on the chip substrate, and purify 10,000 cells per second in real time based on the analysis result of the image information An image detection type 1 cell separation / purification (cell sorter) unit,
(3) a 1-cell genome analysis / expression analysis unit that measures the intracellular state at the 1-cell level;
(4) a liquid feeding part for carrying the sample liquid between the above parts,
(5) A control analysis unit for controlling the operation of each unit and performing the analysis.
 本発明の細胞分析装置の典型的な実施形態は、上記3つのモジュール(1)~(3)を、上記の順序で連続して組み合わせたことを特徴とし、かつ、流路によって連続して細胞が搬送されるため、微量の細胞をコンタミネーションや操作による消失を最小限に無くすることができる。 A typical embodiment of the cell analyzer of the present invention is characterized in that the three modules (1) to (3) are continuously combined in the order described above, and the cells are continuously connected by the flow path. Therefore, a small amount of cells can be eliminated by contamination or manipulation.
 本発明の細胞分析装置を用いることによって、細胞の蛍光標識の有無を1細胞レベルで検出して確認し、蛍光標識された細胞について、細胞がクラスター化していない孤立1細胞であることを確認し、さらに細胞でアポトーシスが発生しているかどうかを判定することができる。したがって、本発明の細胞分析装置によれば、従来の散乱光検出型セルソーター技術では識別できなかった指標に基づいて、細胞を分離・精製することができる。 By using the cell analyzer of the present invention, the presence or absence of fluorescent labeling of the cells is detected and confirmed at the single cell level, and the fluorescence-labeled cells are confirmed to be isolated single cells that are not clustered. In addition, it can be determined whether apoptosis is occurring in the cells. Therefore, according to the cell analyzer of the present invention, cells can be separated and purified based on an index that cannot be identified by the conventional scattered light detection type cell sorter technique.
 本発明の細胞分析装置によれば、正確に1細胞単位で染色された細胞を選択回収し、また、回収する細胞のアポトーシス等の細胞状態を確認し、各細胞の蛍光情報および細胞状態の情報と併せて細胞の遺伝子情報、発現情報を解析することができる。 According to the cell analyzer of the present invention, cells that are stained accurately in units of 1 cell are selectively collected, and cell states such as apoptosis of the cells to be collected are confirmed, and fluorescence information and cell state information of each cell are confirmed. In addition, cell genetic information and expression information can be analyzed.
 上記(1)の細胞濃縮・染色・脱色部においては、非接触力によって連続的に前モジュールから送られてくる反応液中に含まれる微量の細胞が連続的に捕獲濃縮され、一定の細胞数に達したところで、細胞標識染色液が導入されて細胞が染色された後に、結合しなかった試薬は洗浄除去され、その後、一定の濃度で細胞が次のモジュールに送出される。この細胞濃縮・染色・脱色部においては、例えば、非接触力として微量流路中に作成した金属電極によって交流電場によって作り出される「誘電泳動力」によって細胞が集まる特徴を利用した細胞の捕獲・濃縮の要素技術が用いられる。 In the cell concentration / staining / decoloring part (1) above, a small amount of cells contained in the reaction solution continuously sent from the previous module by the non-contact force is continuously captured and concentrated, and a certain number of cells is obtained. When the cell label staining solution is introduced and the cells are stained, the unbound reagent is washed away, and then the cells are delivered to the next module at a constant concentration. In this cell concentration / staining / decolorization part, for example, cell capture / concentration using the feature that cells gather by “dielectrophoretic force” created by an alternating electric field by a metal electrode created in a microchannel as a non-contact force These elemental technologies are used.
 また、上記(2)の画像の検出の結果に基づいて1細胞単位での分離・精製を行う手段においては、細胞のサイズの違い、細胞内部の核と細胞質とのサイズの比等の詳細な細胞の情報が画像情報として取得され、その結果に基づいて細胞が精製される。画像取得については、高速カメラが用いられ、高速カメラのシャッター周期に合わせて、光源の発光が調整され、各シャッターが切られる期間のうちの一定の時間だけ光源の光を発光させる。例えば、シャッタースピードが1万分の1秒である場合は、その10分の1の期間だけ、LED光源あるいはパルスレーザー光源等の高速発光制御が可能な光源で対象となる細胞に光を照射することで、細胞の精細な形状を獲得することができる。 Further, in the means for performing separation / purification in units of one cell based on the result of the image detection of (2) above, details such as the difference in cell size, the ratio of the nucleus inside the cell to the cytoplasm, etc. Cell information is acquired as image information, and the cell is purified based on the result. For image acquisition, a high-speed camera is used, the light emission of the light source is adjusted in accordance with the shutter cycle of the high-speed camera, and light from the light source is emitted for a certain period of time during which each shutter is released. For example, if the shutter speed is 1 / 10,000th of a second, illuminate the target cells with a light source that can be controlled at high speed, such as an LED light source or a pulsed laser light source, for a period of 1 / 10th of the shutter speed. Thus, the fine shape of the cell can be obtained.
 上記の分離・精製手段としてセルソーターをチップ上に構築する場合、従来のセルソーターでは、セルソーターに導入する細胞を、別途、遠心分離機などの濃縮工程などを経て濃縮させたために、その過程でのコンタミネーションの問題があった。そこで、本発明においては光学系以外の機能はチップのみでクローズドで行うことにした。すなわち、細胞をチップ上で直接濃縮する構成とし、送液部分および分離した細胞の培養槽もチップ上に形成した。それによって、コンタミネーションや細胞のロスが発生しないだけでなく、手順が簡素化され、処理時間が短縮される使い勝手を改善することができる。また、クローズドにすることで、例えば、幹細胞の分離や臨床検査など、他の検体組織由来細胞のコンタミネーション防止が必須であるケースにおいても、コンタミネーションを考慮する必要が無くなる。このように、本発明は、セルソーターの主要部分をチップ化することで、装置のクロスコンタミネーションの完全な防止などを可能とし、医療分野、特に再生医療分野で必須なクロスコンタミネーションの無い細胞分離システムを提供する。 When constructing a cell sorter on a chip as the separation / purification means described above, in the conventional cell sorter, the cells introduced into the cell sorter were separately concentrated through a concentration step such as a centrifuge, and so on. There was a problem with Nation. Therefore, in the present invention, functions other than the optical system are performed in a closed manner using only the chip. That is, it was set as the structure which concentrates a cell directly on a chip | tip, and the liquid feeding part and the culture tank of the isolate | separated cell were also formed on the chip | tip. As a result, not only contamination and cell loss do not occur, but also the procedure is simplified and the usability of shortening the processing time can be improved. Moreover, by making it closed, it is not necessary to consider contamination even in cases where it is essential to prevent contamination of other specimen tissue-derived cells, such as stem cell separation or clinical examination. In this way, the present invention makes it possible to completely prevent cross-contamination of the device by making the main part of the cell sorter into a chip, and to separate cells without cross-contamination essential in the medical field, particularly in the field of regenerative medicine. Provide a system.
 本発明において検出対象として想定している細胞は、小さいものではバクテリア、大きいものでは動物細胞(例えば、がん細胞)などである。したがって、細胞サイズとしては典型的には約0.5μmから約30μm程度の範囲となる。細胞濃縮機能および細胞分離機能の両方を組み込んだ流路を基板の一面に形成して細胞濃縮および分離を連続して行う場合に、まず問題になるのが流路幅(断面形状)である。また、流路は基板表面の一つに基板の厚み方向で約10~約100μmのスペースを使用して、実質2次元平面状に作成することとなる。細胞の大きさからしてバクテリア用では厚み方向で約5~約10μm、動物細胞用では厚み方向で約10から約50μmが最も典型的なサイズとなる。 The cells assumed as detection targets in the present invention are bacteria for small ones and animal cells (for example, cancer cells) for large ones. Therefore, the cell size typically ranges from about 0.5 μm to about 30 μm. When a channel incorporating both a cell concentration function and a cell separation function is formed on one surface of a substrate and cell concentration and separation are continuously performed, the first problem is the channel width (cross-sectional shape). In addition, the channel is formed in a substantially two-dimensional plane using a space of about 10 to about 100 μm in the thickness direction of the substrate on one of the substrate surfaces. In terms of cell size, the most typical size is about 5 to about 10 μm in the thickness direction for bacteria, and about 10 to about 50 μm in the thickness direction for animal cells.
 本発明の細胞分析装置は、典型的には、同一のチップ内に、細胞を濃縮する機能を持つ細胞濃縮部と、それに引き続き、細胞を分離精製する機能を持つ細胞配列部と細胞分離・精製部、そして分離精製する細胞を識別判断する光学的解析部を含む。細胞濃縮部へは、典型的には、濃縮処理がされていない試料溶液が1つの入り口から導入され、細胞濃縮部の下流に配置された排出部から試料溶液が排出される。このような基本構成に加えて、濃縮部側壁内に設置された濃縮細胞回収口に向けて細胞に対して外力を与えて細胞を濃縮する手段を有していてもよい。このときの外力としては、超音波放射圧、重力、静電力、誘電電気泳動力などを用いることができるが、これらに限定されない。この場合、濃縮部の試料溶液の流れに対して直交する方向で、かつ、濃縮細胞回収口の方向に向けてこれらの外力を与えることができる配置が利用される。 The cell analyzer of the present invention typically comprises a cell concentrating unit having a function of concentrating cells, a cell arrangement unit having a function of separating and purifying cells, and a cell separation / purification in the same chip. And an optical analysis unit for identifying and judging cells to be separated and purified. Typically, a sample solution that has not been subjected to concentration treatment is introduced into the cell concentration section from one inlet, and the sample solution is discharged from a discharge section disposed downstream of the cell concentration section. In addition to such a basic configuration, there may be provided means for concentrating the cells by applying an external force to the cells toward the concentrated cell recovery port installed in the concentration unit side wall. As the external force at this time, ultrasonic radiation pressure, gravity, electrostatic force, dielectric electrophoretic force and the like can be used, but are not limited thereto. In this case, an arrangement is used in which these external forces can be applied in a direction perpendicular to the flow of the sample solution in the concentration section and in the direction of the concentrated cell recovery port.
 細胞分離・精製部においては、細胞が流れている流路の中央に細胞が配列するように細胞に対して外力を加えて下流の2つに分岐した流路の一方にすべての細胞が流れることができるようにし、それに引き続いて、配列した細胞のうち回収したい細胞のみに、さらに外力を加えて細胞の流れる位置を移動させることで、上記2つに分岐する流路のうち、この外力を加えたときのみ細胞が別の流路に導入される。ここで、具体的には外力としては、超音波放射圧による定在波の節への細胞の配列手段を利用することができる。あるいは、楔形の電極アレイを組み合わせることで、楔形の頂点の位置に細胞を配列させる手段を利用することができる。あるいは、対になったヒゲ型電極を用いて細胞を2つの対電極の間に配列させる手段を用いることができる。また、この手段を用いれば、サイドシース液を添加すること無しに細胞を一直線に配置することができるため、前段でせっかく濃縮した細胞溶液が希釈されるという上記発明が解決しようとする課題に述べられた課題を合わせて解決できることとなる。 In the cell separation / purification unit, all cells should flow in one of the two channels that are branched into two downstreams by applying external force to the cells so that the cells are arranged in the center of the channel where the cells are flowing. Subsequently, by applying an external force to only the cells to be collected out of the arranged cells and moving the flow position of the cells, the external force is applied to the flow path branched into the above two. Only when the cells are introduced into another channel. Here, specifically, as the external force, means for arranging cells into nodes of standing waves by ultrasonic radiation pressure can be used. Alternatively, a means for arranging cells at the position of the apex of the wedge can be used by combining wedge-shaped electrode arrays. Alternatively, means for arranging cells between two counter electrodes using a pair of bearded electrodes can be used. Moreover, since the cells can be arranged in a straight line without adding a side sheath solution by using this means, the above-described invention that the cell solution concentrated in the previous stage is diluted is described. It will be possible to solve the problems that have been solved.
 本発明の細胞分析装置の細胞検出機能は、上記(2)の画像検出型1細胞分離・精製部にある。細胞を画像として捕らえて評価する場合は流路分岐部分の上流にCCDカメラで観測する部位を設け、必要に応じてその下流に細胞分離領域を設置する構造とする。画像によらず、流路を通過する細胞にレーザーなどを照射し、細胞が横切るときの散乱光や細胞を蛍光で修飾している場合はその蛍光を光検出器で検出することもできる。この場合も、検出部の下流に細胞分離領域となる分離流路点を設置する構造とする。 The cell detection function of the cell analyzer of the present invention resides in the image detection type 1-cell separation / purification part (2) above. When a cell is captured as an image and evaluated, a part to be observed by a CCD camera is provided upstream of the flow path branching part, and a cell separation region is provided downstream of the part if necessary. Irrespective of the image, the cells passing through the flow path are irradiated with a laser or the like, and when the cells cross and the scattered light or the cells are modified with fluorescence, the fluorescence can be detected with a photodetector. In this case as well, a separation channel point that becomes a cell separation region is installed downstream of the detection unit.
 細胞分離領域である選別部で細胞を分離する場合、細胞選別部に外部から細胞に外力を加えて細胞を移動させる手段として、例えば、誘電電気泳動力を用いる場合には1対の櫛形電極を設置し、細胞を分離して排出することのできる流路を設ける。静電力による場合は、電極に電圧をかけて細胞の流路内での位置変更を行う。このとき、一般に細胞はマイナスにチャージしているのでプラスの電極に向かって動く。 When the cells are separated by the sorting unit which is a cell separation region, as a means for moving the cells by applying external force to the cells from the outside, for example, when using a dielectrophoretic force, a pair of comb-shaped electrodes is used. Install and provide a flow path that can separate and drain cells. In the case of electrostatic force, a voltage is applied to the electrode to change the position of the cell in the flow path. At this time, since the cell is generally charged negatively, it moves toward the positive electrode.
 また、本発明では、試料液のチップ内への導入圧力が、液の移動の駆動力となっているため、細胞濃縮部215の廃液出口(流出口213)、細胞選別部217の精製細胞の出口(細胞回収部224)、細胞選別部の廃液の出口(廃液回収部223)の圧力がほぼ同じになるように構成することが望ましい(図4Bを参照)。そのために、細い流路や、S字状の長い流路など各出口の直前に圧力調整用の流路抵抗調整部を配置している。 In the present invention, since the introduction pressure of the sample liquid into the chip is a driving force for the movement of the liquid, the waste liquid outlet (outlet 213) of the cell concentrating unit 215 and the purified cell of the cell sorting unit 217 It is desirable that the pressure at the outlet (cell recovery unit 224) and the outlet of the waste liquid of the cell sorting unit (waste liquid recovery unit 223) be substantially the same (see FIG. 4B). For this purpose, a flow path resistance adjusting portion for pressure adjustment is arranged immediately before each outlet such as a thin flow path or a long S-shaped flow path.
 細胞認識と分離のアルゴリズムに関しては次のような特徴がある。 The cell recognition and separation algorithm has the following characteristics.
 細胞を画像として捕らえて評価する場合は合流後の流路部分をCCDカメラで観測する部位を設け、測定範囲を面に広げ画像認識で細胞の識別を行い、追跡することでより確実な細胞分離を行う。このとき重要なのは、画像の取り込み速度である。一般の30フレーム/秒のビデオレートのカメラでは、画像での細胞取りこぼしが生じる。最低200フレーム/秒の取り込みレートがあれば、流路中をかなりの速度で流れる細胞を認識できる。 When evaluating cells as images, more reliable cell separation can be achieved by providing a part where the flow path part after merging is observed with a CCD camera, expanding the measurement range to identify the cells by image recognition, and tracking them I do. What is important at this time is the image capturing speed. With a typical camera with a video rate of 30 frames / second, cell dropout occurs in the image. With an uptake rate of at least 200 frames / second, cells flowing at a significant rate in the flow path can be recognized.
 次に画像処理法であるが、取り込みレートが早いということはあまり複雑な画像処理を行うことはできない。まず、細胞認識であるが、前記したとおり、細胞の移動速度や細胞によりまちまちで、場合によっては細胞の追い越しがある。このため、各細胞が最初に画像フレームに現れたときに細胞にナンバリングを施し、以下、画像フレームから消えるまで同一ナンバーで管理を行うこととする。すなわち、連続する複数枚のフレームで細胞像が移動する状況をナンバーで管理する。各フレーム内での細胞は上流側にあったものから順に下流側に移行し、画像中に認識されるナンバリングされた特定細胞の移動速度はある範囲に収まるとの条件でフレーム間の細胞をリンクさせる。このようにすることで、たとえ、細胞の追い抜きがあったとしても各細胞を確実に追跡できるようにする。 Next, it is an image processing method, but a high capture rate cannot perform very complicated image processing. First, cell recognition, as described above, varies depending on the moving speed of the cell and the cell, and in some cases, the cell is overtaken. For this reason, when each cell first appears in the image frame, the cell is numbered, and thereafter, management is performed with the same number until it disappears from the image frame. That is, the number is used to manage the situation in which the cell image moves in a plurality of consecutive frames. The cells in each frame move from the upstream side to the downstream side in order, and the cells between the frames are linked under the condition that the moving speed of the numbered specific cells recognized in the image falls within a certain range. Let In this way, each cell can be traced reliably even if the cell is overtaken.
 これで、細胞の認識が可能となるが、細胞のナンバリングには、まず細胞像を2値化し、その重心を求める。2値化した細胞の輝度重心、面積、周囲長、長径、短径を求め、これらのパラメーターを用いて各細胞をナンバリングする。各細胞像をこの時点で画像として自動保存することも使用者にとって益があるので行えるようにする。 This makes it possible to recognize cells. For cell numbering, the cell image is first binarized and its center of gravity is obtained. The luminance center of gravity, area, perimeter length, major axis, minor axis of the binarized cells are obtained, and each cell is numbered using these parameters. It is possible to automatically save each cell image as an image at this point because it is beneficial to the user.
 つぎに、細胞分離に使用する場合であるが、ナンバリングした細胞のうち、特定の細胞のみを分離しなくてはならない。分離の指標は上記した輝度重心、面積、周囲長、長径、短径などの情報でもよいし、画像とは別に蛍光検出を行うことを併用して蛍光を利用した情報を得てもよい。いずれにせよ、検出部で得た細胞をナンバリングに従い分離する。具体的には、所定時間毎に取り込まれる前記画像からナンバリングされた細胞の移動速度(V)を計算し、細胞移動速度(V)に対して検出部から選別部までの距離を(L)、印加時間(T)によって、印加タイミングを(L/V)から(L/V+T)までとすることでちょうど目的のナンバーの細胞が電極間に来た時に細胞を電気的に振り分けて分離する。 Next, when used for cell separation, among the numbered cells, only specific cells must be separated. The separation index may be information such as the luminance center of gravity, area, circumference length, major axis, minor axis, or the like, or information using fluorescence may be obtained by using fluorescence detection separately from the image. In any case, the cells obtained by the detection unit are separated according to the numbering. Specifically, the movement speed (V) of the numbered cells is calculated from the image captured every predetermined time, and the distance from the detection unit to the selection unit with respect to the cell movement speed (V) (L), By setting the application timing from (L / V) to (L / V + T) depending on the application time (T), the cells are electrically distributed and separated when the cells of the target number come between the electrodes.
 また、本発明において用いる上記(3)の高速での1細胞ゲノム解析・発現解析の手段については、上記目的を達成するために、例えば、使用する反応制御装置は、サンプル液の温度変化について、変化させたい複数の温度について、各温度が維持された熱容量の大きな液体を熱交換の媒体に用いて、この熱容量の大きな複数の異なる温度の液体を高速で変化させる手段と、この熱容量の大きな液体とサンプル液との熱交換が迅速に行われる微小反応槽を備える。具体的には、本発明において使用される反応制御装置は、熱交換に適した構造および材質で構成される微小反応槽と、各反応に適した温度の液体を微小反応槽外部に循環させる反応槽熱交換槽と、液体の温度を高精度で維持する熱源を含む複数の液体リザーバタンクと、微小反応槽の温度を迅速に変化させるために任意の液体リザーバタンクから反応槽外部へ液体を導くための切り替えバルブ系と、上記バルブ系の切り替えの際に異なる温度の液体の混合防止機構から構成されている。 In order to achieve the above object, the means for high-speed single-cell genome analysis / expression analysis of (3) used in the present invention, for example, the reaction control device used, For a plurality of temperatures to be changed, means for changing a plurality of liquids having different heat capacities at a high speed at high speed using a liquid having a large heat capacity maintained at each temperature as a heat exchange medium, and a liquid having a large heat capacity And a microreaction tank in which heat exchange with the sample liquid is performed quickly. Specifically, the reaction control device used in the present invention includes a reaction vessel that has a structure and material suitable for heat exchange, and a reaction that circulates a liquid having a temperature suitable for each reaction outside the reaction vessel. Liquid is transferred from any liquid reservoir tank to the outside of the reaction tank to rapidly change the temperature of the tank heat exchange tank, heat sources that maintain the temperature of the liquid with high accuracy, and the temperature of the micro reaction tank And a mechanism for preventing the mixing of liquids at different temperatures when the valve system is switched.
 還流する液体で反応槽の温度を制御する利点としては、次の点を挙げることができる。まず温度のオーバーシュート問題を解決できる点が挙げられる。常に還流している液体の温度は一定であることから、反応槽表面の温度と液体の温度は瞬時に平衡化する。反応槽およびサンプルの熱容量は、還流している液体と比較して微々たるものであることから、局所的に液体から熱が奪われたとしても液体は連続して流れてくることから、熱勾配は基本的に発生しない。勿論、反応槽の温度は液体の温度を超えることはない。異なる温度の液体を反応槽熱交換槽に順次に流し込むことにより、0.5秒以内に30度以上温度を変化することが可能である。 Advantages of controlling the temperature of the reaction vessel with the refluxing liquid include the following points. First, the temperature overshoot problem can be solved. Since the temperature of the liquid that is constantly refluxing is constant, the temperature of the reaction vessel surface and the temperature of the liquid are instantaneously equilibrated. Since the heat capacity of the reaction vessel and the sample is insignificant compared to the liquid being refluxed, the liquid flows continuously even if heat is locally deprived from the liquid. Basically does not occur. Of course, the temperature of the reaction vessel does not exceed the temperature of the liquid. It is possible to change the temperature by 30 degrees or more within 0.5 seconds by sequentially pouring liquids of different temperatures into the reaction tank heat exchange tank.
 以下、図面を参照して本発明の実施形態をより詳細に説明するが、これらは単なる例示であって、本発明の範囲がこれらの実施形態に限定されるものではない。 Hereinafter, embodiments of the present invention will be described in more detail with reference to the drawings. However, these are merely examples, and the scope of the present invention is not limited to these embodiments.
 (細胞分析装置のシステム構成)
 図1は、本発明の細胞分析装置を用いて行う、血中サンプルの採取から分析までの手順の一例を図示したものである。
(System configuration of cell analyzer)
FIG. 1 illustrates an example of a procedure from collection of a blood sample to analysis performed using the cell analyzer of the present invention.
 患者から採取した血液サンプルはそのまま、細胞濃縮・染色部に導入される。ここで血液から細胞成分のみを抽出して、これに蛍光癌マーカーなどの蛍光標識剤を添加して、試料細胞と反応をさせた後、反応しなかった余剰の蛍光標識剤を洗浄除去し、次の画像検出型1細胞分離精製部に最適な細胞濃度、溶液に調整した形で、画像検出型1細胞分離精製部へと導入される。 The blood sample collected from the patient is directly introduced into the cell concentration / staining part. Here, only the cellular components are extracted from the blood, and after adding a fluorescent labeling agent such as a fluorescent cancer marker to react with the sample cells, the excess fluorescent labeling agent that did not react is washed away. The cells are introduced into the image detection type 1-cell separation and purification unit in a form adjusted to the optimum cell concentration and solution for the next image detection type 1-cell separation and purification unit.
 次に、画像検出型1細胞分離精製部では、1次検出として、1細胞レベルでの蛍光標識に基づいた蛍光の発光の有無を確認する。これによって細胞が対象となる細胞かどうかを従来の標識技術で確認することができる。そのうえで、蛍光を発して対象となる細胞について、高速カメラによって採取した画像をリアルタイムで分析することで、1)蛍光を発する細胞が、孤立細胞であるか、あるいは他の細胞との細胞塊となっているかを判別し、また、2)蛍光を発する細胞が健常な状態であるか、細胞の核と細胞形状が変形しているアポトーシス等の状態となっているかを判別し、目的に応じて、健常な細胞の回収、あるいは、アポトーシスを起こしている細胞の回収を行って、それぞれの細胞の形態について別々に遺伝子解析、発現解析ができるように次段の高速・微量対応の遺伝子解析・発現解析部に導入することができる。特に、細胞塊となっている場合には、ターゲットとなっている細胞以外の細胞が混入することとなるので、蛍光を発する細胞がある場合であっても回収は行わない。 Next, in the image detection type 1-cell separation and purification unit, as the primary detection, the presence or absence of fluorescence emission based on the fluorescent label at the 1-cell level is confirmed. Thereby, it can be confirmed by a conventional labeling technique whether the cell is a target cell. In addition, by analyzing in real time the image collected by the high-speed camera for the target cells that emit fluorescence, 1) the cells emitting fluorescence are isolated cells or become cell clusters with other cells 2) Determine whether the cells emitting fluorescence are in a healthy state or in a state such as apoptosis in which the cell nucleus and cell shape are deformed, and depending on the purpose, Recover healthy cells or recover cells that are undergoing apoptosis, and perform gene analysis and expression analysis on the next stage so that gene analysis and expression analysis can be performed separately for each cell morphology. Can be introduced into the department. In particular, in the case of a cell mass, since cells other than the target cell are mixed, collection is not performed even when there are cells that emit fluorescence.
 また、この段階で識別し、精製された細胞については、遺伝子解析・発現解析部に導入する以外に、精製された細胞単位で、コンタミネーションフリーにて再培養を行うこともできるものとする。 In addition, the cells identified and purified at this stage can be re-cultured in a contamination-free manner in purified cells, in addition to being introduced into the gene analysis / expression analysis section.
 遺伝子解析・発現解析部は、導入された細胞を、微量の細胞単位で、画像検出型1細胞分離精製部の情報に基づいて同一の細胞と判別された細胞1細胞として、あるいは同一細胞の集団単位で遺伝子の同定、あるいは、発現の同定を行うものである。 The gene analysis / expression analysis unit converts the introduced cells into a small amount of cells, as one cell that is identified as the same cell based on information from the image detection type 1 cell separation and purification unit, or a group of the same cells Gene identification or expression identification is performed in units.
 図2は、上記図1で示した手順を実現する細胞分析装置システム1の全体像の一例を示したものである。装置システム1は、血液サンプルを導入して細胞の前処理を行う濃縮・染色・脱色モジュール10、細胞の1細胞単位での識別・精製を行う画像検出型1細胞分離・精製モジュール20、精製された細胞の遺伝子解析、発現解析を行う1細胞ゲノム解析・発現解析モジュール30、各モジュール間での試料の搬送を行う送液モジュール40、およびシステム全体の動作を制御し、かつ、解析結果を分析する制御・解析モジュール(コンピュータ)50を備える。 FIG. 2 shows an example of an overall image of the cell analyzer system 1 that realizes the procedure shown in FIG. The apparatus system 1 includes a concentration / staining / decoloring module 10 that introduces a blood sample and pretreats cells, an image detection type 1-cell separation / purification module 20 that identifies and purifies cells in units of cells, and is purified. 1-cell genome analysis / expression analysis module 30 for performing gene analysis and expression analysis of the collected cells, liquid feeding module 40 for transporting samples between modules, and controlling the operation of the entire system and analyzing the analysis results A control / analysis module (computer) 50 is provided.
 図3から図6のそれぞれに、図2で示した例における、各モジュールの構成の一例を示す。 3 to 6 show an example of the configuration of each module in the example shown in FIG.
 まず図3は、被験体(例:癌患者)由来の血液サンプルを導入して細胞の前処理を行う細胞濃縮・染色・脱色モジュール10の構成の一例を示したものである。図3の例において、細胞濃縮・染色・脱色モジュール10は、シャーシ114の上に一体となって配置されており、モジュール内には、試料細胞サンプル、染色剤、洗浄剤の各溶液を保持する容器またはリザーバ(101、102、103)があり、ここから回転アーム115に取り付けられた分注ヘッド104によって、溶液をターンテーブル105上に配置した底面に濃縮・脱色フィルター106が配置されたチャンバー107(合わせて濃縮チャンバー108)に導入することができる。濃縮チャンバー108には、まず血液などの試料細胞サンプルが導入され、圧力ポンプ109によって液体成分をフィルターを通じて廃液回収チューブ110に排出することによって、細胞の濃縮が行われる。次に、分注ヘッド104を使って、染色液が導入され、一定の時間反応させた後に、再度、圧力ポンプ109によって染色液は排出される。次に、脱色剤を濃縮チャンバー108に導入することで、過剰な染色剤は洗浄されて排出される。その後、一般には洗浄剤を兼ねる希釈液を導入して、細胞を希望の濃度に希釈して、先端に回収チップ113を備えた回収ヘッド111を通じて、細胞を回収チューブ112に導入する構成となっている。 First, FIG. 3 shows an example of the configuration of the cell concentration / staining / decoloring module 10 that introduces a blood sample derived from a subject (eg, cancer patient) and pretreats the cells. In the example of FIG. 3, the cell concentration / staining / decoloring module 10 is integrally disposed on the chassis 114, and each solution of the sample cell sample, the staining agent, and the cleaning agent is held in the module. There is a container or reservoir (101, 102, 103), and a chamber 107 in which a concentration / decolorization filter 106 is disposed on the bottom surface on which the solution is disposed on the turntable 105 by a dispensing head 104 attached to the rotary arm 115. (Together with the concentration chamber 108). First, a sample cell sample such as blood is introduced into the concentration chamber 108, and the liquid component is discharged through the filter to the waste liquid collection tube 110 by the pressure pump 109, thereby concentrating the cells. Next, the dyeing solution is introduced using the dispensing head 104 and reacted for a predetermined time, and then the dyeing solution is discharged again by the pressure pump 109. Next, by introducing a decolorizing agent into the concentration chamber 108, excess dyeing agent is washed and discharged. After that, generally, a diluent also serving as a cleaning agent is introduced to dilute the cells to a desired concentration, and the cells are introduced into the collection tube 112 through the collection head 111 having the collection tip 113 at the tip. Yes.
 図4は、細胞の1細胞単位での識別・精製を行う画像検出型1細胞分離・精製モジュール20の構成の一例を示したものである。図4Aに示すように、画像検出型1細胞分離・精製モジュール20は、光源201、ミラー202、集光レンズ203、ダイクロイックミラー204、フィルター205、蛍光検出用の光検出素子206、高速カメラ207、および散乱光検出用フォトダイオード208から構成される光学系、ならびに細胞試料を導入するセルソーターチップ209から構成されている。図4Aのモジュールでは、セルソーターチップ209を通過する細胞に対して、パルスレーザーや高輝度LED光源などの光源201、細胞の通過を散乱光で検出するフォトダイオードなどの光検出素子208、蛍光を検出するフォトマルチプライヤーなどの高感度光検出素子206、高速カメラ207などで同時に複数の情報を検出することが出来るようになっている。そして、光源の照射光については、連続光を照射しても良いが、ブレの無いより画像の空間分解能を高めるために、高速カメラ207のシャッター周期に同期して、パルス光を発生させることで、より短時間の光照射で、より項時間分解能の像を取得することが出来る構成となっている。 FIG. 4 shows an example of the configuration of the image detection type 1-cell separation / purification module 20 for identifying and purifying cells in units of one cell. As shown in FIG. 4A, the image detection type 1-cell separation / purification module 20 includes a light source 201, a mirror 202, a condensing lens 203, a dichroic mirror 204, a filter 205, a light detection element 206 for fluorescence detection, a high-speed camera 207, And a cell sorter chip 209 for introducing a cell sample. In the module of FIG. 4A, a light source 201 such as a pulse laser or a high-intensity LED light source, a light detection element 208 such as a photodiode that detects passage of cells with scattered light, and fluorescence are detected for cells passing through the cell sorter chip 209. A plurality of pieces of information can be detected simultaneously by a high-sensitivity light detection element 206 such as a photomultiplier, a high-speed camera 207, or the like. As for the light emitted from the light source, continuous light may be emitted, but in order to increase the spatial resolution of the image without blurring, pulse light is generated in synchronization with the shutter cycle of the high-speed camera 207. Thus, it is possible to acquire an image having a higher term time resolution with shorter light irradiation.
 ここで、画像による処理と、蛍光あるいは散乱光による処理とを併用してもよいことは言うまでもない。また、高速カメラ207で得られた画像データはコンピュータ50のモニターに表示して、使用者の観察に供することもできる。また、観察したい蛍光が複数の場合には、フィルター205を適切に調整し、複数の励起光を透過させるとともに、下段での蛍光検出のための蛍光波長に重ならない波長を選んで、細胞に光を照射し、観察したい蛍光の種類に合わせてダイクロイックミラー204から、フィルター205、蛍光検出器206までの装置を付加したものを複数組み合わせれば良い。また、この構成を用いることで、細胞像についての蛍光観察結果をデータとして用いることもできる。 Here, it goes without saying that the processing using an image and the processing using fluorescence or scattered light may be used in combination. Further, the image data obtained by the high-speed camera 207 can be displayed on the monitor of the computer 50 for use by the user. In addition, when there are a plurality of fluorescences to be observed, the filter 205 is appropriately adjusted to transmit a plurality of excitation lights, and a wavelength that does not overlap with the fluorescence wavelength for fluorescence detection in the lower stage is selected to light the cells. And a plurality of devices to which devices from the dichroic mirror 204 to the filter 205 and the fluorescence detector 206 are added in accordance with the type of fluorescence to be observed. In addition, by using this configuration, it is possible to use fluorescence observation results for cell images as data.
 細胞認識と分離のアルゴリズムに関しては次のような特徴がある。 The cell recognition and separation algorithm has the following characteristics.
 細胞を画像として捕らえて評価する場合は合流後の流路部分をCCDカメラで観測する部位を設け、測定範囲を面に広げ画像認識で細胞の識別を行い、追跡することでより確実な細胞分離を行う。このとき重要なのは、画像の取り込み速度である。一般の30フレーム/秒のビデオレートのカメラでは、画像での細胞取りこぼしが生じる。最低200フレーム/秒の取り込みレートがあれば、流路中をかなりの速度で流れる細胞を認識できる。 When evaluating cells as images, more reliable cell separation can be achieved by providing a part where the flow path part after merging is observed with a CCD camera, expanding the measurement range to identify the cells by image recognition, and tracking them I do. What is important at this time is the image capturing speed. With a typical camera with a video rate of 30 frames / second, cell dropout occurs in the image. With an uptake rate of at least 200 frames / second, cells flowing at a significant rate in the flow path can be recognized.
 次に画像処理法であるが、取り込みレートが早いということはあまり複雑な画像処理を行うことはできない。まず、細胞認識であるが、前記したとおり、細胞の移動速度や細胞によりまちまちで、場合によっては細胞の追い越しがある。このため、各細胞が最初に画像フレームに現れたときに細胞にナンバリングを施し、以下、画像フレームから消えるまで同一ナンバーで管理を行うこととする。すなわち、連続する複数枚のフレームで細胞像が移動する状況をナンバーで管理する。各フレーム内での細胞は上流側にあったものから順に下流側に移行し、画像中に認識されるナンバリングされた特定細胞の移動速度はある範囲に収まるとの条件でフレーム間の細胞をリンクさせる。このようにすることで、たとえ、細胞の追い抜きがあったとしても各細胞を確実に追跡できるようにする。 Next, it is an image processing method, but a high capture rate cannot perform very complicated image processing. First, cell recognition, as described above, varies depending on the moving speed of the cell and the cell, and in some cases, the cell is overtaken. For this reason, when each cell first appears in the image frame, the cell is numbered, and thereafter, management is performed with the same number until it disappears from the image frame. That is, the number is used to manage the situation in which the cell image moves in a plurality of consecutive frames. The cells in each frame move from the upstream side to the downstream side in order, and the cells between the frames are linked under the condition that the moving speed of the numbered specific cells recognized in the image falls within a certain range. Let In this way, each cell can be traced reliably even if the cell is overtaken.
 これで、細胞の認識が可能となるが、細胞のナンバリングには、まず細胞像を2値化し、その重心を求める。2値化した細胞の輝度重心、面積、周囲長、長径、短径を求め、これらのパラメーターを用いて各細胞をナンバリングする。各細胞像をこの時点で画像として自動保存することも使用者にとって益があるので行えるようにする。 This makes it possible to recognize cells. For cell numbering, the cell image is first binarized and its center of gravity is obtained. The luminance center of gravity, area, perimeter length, major axis, minor axis of the binarized cells are obtained, and each cell is numbered using these parameters. It is possible to automatically save each cell image as an image at this point because it is beneficial to the user.
 次に、細胞分離に使用する場合であるが、ナンバリングした細胞のうち、特定の細胞のみを分離しなくてはならない。分離の指標は上記した輝度重心、面積、周囲長、長径、短径などの情報でもよいし、画像とは別に蛍光検出を行うことを併用して蛍光を利用した情報を得てもよい。いずれにせよ、検出部で得た細胞をナンバリングに従い分離する。具体的には、所定時間毎に取り込まれる前記画像からナンバリングされた細胞の移動速度(V)を計算し、細胞移動速度(V)に対して検出部から選別部までの距離を(L)、印加時間(T)によって、印加タイミングを(L/V)から(L/V+T)までとすることでちょうど目的のナンバーの細胞が電極間に来た時に細胞を電気的に振り分けて分離する。 Next, when used for cell separation, among the numbered cells, only specific cells must be separated. The separation index may be information such as the luminance center of gravity, area, circumference length, major axis, minor axis, or the like, or information using fluorescence may be obtained by using fluorescence detection separately from the image. In any case, the cells obtained by the detection unit are separated according to the numbering. Specifically, the movement speed (V) of the numbered cells is calculated from the image captured every predetermined time, and the distance from the detection unit to the selection unit with respect to the cell movement speed (V) (L), By setting the application timing from (L / V) to (L / V + T) depending on the application time (T), the cells are electrically distributed and separated when the cells of the target number come between the electrodes.
 細胞の分離精製についての構成の一例は以下のとおりである。入れられた試料溶液中の細胞の濃縮から配列、精製までを平面チップ上に2次元に展開して配置された一連の微細加工された流路と、チップに組み込まれた細胞に力を作用させる手段からなる。 An example of the configuration for cell separation and purification is as follows. A series of microfabricated channels arranged in a two-dimensional manner on a planar chip, from concentration to arrangement and purification of cells in the sample solution, and force applied to the cells incorporated in the chip Consists of means.
 細胞分離精製モジュールはチップ上に構成されている。図4Bは、そのようなチップ上に構成されたセルソーターチップ209の例を模式的に示す。チップ基板210の内部にマイクロ流路211を、上面にこの流路に連通する開口を設け、試料や必要な緩衝液(培地)の供給口とする。流路の作成はPMMAなどのプラスチックを金型に流し込むいわゆる射出成型で作成することで作成することもできるし、あるいは、複数のガラス基板を接着することで作成することもできる。チップのサイズは、例えば50×70×1mm(t)であるがこれに限定されない。チップの内面に刻まれた溝や貫通穴を流路やウェルを流れる細胞を、高倍率の光学顕微鏡で観察できるように、PMMAプラスチックを用いた場合には、例えば、0.1mm厚のラミネートフィルムを熱圧着して用いており、また、ガラスの場合は同様に0.1mmのガラスを光学接着することで用いている。例えば、開口数1.4、倍率100倍の対物レンズを用いて、0.1mmのラミネートフィルムを通して流路内を流れる細胞を観察できる。プラスチックの場合、プラスチックを透光性の高いものとすれば、チップ基板210の上面側からも観測できる。また、本発明で想定している細胞は、小さいものではバクテリア、大きいものでは動物細胞でがん細胞のようなものである。したがって、細胞サイズとしては典型的には0.5μmから30μm程度の範囲となるが、厳密にこの範囲に限定されるわけではなく、本発明が有効に使用される限り任意のサイズの細胞が使用されうる。細胞濃縮と細胞分離を基板の一面に組み込んだ流路を用いて連続して行おうとすると、まず問題になるのが流路幅(断面形状)である。また、流路211は基板表面の一つに基板の厚み方向で典型的には10~100μm内外のスペースに実質2次元平面状に作成することとなる。細胞の大きさからしてバクテリア用では厚み方向で5~10μm、動物細胞用では厚み方向で10から50μmが適当なサイズとなる。 The cell separation and purification module is configured on the chip. FIG. 4B schematically shows an example of a cell sorter chip 209 configured on such a chip. A microchannel 211 is provided inside the chip substrate 210, and an opening communicating with the channel is provided on the upper surface to serve as a supply port for a sample and a necessary buffer solution (medium). The flow path can be created by so-called injection molding in which a plastic such as PMMA is poured into a mold, or can be created by bonding a plurality of glass substrates. The size of the chip is, for example, 50 × 70 × 1 mm (t), but is not limited thereto. When PMMA plastic is used so that the cells flowing through the channels and wells in the grooves and through holes carved in the inner surface of the chip can be observed with a high-power optical microscope, for example, a 0.1 mm thick laminate film Is used by thermocompression bonding, and in the case of glass, 0.1 mm glass is similarly optically bonded. For example, using an objective lens having a numerical aperture of 1.4 and a magnification of 100, cells flowing in the flow path through a 0.1 mm laminated film can be observed. In the case of plastic, if the plastic is highly translucent, it can be observed from the upper surface side of the chip substrate 210. In addition, the cells envisaged in the present invention are bacteria at a small size, and animal cells at a large size, such as cancer cells. Therefore, the cell size is typically in the range of about 0.5 μm to 30 μm, but is not strictly limited to this range, and cells of any size can be used as long as the present invention is effectively used. Can be done. When trying to continuously perform cell concentration and cell separation using a flow channel incorporating one surface of the substrate, the first problem is the flow channel width (cross-sectional shape). In addition, the channel 211 is formed on one of the substrate surfaces in a substantially two-dimensional plane in a space typically 10 to 100 μm in the thickness direction of the substrate. The appropriate size is 5 to 10 μm in the thickness direction for bacteria and 10 to 50 μm in the thickness direction for animal cells based on the cell size.
 チップ209上で、まず、試料溶液は、流入口212からシリンジポンプあるいは、空気圧などの脈流が発生しない、細胞導入手段によってマイクロ流路211に導入される。マイクロ流路211に導入された細胞を含む試料液は、そのまま下流にある流出口213に向けて印加前の粒子の流れ218の流線に沿って流れて行き排出される。このときマイクロ流路211の側壁の一部に配置された細胞濃縮液入り口214に向けて細胞が濃縮されるように細胞に対して連続して外力を加える手段が導入されており、その外力によって、細胞は印加後の細胞の流れ219に沿って濃縮されてゆき、流入口212で導入された細胞濃度の100倍以上の高濃度の細胞濃縮液が細胞濃縮液入り口214に導入される。 First, on the chip 209, the sample solution is introduced from the inlet 212 into the microchannel 211 by a syringe pump or cell introduction means that does not generate a pulsating flow such as air pressure. The sample liquid containing the cells introduced into the microchannel 211 flows along the streamline of the particle flow 218 before application toward the outlet 213 downstream, and is discharged. At this time, means for continuously applying an external force to the cells is introduced so that the cells are concentrated toward the cell concentrate inlet 214 arranged in a part of the side wall of the microchannel 211. The cells are concentrated along the cell flow 219 after application, and a cell concentrate having a concentration 100 times or more the cell concentration introduced at the inlet 212 is introduced into the cell concentrate inlet 214.
