WO2015049816A1 - Antenna device - Google Patents

Antenna device Download PDF

Info

Publication number
WO2015049816A1
WO2015049816A1 PCT/JP2014/003216 JP2014003216W WO2015049816A1 WO 2015049816 A1 WO2015049816 A1 WO 2015049816A1 JP 2014003216 W JP2014003216 W JP 2014003216W WO 2015049816 A1 WO2015049816 A1 WO 2015049816A1
Authority
WO
WIPO (PCT)
Prior art keywords
conductor
plane
signal
antenna device
slots
Prior art date
Application number
PCT/JP2014/003216
Other languages
French (fr)
Japanese (ja)
Inventor
博 鳥屋尾
嘉晃 笠原
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Priority to JP2015540362A priority Critical patent/JPWO2015049816A1/en
Publication of WO2015049816A1 publication Critical patent/WO2015049816A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q13/00Waveguide horns or mouths; Slot antennas; Leaky-waveguide antennas; Equivalent structures causing radiation along the transmission path of a guided wave
    • H01Q13/20Non-resonant leaky-waveguide or transmission-line antennas; Equivalent structures causing radiation along the transmission path of a guided wave

Definitions

  • the present invention relates to an antenna device.
  • the metamaterial includes, for example, a periodic arrangement of conductor patterns having a specific structure.
  • a typical metamaterial is a composite right / left-handed (CRLH) line.
  • the CRLH line is a transmission line configured by arranging a plurality of unit cells each having a conductor pattern.
  • the characteristic of the CRLH line is that it exhibits properties as a one-dimensional right-handed medium or left-handed medium in a specific frequency band.
  • Patent Documents 2 and 3 disclose that this CRLH line is used as a leaky wave antenna.
  • the desired polarization is a radio wave in which the vibration direction of the electric field and magnetic field is in a desired direction.
  • An object of the present invention is to provide a CRLH leaky wave antenna capable of controlling polarization.
  • An antenna device includes a conductor plane, a linear signal conductor facing the conductor plane, and a plurality of conductor vias electrically connected to the conductor plane and the signal conductor.
  • the plane has a plurality of slots.
  • the slot When viewed in plan with respect to a plane parallel to the conductor plane, the slot intersects the signal conductor at a predetermined angle.
  • the conductor vias and the slots are arranged alternately along the signal conductor.
  • An antenna device in a linear signal conductor facing a conductor plane, a plurality of conductor vias electrically connected to the conductor plane and each signal conductor, and the conductor plane. And at least two antennas having a plurality of slots.
  • the signal conductors are substantially parallel to each other.
  • the slots are substantially orthogonal on each other's extension line.
  • the slot In each of the two antennas, when viewed in plan with respect to a plane parallel to the conductor plane, the slot intersects the signal conductor at a predetermined angle.
  • the conductor vias and the slots are arranged alternately along the signal conductor.
  • the electronic device of the present invention includes at least one antenna device.
  • a CRLH leaky wave antenna capable of controlling polarization can be provided.
  • FIG. 3 is a cross-sectional view taken along the line III-III in FIG. 2. It is the top view 1 of the antenna apparatus concerning the other aspect of 1st Embodiment. It is the top view 2 of the antenna apparatus concerning the other aspect of 1st Embodiment.
  • FIG. 4 is an equivalent circuit diagram of the unit cell shown in FIGS.
  • FIG. 6 is a third plan view of the antenna device according to another aspect of the first embodiment. It is a perspective view of the antenna device which concerns on 2nd Embodiment. It is sectional drawing in the IX-IX cross section of FIG. It is a top view of the antenna apparatus concerning 3rd Embodiment. It is a top view of the antenna device concerning a 4th embodiment.
  • the antenna device according to the present embodiment is an antenna device that exhibits characteristics as a metamaterial.
  • the antenna device 10 includes a CRLH leaky wave antenna.
  • the antenna device 10 includes a conductor plane 11, a signal conductor 12, and a plurality of conductor vias 13.
  • the signal conductor 12 is linear.
  • the signal conductor 12 faces the conductor plane 11.
  • Each of the plurality of conductor vias 13 is electrically connected to the conductor plane 11.
  • Each of the plurality of conductor vias 13 is further electrically connected to the signal conductor 12.
  • the conductor plane 11 has a plurality of slots 14.
  • the plurality of slots 14 are openings provided in the conductor plane 11. Such an opening or opening preferably extends from one surface of the conductor plane 11 to the other surface and penetrates the conductor plane 11.
  • each slot 14 intersects the signal conductor 12 at a predetermined angle.
  • the conductor vias 13 and the slots 14 are alternately arranged along the signal conductor 12.
  • the antenna device 10 all the above-described components are indispensable for constituting a CRLH leaky wave antenna.
  • the CRLH leaky wave antenna can radiate leaky waves not only in the positive direction of the transmission line but also in the direct upward direction and the negative direction. Therefore, the antenna device 10 is suitable for wide-angle beam scanning as compared with an antenna device having a conventional leaky coaxial cable.
  • the CRLH leaky wave antenna is a kind of traveling wave antenna.
  • the CRLH leaky wave antenna exhibits several advantages when compared to a resonant antenna.
  • One advantage is that the CRLH leaky wave antenna has a wider operating band than a resonant antenna.
