WO2015049966A1 - Method for detecting movement of neurostimulation electrode, neurostimulation electrode, and neurostimulation system - Google Patents

Method for detecting movement of neurostimulation electrode, neurostimulation electrode, and neurostimulation system Download PDF

Info

Publication number
WO2015049966A1
WO2015049966A1 PCT/JP2014/074049 JP2014074049W WO2015049966A1 WO 2015049966 A1 WO2015049966 A1 WO 2015049966A1 JP 2014074049 W JP2014074049 W JP 2014074049W WO 2015049966 A1 WO2015049966 A1 WO 2015049966A1
Authority
WO
WIPO (PCT)
Prior art keywords
nerve stimulation
unit
stimulation electrode
stimulation
electrocardiogram waveform
Prior art date
Application number
PCT/JP2014/074049
Other languages
French (fr)
Japanese (ja)
Inventor
萌 後藤
Original Assignee
オリンパス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オリンパス株式会社 filed Critical オリンパス株式会社
Publication of WO2015049966A1 publication Critical patent/WO2015049966A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/36Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
    • A61N1/3605Implantable neurostimulators for stimulating central or peripheral nerve system
    • A61N1/36053Implantable neurostimulators for stimulating central or peripheral nerve system adapted for vagal stimulation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/316Modalities, i.e. specific diagnostic methods
    • A61B5/318Heart-related electrical modalities, e.g. electrocardiography [ECG]
    • A61B5/346Analysis of electrocardiograms
    • A61B5/349Detecting specific parameters of the electrocardiograph cycle
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/06Devices, other than using radiation, for detecting or locating foreign bodies ; determining position of probes within or on the body of the patient
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/36Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
    • A61N1/3605Implantable neurostimulators for stimulating central or peripheral nerve system
    • A61N1/36128Control systems
    • A61N1/36142Control systems for improving safety
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/02Details
    • A61N1/04Electrodes
    • A61N1/05Electrodes for implantation or insertion into the body, e.g. heart electrode
    • A61N1/056Transvascular endocardial electrode systems