 このとき細胞に加える外力としては、超音波放射圧、重力、静電力、誘電電気泳動力を用いることができる。例えば、超音波放射圧を用いる場合には、試料液の流れに直交し、かつ、細胞濃縮液入り口214の方向に超音波の進行波を発生させて、その超音波の放射圧によって印加後の細胞の流れ219を発生させることができる。超音波の導入手段については、PZT系圧電素子をチップ209表面に接着しても良いし、あるいは、細胞濃縮部215に表面弾性波が発生するように櫛形電極アレイを圧電素子表面に配置し、これを細胞濃縮部215表面に張り付けて、浸み出した超音波が細胞濃縮部215に導入されることを利用しても良い。重力を用いる場合には、試料液の流れに直交し、かつ、細胞濃縮液が濃縮液入り口214の方向が重力の方向となるように、チップ209の空間配置を調整しても良いし、あるいは、回転することができる円盤上に、チップ209を、試料液の流れに直交し、かつ、細胞濃縮液が濃縮液入り口の方向が円盤の動径方向と同じ方向に配置しても良い。静電力を用いる場合には、マイクロ流路211の側壁に電極を配置することで、細胞が側壁に向かって外力を受けるように配置すれば良く、その場合には、対象となる細胞の持つ細胞表面の電位が正となるか負となるかに応じて、どちらの電荷を印加するかを決めればよい。ただし、静電力を発生させる場合は、電流を加える電極表面の電位が過酸素化電位、あるいは過水素化電位などの一定の電位を超えると気泡が電極から発生することとなるため、印加する電圧は非常に弱いものとなり、それ故、マイクロ流路211の流路距離は、細胞に加える外力の種類と強さに応じて柔軟に調整しなければならず、例えば静電力の場合は十分に長いものとならなければならない。誘電電気泳動力を外力として用いる場合には、細胞濃縮部215内に、試料液の流れに直交し、かつ、細胞濃縮液が濃縮液入り口214の方向に誘電電気泳動力が加えられるように、電極を配置すれば良い。 As the external force applied to the cells at this time, ultrasonic radiation pressure, gravity, electrostatic force, dielectric electrophoretic force can be used. For example, when ultrasonic radiation pressure is used, a traveling wave of ultrasonic waves is generated in the direction of the cell concentrate inlet 214 and orthogonal to the flow of the sample liquid, and is applied by the ultrasonic radiation pressure after application. A cell stream 219 can be generated. As for the ultrasonic wave introduction means, a PZT-based piezoelectric element may be adhered to the surface of the chip 209, or a comb-shaped electrode array is disposed on the surface of the piezoelectric element so that surface acoustic waves are generated in the cell concentration unit 215 This may be applied to the surface of the cell concentrating unit 215, and the fact that the soaked ultrasonic waves are introduced into the cell concentrating unit 215 may be used. When gravity is used, the spatial arrangement of the chip 209 may be adjusted so that the direction of the concentrated liquid inlet 214 is perpendicular to the flow of the sample liquid and the direction of the concentrated liquid inlet 214 is the direction of gravity, or The chip 209 may be arranged on a disc that can rotate, perpendicular to the flow of the sample solution, and the cell concentrate in the same direction as the radial direction of the disc. When electrostatic force is used, an electrode is arranged on the side wall of the microchannel 211 so that the cell receives an external force toward the side wall. In that case, the cell of the target cell It may be determined which charge is applied depending on whether the surface potential is positive or negative. However, when an electrostatic force is generated, bubbles are generated from the electrode when the potential of the electrode surface to which current is applied exceeds a certain potential such as a peroxygenation potential or a perhydrogenation potential. Therefore, the flow path distance of the micro flow path 211 must be flexibly adjusted according to the type and strength of the external force applied to the cell, for example, sufficiently long in the case of electrostatic force It must be a thing. When the dielectrophoretic force is used as an external force, the dielectrophoretic force is applied in the cell concentration unit 215 so as to be orthogonal to the flow of the sample liquid and in the direction of the concentrate inlet 214. An electrode may be disposed.
 次に、図4Cに示すように、細胞濃縮液が濃縮液入り口214に導入された濃縮細胞液は、収束部216において、溶液中で流れに沿って一列に配列される。具体的には、誘電電気泳動力、あるいは超音波放射圧の定在波モードを用いることで、収束部216の流路の中央部に細胞が引き寄せられるように外力を発生させる手段を有するものである。このようにして中央に一直線に配列された細胞は、細胞選別部217の前段に配置された細胞検出領域218において、細胞を計測して、その各細胞の種類を判定した後に、上流から下流への流れに垂直な方向への外力を加えることの有無によって、細胞選別部分岐部220において分岐する2つの下流域である第一の流出口221と第二の流出口222のいずれかに誘導するものとなる。 Next, as shown in FIG. 4C, the concentrated cell liquid into which the cell concentrated liquid has been introduced into the concentrated liquid inlet 214 is arranged in a line along the flow in the solution at the converging unit 216. Specifically, it has means for generating an external force so that cells are attracted to the central part of the flow path of the converging unit 216 by using a dielectric electrophoretic force or a standing wave mode of ultrasonic radiation pressure. is there. The cells arranged in a straight line in the center in this way are measured in the cell detection region 218 arranged in the preceding stage of the cell sorting unit 217, and after determining the type of each cell, from upstream to downstream. Guided to one of the two downstream areas, ie, the first outlet 221 and the second outlet 222, which are branched in the cell sorting part branching part 220, depending on whether or not an external force is applied in a direction perpendicular to the flow of It becomes.
 実際の収束部216の構成の例として、誘電電気泳動力によって外力を実現する場合の、電極配置の構成の一例としては、楔形の交互に配置した形状の電極(収束用V字櫛形電極)225を配置し、収束用V字櫛形電極接点に交流電圧を印加することで、細胞をこの楔形の頂点の位置に向けて細胞に対して外力を加えることができ、その結果、楔形の頂点の位置に細胞を連続して濃縮することができる。この実施例の電極で重要なのは、流路中に配置された電極の形状であり、下流側に向けて角度をもった電極であることと、この電極が一直線ではなく鋭角な先端を持ち、かつ、軸対象な形状を持つ、くし型電極アレイであることで、誘電電気泳動力を受ける細胞は、それによって斥力を受ける場合であっても、引力を受ける場合であっても、流れによって細胞が下流に押し流されてゆく力と、鋭角な先端部分に向けて細胞が受ける力の合力によって、細胞は、この鋭角な電極先端部分に誘導されて配列することとなる。言い換えると、流路中の細胞を濃縮させたい位置に、電極アレイの鋭角の頂点の位置を配置することで、細胞は、流れによって下流に進む力と、この鋭角先端方向に向けた誘電電気泳動力との合力によって、鋭角先端部に集まることとなる。 As an example of the actual configuration of the converging unit 216, as an example of the configuration of the electrode arrangement in the case where the external force is realized by the dielectric electrophoretic force, the wedge-shaped electrodes (converging V-shaped comb electrodes) 225 are alternately arranged. And applying an alternating voltage to the converging V-shaped comb electrode contact allows the cell to be directed toward the position of the wedge-shaped apex, thereby applying an external force to the cell. As a result, the position of the wedge-shaped apex Cells can be continuously concentrated. What is important in the electrode of this embodiment is the shape of the electrode arranged in the flow path, that the electrode has an angle toward the downstream side, and that this electrode has a sharp tip instead of a straight line, and Because of the comb-shaped electrode array that has the shape of the axis, the cell that receives the dielectric electrophoretic force is affected by the flow regardless of whether it receives a repulsive force or an attractive force. The cells are guided and arranged at the acute electrode tip portion by the resultant force of the force swept downstream and the force applied to the cell toward the sharp tip portion. In other words, by placing the position of the apex of the acute angle of the electrode array at the position where the cells in the flow channel are to be concentrated, the cell is forced to flow downstream by the flow and the dielectric electrophoresis directed toward this acute angle tip direction. The resultant force and force gather at the acute angle tip.
 図5に、精製された細胞の遺伝子解析、発現解析を行う1細胞ゲノム解析・発現解析モジュール30の構成についての一例を図示する。反応槽301は窪みを複数個有するアルミ、ニッケル、ないし金の薄板から構成されている。窪み領域における薄板の厚さは10から30ミクロン程度であり、隣り合った窪みの間の領域は全体的に強度を担保するために、厚さが100ミクロンから500ミクロンとする。反応槽301は四角もしくは円形の反応槽枠の底面に固定されており、反応槽熱交換槽302との脱着が容易である構造となっている。反応槽熱交換槽302に導入される液体の温度は液体リザーバタンク303の内部に配置されている熱源により過熱されている。熱源の表面から迅速に熱を奪い、液体リザーバタンク303内部の温度を均一にするために、攪拌機構が用意されている。液体リザーバタンク中の液体はポンプ304により流路内部を導かれる。切り替えバルブ305によって、液体は反応槽熱交換槽302に導かれるか、バイパス流路に導かれることにより直接液体リザーバタンク303に戻る。必要に応じて、補助温度制御機構306によって、液体の温度が僅かに制御され、液体リザーバタンク303内部の温度変動を抑制するようになっている。反応槽熱交換槽302の基本構成としては、異なる温度の液体を導入するインレットA(307)、インレットB(308)を有している。数はサンプル液の温度を変化させたい複数の温度に一致する数だけ2温度分以上の複数を用意することとなり、例えば3温度系を達成したい場合には3つとなり、本実施例で示した2個に限定されない。また、反応槽熱交換槽302の液体を液体リザーバタンク303に戻すために、複数のアウトレット、アウトレットA(309)、とアウトレットB(310)を有する。数は2に限定されない。色々な形状の反応槽を用いることが可能であり、一つの例として反応槽A、反応槽B、反応槽C、反応槽Dを示す。ここで、反応槽熱交換槽302の液体については、水を用いても良いが、熱容量が大きく、かつ、粘性が低い液体を用いても良い。例えば、液体アンモニアなどがある。また、反応槽熱交換槽302の液体については、水より沸点の高い液体を用いることで、確実に、サンプル液を100度にしたり、あるいは、水より凝固点の低い液体を用いることで、装置内で循環する液体の凝固を防ぎながら水の凝固点までの温度の変化を確実に行うこともできる。 FIG. 5 illustrates an example of the configuration of a one-cell genome analysis / expression analysis module 30 that performs gene analysis and expression analysis of purified cells. The reaction tank 301 is composed of a thin plate of aluminum, nickel, or gold having a plurality of depressions. The thickness of the thin plate in the depression region is about 10 to 30 microns, and the region between adjacent depressions has a thickness of 100 to 500 microns in order to ensure overall strength. The reaction vessel 301 is fixed to the bottom surface of a square or circular reaction vessel frame, and has a structure that can be easily detached from the reaction vessel heat exchange vessel 302. The temperature of the liquid introduced into the reaction tank heat exchange tank 302 is overheated by a heat source disposed inside the liquid reservoir tank 303. An agitation mechanism is provided to quickly remove heat from the surface of the heat source and to make the temperature inside the liquid reservoir tank 303 uniform. The liquid in the liquid reservoir tank is guided inside the flow path by the pump 304. The liquid is led to the reaction tank heat exchange tank 302 by the switching valve 305 or directly returned to the liquid reservoir tank 303 by being led to the bypass flow path. If necessary, the temperature of the liquid is slightly controlled by the auxiliary temperature control mechanism 306 so as to suppress temperature fluctuation in the liquid reservoir tank 303. The basic configuration of the reaction tank heat exchange tank 302 includes an inlet A (307) and an inlet B (308) for introducing liquids having different temperatures. As for the number, the number corresponding to the plurality of temperatures for which the temperature of the sample solution is to be changed will be prepared as a plurality of two temperatures or more. For example, when it is desired to achieve a three temperature system, the number is three. It is not limited to two. Further, in order to return the liquid in the reaction tank heat exchange tank 302 to the liquid reservoir tank 303, a plurality of outlets, outlet A (309) and outlet B (310) are provided. The number is not limited to two. Various types of reaction vessels can be used, and reaction vessel A, reaction vessel B, reaction vessel C, and reaction vessel D are shown as an example. Here, as the liquid in the reaction tank heat exchange tank 302, water may be used, but a liquid having a large heat capacity and low viscosity may be used. For example, liquid ammonia. Moreover, about the liquid of the reaction tank heat exchange tank 302, by using the liquid whose boiling point is higher than water, the sample liquid is surely set to 100 degrees, or the liquid having a lower freezing point than water is used. It is also possible to reliably change the temperature up to the freezing point of water while preventing freezing of the circulating liquid.
 また、反応槽枠には、反応槽301内のサンプル液311の反応によって変化する、サンプル液中の蛍光色素の蛍光強度の変化を、1つあるいは複数の反応槽301の各々について計測できるように、蛍光色素の励起光ならびに蛍光を透過する光学窓が配置されており、また、蛍光検出器312が配置されることで、計測された各反応槽301の蛍光強度の時間変化を計測することができる。図5の実施例では、複数の蛍光検出器312各々の内に、励起光照射機構と、蛍光検出機構が具有しており、異なるプライマー、あるいは異なるサンプル液を滴下した複数の反応槽301の各々の異なるPCR増幅情報を独立して計測することができる構成となっている。また、蛍光検出器312で取得された蛍光強度データは、制御解析部313で記録され、PCR反応によって得られたサンプル液内のDNA量、あるいは、mRNA量を見積もる機能を有する。さらに、制御解析部313では、切り替えバルブ305の切り替え情報を取得することで、バルブ切り替え後のサンプル液311の温度変化が目的の温度に達したかどうかを、蛍光強度の時間変化から見積もる機能、およびその結果に基づいてバルブ切り替えを制御する機構も有する。これは、蛍光色素が普遍的にもつ水分子の運動に基づいた蛍光消光が液温に依存することを利用して、蛍光強度の単位時間での変化量が小さくなること、あるいは、ゼロとなることから見積もるものであり、特に、DNAを変性させる高温状態の達成の確認に有効である。 In addition, the reaction vessel frame can measure the change in fluorescence intensity of the fluorescent dye in the sample solution, which changes due to the reaction of the sample solution 311 in the reaction vessel 301, for each of the one or more reaction vessels 301. An optical window that transmits the excitation light of the fluorescent dye and the fluorescence is arranged, and the fluorescence detector 312 is arranged to measure the temporal change of the measured fluorescence intensity of each reaction vessel 301. it can. In the embodiment of FIG. 5, each of the plurality of fluorescence detectors 312 includes an excitation light irradiation mechanism and a fluorescence detection mechanism, and each of a plurality of reaction vessels 301 to which different primers or different sample solutions are dropped. It is the structure which can measure the PCR amplification information of which is different independently. The fluorescence intensity data acquired by the fluorescence detector 312 is recorded by the control analysis unit 313 and has a function of estimating the amount of DNA or mRNA in the sample solution obtained by the PCR reaction. Further, the control analysis unit 313 obtains the switching information of the switching valve 305, thereby estimating whether the temperature change of the sample liquid 311 after the valve switching has reached the target temperature from the change in fluorescence intensity over time, And a mechanism for controlling valve switching based on the result. This is due to the fact that the fluorescence quenching based on the movement of water molecules universally possessed by fluorescent dyes depends on the liquid temperature, so that the amount of change in fluorescence intensity per unit time becomes small or zero. This is an estimate, and is particularly effective in confirming the achievement of a high temperature state in which DNA is denatured.
 また、本実施例では、各反応槽301に1つの検出器を配置したが、蛍光例起用光源と冷却CCDカメラなどの蛍光定量検出が可能なカメラを組み合わせて複数の反応槽の蛍光強度変化を計測しても良い。あるいは、反応槽301の数より少ない検出器を用いる場合には、X-Y面で高速に移動することができる機械式駆動機構を検出器と組み合わせることで、すべての反応槽の蛍光強度を計測しても良い。 Further, in this embodiment, one detector is arranged in each reaction vessel 301. However, the fluorescence intensity change in a plurality of reaction vessels can be changed by combining a fluorescent example light source and a camera capable of quantitative fluorescence detection such as a cooled CCD camera. You may measure. Alternatively, when fewer detectors than the number of reaction vessels 301 are used, the fluorescence intensity of all reaction vessels can be measured by combining a mechanical drive mechanism that can move at high speed on the XY plane with the detectors. You may do it.
 反応に必要な試薬は凍結乾燥しておくと便利である。反応槽の底部に凍結乾燥試薬を調製しておくことは可能である。また、サンプルを分注する際に用いられる分注チップ内部にプラグ状の凍結乾燥試薬を形成しておけば、サンプルを上下に移動させることにより試薬をサンプル中に溶解することが可能である。または、ナイロン繊維等が束ねられている繊維玉表面に凍結乾燥試薬を形成しておき、反応槽内部のサンプル中に挿入して攪拌することにより凍結乾燥試薬を溶解することも可能である。 It is convenient to freeze and dry the reagents necessary for the reaction. It is possible to prepare a freeze-dried reagent at the bottom of the reaction vessel. Further, if a plug-like freeze-dried reagent is formed inside a dispensing tip used when dispensing a sample, the reagent can be dissolved in the sample by moving the sample up and down. Alternatively, it is also possible to dissolve the freeze-dried reagent by forming a freeze-dried reagent on the surface of the fiber ball on which nylon fibers or the like are bundled, and inserting the sample into a sample inside the reaction vessel and stirring.
 薄膜から構成されている反応槽301を直接ハンドリングするのは不便であるので、反応槽301を反応槽枠に固定すると便利である。反応槽枠は断熱性材質であるポリスチレン、ポリカーボネート、PEEK,アクリル等で形成することが望ましく、また反応槽301との結合面積を抑えることが、反応槽301の迅速かつ高精度な昇温、降温に望ましい。反応槽301を反応槽熱交換槽302に装着するにあたって、反応槽枠の表面にネジ山を形成しておき、反応槽枠をねじ込む方法がある。水密性の保持のために、開口部にシールを装着することが望ましい。または、テーパー状反応槽枠を採用し、圧力のみで装着することも可能である。 Since it is inconvenient to directly handle the reaction tank 301 composed of a thin film, it is convenient to fix the reaction tank 301 to the reaction tank frame. The reaction vessel frame is preferably formed of a heat-insulating material such as polystyrene, polycarbonate, PEEK, acrylic, and the like, and the reaction area of the reaction vessel 301 can be controlled quickly and with high accuracy. Is desirable. When mounting the reaction tank 301 to the reaction tank heat exchange tank 302, there is a method in which a thread is formed on the surface of the reaction tank frame and the reaction tank frame is screwed. In order to maintain watertightness, it is desirable to attach a seal to the opening. Alternatively, it is possible to employ a tapered reaction vessel frame and attach it only by pressure.
 次に、バルブの切り替え機構の具体例を示す。反応槽301に液体を導入するためのインレットバルブA、インレットバルブB、外部に導くためのアウトレットバルブAとアウトレットバルブBがある。インレットバルブAから導かれる液体はアウトレットバルブAから液体リザーバタンクに戻り、インレットバルブAから導かれる液体はアウトレットバウルBから別の液体リザーバタンクに戻る。この二つの状態を交互に繰り替えることにより、反応槽中のサンプルを反応することができる。さらに望ましいバルブ切り替え方法としては、上記の二つの状態以外に、インレットバルブBとアウトレットバルブA、もしくはインレットバルブAとアウトレットバルブBが一瞬の間同時に開放することにより、異なる温度の液体が混合することを抑制でき、それぞれの系の液体リザーバタンクの温度制御が容易になる。PCRを行うときの条件は、例えば、反応バッファ 1.0 μL、2mM dNTP (dATP、dCTP、dGTP、dTTP) 1μL、25 mM 硫酸マグネシウム 1.2 μL、10%牛胎仔血清 0.125μL、SYBR Green I 0.5 μL、プライマー2種類各0.6μL、 滅菌水 3.725μL、KOD plus polymerase 0.25μL、ゲノムDNA1.0 μLの割合で混ぜ合わせたものを使うことができる。温度条件としては、まず95℃ 10 sec行い、次に95℃ 1 sec、60℃ 3 secの温度変化を40サイクルで計測することが出来る。 Next, a specific example of the valve switching mechanism is shown. There are an inlet valve A and an inlet valve B for introducing a liquid into the reaction tank 301, and an outlet valve A and an outlet valve B for introducing the liquid to the outside. The liquid guided from the inlet valve A returns from the outlet valve A to the liquid reservoir tank, and the liquid guided from the inlet valve A returns from the outlet bawl B to another liquid reservoir tank. By alternately repeating these two states, the sample in the reaction vessel can be reacted. As a more preferable valve switching method, in addition to the above two states, the inlet valve B and the outlet valve A, or the inlet valve A and the outlet valve B are simultaneously opened for a moment so that liquids of different temperatures are mixed. And the temperature control of the liquid reservoir tank of each system becomes easy. The conditions for PCR are, for example, reaction buffer 1.0 μL, 2 mM dNTP (dATP, dCTP, dGTP, dTTP) 1 μL, 25 mM magnesium sulfate 1.2 μL, 10% fetal bovine serum 0.125 μL, SYBR Green I 0.5 μL, primer Two types can be used: 0.6 μL each, sterilized water 3.725 μL, KOD plus polymerase 0.25 μL, and genomic DNA 1.0 μL. As the temperature condition, first, 95 ° C. for 10 seconds, and then temperature change of 95 ° C. for 1 second and 60 ° C. for 3 seconds can be measured in 40 cycles.
 図6は、各モジュール間での試料の搬送を行う送液モジュール40の構成の一例を図示したものである。シャーシ406上に配置された各モジュール間での液体のやり取りを行う分注ヘッド401、分注チップ402を有しており、また、Z軸方向での分注ヘッドの高さ方向の制御をする機能としてのZ軸移動ガイド403及びZ軸移動モータ404と、アームの回転機構としてのアーム回転モータ405とによる、X-Y面での分注ヘッド401の位置の制御機能を有している。 FIG. 6 illustrates an example of a configuration of a liquid feeding module 40 that transports a sample between the modules. It has a dispensing head 401 and a dispensing tip 402 for exchanging liquid between each module arranged on the chassis 406, and controls the height direction of the dispensing head in the Z-axis direction. The Z-axis movement guide 403 and the Z-axis movement motor 404 as functions and the arm rotation motor 405 as an arm rotation mechanism have a function of controlling the position of the dispensing head 401 on the XY plane.
 図7は、本発明の細胞分析装置を用いて行う細胞分析のうち、炭疽菌の芽胞等の細胞を覆う殻によって細胞中の核酸成分が容易に試料溶液中に溶出しない試料について、細胞の発現解析をする手順の前に、細胞を覆う殻を破砕する手順が導入されているサンプルの採取から分析までの手順の一例を図示したものである。この細胞破砕を行う手順を加えることで、本細胞分析装置は、上で述べた血液細胞の分析手段とまったく同様の手段によって、炭疽菌の芽胞等の細胞の分析を行うことが可能となる。 FIG. 7 shows cell expression of a sample in which a nucleic acid component in a cell is not easily eluted into a sample solution by a shell covering a cell such as an anthrax spore in a cell analysis performed using the cell analyzer of the present invention. An example of a procedure from collection of a sample into which a procedure for crushing a shell covering a cell is introduced before an analysis procedure is shown. By adding this procedure for cell disruption, the present cell analyzer can analyze cells such as spores of Bacillus anthracis by means similar to the means for analyzing blood cells described above.
 図8は、炭疽菌などの芽胞を有する細胞について、細胞内の遺伝子、発現情報を分析するために微量サンプルの細胞を覆う芽胞等の殻を自動的に破砕するための基本構造の一例を模式的に示す。容器801に微量サンプル802を分注し、破砕用の回転体803を容器801の内部に置く。容器801の内部で回転体803を回転させるためには、回転体803を回転シャフト804で容器801に押し付ける。回転体803が容器内部で自転および公転することにより、微量サンプル中の試料805が研磨剤806によって磨り潰される。工程終了後には、回転体803を除去することにより処理後の試料805を容易に回収することができる。回転体803および容器1は簡単な構造であるため、消耗品として扱っても問題もない。 FIG. 8 schematically shows an example of a basic structure for automatically crushing a shell of a spore or the like covering a small amount of sample cells in order to analyze intracellular genes and expression information for cells having spores such as anthrax. Indicate. A minute sample 802 is dispensed into the container 801, and a rotating body 803 for crushing is placed inside the container 801. In order to rotate the rotating body 803 inside the container 801, the rotating body 803 is pressed against the container 801 by the rotating shaft 804. As the rotating body 803 rotates and revolves inside the container, the sample 805 in the minute sample is ground by the abrasive 806. After the process is completed, the processed sample 805 can be easily recovered by removing the rotating body 803. Since the rotating body 803 and the container 1 have a simple structure, there is no problem even if they are handled as consumables.
 図9は、図8で示した基本的な細胞破砕機構の種々のバリエーションを模式的に示す。高い効率で試料を破砕するためには、回転体が容器に密接に触れることが必要である。図9Aに示す例では、回転体810を含む容器811はゴム等の柔軟性構造体812に保持されている。シャフト813の先端部位814は斜めにカットされていることから、シャフト813が回転体810に押し付けられると、回転体810は容器811を下方向および横方向に押し付けることになり、柔軟性構造812が変形することにより、圧力が吸収されることになる。結果として、回転シャフト813に過剰なストレスを与えることなく、回転体810と容器811を密接に保持しながら、試料を破砕することができる。図9Bに示すように、ストレスを逃がす方法として、回転シャフト内部に垂直および横方向に変形するバネ機構815を組み込むことも可能である。 FIG. 9 schematically shows various variations of the basic cell disruption mechanism shown in FIG. In order to crush the sample with high efficiency, it is necessary that the rotating body touches the container closely. In the example shown in FIG. 9A, the container 811 including the rotating body 810 is held by a flexible structure 812 such as rubber. Since the tip portion 814 of the shaft 813 is cut obliquely, when the shaft 813 is pressed against the rotating body 810, the rotating body 810 presses the container 811 downward and laterally, and the flexible structure 812 By deforming, pressure is absorbed. As a result, the sample can be crushed while holding the rotating body 810 and the container 811 closely without giving excessive stress to the rotating shaft 813. As shown in FIG. 9B, as a method of releasing stress, it is possible to incorporate a spring mechanism 815 that deforms vertically and laterally inside the rotating shaft.
 図10は、本発明において使用する細胞破砕機構のさまざまな形状の回転体および回転シャフトの可能性を示す。シャフト先端が斜めにカットされているもの(図10a)以外にも、緩やかな曲面に窪んでいる(図10b)、擂鉢状である(図10c)などでも良い。また、回転体は真球である必要はなく、シャフトと回転体が緩やかに噛み合う様な構造であってもよい(図10d)。半球を、斜めにカットされた回転シャフトで回転しても良い(図10e)。さらに、卵型の回転体や(図10f)、回転シャフトに噛み合うような突起構造を有しても良い(図10g)。また、お皿状の回転体をシャフトで回転させることも可能である(図10h)。 FIG. 10 shows the possibility of rotating bodies and rotating shafts of various shapes in the cell disruption mechanism used in the present invention. In addition to the shaft whose tip is cut obliquely (FIG. 10a), it may be recessed in a gently curved surface (FIG. 10b), bowl-shaped (FIG. 10c), or the like. Further, the rotating body does not have to be a true sphere, and may have a structure in which the shaft and the rotating body are gently engaged with each other (FIG. 10d). The hemisphere may be rotated with a rotating shaft cut diagonally (FIG. 10e). Further, it may have an egg-shaped rotating body (FIG. 10f) or a protruding structure that meshes with the rotating shaft (FIG. 10g). It is also possible to rotate a dish-like rotating body with a shaft (FIG. 10h).
 図11に、本発明における細胞破砕工程の一例を示す。容器830の中には、回転体831と研磨剤832が封入されている(図11a)。破砕する直前に、封印833を破り(図11b)、細胞を含むサンプル834を容器830内に分注する(図11c)。回転体831を回転シャフト835で押し付けながら回転することにより(図11d)、サンプル中の細胞が研磨剤832で破砕され、成分836が溶出する(図11e)。破砕作業の終了後には、回転体831を容器830から除去するとサンプルの回収が容易となる(図11f)。回転体の除去方法としては、負圧、磁力、静電気力を利用することが可能であり、回転シャフト内にその様な機構を組み込むことも可能である。勿論、特化された機構を別に用意しても構わない。 FIG. 11 shows an example of the cell disruption step in the present invention. A rotating body 831 and an abrasive 832 are enclosed in the container 830 (FIG. 11a). Immediately before crushing, the seal 833 is broken (FIG. 11b), and a sample 834 containing cells is dispensed into the container 830 (FIG. 11c). By rotating the rotating body 831 while pressing it with the rotating shaft 835 (FIG. 11d), the cells in the sample are crushed by the abrasive 832 and the component 836 is eluted (FIG. 11e). After the crushing operation is completed, the sample can be easily collected by removing the rotating body 831 from the container 830 (FIG. 11f). As a method for removing the rotating body, negative pressure, magnetic force, and electrostatic force can be used, and such a mechanism can be incorporated in the rotating shaft. Of course, a special mechanism may be prepared separately.
 図12に、本発明における細胞破砕工程が自動化された場合に使用され得る機構の概念図を示す。複数の容器840が一体化されて形成されていて、それぞれの容器内には、予め回転体が封印されている。封を破るためには、回転シャフトを直接押し付けて破る(図12A)、回転シャフトに装着された開封用カッター841にて破る(図12B)等の方法が可能である。シャフトと容器の相対位置を自動的に変更することが可能で、複数のサンプルを次々と破砕できる。 FIG. 12 shows a conceptual diagram of a mechanism that can be used when the cell disruption process in the present invention is automated. A plurality of containers 840 are integrally formed, and a rotating body is sealed in advance in each container. In order to break the seal, it is possible to directly press and tear the rotating shaft (FIG. 12A), or to break with the opening cutter 841 attached to the rotating shaft (FIG. 12B). The relative position of the shaft and the container can be automatically changed, and a plurality of samples can be crushed one after another.
 図13に、本発明の細胞分析装置システムにおいても使用されうる本発明のオンチップ・セルソーターチップの一例を示す。セルソーターチップ1301においては、チップ基板上に軸対象な3つの流路がそれぞれ上流側(1302,1304,1306)、下流側(1303,1305,1307)に対称に配置されており、これら3つの流路の合流点では、3つの流路は層流を保ちながら合流し、そのままの状態を維持して下流の3つの流路に分岐してゆく。したがって、試料が流れる中央の流路の上流側1302は、下流側中央の流路1303へ、2つのサイドシースフローについてもそれぞれ、上流側流路1304が下流側1305へ、また上流側流路1306から下流側流路1307へと誘導されるようになっている。また、3つの上流側流路の入り口は、それぞれ入り口開口部1308、1309、1310につながっている。特に、試料液リザーバー1322につながった、試料が流れる流路上流の入り口開口部1308については、典型的には(しかし、限定されないが)、小型の円環状キャップ(または栓)を付加することで、シース液リザーバー1311に蓄えられたシース液を流す流路の入り口開口部1309、1310とは切り離されており、試料溶液が拡散することが無いように配置されている。下流側のリザーバーも上流側と同じように配置されており、廃液リザーバー1312は、2つのサイドシース液が流れる流路の出口開口部1313、1314とつながっているが、精製試料回収用のリザーバー1323は、回収精製サンプルの出口開口部1315とつながっており、出口開口部1315には、典型的には(しかし、限定されないが)、小型の円環状キャップが付加されており、回収された精製試料は、廃液リザーバーに拡散しないようになっている。 FIG. 13 shows an example of the on-chip cell sorter chip of the present invention that can also be used in the cell analyzer system of the present invention. In the cell sorter chip 1301, three axial flow paths are arranged symmetrically on the upstream side (1302, 1304, 1306) and downstream side (1303, 1305, 1307) on the chip substrate. At the merging point of the road, the three flow paths merge while maintaining a laminar flow, and maintain the state as it is and branch to the three downstream flow paths. Therefore, the upstream side 1302 of the central flow path through which the sample flows is changed to the downstream central flow path 1303, and the upstream side flow path 1304 to the downstream side 1305, and the upstream flow path 1306, respectively, for the two side sheath flows. To the downstream flow path 1307. In addition, the inlets of the three upstream channels are connected to inlet openings 1308, 1309, and 1310, respectively. In particular, the inlet opening 1308 upstream of the flow path through which the sample flows is connected to the sample reservoir 1322, typically (but not limited to) by adding a small annular cap (or stopper). The inlet openings 1309 and 1310 of the flow path for flowing the sheath liquid stored in the sheath liquid reservoir 1311 are separated from each other and are arranged so that the sample solution does not diffuse. The downstream reservoir is also arranged in the same manner as the upstream side, and the waste liquid reservoir 1312 is connected to the outlet openings 1313 and 1314 of the flow path through which the two side sheath liquids flow. Is connected to the outlet opening 1315 of the recovered purified sample, and typically (but not limited to) a small annular cap is added to the outlet opening 1315 to recover the recovered purified sample. Does not diffuse into the waste reservoir.
 また、流速の発生に試料リザーバーとシース液リザーバーの液面の高さの廃液・回収液リザーバーの液面高さとの差を利用した重力型、あるいはリザーバー上面にキャップを付けて加圧空気を用いて液面に圧力を加えて流速を発生させる場合には、合流点で理想的な層流が発生するために、3つの流れの速度が同じになるように、合流点からの上流側、下流側それぞれの3つの流路については、その流路断面の形状、合流点から溶液入り口までの距離が一致しているものとすることが好適である。また、サイドシースフロー(あるいは廃液)のリザーバーの断面積と、内側の試料/回収サンプルのリザーバーの断面積の比を1(試料・回収リザーバー):2(サイドシース液リザーバー・廃液リザーバー)とすることが望ましい。これは、各リザーバーの液面高さの変化が異なる場合には、液面の高さの減少率が異なってしまい、これが最終的に合流点での層流の発生を破壊することとなるからである。したがって、試料入り口1に対して入り口が2つあるシース液で単位時間当たりの液の流れ出し量が1:2であることから、液面の高さが一致するように、各リザーバーの断面積の比を1:2とすることとした。これを普遍化すると、各リザーバーに結合している流路の総断面積の比が、各リザーバーの断面積の比に一致するようにすることが望ましい。 In addition, the flow rate is generated using a gravity type that utilizes the difference between the liquid level of the sample reservoir and the sheath liquid reservoir and the liquid level of the waste / recovered liquid reservoir, or pressurized air with a cap attached to the upper surface of the reservoir. When pressure is applied to the liquid surface to generate a flow velocity, an ideal laminar flow is generated at the confluence, so that the three flow velocities are the same, so that the upstream and downstream from the confluence For each of the three flow paths on the side, it is preferable that the cross-sectional shape of the flow path and the distance from the merging point to the solution inlet coincide with each other. Further, the ratio of the cross-sectional area of the side sheath flow (or waste liquid) reservoir to the cross-sectional area of the inner sample / recovery sample reservoir is 1 (sample / recovery reservoir): 2 (side sheath liquid reservoir / waste liquid reservoir). It is desirable. This is because if the change in the liquid level of each reservoir is different, the rate of decrease in the liquid level will be different, which will eventually destroy the generation of laminar flow at the confluence. It is. Therefore, since the flow rate of the liquid flow per unit time is 1: 2 in the sheath liquid having two inlets with respect to the sample inlet 1, the cross-sectional area of each reservoir is adjusted so that the liquid level is the same. The ratio was set to 1: 2. To make this universal, it is desirable that the ratio of the total cross-sectional areas of the flow paths coupled to the respective reservoirs matches the ratio of the cross-sectional areas of the respective reservoirs.
 次に、6つの流路のすべてが合流する、壁のない3つの層流が合流している地点に、電極が配置されている。電極は、典型的には、ゲル電極で構成される。ゲルについては、たとえば電解質が電流キャリアーとなるようにNaClが溶け込まされたアガロースゲルを用いている。ゲルの先端が流路に直接接触できるように、ゲルは、ゲル充填のためのY字型の流路1316に、入り口1317からゾル状態のアガロースゲルを入れ、これが出口1318に向かうことできるために、ゲルはセルソーター流路の中に侵入しないで境界線で表面張力によって静止する。ゲル電極を使用する利点として、電場を印加するために電源1320に接続された白金線などの電線1319をこのゲル導入点に差し込むことで、流路に接するゲル電極境界では、通常の金属電極では気泡が流路内で発生してしまう電圧以上に上げても気泡の発生はなく、電流を印加できる。電場印加のon-offは、例えば、スイッチ1321を利用して調節できる。 Next, an electrode is arranged at a point where three laminar flows without walls join, where all six channels join. The electrode is typically composed of a gel electrode. As the gel, for example, an agarose gel in which NaCl is dissolved so that the electrolyte becomes a current carrier is used. The gel is placed in a Y-shaped channel 1316 for gel filling so that the gel tip can be in contact with the agarose gel in a sol state from the inlet 1317 so that the gel can be directed to the outlet 1318. The gel does not penetrate into the cell sorter flow path and stops at the boundary line due to surface tension. As an advantage of using a gel electrode, by inserting a wire 1319 such as a platinum wire connected to a power source 1320 to apply an electric field to this gel introduction point, at the gel electrode boundary in contact with the flow path, a normal metal electrode Even if the bubbles are raised to a voltage higher than the voltage generated in the flow path, no bubbles are generated and a current can be applied. The on-off of the electric field application can be adjusted using the switch 1321, for example.
 図14は、特に図13のA-A断面での、上流側のリザーバーの断面の一例を模式的に示したものである。セルソーターチップ1401には流路1409が埋め込まれている。典型的な実施形態では、キャップ1402によって外側のシース液リザーバー1403の上面が塞がれることで、加圧空気導入パイプ1405から適切な流速になる空気圧が供給される。図からもわかるように、試料が流れる流路1409は試料リザーバー1404につながっており、試料液とシース液は混ざらないようになっている。また、好適かつ典型的な実施形態では、試料リザーバーとシース液リザーバーとの断面積比は、流路数の比が1:2のため、1:2とされ、各流路につながる各リザーバーの液面高さが同じになるように調整されている。 FIG. 14 schematically shows an example of the cross section of the upstream reservoir, particularly in the AA cross section of FIG. A flow path 1409 is embedded in the cell sorter chip 1401. In a typical embodiment, the upper surface of the outer sheath fluid reservoir 1403 is blocked by the cap 1402, so that air pressure at an appropriate flow rate is supplied from the pressurized air introduction pipe 1405. As can be seen from the figure, the flow path 1409 through which the sample flows is connected to the sample reservoir 1404 so that the sample liquid and the sheath liquid are not mixed. In a preferred and typical embodiment, the ratio of the cross-sectional area between the sample reservoir and the sheath fluid reservoir is 1: 2 because the ratio of the number of channels is 1: 2, and the ratio of each reservoir connected to each channel is The liquid level is adjusted to be the same.
 さらにより大量の試料を処理できるように、液を供給する機構を付加することができる。これは、試料溶液導入チューブ1406、あるいはシース液導入チューブ1407、および各リザーバーの壁面に導電性計測を用いた水位計測センサー1408が組み込まれている。これによって、水位が一定以下になると、一定の高さになるまで試料液をチューブを介して供給することができる。水位計測センサー1408は、それぞれ設定したい高さの水位の下限および水位の上限に配置した電極または電極対等で構成することができる。 A mechanism for supplying liquid can be added so that a larger amount of sample can be processed. This includes a sample solution introduction tube 1406 or a sheath liquid introduction tube 1407, and a water level measurement sensor 1408 using conductivity measurement on the wall surface of each reservoir. As a result, when the water level falls below a certain level, the sample solution can be supplied through the tube until it reaches a certain height. The water level measurement sensor 1408 can be configured by electrodes or electrode pairs disposed at the lower limit of the water level and the upper limit of the water level, which are desired to be set.
 図15は、本発明のセルソーターにおいて、大量試料を扱うための別の構成の一例を示した例である。チップ1501上に3つの大型リザーバー1502が3つの流路のそれぞれの上流に配置されており、これらについては空気圧印加装置1503から圧力センサー1504を経て、分配バルブ1505を使って圧力をより柔軟に分配することができる。また、試料の回収については、選別(精製)された試料も廃液もチップより下の位置に配置された選別試料回収リザーバー1506および廃液回収リザーバー1507でそれぞれ回収されることとなる。 FIG. 15 shows an example of another configuration for handling a large amount of sample in the cell sorter of the present invention. Three large reservoirs 1502 are arranged on the chip 1501 upstream of each of the three flow paths, and these are distributed more flexibly using the distribution valve 1505 from the air pressure application device 1503 through the pressure sensor 1504. can do. Regarding sample collection, both the sorted (purified) sample and the waste liquid are collected in the sorted sample collection reservoir 1506 and the waste liquid collection reservoir 1507, respectively, disposed at positions below the chip.
 図16は、実際の試料がチップ中で回収される手順を模式的に示したものである。上流から流れてきた試料溶液流1601は、2つのサイドシース溶液の流れ1602と1603に挟まれて、その配置を維持しながら、細胞モニター領域1604に進む。そこで各細胞の形状判別、蛍光標識の有無などを確認して、その結果に基づいて下流で細胞分離を行う。回収したい細胞が流れてきたときには、そのまま下流の選別試料回収流路1606に流し、廃棄したい細胞あるいは微粒子が流れてきた場合には、その電荷が正負のどちらであっても、対向して配置された2つのゲル電極1605に電圧を印加することで、2つのサイドシース流1607のどちらかに移動して、排除することできる。 FIG. 16 schematically shows a procedure for collecting an actual sample in the chip. The sample solution stream 1601 flowing from the upstream is sandwiched between the two side sheath solution streams 1602 and 1603 and proceeds to the cell monitoring region 1604 while maintaining the arrangement. Therefore, the shape discrimination of each cell, the presence or absence of a fluorescent label, etc. are confirmed, and cell separation is performed downstream based on the results. When the cells to be collected flow, they flow as they are to the downstream sorted sample collection flow channel 1606, and when the cells or fine particles to be discarded flow, they are arranged to face each other regardless of whether the charge is positive or negative. In addition, by applying a voltage to the two gel electrodes 1605, the gel can move to one of the two side sheath flows 1607 and be eliminated.
 図17は、画像処理型セルソーターにおける細胞回収の指標のひとつを説明する模式図である。通常、細胞はG0周期にあり、核が存在しており(図17A(a))、これは明確に細胞内での黒い球として画像認識される(図17B(a))。他方、分裂期にある細胞は、核が消失しているため(図17A(b))、細胞を画像認識しても核を確認することができない(図17B(b))。従来の抗体標識等の標識技術は、細胞の状態を確認することは困難なため、本発明においては、このような画像認識によって、細胞の形状の確認に加えて、細胞内の核の有無によって分裂中の細胞を回収することができる。一般に、血中を流れる正常細胞はすでに最終分化しているものが大半であるが、本発明により、血中で細胞分裂をしている細胞を回収することで、血中がん細胞や幹細胞などの分裂能をもった細胞を回収することが可能となる。 FIG. 17 is a schematic diagram for explaining one of the indices of cell recovery in the image processing cell sorter. Usually, the cell is in the G0 cycle and has a nucleus (FIG. 17A (a)), which is clearly image-recognized as a black sphere inside the cell (FIG. 17B (a)). On the other hand, since the nucleus of the cell in the division phase has disappeared (FIG. 17A (b)), the nucleus cannot be confirmed even if the cell is image-recognized (FIG. 17B (b)). With conventional labeling techniques such as antibody labeling, it is difficult to confirm the state of the cell. In the present invention, in addition to confirming the shape of the cell by such image recognition, the presence or absence of a nucleus in the cell Dividing cells can be recovered. In general, most normal cells flowing in the blood are already terminally differentiated, but by collecting cells that have undergone cell division in the blood according to the present invention, blood cancer cells, stem cells, etc. It becomes possible to collect cells having the ability to divide.
 図18は、実際に本発明の画像認識型セルソーターを動作させるときのフラッシュ光源を用いた時の動作タイミングチャートの一例である。高速カメラを用いてチップ中を移動する細胞を観察する場合、そのブレを防ぐためには、対物レンズの倍率に基づいてカメラの1画素の空間分解能を算出し、試料の流れについての移動速度が決まっている場合、その流速で1画素サイズ分の移動量を算出し、その移動にかかる時間だけフラッシュライトをONにすればよい。すなわち、
 