  • the CRLH leaky wave antenna has an advantage that the radiation efficiency is relatively high even if it is thin.
  • the radiation efficiency decreases as the thickness becomes thinner.
  • the antenna device 10 is useful in terms of downsizing and thinning of the device as compared with an antenna device including a resonant antenna.
  • the CRLH leaky wave antenna has a conductor pattern or a conductor element.
  • the current flowing through these produces a leaky wave.
  • the desired polarization is a radio wave in which the vibration direction of the electric field and magnetic field is in a desired direction.
  • the CRLH leaky wave antenna provided in the antenna device 10 can control the polarization as described later.
  • the conductor plane 11 is a sheet-like conductor.
  • the conductor plane 11 has an extending portion other than the slot 14.
  • the conductor plane 11 is a metal foil or a metal film.
  • the metal foil is preferably a Cu (copper) foil.
  • the metal film is preferably a Cu film.
  • the antenna device 10 has an insulating layer 16.
  • the insulating layer 16 is located on the signal conductor 12 side with respect to the conductor plane 11.
  • the insulating layer 16 is preferably located between the conductor plane 11 and the signal conductor 12.
  • the insulating layer 16 may further be positioned on the signal conductor 12 side with respect to the extending portion of the conductor plane.
  • the insulating layer 16 may have a through hole between the conductor plane 11 and the signal conductor 12.
  • the signal conductor 12 shown in FIGS. 1 to 3 is a metal foil or a metal film.
  • the metal foil is preferably a Cu (copper) foil.
  • the metal film is preferably a Cu film.
  • the signal conductor 12 is located on the opposite side of the conductor plane 11 with respect to the insulating layer 16.
  • the signal conductor 12 is preferably located on a plane substantially parallel to the conductor plane 11.
  • the signal conductor 12 preferably includes a plurality of through holes 18.
  • the plurality of through holes 18 are preferably arranged along the longitudinal direction of the signal conductor 12.
  • the plurality of conductor vias 13 are preferably in contact with the inner wall of the through hole 18.
  • the plurality of conductor vias 13 preferably pass through the through holes 18.
  • the through hole 18 stabilizes the electrical connection between the signal conductor 12 and the conductor via 13.
  • the signal conductor 12 extends linearly in a direction parallel to the x axis in the figure.
  • the signal conductor 12 is preferably a uniform plate or film having no openings other than the plurality of through holes 18.
  • the antenna device 10 preferably further includes a feed line 15 and a feed line 17. At least one end of the signal conductor 12 is connected to the feed line 15 or the feed line 17.
  • a radio circuit (not shown) sends or feeds a signal to the feed line 15 or the feed line 17.
  • the feed line 15 and the feed line 17 receive the signal from the radio circuit and input the signal to the signal conductor 12.
  • Feed lines 15 and 17 are metal films such as a Cu film, for example.
  • the feeder lines 15 and 17 face the conductor plane 11.
  • An insulating layer 16 is located between the feeder lines 15 and 17 and the conductor plane 11.
  • the feeder lines 15 and 17 are electrically connected to both ends of the signal conductor 12.
  • the feeder lines 15 and 17 may be directly connected to the signal conductor 12.
  • the feeder line 15 or 17 may be capacitively coupled to the signal conductor 12.
  • an impedance (not shown) is located at the end of the feeder line on the side opposite to the signal conductor 12. Such impedance prevents the antenna device 10 from performing unnecessary reflection. Even if the predetermined impedance is not connected to the terminal ends of the feeder lines 15 and 17, the antenna device 10 functions as a CRLH leakage wave antenna.
  • the conductor via 13 electrically connects the conductor plane 11 and the signal conductor 12. For this reason, as shown in FIG. 6, the conductor via 13 functions as an inductance L L. FIG. 6 will be described later. As shown in FIG. 3, the conductor via 13 is located in the through hole 56 of the insulating layer 16.
  • Such a metal plating portion can be a conductor via 13.
  • the conductor via 13 electrically connects the conductor plane 11 and the signal conductor 12. Any method other than the above metal plating can be adopted as long as it satisfies the conditions of the conductor via 13.
  • the plurality of conductor vias 13 are arranged along the longitudinal direction of the signal conductor 12. Three or more conductor vias 13 are preferably arranged. The conductor vias 13 are preferably arranged at regular intervals.
  • the antenna device 10 has a repeated structure of conductor vias 13.
  • the plurality of conductor vias 13 are located between the conductor plane 11 and the signal conductor 12.
  • the conductor via 13 is preferably in contact with the conductor plane 11.
  • the conductor via 13 is preferably in contact with the signal conductor 12.
  • the conductor via 13 forms a stable electrical connection between the conductor plane 11 and the signal conductor 12.
  • FIGS. 1 to 3 show an example in which the conductor via 13 is directly connected to the signal conductor 12.
  • the configuration shown in FIGS. It is not limited to.
  • a configuration in which the signal conductor 12 includes a plurality of branches 52 and the branches and the conductor vias 13 are connected can be considered.
  • the signal conductor 12 and the conductor plane 11 are electrically connected via the branch 52 and the conductor via 13.
  • the inductance L L since the inductance L L is formed including not only the conductor via 13 but also the branch 52, the inductance L L can be further increased.