Definitions

  • the present invention relates to a method for detecting movement of a nerve stimulation electrode, more specifically, a method for detecting movement of a nerve stimulation electrode that preferably detects movement after placement of the nerve stimulation electrode, and a nerve stimulation electrode to which the method can be preferably applied, and It relates to a nerve stimulation system.
  • Patent Document 1 describes a medical device used for such treatment.
  • the medical device described in Patent Document 1 includes a cylindrical main body or an arched spring that can be expanded in a blood vessel, and the cylindrical main body or the arched spring is expanded in the blood vessel to be placed in the blood vessel.
  • the nerve stimulation electrode placed in the blood vessel stimulates the nerve through the blood vessel wall
  • the nerve stimulation electrode is placed in a position where nerve stimulation can be performed as preferably as possible in the blood vessel in consideration of the position of the nerve parallel to the blood vessel.
  • the nerve stimulation electrode may move after placement due to the patient's body movement or the conscious or unconscious removal operation by the patient.
  • a suitable electrical stimulation cannot be performed due to a change in the positional relationship between the nerve stimulation electrode and the nerve, and appropriate measures such as correction of the indwelling position should be taken immediately.
  • the medical device described in Patent Document 1 has a problem that even if the nerve stimulation electrode moves after placement, the movement cannot be detected.
  • the present invention has been made in view of the above-described problems, and an object thereof is to provide a movement detection method for a nerve stimulation electrode that can suitably detect movement of the nerve stimulation electrode in a blood vessel. . Another object of the present invention is to provide a nerve stimulation electrode and a nerve stimulation system capable of suitably detecting movement using the movement detection method.
  • an electrocardiogram waveform is acquired by the nerve stimulation electrode, and the nerve stimulation electrode is based on the electrocardiogram waveform. It is determined whether or not it has moved.
  • the electrocardiogram waveform is compared with a reference waveform prepared in advance, and the nerve stimulation electrode is placed in the heart. You may determine whether it moved to the approaching direction.
  • the nerve stimulation electrode movement detection method when the maximum value of the P wave or the R wave in the electrocardiographic waveform is equal to or greater than a predetermined threshold value. It may be determined that the nerve stimulation electrode has moved in a direction approaching the heart.
  • the magnitude relationship between the maximum values of the P wave and the R wave in the electrocardiogram waveform is the P wave in the reference waveform.
  • the magnitude relationship of the maximum value of the R wave is reversed, it may be determined that the nerve stimulation electrode has moved in a direction approaching the heart.
  • the nerve stimulation electrode when the baseline of the electrocardiographic waveform changes to a non-linear shape, the nerve stimulation electrode is a heart. It may be determined that it has moved in a direction approaching.
  • the nerve stimulation electrode when the P wave in the electrocardiographic waveform has a shape having a plurality of peaks, the nerve stimulation electrode is You may determine with having moved to the direction which approaches the heart.
  • the nerve stimulation electrode placed in the blood vessel has an urging member that can be elastically deformed, and is provided in the indwelling portion locked in the blood vessel.
  • the stimulation unit has three or more electrodes arranged apart from each other in the longitudinal direction of the nerve stimulation electrode. May be.
  • the electrocardiographic waveform acquisition unit has at least two electrodes, and the two electrodes are the nerves. You may arrange
  • a nerve stimulation system includes a nerve stimulation electrode according to any one of the seventh aspect to the ninth aspect and an electrocardiogram acquired by the electrocardiographic waveform acquisition unit. And an analysis unit that determines whether or not the stimulation unit has moved based on a shape.
  • the nerve stimulation system is acquired by the nerve stimulation electrode according to the eighth aspect, the stimulation generation unit that generates the stimulation signal, and the electrocardiographic waveform acquisition unit.
  • An analysis unit that determines whether or not the stimulation unit has moved based on an electrocardiogram waveform, and a control unit that controls the stimulation generation unit based on the determination of the analysis unit.
  • the control unit changes a combination of electrodes to which the stimulation signal is applied among the electrodes of the stimulation unit.
  • movement of the nerve stimulation electrode in the blood vessel can be suitably detected.
  • the movement of a nerve stimulation electrode can be detected suitably using the movement detection method of this invention.
  • FIG. 1 is a schematic diagram showing a nerve stimulation system 1 including the nerve stimulation electrode of the present embodiment.
  • the nerve stimulation system 1 is a system that treats tachycardia, chronic heart failure, and the like by stimulating the vagus nerve.
  • the nerve stimulation system 1 includes a stimulation generator 10 and a stimulation lead (neural stimulation electrode) 20.
  • the stimulation generator 10 generates a nerve stimulation signal based on a predetermined parameter.
  • a stimulation lead (neural stimulation electrode) 20 is connected to the stimulation generator 10 and placed in the blood vessel.
  • the stimulus generator 10 includes a stimulus generator 11, an analyzer 12, and a controller 13.
  • the stimulus generator 11 generates a stimulus signal.
  • the analysis unit 12 analyzes the electrocardiogram waveform acquired by the stimulation lead 20.
  • the controller 13 is connected to the stimulus generator 11 and the analyzer 12 and controls the stimulus generator 10 as a whole.
  • the stimulus signal generated by the stimulus generator 11 is sent to the stimulus lead 20.
  • the analysis unit 12 analyzes the electrocardiogram waveform sent from the stimulation lead 20 and repeatedly determines whether the stimulation lead 20 has moved after placement. The flow of determination in the analysis unit 12 will be described later.
  • FIG. 2 is a schematic diagram showing the stimulation lead 20 placed in the superior vena cava Sv, which is a blood vessel connected to the heart Ht.
  • the stimulation lead 20 includes an indwelling unit 21, a conducting wire unit 26, a stimulation unit 31, and an electrocardiographic waveform acquisition unit 36.
  • the indwelling part 21 is locked in the blood vessel.
  • the conducting wire part 26 connects the indwelling part 21 and the stimulus generator 10.
  • the stimulation part 31 has a pair of electrodes 32 and 33 to which a stimulation signal is applied.
  • the electrocardiogram waveform acquisition unit 36 includes a pair of electrodes 37 and 38 different from the stimulation unit 31.
  • the indwelling part 21 includes an urging member 22 that can be elastically deformed.
  • the biasing member 22 When the stimulation lead 20 is introduced into the blood vessel, the biasing member 22 is deformed and can be accommodated inside an introducer or the like.
  • the biasing member 22 has a shape that can be expanded into a shape before deformation and locked in the blood vessel when no external force is applied.
  • the material of the urging member 22 can be selected from various shape memory alloys in consideration of biocompatibility.
  • the surface of the urging member 22 may be coated or surface-treated for the purpose of enhancing biocompatibility or suppressing thrombus formation.
  • the conducting wire portion 26 is formed by covering a conducting wire made of a conductor with an insulating material, and can be selected from various known materials in consideration of biocompatibility and the like.
  • the pair of electrodes 32 and 33 of the stimulation unit 31 are attached to the indwelling unit 21 with their conductive surfaces exposed, and a stimulation signal is applied between the pair of electrodes 32 and 33.
  • the pair of electrodes 32 and 33 may be provided on the same urging member, or may be provided on different urging members.
  • the electrodes 32 and 33 of the stimulation part 31 are connected to the conductor part 26 by wiring (not shown) provided along the biasing member 22.
  • the basic structure of the pair of electrodes 37 and 38 of the electrocardiogram waveform acquisition unit 36 and the connection mode of the lead wire unit 26 are generally the same as those of the electrodes 32 and 33 of the stimulation unit 31, and all four electrodes are connected to other electrodes. Insulation is ensured.
  • one electrode 37 is provided on the biasing member 22 located at the distal end portion of the indwelling portion 21.
  • the other electrode 38 is provided on the outer peripheral surface of the conducting wire portion 26 and is located on the proximal side with respect to the indwelling portion 21.
  • the pair of electrodes 37 and 38 of the electrocardiogram waveform acquisition unit 36 have a positional relationship such that the pair of electrodes 32 and 33 of the stimulation unit 31 are sandwiched from both sides in the longitudinal direction of the stimulation lead 20.
  • the electrode 38 is not necessarily present on the conducting wire portion 26 and may be provided on the urging member 22. Even if comprised in this way, the structure which pinches
  • the range from the connection part of the indwelling part 21 and the conductor part 26 to the part where the electrode 38 is provided is not easily bent by a core rod or the like so that a substantially straight state is maintained. It is configured.
  • the electrocardiographic waveform acquisition unit 36 does not substantially move relative to the indwelling unit 21 and the stimulation unit 31 provided in the indwelling unit 21 except for a slight displacement accompanying the deformation of the biasing member 22. It is configured.
  • the stimulation lead 20 is first introduced into the patient's blood vessel using an introducer or the like. Next, the stimulation lead 20 is placed in the blood vessel by expanding the placement portion 21 at the target position and locking it in the blood vessel. After the stimulation lead 20 is placed, the stimulation generator 10 is operated at a predetermined timing, and a stimulation signal is applied from the stimulation unit 31 to the nerve Vn through the blood vessel wall to perform nerve stimulation treatment for the patient.
  • the electrocardiographic waveform of the patient is acquired by the electrocardiographic waveform acquisition unit 36 continuously or intermittently.
  • the acquired electrocardiogram waveform is transmitted to the analysis unit 12 of the stimulus generator 10.
  • the analysis unit 12 analyzes the electrocardiogram waveform for the presence / absence and type of abnormality related to the size of the electrocardiogram waveform, so that the stimulation lead 20, particularly the indwelling unit 21 and the stimulation unit 31 provided in the indwelling unit 21 after placement. It is determined whether or not has moved.
  • An example of the first determination criterion is a value of a specific parameter in the electrocardiogram waveform such as the magnitude (particularly the maximum value) of the P wave and / or the R wave.
  • the upper side of FIG. 3 is an example of a general electrocardiogram waveform acquired with electrodes placed on the body surface, and the lower side is acquired by the electrocardiogram waveform acquisition unit 36 of the stimulation lead 20 placed in the blood vessel. It is an example of an electrocardiogram waveform. The same applies to FIGS.
  • the electrocardiographic waveform increases as shown in the lower part of FIG. 4 when the acquired electrode approaches the heart, and decreases as shown in the lower part of FIG. 5 when moving away from the heart.
  • the value of an arbitrary parameter of the electrocardiogram waveform is compared with a parameter of a standard electrocardiogram waveform (hereinafter sometimes referred to as a “reference waveform”), and the difference between the two is equal to or greater than a predetermined value or ratio. It is possible to determine whether or not the stimulating unit 31 has moved by analyzing whether or not there is the analysis unit 12.
  • the parameter for example, the maximum value of a certain wave such as the maximum value of the R wave or the maximum value of the P wave, or the amplitude represented by the difference between the maximum value and the minimum value of the P wave or QRS wave is used. However, it is not limited to this.
  • FIG. 6 is a flowchart illustrating an example of a determination flow in the analysis unit 12 in a case where determination is performed using the maximum value of the R wave, and illustrates one mode of the nerve stimulation electrode movement detection method of the present invention.
  • the analysis part 12 acquires the maximum value of the R wave in the acquired electrocardiogram waveform.
  • the analysis unit 12 determines whether or not the maximum value of the acquired R wave exceeds 1.2 times (a predetermined threshold) the maximum value of the R wave in the reference waveform.
  • the determination in step S20 is Yes, the process proceeds to step S21, and the analysis unit 12 determines that the stimulation unit 31 has moved in a direction approaching the heart and ends the process. If the determination in step S20 is No, the process proceeds to step S30.
  • step S30 the analysis unit 12 determines whether or not the acquired maximum value of the R wave is less than 0.8 times the maximum value of the R wave in the reference waveform similar to the standard electrocardiogram waveform. judge.
  • the process proceeds to step S31, and the analysis unit 12 determines that the stimulation unit 31 has moved in the direction away from the heart and ends the process.
  • determination in step S30 is No, a process progresses to step S32, an analysis part determines with the stimulation part 31 not moving, and complete
  • step S20 for determining whether or not the stimulating unit 31 has moved in a direction approaching the heart and step S30 for determining whether or not the stimulating unit 31 has moved in a direction away from the heart, May be reversed.
  • the threshold values in steps S20 and S30 may be changed as appropriate.
  • the parameter used for the determination may be replaced with another parameter, or the determination may be performed by combining a plurality of parameters.
  • an electrocardiographic waveform acquired by the electrocardiographic waveform acquisition unit immediately after placement may be stored in a storage unit (not shown) of the stimulation generator 10 and used.
  • an average electrocardiogram waveform at a standard indwelling position in neurostimulation treatment or a parameter value in the electrocardiogram waveform may be stored in advance in the stimulation generator 10 as a reference waveform.
  • the maximum value of the P wave is larger than the maximum value of the R wave, and the magnitude relationship of the maximum value is reversed from that of the electrocardiogram waveform shown on the upper side. This is a result that the atrial action potential acquired by the electrocardiogram waveform acquisition unit 36 is acquired larger than the action potential of the ventricle because the stimulation unit 31 has approached the atrium considerably.
  • the maximum value of the R wave is larger than the maximum value of the P wave, but if the shape of the electrocardiographic waveform is changed so that the maximum value of the P wave becomes larger than the maximum value of the R wave after that, It can be determined that the stimulation unit 31 has moved in a direction approaching the heart.
  • the reversal of the magnitude relationship may be compared with a reference waveform, or the magnitude relation may be monitored at all times to capture the event of reversal.
  • the base line of the electrocardiogram waveform is not linear like the standard electrocardiogram waveform, and the maximum value of the electrocardiogram waveform fluctuates periodically. All waveforms including the R wave and the R wave fluctuate up and down. This indicates that as a result of the indwelling portion 21 entering the atrium, the locking by the biasing member does not work, and the stimulation portion 31 is moved by the blood flow in the atrium. Therefore, it can be determined that the stimulation unit 31 has moved in a direction approaching the heart due to the base line changing to a non-linear shape.
  • the stimulating unit 31 it is also possible to determine whether or not the stimulating unit 31 has moved based on the presence or absence of a part or all of the ECG waveform. This is because, as the stimulation unit 31 approaches the heart, the heart potential vector with respect to the electrocardiogram waveform acquisition unit 36 changes, and therefore the presence or absence of movement of the stimulation unit 31 in the direction of approaching the heart mainly. It is suitable for the determination.
  • the acquired electrocardiogram waveform and the reference waveform can be compared as a whole.
  • the electrocardiogram waveform for 3 beats acquired by the electrocardiogram waveform acquisition unit 36 is processed as point sequence data, and the correlation coefficient with the reference waveform for 3 beats is calculated. Then, it is possible to determine whether or not the stimulation unit 31 has moved by setting a predetermined threshold value for the correlation coefficient.
  • the determination based on the correlation coefficient is merely an example of an overall comparison, and other known various methods can also be used. It is also possible to combine a plurality of types of determination criteria described above.
  • the nerve stimulation electrode movement detection method it is determined whether or not the nerve stimulation electrode has moved based on the electrocardiogram waveform acquired by the nerve stimulation electrode. . Therefore, it is possible to easily detect the movement of the nerve stimulation electrode without requiring a special parameter for movement detection and without requiring a special configuration for the parameter.
  • the electrocardiographic waveform acquisition unit 36 is provided separately from the stimulation unit 31 that performs nerve stimulation.
  • the electrocardiographic waveform acquisition unit 36 is substantially held in a relative position with respect to the stimulation unit 31 provided in the indwelling unit 21. Therefore, by performing the above-described movement detection method based on the electrocardiogram waveform acquired by the electrocardiogram waveform acquisition unit 36, it is possible to suitably detect the movement of the indwelling unit 21 and the stimulation unit 31 after the indwelling.
  • an electrocardiogram waveform can be acquired independently of nerve stimulation.
  • a part of the stimulation unit can be used as an electrocardiogram waveform acquisition unit, and the configuration can be simplified. It is preferable because of its advantages.
  • an electrocardiogram waveform is acquired simultaneously with the nerve stimulation, an electrocardiogram waveform to which the noise of the nerve stimulation is added is acquired and affects the determination accuracy.
  • a specific method of shifting the timing between the neural stimulation and the acquisition of the electrocardiographic waveform can be set as appropriate.
  • an electrocardiogram waveform may be acquired at the time of pause, or when stimulation is being performed.
  • an electrocardiographic waveform may be acquired between pulses of the stimulation signal. Any of these methods can reduce noise caused by the stimulus signal.
  • the control unit 13 when the movement of the stimulation lead 20 is detected, the control unit 13 can perform various processes. Suitable treatment can be performed by the treatment.
  • the first example of processing by the control unit 13 is notification to a patient, a medical staff, or the like. For example, sound, light, vibration or the like is generated in the stimulus generation device 10, a signal is transmitted to a biological monitor or a remote monitoring device connected to the patient, a predetermined display is performed, or a nurse call is performed, Calling a preset contact or sending an email. As a result, a person who has recognized the notification can take appropriate measures such as correcting the position of the stimulation unit.
  • a second example of the processing of the control unit 13 is modification of the stimulus signal generated by the stimulus generation unit 11.
  • stop of stimulation pulse unit or one set unit of stimulation and pause
  • increase / decrease of stimulation energy and the like.
  • the stimulation energy can be increased or decreased by adjusting the current value, voltage value, pulse width, frequency, duration, etc. of the stimulation signal.
  • an example in which the action on the heart is suppressed by synchronizing the timing of applying the stimulation signal with the refractory period of the heart when the stimulating unit 31 approaches the heart is also this example. include.
  • the third example of the processing of the control unit 13 is recording of detection contents.
  • the detection content can be stored in a storage unit or the like every time a predetermined interval or movement is detected, and output after removal of the nerve stimulation system, thereby making it possible to grasp the movement of the indwelling stimulation unit. At this time, you may memorize
  • FIG. 10 is a schematic diagram showing the stimulation lead 50 in the present embodiment.
  • the stimulation unit 51 includes three electrodes 52, 53, and 54. Each of the electrodes 52, 53, 54 is attached to the biasing member 22 with an interval in the longitudinal direction of the stimulation lead 50.
  • the nerve stimulation system of this embodiment provided with the stimulation lead 50 has the same effect as the nerve stimulation system 1 described above.
  • nerve stimulation is performed using the electrodes 52 and 53, which are the two electrodes on the distal end side, among the electrodes of the stimulation unit 51 in the initial setting.
  • the control unit 13 selects two electrodes 53 on the proximal end side as shown in FIG. Switch to 54. By this switching, a part of the movement of the indwelling part 21 is absorbed, and the position of the two electrodes to which the stimulation signal is applied in the blood vessel is preferably suppressed from greatly changing from the state before the movement.
  • the stimulation unit 51 since the stimulation unit 51 includes the three electrodes 52, 53, and 54, the combination of the two electrodes to which the stimulation signal is applied among the three electrodes is appropriately changed. Thus, even when the stimulation unit moves, a suitable nerve stimulation treatment can be performed.
  • the control unit 13 applies the stimulation signal when the analysis unit 12 detects that the stimulation unit 51 has moved in the direction approaching the heart. Since the electrodes to be switched are moved within a certain range, the nerve stimulation treatment can be preferably continued without adjusting the position of the stimulation lead.
  • the number of electrodes in the stimulation unit is not limited to three, and may be four or more.
  • a third embodiment of the present invention will be described with reference to FIG.
  • the difference between this embodiment and each of the above-described embodiments is the configuration of the electrocardiogram waveform acquisition unit and the processing of the control unit.
  • FIG. 12 is a schematic diagram showing the stimulation lead 60 in the present embodiment.
  • the electrocardiographic waveform acquisition unit 61 includes a third electrode 62 in addition to the pair of electrodes 37 and 38.
  • the third electrode 62 is attached between the pair of electrodes 37 and 38 in the longitudinal direction of the stimulation lead 60 and at a position closer to the proximal end than the stimulation unit 31.
  • the control unit 13 switches the electrodes for acquiring the electrocardiogram waveform according to the acquisition timing of the electrocardiogram waveform. That is, an electrocardiographic waveform is acquired between the pair of electrodes 37 and 38 when nerve stimulation is not performed.
  • an electrocardiographic waveform is acquired between the two electrodes 62 and 38 that are further from the heart Ht than the stimulation unit 31.
  • the electrocardiographic waveform acquired between the electrodes 37 and 38 is different from the electrocardiographic waveform acquired between the electrodes 62 and 38, and thus the reference used in the analyzing unit 12
  • a waveform is also prepared for each electrocardiogram waveform and is used properly in the determination.
  • the stimulation lead 60 and the nerve stimulation system including the stimulation lead 60 of the present embodiment the same effects as those of the nerve stimulation system 1 described above can be obtained.
  • the electrocardiogram waveform acquisition unit 61 includes the three electrodes 37, 38, and 62
  • the stimulation unit 31 is stimulated by appropriately selecting two electrodes that acquire an electrocardiogram waveform from the three electrodes. Even when a signal is applied, it is possible to reduce noise due to the stimulation signal and obtain a suitable electrocardiogram waveform. As a result, it is possible to monitor the movement of the stimulator in real time without interruption.
  • the number of electrodes of the electrocardiogram waveform acquisition unit is not limited to three, and may be four or more.
  • the electrocardiographic waveform changes when the selected electrodes are different, it is preferable to prepare a reference waveform for each necessary combination of electrodes from the viewpoint of highly accurate movement detection.
  • the number of electrodes of the electrocardiogram waveform acquisition unit is set to two and the two electrodes are arranged so as not to sandwich the stimulation unit in the longitudinal direction of the nerve stimulation electrode, noise can be constantly reduced. Is possible.
  • Each of the above embodiments can provide a movement detection method for a nerve stimulation electrode that preferably detects movement of the nerve stimulation electrode in a blood vessel, and the movement of the nerve stimulation electrode is preferably performed using the movement detection method for the nerve stimulation electrode. It is possible to provide a nerve stimulation electrode and a nerve stimulation system for detecting the above.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Cardiology (AREA)
  • Engineering & Computer Science (AREA)
  • Animal Behavior & Ethology (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Biomedical Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biophysics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Medical Informatics (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Pathology (AREA)
  • Physics & Mathematics (AREA)
  • Neurology (AREA)
  • Neurosurgery (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Human Computer Interaction (AREA)
  • Measurement And Recording Of Electrical Phenomena And Electrical Characteristics Of The Living Body (AREA)