 フラッシュ時間 = 画素サイズ/流速
 
で、各シャッターのインターバルにおいてフラッシュを1回発光させれば良い。たとえば、1/2,000秒カメラの画素サイズは12 μm×12 μmであり、20倍の対物レンズで観察した場合の画素分解能は0.6 μm/pixelであることから、60cm/sの流れで、1μsの速度でフラッシュ発火を行うことができるLED光源を用いれば、実際にブレの無い画像を取得することができる。
FIG. 18 is an example of an operation timing chart when using a flash light source when actually operating the image recognition type cell sorter of the present invention. When observing cells moving through the chip using a high-speed camera, in order to prevent blurring, the spatial resolution of one pixel of the camera is calculated based on the magnification of the objective lens, and the moving speed of the sample flow is determined. If this is the case, it is only necessary to calculate the amount of movement for one pixel size at that flow rate and turn on the flashlight only for the time required for the movement. That is,

Flash time = Pixel size / flow velocity
Thus, the flash may be emitted once in each shutter interval. For example, the pixel size of a 1/2000 second camera is 12 μm × 12 μm, and the pixel resolution when viewed with a 20 × objective lens is 0.6 μm / pixel. If an LED light source that can perform flash firing at a high speed is used, it is possible to actually obtain an image without blurring.
 本発明はまた、以下に例示的な態様を記載するオンチップ・セルソーターシステムを提供する。なお、これらのシステムにおいて各部の制御(例:光学系による画像取得および解析、外力付加装置による外力付加、etc.)は、上記の実施形態と同様にパソコン等を含む制御装置を用いて行われることができる。 The present invention also provides an on-chip cell sorter system that describes exemplary aspects below. In these systems, control of each part (for example, image acquisition and analysis by an optical system, external force addition by an external force application device, etc.) is performed using a control device including a personal computer or the like as in the above embodiment. be able to.
 図19は、画像検出型1細胞分離・精製(セルソーター)モジュールにおける画像ボケを防ぐための光学系の構成の1例を模式的に示す図である。通常、顕微鏡の光学系を用いてターゲット粒子を観察する場合には、対物レンズの倍率のみで対象物の像の拡大率を決めるが、この場合、光学系の焦点深度と被写界深度は、対物レンズの倍率と開口数に依存することとなり、対物レンズの倍率を上げるほど光学系の焦点深度と被写界深度は浅くなる。 FIG. 19 is a diagram schematically showing an example of the configuration of an optical system for preventing image blur in the image detection type 1-cell separation / purification (cell sorter) module. Usually, when observing target particles using an optical system of a microscope, the magnification ratio of the object image is determined only by the magnification of the objective lens. It depends on the magnification and numerical aperture of the objective lens. The higher the magnification of the objective lens, the shallower the focal depth and depth of field of the optical system.
 微小流路中で、対象物の観察を行う場合、対象物が細胞の場合、そのサイズが数ミクロン程度の微小なものから数十ミクロンのクラスターまで様々なサイズの試料が流れるためには、流路の幅と深さは最大のサイズの試料が流れるのに十分な大きさである必要がある。しかし、画像を認識して試料の種類を判別するためには、画像の解像度は高いほうが好ましい。一般に光学顕微鏡で倍率を高めるためには、より開口数の高い対物レンズを用いる事が通常であったが、このような手段を用いると、焦点深度が浅くなり、結果として流路での被写界深度も浅くなってしまうという問題があった。画像認識型セルソーターでより高精細な画像から試料を識別するために、対象試料の拡大率を上げて、かつ、被写界深度を流路高さ程度とするためには、まず対物レンズの焦点深度および被写界深度が流路の高さ程度となる開口数の対物レンズを選び、この対物レンズの後段にズームレンズを入れれば良い。具体的には、図19Aに示したように、対物レンズとズームレンズを組み合わせて、この拡大像をCCDカメラ等の画像取得デバイスで撮像すればよい。 When observing an object in a microchannel, if the object is a cell, samples of various sizes from small to several tens of microns in size can flow. The width and depth of the path must be large enough for the largest sample size to flow. However, in order to recognize the image and discriminate the sample type, it is preferable that the resolution of the image is high. In general, in order to increase the magnification with an optical microscope, it is usual to use an objective lens with a higher numerical aperture. However, using such a means reduces the depth of focus, and as a result, the image is captured in the flow path. There was a problem that the depth of field would also be shallow. In order to identify the sample from a higher-definition image with an image recognition type cell sorter, in order to increase the magnification of the target sample and to make the depth of field about the height of the flow path, first the focus of the objective lens It is only necessary to select an objective lens having a numerical aperture at which the depth and depth of field are about the height of the flow path, and to insert a zoom lens after the objective lens. Specifically, as shown in FIG. 19A, an objective lens and a zoom lens may be combined and this magnified image may be captured by an image acquisition device such as a CCD camera.
 具体的には、たとえば図19Bに示したように、開口数(NA)が0.3となる10倍の対物レンズを用いて、このときの撮像可能な高さを計測すると、15μm程度まで問題無く像を取得することができる事がわかる。他方、開口数0.4の20倍の対物レンズ、開口数0.6の倍率40倍の対物レンズでは、5μm程度しかボケの無い像を取得することができない。 Specifically, for example, as shown in FIG. 19B, when a 10 × objective lens with a numerical aperture (NA) of 0.3 is used to measure the imageable height at this time, the image can be obtained up to about 15 μm without any problem. You can get that. On the other hand, with an objective lens with a numerical aperture of 20 times 20 times and an objective lens with a numerical aperture of 0.6 and magnification of 40 times, an image with a blur of only about 5 μm can be acquired.
 上記結果より、開口数0.3の倍率10倍の対物レンズを用いることで15μm程度の深さまでの焦点深度が確保できることが確認できたため、この対物レンズの後段に開口数0.28のズームレンズを配置して計測した結果が図19Cである。ここでわかるように、対物レンズ10倍とズームレンズ1倍を組み合わせた像、対物レンズ10倍とズームレンズ2倍を組み合わせた像、対物レンズ10倍にズームレンズ4倍を組み合わせた像ともに、焦点深度と被写界深度を合わせた、像のボケが無い状態での観察については25μmまでズームレンズの倍率が異なっていたとしても十分に観察できることがわかる。 From the above results, it was confirmed that a depth of focus up to a depth of about 15 μm could be secured by using an objective lens with a numerical aperture of 10 × and a zoom lens with a numerical aperture of 0.28 was placed behind this objective lens. The measured result is shown in FIG. 19C. As can be seen, the image is a combination of an objective lens 10 × and a zoom lens 1 × combined image, an objective lens 10 × combined with a zoom lens 2 × image, and an objective lens 10 × combined with a zoom lens 4 × image. It can be seen that when the depth and the depth of field are combined and the image is not blurred, the image can be sufficiently observed even when the magnification of the zoom lens is different up to 25 μm.
 この結果は、従来、40倍の対物レンズで観察していた画像と同様な倍率の画像を画像処理型セルソーターシステムで得る場合に、10倍の対物レンズと4倍のズームレンズを組み合わせれば、セルソーティングに最適な、流路の高さ方向についてボケが無い形での画像取得ができる構成の一例を示している。 This result is obtained by combining a 10 × objective lens with a 4 × zoom lens when an image processing cell sorter system obtains an image with the same magnification as that conventionally observed with a 40 × objective lens. An example of a configuration that can obtain an image that is optimal for cell sorting and that has no blur in the height direction of the flow path is shown.
 図20は、従来のセルソーターチップが水平に配置されていたために水平に流れる流路の底部に試料が沈降して目詰まりの原因になる事を防ぐため、セルソーターチップを鉛直に配置して細胞の沈降方向と流れの方向が同じ方向になるように構成をしたものである。セルソーターシステム中のセルソーターチップ2001は、図20に書かれたように鉛直に配置されており、流れの上流は上方に、下流は下方に設置されており、バッファ導入装置2003および試料液導入装置2006から圧力センサ2004によって加える圧力を制御された試料液ならびにバッファ溶液は、チップ上面に接続された各溶液リザーバー2002に導入される。ここで1つの導入装置から複数のリザーバーに導入する場合は、各リザーバーの圧力や状態に応じて、分配バルブ2005の開閉状態を微調整する事で各流路の流れを微調整することができる。次に、リザーバーから導入された各液体は、試料液流路2007あるいはバッファ流路2008を経て合流し、細胞の種類を画像取得あるいは、蛍光等の標識計測など蛍光量や光散乱量の定量計測の結果による判断にあわせてソーティング用外力印加機構2009によって細胞を流路中で流れ方向に対して鉛直に移動させて、その結果、複数の下流リザーバー20101、20102、20103で回収することができる。 In FIG. 20, since the conventional cell sorter chip is horizontally arranged, the cell sorter chip is arranged vertically to prevent the sample from sinking to the bottom of the horizontally flowing channel and causing clogging. The configuration is such that the settling direction and the flow direction are the same. The cell sorter chip 2001 in the cell sorter system is vertically arranged as shown in FIG. 20, and the upstream of the flow is installed upward, and the downstream is installed downward. The buffer introduction device 2003 and the sample solution introduction device 2006 are arranged. The sample solution and the buffer solution whose pressures are controlled by the pressure sensor 2004 are introduced into each solution reservoir 2002 connected to the upper surface of the chip. Here, when introducing into a plurality of reservoirs from one introduction device, the flow of each flow path can be finely adjusted by finely adjusting the open / closed state of the distribution valve 2005 according to the pressure and state of each reservoir. . Next, the liquids introduced from the reservoir are joined via the sample liquid channel 2007 or the buffer channel 2008, and the quantitative measurement of the amount of fluorescence and the amount of light scattering such as image acquisition of the cell type or labeling measurement such as fluorescence. In accordance with the determination based on the above result, the cell is moved vertically in the flow direction in the flow path by the sorting external force applying mechanism 2009, and as a result, the cells can be collected by the plurality of downstream reservoirs 20101, 20102, and 20103.
 図21は、図20で示した鉛直型に配置したセルソーターの別の構成の一例を示したものである。セルソーターシステム中のセルソーターチップ2101は、図21に書かれたように図20と同様、鉛直に配置されており、流れの上流は上方に、下流は下方に設置されており、バッファ導入装置2103および試料液導入装置2106から圧力センサ2104によって加える圧力を制御された試料液ならびにバッファ溶液は、チップ上面に接続された溶液リザーバー2102に導入され、ここでキャピラリー管で構成された試料液導入流路21061を通過して導入された試料溶液は、バッファ液に挟まれる形で流路2107に導入される。次に、流路2107を流れる細胞の種類を画像取得あるいは、蛍光等の標識計測など蛍光量や光散乱量の定量計測の結果による判断にあわせてソーティング用外力印加機構2109によって細胞を流路中で流れ方向に対して鉛直に移動させて、その結果、複数の下流リザーバー21101、21102で回収することができる。 FIG. 21 shows an example of another configuration of the cell sorter arranged in the vertical type shown in FIG. As shown in FIG. 21, the cell sorter chip 2101 in the cell sorter system is arranged vertically as in FIG. 20, and the upstream of the flow is installed upward and the downstream thereof is installed downward. The sample liquid and the buffer solution, the pressure of which is controlled by the pressure sensor 2104 from the sample liquid introduction device 2106, are introduced into the solution reservoir 2102 connected to the upper surface of the chip. The sample solution introduced after passing through is introduced into the flow path 2107 while being sandwiched between the buffer solutions. Next, the sort of external force application mechanism 2109 sorts the cells in the flow path in accordance with the determination based on the result of quantitative measurement of the amount of fluorescence and light scattering, such as image acquisition of fluorescence or other labeling measurement. As a result, the plurality of downstream reservoirs 21101 and 21102 can be collected.
 図22は、図21で示したセルソーターチップの試料溶液とバッファ液が合流する部分の構成の1例を模式的に示した図である。試料液はキャピラリー管21061によって流路2107に導入されており、流路2107の端点の上面に接続したリザーバー2102にバッファ液が導入されており、バッファ液を流路2107に導入されるように配置されている。この構成では、キャピラリー管21061の出口をリザーバー部より下流に配置していることで、バッファの流路中の希望する位置に試料液を導入することができる。細胞をソーティングする場合には、キャピラリー管21061を流路2107の片側に寄せたかたちで配置することが望ましい。また、本実施例ではキャピラリー管を用いてバッファ流路に試料液の流れを配置したが、バッファの流れが発生しているところに試料液が導入できるものであれば、特にキャピラリー管を用いなくても、微細加工によって構成した流路を組み合わせる事で同様な効果が得られる。 FIG. 22 is a diagram schematically showing an example of the configuration of the portion where the sample solution and the buffer solution of the cell sorter chip shown in FIG. 21 merge. The sample liquid is introduced into the flow path 2107 by the capillary tube 21061, the buffer liquid is introduced into the reservoir 2102 connected to the upper surface of the end point of the flow path 2107, and the buffer liquid is arranged to be introduced into the flow path 2107. Has been. In this configuration, the outlet of the capillary tube 21061 is disposed downstream of the reservoir portion, so that the sample solution can be introduced into a desired position in the buffer flow path. When sorting cells, it is desirable to arrange the capillary tube 21061 so as to approach one side of the flow path 2107. In this embodiment, the flow of the sample solution is arranged in the buffer channel using the capillary tube. However, if the sample solution can be introduced into the place where the buffer flow is generated, the capillary tube is not particularly used. However, the same effect can be obtained by combining the flow paths configured by microfabrication.
 図23は、セルソーターシステムのうちセルソーティングを行う機構を組み込んだチップの構成の1例を模式的に示した図である。チップ23001中には、上流にサンプル導入口23002が配置されており、ここから導入された試料溶液中には、回収すべき目的粒子23003と廃棄すべき不要粒子23004が混在している。ここで、試料溶液はマイクロ流路23005を流れて、まず粒子整列機構23006に導入される。この粒子整列機構には粒子整列外力インプット(電気力またはシース流)23007が配置されており、電気力によって配置する場合にはゲル電極を流路23005の両脇に導入して電界を導入する構成となっており、シース流で整列される場合にはバッファ液を導入する構成となっている。次に、一列に整列した試料は粒子検出機構23008によって粒子の種類を同定し、その次のステップとなる粒子精製機構23009において粒子の分離を行う。この粒子検出機構23008は粒子精製外力インプット((ゲルまたは金属)電極+電気力)23010が配置されており、粒子精製機構23009の位置に電気力をゲル電極あるいは金属電極を用いて印加することができる。たとえば、回収したい目的粒子が粒子精製機構23009に来たときには、外力を加えずそのまま下流に粒子を流し、回収口23011で回収し、回収したい粒子以外の粒子が来たときには、粒子精製機構23009で外力を与える事で、不要粒子溜め23012、23013に誘導することができる。 FIG. 23 is a diagram schematically showing an example of a chip configuration incorporating a cell sorting mechanism in the cell sorter system. A sample introduction port 23002 is arranged upstream in the chip 23001. In the sample solution introduced from here, target particles 23003 to be collected and unnecessary particles 23004 to be discarded are mixed. Here, the sample solution flows through the microchannel 23005 and is first introduced into the particle alignment mechanism 23006. In this particle alignment mechanism, a particle alignment external force input (electric force or sheath flow) 23007 is arranged. When the particle alignment mechanism is arranged by an electric force, a gel electrode is introduced on both sides of the flow path 23005 to introduce an electric field. In the case of being aligned in the sheath flow, a buffer solution is introduced. Next, for the samples arranged in a line, the type of particles is identified by the particle detection mechanism 23008, and the particles are separated by the particle purification mechanism 23009 which is the next step. In this particle detection mechanism 23008, a particle purification external force input ((gel or metal) electrode + electric force) 23010 is arranged, and an electric force can be applied to the position of the particle purification mechanism 23009 using a gel electrode or a metal electrode. it can. For example, when the target particle to be collected has arrived at the particle purification mechanism 23009, the particle is allowed to flow downstream without applying an external force and collected at the collection port 23011. When particles other than the particle to be collected have arrived, By applying an external force, the particles can be guided to unnecessary particle reservoirs 23012 and 23013.
 図24は、セルソーターシステムの流路中で外力を与えるための電極の配置の一例を示した図である。図24(a)の上面からの模式図と、図24(b)の横断面からの模式図で示したように、支持基板24001上に、金属薄膜電極第1層24002と、金属薄膜電極第2層24003の2つの櫛形電極部分が、絶縁膜層24004を介してわずかにずらした形で重なるように配置されており、第2層の電極24003はサンプル流路24005に直接接している。図24(c)は、実際にこのような構成で、櫛形電極アレイを流路底面に配置した例の写真を示したものである。 FIG. 24 is a diagram showing an example of the arrangement of electrodes for applying an external force in the flow path of the cell sorter system. As shown in the schematic view from the upper surface of FIG. 24A and the schematic view from the cross section of FIG. 24B, the metal thin film electrode first layer 24002 and the metal thin film electrode The two comb-shaped electrode portions of the two-layer 24003 are arranged so as to be slightly shifted from each other with the insulating film layer 24004 interposed therebetween, and the second-layer electrode 24003 is in direct contact with the sample channel 24005. FIG. 24 (c) shows a photograph of an example in which the comb-shaped electrode array is actually arranged on the bottom surface of the channel with such a configuration.
 図25は、セルソーターシステムの流路中での外力を与えるための電極アレイの配置の例を示した図である。図25(a)は、サンプル導入口25001に導入されたサンプル粒子25004が、マイクロ流路25002を流れるところで、その流路中に上記図24で示したような構成を持った金属薄膜積層型平行櫛形電極25003が配置されているとき、この金属薄膜積層型平行櫛形電極25003に交流電場を発生させると、誘電電気泳動力によってサンプル粒子25004は上面に向かう。このとき、図25(d)のように流路の断面の形状が、底面から斥力を受けて上面に粒子が進行すると、特定の上面の位置に粒子が集まるように半円状の断面の構成となっている。ここでは、半円状の形状を用いたが、三角型の断面の構成であっても良い。図25(b)は、金属薄膜積層型V字櫛形電極25005を用いたものであり、同様に底面の電極25007から斥力を発生させる事で粒子を上面の壁に誘導する事で、上面の壁の形状によって流路の中央に1列に微粒子を配列させることができる。図25(c)は、さらに流路25002の両脇からバッファ液のシース流路25006を加える事で、微粒子の配列を整えたものである。 FIG. 25 is a diagram showing an example of the arrangement of electrode arrays for applying an external force in the flow path of the cell sorter system. FIG. 25 (a) shows a case where the sample particles 25004 introduced into the sample introduction port 25001 flow through the micro flow channel 25002, and the metal thin film stacked parallel type having the configuration as shown in FIG. When an alternating electric field is generated in the metal thin film stacked parallel comb electrode 25003 when the comb electrode 25003 is disposed, the sample particles 25004 are directed to the upper surface by the dielectric electrophoretic force. At this time, as shown in FIG. 25 (d), when the cross-sectional shape of the flow path receives repulsive force from the bottom surface and the particles progress to the top surface, the semicircular cross-sectional configuration is such that the particles gather at a specific top surface position. It has become. Although a semicircular shape is used here, a triangular cross-sectional configuration may be used. FIG. 25 (b) uses a metal thin film laminated type V-shaped comb electrode 25005. Similarly, by generating repulsive force from the bottom electrode 25007, particles are induced to the top wall, Depending on the shape, the fine particles can be arranged in a line in the center of the flow path. FIG. 25 (c) shows an arrangement of fine particles by adding a buffer fluid sheath channel 25006 from both sides of the channel 25002. FIG.
 図26は、セルソーターシステムの流路中での細胞精製のプロセスの一例を示した模式図である。細胞の識別が終わった後の、次の細胞精製のプロセスについて説明する。目的粒子26001、不要粒子(負帯電)26002、不要粒子(正帯電)26003が一列に配列した状態で、マイクロ流路26004を流れてきたところで、粒子精製電極26005領域に目的粒子があるところでは、電極はOFFとなっていることで目的粒子は目的粒子回収口への流れ26006に誘導される。他方、不要粒子が来たところで、外電場をONにすると、それぞれ不要な細胞は陽極、あるいは陰極に引き寄せられて流路の中央から排除され不要粒子溜への流れ26007、26008に誘導される。 FIG. 26 is a schematic diagram showing an example of a cell purification process in the flow path of the cell sorter system. The following cell purification process after cell identification is described. When the target particles 26001, unnecessary particles (negatively charged) 26002, unnecessary particles (positively charged) 26003 are arranged in a line and flow through the microchannel 26004, where the target particles are in the region of the particle purification electrode 26005, Since the electrode is OFF, the target particles are guided to the flow 26006 to the target particle recovery port. On the other hand, when the external electric field is turned on when the unnecessary particles arrive, unnecessary cells are attracted to the anode or the cathode, respectively, are removed from the center of the flow path, and are guided to the flows 26007 and 26008 to the unnecessary particle reservoir.
 図27は、セルソーターシステムの流路中で外電場を与えるゲル電極の配置の一例を示す模式図と実際のチップの一例の写真である。図27(a)および(c)に示したように、マイクロ流路27001に隣接する形で電極用ゲル液絡部27004が配置されている。ここで流路27001とゲルとの間を隔てる境界である電極用ゲル液絡部27004は、ゲルを電極用ゲル注入口27002から電極用ゲル通路27003に導入して電極用ゲル排出口27005まで満たしたときに、ゲルが流路27001に出ないように表面張力によって漏出を防ぐ構成となっている。具体的には、流路27001の側面が壁の代わりに多数の支柱が並んだような構造になっており、支柱間の空間を通じてゲルと流路を流れる液体とが接触し、各支柱の間の幅は500μm以下である事が望ましい。また、電解質で満たされたゲルの端点は、金属線27006とつながっており、電極に電場を印加したときに発生する気泡等は、流路中ではなく電極線の位置で発生する。この電極は、直流電圧源27007につながっており、電圧印加スイッチング機構27008によって流れてくる粒子の観察結果に基づいてON/OFFを制御する。たとえば回収したいサンプル粒子27009が流れてきたところで電場を印加すると、粒子の流路中での位置を変更することができ、これによって微粒子を精製することができる。また、ここではゲル電極を用いたが、印加する電圧が気泡が発生する電位にまで達しない場合は、金属薄膜電極27010を用いても良い(図27(b)および(d))。このようなゲル電極のゲルの端点のアレイがサンプル粒子が流れる流路の試料液と接するような構成にすることによって、一点のピンポイントでの外電場の印加と比較して、十分な外力を試料に与えることができ、十分に細胞を移動させることができる。 FIG. 27 is a schematic diagram showing an example of the arrangement of gel electrodes that give an external electric field in the flow path of the cell sorter system, and a photograph of an example of an actual chip. As shown in FIGS. 27A and 27C, the electrode gel liquid junction part 27004 is arranged adjacent to the microchannel 27001. Here, the electrode gel liquid junction part 27004, which is a boundary separating the flow path 27001 and the gel, introduces the gel from the electrode gel inlet 27002 to the electrode gel passage 27003 and fills the electrode gel outlet 27005. In such a case, the gel is prevented from leaking out by surface tension so that the gel does not flow out to the channel 27001. Specifically, the side surface of the flow path 27001 has a structure in which a large number of columns are arranged instead of walls, and the gel and the liquid flowing through the channel are in contact with each other through the space between the columns. The width is preferably 500 μm or less. Further, the end point of the gel filled with the electrolyte is connected to the metal wire 27006, and bubbles and the like generated when an electric field is applied to the electrode are generated not at the flow path but at the position of the electrode wire. This electrode is connected to a DC voltage source 27007 and controls ON / OFF based on the observation result of particles flowing by the voltage application switching mechanism 27008. For example, when an electric field is applied when the sample particle 27709 to be collected flows, the position of the particle in the flow path can be changed, whereby the fine particles can be purified. Although the gel electrode is used here, the metal thin film electrode 27010 may be used when the applied voltage does not reach the potential at which bubbles are generated (FIGS. 27B and 27D). By constructing such an array of gel end points of the gel electrode in contact with the sample liquid in the flow path through which the sample particles flow, sufficient external force can be applied compared to the application of an external electric field at a single pin point. It can be given to the sample and the cells can be moved sufficiently.
 図28は、画像認識型セルソーターシステムにおいて、画像によって心筋細胞と線維芽細胞を分離するために識別するプロセスの一例を示した模式図である。心筋細胞では、図28上のセルソーターの画像取得機構で撮影した画像(上段:オリジナル画像)からもわかるように、表面が非常に滑らかになっているが(滑らかな表面)、他方、線維芽細胞については表面が非常に凸凹している(粗い表面)ことがわかる。この画像を図28中段の画像(二値化画像)のように二値化して細胞の境界面のイメージを明確にする。ここで、境界の輪郭線の長さlを境界のピクセル数から計測すると同時に、塗りつぶされた内面の面積Sを塗りつぶされたピクセル数から算出する。ここで、
Figure JPOXMLDOC01-appb-M000003

 
を用いて、実際の周囲の長さと、面積から円で換算した場合の周囲の長さを比較することで、表面の粗さ(R)を定量的に数値化することができる。実際に、図28下段にRの数値を示しているが、より詳細な計測をすることで、Rの値が約1.1未満である場合にはこの細胞は心筋細胞、これより大きい値の場合は他の細胞であることがわかっている。このように画像認識によって心筋細胞を精製するための具体的数値化したRを指標とする事で細胞表面の凸凹さの違いに基づいた細胞の識別が可能となる。
FIG. 28 is a schematic diagram showing an example of a process for identifying cardiomyocytes and fibroblasts to be separated according to an image in the image recognition type cell sorter system. In cardiomyocytes, the surface is very smooth (smooth surface) as can be seen from the image (upper: original image) taken by the image acquisition mechanism of the cell sorter in FIG. It can be seen that the surface is very uneven (rough surface). This image is binarized like the image in the middle of FIG. 28 (binarized image) to clarify the image of the cell boundary surface. Here, the length l of the boundary line of the boundary is measured from the number of pixels of the boundary, and at the same time, the area S of the filled inner surface is calculated from the number of filled pixels. here,
Figure JPOXMLDOC01-appb-M000003