  • FIG. 4 shows an example in which the branch 52 is provided only on one side surface of the signal conductor 12, but the branches 52 and 53 are provided on both side surfaces of the signal conductor 12 as shown in FIG. Such a configuration can naturally be considered.
  • the pair of conductor vias 13 connected to the branches 52 and 53 and the slots 14 are alternately arranged along the signal conductor 12.
  • the antenna input impedance viewed from the feeder lines 15 and 17 can be set to the same value since they are symmetric when viewed from the feeder line 15 side and the 17 side.
  • the slots 14 are preferably arranged along the longitudinal direction of the signal conductor 12. Three or more slots 14 are preferably arranged. The slots 14 are preferably arranged at regular intervals.
  • the conductor plane 11 has a repeating structure of slots 14.
  • Each slot 14 is preferably arranged alternately with each conductor via 13.
  • the slot 14 preferably forms a row with the conductor via 13.
  • the pair of conductor vias 13 and slots 14 repeats periodically.
  • Conductive vias 13 are preferably located between adjacent slots 14.
  • FIG. 2 shows the antenna device 10 when viewed in plan with respect to a plane parallel to the conductor plane 11.
  • all the slots 14 preferably intersect with the signal conductor 12 at a predetermined angle. More specifically, in the plan view, among the end points in the longitudinal direction of the slot 14, a line segment connecting one end point and the other end point intersects with the center line of the signal conductor 12 at a predetermined angle. It is preferable.
  • the angle formed by the longitudinal direction of the slot 14 and the longitudinal direction of the signal conductor 12 is preferably larger than 0 degree and smaller than 180 degrees.
  • the longitudinal direction of the slot 14 and the longitudinal direction of the signal conductor 12 are preferably not substantially parallel.
  • two or more slots 14 preferably have their longitudinal directions substantially parallel to each other.
  • the opposite edges sandwich the opening, that is, the slot 14.
  • a set of the edge portion 44 and the edge portion 45 faces each other.
  • the edge 44 is located on the ⁇ x side.
  • the edge 45 is located on the + x side.
  • a set of the edge portion 46 and the edge portion 47 faces each other.
  • the edge 46 is located on the ⁇ x side.
  • the edge 47 is located on the + x side.
  • Such edge pairs are preferably located on either side of the row of conductor vias 13.
  • edges are parallel to each other or have a constant distance from each other. In this embodiment, it is preferable that they are mutually linear.
  • Each of the edges 44 to 47 is a linear edge.
  • the edge 44 and the edge 45 are parallel to each other.
  • the edge 46 and the edge 47 are parallel to each other.
  • the slot 14 functions as a short stub.
  • a magnetic current is generated in the slot 14.
  • the slot 14 also operates as an electromagnetic wave radiation source.
  • the slot 14 operates on the same principle as the slot antenna.
  • the slot 14 is formed in the conductor plane 11.
  • the slot 14 may be formed by an etching process or other methods.
  • the shape of the slot 14 is linear.
  • the shape of the slot is not limited to a straight line.
  • the antenna device 50 includes a slot 54 having a shape different from that of the slot 14.
  • the slot 54 preferably has a bend.
  • An example of the shape of the slot 54 is a meander shape.
  • the line segment connecting the start point and the end point of the slot 54 intersects the signal conductor 12 at a predetermined angle.
  • the starting point indicates one end point of the opening.
  • the end point indicates the other end point of the opening.
  • the line segment connecting the start point and end point of the slot 54 is shorter than the line segment connecting the start point and end point of the slot 14.
  • the slot 54 has the same length as the slot 14 from one end point of the opening along the edge to the other end point. For this reason, the antenna device 50 has a smaller mounting area than the antenna device 10.
  • the antenna device 50 including the slot 54 has high mounting efficiency per area or volume of the CRLH leakage wave antenna.
  • the conductor via 13 and the slot 14 are elements forming the unit cell 40.
  • the constituent elements of the unit cell 40 are a part of the conductor plane 11, a part of the signal conductor 12, a conductor via 13 and a slot 14.
  • a part of the conductor plane 11 includes edges 44 to 47 and one and other end points in the longitudinal direction of the slot 14. Further, a part of the signal conductor 12 includes from a region facing the slot 14 in the signal conductor 12 to a region in contact with the conductor via 13.
  • a plurality of unit cells 40 are continuous at a predetermined interval.
  • the antenna device 10 includes a repeating structure of unit cells 40.
  • the plurality of unit cells 40 form the CRLH line 19.
  • the CRLH line 19 includes a plurality of unit cells 40.
  • the feeder lines 15 and 17 are electrically connected to both ends of the CRLH line 19, respectively.
  • both ends of the CRLH line are both ends of the signal conductor 12.
  • any unit cell 40 the dimensions of the constituent elements may be different. Any unit cell 40 may not include some of the components. For example, in FIGS. 1 to 3, slots 14 are located at both ends of the CRLH line 19. For this reason, the CRLH line 19 is not limited to a repetitive structure including only the completely identical unit cell 40.
  • this structure has a better effect on the CRLH line 19.
  • Such a structure can make the input impedance of the CRLH line 19 on the side of the feeder line 15 closer to the input impedance of the CRLH line 19 on the side of the feeder line 17.
  • the input impedance is substantially the same.