Abstract

Provided is a method for detecting movement of a neurostimulation electrode which is intravascularly implanted, in which an electrocardiogram waveform is obtained at the neurostimulation electrode and whether the neurostimulation electrode moved is determined on the basis of the electrocardiogram waveform.

Description

神経刺激電極の移動検知方法、神経刺激電極、および神経刺激システムNeural stimulation electrode movement detection method, neural stimulation electrode, and neural stimulation system
 本発明は、神経刺激電極の移動検知方法、より詳しくは、神経刺激電極の留置後の移動を好適に検知する神経刺激電極の移動検知方法、および同方法を好適に適用可能な神経刺激電極ならびに神経刺激システムに関する。本願は、2013年10月2日に出願された日本国特許出願第2013-207527号に基づいて優先権を主張し、その内容をここに援用する。 The present invention relates to a method for detecting movement of a nerve stimulation electrode, more specifically, a method for detecting movement of a nerve stimulation electrode that preferably detects movement after placement of the nerve stimulation electrode, and a nerve stimulation electrode to which the method can be preferably applied, and It relates to a nerve stimulation system. This application claims priority based on Japanese Patent Application No. 2013-207527 filed on October 2, 2013, the contents of which are incorporated herein by reference.
 従来、頻脈治療の一方法として、副交感神経の一つである迷走神経を刺激して心拍数を調節する方法が知られている。特許文献1には、このような治療に用いられる医療デバイスが記載されている。 Conventionally, as a method for treating tachycardia, a method of adjusting the heart rate by stimulating the vagus nerve which is one of parasympathetic nerves is known. Patent Document 1 describes a medical device used for such treatment.
 特許文献1に記載の医療デバイスは、血管内で拡張可能な筒状本体あるいはアーチ状ばねを備え、筒状本体やアーチ状ばねが血管内で拡張することにより血管内に留置される。 The medical device described in Patent Document 1 includes a cylindrical main body or an arched spring that can be expanded in a blood vessel, and the cylindrical main body or the arched spring is expanded in the blood vessel to be placed in the blood vessel.
特表2007-535984号公報Special table 2007-535984
 血管内に留置される神経刺激電極は、血管壁越しに神経を刺激するため、血管と並走する神経の位置を考慮して、血管内においてできるだけ好適に神経刺激を行える位置に留置される。
 しかしながら、神経刺激電極は、患者の体動や、患者による意識的あるいは無意識的な抜去動作等により、留置後に移動することがある。神経刺激電極が移動すると、神経刺激電極と神経との位置関係が変化することにより好適な電気刺激が行えなくなるため、留置位置の修正等の適切な措置が早急に取られるべきである。特許文献1に記載の医療デバイスは、留置後に神経刺激電極が移動しても前記移動を検知することができないという課題がある。
Since the nerve stimulation electrode placed in the blood vessel stimulates the nerve through the blood vessel wall, the nerve stimulation electrode is placed in a position where nerve stimulation can be performed as preferably as possible in the blood vessel in consideration of the position of the nerve parallel to the blood vessel.
However, the nerve stimulation electrode may move after placement due to the patient's body movement or the conscious or unconscious removal operation by the patient. When the nerve stimulation electrode is moved, a suitable electrical stimulation cannot be performed due to a change in the positional relationship between the nerve stimulation electrode and the nerve, and appropriate measures such as correction of the indwelling position should be taken immediately. The medical device described in Patent Document 1 has a problem that even if the nerve stimulation electrode moves after placement, the movement cannot be detected.
 本発明は、上述したような課題に鑑みてなされたものであって、神経刺激電極の血管内における移動を好適に検知することができる神経刺激電極の移動検知方法を提供することを目的とする。
 本発明の他の目的は、上記移動検知方法を用いて好適に移動を検知することができる神経刺激電極および神経刺激システムを提供することである。
The present invention has been made in view of the above-described problems, and an object thereof is to provide a movement detection method for a nerve stimulation electrode that can suitably detect movement of the nerve stimulation electrode in a blood vessel. .
Another object of the present invention is to provide a nerve stimulation electrode and a nerve stimulation system capable of suitably detecting movement using the movement detection method.
 本発明の第一の態様によれば、血管内に留置される神経刺激電極の移動検知方法は、前記神経刺激電極で心電波形を取得し、前記心電波形にもとづいて前記神経刺激電極が移動したか否かを判定する。 According to the first aspect of the present invention, in the method for detecting movement of a nerve stimulation electrode placed in a blood vessel, an electrocardiogram waveform is acquired by the nerve stimulation electrode, and the nerve stimulation electrode is based on the electrocardiogram waveform. It is determined whether or not it has moved.
 本発明の第二の態様によれば、上記第一の態様に係る神経刺激電極の移動検知方法においては、前記心電波形をあらかじめ準備された参照波形と比較し、前記神経刺激電極が心臓に接近する方向に移動したか否かを判定してもよい。 According to a second aspect of the present invention, in the nerve stimulation electrode movement detection method according to the first aspect, the electrocardiogram waveform is compared with a reference waveform prepared in advance, and the nerve stimulation electrode is placed in the heart. You may determine whether it moved to the approaching direction.
本発明の第三の態様によれば、上記第二の態様に係る神経刺激電極の移動検知方法において、前記心電波形におけるP波またはR波の最大値が、所定の閾値以上であるときに、前記神経刺激電極が心臓に接近する方向に移動したと判定してもよい。 According to the third aspect of the present invention, in the nerve stimulation electrode movement detection method according to the second aspect, when the maximum value of the P wave or the R wave in the electrocardiographic waveform is equal to or greater than a predetermined threshold value. It may be determined that the nerve stimulation electrode has moved in a direction approaching the heart.
 本発明の第四の態様によれば、上記第二の態様に係る神経刺激電極の移動検知方法において、前記心電波形におけるP波およびR波の最大値の大小関係が、参照波形におけるP波およびR波の最大値の大小関係と逆転したときに、前記神経刺激電極が心臓に接近する方向に移動したと判定してもよい。 According to the fourth aspect of the present invention, in the nerve stimulation electrode movement detection method according to the second aspect, the magnitude relationship between the maximum values of the P wave and the R wave in the electrocardiogram waveform is the P wave in the reference waveform. When the magnitude relationship of the maximum value of the R wave is reversed, it may be determined that the nerve stimulation electrode has moved in a direction approaching the heart.
 本発明の第五の態様によれば、上記第一の態様に係る神経刺激電極の移動検知方法において、前記心電波形の基線が、非直線形状に変化したときに、前記神経刺激電極が心臓に接近する方向に移動したと判定してもよい。 According to a fifth aspect of the present invention, in the nerve stimulation electrode movement detection method according to the first aspect, when the baseline of the electrocardiographic waveform changes to a non-linear shape, the nerve stimulation electrode is a heart. It may be determined that it has moved in a direction approaching.
 本発明の第六の態様によれば、上記第一の態様に係る神経刺激電極の移動検知方法において、前記心電波形におけるP波が複数ピークを有する形状にしたときに、前記神経刺激電極が心臓に接近する方向に移動したと判定してもよい。 According to a sixth aspect of the present invention, in the nerve stimulation electrode movement detection method according to the first aspect, when the P wave in the electrocardiographic waveform has a shape having a plurality of peaks, the nerve stimulation electrode is You may determine with having moved to the direction which approaches the heart.
 本発明の第七の態様によれば、血管内に留置される神経刺激電極は、弾性変形可能な付勢部材を有し、血管内に係止される留置部と、前記留置部に設けられて神経を刺激する刺激信号が印加される刺激部と、前記刺激部に対して相対位置が保持された心電波形取得部とを備える。 According to the seventh aspect of the present invention, the nerve stimulation electrode placed in the blood vessel has an urging member that can be elastically deformed, and is provided in the indwelling portion locked in the blood vessel. A stimulation unit to which a stimulation signal for stimulating the nerve is applied, and an electrocardiographic waveform acquisition unit having a relative position with respect to the stimulation unit.
 本発明の第八の態様によれば、上記第七の態様に係る神経刺激電極において、前記刺激部は、前記神経刺激電極の長手方向に互いに離間して配置された3つ以上の電極を有してもよい。 According to an eighth aspect of the present invention, in the nerve stimulation electrode according to the seventh aspect, the stimulation unit has three or more electrodes arranged apart from each other in the longitudinal direction of the nerve stimulation electrode. May be.
 本発明の第九の態様によれば、上記第七または第八の態様に係る神経刺激電極において、前記心電波形取得部は、少なくとも2つの電極を有し、前記2つの電極が、前記神経刺激電極の長手方向において前記刺激部を間に挟まないように配置されてもよい。 According to a ninth aspect of the present invention, in the nerve stimulation electrode according to the seventh or eighth aspect, the electrocardiographic waveform acquisition unit has at least two electrodes, and the two electrodes are the nerves. You may arrange | position so that the said stimulation part may not be pinched | interposed in the longitudinal direction of a stimulation electrode.
 本発明の第十の態様によれば、神経刺激システムは、上記第七の態様から第九の態様のいずれか一態様に係る神経刺激電極と、前記心電波形取得部で取得された心電波形にもとづいて前記刺激部が移動したか否かを判定する解析部とを備える。 According to a tenth aspect of the present invention, a nerve stimulation system includes a nerve stimulation electrode according to any one of the seventh aspect to the ninth aspect and an electrocardiogram acquired by the electrocardiographic waveform acquisition unit. And an analysis unit that determines whether or not the stimulation unit has moved based on a shape.
本発明の第十一の態様によれば、神経刺激システムは、上記第八の態様に係る神経刺激電極と、前記刺激信号を生成する刺激生成部と、前記心電波形取得部で取得された心電波形にもとづいて前記刺激部が移動したか否かを判定する解析部と、前記解析部の判定に基づいて前記刺激生成部を制御する制御部とを備える。前記刺激部が移動したと前記解析部が判定したときに、前記制御部が前記刺激部の電極のうち前記刺激信号が印加される電極の組み合わせを変更する。 According to the eleventh aspect of the present invention, the nerve stimulation system is acquired by the nerve stimulation electrode according to the eighth aspect, the stimulation generation unit that generates the stimulation signal, and the electrocardiographic waveform acquisition unit. An analysis unit that determines whether or not the stimulation unit has moved based on an electrocardiogram waveform, and a control unit that controls the stimulation generation unit based on the determination of the analysis unit. When the analysis unit determines that the stimulation unit has moved, the control unit changes a combination of electrodes to which the stimulation signal is applied among the electrodes of the stimulation unit.
 本発明の神経刺激電極の移動検知方法によれば、神経刺激電極の血管内における移動を好適に検知することができる。
 また、本発明の神経刺激電極および神経刺激システムによれば、本発明の移動検知方法を用いて好適に神経刺激電極の移動を検知することができる。
According to the movement detection method of the nerve stimulation electrode of the present invention, movement of the nerve stimulation electrode in the blood vessel can be suitably detected.
Moreover, according to the nerve stimulation electrode and nerve stimulation system of this invention, the movement of a nerve stimulation electrode can be detected suitably using the movement detection method of this invention.
本発明の第一実施形態に係る神経刺激電極を備えた神経刺激システムの構成を示す模式図である。It is a mimetic diagram showing composition of a nerve stimulation system provided with a nerve stimulation electrode concerning a first embodiment of the present invention. 心臓につながる血管に留置された本発明の第一実施形態に係る神経刺激電極を示す模式図である。It is a schematic diagram which shows the nerve stimulation electrode which concerns on 1st embodiment of this invention indwelled in the blood vessel connected to the heart. 本発明の第一実施形態に係る神経刺激電極の心電波形取得部で取得された心電波形の一例である。It is an example of the electrocardiogram waveform acquired in the electrocardiogram waveform acquisition part of the nerve stimulation electrode which concerns on 1st embodiment of this invention. 本発明の第一実施形態に係る神経刺激電極の心電波形取得部で取得された心電波形の一例である。It is an example of the electrocardiogram waveform acquired in the electrocardiogram waveform acquisition part of the nerve stimulation electrode which concerns on 1st embodiment of this invention. 本発明の第一実施形態に係る神経刺激電極の心電波形取得部で取得された心電波形の一例である。It is an example of the electrocardiogram waveform acquired in the electrocardiogram waveform acquisition part of the nerve stimulation electrode which concerns on 1st embodiment of this invention. 本発明の第一実施形態に係る神経刺激電極の解析部における判定の流れを示すフローチャートである。It is a flowchart which shows the flow of the determination in the analysis part of the nerve stimulation electrode which concerns on 1st embodiment of this invention. 本発明の第一実施形態に係る神経刺激電極の心電波形取得部で取得された心電波形の一例である。It is an example of the electrocardiogram waveform acquired in the electrocardiogram waveform acquisition part of the nerve stimulation electrode which concerns on 1st embodiment of this invention. 本発明の第一実施形態に係る神経刺激電極の心電波形取得部で取得された心電波形の一例である。It is an example of the electrocardiogram waveform acquired in the electrocardiogram waveform acquisition part of the nerve stimulation electrode which concerns on 1st embodiment of this invention. 本発明の第一実施形態に係る神経刺激電極の心電波形取得部で取得された心電波形の一例である。It is an example of the electrocardiogram waveform acquired in the electrocardiogram waveform acquisition part of the nerve stimulation electrode which concerns on 1st embodiment of this invention. 本発明の第二実施形態に係る神経刺激電極が血管に留置された状態を示す模式図である。It is a schematic diagram which shows the state by which the nerve stimulation electrode which concerns on 2nd embodiment of this invention was detained in the blood vessel. 本発明の第二実施形態に係る神経刺激電極が血管内で移動した状態を示す模式図である。It is a schematic diagram which shows the state which the nerve stimulation electrode which concerns on 2nd embodiment of this invention moved within the blood vessel. 本発明の第三実施形態に係る神経刺激電極が血管に留置された状態を示す模式図である。It is a schematic diagram which shows the state by which the nerve stimulation electrode which concerns on 3rd embodiment of this invention was detained in the blood vessel.