The surface roughness (R) can be quantitatively quantified by comparing the actual perimeter length with the perimeter length when converted from the area into a circle. Actually, the numerical value of R is shown in the lower part of FIG. 28, but by performing more detailed measurement, when the value of R is less than about 1.1, this cell is a cardiomyocyte, and when the value is larger than this, It is known to be another cell. In this way, by using a specific numerical value R for purifying cardiomyocytes by image recognition as an index, it becomes possible to identify cells based on the difference in unevenness of the cell surface.
 図29は、水と油を組み合わせたセルソーターシステムの構成の一例を示す模式図である。この場合、シース液リザーバー1311内には、シリコン油等の水より比重が軽い油が満たされており、試料用入り口開口部1308に試料水溶液を滴下すると、流路1302のみで試料を含む水が流れ、両脇の流路1304と1306では、油が流れている。また、水と油は混合される事が無いため、シース液と試料液の入り口については特にキャップ等での隔離をする必要は無い。 FIG. 29 is a schematic diagram showing an example of the configuration of a cell sorter system in which water and oil are combined. In this case, the sheath liquid reservoir 1311 is filled with oil having a specific gravity lower than that of water such as silicon oil, and when a sample aqueous solution is dropped into the sample inlet opening 1308, water containing the sample is obtained only in the channel 1302. Oil flows in the flow paths 1304 and 1306 on both sides. In addition, since water and oil are not mixed, it is not necessary to isolate the entrance of the sheath liquid and the sample liquid with a cap or the like.
 図30は、水と油を組み合わせたセルソーターシステムの水と油の合流領域の構成の一例を示す模式図である。図29の説明でも示したように、油が満たされリザーバー中に試料水溶液を試料水溶液導入口3001に導入し、残りの油導入口3002、3003にはリザーバーの油がそのまま導入される。導入された試料水溶液と油は合流領域3004で合流するが、図30(b)のような構成で配置した場合、図30(c)のように、試料水溶液3005は油3006によって絞り込むことができる。この利点として、最後まで水と油は混ざらない事から簡単に試料水溶液を希釈することなく回収することができる。 FIG. 30 is a schematic diagram illustrating an example of a configuration of a water and oil merging region of a cell sorter system in which water and oil are combined. As shown in the description of FIG. 29, oil is filled and the sample aqueous solution is introduced into the sample aqueous solution introduction port 3001, and the oil in the reservoir is introduced as it is into the remaining oil introduction ports 3002 and 3003. The introduced sample aqueous solution and oil merge at the merge region 3004. However, when the sample aqueous solution 3005 is arranged as shown in FIG. 30B, the sample aqueous solution 3005 can be narrowed down by the oil 3006 as shown in FIG. . As an advantage, since water and oil are not mixed until the end, the sample aqueous solution can be easily recovered without diluting.
 図31は、種々の溶液条件下での水溶液中の電解質量(導電率)と、細胞分離可能速度との関係を示したグラフである。図からもわかるように、試料水溶液の導電率が10μS/cm以下となるイオン強度となる溶液組成とすることが望ましい。このようにすることによって、電場により試料液中の微粒子を移動させることが容易になる。具体的には、特に細胞を生きたままソーティングするときにイオン強度を下げつつ浸透圧を維持する溶液組成が重要である。たとえば糖類や高分子など、直接、イオン強度の増加に寄与しない分子を細胞精製時には試料溶液として用いる事が望ましい。 FIG. 31 is a graph showing the relationship between the electrolytic mass (conductivity) in an aqueous solution under various solution conditions and the cell separation rate. As can be seen from the figure, it is desirable to have a solution composition with an ionic strength such that the conductivity of the aqueous sample solution is 10 2 μS / cm or less. By doing so, it becomes easy to move the fine particles in the sample liquid by the electric field. Specifically, a solution composition that maintains osmotic pressure while lowering ionic strength is particularly important when sorting cells alive. For example, molecules that do not directly contribute to the increase in ionic strength, such as sugars and polymers, are desirably used as sample solutions during cell purification.
 図32は、蛍光強度計測と高速明視野顕微画像取得を同時に行う解析系の構成の一例を模式的に示した図である。高速カメラのフレームインターバルと同期したLEDフラッシュ光源等の明視野光源3200から照射された観察用の単色光はコンデンサレンズ3201で集光され、上で述べたような、血中のターゲット細胞が流れる流路と、細胞ソーティング機構が組み込まれたセルソーティングチップを含んだセルソーティング部3202中の細胞に照射される。上記流路中の細胞は、対物レンズ3203で焦点を合わせることができる。ここで、上記ズームレンズ系を組み入れた被写界深度改善技術を組み込んでも良い。複数の単色レーザー等の蛍光光源3204、3206,3208から対物レンズに照射された蛍光励起光によって、上記流路中の細胞に結合した蛍光抗体や、核染色蛍光色素(DAPIやHoechst33258など)で染色された核などから蛍光を発生させることができる。得られた蛍光の強度は、光倍増管やフォトダイオード等の蛍光強度計測系からなる蛍光検出系3205,3207,3209によって定量的に計測することができる。ここで励起光および蛍光の検出系についてそれぞれ3系統を例として記載したが、単一励起光によって複数の蛍光を励起することも可能であることから、複数の自由な組み合わせが可能である。このように細胞の蛍光検出を行いながら、同時に、高速カメラ3210によって細胞の明視野像を同時に取得することができる。 FIG. 32 is a diagram schematically showing an example of the configuration of an analysis system that simultaneously performs fluorescence intensity measurement and high-speed bright-field microscopic image acquisition. Monochromatic light for observation emitted from a bright field light source 3200 such as an LED flash light source synchronized with a frame interval of a high-speed camera is collected by a condenser lens 3201, and the flow of target cells in blood as described above flows. The cells in the cell sorting unit 3202 including the cell and the cell sorting chip incorporating the cell sorting mechanism are irradiated. The cells in the channel can be focused with the objective lens 3203. Here, a depth-of-field improving technique incorporating the zoom lens system may be incorporated. Stained with fluorescent excitation light irradiated to the objective lens from a plurality of fluorescent light sources 3204, 3206, 3208 such as monochromatic lasers, and fluorescent antibodies bound to the cells in the flow channel, and nuclear staining fluorescent dyes (DAPI, Hoechst33258, etc.) Fluorescence can be generated from the formed nucleus. The intensity of the obtained fluorescence can be quantitatively measured by a fluorescence detection system 3205, 3207, 3209 including a fluorescence intensity measurement system such as a photomultiplier tube or a photodiode. Here, although three systems have been described as examples of the excitation light and fluorescence detection systems, a plurality of fluorescences can be excited by a single excitation light, so that a plurality of free combinations are possible. In this way, a bright field image of a cell can be simultaneously acquired by the high-speed camera 3210 while performing fluorescence detection of the cell.
 図33は、図32で示した蛍光強度計測と高速明視野顕微画像取得を同時に行う解析系の構成の具体的な構成の一例を模式的に示した図である。この例では、赤外領域の単色光を発する高輝度LEDフラッシュ光源を明視野(高速カメラ)の光源として用い、375nm、488nm、515nmのレーザーを蛍光色素の励起光光源として用いている。ダイクロイックミラーを用いた蛍光デテクターへの蛍光の導入は、図33にも示されるように短波長光から長波長光へと段階的に波長が単調増加するように配置されており、一番の長波長領域が高速カメラへと配置されている。これによってマイクロチップホルダー内に配置されたセルソーターチップ中の細胞のいろいろな波長での蛍光強度と、明視野像を同時計測することができる。 FIG. 33 is a diagram schematically showing an example of a specific configuration of the analysis system that simultaneously performs the fluorescence intensity measurement and the high-speed bright-field microscopic image acquisition shown in FIG. In this example, a high-intensity LED flash light source that emits monochromatic light in the infrared region is used as a light source for a bright field (high-speed camera), and lasers of 375 nm, 488 nm, and 515 nm are used as excitation light sources for fluorescent dyes. The introduction of fluorescence into a fluorescence detector using a dichroic mirror is arranged so that the wavelength increases monotonically from short wavelength light to long wavelength light as shown in FIG. The wavelength region is located in the high speed camera. As a result, the fluorescence intensity at various wavelengths and the bright field image of the cells in the cell sorter chip disposed in the microchip holder can be simultaneously measured.
 図34は、図32で示した装置系に、さらに、蛍光強度計測と高速明視野顕微画像取得と高速蛍光顕微画像取得を同時に行う解析系の構成の一例を模式的に示した図である。高速カメラのフレームインターバルと同期したLEDフラッシュ光源等の明視野光源3400から照射された観察用の単色光はコンデンサレンズ3401で集光され、上で述べたような、血中のターゲット細胞が流れる流路と、細胞ソーティング機構が組み込まれたセルソーティングチップを含んだセルソーティング部3402中の細胞に照射される。上記流路中の細胞は、対物レンズ3403で焦点を合わせることができる。ここで、上記ズームレンズ系を組み入れた被写界深度改善技術を組み込んでも良い。複数の単色レーザー等の蛍光光源3404、3406,3408から対物レンズに照射された蛍光励起光によって、上記、流路中の細胞に結合した蛍光抗体や、核染色蛍光色素(DAPIやHoechst33258など)で染色された核などから蛍光を発生させることができる。得られた蛍光の強度は、光倍増管やフォトダイオード等の蛍光強度計測系からなる蛍光検出系3405,3407,3409によって定量的に計測することができる。ここで励起光および蛍光の検出系についてそれぞれ3系統を例として記載したが、単一励起光によって複数の蛍光を励起することも可能であることから、複数の自由な組み合わせが可能である。さらに、この後段に、図35にて一例を後述する、光学顕微画像を明視野像と蛍光像に分割して同時に複数の画像を1枚の高速カメラ受光素子で取得するための画像分割系3410を経て、このように細胞の蛍光強度検出を行いながら、同時に、高速カメラ3411によって細胞の明視野像を同時に取得することができる。 FIG. 34 is a diagram schematically showing an example of the configuration of an analysis system that simultaneously performs fluorescence intensity measurement, high-speed bright-field microscopic image acquisition, and high-speed fluorescent microscopic image acquisition in the apparatus system shown in FIG. Monochromatic light for observation emitted from a bright field light source 3400 such as an LED flash light source synchronized with a frame interval of a high-speed camera is collected by a condenser lens 3401, and the flow of target cells in blood as described above flows. The cells in the cell sorting unit 3402 including the path and the cell sorting chip incorporating the cell sorting mechanism are irradiated. The cells in the channel can be focused with the objective lens 3403. Here, a depth-of-field improving technique incorporating the zoom lens system may be incorporated. With fluorescent excitation light irradiated to the objective lens from a plurality of fluorescent light sources 3404, 3406, 3408 such as monochromatic lasers, the fluorescent antibody bound to the cells in the flow path, or a nuclear staining fluorescent dye (DAPI, Hoechst33258, etc.) Fluorescence can be generated from stained nuclei and the like. The intensity of the obtained fluorescence can be quantitatively measured by a fluorescence detection system 3405, 3407, 3409 including a fluorescence intensity measurement system such as a photomultiplier tube or a photodiode. Here, although three systems have been described as examples of the excitation light and fluorescence detection systems, a plurality of fluorescences can be excited by a single excitation light, so that a plurality of free combinations are possible. Further, an image dividing system 3410 for dividing an optical microscopic image into a bright field image and a fluorescent image and simultaneously acquiring a plurality of images with a single high-speed camera light receiving element will be described later with reference to FIG. Then, while detecting the fluorescence intensity of the cells in this way, a bright field image of the cells can be simultaneously acquired by the high speed camera 3411.
 図35は、高速明視野顕微画像取得と高速蛍光顕微画像取得を1つの高速カメラ受光面で同時に取得する装置構成の一例を模式的に示した図である。入力光路3501から入ってきた画像データは、まず一つ目の画像分割部3510に導入される。ここでは、反射する方向を3次元に微調整可能な角度調整機能付きダイクロイックミラー3511で、特定の波長をカットオフ波長として、その波長から長波長領域、あるいは短波長領域を反射してフィルター系3512に導入することができる。ここでフィルター系3512は、高速カメラ上での明視野あるいは蛍光の強度をある程度そろえるための強度調整用NDフィルター、あるいはよりシャープな波長帯域の蛍光像を得るためのバンドパスフィルターなどからなる。つぎに複数の分割画像が、高速カメラの受光面で重ならないように、画像サイズを小さくするための可動式の遮蔽板からなる画像サイズ調整系3513を経て、反射する方向を3次元に微調整可能な角度調整機能付きダイクロイックミラー3514、そしてさらに扱う光の波長差を含む光学系の経路差等によって生じた他経路の像との結像位置の差を補正するための光学レンズ系3515を経て、同様な構成からなる二つ目の画像分割部3520に導入される。さらに同様な構成からなる三つ目の画像分割部3530に導入され、最終的に出力される画像3502は、異なる波長の単色光からなる顕微画像が、高速カメラの受光面上で重ならないように切り取られたサイズで互いに配置される。ここで本図では、3つの同様な構成からなる画像分割部を組み合わせたが、2つあるいは4つ以上を組み合わせて用いても良い。また、図35に示したように、分割系は「反射する方向を3次元に微調整可能な角度調整機能付きダイクロイックミラー3511、フィルター系3512、画像サイズを切り取って小さくするための可動式の遮蔽板からなる画像サイズ調整系3513、反射する方向を3次元に微調整可能な角度調整機能付きダイクロイックミラー3514、結像位置の差を補正するための光学レンズ系3515を組み合わせた構成」を一式としてモジュール化しており、そのため、上記のように、自由に、かつ柔軟に、分割系の接続数を調整するだけで、必要数だけの画像分割像を組み合わせることができる構成となっている。 FIG. 35 is a diagram schematically showing an example of an apparatus configuration that simultaneously acquires high-speed bright-field microscopic image acquisition and high-speed fluorescence microscopic image acquisition with a single high-speed camera light-receiving surface. The image data that has entered from the input optical path 3501 is first introduced into the first image dividing unit 3510. Here, a dichroic mirror 3511 with an angle adjustment function that can finely adjust the direction of reflection three-dimensionally, a specific wavelength is set as a cutoff wavelength, and a long wavelength region or a short wavelength region is reflected from that wavelength to filter system 3512. Can be introduced. Here, the filter system 3512 includes an ND filter for intensity adjustment for aligning the bright field or fluorescence intensity to some extent on a high-speed camera, or a bandpass filter for obtaining a fluorescent image in a sharper wavelength band. Next, a plurality of divided images are finely adjusted three-dimensionally in the direction of reflection through an image size adjustment system 3513 including a movable shielding plate for reducing the image size so that the light receiving surface of the high-speed camera does not overlap. Through a dichroic mirror 3514 with an adjustable angle function and an optical lens system 3515 for correcting a difference in image formation position from an image of another path caused by a path difference of an optical system including a wavelength difference of light to be further handled. The second image dividing unit 3520 having the same configuration is introduced. Furthermore, the image 3502 that is introduced into the third image dividing unit 3530 having the same configuration and finally output is such that microscopic images composed of monochromatic light of different wavelengths do not overlap on the light receiving surface of the high-speed camera. They are arranged in a cut-out size. Here, in this figure, three image dividing units having the same configuration are combined, but two or four or more may be used in combination. In addition, as shown in FIG. 35, the division system is “a dichroic mirror 3511 with an angle adjustment function capable of finely adjusting the reflection direction in three dimensions, a filter system 3512, and a movable shield for cutting and reducing the image size. A combination of an image size adjustment system 3513 composed of a plate, a dichroic mirror 3514 with an angle adjustment function capable of finely adjusting the reflection direction in three dimensions, and an optical lens system 3515 for correcting a difference in image formation position as a set. For this reason, as described above, the necessary number of divided image images can be combined by adjusting the number of connections in the divided system freely and flexibly as described above.
 図36は、高速明視野顕微画像と1つの高速蛍光顕微画像とを1つの高速カメラ受光面で同時に取得した画像の例と解析情報についての一例を模式的に示した図である。分割系への入力時の画像3601は、複数の波長の光の情報が重ね合わされた細胞3600のデータとなっているが、上記図35で示した分割系を経ることによって、明視野像3610と、核の蛍光像3620を、一つの受光面3602上で同時に取得することができる。ここで見てもわかるように、入力画像の両脇の余分な領域が分割系内の画像サイズ調整系によって切り取られることで、受光面上で重ならないサイズで複数の画像を取得することができる。ここで、各画像の高速カメラの受光面上の位置は、複数の3次元に微調整可能な角度調整機能付きダイクロイックミラーの面位置の調整で、自在に調整することができる。また、明視野像、あるいは蛍光像について、上記光学レンズ系3515を像の拡大あるいは縮小用に用いる事で、拡大率の異なる画像を1つの高速カメラ受光面3602に結像させることもできる。これは、特に細胞の周囲の状態を含めて計測するために明視野像については拡大率を小さくし、細胞内の微細状況を確認するための蛍光像については拡大率を大きくする、という用途がある。この拡大率の異なる画像を組み合わせた光学系を図35に示した分割光学系「反射する方向を3次元に微調整可能な角度調整機能付きダイクロイックミラー3511、フィルター系3512、画像サイズを切り取って小さくするための可動式の遮蔽板からなる画像サイズ調整系3513、反射する方向を3次元に微調整可能な角度調整機能付きダイクロイックミラー3514、結像位置の差を補正するための光学レンズ系3515を組み合わせた構成」を一式としてモジュール化して用いる場合には、イメージングセルソーターへの用途に限定せず、イメージングセルソーターで選択回収された静止した細胞試料で同様の観察をするための一般の光学明視野/蛍光顕微鏡系に組み入れて利用することも可能である。 FIG. 36 is a diagram schematically illustrating an example of an image obtained by simultaneously acquiring a high-speed bright-field microscopic image and one high-speed fluorescence microscopic image with a single high-speed camera light-receiving surface, and an example of analysis information. The image 3601 at the time of input to the divided system is data of the cell 3600 in which information of light of a plurality of wavelengths is superimposed. By passing through the divided system shown in FIG. 35, the bright field image 3610 and The fluorescence image 3620 of the nucleus can be acquired simultaneously on one light receiving surface 3602. As can be seen here, the extra area on both sides of the input image is cut out by the image size adjustment system in the division system, so that a plurality of images can be acquired with a size that does not overlap on the light receiving surface. . Here, the position of each image on the light-receiving surface of the high-speed camera can be freely adjusted by adjusting the surface position of a plurality of dichroic mirrors with an angle adjustment function that can be finely adjusted in three dimensions. Further, by using the optical lens system 3515 for enlarging or reducing the image of a bright field image or fluorescent image, it is possible to form images with different magnifications on one high-speed camera light receiving surface 3602. This is because the magnification factor is reduced for bright-field images, especially for measurements including the surrounding conditions of cells, and the magnification factor is increased for fluorescent images for confirming the minute state in the cell. is there. An optical system combining images with different magnifications is a divided optical system shown in FIG. 35, “a dichroic mirror 3511 with an angle adjustment function that can finely adjust the reflecting direction in three dimensions, a filter system 3512, and a small image size. An image size adjustment system 3513 composed of a movable shielding plate, a dichroic mirror 3514 with an angle adjustment function capable of finely adjusting the reflection direction in three dimensions, and an optical lens system 3515 for correcting a difference in imaging position. When the combined configuration is modularized and used as a set, it is not limited to the application to an imaging cell sorter, but is a general optical bright field / It can also be incorporated into a fluorescence microscope system.
 得られた複数の画像について、明視野像からは、たとえば、流れてきた細胞の画像から、あらかじめ記録していた細胞が流れてこないときの画像データを引き算することで、細胞画像だけを抽出することができる。そのため、その細胞サイズ(面積)および細胞周囲長は引き算をしたあとのデータが残った領域内のピクセル数の全体、あるいはデータが残った領域の境界のピクセル数の全体から、それぞれ求めることができる。さらに、この2つのデータを用いて、前述の数式1で示した細胞の凹凸の程度Rを求めることができる。ここで、細胞クラスターは、Rが約1.3以上であれば、細胞クラスターと明視野の画像のみから判定することができる。 For a plurality of obtained images, only the cell image is extracted from the bright-field image, for example, by subtracting the image data when the previously recorded cells do not flow from the flowed cell image. be able to. Therefore, the cell size (area) and the cell perimeter can be obtained from the total number of pixels in the area where the data remains after subtraction or the total number of pixels at the boundary of the area where the data remains. . Furthermore, using these two data, it is possible to obtain the degree R of the irregularities of the cell shown in the above-described equation 1. Here, if R is about 1.3 or more, the cell cluster can be determined only from the cell cluster and the bright field image.
 同様に、蛍光像(核染色)3620から、核の蛍光像3621が得られ、核の数、核の面積、および、蛍光強度の全体すなわち輝度の積算値(フォトマルデータに匹敵)を得ることができる。また、明視野像と蛍光像は、同じ場所を異なる波長で撮影しているだけであるため、双方の座標軸は一致する。そのため、蛍光像では、細胞の形状は計測できないが、明視野像での座標を利用して、染色された核の細胞内での相対位置を見積もることもできる。ここで図36では、1つの核がある正常な単離一細胞の例を示したが、細胞クラスター、あるいは多核細胞でも、同様にデータ取得が可能である。また、上記、拡大率の異なる複数画像を結像させた系においても、同様に相対座標系は、同一の原点(画像中心)を中心に、拡大率の違いを考慮した相対座標系を組み合わせて用いれば、同様な処理が可能である。 Similarly, a fluorescence image 3621 of the nucleus is obtained from the fluorescence image (nuclear staining) 3620, and the total number of nuclei, the area of the nucleus, and the fluorescence intensity, that is, the integrated value of luminance (comparable to the photomal data) is obtained. Can do. Further, since the bright field image and the fluorescent image are only taken at different wavelengths at the same place, the coordinate axes of both are the same. Therefore, although the shape of a cell cannot be measured with a fluorescent image, the relative position of a stained nucleus in a cell can be estimated using coordinates in a bright field image. Here, FIG. 36 shows an example of a normal isolated single cell having one nucleus, but data can be similarly obtained from a cell cluster or a multinucleated cell. Also, in the above-described system in which a plurality of images with different magnification rates are formed, the relative coordinate system is similarly combined with a relative coordinate system that takes into account the difference in magnification rate with the same origin (image center) as the center. If used, the same processing can be performed.
 図37は、高速明視野顕微画像と核蛍光染色した高速蛍光顕微画像とを1つの高速カメラ受光面で同時に取得した画像の例を示した写真である。上記、述べたように、ここでは予め2つの画像の相対座標を一致させておくことで、蛍光像によって同定できる核の位置について、明視野像の細胞像あるいは細胞クラスター像の中のどの部位に核が分布しているかを、互いの相対座標を用いて照らし合わせることができる。この相対座標の照らし合わせによって、正常細胞では、滑らかな細胞表面と正常なサイズの細胞中で、1つの核が蛍光で光っていることがわかる。他方、がん細胞では、多核化がひとつのがん細胞の指標であるが、写真で示したように、相対座標の照らし合わせによって、正常細胞より巨大化した細胞中で、複数の核が光っていることがわかる。また、正常な血液中では存在しないが、がん転移症例の動物中の血液では、細胞クラスターと、そのクラスター中での各細胞の核の蛍光によって、クラスター内での複数の核の蛍光が観察され、このような複数の核の蛍光からクラスターであることがわかる。また、クラスターの明視野像からも、このときR>1.3となっており、クラスターの同定については、蛍光像を用いなくても明視野像だけをもちいても判定可能であることがわかる。このようにして、上記本発明の装置を用いて(1)健常な血液中では存在しない細胞クラスター(塊)を血中がん細胞候補として同定して選択的に回収する手法、(2)健常な血液中では存在しない多核細胞を血中がん細胞候補として同定して選択的に回収する手法、(3)健常な血液中では存在しない巨大細胞を血中がん細胞候補として同定して選択的に回収する方法、(4)上記(1)(2)あるいは(3)に加えて図32で示した蛍光強度計測で計測したガン細胞のバイオマーカー(たとえばEpCam抗体やK-ras抗体、サイトケラチン抗体など)のひとつあるいは複数に対する蛍光抗体の蛍光強度の存在と組み合わせた解析でがん細胞と同定して選択的に回収する手法、によって血中がん細胞を、従来の分子バイオマーカーではなく、「細胞の形状や集団化状態、あるいは多核化などの内部構造などの画像イメージ」という新しいバイオマーカーで同定して選択回収することが可能となる。また、上記手法で回収した血中がん細胞候補は、引き続き、上記、微小細胞用のPCR解析技術などの遺伝子解析手段を組み合わせて遺伝子変異の計測をすることによって、最終的にがん細胞であるかどうか、また、がん細胞であった場合にはどのような特徴を持ったがん細胞であるかを最終的に同定することが可能である。(1)については、明視野像によるR>1.3による評価、あるいは、明視野像によるサイズと蛍光像による核の数と分布(すなわち隣接する複数の核の像について、その重心の距離が互いに3μm以上離れている事)によって判別することができる。(2)については、明視野像によってR<1.3で、かつ、核の数と分布(すなわち隣接する複数の核の像について、その重心間の距離が互いに3μm以内で離れている事)によって判別することができる。(3)については、明視野像によって、R<1.3かつ、細胞サイズが直径に換算して20μmを超えている事によって判別できる。あるいは、上記(1)から(3)を組み合わせて、1つ以上の合致条件があったものをがん細胞として判定することができる。 FIG. 37 is a photograph showing an example of an image obtained by simultaneously obtaining a high-speed bright-field microscopic image and a high-speed fluorescence microscopic image stained with nuclear fluorescence with a single high-speed camera light-receiving surface. As mentioned above, here, by matching the relative coordinates of the two images in advance, the position of the nucleus that can be identified by the fluorescence image can be determined at any part of the cell image or cell cluster image of the bright field image. Whether nuclei are distributed can be collated using relative coordinates of each other. By comparing the relative coordinates, it can be seen that in normal cells, one nucleus shines with fluorescence in a smooth cell surface and a normal size cell. On the other hand, in cancer cells, multinucleation is an indicator of one cancer cell, but as shown in the photograph, multiple nuclei glow in cells that have become larger than normal cells by comparing relative coordinates. You can see that In addition, in the blood in animals with cancer metastasis, the fluorescence of multiple nuclei in the cluster is observed in the blood of animals with cancer metastasis due to the fluorescence of cell clusters and the nucleus of each cell in the cluster. It can be seen from the fluorescence of such a plurality of nuclei that it is a cluster. Also, from the bright field image of the cluster, R> 1.3 at this time, and it can be seen that the identification of the cluster can be determined using only the bright field image without using the fluorescent image. Thus, using the apparatus of the present invention, (1) a method for identifying and selectively recovering cell clusters (lumps) that do not exist in healthy blood as blood cancer cell candidates, (2) healthy To identify and selectively collect polynuclear cells that do not exist in healthy blood as cancer cell candidates in blood, and (3) identify and select giant cells that do not exist in healthy blood as cancer cell candidates (4) In addition to (1), (2) or (3) above, cancer cell biomarkers (for example, EpCam antibody, K-ras antibody, site) measured by fluorescence intensity measurement shown in FIG. Blood cancer cells instead of conventional molecular biomarkers by a method that identifies and selectively recovers cancer cells by analysis combined with the presence of fluorescence intensity of fluorescent antibodies against one or more of keratin antibodies) ,"cell It is possible to identify and select and collect a new biomarker such as an image of the shape, grouping state, or internal structure such as multinucleation. In addition, blood cancer cell candidates collected by the above method can be combined with the above-described gene analysis means such as the PCR analysis technology for microcells, and finally measured for gene mutations. If it is a cancer cell, it is possible to finally identify the characteristics of the cancer cell. For (1), evaluation by R> 1.3 using a bright-field image, or the number and distribution of nuclei by size and fluorescence image by a bright-field image (that is, the distance between the centers of gravity of adjacent nuclei images is 3 μm It can be determined by the fact that they are far apart. For (2), R <1.3 is determined by the bright field image, and the number and distribution of nuclei (that is, the distance between the centroids of the images of adjacent nuclei is within 3 μm from each other). can do. As for (3), it can be determined from the bright field image that R <1.3 and that the cell size is more than 20 μm in terms of diameter. Alternatively, a combination of (1) to (3) above can be determined as a cancer cell if there is one or more matching conditions.
 図38はマイクロチップ中を流れる血液等の細胞に対して光ファイバーアレイを用いて複数波長の蛍光励起光を細胞へ同時に照射し、発せられた複数波長の蛍光量を同時取得し、かつ複数波長の蛍光画像を同時取得するための装置構成の一例を模式的に示した図である。 FIG. 38 shows an example of simultaneously irradiating a plurality of wavelengths of fluorescence excitation light to cells such as blood flowing in a microchip simultaneously using a fiber optic array, It is the figure which showed typically an example of the apparatus structure for acquiring a fluorescence image simultaneously.
 図38の実施例の装置は、光源については6つの異なる単色励起光を発生させる蛍光励起光源と1つの明視野顕微画像用光源からなる励起光源部(3801-3807)を備えている。励起光源の各々にはそれぞれ発光タイミングや発光時間、発光強度を個別に制御できる制御コントローラ3808-3814が接続されている。励起光源としては、連続照射を行う場合には通常のキセノンランプ、水銀ランプ等の広帯域発光光源にフィルターを組み合わせた光源、または半導体励起固体レーザー、He-Neレーザーなどのレーザー光源を利用してもよいが、最も適しているもののひとつは出力光の波長幅が狭く強度も安定して制御でき、小型で、かつ、ミリ秒未満でのパルス発光制御も容易であるLED光源である。励起光源に接続されたコントローラ3808-3814は励起光源の強度と出力時間を制御できるようになっており、これにより連続光からパルス光までの光を照射することが可能となっている。パルス光源を用いたパルス露光方法の実施例のひとつについては図18にも記載している手法を用いることができる。励起光源は蛍光を励起する目的で使用できることはもちろんであるが、そのうちのひとつ以上を、明視野顕微画像を取得するための明視野光源として利用することができる。また、特に励起光源としてキセノンランプのような出力光波長幅の広い光源を利用する場合は、励起光フィルター3821により特定波長の光のみを通過させて試料に照射することができる。 The apparatus of the embodiment of FIG. 38 includes an excitation light source unit (3801-3807) including a fluorescent excitation light source for generating six different monochromatic excitation lights and a bright-field microscopic image light source. Each excitation light source is connected to a controller 3808-3814 that can individually control the light emission timing, light emission time, and light emission intensity. As the excitation light source, in the case of continuous irradiation, a light source combining a filter with an ordinary broadband light source such as a xenon lamp or a mercury lamp, or a laser light source such as a semiconductor excitation solid state laser or a He-Ne laser may be used. One of the most suitable is an LED light source that has a narrow wavelength range of output light, can control the intensity stably, is small, and can easily control pulse emission in less than a millisecond. A controller 3808-3814 connected to the excitation light source can control the intensity and output time of the excitation light source, and can irradiate light from continuous light to pulsed light. For one of the embodiments of the pulse exposure method using a pulse light source, the technique described in FIG. 18 can be used. Of course, the excitation light source can be used for the purpose of exciting fluorescence, but one or more of them can be used as a bright field light source for acquiring a bright field microscopic image. In particular, when a light source having a wide output light wavelength width such as a xenon lamp is used as an excitation light source, the sample can be irradiated with only light having a specific wavelength by the excitation light filter 3821.
 各励起光源の励起光出口には、それぞれの光源3801~3807の励起光の光帯域幅に最適化する各々のフィルター3821が配置されており、また、その後段には各々レンズ3822が配置されており、各励起光源で発生した各励起光は集束されて励起光ごとに各々の光ファイバー3824の端面に照射され、独立した各光ファイバー3824内に励起光が導入される。これら光ファイバーは束ねられて、反対側の端面より照射され、集光用マイクロレンズ3826を経て、マイクロチップ3827中のマイクロ流路を流れる試料に照射される。ここで代表的なマイクロチップの流路の形状についてはたとえば図13に記載されているものを用いれば良い。光ファイバーの直径は典型的には1本あたり100ミクロンであり、マイクロチップ中の試料細胞が通過するマイクロ流路幅は典型的には10ミクロンから100ミクロンであるため、励起光の照射領域を絞るためにマイクロチップ直上には励起光の集光用マイクロレンズ3826が配置してある。マイクロレンズ3826の焦点位置を調整することにより、マイクロチップ中のマイクロ流路の1ミクロン径程度のごく狭い領域のみに励起光を絞って照射することも可能であり、また照射領域直径を100ミクロン程度としてマイクロ流路幅全体にわたって照射することも可能である。 At the excitation light exit of each excitation light source, each filter 3821 that optimizes the optical bandwidth of the excitation light of each light source 3801 to 3807 is arranged, and each lens 3822 is arranged at the subsequent stage. Each excitation light generated by each excitation light source is focused and irradiated to the end face of each optical fiber 3824 for each excitation light, and the excitation light is introduced into each independent optical fiber 3824. These optical fibers are bundled, irradiated from the opposite end face, and irradiated through the condensing microlens 3826 to the sample flowing through the microchannel in the microchip 3827. Here, for example, the shape of the flow path of a typical microchip may be the one described in FIG. The diameter of the optical fiber is typically 100 microns, and the width of the microchannel through which the sample cells in the microchip pass is typically 10 to 100 microns. For this purpose, a microlens 3826 for condensing excitation light is disposed immediately above the microchip. By adjusting the focal position of the microlens 3826, it is possible to irradiate only the very narrow region of about 1 micron diameter of the microchannel in the microchip with the excitation light focused, and the irradiation region diameter is 100 microns. It is also possible to irradiate the entire microchannel width as a measure.
 マイクロ流路中を流れてきた、蛍光染色されたがん細胞等の試料に対して上記集束励起光が照射されると、がん細胞等の試料から特定波長の蛍光が球面波状に放射される。そのうちの片側半球方向(図38の実施例ではチップの上面方向)に放射された蛍光はマイクロレンズ3826によって、計測したい蛍光波長帯域数の数だけ用意された光ファイバー3825が束ねられた端面に誘導され、さらに光ファイバーを経由して、蛍光強度検出を行う蛍光強度検出部に誘導される。 When the above-mentioned focused excitation light is irradiated to a sample such as a fluorescently stained cancer cell that has flowed through the microchannel, fluorescence of a specific wavelength is emitted from the sample such as a cancer cell in a spherical wave shape. . The fluorescence emitted in one hemispherical direction (in the embodiment of FIG. 38 in the direction of the upper surface of the chip) is guided to the end face where the optical fibers 3825 prepared for the number of fluorescence wavelength bands to be measured are bundled by the microlens 3826. Further, the light is guided to a fluorescence intensity detection unit that performs fluorescence intensity detection via an optical fiber.