  • the plurality of unit cells 40 are continuous at a predetermined interval. Hereinafter, this may be referred to as periodicity. However, in some unit cells 40, the positions of some of the components may be shifted. Further, in the CRLH line 19, the positions of some of the unit cells 40 themselves may be shifted.
  • the periodicity in a strict sense may be broken.
  • the antenna device 10 includes a repeating structure of the unit cells 40.
  • the CRLH line 19 exhibits characteristics as a CRLH line.
  • the periodicity may have a defect. That is, exceptionally, some unit cells 40 do not have to be continuous at a predetermined interval. As a factor causing these defects, for example, a manufacturing error can be considered.
  • the conductor plane 11 and the signal conductor 12 face each other. For this reason, a parasitic capacitance CR is generated between them.
  • the conductor via 13 connects the conductor plane 11 and the signal conductor 12.
  • the conductor via 13 generates an inductance L L between the conductor plane 11 and the signal conductor 12.
  • the parallel circuit S has a parasitic capacitance CR and an inductance L L.
  • the parallel circuit S is located between the conductor plane 11 and the signal conductor 12.
  • the length of the slot 14 is d.
  • the length of the slot 14 is the length from one end point to the other end point in the longitudinal direction of the opening forming the slot 14.
  • the length is measured along the edges 44 to 47.
  • the lengths of the edge portions 44 to 47 are all d / 2.
  • the slot 14 has a short stub.
  • the short stub extends from the center of the slot 14 toward the edge portions 44 and 45 and the edge portions 46 and 47.
  • the length of the short stub is d / 2.
  • Each short stub can be considered to be connected in parallel with each other.
  • the input impedance of the short stub is Z S.
  • Slot 14 generates a load or impedance of Z S / 2.
  • the conductive plane 11 has a parasitic inductance L R. Therefore, conductive plane 11 is provided with a series circuit D with the load Z S / 2 and the parasitic inductance L R resulting from the slot 14.
  • a signal is input to the CRLH line 19 (FIG. 1), the unit cell 40, or the series circuit D (FIG. 6).
  • the signal has a predetermined wavelength on the transmission line.
  • the frequencies determined from 1/4, 1/2, and 3/4 of the wavelength are defined as f1, f2, and f3, respectively.
  • f1, f2, and f3 are defined as frequencies at which the length d / 2 of the short stub approximately matches 1 ⁇ 4, 1 ⁇ 2, and 3/4 of the wavelength.
  • the series circuit D has a short stub having a length d / 2.
  • d / 2 substantially matches 1/4, 1/2, or 3/4 of the above wavelength.
  • the parallel circuit S is assumed to have a resonance frequency f S.
  • the parasitic capacitance CR and the inductance L L cause resonance at the resonance frequency f S in the parallel circuit S.
  • the input impedance Z S of the short stub substantially determines the impedance of the series circuit D.
  • Operating frequency f is, when the range of f1 ⁇ f ⁇ f2, the input impedance Z S becomes capacitive. At this time, the effective magnetic permeability in the CRLH line 19 is negative. On the other hand, the operating frequency f is, when it is in the range of f2 ⁇ f ⁇ f3, the input impedance Z S becomes inductive. At this time, the effective magnetic permeability in the CRLH line 19 is positive.
  • the parallel circuit S is inductive when the operating frequency f is in the range of f ⁇ fs. At this time, the effective dielectric constant in the CRLH line 19 is negative. On the other hand, when the operating frequency f is in the range of f> fs, the parallel circuit S is capacitive. At this time, the effective dielectric constant in the CRLH line 19 is positive.
  • the CRLH line 19 when the operating frequency f is in the range of f1 ⁇ f ⁇ f2 and f ⁇ fs, the CRLH line 19 simultaneously realizes a negative effective permeability and a negative effective dielectric constant. In this case, the CRLH line 19 operates as a left-handed medium.
  • the CRLH line 19 radiates leakage waves backward with respect to the traveling direction of the power.
  • the leaky wave is refracted and radiated backward with respect to the traveling direction of power.
  • the power traveling direction depends on the direction in which the feeder 15 or the feeder 17 inputs a signal to the signal conductor 12 (FIGS. 2 and 3).
  • the CRLH line 19 realizes a positive effective permeability and a positive effective permittivity simultaneously.
  • the CRLH line 19 of this embodiment operates as a right-handed medium.
  • the refractive index between the transmission line and space or in the atmosphere is positive.
  • the CRLH line 19 radiates a leakage wave forward with respect to the traveling direction of power.
  • the leaky wave is refracted and radiated forward with respect to the traveling direction of power.
  • the band of the operating frequency f in which the CRLH line 19 operates as a left-handed medium is referred to as a left-handed band.
  • the band of the operating frequency f in which the CRLH line 19 operates as a right-handed medium is referred to as a right-handed band.
  • the operating frequency f may be included in a band sandwiched between a left-handed band and a right-handed band.
  • one of the effective permittivity and effective permeability is negative and the other is positive.
  • Such characteristics of the CRLH line are referred to as band gap characteristics.
  • the balance condition When the CRLH line 19 satisfies the balance condition, the band gap disappears. At this time, the left-handed band and the right-handed band are continuous.
  • the left-handed band and the right-handed band are switched at a predetermined operating frequency f or frequency.
  • the CRLH line 19 is in the zero-order resonance state.