 本発明の第一実施形態について、図1から図9を参照して説明する。
 図1は、本実施形態の神経刺激電極を含む神経刺激システム1を示す模式図である。神経刺激システム1は、迷走神経を刺激して頻脈や慢性心不全等の治療を行うシステムである。神経刺激システム1は、刺激発生装置10と、刺激リード(神経刺激電極)20とを備えている。刺激発生装置10は、所定のパラメータに基づいて神経刺激信号を発生する。刺激リード(神経刺激電極)20は、刺激発生装置10に接続されて血管内に留置される。
A first embodiment of the present invention will be described with reference to FIGS.
FIG. 1 is a schematic diagram showing a nerve stimulation system 1 including the nerve stimulation electrode of the present embodiment. The nerve stimulation system 1 is a system that treats tachycardia, chronic heart failure, and the like by stimulating the vagus nerve. The nerve stimulation system 1 includes a stimulation generator 10 and a stimulation lead (neural stimulation electrode) 20. The stimulation generator 10 generates a nerve stimulation signal based on a predetermined parameter. A stimulation lead (neural stimulation electrode) 20 is connected to the stimulation generator 10 and placed in the blood vessel.
 刺激発生装置10は、刺激生成部11と、解析部12と、制御部13とを備えている。刺激生成部11は、刺激信号を発生させる。解析部12は、刺激リード20で取得された心電波形を解析する。制御部13は、刺激生成部11および解析部12と接続され、刺激発生装置10全体の制御を行う。刺激生成部11で生成された刺激信号は、刺激リード20に送られる。解析部12は、刺激リード20から送られてくる心電波形を解析し、刺激リード20が留置後に移動したか否かの判定を繰り返し行う。解析部12における判定の流れについては後述する。 The stimulus generator 10 includes a stimulus generator 11, an analyzer 12, and a controller 13. The stimulus generator 11 generates a stimulus signal. The analysis unit 12 analyzes the electrocardiogram waveform acquired by the stimulation lead 20. The controller 13 is connected to the stimulus generator 11 and the analyzer 12 and controls the stimulus generator 10 as a whole. The stimulus signal generated by the stimulus generator 11 is sent to the stimulus lead 20. The analysis unit 12 analyzes the electrocardiogram waveform sent from the stimulation lead 20 and repeatedly determines whether the stimulation lead 20 has moved after placement. The flow of determination in the analysis unit 12 will be described later.
 図2は、心臓Htにつながる血管である上大静脈Svに留置された刺激リード20を示す模式図である。刺激リード20は、留置部21と、導線部26と、刺激部31と、心電波形取得部36とを備えている。留置部21は、血管内に係止される。導線部26は、留置部21と刺激発生装置10とを接続する。刺激部31は、刺激信号が印加される一対の電極32および33を有する。心電波形取得部36は、刺激部31とは別の一対の電極37および38を有する。 FIG. 2 is a schematic diagram showing the stimulation lead 20 placed in the superior vena cava Sv, which is a blood vessel connected to the heart Ht. The stimulation lead 20 includes an indwelling unit 21, a conducting wire unit 26, a stimulation unit 31, and an electrocardiographic waveform acquisition unit 36. The indwelling part 21 is locked in the blood vessel. The conducting wire part 26 connects the indwelling part 21 and the stimulus generator 10. The stimulation part 31 has a pair of electrodes 32 and 33 to which a stimulation signal is applied. The electrocardiogram waveform acquisition unit 36 includes a pair of electrodes 37 and 38 different from the stimulation unit 31.
 留置部21は、弾性変形可能な付勢部材22を備えている。付勢部材22は、刺激リード20を血管内に導入する際には、変形させられてイントロデューサー等の内部に収容可能である。付勢部材22は、外力が作用しないと、変形前の形状に拡張して血管内に係止可能な形状である。付勢部材22の材料としては、各種形状記憶合金等から生体適合性を考慮して選択することができる。付勢部材22の表面には、生体適合性を高めたり、血栓形成を抑制したりする目的でコーティングや表面処理等が施されてもよい。 The indwelling part 21 includes an urging member 22 that can be elastically deformed. When the stimulation lead 20 is introduced into the blood vessel, the biasing member 22 is deformed and can be accommodated inside an introducer or the like. The biasing member 22 has a shape that can be expanded into a shape before deformation and locked in the blood vessel when no external force is applied. The material of the urging member 22 can be selected from various shape memory alloys in consideration of biocompatibility. The surface of the urging member 22 may be coated or surface-treated for the purpose of enhancing biocompatibility or suppressing thrombus formation.
 導線部26は、導体からなる導線が絶縁性の材料で被覆されて形成されており、公知の各種の材料から生体適合性等を考慮して選択可能である。 The conducting wire portion 26 is formed by covering a conducting wire made of a conductor with an insulating material, and can be selected from various known materials in consideration of biocompatibility and the like.
 刺激部31の一対の電極32、33は、留置部21に導電性の面を露出させて取り付けられており、一対の電極32、33間に刺激信号が印加される。一対の電極32、33は、同一の付勢部材に設けられてもよいし、それぞれ異なる付勢部材に設けられてもよい。
 刺激部31の各電極32、33は、付勢部材22に沿って設けられた図示しない配線により導線部26と接続されている。
The pair of electrodes 32 and 33 of the stimulation unit 31 are attached to the indwelling unit 21 with their conductive surfaces exposed, and a stimulation signal is applied between the pair of electrodes 32 and 33. The pair of electrodes 32 and 33 may be provided on the same urging member, or may be provided on different urging members.
The electrodes 32 and 33 of the stimulation part 31 are connected to the conductor part 26 by wiring (not shown) provided along the biasing member 22.
 心電波形取得部36の一対の電極37、38の基本構造および導線部26との接続態様は、おおむね刺激部31の電極32、33と同様であり、4つの電極すべてにおいて他の電極との絶縁性が確保されている。一対の電極37、38のうち、一方の電極37は、留置部21の先端部に位置する付勢部材22上に設けられている。他方の電極38は、導線部26の外周面上に設けられて留置部21よりも基端側に位置している。すなわち、心電波形取得部36の一対の電極37、38は、刺激リード20の長手方向において、刺激部31の一対の電極32、33を両側から挟むような位置関係を有する。
 電極38は、必ずしも導線部26上に存在する必要はなく、付勢部材22上に設けてもよい。このように構成しても、刺激部31の電極対を挟む構造は維持される。
The basic structure of the pair of electrodes 37 and 38 of the electrocardiogram waveform acquisition unit 36 and the connection mode of the lead wire unit 26 are generally the same as those of the electrodes 32 and 33 of the stimulation unit 31, and all four electrodes are connected to other electrodes. Insulation is ensured. Of the pair of electrodes 37, 38, one electrode 37 is provided on the biasing member 22 located at the distal end portion of the indwelling portion 21. The other electrode 38 is provided on the outer peripheral surface of the conducting wire portion 26 and is located on the proximal side with respect to the indwelling portion 21. That is, the pair of electrodes 37 and 38 of the electrocardiogram waveform acquisition unit 36 have a positional relationship such that the pair of electrodes 32 and 33 of the stimulation unit 31 are sandwiched from both sides in the longitudinal direction of the stimulation lead 20.
The electrode 38 is not necessarily present on the conducting wire portion 26 and may be provided on the urging member 22. Even if comprised in this way, the structure which pinches | interposes the electrode pair of the stimulation part 31 is maintained.
 導線部26において、留置部21と導線部26との接続部位から電極38が設けられた部位までの範囲は、芯棒を配置する等により、容易に曲がらず概ね直線状態が保持されるように構成されている。その結果、心電波形取得部36は、留置部21および留置部21に設けられた刺激部31に対して、付勢部材22の変形に伴うわずかな変位を除き実質的に相対移動しないように構成されている。 In the conductor part 26, the range from the connection part of the indwelling part 21 and the conductor part 26 to the part where the electrode 38 is provided is not easily bent by a core rod or the like so that a substantially straight state is maintained. It is configured. As a result, the electrocardiographic waveform acquisition unit 36 does not substantially move relative to the indwelling unit 21 and the stimulation unit 31 provided in the indwelling unit 21 except for a slight displacement accompanying the deformation of the biasing member 22. It is configured.
 上記のように構成された神経刺激システム1の使用時は、まずイントロデューサー等を用いて刺激リード20を患者の血管内に導入する。次に、目標位置で留置部21を拡張させて血管内に係止することにより刺激リード20を血管内に留置する。刺激リード20の留置後は、所定のタイミングで刺激発生装置10を作動させ、刺激部31から血管壁越しに神経Vnに刺激信号を印加して患者に対する神経刺激治療を行う。 When using the nerve stimulation system 1 configured as described above, the stimulation lead 20 is first introduced into the patient's blood vessel using an introducer or the like. Next, the stimulation lead 20 is placed in the blood vessel by expanding the placement portion 21 at the target position and locking it in the blood vessel. After the stimulation lead 20 is placed, the stimulation generator 10 is operated at a predetermined timing, and a stimulation signal is applied from the stimulation unit 31 to the nerve Vn through the blood vessel wall to perform nerve stimulation treatment for the patient.
 刺激リード20の留置後は、継続的あるいは断続的に心電波形取得部36で患者の心電波形が取得される。取得された心電波形は、刺激発生装置10の解析部12に送信される。解析部12で心電波形の大きさに関する異常の有無や異常の種類について心電波形が解析されることにより、留置後に刺激リード20、とりわけ留置部21および留置部21に設けられた刺激部31が移動したか否かが判定される。 After the placement of the stimulation lead 20, the electrocardiographic waveform of the patient is acquired by the electrocardiographic waveform acquisition unit 36 continuously or intermittently. The acquired electrocardiogram waveform is transmitted to the analysis unit 12 of the stimulus generator 10. The analysis unit 12 analyzes the electrocardiogram waveform for the presence / absence and type of abnormality related to the size of the electrocardiogram waveform, so that the stimulation lead 20, particularly the indwelling unit 21 and the stimulation unit 31 provided in the indwelling unit 21 after placement. It is determined whether or not has moved.
 解析部12において上記判定に用いられる、心電波形に含まれる情報については、様々な設定が可能であるため、以下ではその代表的な例のいくつかについて説明する。 Since various settings are possible for the information contained in the electrocardiogram waveform used for the determination in the analysis unit 12, some typical examples will be described below.
 一つ目の判定基準の例は、P波および/またはR波の大きさ(とくに最大値)等の、心電波形における特定のパラメータの値である。
 図3の上側は、体表に設置した電極で取得した一般的な心電波形の一例であり、下側は、血管内に留置された刺激リード20の心電波形取得部36で取得された心電波形の一例である。図4、5、7~9においても、同様である。一般に、心電波形は、取得する電極が心臓に近づくと図4下側に示すように大きくなり、心臓から遠ざかると図5下側に示すように小さくなる。したがって、心電波形の任意のパラメータの値が、基準となる心電波形(以下、「参照波形」と称することがある。)のパラメータと比較され、両者の差が所定の値あるいは割合以上であるか否かが解析部12で解析されることで、刺激部31が移動したか否かを判定することができる。パラメータとしては、例えば、R波の最大値、P波の最大値等の、ある波の最大値や、P波やQRS波の最大値と最小値との差で表される振幅などを用いることができ、これには限られない。
An example of the first determination criterion is a value of a specific parameter in the electrocardiogram waveform such as the magnitude (particularly the maximum value) of the P wave and / or the R wave.
The upper side of FIG. 3 is an example of a general electrocardiogram waveform acquired with electrodes placed on the body surface, and the lower side is acquired by the electrocardiogram waveform acquisition unit 36 of the stimulation lead 20 placed in the blood vessel. It is an example of an electrocardiogram waveform. The same applies to FIGS. In general, the electrocardiographic waveform increases as shown in the lower part of FIG. 4 when the acquired electrode approaches the heart, and decreases as shown in the lower part of FIG. 5 when moving away from the heart. Therefore, the value of an arbitrary parameter of the electrocardiogram waveform is compared with a parameter of a standard electrocardiogram waveform (hereinafter sometimes referred to as a “reference waveform”), and the difference between the two is equal to or greater than a predetermined value or ratio. It is possible to determine whether or not the stimulating unit 31 has moved by analyzing whether or not there is the analysis unit 12. As the parameter, for example, the maximum value of a certain wave such as the maximum value of the R wave or the maximum value of the P wave, or the amplitude represented by the difference between the maximum value and the minimum value of the P wave or QRS wave is used. However, it is not limited to this.
 図6には、R波の最大値を用いて判定を行う場合の、解析部12における判定の流れの一例を示すフローチャートであり、本発明の神経刺激電極の移動検知方法の一形態を示している。
 まず、ステップS10において、解析部12は、取得した心電波形におけるR波の最大値を取得する。次に、ステップS20において、解析部12は、取得されたR波の最大値が参照波形におけるR波の最大値の1.2倍(所定の閾値)を超えるか否かを判定する。ステップS20における判定がYesの場合、処理はステップS21に進み、解析部12は、刺激部31が心臓に接近する方向へ移動したと判定して処理を終了する。ステップS20における判定がNoの場合、処理はステップS30に進む。