 蛍光強度検出部については、本実施例ではたとえば6つの異なる蛍光波長領域の蛍光強度をそれぞれ検出する蛍光検出器3815-3820からなる蛍光強度検出部を搭載しており、各光ファイバー3825の端面から放射される蛍光を、まずは各光ファイバーの端点に配置したレンズ3822に誘導し、次に、計測したい各蛍光波長のフィルター3823、そして蛍光検出器3815-3820に誘導することで蛍光計測を行うことができる。蛍光検出器としては微弱な光を検出することが可能で受光量の定量化が容易である光電子増倍管を利用することが適しているが、励起光源、蛍光検出器共に測定対象に合わせてアパランシア型フォトダイオードなどの光電変換機能を持つ半導体素子などの適切なものを選択することが望ましい。また蛍光検出器の検出口には計測の条件に応じて交換可能な蛍光フィルター3823を搭載することができるようになっている。 In the present embodiment, for example, a fluorescence intensity detection unit comprising fluorescence detectors 3815-3820 for detecting fluorescence intensities in six different fluorescence wavelength regions is mounted in this embodiment, and is emitted from the end face of each optical fiber 3825. Fluorescence can be measured by first guiding the fluorescence to the lens 3822 disposed at the end point of each optical fiber, and then guiding the fluorescence to the filter 3823 of each fluorescence wavelength to be measured and the fluorescence detector 3815-3820. . As a fluorescence detector, it is suitable to use a photomultiplier tube that can detect weak light and easily quantify the amount of received light. However, both the excitation light source and the fluorescence detector are suitable for the measurement target. It is desirable to select an appropriate device such as a semiconductor element having a photoelectric conversion function such as an aparancia photodiode. In addition, a fluorescent filter 3823 that can be exchanged according to measurement conditions can be mounted on the detection port of the fluorescence detector.
 検出された蛍光量は蛍光検出コントロールユニット3832で分析処理され、特定の蛍光あるいは蛍光の組み合わせが検出されたところで、あるいは、特定の蛍光と高速カメラ3830から得られた特定の細胞の形状あるいは細胞クラスターの状態が観察されたところで、細胞分取のためのフィードバック信号(パルス電圧)がマイクロチップ3827に送られる。例えば蛍光染色されたがん細胞がマイクロ流路を通過し、蛍光検出器で検出された蛍光量が予め蛍光検出コントロールユニット3832で設定した閾値量以上になった場合、マイクロチップへフィードバック信号が送信され、それによりマイクロチップに搭載された電極へ電圧が印加されて目的のがん細胞が回収される仕組みとなっている。 The detected fluorescence amount is analyzed and processed by the fluorescence detection control unit 3832, and a specific cell shape or cell cluster obtained from the specific fluorescence or the high-speed camera 3830 when a specific fluorescence or a combination of fluorescence is detected. When the above state is observed, a feedback signal (pulse voltage) for cell sorting is sent to the microchip 3827. For example, when a cancer cell that has been fluorescently stained passes through the microchannel and the amount of fluorescence detected by the fluorescence detector exceeds a threshold amount set in advance by the fluorescence detection control unit 3832, a feedback signal is transmitted to the microchip. As a result, a voltage is applied to the electrodes mounted on the microchip to recover the target cancer cells.
 残りの片側半球方向(図38の実施例ではチップの下面方向)に放射された蛍光は対物レンズ3828を通過した後、明視野顕微画像と蛍光顕微画像を1つの高速カメラ受光面で同時に取得する装置3829(マルチビューシステム、装置詳細はたとえば図35に記載された実施例の構成が一例となる)を通過して高速カメラ3830に取り込まれることにより、明視野顕微画像と複数の蛍光顕微画像を全て同時に取得することができる。高速カメラ3830は光源コントロールユニット3831と接続されており、光源コントロールユニット3831はさらに個別の励起光源コントローラ3808-3814と接続されているため、高速カメラの撮像と励起光源パルス照射のタイミングを同期させることにより形状歪みの無い明瞭な細胞画像を取得することが可能となっている(同期の詳細についての実施例としてはたとえば図18で示された実施例の構成が一例となる)。 Fluorescence emitted in the remaining hemispherical direction (in the embodiment of FIG. 38 in the direction of the lower surface of the chip) passes through the objective lens 3828, and then simultaneously acquires a bright-field microscopic image and a fluorescent microscopic image with a single high-speed camera light-receiving surface. A bright-field microscopic image and a plurality of fluorescent microscopic images are obtained by passing through a device 3829 (multi-view system; device details are, for example, the configuration of the embodiment shown in FIG. 35 as an example) and being captured by the high-speed camera 3830. All can be acquired simultaneously. Since the high-speed camera 3830 is connected to the light source control unit 3831 and the light source control unit 3831 is further connected to an individual excitation light source controller 3808-3814, the timing of the imaging of the high-speed camera and the excitation light source pulse irradiation can be synchronized. Thus, a clear cell image without shape distortion can be acquired (for example, the configuration of the embodiment shown in FIG. 18 is an example of the details of synchronization).
 図39は図38の装置に搭載する6種類の蛍光励起光源および1種類の明視野顕微画像取得光源、さらに検出する蛍光の波長セット選択に関する一例である。ここでは蛍光励起6波長、明視野顕微画像光源1波長、蛍光検出6波長の例を示しているが、光源と検出器、光ファイバーの本数を増やすことにより容易に数をそれぞれ増やすことが可能である。図39では励起光源中心波長としては370, 440, 465, 498, 533, 618nm、明視野顕微画像光源としては750nm、蛍光中心波長としては488, 510, 580, 610, 640, 660nmをそれぞれ例として示しており、これにより例えばDAPI, Hoechst33258, EGFP, FAM, HEX, TRITC, Texas Red, Cy3, Cy5などの標準的な蛍光試薬の中から目的に応じて柔軟に選択し検出することができ、同時に明視野顕微画像も得ることができる。 FIG. 39 shows an example of six types of fluorescence excitation light sources and one type of bright-field microscopic image acquisition light source mounted on the apparatus of FIG. Here, an example of 6 wavelengths of fluorescence excitation, 1 wavelength of bright-field microscopic image light source, and 6 wavelengths of fluorescence detection is shown, but the number can be easily increased by increasing the number of light sources, detectors, and optical fibers. . In FIG. 39, the excitation light source central wavelengths are 370, 440, 465, 498, 533, 618 nm, the bright field microscopic image light source is 750 nm, and the fluorescence center wavelengths are 488, 510, 580, 610, 640, and 660 nm. This makes it possible to flexibly select and detect standard fluorescent reagents such as DAPI, Hoechst33258, EGFP, FAM, HEX, TRITC, Texas Red, Cy3, Cy5, etc. A bright-field microscopic image can also be obtained.
 本実施例の装置システム構成の特長は、対物レンズ3828とマルチビューシステム3829の間の光路系に一群のダイクロイックミラーを配置し、波長帯域を分割し、それぞれの波長域に励起光源3801-3807と蛍光検出器3815-3820を配置するのではなく、図38の実施例に示したように、対物レンズ反対側に光ファイバーアレイを配置して、この光ファイバーアレイの各光ファイバー各々にそれぞれひとつの波長帯域の励起光源3801-3807および蛍光検出器3815-3820を配置したことである。これにより、従来はがん細胞等の試料から発せられた蛍光がダイクロイックミラーを複数回通過する際に減衰してしまっていた問題を回避し、また波長毎の光分離が不要となったため多数の励起光・蛍光の同時使用を容易にした。さらに、従来装置構成では検出できず無駄となっていた、対物レンズと反対の半球方向に放射される蛍光を利用して蛍光量を検出し、残り半球方向に放射される従来検出していた蛍光を減衰させることなく全て蛍光顕微画像取得に利用することができるようになるため、蛍光量の計測と明瞭な蛍光顕微画像の同時取得が可能となった。 The feature of the apparatus system configuration of the present embodiment is that a group of dichroic mirrors are arranged in the optical path system between the objective lens 3828 and the multi-view system 3829, the wavelength bands are divided, and the excitation light sources 3801-3807 and Instead of arranging the fluorescence detectors 3815-3820, as shown in the embodiment of FIG. 38, an optical fiber array is arranged on the opposite side of the objective lens, and each optical fiber of the optical fiber array has one wavelength band. Excitation light source 3801-3807 and fluorescence detector 3815-3820 are arranged. This avoids the problem that fluorescent light emitted from a sample such as cancer cells has been attenuated when passing through a dichroic mirror multiple times, and also eliminates the need for light separation for each wavelength. The simultaneous use of excitation light and fluorescence was facilitated. Furthermore, the amount of fluorescence was detected using the fluorescence emitted in the hemispherical direction opposite to the objective lens, which could not be detected by the conventional apparatus configuration, and the fluorescence detected in the past was emitted in the remaining hemispherical direction. Thus, all of them can be used for acquiring a fluorescence microscopic image without attenuating, so that it is possible to simultaneously measure a fluorescence amount and a clear fluorescent microscopic image.
 図40は、図38で一例を示した本実施例の構成を模式的に示した図である。高速カメラのフレームインターバルと同期したLEDフラッシュ光源等の明視野光源4000から照射された観察用の単色光はレンズ4001で集光され、上で述べたような、血中のターゲット細胞が流れる流路と、細胞ソーティング機構が組み込まれたセルソーティングチップを含んだセルソーティング部4002中の細胞に照射される。上記流路中の細胞は、対物レンズ4003で焦点を合わせることができる。ここで、上記ズームレンズ系を組み入れた被写界深度改善技術を組み込んでも良い。複数の単色レーザー等の蛍光光源4004、4006,4008からセルソーティング部4002に照射された蛍光励起光によって、上記、流路中の細胞に結合した蛍光抗体や、核染色蛍光色素(DAPIやHoechst33258など)で染色された核などから蛍光を発生させることができる。得られた蛍光の強度は、光倍増管やフォトダイオード等の蛍光強度計測系からなる蛍光検出系4005,4007,4009によって定量的に計測することができる。ここで励起光および蛍光の検出系についてそれぞれ3系統を例として記載したが、単一励起光によって複数の蛍光を励起することも可能であることから、複数の自由な組み合わせが可能である。さらに、この後段に、図35にて一例を詳述した、光学顕微画像を明視野像と蛍光像に分割して同時に複数の画像を1枚の高速カメラ受光素子で取得するための画像分割系4010を経て、このように細胞の蛍光強度検出を行いながら、同時に、高速カメラ4011によって細胞の明視野像を同時に取得することができる。 FIG. 40 is a diagram schematically showing the configuration of the present embodiment whose example is shown in FIG. Monochromatic light for observation emitted from a bright-field light source 4000 such as an LED flash light source synchronized with the frame interval of the high-speed camera is collected by the lens 4001 and the flow path through which target cells in the blood flow as described above. Then, the cells in the cell sorting unit 4002 including the cell sorting chip incorporating the cell sorting mechanism are irradiated. The cells in the channel can be focused with the objective lens 4003. Here, a depth-of-field improving technique incorporating the zoom lens system may be incorporated. Fluorescent light sources 4004, 4006, 4008 such as monochromatic lasers and the like, and fluorescence excitation light irradiated to the cell sorting unit 4002 from above, fluorescent antibodies bound to cells in the flow path, and nuclear staining fluorescent dyes (DAPI, Hoechst33258, etc.) ) Can generate fluorescence from nuclei stained with). The intensity of the obtained fluorescence can be quantitatively measured by a fluorescence detection system 4005, 4007, 4009 including a fluorescence intensity measurement system such as a photomultiplier tube or a photodiode. Here, although three systems have been described as examples of the excitation light and fluorescence detection systems, a plurality of fluorescences can be excited by a single excitation light, so that a plurality of free combinations are possible. Further, an image division system for dividing an optical microscopic image into a bright-field image and a fluorescent image and acquiring a plurality of images at the same time with a single high-speed camera light-receiving element is described in detail later in FIG. Through 4010, a bright field image of a cell can be simultaneously acquired by the high-speed camera 4011 while detecting the fluorescence intensity of the cell in this way.
 なお、本実施例では、画像検出部との組み合わせを基本に説明を行ったが、当然、高速カメラを用いた画像検出部を含まない、光ファイバーアレイを用いただけの多励起光、多蛍光同時検出系として用いることもできる。 In this embodiment, the description is based on the combination with the image detection unit. However, naturally, it does not include the image detection unit using the high-speed camera, and the simultaneous detection of the multiple excitation light and the multiple fluorescence using only the optical fiber array. It can also be used as a system.
 以上、図面を参照して各実施形態について説明したが、本願発明はこれらの実施形態に限定されず、本発明の精神の範囲内で各種変形が可能であることは言うまでもない。 As mentioned above, although each embodiment was described with reference to drawings, this invention is not limited to these embodiment, and it cannot be overemphasized that various deformation | transformation are possible within the range of the mind of this invention.
 図41Aの(a)に、血中がん細胞を、本発明の装置で計測したときの細胞核の面積の分布図の例を示す。ここでは、実際に癌組織を移植した場合の血中の細胞と、比較のための健常な血中の細胞の画像について、それぞれの核の面積を比較したものである。この結果から、癌細胞の存在については約150μm以上の、核の蛍光画像の面積が観測される場合には、がん細胞であることを明確に識別することができることがわかる。また、図41Aの(b)から(g)は、それぞれ図(a)のグラフの各核サイズでの代表的な細胞の明視野像および蛍光像を示したものであるが、実際に、約150μm以上の、核の蛍光画像の面積が観測される領域において、細胞がクラスター化していることが確認できる。ただし、このことは細胞クラスター中の核について画像で面積全体を積算して計測したときに、約150μm以下の条件では、がん細胞と正常細胞を識別することができないことも示しており、上記、約150μm以上というのはあくまでもがん細胞クラスターの存在の十分条件のひとつである。また、この指標は、がん細胞の特徴である多核細胞を識別することにも有効である。 FIG. 41A (a) shows an example of a distribution diagram of cell nucleus areas when blood cancer cells are measured by the apparatus of the present invention. Here, the area of each nucleus is compared between an image of cells in blood when cancer tissue is actually transplanted and an image of cells in healthy blood for comparison. From this result, it can be seen that the presence of cancer cells can be clearly identified as cancer cells when the area of the fluorescence image of the nucleus of about 150 μm 2 or more is observed. Further, (b) to (g) of FIG. 41A show the bright field image and the fluorescence image of typical cells at the respective nucleus sizes in the graph of FIG. (A). It can be confirmed that the cells are clustered in the region where the area of the fluorescence image of the nucleus of 150 μm 2 or more is observed. However, this is when measured by integrating the total area in the image for the nuclei in the cell clusters, in about 150 [mu] m 2 or less of conditions, and also shows that it is impossible to distinguish cancer cells and normal cells, The above about 150 μm 2 or more is one of the sufficient conditions for the existence of cancer cell clusters. This index is also effective for identifying multinucleated cells that are characteristic of cancer cells.
 図41Bに、血中がん細胞を、本発明の装置で計測したときの細胞(クラスター)の周囲長と細胞(クラスター)の面積から円近似によって導出した周囲長との比を示したグラフの一例を示す。ここでは、血中を流れる孤立一細胞から5細胞以上の細胞クラスターまでについて、式1で示したRを用いて、クラスター中の細胞数をX軸に、細胞の周囲長の比(1/R)をY軸に設定してプロットしたとき、孤立1細胞は(1/R)>約0.9であり、2細胞以上のクラスターでは(1/R)<約0.9となることから、得られた解析結果の(1/R)から、これが約0.9以上となるときは、細胞が孤立1細胞であると判定することができ、また、約0.9未満となるとき、2細胞以上の細胞が塊となった細胞クラスターであると判定することができることがわかる。 FIG. 41B is a graph showing the ratio of the peripheral length of the blood cancer cells measured by the apparatus of the present invention to the peripheral length derived by circular approximation from the area of the cells (cluster). An example is shown. Here, with respect to an isolated single cell flowing through blood to a cell cluster of 5 cells or more, the ratio of the perimeter of the cell (1 / R) with the number of cells in the cluster as the X axis using R shown in Formula 1. ) Is plotted on the Y axis, the isolated one cell has (1 / R)> about 0.9, and the cluster of two or more cells has (1 / R) <about 0.9. From the result (1 / R), when this is about 0.9 or more, it can be determined that the cell is an isolated cell, and when it is less than about 0.9, two or more cells are clumped. It can be seen that it is a cell cluster.
 図42に血中がん細胞を、本発明の装置で計測したときの細胞(集団)面積、核の数の分布を示した表を示す。ここでは、実際に癌組織を移植した場合の血中の細胞(Positive)と、比較のための健常な血中の細胞(Control)の画像について、それぞれの細胞の面積を比較したところ、明視野顕微画像による細胞(クラスター)の一塊の画像上の観察結果によって、癌細胞の存在については約250μm以上の細胞の明視野の画像の面積であればがん細胞クラスターであることが明確に識別することができることがわかる。ただし、このことは細胞クラスターの明視野像について画像で面積計測したときに約250μm以下の条件では、がん細胞と正常細胞を識別することができないことも示しており、上記、約250μm以上というのはあくまでもがん細胞クラスターの存在の十分条件のひとつである。 FIG. 42 shows a table showing the distribution of cell (population) area and number of nuclei when blood cancer cells are measured with the apparatus of the present invention. Here, when comparing the area of each cell in a blood cell (Positive) when a cancer tissue is actually transplanted and a healthy blood cell (Control) for comparison, the bright field is compared. Based on the observation results of a cluster of cells (microscopic image) on a microscopic image, the presence of cancer cells is clearly identified as a cancer cell cluster if the area of the bright field image of cells of approximately 250 μm 2 or more. You can see that you can. However, this means that about 250 [mu] m 2 following conditions when the area measured by the image for bright-field image of the cell clusters, and also shows that it is impossible to distinguish cancer cells and normal cells, above about 250 [mu] m 2 This is just one of the sufficient conditions for the existence of cancer cell clusters.
 また、蛍光顕微画像による細胞(クラスター)の一塊の中の核数を計測したところ、蛍光で光る核数が3以上となるものは、癌組織を移植した場合の血中の細胞(Positive)にしか発見されず、比較のための健常な血中の細胞(Control)の画像については見出す事ができなかった。このことから、細胞(クラスター)の一塊の中の核数が3以上で計測された場合には、この細胞(クラスター)はがん細胞であると判断することができる。ただし、この場合も、上記と同様に、核数が2以下のものでのがん細胞と正常細胞を識別することはできないことも示しており、上記、細胞(クラスター)の中の核数が3以上というのは、あくまでもがん細胞クラスターの存在の十分条件のひとつである。 In addition, when the number of nuclei in a mass of cells (clusters) measured by a fluorescence microscopic image was measured, the number of nuclei shining with fluorescence was 3 or more. However, only an image of healthy blood cells (Control) for comparison could not be found. From this, when the number of nuclei in a lump of cells (cluster) is measured at 3 or more, it can be determined that this cell (cluster) is a cancer cell. However, in this case as well, it is shown that cancer cells and normal cells having a nucleus number of 2 or less cannot be distinguished, and the number of nuclei in the cell (cluster) is Three or more is one of the sufficient conditions for the existence of cancer cell clusters.
 これらの結果から、以下の3つの判断条件、
(1)細胞(クラスター)の約150μm以上の核の面積が取得画像から計測される
(2)細胞(クラスター)の約250μm以上の面積が取得画像から計測される
(3)細胞(クラスター)の3つ以上の核の存在が取得画像から計測される
のいずれか1つあるいは、上記3つの条件のANDでの組み合わせ、すなわち(1)かつ(2)、あるいは、(1)かつ(3)、あるいは、(2)かつ(3)あるいは、(1)かつ(2)かつ(3)を、血中がん細胞の存在の判断基準として用いれば良い。
From these results, the following three judgment conditions,
(1) The area of the nucleus of about 150 μm 2 or more of the cell (cluster) is measured from the acquired image (2) The area of about 250 μm 2 or more of the cell (cluster) is measured from the acquired image (3) The cell (cluster) The presence of three or more nuclei in (1) is measured from the acquired image, or a combination of the above three conditions in AND, that is, (1) and (2), or (1) and (3 ), (2) and (3), or (1), (2) and (3) may be used as criteria for determining the presence of blood cancer cells.
 図43は、図35で示した装置について、複数の異なる波長帯域の顕微画像取得を1つの高速カメラ受光面で同時に取得する装置構成の実用化に向けたより具体的な構成について模式的に示した図である。図43Aの4300は構成最小単位となる1ユニットの光分岐モジュールの内部の構成の全体を上面から見た模式図である。本装置は、2次元に展開する光路系について上面から見たものであり、図に示したように直方体の容器の両底面に対称に1対の画像光の入力/出力用の光路系、そして側面に2対4個のミラー反射光の導入光路の穴が配置されており、それぞれに自由に着脱が出来る6つの光路カバー4301が配置されている。これらの側面に2対4個のミラー反射光の導入光路の穴に光が導入されるように、2個の着脱式可動調整機能つきミラーホルダー4302が配置されており、これらの各ミラーは微調整によって反射光の進行方向を微小に移動させることが可能となっており、これによってカメラでの結像位置を自由に移動操作することができる。また、ミラーホルダーには、全反射ミラー、ハイパスフィルター、ローパスフィルターなどを設置することができる。2個の着脱式可動調整機能つきミラーホルダー4302の間には、着脱式光路ウインドウ4303が配置されており透過してきた光の断面積を調整することができる。さらに着脱式フィルター4304が配置されており、バンドパスフィルターなどによって光の波長帯域幅をより緻密に調整することができる。 FIG. 43 schematically shows a more specific configuration for practical application of the device configuration for simultaneously acquiring microscopic images in a plurality of different wavelength bands with one high-speed camera light-receiving surface for the device shown in FIG. FIG. 43A in FIG. 43A is a schematic view of the entire internal configuration of one unit of the optical branching module, which is the minimum configuration unit, as viewed from above. This apparatus is a two-dimensionally developed optical path system viewed from the top, and as shown in the figure, a pair of image light input / output optical path systems symmetrically on both bottom surfaces of a rectangular parallelepiped container, and On the side surface, 2 to 4 holes for introducing optical paths of mirror reflected light are arranged, and six optical path covers 4301 that can be freely attached and detached are arranged on each side. Two detachable movable adjustment function mirror holders 4302 are arranged on these side surfaces so that light is introduced into the holes of the two to four mirror reflected light introduction optical paths. Adjustment enables the traveling direction of the reflected light to be moved minutely, so that the imaging position of the camera can be freely moved. The mirror holder can be provided with a total reflection mirror, a high pass filter, a low pass filter, and the like. A detachable optical path window 4303 is arranged between the two mirror holders 4302 with detachable movable adjustment function, and the cross-sectional area of the transmitted light can be adjusted. Further, a detachable filter 4304 is provided, and the wavelength bandwidth of light can be finely adjusted by a band pass filter or the like.
 図43Bは、図43Aで示したユニットを実際に連結して複数の波長の像を組み合わせて観察するための実施例のひとつを模式的に示したものである。まず、観察したい画像光学イメージは、平行光導入モジュール4305から第1の光分岐モジュール4300に導入される。ここで導入される光路にある光路カバー4301は外され、ここにある連結部によって平行光導入モジュール4305と密閉性が維持される形で固定される。また、平行光導入モジュール4305には、入射光が平行光として光分岐モジュール4300に導入されるようにレンズ系が組み入れられており、また、レンズ系の前段に、導入する入射光の断面積を小さく切り取る光学ウインドウフィルターが配置されていても良い。この場合には、光学ウインドウで切り取る入射光の断面積は、連結するモジュール数分の独立した画像を観察カメラ上の受光面に重なり合わないように投影するために、最後に計測する画像取得カメラ系4306において(受光面の全面積/平行光導入モジュール)以下となる面積となるように調整されている。 FIG. 43B schematically shows one of the embodiments for observing a combination of images of a plurality of wavelengths by actually connecting the units shown in FIG. 43A. First, an image optical image to be observed is introduced from the parallel light introduction module 4305 to the first light branching module 4300. The optical path cover 4301 in the optical path introduced here is removed, and is fixed to the parallel light introducing module 4305 in such a manner as to maintain hermeticity by the connecting portion. The parallel light introducing module 4305 incorporates a lens system so that incident light is introduced into the light branching module 4300 as parallel light, and the cross-sectional area of the incident light to be introduced is set at the front stage of the lens system. A small optical window filter may be arranged. In this case, the cross-sectional area of the incident light cut out by the optical window is an image acquisition camera that is finally measured in order to project an independent image corresponding to the number of modules to be connected so as not to overlap the light receiving surface on the observation camera. In the system 4306, the area is adjusted to be equal to or smaller than (total area of the light receiving surface / parallel light introducing module).
 次に、第1段の光分岐モジュール4300において、(波長)ハイパスフィルターあるいは(波長)ローパスフィルターbが組み込まれたミラーホルダー4302に導入されて、入射光は2つの波長に分岐される。透過光は全反射ミラーaによって反射され、第2段の光分岐モジュール4300の第2のフィルターb(前段(第1段)の光分岐モジュールの第1のフィルターと同じフィルター)に導入され、他方、第1段の光分岐モジュール4300のフィルターbによって反射した光は、第2段の光分岐モジュールの第1のフィルターcに導入される。同様に、本実施例では第5段の光分岐モジュールまで同様な、波長帯域分岐を行い、各分岐波長について、各波長帯域の画像がカメラの受光面で重ならないように光路の方向を調整する位置決めを各着脱式可動調整機能つきミラーホルダー4302で行う。特に最終段の光分岐モジュール4300では、第1のフィルターに全反射ミラーaを用い、第2のフィルターには、前段(第4段)の光分岐モジュール4300での第1のフィルターeを用いる。ここで、ハイパスフィルター、あるいはローパスフィルターであるb,c,d,eについては、その分岐波長について、単調増加、あるいは単調減少の波長の順番で配置するものとし(b<c<d<eあるいはb>c>d>e)、前段の第1フィルターと次段の第2フィルターには、同じフィルターを用い、かつ、初段の第2フィルターと最終段の第1フィルターには、全反射ミラーを用いるものとする。 Next, in the first-stage light branching module 4300, it is introduced into the mirror holder 4302 in which the (wavelength) high-pass filter or the (wavelength) low-pass filter b is incorporated, and the incident light is branched into two wavelengths. The transmitted light is reflected by the total reflection mirror a, and is introduced into the second filter b of the second-stage light branching module 4300 (the same filter as the first filter of the preceding-stage (first-stage) light-branching module). The light reflected by the filter b of the first-stage light branch module 4300 is introduced into the first filter c of the second-stage light branch module. Similarly, in this embodiment, the same wavelength band branching is performed up to the fifth stage optical branching module, and the direction of the optical path is adjusted for each branch wavelength so that the images of the respective wavelength bands do not overlap on the light receiving surface of the camera. Positioning is performed by each detachable movable adjustment function mirror holder 4302. In particular, in the final-stage light branching module 4300, the total reflection mirror a is used for the first filter, and the first filter e in the preceding-stage (fourth-stage) light branching module 4300 is used for the second filter. Here, b, c, d, and e, which are high-pass filters or low-pass filters, are arranged in order of monotonically increasing or monotonically decreasing wavelengths (b <c <d <e or b> c> d> e), the same filter is used for the first filter in the previous stage and the second filter in the next stage, and a total reflection mirror is used in the second filter in the first stage and the first filter in the final stage. Shall be used.
 図43Cは、実際に入力された画像イメージがどのようにカメラ系4306に映写されるかを模式的に示したものである。まず取得されたイメージ像(左図)は、平行光導入モジュール4305にある、レンズ系の前段の導入する入射光の断面積を小さく切り取る光学ウインドウフィルターによって、カメラ系の受光面のサイズの1/5以下のサイズの面積の像が透過できるサイズに切り取られて光分岐モジュール4300に導入される(中央図)。さらに、各光分岐モジュールのミラーホルダーの位置を調整する事で、各光分岐モジュールの受光面上での結像位置を、それぞれが重なり合う部分が無いように配置する(右図)。その結果、5つの光分岐モジュールによって作成された各光波長帯域幅のイメージを同時にひとつのカメラの受光面上に結像されて、特に高速カメラを用いた場合には、ひとつの画像の高速画像処理をすることだけで、一度に複数の波長の像の比較解析を行うことができる。 FIG. 43C schematically shows how an actually input image is projected on the camera system 4306. First, the acquired image (left figure) is 1 / of the size of the light receiving surface of the camera system by an optical window filter in the parallel light introducing module 4305 that cuts off the cross-sectional area of the incident light introduced in the previous stage of the lens system. The image is cut into a size that allows an image having an area of 5 or less to pass through and is introduced into the optical branching module 4300 (center view). Furthermore, by adjusting the position of the mirror holder of each light branch module, the image forming positions on the light receiving surface of each light branch module are arranged so that there is no overlapping portion (right diagram). As a result, images of each optical wavelength bandwidth created by the five optical branching modules are simultaneously formed on the light receiving surface of one camera, and particularly when a high-speed camera is used, a high-speed image of one image. Only by processing, comparative analysis of images of a plurality of wavelengths can be performed at one time.
 図43Dは、光分岐モジュールを組み合わせた別の応用例を示したものである。ここでは、光分岐モジュールの第二のミラーホルダーを取り外し、ここに別のカメラ系を接続したり、あるいは、光強度計測4307を接続して、特定の波長帯域幅の光強度を計測することができる。 FIG. 43D shows another application example in which an optical branching module is combined. Here, the second mirror holder of the optical branching module can be removed and another camera system can be connected here, or the light intensity measurement 4307 can be connected to measure the light intensity of a specific wavelength bandwidth. it can.
 図44は、水滴中の細胞を観察し分離するイメージングセルソーターの構成の一例を模式的に示した図である。図44Aに示した本装置は、試料溶液中の細胞を細胞リザーバー付き水滴形成モジュール4401の先端の細管から一定の圧力で試料溶液を排出する事で最適なサイズの水滴を製造して滴下することができる。また、水滴が形成される直前の水がリザーバーと繋がっている領域から、水滴がちょうど形成される領域までを覆う静電場コイル4402に、水滴に帯電させたい電荷と逆の電荷を帯電させることで水滴を希望する電荷で帯電させることができる。たとえば負電荷で水滴を帯電させたい場合は、コイルに正電荷を帯電させれば良い。形成した帯電水滴4403は、たとえばガラス等の表面にテフロン樹脂加工をした光学的に透過性を持った撥水絶縁基板の上に滴下され、この基板の傾斜方向に向けて転げ落ちる。この水滴が転げ落ちる経路上の基板背面に明視野像と蛍光像を計測できる高速カメラや散乱光強度、蛍光強度等を計測することができる光学計測モジュール4405が配置されており、取得した情報を解析制御モジュール4410で解析することで、ターゲット細胞が水滴に有るかどうかを判断することができる。前記判断によって、ターゲット細胞の種類を同定した後、水滴の落下方向から位置を変更するための複数の水滴移動方向制御用静電場ガイド4406のうちの特定のひとつの経路に水滴と逆の電荷を持つように電荷を与えて、水滴の落下方向を変更し、その後段にある分画水滴リザーバー4407に誘導する。複数のターゲットをそれぞれ分画するにはその種類に応じて複数の水滴移動方向制御用静電場ガイド4406と分画水滴リザーバー4407を配置すれば良い。各水滴移動方向制御用静電場ガイドの電極は、基板4404の下段に配列しており、このそれぞれの電極は水滴移動方向制御用静電場ガイド用電場スイッチング機構4409に接続されており、解析制御モジュール4410からの制御電荷を印加することが可能である。解析制御モジュールは、取得した画像イメージを分析し細胞(クラスター)面積と周囲長および核面積と細胞クラスター中での数、を演算によって検出する演算機構(例えば、コンピュータ)と得られた演算結果を組み合わせて回収する細胞の種類を同定して特定のガイドの電極に電界を印加して、電荷を与える機構(例えば、コンピュータおよび電源等)で構成することができる。スイッチング機構は、基板を固定する取り外し可能なはめ込み式の溝と、基板のガイドの電極ラインの位置に合った、前記解析制御モジュールからの電荷印加を行う電気接点のアレイ等で構成することができる。また、本機構には制御しないときには各電極は水滴移動方向制御用静電場ガイドは接地することで水滴の移動には影響を与えない機構を有する。また、滴下された水滴の落下方向について初期の位置決め精度を高めるために同様の水滴移動方向制御用静電場ガイド4406を配置したり、あるいは、テフロンコート等の撥水面の下面に挟み込む一対のレール状の立体構造を付加してもよい。なお、ガイドは、テフロン等の撥水性コートの下に配置するため、素材としては物理的構造を構築することが出来るものであれば任意の素材で良いが、生命科学の用途で用いる場合には、滅菌処理を行うことで構造が変化しないように150℃以上の温度で変形、剛性が大きく変わらない素材が望ましい。また、望ましくは観察で用いる波長領域において光学的に透明あるいは定吸収である事が望ましい。具体的には、ガラス、SU8、PDMSなどが挙げられる。 FIG. 44 is a diagram schematically showing an example of the configuration of an imaging cell sorter that observes and separates cells in water droplets. The apparatus shown in FIG. 44A produces and drops water droplets of an optimal size by discharging cells in the sample solution from the thin tube at the tip of the water droplet forming module 4401 with a cell reservoir at a constant pressure. Can do. In addition, by charging the electrostatic field coil 4402 covering the region from the region where the water just before the water droplet is formed to the reservoir to the region where the water droplet is just formed to the opposite charge to the water droplet to be charged, Water droplets can be charged with a desired charge. For example, when it is desired to charge a water droplet with a negative charge, the coil may be charged with a positive charge. The formed charged water droplet 4403 is dropped on an optically transparent water-repellent insulating substrate having a Teflon resin processed surface such as glass, and rolls down in the tilt direction of the substrate. A high-speed camera capable of measuring bright field images and fluorescent images and an optical measurement module 4405 capable of measuring scattered light intensity, fluorescent intensity, etc. are arranged on the back of the substrate on the path where the water drops fall, and the acquired information is analyzed. By analyzing with the control module 4410, it can be determined whether the target cell is in a water droplet. After identifying the type of the target cell based on the above determination, a charge opposite to the water droplet is given to one specific path among the plurality of water droplet movement direction control electrostatic field guides 4406 for changing the position from the water droplet falling direction. The electric charge is applied so as to hold, and the falling direction of the water droplet is changed and guided to the fraction water droplet reservoir 4407 at the subsequent stage. In order to fractionate a plurality of targets, a plurality of water droplet movement direction control electrostatic field guides 4406 and a fractional water droplet reservoir 4407 may be arranged in accordance with the types of the targets. The electrodes of the electrostatic field guides for controlling each water droplet movement direction are arranged in the lower stage of the substrate 4404, and each of these electrodes is connected to the electric field switching mechanism 4409 for electrostatic field guides for controlling the water droplet movement direction. A control charge from 4410 can be applied. The analysis control module analyzes the acquired image and calculates the cell (cluster) area and perimeter, the nucleus area and the number in the cell cluster by calculation, and the calculation result obtained (for example, a computer). It can be configured by a mechanism (for example, a computer and a power source) that identifies the types of cells to be collected in combination and applies an electric field to an electrode of a specific guide to give an electric charge. The switching mechanism can be composed of a removable inset groove for fixing the substrate and an array of electrical contacts for applying electric charges from the analysis control module, which are aligned with the position of the electrode line of the substrate guide. . Further, when not controlled by this mechanism, each electrode has a mechanism that does not affect the movement of the water droplet by grounding the electrostatic field guide for controlling the direction of water droplet movement. In addition, in order to improve the initial positioning accuracy in the dropping direction of the dropped water droplet, a similar water droplet movement direction control electrostatic field guide 4406 is disposed, or a pair of rails sandwiched between the lower surfaces of a water repellent surface such as a Teflon coat These three-dimensional structures may be added. Since the guide is placed under a water-repellent coat such as Teflon, any material can be used as long as it can build a physical structure. In order to prevent the structure from changing by sterilization, it is desirable to use a material whose deformation and rigidity do not change significantly at a temperature of 150 ° C. or higher. Further, it is desirable that it is optically transparent or constant absorption in the wavelength region used for observation. Specifically, glass, SU8, PDMS, etc. are mentioned.