  • the leaky wave is refracted and radiated perpendicularly to the traveling direction of power.
  • the CRLH line 19 preferably satisfies the balance condition. For this reason, each component in the CRLH line 19 preferably satisfies a predetermined condition.
  • the combination of structural parameters that satisfy the balance condition can take various forms depending on the antenna device.
  • the structural parameters are parameters representing the shape, size, length, and the like of the unit cell 40, the conductor plane 11, the signal conductor 12, the conductor via 13, and the slot 14.
  • the antenna device 10 generates a leaky wave from the signal having the operating frequency f.
  • the operating frequency f is in any of the left-handed band, the right-handed band, and the zeroth-order resonance. Therefore, the antenna device 10 can function as a leaky wave antenna that radiates electromagnetic waves in a desired direction.
  • each slot 14 intersects the signal conductor 12 at a predetermined angle (FIGS. 1 and 2).
  • the antenna apparatus 10 can change the direction of the magnetic current used as the radiation source of electromagnetic waves.
  • the predetermined angle can be appropriately set so that the antenna device 10 has a desired magnetic current direction.
  • the antenna device 10 functions as a CRLH leakage wave antenna capable of controlling the polarization direction.
  • the antenna device 20 of the present embodiment includes a conductor plane 11 as a first plane.
  • the antenna device 20 further includes another conductor plane 21 as the second plane.
  • the antenna device 20 has a configuration equivalent to that of the antenna device 10 except that the antenna device 20 further includes a second plane and an insulating layer 26.
  • the conductor plane 21 faces the conductor plane 11.
  • the signal conductor 12 is located between the conductor plane 11 and the conductor plane 21.
  • the conductor plane 21 is electrically connected to the signal conductor 12 through other conductor vias 23.
  • the conductive via 23 penetrates the insulating layer 26. As shown in FIG. 9, the conductor via 23 is located in the through hole 57 of the insulating layer 26. When forming the conductor via 23, it is preferable to metal-plat the inner wall of the through hole 56. The conductor via 23 may penetrate the conductor plane 21.
  • the conductor via 23 and the conductor via 13 may form an integrated conductor via.
  • the integrated conductor via preferably passes through the through hole 18 described above.
  • the conductor plane 21 may be electrically connected to the conductor plane 11 and the signal conductor 12 via a plurality of integrated conductor vias instead of the conductor via 23.
  • the slot 14 is located between the rows of conductor vias 23. Slots 25 and 27 are located outside between the rows of conductor vias 23.
  • the slot 25 is located outside the conductor via 23 at the end of the power supply line 15 (not shown) in the row of the conductor vias 23.
  • the slot 27 is positioned outside the conductor via 23 at the end of the power supply line 17 (not shown) in the row of the conductor vias 23.
  • the slot 25 faces a portion of the signal conductor 12 in the vicinity of the power supply line 15 (not shown).
  • the slot 27 faces the portion of the signal conductor 12 near the feeder line 17.
  • the slot group 24 includes slots 14, 25 and 27.
  • the conductor plane 11 includes a slot group 24.
  • the slots 25 and 27 are thinner than the slot 14. For this reason, since the capacity
  • the slots 25 and 27 are not necessarily thinner than the slot 14. For example, even the same fineness does not greatly affect the essential operation.
  • the insulating layer 16 shown in FIG. 9 is a first insulating layer.
  • the insulating layer 26 is a second insulating layer.
  • the insulating layer 26 is located between the signal conductor 12 and the conductor plane 21.
  • the conductor plane 21 is a metal foil or a metal film.
  • the metal foil is preferably a Cu (copper) foil.
  • the metal film is preferably a Cu film.
  • the conductor plane 21 is a sheet-like conductor.
  • the conductor plane 21 has an extending part facing the conductor plane 11.
  • the conductor plane 21 can shield electromagnetic waves radiated in the direction opposite to the conductor plane 11 by the short stub. Such a direction is the positive direction of the z-axis in the drawing.
  • the antenna device 20 can limit the radiation direction of leakage waves to the negative z-axis direction in the figure.
  • the conductor plane 21 may be located on the opposite side of the signal conductor 12 with respect to the conductor plane 11.
  • the antenna device 20 can limit the radiation direction of the leakage wave to the z-axis positive direction in the drawing.
  • the antenna device 20 can direct the beam direction of the leaky wave to a specific side among the signal conductor 12 side and the opposite side of the conductor plane 11.
  • the antenna device 20 has the above operations and effects in addition to the same operations and effects as those of the first embodiment.
  • the antenna device 30 includes at least two antennas.
  • the two antennas are an antenna 28 and an antenna 29.
  • the antenna device 30 corresponds to a configuration in which two antenna devices 10 according to the first embodiment are arranged side by side.
  • the antenna 28 includes a signal conductor 12 and a plurality of conductor vias 13.
  • the antenna 29 includes a signal conductor 32 and a plurality of conductor vias 33.
  • the signal conductor 32 is a component similar to the signal conductor 12.
  • the conductor via 33 is a component similar to the conductor via 33.
  • the signal conductor 32 preferably includes a plurality of through holes 38.
  • the through hole 38 is a component similar to the through hole 18.
  • the through hole 38 stabilizes the electrical connection between the signal conductor 32 and the conductor via 33.
  • the antennas 28 and 29 have the same configuration as the antenna device 10.