FIG. 6 is a flowchart illustrating an example of a determination flow in the analysis unit 12 in a case where determination is performed using the maximum value of the R wave, and illustrates one mode of the nerve stimulation electrode movement detection method of the present invention. Yes.
First, in step S10, the analysis part 12 acquires the maximum value of the R wave in the acquired electrocardiogram waveform. Next, in step S20, the analysis unit 12 determines whether or not the maximum value of the acquired R wave exceeds 1.2 times (a predetermined threshold) the maximum value of the R wave in the reference waveform. When the determination in step S20 is Yes, the process proceeds to step S21, and the analysis unit 12 determines that the stimulation unit 31 has moved in a direction approaching the heart and ends the process. If the determination in step S20 is No, the process proceeds to step S30.
 次に、ステップS30において、解析部12は、取得されたR波の最大値が標準的な心電波形と同様の参照波形におけるR波の最大値の0.8倍未満であるか否かを判定する。ステップS30における判定がYesの場合、処理はステップS31に進み、解析部12は、刺激部31が心臓から離間する方向へ移動したと判定して処理を終了する。ステップS30における判定がNoの場合、処理はステップS32に進み、解析部は、刺激部31が移動していないと判定して処理を終了する。 Next, in step S30, the analysis unit 12 determines whether or not the acquired maximum value of the R wave is less than 0.8 times the maximum value of the R wave in the reference waveform similar to the standard electrocardiogram waveform. judge. When the determination in step S30 is Yes, the process proceeds to step S31, and the analysis unit 12 determines that the stimulation unit 31 has moved in the direction away from the heart and ends the process. When determination in step S30 is No, a process progresses to step S32, an analysis part determines with the stimulation part 31 not moving, and complete | finishes a process.
 上述した判定の流れにおいて、刺激部31が心臓に接近する方向に移動したか否かを判定するステップS20と、刺激部31が心臓から離間する方向に移動したか否かを判定するステップS30との順番は逆転されてよい。また、ステップS20およびS30における閾値は適宜変更されてよい。
 さらに、判定に使用するパラメータを他のパラメータに置き換えてよいし、複数のパラメータを組み合わせて判定を行ってもよい。
In the determination flow described above, step S20 for determining whether or not the stimulating unit 31 has moved in a direction approaching the heart, and step S30 for determining whether or not the stimulating unit 31 has moved in a direction away from the heart, May be reversed. Further, the threshold values in steps S20 and S30 may be changed as appropriate.
Further, the parameter used for the determination may be replaced with another parameter, or the determination may be performed by combining a plurality of parameters.
 また、判定の基準である参照波形は、留置直後に心電波形取得部で取得された心電波形を、刺激発生装置10の図示しない記憶部に格納して用いてもよい。その他、神経刺激治療における標準的な留置位置における平均的な心電波形あるいは心電波形におけるパラメータの値を、参照波形としてあらかじめ刺激発生装置10に記憶させておいてもよい。 Also, as the reference waveform that is a criterion for determination, an electrocardiographic waveform acquired by the electrocardiographic waveform acquisition unit immediately after placement may be stored in a storage unit (not shown) of the stimulation generator 10 and used. In addition, an average electrocardiogram waveform at a standard indwelling position in neurostimulation treatment or a parameter value in the electrocardiogram waveform may be stored in advance in the stimulation generator 10 as a reference waveform.
 次の判定基準の例は、心電波形の形状変化に着目する。
 図7の下側に示す心電波形では、P波の最大値がR波の最大値よりも大きくなっており、上側に示す心電波形とは最大値の大小関係が逆転している。これは、刺激部31が心房にかなり接近したために、心電波形取得部36で取得される心房の活動電位が心室の活動電位よりも大きく取得された結果である。したがって、留置直後はR波の最大値がP波の最大値よりも大きかったが、その後P波の最大値がR波の最大値よりも大きくなるように心電波形の形状が変化すれば、刺激部31が心臓に接近する方向に移動したと判定することができる。
 大小関係の逆転については、参照波形と比較してもよいし、大小関係を常時監視し、逆転する事象を捉えるようにしてもよい。
As an example of the next determination criterion, attention is focused on the shape change of the electrocardiographic waveform.
In the electrocardiogram waveform shown on the lower side of FIG. 7, the maximum value of the P wave is larger than the maximum value of the R wave, and the magnitude relationship of the maximum value is reversed from that of the electrocardiogram waveform shown on the upper side. This is a result that the atrial action potential acquired by the electrocardiogram waveform acquisition unit 36 is acquired larger than the action potential of the ventricle because the stimulation unit 31 has approached the atrium considerably. Therefore, immediately after the placement, the maximum value of the R wave is larger than the maximum value of the P wave, but if the shape of the electrocardiographic waveform is changed so that the maximum value of the P wave becomes larger than the maximum value of the R wave after that, It can be determined that the stimulation unit 31 has moved in a direction approaching the heart.
The reversal of the magnitude relationship may be compared with a reference waveform, or the magnitude relation may be monitored at all times to capture the event of reversal.
 図8の下側に示す心電波形では、心電波形の基線が標準的な心電波形のように直線状でなく、周期的に心電波形の最大値の大きさが変動し、P波やR波を含むどの波形も上下にぶれている。これは、留置部21が心房内に進入した結果、付勢部材による係止が働かなくなり、刺激部31が心房内で血流により動いていることを示している。したがって、基線が非直線形状へ変化したことにより、刺激部31が心臓に接近する方向に移動したと判定することができる。 In the electrocardiogram waveform shown in the lower side of FIG. 8, the base line of the electrocardiogram waveform is not linear like the standard electrocardiogram waveform, and the maximum value of the electrocardiogram waveform fluctuates periodically. All waveforms including the R wave and the R wave fluctuate up and down. This indicates that as a result of the indwelling portion 21 entering the atrium, the locking by the biasing member does not work, and the stimulation portion 31 is moved by the blood flow in the atrium. Therefore, it can be determined that the stimulation unit 31 has moved in a direction approaching the heart due to the base line changing to a non-linear shape.
 図9の下側に示す心電波形では、P波に複数のピークが観察されている。これは、刺激部31が心房内にかなり接近した結果、心電波形取得部36において右心房の活動電位と左心房の活動電位とが一部分離して取得されたことによると考えられる。したがって、このような形状のP波が出現したことにより、刺激部31が心臓に接近する方向に移動したと判定することができる。
 図8や図9で示した判定基準を用いる場合は、必ずしも参照波形との比較は必要ではない。
In the electrocardiographic waveform shown on the lower side of FIG. 9, a plurality of peaks are observed in the P wave. This is presumably because the action potential of the right atrium and the action potential of the left atrium were partially separated and acquired by the electrocardiogram waveform acquisition unit 36 as a result of the stimulation unit 31 approaching the atrium considerably. Therefore, it can be determined that the stimulation unit 31 has moved in the direction approaching the heart due to the appearance of the P wave having such a shape.
When using the determination criteria shown in FIG. 8 and FIG. 9, comparison with the reference waveform is not necessarily required.
 この他、図示はしないが、心電波形における一部または全部の逆転の有無にもとづいて刺激部31が移動したか否かを判定することも可能である。これは、刺激部31が心臓に対して接近することで、心電波形取得部36に対する心臓の電位のベクトルが変化するため、主には刺激部31の心臓に接近する方向への移動の有無の判定に好適である。 In addition, although not shown, it is also possible to determine whether or not the stimulating unit 31 has moved based on the presence or absence of a part or all of the ECG waveform. This is because, as the stimulation unit 31 approaches the heart, the heart potential vector with respect to the electrocardiogram waveform acquisition unit 36 changes, and therefore the presence or absence of movement of the stimulation unit 31 in the direction of approaching the heart mainly. It is suitable for the determination.
 さらに、取得された心電波形と参照波形とを全体的に比較することも可能である。この場合は、例えば心電波形取得部36で取得された3拍分の心電波形を点列データとして処理し、3拍分の参照波形との相関係数を算出する。そして、相関係数に所定の閾値を設定することで刺激部31が移動したか否かの判定が可能である。相関係数による判定は、あくまで全体的比較の一例であり、他の公知の各種手法も用いることができる。
 また、上述した判定基準を複数種類組み合わせることも可能である。
Furthermore, the acquired electrocardiogram waveform and the reference waveform can be compared as a whole. In this case, for example, the electrocardiogram waveform for 3 beats acquired by the electrocardiogram waveform acquisition unit 36 is processed as point sequence data, and the correlation coefficient with the reference waveform for 3 beats is calculated. Then, it is possible to determine whether or not the stimulation unit 31 has moved by setting a predetermined threshold value for the correlation coefficient. The determination based on the correlation coefficient is merely an example of an overall comparison, and other known various methods can also be used.
It is also possible to combine a plurality of types of determination criteria described above.
 以上説明したように、本発明の一実施形態に係る神経刺激電極の移動検知方法によれば、神経刺激電極で取得された心電波形にもとづいて、神経刺激電極が移動した否かを判定する。したがって、移動検知のために特殊なパラメータを必要とせず、パラメータのための特別な構成も必要とせずに簡便に神経刺激電極の移動を検知することができる。 As described above, according to the nerve stimulation electrode movement detection method according to the embodiment of the present invention, it is determined whether or not the nerve stimulation electrode has moved based on the electrocardiogram waveform acquired by the nerve stimulation electrode. . Therefore, it is possible to easily detect the movement of the nerve stimulation electrode without requiring a special parameter for movement detection and without requiring a special configuration for the parameter.
 また、本実施形態の刺激リード20によれば、神経刺激を行う刺激部31と別に心電波形取得部36を備えている。そして、心電波形取得部36は、留置部21に設けられた刺激部31に対して実質的に相対位置が保持されている。そのため、心電波形取得部36で取得された心電波形にもとづいて上記の移動検知方法を行うことで、留置部21や刺激部31の留置後の移動を好適に検知することができる。さらに、刺激部31と別に心電波形取得部36を備えることにより、神経刺激と独立して心電波形の取得を行うことができる。 Further, according to the stimulation lead 20 of the present embodiment, the electrocardiographic waveform acquisition unit 36 is provided separately from the stimulation unit 31 that performs nerve stimulation. The electrocardiographic waveform acquisition unit 36 is substantially held in a relative position with respect to the stimulation unit 31 provided in the indwelling unit 21. Therefore, by performing the above-described movement detection method based on the electrocardiogram waveform acquired by the electrocardiogram waveform acquisition unit 36, it is possible to suitably detect the movement of the indwelling unit 21 and the stimulation unit 31 after the indwelling. Furthermore, by providing the electrocardiogram waveform acquisition unit 36 separately from the stimulation unit 31, an electrocardiogram waveform can be acquired independently of nerve stimulation.
 本発明の神経刺激電極の移動検知方法においては、神経刺激とタイミングをずらして心電波形の取得が行われると、刺激部の一部を心電波形取得部として兼用でき、構成を単純化できる利点があるため好ましい。一方、神経刺激と同時に心電波形を取得すると、神経刺激のノイズが加わった心電波形が取得されて判定の精度に影響する。具体的な神経刺激と心電波形の取得とのタイミングのずらし方は、適宜設定することができる。例えば、通常神経刺激は一定時間の刺激と一定時間の休止とがセットとなった単位ごとに行われるため、休止の際に心電波形が取得されてもよいし、刺激が行われているときでも刺激信号のパルス間に心電波形が取得されてもよい。これらのいずれの方法によっても、刺激信号に起因するノイズを軽減することができる。 In the method for detecting movement of the nerve stimulation electrode of the present invention, when acquisition of an electrocardiogram waveform is performed while shifting the timing from nerve stimulation, a part of the stimulation unit can be used as an electrocardiogram waveform acquisition unit, and the configuration can be simplified. It is preferable because of its advantages. On the other hand, when an electrocardiogram waveform is acquired simultaneously with the nerve stimulation, an electrocardiogram waveform to which the noise of the nerve stimulation is added is acquired and affects the determination accuracy. A specific method of shifting the timing between the neural stimulation and the acquisition of the electrocardiographic waveform can be set as appropriate. For example, since normal nerve stimulation is performed for each unit in which stimulation for a certain period of time and pause for a certain period of time are set, an electrocardiogram waveform may be acquired at the time of pause, or when stimulation is being performed However, an electrocardiographic waveform may be acquired between pulses of the stimulation signal. Any of these methods can reduce noise caused by the stimulus signal.
 刺激リード20および制御部13を備えた本実施形態に係る神経刺激システム1においては、刺激リード20の移動を検知した際に制御部13で様々な処理を行わせることが可能であり、これらの処理により好適な治療を行うことができる。 In the nerve stimulation system 1 according to the present embodiment including the stimulation lead 20 and the control unit 13, when the movement of the stimulation lead 20 is detected, the control unit 13 can perform various processes. Suitable treatment can be performed by the treatment.