 本技術の特徴のひとつは、水滴の落下速度すなわち計測時間を自在に制御できる基板傾斜制御機構4408を有する事である。また、本実施例では平板に傾斜機構を加えた機構を示したが、異なる傾斜の組み合わせからなる基板を用いても良い。たとえば、水滴の運搬と分離部にはより急峻な傾斜を用い、計測領域では緩慢な傾斜とすることで、より隣接する水滴の距離が短く、かつ、移動速度が遅い状態で水滴を観察することができる。特に、観察領域および水滴分画開始領域については水滴が等速移動をするように水平(重力に垂直)にすることで、落下方向について等距離で細密に水滴を並ばせることができる。また、このような特に水平な条件での基板を長くすれば水滴の移動速度が同じ程度の条件でさまざまな計測を順番に観察する距離を十分に長くすることができる。また、基板の温度を調整することで撥水状態で最小限の接触をした水滴の温度も制御することができる。さらに水滴の蒸発等を防ぐために温度湿度制御容器4411および温度湿度制御機構4412が付加されている。温度湿度制御容器4411および温度湿度制御機構4412は、それぞれたとえばアクリル製の光学的に透明な容器、あるいは遮光性を持った金属製の容器を用いればよく、また、ペルチエ素子による温度制御が可能な前記容器への送風機等で構成することができる。 One of the features of this technology is that it has a substrate tilt control mechanism 4408 that can freely control the drop speed of water droplets, that is, the measurement time. In the present embodiment, a mechanism in which a tilt mechanism is added to a flat plate is shown, but a substrate having a combination of different tilts may be used. For example, by using a steeper slope for the transport and separation of water drops and a gentle slope in the measurement area, it is possible to observe the water drops in a state where the distance between adjacent water drops is short and the moving speed is slow. Can do. In particular, in the observation region and the water droplet fractionation start region, the water droplets can be arranged closely at equal distances in the falling direction by making them horizontal (perpendicular to gravity) so that the water droplets move at a constant speed. Further, if the substrate is lengthened under such a particularly horizontal condition, the distance for sequentially observing various measurements under the condition that the water droplet moving speed is the same can be made sufficiently long. Further, by adjusting the temperature of the substrate, it is possible to control the temperature of water droplets that have made minimal contact in a water-repellent state. Further, a temperature / humidity control container 4411 and a temperature / humidity control mechanism 4412 are added to prevent evaporation of water droplets. For the temperature / humidity control container 4411 and the temperature / humidity control mechanism 4412, for example, an acrylic optically transparent container or a light-shielding metal container may be used, and temperature control by a Peltier element is possible. It can comprise with the air blower etc. to the said container.
 また、本技術の特徴として、試料水滴に反応液を衝突させて一定の反応後時間での混合液滴を観察計測して、反応結果に応じた水滴中のターゲット細胞を選択回収することもできる。ここでは反応液リザーバー水滴形成機構4413にて試料水滴と逆電荷を弱く印加した反応液滴を作成し、同様の水滴移動方向制御用静電場ガイド4414によって反応液を試料水滴に誘導することができる。 In addition, as a feature of the present technology, it is possible to selectively collect target cells in the water droplets according to the reaction result by colliding the reaction liquid with the sample water droplets and observing and measuring the mixed droplets at a certain post-reaction time. . Here, the reaction liquid reservoir water droplet formation mechanism 4413 creates a reaction liquid to which a charge opposite to that of the sample water droplet is weakly applied, and the liquid droplet movement direction control electrostatic field guide 4414 can guide the reaction liquid to the sample water droplet. .
 図44Bは、実際に水滴を分離回収する機構を説明するために上面から装置を模式的に示した図である。図からもわかるように、直線上を落下する水滴は、分岐する複数の水滴移動方向制御用静電場ガイド4406の端点で重なるように配置されている。また、各ガイド4406は傾斜方向に角度を持って水滴が重力との合力で斜めに落下するように配置されており、ガイドに水滴と逆の電荷が印加されたときにガイドに沿って水滴が移動するように構成されている。また、下方で、水滴を捕獲するU字型の水滴受けとなる分画水滴リザーバー4407が配置されている。また、各ガイドへの電荷を印加することを容易にするために、各ガイドは基板の末端まで延びており、そこに配列していることで、各ガイドに電荷を容易に印加することができる構成となっている。 FIG. 44B is a diagram schematically showing the apparatus from the top in order to explain a mechanism for actually separating and collecting water droplets. As can be seen from the figure, the water droplets falling on the straight line are arranged so as to overlap at the end points of the plurality of branching water droplet movement direction control electrostatic field guides 4406. In addition, each guide 4406 is arranged so that a water droplet falls obliquely with a resultant force of gravity with an angle in the tilt direction, and when a charge opposite to the water droplet is applied to the guide, Is configured to move. Also, a fractional water droplet reservoir 4407 serving as a U-shaped water droplet receiver for capturing water droplets is disposed below. Further, in order to make it easy to apply a charge to each guide, each guide extends to the end of the substrate, and by arranging there, it is possible to easily apply a charge to each guide. It has a configuration.
 図45Aは、ヒト血中の細胞クラスターを検出し診断のために解析するプロセスの一例を模式的に示した図である。また、図45BおよびCは、図45Aで示したプロセスを実現するための一体化計測解析システムの一例を模式的に示した図である。上記、実験結果より、健常な血液において約250μm以上の面積を持つ細胞塊(クラスター)は検出されなかったことより、無染色にて約250μm以上の面積を持つ細胞塊(クラスター)を本発明の(マルチ)イメージングセルソーターにて画像より選別し、これを回収して、再培養、あるいは遺伝子変異検査、あるいは発現解析検査、によって、この細胞クラスターを同定する事で、血中の転移がん細胞であるか、あるいは肝臓、腎臓等の臓器が疾病によって損傷を受けたことによって発生する細胞塊であるのか、あるいは、感染症によって肥大化した白血球細胞であるのかを明らかにする診断装置として利用する事が可能である。特に、血中転移がんの検出については、各クラスター単位で、その遺伝子変異を確認する事で、各クラスターが同一変異物であった場合には、癌の進行程度が、原発性がんからの転移が開始したところの初期であることが推定され、また、各クラスターの変異の履歴が同一でありながら、多くの異なる変異点がある場合には、転移がんの所在が多数領域に及んでいる事が推定できる。また、転移がん診断のみならず、血中を流れる細胞クラスターが肝臓組織片であると同定できる場合は、肝臓の疾患を推定することができ、また、同様に他の臓器切片と同定出来る場合には、それら各臓器の疾患であることが推定できる。さらに、特にマクロファージ等の貪食性白血球について、サイズが通常より肥大した細胞を回収し、その細胞中のバクテリア等の異種細胞の遺伝子を検査同定することによって、短時間での感染症診断も可能である。あるいは、B細胞の活性化によって内部形状が複雑化したもの、サイズが増大したものを選択的に回収し、そのB細胞の抗原を明らかにする事で免疫系が何に反応しているのか診断を行うことも可能である。図45Bは、上記計測を可能にするための、システムの構成要素を模式的に示したものである。初段において、血液から赤血球を除去し、白血球を濃縮する工程を、次段において画像に基づいた細胞塊識別、回収を行う工程を、そして最終段として、各単一クラスター単位レベルでの細胞クラスターの遺伝子変異の検定、あるいは発現解析による細胞のフェのタイプの同定を行うことができる。図45Cは、この図45Bの概念を実際に実現するために作成した構成の一例を示したものである。上段に細胞前処理機構を、中段にイメージングセルソーターを、下段に液滴型PCR装置を配置したものである。 FIG. 45A is a diagram schematically showing an example of a process for detecting a cell cluster in human blood and analyzing it for diagnosis. 45B and C are diagrams schematically showing an example of an integrated measurement analysis system for realizing the process shown in FIG. 45A. This said, the experimental results from that cell mass with approximately 250 [mu] m 2 or more areas in healthy blood (clusters) is not detected, the cell mass with approximately 250 [mu] m 2 or more areas in unstained (cluster) Metastatic cancer in blood by selecting from the image with the (multi-) imaging cell sorter of the invention, collecting this, and identifying this cell cluster by re-culture, gene mutation test, or expression analysis test Used as a diagnostic device to clarify whether it is a cell, a cell mass generated by damage to an organ such as the liver or kidney, or a white blood cell enlarged by an infection It is possible to do. In particular, for the detection of metastatic cancer in the blood, by confirming the gene mutation in each cluster unit, if each cluster is the same mutant, the degree of cancer progression is determined from the primary cancer. If there are many different mutation points while the history of mutations in each cluster is the same, the location of the metastatic cancer is spread over many regions. Can be estimated. In addition to metastatic cancer diagnosis, if the cell cluster that flows in the blood can be identified as a liver tissue fragment, the liver disease can be estimated, and similarly, it can be identified from other organ sections It can be estimated that these are diseases of each organ. In addition, for phagocytic leukocytes such as macrophages, it is possible to diagnose infections in a short time by collecting cells that are larger in size than normal, and examining and identifying genes of heterologous cells such as bacteria in the cells. is there. Or, by selectively recovering those whose internal shape has become complicated or increased in size due to activation of the B cell, and clarifying the antigen of the B cell, it is diagnosed what the immune system is reacting to It is also possible to perform. FIG. 45B schematically shows the components of the system for enabling the measurement. In the first stage, the process of removing red blood cells from the blood and concentrating the white blood cells, in the next stage, the process of identifying and collecting the cell mass based on the image, and as the final stage, the cell cluster at each single cluster unit level It is possible to identify the type of cell ferment by gene mutation assay or expression analysis. FIG. 45C shows an example of a configuration created to actually realize the concept of FIG. 45B. The cell pretreatment mechanism is arranged in the upper stage, the imaging cell sorter is arranged in the middle stage, and the droplet type PCR apparatus is arranged in the lower stage.
 図46は、転移がん治療技術として、一定サイズ以上の血中の細胞塊(クラスター)を除去する手法の一例を模式的に示した図である。これは、上記発見により健常血液には存在しない約250μm以上の断面積の細胞塊(クラスター)を除去するメンブレンフィルター等の細胞塊(クラスター)除去機構4601を用いて、患者の血液を還流させる事で、抗がん剤等の薬剤を用いる事無く、血中の転移がん細胞を効果的に物理的手法によって除去することによって転移がんの発症・進行を抑制する技術を模式的にしめしたものである。本実施例では、約250μm以上の断面積の細胞塊(クラスター)を除去するメンブレンフィルターを示したが、約250μm以上の断面積の細胞塊(クラスター)を除去する技術であれば、物理的捕獲のためのラダーアレイや、あるいは超音波輻射圧による捕獲などの非接触な捕獲技術を用いても良い。また、この技術の転移がん抑制効果の根拠として、細胞塊(クラスター)化したがん細胞の着床/転移がん化の確立は、アポトーシスを容易に起こす衰弱した孤立1細胞で血中を流れるがん細胞に対して指数関数的に潜在的可能性が高まることに由来する。 FIG. 46 is a diagram schematically showing an example of a technique for removing cell clusters (clusters) in blood of a certain size or more as a metastatic cancer treatment technique. This is because the cell blood (cluster) removing mechanism 4601 such as a membrane filter that removes a cell mass (cluster) having a cross-sectional area of about 250 μm 2 or more that does not exist in healthy blood due to the above discovery is used to circulate the patient's blood. Therefore, a technique that suppresses the onset and progression of metastatic cancer by effectively removing metastatic cancer cells in the blood by physical methods without using drugs such as anticancer drugs is schematically shown. It is what. In this embodiment, although the membrane filter to remove about 250 [mu] m 2 or more of the cross-sectional area of the cell mass (cluster), if a technique for removing about 250 [mu] m 2 or more of the cross-sectional area of the cell mass (cluster), physical A non-contact capture technique such as a ladder array for selective capture or capture by ultrasonic radiation pressure may be used. In addition, as a basis for the metastatic cancer inhibitory effect of this technology, the establishment of implantation / metastasis of cancer cells that have been clustered (clustered) can be performed in the blood with a weakly isolated single cell that easily causes apoptosis. This stems from an exponential increase in potential for flowing cancer cells.
 図47は、血中の転移がん診断を行うために、血中の白血球の粒子サイズの分布を計測した場合の、血中細胞サイズの分布スペクトルを正常血液(図47A)、転移がん細胞が流れている血液(図47B、C)のそれぞれについて、模式的に示したものである。従来の、細胞サイズという絶対的指標に対する各細胞のサイズに基づいてがん細胞等異常細胞の存在を計測したが、より効果的に判別するためには、血中の細胞サイズ分布をX軸に、その数量(あるいは全体に対する数量の割合)をY軸にして、その分布曲線(スペクトル)を取得し、その分布が図47Aのように単調な単一ピークを持つものである場合は、正常血液と判定する。他方、図47Bのように明らかな2つのサイズ分布のピークがあるもの、あるいは、図47Cのように一つのサイズピークでは説明ができないサイズ分布の曲線となっており、2つ目のピークが細胞サイズが大きい側にある場合には、血中を転移がん細胞などの異常細胞が流れていると判定することができる。特に、サイズ分布の正常さを確認するために、正規分布、ガウス分布などの分布曲線を比較参照のために利用することもできる。また、判別のみならず、細胞回収についても、この計測で得られた指標に基づいて、正常細胞のピークより大きい側の異常細胞サイズピークの値を指標(しきい値)にして、再度、血液から細胞を回収することで、各検体の症状に合わせた異常細胞を回収することができることから、第1ステップでは、細胞サイズスペクトルを計測し、第2ステップでは、得られた異常細胞サイズピークの閾値(分布のピーク値:図47B、Cの異常細胞の分布部分の矢印を参照)以上の細胞を回収する2ステップでの精密な細胞回収を実現することができる。この異常細胞のピークは、症例に応じて、巨大細胞、あるいは細胞クラスターが対応することとなる。 FIG. 47 shows the distribution spectrum of blood cell size in the case of measuring the particle size distribution of leukocytes in blood for diagnosis of metastatic cancer in blood, normal blood (FIG. 47A), metastatic cancer cells. FIG. 47B schematically shows each of the blood (FIGS. 47B and 47C) flowing. Conventionally, the presence of abnormal cells such as cancer cells was measured based on the size of each cell relative to the absolute indicator of cell size. To more effectively discriminate, the cell size distribution in the blood is plotted on the X axis. The distribution curve (spectrum) is obtained with the quantity (or the ratio of the quantity to the whole) as the Y axis, and when the distribution has a monotonous single peak as shown in FIG. 47A, normal blood It is determined. On the other hand, there are two obvious size distribution peaks as shown in FIG. 47B, or a size distribution curve that cannot be explained by one size peak as shown in FIG. 47C, and the second peak is a cell. When the size is on the larger side, it can be determined that abnormal cells such as metastatic cancer cells are flowing in the blood. In particular, in order to confirm the normality of the size distribution, distribution curves such as a normal distribution and a Gaussian distribution can be used for comparison reference. Moreover, not only for discrimination, but also for cell recovery, based on the index obtained by this measurement, the value of the abnormal cell size peak larger than the peak of normal cells is used as an index (threshold), and blood is again In this case, the cell size spectrum is measured in the first step, and the obtained abnormal cell size peak is obtained in the second step. Accurate cell recovery can be realized in two steps for recovering cells that are equal to or greater than the threshold value (peak value of distribution: see arrows in FIG. 47B, C abnormal cell distribution portion). The peak of abnormal cells corresponds to a giant cell or a cell cluster depending on the case.
 図48は、図44で述べた撥水基板上に滴下した水滴を基板表面で転がして移動する手段において、2つの傾斜角度を持つことで加速領域と等速移動領域を持つ基板を用いた手法を模式的に示した図である。図44で示した実施例では、1つの平板の傾斜角を調整することで水滴の移動速度を調整したが、1つの面のみでは「加速のみ」あるいは「等速運動のみ」となってしまい、特に水滴の移動距離が長くなる場合には「加速のみ」では水滴の移動速度が速くなりすぎて、その後段の計測、分離をするためにより高速な処理が必要となる。この課題を解決するには、一つの傾きの平面を使うのではなく「加速域」となる斜面と「等速域」となる水平面を組み合わせることが望ましい。滴下された水滴4801は、水滴の滴下方向4802に沿って傾斜角度を調整できる撥水処理がなされた基板上に載り、たとえば傾斜θを持った斜面4803を「加速域」として移動速度を増加しながら転がり落ちる。そして、それに続く傾斜角度を調整する機能を持った水平面4804において「等速域」として一定速度で水滴が移動する。また、分析や分離などの処理を等速域で行ったのち、改めて傾斜面を「加速域」として設置しても良い。また、「等速域」についても水平にすることが基本となるが、実際には、撥水面表面の微小な抵抗によって減速する場合には、水滴の等速度を維持する程度に若干の傾斜角をもたせても良い。 FIG. 48 shows a method using a substrate having an acceleration region and a constant velocity moving region by having two inclination angles in the means for moving the water droplet dropped on the water repellent substrate described in FIG. 44 on the surface of the substrate. FIG. In the embodiment shown in FIG. 44, the moving speed of the water droplet is adjusted by adjusting the inclination angle of one flat plate, but only one surface is “acceleration only” or “constant velocity motion only”. In particular, when the movement distance of the water droplet becomes long, the movement speed of the water droplet becomes too high with “acceleration alone”, and higher-speed processing is required for the subsequent measurement and separation. In order to solve this problem, it is desirable to combine a slope that is an “acceleration zone” and a horizontal plane that is a “constant velocity zone”, instead of using a single slope plane. The dropped water droplet 4801 is placed on a water repellent treated substrate whose inclination angle can be adjusted along the water droplet dropping direction 4802. For example, the moving speed is increased by using the inclined surface 4803 having the inclination θ as an “acceleration region”. While rolling down. Then, on the horizontal plane 4804 having the function of adjusting the inclination angle that follows, the water droplet moves at a constant speed as the “constant velocity region”. In addition, after performing processing such as analysis and separation in the constant velocity region, the inclined surface may be newly set as an “acceleration region”. In addition, the “constant velocity region” is basically leveled, but in actuality, when decelerating due to minute resistance on the surface of the water-repellent surface, a slight inclination angle is maintained to maintain the constant velocity of water droplets. You may give it.
 本発明は、血中の微量な対象細胞を1細胞単位で精製して、その対象細胞の正確な遺伝子情報、発現情報の解析等を行うために有用である。本発明は、炭疽菌などの芽胞を有する微量な対象細胞を1細胞単位で精製し、高速で、その対象細胞の正確な遺伝子情報、発現情報の解析等を行うために有用である。 The present invention is useful for purifying a minute amount of target cells in blood in units of one cell, and analyzing accurate gene information and expression information of the target cells. The present invention is useful for purifying a very small amount of target cells having spores such as Bacillus anthracis per cell and analyzing accurate gene information and expression information of the target cells at high speed.
 本発明はまた、血中を循環する癌細胞を識別および/または回収するための技術として有用である。 The present invention is also useful as a technique for identifying and / or collecting cancer cells circulating in the blood.
1 細胞分析装置システム
10 細胞濃縮・染色・脱色モジュール
101 細胞サンプル容器
102 染色剤容器
103 洗浄剤容器
104 分注ヘッド
105 ターンテーブル
106 濃縮・脱色フィルター
107 濃縮チャンバー
108 チャンバー
109 圧力ポンプ
110 廃液回収チューブ
111 回収ヘッド
112 回収チューブ
113 回収チップ
114 シャーシ
115 回転アーム
20 画像検出型1細胞分離・精製モジュール
201 レーザー
202 ミラー
203 集光レンズ
204 ダイクロイックミラー
205 フィルター
206 蛍光検出用フォトマルチプライヤー
207 高速カメラ
208 前方散乱光検出用フォトダイオード
209 セルソーターチップ
210 チップ基板
211 マイクロ流路
212 流入口
213 流出口
214 細胞濃縮液入り口
215 細胞濃縮部
216 収束部
217 選別部
218 細胞検出領域
219 印加後の細胞の流れ
220 印加前の粒子の流れ
221 流出口
222 流出口
223 廃液回収部
224 細胞回収部
225 V字櫛形電極
30 1細胞ゲノム解析・発現解析モジュール
31 第一の温度制御ユニット
32 第二の温度制御ユニット
301 反応槽
302 熱交換槽
303 液体リザーバタンク
304 ポンプ
305 切り替えバルブ
306 補助温度制御機構
307 インレットA
308 インレットB
309 アウトレットA
310 アウトレットB
311 サンプル液
312 蛍光検出器
313 制御解析部
314 逆支弁
315 制御信号
40 送液モジュール
401 分注ヘッド
402 分注チップ
403a,b Z軸移動ガイド
404 Z軸移動モータ
405a,b アーム回転モータ
406 シャーシ
50 制御・解析モジュール(コンピュータ)
801 容器
802 微量サンプル
803 回転体
804 回転シャフト
805 試料
806 研磨剤
810 回転体
811 容器
812 柔軟性構造体
813 回転シャフト
814 先端部位
815 バネ機構
820 曲面カット
821 擂鉢状カット
822 噛み合い構造
823 半球型回転体
824 卵状回転体
825 突起型回転体
826 お碗状回転体
830 容器
831 回転体
832 研磨剤
833 封印
834 サンプル
835 回転シャフト
836 成分
840 一体化容器
841 開封用カッター
1301 セルソーターチップ
1302,1304,1306 上流側流路
1303,1305,1307 下流側流路
1308 試料液用入り口開口部
1309,1310 シース液用入り口開口部
1311 シース液リザーバー
1312 廃液リザーバー
1313,1314 シース液用出口開口部
1315 精製試料液用出口開口部
1316 ゲル充填のための流路
1317 ゲル充填のための入り口開口部
1318 ゲル充填のための出口開口部
1319 電線
1320 電源
1321 スイッチ
1322 試料液リザーバー
1323 精製試料回収用リザーバー
1401 セルソーターチップ
1402 キャップ
1403 シース液リザーバー
1404 試料液リザーバー
1405 加圧空気導入パイプ
1406 試料溶液導入チューブ
1407 シース液導入チューブ
1408 水位計測センサー
1409 流路
1501 セルソーターチップ
1502 大型リザーバー
1503 空気圧印加装置
1504 圧力センサー
1505 分配バルブ
1506 選別試料回収リザーバー
1507 廃液回収リザーバー
1601 試料溶液の流れ
1602,1603 サイドシース流
1604 細胞モニター領域
1605 ゲル電極
1606 選別試料回収流路
1607 サイドシース流
2001 セルソーターチップ
2002 溶液リザーバー
2003 バッファ導入装置
2004 圧力センサー
2005 分配バルブ
2006 試料液導入装置
2007 試料液流路
2008 バッファ流路
2009 ソーティング用外力印加機構
20101、20102、20103 選別試料、廃液回収リザーバー
2101 セルソーターチップ
2102 バッファリザーバー
2103 バッファ導入装置
2104 圧力センサー
2105 バルブ
2106 試料液導入装置
21061 試料液導入流路
2107 試料液とバッファ液の流路
2109 ソーティング用外力印加機構
21101、21102 選別試料、廃液回収リザーバー
23001 チップ
23002 サンプル導入口
23003 目的粒子
23004 不要粒子
23005 マイクロ流路
23006 粒子整列機構
23007 粒子整列外力インプット(電気力またはシース流)
23008 粒子検出機構
23009 粒子精製機構
23010 粒子精製外力インプット((ゲルまたは金属)電極+電気力)
23011 目的粒子回収口
23012、23013 不要粒子溜
24001 支持基板
24002 金属薄膜電極第1層
24003 金属薄膜電極第2層
24004 絶縁膜層
24005 サンプル流路
25001 サンプル導入口
25002 マイクロ流路
25003 金属薄膜積層型平行櫛形電極
25004 サンプル粒子
25005 金属薄膜積層型V字櫛形電極
25006 シース流路
25007 底面の電極
26001 目的粒子
26002 不要粒子(負帯電)
26003 不要粒子(正帯電)
26004 マイクロ流路
26005 粒子精製電極
26006 目的粒子回収口への流れ
26007、26008 不要粒子溜への流れ
27001 マイクロ流路
27002 電極用ゲル注入口
27003 電極用ゲル通路
27004 電極用ゲル液絡部
27005 電極用ゲル排出口
27006 金属線
27007 直流電圧源
27008 電圧スイッチング機構
27009 サンプル粒子
27010 金属薄膜電極
3001 試料水溶液導入口
3002、3003 油導入口
3004 合流領域
3005 試料水溶液
3006 油
3200 明視野光源
3201 コンデンサレンズ
3202 セルソーティング部
3203 対物レンズ
3204,3206,3208 蛍光光源
3205,3207,3209 蛍光検出系
3210 高速カメラ(画像検出系)
3400 明視野光源3401 コンデンサレンズ
3402 セルソーティング部
3403 対物レンズ
3404,3406,3408 蛍光光源
3405.3407,3409 蛍光検出系
3410 画像分割系
3411 高速カメラ(画像検出系)
3501 入力光路(画像)
3510,3520,3530 画像分割部
3511,3521,3531 角度調節機能付きダイクロイックミラー
3512,3522,3532 フィルター系
3513,3523,3533 画像サイズ調節系
3514,3524,3534 角度調節機能付きダイクロイックミラー
3515,3525,3535 光学レンズ系
3600 細胞
3601 入力画像
3602 高速カメラ受光面
3610 出力画像1(明視野)
3620 出力画像2(蛍光:核染色)
3621 核蛍光像
3701 高速カメラ受光面像
3801-3807 蛍光励起光源
3808-3814 励起光源コントローラ
3815-3820 蛍光検出器
3821 励起光フィルター
3822 レンズ
3823 蛍光フィルター
3824,3825 光ファイバー
3826 集光用マイクロレンズ
3827 マイクロチップ
3828 対物レンズ
3829 マルチビューユニット
3830 高速カメラ
3831 光源コントロールユニット
3832 蛍光検出コントロールユニット
4000 明視野光源
4001 コンデンサレンズ
4002 セルソーティング部
4003 対物レンズ
4004,4006,4008 蛍光光源
4005.4007,4009 蛍光検出系
4010 画像分割系
4011 高速カメラ(画像検出系)
4300 光分岐モジュール
4301 光路カバー
4302 着脱式可動調整機能つきミラーホルダー
4303 着脱式光路ウインドウ
4304 着脱式フィルター
4305 平行光導入モジュール
4306 画像取得カメラ系
4307 光強度計測系
4401 細胞リザーバー付き水滴形成モジュール
4402 静電場コイル
4403 帯電水滴
4404 光学的に透過性を持った撥水絶縁基板
4405 光学計測モジュール
4406、4414 水滴移動方向制御用静電場ガイド
4407 分画水滴リザーバー
4408 基板傾斜制御機構
4409 水滴移動方向制御用静電場ガイド用電場スイッチング機構
4410 解析制御モジュール
4411 温度湿度制御容器
4412 温度湿度制御機構
4413 反応液リザーバー水滴形成機構
4601 細胞塊(クラスター)除去機構
4801 水滴
4802 水滴の滴下方向
4803 傾斜θを持った斜面
4804 水平面
1 Cell Analyzer System 10 Cell Concentration / Staining / Decoloring Module 101 Cell Sample Container 102 Staining Agent Container 103 Cleaning Agent Container 104 Dispensing Head 105 Turntable 106 Concentration / Decoloring Filter 107 Concentration Chamber 108 Chamber 109 Pressure Pump 110 Waste Liquid Collection Tube 111 Recovery head 112 Recovery tube 113 Recovery chip 114 Chassis 115 Rotating arm 20 Image detection type 1-cell separation / purification module 201 Laser 202 Mirror 203 Condensing lens 204 Dichroic mirror 205 Filter 206 Photodetector for fluorescence detection 207 High-speed camera 208 Forward scattered light Photodiode for detection 209 Cell sorter chip 210 Chip substrate 211 Microchannel 212 Inlet 213 Outlet 214 With cell concentrate 215 Cell concentration unit 216 Converging unit 217 Sorting unit 218 Cell detection region 219 Flow of cells after application 220 Flow of particles before application 221 Outlet 222 Outlet 223 Waste liquid recovery unit 224 Cell recovery unit 225 V-shaped comb electrode 30 1 cell Genome analysis / expression analysis module 31 First temperature control unit 32 Second temperature control unit 301 Reaction tank 302 Heat exchange tank 303 Liquid reservoir tank 304 Pump 305 Switching valve 306 Auxiliary temperature control mechanism 307 Inlet A
308 Inlet B
309 Outlet A
310 Outlet B
311 Sample liquid 312 Fluorescence detector 313 Control analysis unit 314 Reverse support valve 315 Control signal 40 Liquid feeding module 401 Dispensing head 402 Dispensing tip 403a, b Z-axis moving guide 404 Z-axis moving motor 405a, b Arm rotation motor 406 Chassis 50 Control / analysis module (computer)
801 Container 802 Small amount sample 803 Rotating body 804 Rotating shaft 805 Sample 806 Abrasive 810 Rotating body 811 Container 812 Flexible structure 813 Rotating shaft 814 Tip portion 815 Spring mechanism 820 Curved cut 821 Mortar-shaped cut 822 Engagement structure 823 Semispherical rotator 824 Egg-shaped rotating body 825 Protruding rotating body 826 Bowl-shaped rotating body 830 Container 831 Rotating body 832 Abrasive 833 Seal 883 Sample 835 Rotating shaft 836 Component 840 Integrated container 841 Cutter for opening 1301 Cell sorter chips 1302, 1304, 1306 Upstream Side channel 1303, 1305, 1307 Downstream channel 1308 Sample liquid inlet opening 1309, 1310 Sheath liquid inlet opening 1311 Sheath liquid reservoir 1312 Waste liquid reservoir 1313, 13 4 Sheath liquid outlet opening 1315 Purified sample liquid outlet opening 1316 Flow path for gel filling 1317 Entrance opening 1318 for gel filling Outlet opening 1319 for gel filling Electric wire 1320 Power supply 1321 Switch 1322 Sample liquid Reservoir 1323 Purified sample collection reservoir 1401 Cell sorter chip 1402 Cap 1403 Sheath liquid reservoir 1404 Sample liquid reservoir 1405 Pressurized air introduction pipe 1406 Sample solution introduction tube 1407 Sheath liquid introduction tube 1408 Water level measurement sensor 1409 Flow path 1501 Cell sorter chip 1502 Large reservoir 1503 Air pressure application device 1504 Pressure sensor 1505 Distributing valve 1506 Sorted sample collection reservoir 1507 Waste liquid collection reservoir 1601 Sample solution flow 160 2, 1603 Side sheath flow 1604 Cell monitoring region 1605 Gel electrode 1606 Sorted sample collection flow channel 1607 Side sheath flow 2001 Cell sorter chip 2002 Solution reservoir 2003 Buffer introduction device 2004 Pressure sensor 2005 Distribution valve 2006 Sample solution introduction device 2007 Sample solution flow channel 2008 Buffer channel 2009 Sorting external force application mechanism 20101, 20102, 20103 Sorted sample, waste liquid recovery reservoir 2101 Cell sorter chip 2102 Buffer reservoir 2103 Buffer introduction device 2104 Pressure sensor 2105 Valve 2106 Sample solution introduction device 21061 Sample solution introduction channel 2107 Buffer liquid flow path 2109 Sorting external force application mechanism 21101, 21102 Sorted sample, waste liquid collection reservoir 23001 Chip 23002 Sample inlet 23003 Target particle 23004 Unnecessary particle 23005 Micro channel 23006 Particle alignment mechanism 23007 Particle alignment external force input (electric force or sheath flow)
23008 Particle detection mechanism 23009 Particle purification mechanism 23010 Particle purification external force input ((gel or metal) electrode + electric force)
23011 Target particle collection ports 23012, 23013 Unnecessary particle reservoir 24001 Support substrate 24002 Metal thin film electrode first layer 24003 Metal thin film electrode second layer 24004 Insulating film layer 24005 Sample flow channel 25001 Sample introduction port 25002 Micro flow channel 25003 Metal thin film stacked type parallel Comb electrode 25004 Sample particle 25005 Metal thin film laminated V-shaped electrode 25006 Sheath channel 25007 Bottom electrode 26001 Target particle 26002 Unnecessary particle (negatively charged)
26003 Unnecessary particles (positively charged)
26004 Micro flow channel 26005 Particle purification electrode 26006 Flow to target particle recovery port 26007, 26008 Flow to unwanted particle reservoir 27001 Micro flow channel 27002 Electrode gel inlet 27003 Electrode gel passage 27004 Electrode gel liquid junction 27005 Electrode Gel outlet 27006 Metal wire 27007 DC voltage source 27008 Voltage switching mechanism 27008 Sample particle 27010 Metal thin film electrode 3001 Sample aqueous solution inlet 3002, 3003 Oil inlet 3004 Merged region 3005 Sample aqueous solution 3006 Oil 3200 Bright field light source 3201 Condenser lens 3202 Cell sorting 3203 objective lens 3204, 3206, 3208 fluorescence light source 3205, 3207, 3209 fluorescence detection system 3210 high-speed camera (image detection system)
3400 Bright field light source 3401 Condenser lens 3402 Cell sorting unit 3403 Objective lenses 3404, 3406, 3408 Fluorescence light source 3405.3407, 3409 Fluorescence detection system 3410 Image division system 3411 High-speed camera (image detection system)
3501 Input optical path (image)
3510, 3520, 3530 Image division units 3511, 3521, 3531 Dichroic mirrors with angle adjustment function 3512, 3522, 3532 Filter systems 3513, 3523, 3533 Image size adjustment systems 3514, 3524, 3534 Dichroic mirrors 3515, 3525 with angle adjustment function 3535 Optical lens system 3600 Cell 3601 Input image 3602 High-speed camera light receiving surface 3610 Output image 1 (bright field)
3620 Output image 2 (fluorescence: nuclear staining)
3621 Nuclear fluorescence image 3701 High-speed camera light-receiving surface image 3801-3807 Fluorescence excitation light source 3808-3814 Excitation light source controller 3815-3820 Fluorescence detector 3821 Excitation light filter 3822 Lens 3823 Fluorescence filter 3824, 3825 Optical fiber 3826 Condensing microlens 3827 Microchip 3828 Objective lens 3829 Multi-view unit 3830 High-speed camera 3831 Light source control unit 3832 Fluorescence detection control unit 4000 Bright field light source 4001 Condenser lens 4002 Cell sorting unit 4003 Objective lens 4004, 4006, 4008 Fluorescence light source 4005.4007, 4009 Fluorescence detection system 4010 Image Division system 4011 High-speed camera (image detection system)
4300 Optical branching module 4301 Optical path cover 4302 Removable mirror holder with movable adjustment function 4303 Removable optical path window 4304 Removable filter 4305 Parallel light introduction module 4306 Image acquisition camera system 4307 Light intensity measurement system 4401 Water droplet forming module with cell reservoir 4402 Electrostatic field Coil 4403 Charged water droplet 4404 Optically transparent water-repellent insulating substrate 4405 Optical measurement modules 4406 and 4414 Water droplet movement direction control electrostatic field guide 4407 Fractional water droplet reservoir 4408 Substrate tilt control mechanism 4409 Water droplet movement direction control electrostatic field Electric field switching mechanism for guide 4410 Analysis control module 4411 Temperature / humidity control container 4412 Temperature / humidity control mechanism 4413 Reaction liquid reservoir Water drop formation mechanism 4601 Cell mass (cluster) ) Removal mechanism 4801 Water drop 4802 Water drop dropping direction 4803 Slope 4804 with slope θ Horizontal plane