  • the antennas 28 and 29 are separately provided with a plurality of slots.
  • the antenna 28 includes a plurality of slots 14.
  • the antenna 29 includes a plurality of slots 34.
  • the slots 14 and 34 are located in the conductor plane 11. In the present embodiment, the antennas 28 and 29 share the conductor plane 11.
  • the conductor planes may be provided separately by the antennas 28 and 29, respectively.
  • the antenna device 30 further has the following features (1) and (2).
  • the signal conductors 12 and 32 are substantially parallel to each other.
  • the slots 14 and 34 are substantially orthogonal to each other on an extension line. This means that they are orthogonal to each other on the longitudinal extension of each of the slots 14 and 34. In the present embodiment, the slots orthogonal to each other on the extension line do not necessarily intersect.
  • the slots 14 and 34 do not intersect each other.
  • a conductor plane can be provided for each antenna as described above.
  • the slots 14 and 34 may intersect each other when viewed in plan with respect to any of the conductor planes.
  • the antenna device 30 When viewed in plan with respect to a plane parallel to the conductor plane 11, the antenna device 30 has the following characteristics in each of the two antennas. Such features are the same as in the first and second embodiments.
  • the slots 14 and 34 intersect with the signal conductors 12 and 32 respectively at a predetermined angle.
  • the conductor vias 13 and 33 and the slots 14 and 34 are alternately arranged along the signal conductors 12 and 32, respectively.
  • the antenna device 30 preferably further includes a signal input device 39.
  • the signal input device 39 is connected to a radio circuit.
  • the radio circuit sends two signals having a phase difference of 90 ° to the signal input device 39.
  • the signal input device 39 receives these two signals from the radio circuit and inputs them to the antenna.
  • the signal input device 39 inputs one of the two signals to one of the two antennas. That is, the signal input device 39 inputs one of the two signals to the antenna 28 via the feeder line 15 or 17.
  • the signal input device 39 inputs the other of the two signals to the other of the two antennas. That is, the signal input device 39 inputs the other of the two signals to the antenna 29 via the feeder line 35 or 37.
  • the signal input device 39 may be a 90-degree hybrid, or may be composed of a two distributor and a phase shifter.
  • the magnetic current generated in the slot 14 is substantially orthogonal to the magnetic current generated in the slot 34. Therefore, the electromagnetic waves or polarized waves radiated by the antenna 28 and the antenna 29 are also orthogonal.
  • the antenna device 30 inputs signals having a phase difference of 90 ° to the antennas 28 and 29. Therefore, the antenna device 30 is a CRLH leaky wave antenna that can radiate circularly polarized waves.
  • the antenna device 30 has the above operations and effects in addition to the same operations and effects as those of the first embodiment.
  • the antenna device 30 may have the same characteristics as the antenna device 20.
  • the antenna device 60 of this embodiment is different from the leaky wave antenna of the first embodiment in that the radiation efficiency is different for each unit cell.
  • the constituent elements of the unit cell are a part of the conductor plane 11, a part of the signal conductor 12, the conductor via 13, and the slots 61 to 68 of the slot group 69.
  • the slots 61 to 68 are arranged in order from the power supply line 15.
  • the unit cell 70 including the slot 63 is representatively drawn.
  • the opening width of the portion intersecting with the signal conductor 12 increases as the distance from the feeder line 15 increases. From the slot 65 to the slot 68, the opening width of the portion intersecting with the signal conductor 12 becomes smaller as the power supply line 17 is approached.
  • the radiation efficiency for each unit cell is changed by changing the width of the slots 61 to 68 for each unit cell.
  • the radiation efficiency can be increased as the width of the slots 61 to 68 is increased.
  • the antenna device 60 of the present embodiment is configured so that the radiation efficiency of each of the slots 61 to 68 follows the normal distribution (binary distribution) along the signal conductor 12, and thus is close to the normal distribution along the signal conductor 12. It is possible to realize a leaky wave antenna having a power radiation amount distribution. Thereby, it is possible to provide an antenna device having a low side lobe level as with the array antenna.
  • the side lobe level and main beam width can be adjusted by adjusting the shapes of slots 61 to 68 so as to realize the amount of power radiation according to Chebyshev's polynomial and Taylor distribution. It becomes possible to control.
  • the antenna device 60 according to the present invention can provide an antenna device that realizes such a power radiation amount.
  • FIG. 11 shows an example in which the radiation efficiency is changed by changing the width of the slot in the slot group 69, but the radiation efficiency may naturally be changed by other methods.
  • a configuration in which the lengths of the slots 61 to 68 are changed can be naturally considered.
  • an electronic device including at least one antenna device.
  • such an electronic device is an electronic device for mobile communication, satellite communication, portable radio, car phone, guided radio, navigation, radar, or broadcasting.

Landscapes

  • Waveguide Aerials (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)

Abstract

The present invention provides a CRLH leaky wave antenna capable of controlling polarized waves. This antenna device is provided with a conductor plane (11), a linear signal conductor (12) facing the conductor plane, and a plurality of conductor vias (13), which are electrically connected to the conductor plate (11) and the signal conductor (12), and the conductor plane (11) has a plurality of slots (14). In a planar view with respect to a plane parallel to the conductor plane (11), the slots (14) intersect the signal conductor (12) at a predetermined angle. The conductor vias (13) and the slots (14) are alternately disposed along the signal conductor (12).