 制御部13の処理の第一の例は、患者や医療関係者等への告知である。例えば、音声、光、振動等を刺激発生装置10に生じさせる、患者に接続された生体モニタや遠隔監視装置に信号を送信し、所定の表示等を行わせる、あるいは、ナースコールを行ったり、あらかじめ設定した連絡先に電話をかけたりメールを送信したりする等が挙げられる。これにより、告知を認識した者が刺激部の位置を修正する等の適切な処置を講じることが可能である。 The first example of processing by the control unit 13 is notification to a patient, a medical staff, or the like. For example, sound, light, vibration or the like is generated in the stimulus generation device 10, a signal is transmitted to a biological monitor or a remote monitoring device connected to the patient, a predetermined display is performed, or a nurse call is performed, Calling a preset contact or sending an email. As a result, a person who has recognized the notification can take appropriate measures such as correcting the position of the stimulation unit.
 制御部13の処理の第二の例は、刺激生成部11で生成される刺激信号の修飾である。例えば、刺激の停止(パルス単位あるいは刺激と休止とのワンセット単位)や、刺激エネルギーの増減等が挙げられる。刺激エネルギーの増減は、刺激信号の電流値、電圧値、パルス幅、周波数、持続時間等の調節により行うことができる。また、これらとは少し異なるが、刺激部31が心臓に接近した際に、刺激信号の印加のタイミングを、心臓の不応期と同調させることにより、心臓への作用を抑えるような態様もこの例に含まれる。 A second example of the processing of the control unit 13 is modification of the stimulus signal generated by the stimulus generation unit 11. For example, stop of stimulation (pulse unit or one set unit of stimulation and pause), increase / decrease of stimulation energy, and the like. The stimulation energy can be increased or decreased by adjusting the current value, voltage value, pulse width, frequency, duration, etc. of the stimulation signal. Further, although slightly different from these, an example in which the action on the heart is suppressed by synchronizing the timing of applying the stimulation signal with the refractory period of the heart when the stimulating unit 31 approaches the heart is also this example. include.
 制御部13の処理の第三の例は、検知内容の記録である。例えば、検知内容を所定間隔あるいは移動を検知するごとに記憶部等に記憶させ、神経刺激システムの取り外し後に出力することにより、留置中の刺激部の移動について把握可能とすることができる。このとき、刺激部の移動に伴い実行された制御部13の各種処理についても併せて記憶させてもよい。 The third example of the processing of the control unit 13 is recording of detection contents. For example, the detection content can be stored in a storage unit or the like every time a predetermined interval or movement is detected, and output after removal of the nerve stimulation system, thereby making it possible to grasp the movement of the indwelling stimulation unit. At this time, you may memorize | store together also about the various processes of the control part 13 performed with the movement of a stimulation part.
 続いて、本発明の第二実施形態について、図10および図11を参照して説明する。本実施形態と第一実施形態との異なるところは、刺激部の構成および制御部の処理である。
 以降の説明において、すでに説明した構成と共通する構成については、同一の符号を付して重複する説明を省略する。
Then, 2nd embodiment of this invention is described with reference to FIG. 10 and FIG. The difference between the present embodiment and the first embodiment is the configuration of the stimulation unit and the processing of the control unit.
In the following description, components that are the same as those already described are assigned the same reference numerals, and redundant descriptions are omitted.
 図10は、本実施形態における刺激リード50を示す模式図である。刺激リード50では、刺激部51が、3つの電極52、53、54を備えている。各電極52、53、54は、それぞれ刺激リード50の長手方向に間隔を空けて付勢部材22に取り付けられている。 FIG. 10 is a schematic diagram showing the stimulation lead 50 in the present embodiment. In the stimulation lead 50, the stimulation unit 51 includes three electrodes 52, 53, and 54. Each of the electrodes 52, 53, 54 is attached to the biasing member 22 with an interval in the longitudinal direction of the stimulation lead 50.
 刺激リード50を備えた本実施形態の神経刺激システムは、上述の神経刺激システム1と同様の効果を奏する。この神経刺激システムでは、初期設定において、図10に示すように、刺激部51の電極のうち先端側の2つである電極52および53を用いて神経刺激が行われる。留置部21が心臓に接近する方向に移動したと解析部12が判定した場合、制御部13は、刺激信号が印加される電極を、図11に示すように基端側の2つの電極53および54に切り替える。この切り替えにより、留置部21の移動が一部吸収され、血管内において刺激信号が印加される2つの電極の位置が移動前の状態から大きく変化することが好適に抑制される。 The nerve stimulation system of this embodiment provided with the stimulation lead 50 has the same effect as the nerve stimulation system 1 described above. In this nerve stimulation system, as shown in FIG. 10, nerve stimulation is performed using the electrodes 52 and 53, which are the two electrodes on the distal end side, among the electrodes of the stimulation unit 51 in the initial setting. When the analysis unit 12 determines that the indwelling unit 21 has moved in the direction approaching the heart, the control unit 13 selects two electrodes 53 on the proximal end side as shown in FIG. Switch to 54. By this switching, a part of the movement of the indwelling part 21 is absorbed, and the position of the two electrodes to which the stimulation signal is applied in the blood vessel is preferably suppressed from greatly changing from the state before the movement.
 本実施形態の刺激リード50によれば、刺激部51が3つの電極52、53、54を有しているため、3つの電極のうち刺激信号が印加される2つの電極の組み合わせを適宜変更することで、刺激部が移動した場合でも好適な神経刺激治療を行うことができる。また、刺激リード50を備えた本実施形態に係る神経刺激システムでは、解析部12により刺激部51が心臓に接近する方向に移動したことが検知された場合に、制御部13が刺激信号を印加する電極を切り替えるため、ある範囲内の移動であれば、刺激リードの位置調節を行わなくても好適に神経刺激治療を継続することができる。 According to the stimulation lead 50 of the present embodiment, since the stimulation unit 51 includes the three electrodes 52, 53, and 54, the combination of the two electrodes to which the stimulation signal is applied among the three electrodes is appropriately changed. Thus, even when the stimulation unit moves, a suitable nerve stimulation treatment can be performed. In the nerve stimulation system according to the present embodiment including the stimulation lead 50, the control unit 13 applies the stimulation signal when the analysis unit 12 detects that the stimulation unit 51 has moved in the direction approaching the heart. Since the electrodes to be switched are moved within a certain range, the nerve stimulation treatment can be preferably continued without adjusting the position of the stimulation lead.
 本実施形態において、刺激部における電極の数は3つに限られず、4つ以上であってもよい。このように構成すると、刺激部が心臓に接近する方向に移動した場合に加えて、刺激部が心臓から離間する方向に移動した場合にも、刺激リードの位置調節を行わずに治療を継続することができる。 In the present embodiment, the number of electrodes in the stimulation unit is not limited to three, and may be four or more. With this configuration, in addition to the case where the stimulation unit moves in a direction approaching the heart, the treatment is continued without adjusting the position of the stimulation lead even when the stimulation unit moves in a direction away from the heart. be able to.
 本発明の第三実施形態について、図12を参照して説明する。本実施形態と上述の各実施形態との異なるところは、心電波形取得部の構成および制御部の処理である。 A third embodiment of the present invention will be described with reference to FIG. The difference between this embodiment and each of the above-described embodiments is the configuration of the electrocardiogram waveform acquisition unit and the processing of the control unit.
 図12は、本実施形態における刺激リード60を示す模式図である。刺激リード60では、心電波形取得部61が、一対の電極37、38に加えて、第三の電極62を備えている。第三の電極62は、刺激リード60の長手方向において、一対の電極37、38の間であって、刺激部31よりも基端側の位置に取り付けられている。 FIG. 12 is a schematic diagram showing the stimulation lead 60 in the present embodiment. In the stimulation lead 60, the electrocardiographic waveform acquisition unit 61 includes a third electrode 62 in addition to the pair of electrodes 37 and 38. The third electrode 62 is attached between the pair of electrodes 37 and 38 in the longitudinal direction of the stimulation lead 60 and at a position closer to the proximal end than the stimulation unit 31.
 刺激リード60を備えた本実施形態に係る神経刺激システムでは、制御部13によって、心電波形の取得タイミングに応じて心電波形を取得する電極が切り替えられる。すなわち、神経刺激が行われていないときは、一対の電極37、38間で心電波形が取得される。刺激信号が刺激部31に印加されているときは、刺激部31よりも心臓Htから離れた2つの電極62、38間で心電波形が取得される。刺激部31の位置が同一である場合、電極37、38間で取得された心電波形と電極62、38間で取得された心電波形とは異なっているため、解析部12で用いられる参照波形も、それぞれの心電波形に対して準備され、判定において使い分けられる。 In the nerve stimulation system according to the present embodiment including the stimulation lead 60, the control unit 13 switches the electrodes for acquiring the electrocardiogram waveform according to the acquisition timing of the electrocardiogram waveform. That is, an electrocardiographic waveform is acquired between the pair of electrodes 37 and 38 when nerve stimulation is not performed. When the stimulation signal is applied to the stimulation unit 31, an electrocardiographic waveform is acquired between the two electrodes 62 and 38 that are further from the heart Ht than the stimulation unit 31. When the position of the stimulating unit 31 is the same, the electrocardiographic waveform acquired between the electrodes 37 and 38 is different from the electrocardiographic waveform acquired between the electrodes 62 and 38, and thus the reference used in the analyzing unit 12 A waveform is also prepared for each electrocardiogram waveform and is used properly in the determination.
 本実施形態の刺激リード60および刺激リード60を備えた神経刺激システムによれば、上述の神経刺激システム1と同様の効果を奏する。加えて、心電波形取得部61が3つの電極37、38、62を有しているため、3つの電極から心電波形を取得する2つの電極を適宜選択することで、刺激部31に刺激信号が印加されているときでも、刺激信号によるノイズを低減して好適な心電波形を取得することができる。その結果、刺激部の移動を切れ目なくリアルタイムに監視することが可能である。 According to the stimulation lead 60 and the nerve stimulation system including the stimulation lead 60 of the present embodiment, the same effects as those of the nerve stimulation system 1 described above can be obtained. In addition, since the electrocardiogram waveform acquisition unit 61 includes the three electrodes 37, 38, and 62, the stimulation unit 31 is stimulated by appropriately selecting two electrodes that acquire an electrocardiogram waveform from the three electrodes. Even when a signal is applied, it is possible to reduce noise due to the stimulation signal and obtain a suitable electrocardiogram waveform. As a result, it is possible to monitor the movement of the stimulator in real time without interruption.
 本実施形態において、心電波形取得部の電極の数は3つに限られず、4つ以上であってもよい。ただし、上述のように、選択した電極が異なると心電波形が変化するため、必要な電極の組み合わせごとに参照波形が準備されることが精度の高い移動検知を行う上からは好ましい。
 また、心電波形取得部の電極数を2つに設定し、2つの電極を、神経刺激電極の長手方向において前記刺激部を間に挟まないように配置すれば、常時ノイズを低減することも可能である。
In the present embodiment, the number of electrodes of the electrocardiogram waveform acquisition unit is not limited to three, and may be four or more. However, as described above, since the electrocardiographic waveform changes when the selected electrodes are different, it is preferable to prepare a reference waveform for each necessary combination of electrodes from the viewpoint of highly accurate movement detection.
Moreover, if the number of electrodes of the electrocardiogram waveform acquisition unit is set to two and the two electrodes are arranged so as not to sandwich the stimulation unit in the longitudinal direction of the nerve stimulation electrode, noise can be constantly reduced. Is possible.
 以上、本発明の好ましい実施形態を説明したが、本発明はこれら実施例に限定されることはない。本発明の趣旨を逸脱しない範囲で、構成の付加、省略、置換、およびその他の変更が可能である。本発明は前述した説明に限定されることはなく、添付のクレームの範囲によってのみ限定される。 The preferred embodiments of the present invention have been described above, but the present invention is not limited to these examples. Additions, omissions, substitutions, and other modifications can be made without departing from the spirit of the present invention. The present invention is not limited to the above description, but is limited only by the scope of the appended claims.
 上記各実施形態は、神経刺激電極の血管内における移動を好適に検知する神経刺激電極の移動検知方法を提供でき、かつ、前記神経刺激電極の移動検知方法を用いて好適に神経刺激電極の移動を検知する神経刺激電極および神経刺激システムを提供できる。 Each of the above embodiments can provide a movement detection method for a nerve stimulation electrode that preferably detects movement of the nerve stimulation electrode in a blood vessel, and the movement of the nerve stimulation electrode is preferably performed using the movement detection method for the nerve stimulation electrode. It is possible to provide a nerve stimulation electrode and a nerve stimulation system for detecting the above.
1 神経刺激システム
11 刺激生成部
12 解析部
13 制御部
20、50、60 刺激リード(神経刺激電極)
21 留置部
22 付勢部材
31、51 刺激部
32、33、52、53、54 電極(刺激部の電極)
36、61 心電波形取得部
37、38、62 電極(心電波形取得部の電極)
DESCRIPTION OF SYMBOLS 1 Neural stimulation system 11 Stimulation production | generation part 12 Analysis part 13 Control part 20, 50, 60 Stimulation lead (neural stimulation electrode)
21 indwelling part 22 urging member 31, 51 stimulating part 32, 33, 52, 53, 54 electrode (electrode of stimulating part)
36, 61 Electrocardiogram waveform acquisition unit 37, 38, 62 Electrode (electrode of the electrocardiogram waveform acquisition unit)