Claims (28)

  1.  がん細胞の候補細胞を同定するために使用されるオンチップ・セルソーターシステムであって、
     被験体由来の蛍光染色された細胞を含む試料液を流すための流路を備えたセルソーターチップと、
     前記細胞に対して照射するための明視野光源および蛍光光源を含む光学系と、
     前記セルソーターチップの前記流路を流れる前記試料液中の前記細胞の明視野画像と前記細胞に結合した蛍光標識物質の蛍光強度および前記細胞の蛍光画像とを同時に取得する検出系と、
     前記明視野画像、前記蛍光強度、および前記蛍光画像に基づいて、前記流路を流れる多核細胞および/または細胞クラスターを同定する制御・解析手段と、
     前記同定された多核細胞および/または細胞クラスターを選択的に回収する手段と
    を備え、
     前記制御・解析手段が、以下の(i)~(iii):
      (i)一塊の細胞もしくはクラスターの核の蛍光画像から得られる該一塊もしくはクラスターの核の面積が150μm以上である、
      (ii)一塊の細胞もしくはクラスターの明視野画像から得られる該一塊もしくはクラスターの面積が250μm以上である、または
      (iii)一塊の細胞もしくはクラスター中の核の数が3以上である
    のいずれか1つの条件を満たすか、あるいは(i)および(ii)、(i)および(iii)、(ii)および(iii)、または(i)、(ii)および(iii)の条件を満たす場合に、前記細胞試料液中にがん細胞が存在する可能性が高いと判断する、
    オンチップ・セルソーターシステム。
    An on-chip cell sorter system used to identify cancer cell candidate cells,
    A cell sorter chip provided with a flow path for flowing a sample solution containing fluorescently stained cells derived from a subject;
    An optical system including a bright field light source and a fluorescent light source for irradiating the cells;
    A detection system for simultaneously acquiring a bright field image of the cells in the sample solution flowing through the flow path of the cell sorter chip, a fluorescence intensity of the fluorescent labeling substance bound to the cells, and a fluorescence image of the cells;
    Control / analysis means for identifying multinucleated cells and / or cell clusters flowing in the flow path based on the bright field image, the fluorescence intensity, and the fluorescence image;
    Means for selectively recovering the identified multinucleated cells and / or cell clusters,
    The control / analysis means includes the following (i) to (iii):
    (I) The area of the nucleus of the lump or cluster obtained from the fluorescence image of the nucleus of the lump of cells or clusters is 150 μm 2 or more.
    (Ii) The area of the lump or cluster obtained from a bright field image of a lump of cells or clusters is 250 μm 2 or more, or (iii) the number of nuclei in the lump of cells or clusters is 3 or more If one condition is met, or (i) and (ii), (i) and (iii), (ii) and (iii), or (i), (ii) and (iii) are met , Determining that cancer cells are likely to be present in the cell sample solution,
    On-chip cell sorter system.
  2.  前記制御・解析手段が、
     細胞(クラスター)の周囲長と面積から円近似として導出した周囲長の比Rについて、
     (i)(1/R)が0.9以上となるときには、細胞(クラスター)が孤立1細胞であること、または
     (ii)(1/R)が0.9未満となるときには、細胞(クラスター)が2細胞以上の細胞のクラスターからなること、
    のように、(1/R)の値を前記細胞試料液中のクラスターの有無の判断基準とする、請求項1に記載のオンチップ・セルソーターシステム。
    The control / analysis means is
    About the perimeter ratio R derived as a circular approximation from the perimeter and area of cells (clusters),
    (I) When (1 / R) is 0.9 or more, the cell (cluster) is an isolated cell, or (ii) When (1 / R) is less than 0.9, the cell (cluster) is 2 cells. Consisting of a cluster of cells,
    The on-chip cell sorter system according to claim 1, wherein the value of (1 / R) is used as a criterion for determining the presence or absence of clusters in the cell sample solution.
  3.  がん細胞の候補細胞を同定するために使用されるオンチップ・セルソーターシステムであって、
     被験体由来の蛍光染色された細胞を含む試料液を流すための流路を備えたセルソーターチップと、
     前記細胞に対して照射するための明視野光源および蛍光光源を含む光学系と、
     前記セルソーターチップの前記流路を流れる前記試料液中の前記細胞の明視野画像と前記細胞に結合した蛍光標識物質の蛍光強度および前記細胞の蛍光画像とを同時に取得する検出系と、
     前記明視野画像、前記蛍光強度、および前記蛍光画像に基づいて、前記流路を流れる多核細胞および/または細胞クラスターを同定する制御・解析手段と、
     前記同定された多核細胞および/または細胞クラスターを選択的に回収する手段と
    を備え、
     前記制御・解析手段が、
     細胞(クラスター)の周囲長と面積から円近似として導出した周囲長の比Rについて、
     (i)(1/R)が0.9以上となるときには、細胞(クラスター)が孤立1細胞であること、または
     (ii)(1/R)が0.9未満となるときには、細胞(クラスター)が2細胞以上の細胞のクラスターからなること、
    のように、(1/R)の値を前記細胞試料液中のクラスターの有無の判断基準とする、オンチップ・セルソーターシステム。
    An on-chip cell sorter system used to identify cancer cell candidate cells,
    A cell sorter chip provided with a flow path for flowing a sample solution containing fluorescently stained cells derived from a subject;
    An optical system including a bright field light source and a fluorescent light source for irradiating the cells;
    A detection system for simultaneously acquiring a bright field image of the cells in the sample solution flowing through the flow path of the cell sorter chip, a fluorescence intensity of the fluorescent labeling substance bound to the cells, and a fluorescence image of the cells;
    Control / analysis means for identifying multinucleated cells and / or cell clusters flowing in the flow path based on the bright field image, the fluorescence intensity, and the fluorescence image;
    Means for selectively recovering the identified multinucleated cells and / or cell clusters,
    The control / analysis means is
    About the perimeter ratio R derived as a circular approximation from the perimeter and area of cells (clusters),
    (I) When (1 / R) is 0.9 or more, the cell (cluster) is an isolated cell, or (ii) When (1 / R) is less than 0.9, the cell (cluster) is 2 cells. Consisting of a cluster of cells,
    As described above, an on-chip cell sorter system in which the value of (1 / R) is used as a criterion for the presence or absence of clusters in the cell sample solution.
  4.  前記選択的に回収した多核細胞および/または細胞クラスター由来の遺伝子の核酸配列を計測する手段をさらに備える、請求項1~3のいずれかに記載のオンチップ・セルソーターシステム。 The on-chip cell sorter system according to any one of claims 1 to 3, further comprising means for measuring a nucleic acid sequence of a gene derived from the selectively collected multinucleated cells and / or cell clusters.
  5.  前記明視野画像と前記蛍光画像とを、1つの高速カメラの受光面上に、分割して同時に表示する機能を有する画像分割機構を備える請求項1~4のいずれか一項に記載のオンチップ・セルソーターシステム。 The on-chip according to any one of claims 1 to 4, further comprising an image dividing mechanism having a function of dividing and simultaneously displaying the bright field image and the fluorescent image on a light receiving surface of one high-speed camera.・ Cell sorter system.
  6.  前記明視野画像と前記蛍光画像とで画像の拡大率が異なるように調整する機構を備える、請求項5に記載のオンチップ・セルソーターシステム。 6. The on-chip cell sorter system according to claim 5, further comprising a mechanism for adjusting the magnification of the bright field image and the fluorescent image so that the magnification of the image differs.
  7.  前記被験体由来の細胞が、該被験体の血液由来の細胞である、請求項1~6のいずれかに記載のオンチップ・セルソーターシステム。 The on-chip cell sorter system according to any one of claims 1 to 6, wherein the subject-derived cell is a blood-derived cell of the subject.
  8.  請求項1~7のいずれか一項に記載のオンチップ・セルソーターシステムを用いて被験体由来の細胞試料液中のがん細胞の候補細胞を同定する方法であって、
     被験体由来の蛍光染色された細胞を含む試料液をセルソーターチップの流路に流す工程、
     前記細胞に対して明視野光源および蛍光光源から光を照射する工程、
     前記セルソーターチップの前記流路を流れる前記試料液中の前記細胞の明視野画像と前記細胞に結合した蛍光標識物質の蛍光強度および前記細胞の蛍光画像とを取得する工程、
     前記明視野画像、前記蛍光強度、および前記蛍光画像に基づいて、前記流路を流れる多核細胞および/または細胞クラスターを同定する工程、ならびに
     前記同定された多核細胞および/または細胞クラスターを選択的に回収する工程
    を含み、
     前記多核細胞および/または細胞クラスターを同定する際に、
      (i)一塊の細胞もしくはクラスターの核の蛍光画像から得られる該一塊もしくはクラスターの核の面積が150μm以上である、
      (ii)一塊の細胞もしくはクラスターの明視野画像から得られる該一塊もしくはクラスターの面積が250μm以上である、または
      (iii)一塊の細胞もしくはクラスター中の核の数が3以上である
    のいずれか1つの条件を満たすか、あるいは(i)および(ii)、(i)および(iii)、(ii)および(iii)、または(i)、(ii)および(iii)の条件を満たす場合に、前記細胞試料液中にがん細胞が存在する可能性が高いと判断する、方法。
    A method for identifying candidate cells of cancer cells in a cell sample solution derived from a subject using the on-chip cell sorter system according to any one of claims 1 to 7,
    Flowing a sample solution containing fluorescently-stained cells from a subject through the flow path of the cell sorter chip;
    Irradiating the cells with light from a bright-field light source and a fluorescent light source,
    Obtaining a bright field image of the cells in the sample solution flowing through the flow path of the cell sorter chip, a fluorescence intensity of a fluorescent labeling substance bound to the cells, and a fluorescence image of the cells;
    Identifying a multinucleated cell and / or cell cluster flowing through the flow path based on the bright field image, the fluorescence intensity, and the fluorescence image, and selectively identifying the identified multinucleated cell and / or cell cluster Including the step of collecting,
    In identifying the multinucleated cells and / or cell clusters,
    (I) The area of the nucleus of the lump or cluster obtained from the fluorescence image of the nucleus of the lump of cells or clusters is 150 μm 2 or more.
    (Ii) The area of the lump or cluster obtained from a bright field image of a lump of cells or clusters is 250 μm 2 or more, or (iii) the number of nuclei in the lump cells or clusters is 3 or more If one condition is met, or (i) and (ii), (i) and (iii), (ii) and (iii), or (i), (ii) and (iii) are met A method for determining that cancer cells are likely to be present in the cell sample solution.
  9.  光分岐モジュールであって、
     略直方体の筐体と、
     前記筐体内の底面に、対称に備えられた一対の画像光の入力/出力のための一対のミラーを含む光路系と、
     前記筐体の側面に備えられたミラー反射光の導入光路のための2対4個の開口部であって、長手方向の側面にそれぞれ2つずつ、短手方向の側面にそれぞれ1つずつ設けられた開口部と、
     前記2対4個の開口部のそれぞれに対して自由に着脱可能な6つの光路カバーと、
     前記2対4個の開口部のそれぞれに対して光が導入されるように前記ミラーを調整可能な、一対の着脱式可動ミラーホルダーと、
     前記一対のミラーの間に配置され、透過してきた光の断面積を調整可能な着脱式光路ウインドウと、
     前記一対のミラーの間に配置され、光の波長帯域幅を調整可能な着脱式フィルターと、
    を備える、光分岐モジュール。
    An optical branching module,
    A substantially rectangular parallelepiped housing;
    An optical path system including a pair of mirrors for input / output of a pair of image light provided symmetrically on the bottom surface in the housing;
    2 to 4 openings for introducing light of mirror reflected light provided on the side surface of the housing, each having two on the side in the longitudinal direction and one on each side in the short side An aperture formed,
    6 optical path covers that can be freely attached to and detached from each of the 2 to 4 openings,
    A pair of removable movable mirror holders capable of adjusting the mirror so that light is introduced into each of the two to four openings;
    A detachable optical path window disposed between the pair of mirrors and capable of adjusting a cross-sectional area of transmitted light; and
    A detachable filter disposed between the pair of mirrors and capable of adjusting a wavelength bandwidth of light;
    An optical branching module.
  10.  複数の前記光分岐モジュールを連結して使用する、請求項9に記載の光分岐モジュール。 The optical branching module according to claim 9, wherein a plurality of the optical branching modules are connected and used.
  11.  複数の異なる波長帯域の顕微鏡画像を1つのカメラ受光面で同時に取得するために使用する、請求項10に記載の光分岐モジュール。 The optical branching module according to claim 10, wherein the optical branching module is used to simultaneously acquire a plurality of microscope images of different wavelength bands with one camera light receiving surface.
  12.  一部の前記光分岐モジュールの前記一対のミラーの1つを外して使用することができる、請求項9~11のいずれかに記載の光分岐モジュール。 12. The optical branching module according to claim 9, wherein one of the pair of mirrors of some of the optical branching modules can be removed and used.
  13.  蛍光染色した細胞を含む試料液中の前記細胞の明視野画像と前記細胞に結合した蛍光標識物質の蛍光強度および前記細胞の蛍光画像とを同時に取得するために使用される、請求項9~12のいずれかに記載の光分岐モジュール。 A bright field image of the cells in a sample solution containing fluorescently stained cells, a fluorescence intensity of a fluorescent labeling substance bound to the cells, and a fluorescence image of the cells are used to simultaneously acquire the cells. The optical branching module according to any one of the above.
  14.  細胞を含む試料溶液を保持するための試料溶液リザーバーおよび該リザーバーに繋がる細管を備えた水滴形成モジュールと、
     前記水滴形成モジュールで形成される水滴に帯電させるための静電場コイルと、
     前記形成された水滴を滴下するための撥水性表面を有する基板であって、光学的に透過性である基板と、
     前記基板表面の傾斜角度を調節するための基板傾斜制御機構と、
     前記水滴を滴下した基板表面とは反対側に配置された、明視野像と蛍光像とを計測可能なカメラを含む光学計測モジュールと
     前記撥水性表面に形成された水滴をその上で制御可能に移動させるための1または複数のガイドであって、前記水滴とは反対の電荷を帯電させた水滴移動方向制御用静電場ガイドと、
     前記複数の水滴移動方向制御用静電場ガイドのそれぞれの後段に配置された分画水滴リザーバーと、
     前記水滴移動方向制御用静電場ガイドに接続された水滴移動方向制御用静電場ガイド用電場スイッチング機構であって、前記静電場ガイドに帯電させる電場を制御する機構と、
     前記光学計測モジュールおよび前記スイッチング機構に接続され、前記光学計測モジュールにより取得した画像データを解析し、前記水滴中のターゲット細胞の有無を判断し、それに基づいて前記スイッチング機構の動作を制御する、解析制御モジュールと
     を備える、水滴中の細胞を観察し分離するためのイメージングセルソーター。
    A water droplet formation module comprising a sample solution reservoir for holding a sample solution containing cells and a capillary tube connected to the reservoir;
    An electrostatic field coil for charging water droplets formed by the water droplet forming module;
    A substrate having a water repellent surface for dropping the formed water droplets, the substrate being optically transmissive,
    A substrate tilt control mechanism for adjusting the tilt angle of the substrate surface;
    An optical measurement module including a camera capable of measuring a bright field image and a fluorescent image, disposed on the opposite side of the substrate surface on which the water droplets are dropped, and the water droplets formed on the water repellent surface can be controlled thereon One or a plurality of guides for movement, an electrostatic field guide for controlling the direction of movement of a water droplet charged with a charge opposite to that of the water droplet;
    A fractionated water droplet reservoir disposed at a subsequent stage of each of the plurality of water droplet movement direction control electrostatic field guides;
    An electrostatic field guide electric field switching mechanism for controlling the water droplet movement direction connected to the electrostatic field guide for controlling the water droplet movement direction, the mechanism for controlling the electric field to be charged to the electrostatic field guide;
    Analysis that is connected to the optical measurement module and the switching mechanism, analyzes image data acquired by the optical measurement module, determines the presence or absence of target cells in the water droplets, and controls the operation of the switching mechanism based on it An imaging cell sorter for observing and separating cells in water droplets, comprising a control module.
  15.  前記水滴移動方向制御用静電場ガイドを複数備え、そのうちの少なくとも1つが初期の水滴の位置決め精度を高めるためのものであり、その他のガイドがターゲット細胞を含む水滴と含まない水滴とを選別するためのものであり、
     初期の水滴の位置決め精度を高めるためのガイドが、前記水滴の移動の上流に位置し、ターゲット細胞を含む水滴と含まない水滴とを選別するためのガイドが、その下流に位置する、請求項14に記載のイメージングセルソーター。
    A plurality of electrostatic field guides for controlling the direction of movement of the water droplets are provided, at least one of which is for improving the initial water droplet positioning accuracy, and for the other guides to select water droplets containing target cells and water droplets not containing them. And
    The guide for improving the positioning accuracy of the initial water droplet is located upstream of the movement of the water droplet, and the guide for sorting the water droplet containing the target cell and the water droplet not containing the target cell is located downstream thereof. The imaging cell sorter described in 1.
  16.  前記光学計測モジュールが、前記初期の水滴の位置決め精度を高めるためのガイド上を移動する前記水滴中の細胞の画像を取得しうるように配置されている、請求項14または15に記載のイメージングセルソーター。 The imaging cell sorter according to claim 14 or 15, wherein the optical measurement module is arranged so as to be able to acquire an image of a cell in the water droplet moving on a guide for improving the positioning accuracy of the initial water droplet. .
  17.  前記ターゲット細胞を含む水滴と含まない水滴とを選別するためのガイドの特定の1つに前記水滴とは反対の電荷を与えて、前記水滴の移動方向を制御し、該ガイドの後段に配置された分画水滴リザーバーに前記水滴を誘導するように構成されている、請求項14~16のいずれかに記載のイメージングセルソーター。 A specific one of the guides for selecting the water droplets including and not including the target cells is charged with a charge opposite to that of the water droplets to control the moving direction of the water droplets, and is arranged at the subsequent stage of the guides. The imaging cell sorter according to any one of claims 14 to 16, wherein the imaging cell sorter is configured to guide the water droplet to a fractionated water droplet reservoir.
  18.  さらに前記水滴の蒸発を防ぐためのカバーで覆われている、請求項14~17のいずれかに記載のイメージングセルソーター。 The imaging cell sorter according to any one of claims 14 to 17, further covered with a cover for preventing evaporation of the water droplets.
  19.  健常血液には存在しない約250μm以上の断面積の細胞塊(クラスター)を除去するメンブレンフィルターを含む細胞塊(クラスター)除去機構を備える転移がん治療装置であって、患者の血液を還流させる事で、血中の転移がん細胞を効果的に物理的手法によって除去することによって転移がんの発症・進行を抑制するための、転移がん治療装置。 A metastatic cancer treatment apparatus having a cell mass (cluster) removal mechanism including a membrane filter that removes a cell mass (cluster) having a cross-sectional area of about 250 μm 2 or more that does not exist in healthy blood, and circulates the patient's blood Therefore, a metastatic cancer treatment device for suppressing the onset and progression of metastatic cancer by effectively removing metastatic cancer cells in the blood by a physical technique.
  20.  被験体由来の血液試料において250μm以上の面積を持つ細胞塊(クラスター)を選別して血中の細胞塊の検出を用いた転移がん、臓器異常、または感染症の細胞クラスター診断するための診断方法に使用される請求項1~7のいずれかに記載のオンチップ・セルソーターシステムであって、
     前記診断方法が、
      選別された細胞塊を、培養、遺伝子変異検査、もしくは発現解析検査によって、この細胞クラスターを同定し、
      該同定された細胞が血中の転移がん細胞である場合には、各クラスター単位で、その遺伝子変異を確認し、各クラスターが同一変異物であった場合には、癌の進行程度が、原発性がんからの転移が開始したところの初期であることが推定され、もしくは、各クラスターの変異の履歴が同一でありながら、多くの異なる変異点がある場合には、転移がんの所在が多数領域に及んでいる事が推定され、
      血中を流れる細胞クラスターが臓器の組織片であると同定できる場合には、臓器の疾患が推定され、または
      マクロファージを含む貪食性白血球について、サイズが通常より肥大した細胞を回収し、その細胞中のバクテリア等の異種細胞の遺伝子を検査同定し、B細胞の活性化によって内部形状が複雑化したもの、サイズが増大したものを選択的に回収し、そのB細胞の抗原を明らかにすることによって、免疫系が何に反応しているのか推定される、
    ことを含む、オンチップ・セルソーターシステム。
    For selecting a cell cluster (cluster) having an area of 250 μm 2 or more in a blood sample derived from a subject and diagnosing a cell cluster of metastatic cancer, organ abnormality, or infectious disease using detection of the cell cluster in blood The on-chip cell sorter system according to any one of claims 1 to 7, which is used in a diagnostic method,
    The diagnostic method comprises:
    This cell cluster is identified from the selected cell mass by culture, gene mutation test, or expression analysis test,
    When the identified cell is a metastatic cancer cell in the blood, the gene mutation is confirmed in each cluster unit, and when each cluster is the same mutant, the degree of progression of cancer is If the metastasis from primary cancer is presumed to be early, or if the history of mutations in each cluster is the same but there are many different mutation points, the location of the metastatic cancer Is estimated to be in many areas,
    If the cell cluster that flows in the blood can be identified as an organ tissue fragment, organ disease is presumed, or for phagocytic leukocytes including macrophages, cells larger in size than normal are collected, and By examining and identifying genes of heterologous cells such as bacteria, selectively recovering those whose internal shape has been complicated by the activation of B cells and those having increased in size, and clarifying the antigens of the B cells Guess what the immune system is reacting to,
    On-chip cell sorter system.
  21.  血中の細胞塊の検出を用いた転移がん、臓器異常、または感染症の細胞クラスター診断方法であって、
     被験体由来の血液試料において250μm以上の面積を持つ細胞塊(クラスター)を選別し、
     選別された細胞塊を、培養、遺伝子変異検査、もしくは発現解析検査によって、この細胞クラスターを同定し、
     該同定された細胞が血中の転移がん細胞である場合には、各クラスター単位で、その遺伝子変異を確認し、各クラスターが同一変異物であった場合には、癌の進行程度が、原発性がんからの転移が開始したところの初期であることが推定され、もしくは、各クラスターの変異の履歴が同一でありながら、多くの異なる変異点がある場合には、転移がんの所在が多数領域に及んでいる事が推定され、
     血中を流れる細胞クラスターが臓器の組織片であると同定できる場合には、臓器の疾患が推定され、または
     マクロファージを含む貪食性白血球について、サイズが通常より肥大した細胞を回収し、その細胞中のバクテリア等の異種細胞の遺伝子を検査同定し、B細胞の活性化によって内部形状が複雑化したもの、サイズが増大したものを選択的に回収し、そのB細胞の抗原を明らかにすることによって、免疫系が何に反応しているのか推定される、
    細胞クラスター診断方法。
    A cell cluster diagnosis method for metastatic cancer, organ abnormality, or infectious disease using detection of cell clusters in blood,
    In a blood sample derived from a subject, a cell cluster (cluster) having an area of 250 μm 2 or more is selected,
    This cell cluster is identified from the selected cell mass by culture, gene mutation test, or expression analysis test,
    When the identified cell is a metastatic cancer cell in the blood, the gene mutation is confirmed in each cluster unit, and when each cluster is the same mutant, the degree of progression of cancer is If the metastasis from primary cancer is presumed to be early, or if the history of mutations in each cluster is the same but there are many different mutation points, the location of the metastatic cancer Is estimated to be in many areas,
    If the cell cluster that flows in the blood can be identified as an organ tissue fragment, organ disease is presumed, or for phagocytic leukocytes including macrophages, cells larger in size than normal are collected, and By examining and identifying genes of heterologous cells such as bacteria, selectively recovering those whose internal shape has been complicated by the activation of B cells and those having increased in size, and clarifying the antigens of the B cells Guess what the immune system is reacting to,
    Cell cluster diagnostic method.
  22.  血中の異常細胞の存在を確認する方法であって、
     赤血球を除く血液細胞を含む被験体由来の血液試料中の細胞サイズを計測する工程、
     前記計測工程の結果を元に、前記血液試料の細胞サイズ分布スペクトルを得る工程、および
     前記細胞サイズ分布スペクトルおいて、その細胞サイズ分布のピークが1つであるか、2つ以上となるかを識別する工程を含む、方法。
    A method for confirming the presence of abnormal cells in blood,
    Measuring a cell size in a blood sample from a subject containing blood cells excluding red blood cells,
    Based on the result of the measurement step, a step of obtaining a cell size distribution spectrum of the blood sample, and whether the cell size distribution spectrum has one peak or two or more peaks in the cell size distribution spectrum. A method comprising the step of identifying.
  23.  前記識別工程の結果、2つ以上のピークがあると識別された場合には、大きい細胞の側のピークを閾値として、前記血液試料から該閾値より大きな細胞を選択的に回収する工程をさらに含む、請求項22に記載の方法。 In the case where two or more peaks are identified as a result of the identification step, the method further includes a step of selectively collecting cells larger than the threshold value from the blood sample with a peak on the large cell side as a threshold value. The method of claim 22.
  24.  前記細胞サイズを計測する工程および前記細胞を回収する工程において、前記血液試料を流すための流路を備えたオンチップ・セルソーターチップを用いることを含む、請求項22または23に記載の方法。 24. The method according to claim 22 or 23, wherein in the step of measuring the cell size and the step of collecting the cells, an on-chip cell sorter chip having a flow path for flowing the blood sample is used.
  25.  前記オンチップ・セルソーターチップが、請求項1~7のいずれかに記載のオンチップ・セルソーターシステムの一部である、請求項24に記載の方法。 The method according to claim 24, wherein the on-chip cell sorter chip is part of the on-chip cell sorter system according to any one of claims 1 to 7.
  26.  転移がん、臓器異常、または感染症の細胞診断に用いられる、請求項22~25のいずれかに記載の方法。 The method according to any one of claims 22 to 25, which is used for cytodiagnosis of metastatic cancer, organ abnormality, or infectious disease.
  27.  細胞を含む試料溶液を保持するための試料溶液リザーバーおよび該リザーバーに繋がる細管を備えた水滴形成モジュールと、
     前記形成された水滴を滴下するための2つ以上の異なる傾斜角度を持つ領域が接合されてなる撥水性表面を有する基板と、
     前記基板の2つ以上の異なる傾斜角度を有する表面の傾斜角度を調節するための基板傾斜制御機構と、
     前記水滴の状態および水滴内部の状態を計測する計測モジュールと、
     計測結果に基づいて水滴を複数の進行方向に分離する手段と、
     を備える、水滴中の細胞を観察し分離するためのイメージングセルソーター。
    A water droplet formation module comprising a sample solution reservoir for holding a sample solution containing cells and a capillary tube connected to the reservoir;
    A substrate having a water-repellent surface formed by joining regions having two or more different inclination angles for dropping the formed water droplets;
    A substrate tilt control mechanism for adjusting a tilt angle of a surface having two or more different tilt angles of the substrate;
    A measurement module for measuring the state of the water droplet and the state inside the water droplet;
    Means for separating water droplets in a plurality of traveling directions based on the measurement results;
    An imaging cell sorter for observing and separating cells in water droplets.
  28.  前記水滴を複数の進行方向に分離する手段が、前記撥水性表面に形成された水滴をその上で制御可能に移動させるための1または複数のガイドを含み、
     前記ガイドが、前記水滴とは反対の電荷を帯電させた水滴移動方向制御用静電場ガイドである、請求項27に記載のイメージングセルソーター。
    The means for separating the water droplets in a plurality of travel directions includes one or more guides for controllably moving the water droplets formed on the water repellent surface;
    28. The imaging cell sorter according to claim 27, wherein the guide is an electrostatic field guide for controlling the direction of movement of a water droplet charged with a charge opposite to that of the water droplet.
PCT/JP2014/077198 2013-10-10 2014-10-10 Imaging cell sorter WO2015053393A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015541651A JPWO2015053393A1 (en) 2013-10-10 2014-10-10 Imaging cell sorter