Description

アンテナ装置Antenna device
 本発明はアンテナ装置に関する。 The present invention relates to an antenna device.
 近年、メタマテリアルによって電磁波の伝播特性を制御できることが明らかになっている。メタマテリアルとは、例えば特定の構造を有する導体パターンを周期的に配置したものを含む。代表的なメタマテリアルとして、右手系/左手系複合(CRLH:Composite Right/Left-Handed)線路が挙げられる。 In recent years, it has become clear that the propagation characteristics of electromagnetic waves can be controlled by metamaterials. The metamaterial includes, for example, a periodic arrangement of conductor patterns having a specific structure. A typical metamaterial is a composite right / left-handed (CRLH) line.
 特許文献1に示すように、CRLH線路は、導体パターンからなるユニットセルを複数並べて構成された伝送線路である。CRLH線路の特性は、特定の周波数帯において1次元の右手系媒質や左手系媒質として性質を示すことである。特許文献2,3には、このCRLH線路を、漏洩波アンテナとして利用することが開示されている。 As shown in Patent Document 1, the CRLH line is a transmission line configured by arranging a plurality of unit cells each having a conductor pattern. The characteristic of the CRLH line is that it exhibits properties as a one-dimensional right-handed medium or left-handed medium in a specific frequency band. Patent Documents 2 and 3 disclose that this CRLH line is used as a leaky wave antenna.
米国特許第7446712号明細書US Pat. No. 7,446,712 特開2008-054146号公報JP 2008-054146 A 国際公開第2011/114746号International Publication No. 2011/114746
 発明者らは、上記CRLH漏洩波アンテナでは、所望の偏波を放射することが難しいと考えた。ここで所望の偏波とは、電場及び磁場の振動方向が所望の方向からなる電波である。本発明の目的は偏波の制御が可能なCRLH漏洩波アンテナを提供することである。 The inventors considered that it is difficult to radiate a desired polarization with the CRLH leaky wave antenna. Here, the desired polarization is a radio wave in which the vibration direction of the electric field and magnetic field is in a desired direction. An object of the present invention is to provide a CRLH leaky wave antenna capable of controlling polarization.
 本発明のアンテナ装置は、導体プレーンと、前記導体プレーンと対向する、線状の信号導体と、前記導体プレーン及び前記信号導体と電気的に接続する、複数の導体ビアと、を備え、前記導体プレーンは複数のスロットを有する。 An antenna device according to the present invention includes a conductor plane, a linear signal conductor facing the conductor plane, and a plurality of conductor vias electrically connected to the conductor plane and the signal conductor. The plane has a plurality of slots.
 前記導体プレーンと平行な面に対して平面視した時、前記スロットは、前記信号導体と所定の角度をもって交差している。前記導体ビア及び前記スロットは、前記信号導体に沿って交互に並んでいる。 When viewed in plan with respect to a plane parallel to the conductor plane, the slot intersects the signal conductor at a predetermined angle. The conductor vias and the slots are arranged alternately along the signal conductor.
 本発明の他の態様のアンテナ装置は、導体プレーンと対向する、線状の信号導体と、前記導体プレーン及び前記各信号導体と電気的に接続する、複数の導体ビアと、前記導体プレーンに設けられた複数のスロットと、を有するアンテナを少なくとも2つ備える。 An antenna device according to another aspect of the present invention is provided in a linear signal conductor facing a conductor plane, a plurality of conductor vias electrically connected to the conductor plane and each signal conductor, and the conductor plane. And at least two antennas having a plurality of slots.
(1)前記2つのアンテナにおいて、前記信号導体が互いに実質的に平行であることが好ましい。前記スロットが互いの延長線上で実質的に直交することが好ましい。 (1) In the two antennas, it is preferable that the signal conductors are substantially parallel to each other. Preferably, the slots are substantially orthogonal on each other's extension line.
(2)前記2つのアンテナのそれぞれにおいて、前記導体プレーンと平行な面に対して平面視した時、前記スロットは、前記信号導体と所定の角度をもって交差している。前記導体ビア及び前記スロットは、前記信号導体に沿って交互に並んでいる。 (2) In each of the two antennas, when viewed in plan with respect to a plane parallel to the conductor plane, the slot intersects the signal conductor at a predetermined angle. The conductor vias and the slots are arranged alternately along the signal conductor.
 本発明の電子装置は上記アンテナ装置を、少なくとも1つ備える。 The electronic device of the present invention includes at least one antenna device.
 本発明によれば、偏波の制御が可能なCRLH漏洩波アンテナを提供することができる。 According to the present invention, a CRLH leaky wave antenna capable of controlling polarization can be provided.