Claims (11)

  1.  血管内に留置される神経刺激電極の移動検知方法であって、
     前記神経刺激電極で心電波形を取得し、
     前記心電波形にもとづいて前記神経刺激電極が移動したか否かを判定する
     神経刺激電極の移動検知方法。
    A method of detecting movement of a nerve stimulation electrode placed in a blood vessel,
    Obtain an electrocardiogram waveform with the nerve stimulation electrode,
    A method for detecting movement of a nerve stimulation electrode that determines whether or not the nerve stimulation electrode has moved based on the electrocardiogram waveform.
  2.  前記心電波形をあらかじめ準備された参照波形と比較し、前記神経刺激電極が心臓に接近する方向に移動したか否かを判定する請求項1に記載の神経刺激電極の移動検知方法。 The method for detecting movement of a nerve stimulation electrode according to claim 1, wherein the electrocardiogram waveform is compared with a reference waveform prepared in advance to determine whether or not the nerve stimulation electrode has moved in a direction approaching the heart.
  3.  前記心電波形におけるP波またはR波の最大値が、所定の閾値以上であるときに、前記神経刺激電極が心臓に接近する方向に移動したと判定する請求項2に記載の神経刺激電極の移動検知方法。 3. The nerve stimulation electrode according to claim 2, wherein when the maximum value of the P wave or the R wave in the electrocardiogram waveform is equal to or greater than a predetermined threshold, it is determined that the nerve stimulation electrode has moved in a direction approaching the heart. Movement detection method.
  4.  前記心電波形におけるP波およびR波の最大値の大小関係が、前記参照波形におけるP波およびR波の最大値の大小関係と逆転したときに、前記神経刺激電極が心臓に接近する方向に移動したと判定する請求項2に記載の神経刺激電極の移動検知方法。 When the magnitude relationship between the maximum values of the P wave and the R wave in the electrocardiogram waveform is reversed with the magnitude relationship between the maximum values of the P wave and the R wave in the reference waveform, the nerve stimulation electrode approaches the heart. The method for detecting movement of the nerve stimulation electrode according to claim 2, wherein it is determined that the movement has occurred.
  5.  前記心電波形の基線が、非直線形状に変化したときに、前記神経刺激電極が心臓に接近する方向に移動したと判定する請求項1に記載の神経刺激電極の移動検知方法。 The method for detecting movement of a nerve stimulation electrode according to claim 1, wherein when the baseline of the electrocardiographic waveform changes to a non-linear shape, it is determined that the nerve stimulation electrode has moved in a direction approaching the heart.
  6.  前記心電波形におけるP波が複数ピークを有する形状であるときに、前記神経刺激電極が心臓に接近する方向に移動したと判定する請求項1に記載の神経刺激電極の移動検知方法。 The method for detecting movement of a nerve stimulation electrode according to claim 1, wherein when the P wave in the electrocardiogram waveform has a shape having a plurality of peaks, it is determined that the nerve stimulation electrode has moved in a direction approaching the heart.
  7.  血管内に留置される神経刺激電極であって、
     弾性変形可能な付勢部材を有し、血管内に係止される留置部と、
     前記留置部に設けられて神経を刺激する刺激信号が印加される刺激部と、
     前記刺激部に対して相対位置が保持された心電波形取得部と、
     を備える神経刺激電極。
    A nerve stimulation electrode placed in a blood vessel,
    An indwelling portion having an elastically deformable biasing member and locked in the blood vessel;
    A stimulation unit provided in the indwelling unit to which a stimulation signal for stimulating nerves is applied;
    An electrocardiographic waveform acquisition unit in which a relative position is held with respect to the stimulation unit;
    A nerve stimulation electrode comprising:
  8.  前記刺激部は、前記神経刺激電極の長手方向に互いに離間して配置された3つ以上の電極を有する請求項7に記載の神経刺激電極。 The nerve stimulation electrode according to claim 7, wherein the stimulation unit includes three or more electrodes arranged apart from each other in the longitudinal direction of the nerve stimulation electrode.
  9.  前記心電波形取得部は、少なくとも2つの電極を有し、前記2つの電極が、前記神経刺激電極の長手方向において前記刺激部を間に挟まないように配置されている請求項7または8に記載の神経刺激電極。 The electrocardiogram waveform acquisition unit has at least two electrodes, and the two electrodes are arranged so as not to sandwich the stimulation unit in the longitudinal direction of the nerve stimulation electrode. The nerve stimulation electrode as described.
  10.  請求項7から9のいずれか一項に記載の神経刺激電極と、
     前記心電波形取得部で取得された心電波形にもとづいて前記刺激部が移動したか否かを判定する解析部と、
     を備える神経刺激システム。
    The nerve stimulation electrode according to any one of claims 7 to 9,
    An analysis unit for determining whether the stimulation unit has moved based on the electrocardiogram waveform acquired by the electrocardiogram waveform acquisition unit;
    A neural stimulation system comprising:
  11.  請求項8に記載の神経刺激電極と、
     前記刺激信号を生成する刺激生成部と、
     前記心電波形取得部で取得された心電波形にもとづいて前記刺激部が移動したか否かを判定する解析部と、
     前記解析部の判定に基づいて前記刺激生成部を制御する制御部と、
     を備え、
     前記刺激部が移動したと前記解析部が判定したときに、前記制御部が前記刺激部の電極のうち前記刺激信号が印加される電極の組み合わせを変更する神経刺激システム。
    The nerve stimulation electrode according to claim 8,
    A stimulus generator for generating the stimulus signal;
    An analysis unit for determining whether the stimulation unit has moved based on the electrocardiogram waveform acquired by the electrocardiogram waveform acquisition unit;
    A control unit that controls the stimulus generation unit based on the determination of the analysis unit;
    With
    The nerve stimulation system in which the control unit changes a combination of electrodes to which the stimulation signal is applied among the electrodes of the stimulation unit when the analysis unit determines that the stimulation unit has moved.
PCT/JP2014/074049 2013-10-02 2014-09-11 Method for detecting movement of neurostimulation electrode, neurostimulation electrode, and neurostimulation system WO2015049966A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013207527 2013-10-02
JP2013-207527 2013-10-02