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-213169 2013-10-10
JP2013213169 2013-10-10

Publications (1)

Publication Number Publication Date
WO2015053393A1 true WO2015053393A1 (en) 2015-04-16

Family

ID=52813206

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/077198 WO2015053393A1 (en) 2013-10-10 2014-10-10 Imaging cell sorter

Country Status (2)

Country Link
JP (1) JPWO2015053393A1 (en)
WO (1) WO2015053393A1 (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018089557A (en) * 2016-11-30 2018-06-14 国立大学法人東京工業大学 Fine particle separation device and separation method of fine particle
CN110047107A (en) * 2018-01-13 2019-07-23 深圳华大智造科技有限公司 Camera calibration method and method for registering images, gene sequencer and system
WO2019209714A1 (en) 2018-04-27 2019-10-31 Becton, Dickinson And Company Flow cytometers having enclosed droplet sorters with controlled aerosol content and methods of using the same
US10605716B2 (en) 2017-07-21 2020-03-31 Ricoh Company, Ltd. Particle counting apparatus, particle counting method, and particle containing sample
JP2020514705A (en) * 2016-12-21 2020-05-21 ヴェンタナ メディカル システムズ, インク. Methods, systems, and solid compositions for reagent delivery
KR20210014976A (en) * 2019-07-31 2021-02-10 주식회사 피디젠 Platform based on analysis of circulating tumor cell for the prediction of cancer progression
WO2021033750A1 (en) * 2019-08-21 2021-02-25 学校法人早稲田大学 Cell analyzer system and cell analysis method
WO2021149759A1 (en) * 2020-01-22 2021-07-29 シンクサイト株式会社 Flow cytometer flow cell and flow cytometer flow cell cleaning method
CN113219581A (en) * 2020-11-24 2021-08-06 桂林电子科技大学 Single-fiber-core beak-shaped optical fiber tweezers with sorting function and preparation method thereof
CN113544490A (en) * 2019-03-29 2021-10-22 贝克顿·迪金森公司 Parameters for particle discrimination
CN113773958A (en) * 2015-12-01 2021-12-10 株式会社日立高新技术 Cell analysis device and cell analysis method using same
CN114624167A (en) * 2022-05-13 2022-06-14 深圳市帝迈生物技术有限公司 Sample analyzer
IT202100013715A1 (en) * 2021-05-26 2022-11-26 Menarini Silicon Biosystems Spa MICROFLUIDIC METHOD AND SYSTEM FOR THE ISOLATION OF PARTICLES
JP2023510516A (en) * 2021-01-22 2023-03-14 ベックマン コールター バイオテクノロジー (スージョウ) カンパニー, リミテッド Fluidic systems and sample processors containing fluidic systems
WO2024075274A1 (en) * 2022-10-07 2024-04-11 日本電気株式会社 Cell classification device, cell classification method, and program

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002505423A (en) * 1998-02-27 2002-02-19 サイトメーション, インコーポレイテッド Method and apparatus for flow cytometry
JP2002521658A (en) * 1998-07-20 2002-07-16 コールター インターナショナル コーポレイション Apparatus and method for controlling droplet separation point of flow cytometer
US20120081709A1 (en) * 2010-04-07 2012-04-05 Durack Gary P High speed fluid switch
WO2013147114A1 (en) * 2012-03-30 2013-10-03 公益財団法人神奈川科学技術アカデミー Imaging cell sorter

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002505423A (en) * 1998-02-27 2002-02-19 サイトメーション, インコーポレイテッド Method and apparatus for flow cytometry
JP2002521658A (en) * 1998-07-20 2002-07-16 コールター インターナショナル コーポレイション Apparatus and method for controlling droplet separation point of flow cytometer
US20120081709A1 (en) * 2010-04-07 2012-04-05 Durack Gary P High speed fluid switch
WO2013147114A1 (en) * 2012-03-30 2013-10-03 公益財団法人神奈川科学技術アカデミー Imaging cell sorter

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113773958A (en) * 2015-12-01 2021-12-10 株式会社日立高新技术 Cell analysis device and cell analysis method using same
CN113773958B (en) * 2015-12-01 2024-02-23 株式会社日立高新技术 Cell analysis device and cell analysis method using the same
JP2018089557A (en) * 2016-11-30 2018-06-14 国立大学法人東京工業大学 Fine particle separation device and separation method of fine particle
US11686738B2 (en) 2016-12-21 2023-06-27 Ventana Medical Systems, Inc. Methods, systems and solid compositions for reagent delivery
JP2020514705A (en) * 2016-12-21 2020-05-21 ヴェンタナ メディカル システムズ, インク. Methods, systems, and solid compositions for reagent delivery
JP7025430B2 (en) 2016-12-21 2022-02-24 ヴェンタナ メディカル システムズ, インク. Methods, systems, and solid compositions for reagent delivery
US10605716B2 (en) 2017-07-21 2020-03-31 Ricoh Company, Ltd. Particle counting apparatus, particle counting method, and particle containing sample
CN110047107B (en) * 2018-01-13 2021-04-13 深圳华大智造科技股份有限公司 Camera calibration method, image registration method, gene sequencer and gene sequencer system
CN110047107A (en) * 2018-01-13 2019-07-23 深圳华大智造科技有限公司 Camera calibration method and method for registering images, gene sequencer and system
WO2019209714A1 (en) 2018-04-27 2019-10-31 Becton, Dickinson And Company Flow cytometers having enclosed droplet sorters with controlled aerosol content and methods of using the same
EP3785015A4 (en) * 2018-04-27 2022-01-19 Becton, Dickinson and Company Flow cytometers having enclosed droplet sorters with controlled aerosol content and methods of using the same
US11441996B2 (en) 2018-04-27 2022-09-13 Becton, Dickinson And Company Flow cytometers having enclosed droplet sorters with controlled aerosol content and methods of using the same
CN113544490A (en) * 2019-03-29 2021-10-22 贝克顿·迪金森公司 Parameters for particle discrimination
KR20210014976A (en) * 2019-07-31 2021-02-10 주식회사 피디젠 Platform based on analysis of circulating tumor cell for the prediction of cancer progression
KR102410786B1 (en) * 2019-07-31 2022-06-20 주식회사 피디젠 Device based on analysis of circulating tumor cell for the prediction of cancer progression
WO2021033750A1 (en) * 2019-08-21 2021-02-25 学校法人早稲田大学 Cell analyzer system and cell analysis method
WO2021149759A1 (en) * 2020-01-22 2021-07-29 シンクサイト株式会社 Flow cytometer flow cell and flow cytometer flow cell cleaning method
CN113219581B (en) * 2020-11-24 2022-07-29 桂林电子科技大学 Single-fiber-core beak-shaped optical fiber tweezers with sorting function and preparation method thereof
CN113219581A (en) * 2020-11-24 2021-08-06 桂林电子科技大学 Single-fiber-core beak-shaped optical fiber tweezers with sorting function and preparation method thereof
JP2023510516A (en) * 2021-01-22 2023-03-14 ベックマン コールター バイオテクノロジー (スージョウ) カンパニー, リミテッド Fluidic systems and sample processors containing fluidic systems
JP7336601B2 (en) 2021-01-22 2023-08-31 ベックマン コールター バイオテクノロジー (スージョウ) カンパニー, リミテッド Fluidic systems and sample processors containing fluidic systems
IT202100013715A1 (en) * 2021-05-26 2022-11-26 Menarini Silicon Biosystems Spa MICROFLUIDIC METHOD AND SYSTEM FOR THE ISOLATION OF PARTICLES
WO2022249123A1 (en) * 2021-05-26 2022-12-01 Menarini Silicon Biosystems S.P.A. Method and microfluidic system for the isolation of particles
CN114624167A (en) * 2022-05-13 2022-06-14 深圳市帝迈生物技术有限公司 Sample analyzer
WO2024075274A1 (en) * 2022-10-07 2024-04-11 日本電気株式会社 Cell classification device, cell classification method, and program

Also Published As

Publication number Publication date
JPWO2015053393A1 (en) 2017-03-09

Similar Documents

Publication Publication Date Title
JP5712396B2 (en) Imaging cell sorter
WO2015053393A1 (en) Imaging cell sorter
JP5807004B2 (en) Cell analyzer
KR100746431B1 (en) Cell sorter chip
JP6850824B2 (en) Systems and methods for sorting sperm
US9109197B2 (en) Device for concentrating and separating cells
US10801007B2 (en) Cell detection device and cell detection method
CN109716102B (en) Microparticle dispensing device, microparticle analysis device, reaction detection device, and method for using same
JP5320510B2 (en) Cell analyzer
Burger et al. An integrated centrifugo-opto-microfluidic platform for arraying, analysis, identification and manipulation of individual cells
US20220276250A1 (en) Cell analyzer system and cell analysis method
JP5580117B2 (en) Cell analyzer
US11913870B2 (en) Microfluidic chip device for optical force measurements and cell imaging using microfluidic chip configuration and dynamics
KR20180058052A (en) Cell detection device and cell detection method
CN212514272U (en) Cell detection device and cell classification detection system based on micro-fluidic chip
JP2020129012A (en) Method for detecting cell
JP2014183854A (en) Cell analyzer
CN111398237A (en) Cell detection device, application and cell classification detection method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14853106

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015541651

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14853106

Country of ref document: EP

Kind code of ref document: A1