Publications (1)

Publication Number Publication Date
WO2015049966A1 true WO2015049966A1 (en) 2015-04-09

Family

ID=52778562

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/074049 WO2015049966A1 (en) 2013-10-02 2014-09-11 Method for detecting movement of neurostimulation electrode, neurostimulation electrode, and neurostimulation system

Country Status (1)

Country Link
WO (1) WO2015049966A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002518143A (en) * 1998-06-23 2002-06-25 カーディアック・ペースメイカーズ・インコーポレーテッド Method and system for detecting implantable right atrial endocardial lead movement using a sensing period derived from a ventricular lead
JP2008534168A (en) * 2005-04-01 2008-08-28 アドヴァンスド バイオニクス コーポレーション Apparatus and method for detecting the position and movement of a neural stimulation lead
JP2010540161A (en) * 2007-10-02 2010-12-24 カーディアック ペースメイカーズ, インコーポレイテッド Lead assembly providing individual myocardial contact area

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002518143A (en) * 1998-06-23 2002-06-25 カーディアック・ペースメイカーズ・インコーポレーテッド Method and system for detecting implantable right atrial endocardial lead movement using a sensing period derived from a ventricular lead
JP2008534168A (en) * 2005-04-01 2008-08-28 アドヴァンスド バイオニクス コーポレーション Apparatus and method for detecting the position and movement of a neural stimulation lead
JP2010540161A (en) * 2007-10-02 2010-12-24 カーディアック ペースメイカーズ, インコーポレイテッド Lead assembly providing individual myocardial contact area

Similar Documents

Publication Publication Date Title
CN108472490A (en) Conductive communication in medical apparatus system
JP2013527007A5 (en)
JP2011103981A (en) Nerve stimulation device
JP5872815B2 (en) Nerve stimulator
US8600500B1 (en) Method and system to provide neural stimulation therapy to assist anti-tachycardia pacing therapy
CN105579098A (en) Automatic defibrillation operation for a defibrillator
EP3841999B1 (en) Combined cardiac pacing and irreversible electroporation (ire) treatment
WO2015049966A1 (en) Method for detecting movement of neurostimulation electrode, neurostimulation electrode, and neurostimulation system
JP2014188157A (en) Nerve stimulation system and nerve stimulation method
US11565113B2 (en) Method for stimulating heart muscle activity during the refractory period
JP6942801B2 (en) A device that terminates or eliminates rotational electrical activity in the heart tissue
US9037236B2 (en) Method and system to select a neurostimulation system configuration based on cardiac rhythm feedback
US8838253B2 (en) Nerve stimulating device
JP6000535B2 (en) Stimulus control device, stimulus generator, and nerve stimulation system
JP5881326B2 (en) Nerve stimulation device, nerve stimulation system, and method for controlling nerve stimulation device
JP5846816B2 (en) Nerve stimulator
JP2012034843A (en) Defibrillation system
JP5695480B2 (en) Nerve stimulator and method of operating neurostimulator
WO2016092611A1 (en) Nerve stimulation device
JP5816408B2 (en) Nerve stimulator
KR102045714B1 (en) Defibrillation catheter system
WO2016038713A1 (en) Nerve stimulation device, nerve stimulation system and nerve stimulation method
JP5653802B2 (en) Nerve stimulator
JP5464924B2 (en) Heart treatment equipment
CN117241857A (en) Pacing device and method for anti-tachycardia

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14850587

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 14850587

Country of ref document: EP

Kind code of ref document: A1