第1実施形態にかかるアンテナ装置の斜視図である。It is a perspective view of the antenna device concerning a 1st embodiment. 第1実施形態にかかるアンテナ装置の平面図である。It is a top view of the antenna device concerning a 1st embodiment. 図2のIII-III断面における断面図である。FIG. 3 is a cross-sectional view taken along the line III-III in FIG. 2. 第1実施形態の他の態様にかかるアンテナ装置の平面図その1である。It is the top view 1 of the antenna apparatus concerning the other aspect of 1st Embodiment. 第1実施形態の他の態様にかかるアンテナ装置の平面図その2である。It is the top view 2 of the antenna apparatus concerning the other aspect of 1st Embodiment. 図2,3に示したユニットセルの等価回路図である。FIG. 4 is an equivalent circuit diagram of the unit cell shown in FIGS. 第1実施形態の他の態様にかかるアンテナ装置の平面図その3である。FIG. 6 is a third plan view of the antenna device according to another aspect of the first embodiment. 第2実施形態に係るアンテナ装置の斜視図である。It is a perspective view of the antenna device which concerns on 2nd Embodiment. 図8のIX-IX断面における断面図である。It is sectional drawing in the IX-IX cross section of FIG. 第3実施形態にかかるアンテナ装置の平面図である。It is a top view of the antenna apparatus concerning 3rd Embodiment. 第4実施形態にかかるアンテナ装置の平面図である。It is a top view of the antenna device concerning a 4th embodiment.
10 アンテナ装置           11 導体プレーン
12 信号導体             13 導体ビア
14 スロット             15,17 給電線
20 アンテナ装置           21 導体プレーン
23 導体ビア             25 スロット
27 スロット             28,29 アンテナ
30 アンテナ装置           32 信号導体
33 導体ビア             34 スロット
35,37 給電線           39 信号入力装置
50 アンテナ装置           54 スロット
60 アンテナ装置           61~69 スロット
DESCRIPTION OF SYMBOLS 10 Antenna apparatus 11 Conductor plane 12 Signal conductor 13 Conductor via 14 Slot 15, 17 Feed line 20 Antenna apparatus 21 Conductor plane 23 Conductor via 25 Slot 27 Slot 28, 29 Antenna 30 Antenna apparatus 32 Signal conductor 33 Conductor via 34 Slot 35, 37 Feed line 39 Signal input device 50 Antenna device 54 Slot 60 Antenna device 61 to 69 Slot
 本実施形態にかかるアンテナ装置はメタマテリアルとしての特性を示すアンテナ装置である。以下、本発明の各実施形態について、図面を用いて説明する。尚、すべての図面において、同様な構成要素には同様の符号を付し、適宜説明を省略する。 The antenna device according to the present embodiment is an antenna device that exhibits characteristics as a metamaterial. Embodiments of the present invention will be described below with reference to the drawings. In all the drawings, the same reference numerals are given to the same components, and the description will be omitted as appropriate.
[第1実施形態]
(1.概要)
 図1に示すように、アンテナ装置10はCRLH漏洩波アンテナを備える。アンテナ装置10は導体プレーン11と、信号導体12と、複数の導体ビア13とを備える。
[First Embodiment]
(1. Overview)
As shown in FIG. 1, the antenna device 10 includes a CRLH leaky wave antenna. The antenna device 10 includes a conductor plane 11, a signal conductor 12, and a plurality of conductor vias 13.
 信号導体12は線状である。信号導体12は導体プレーン11と対向する。複数の導体ビア13はそれぞれ、導体プレーン11に電気的に接続する。複数の導体ビア13はそれぞれ、さらに信号導体12に電気的に接続する。 The signal conductor 12 is linear. The signal conductor 12 faces the conductor plane 11. Each of the plurality of conductor vias 13 is electrically connected to the conductor plane 11. Each of the plurality of conductor vias 13 is further electrically connected to the signal conductor 12.
 導体プレーン11は複数のスロット14を有する。複数のスロット14は、導体プレーン11に設けられた開口である。かかる開口又は開孔は導体プレーン11の一方の面から他方の面に至って、導体プレーン11を貫通することが好ましい。 The conductor plane 11 has a plurality of slots 14. The plurality of slots 14 are openings provided in the conductor plane 11. Such an opening or opening preferably extends from one surface of the conductor plane 11 to the other surface and penetrates the conductor plane 11.
 図2に示すように、導体プレーン11と平行な面に対して平面視した時、各スロット14は、信号導体12と所定の角度をもって交差している。各導体ビア13及び各スロット14は、信号導体12に沿って交互に並んでいる。 As shown in FIG. 2, when viewed in plan with respect to a plane parallel to the conductor plane 11, each slot 14 intersects the signal conductor 12 at a predetermined angle. The conductor vias 13 and the slots 14 are alternately arranged along the signal conductor 12.
 ここでアンテナ装置10中、上記構成要素は全てCRLH漏洩波アンテナを構成するために必須である。 Here, in the antenna device 10, all the above-described components are indispensable for constituting a CRLH leaky wave antenna.
 上記CRLH漏洩波アンテナは、伝送線路の正方向だけでなく直上方向や負方向へも漏洩波を放射することが可能である。このため、アンテナ装置10は、従来の漏洩同軸ケーブルを備えるアンテナ装置などと比べて、広角なビーム走査に適する。 The CRLH leaky wave antenna can radiate leaky waves not only in the positive direction of the transmission line but also in the direct upward direction and the negative direction. Therefore, the antenna device 10 is suitable for wide-angle beam scanning as compared with an antenna device having a conventional leaky coaxial cable.
 上記CRLH漏洩波アンテナは、進行波アンテナの一種である。上記CRLH漏洩波アンテナは、共振型アンテナと比べた場合、いくつかの利点を示す。利点の一つは、上記CRLH漏洩波アンテナが、共振型アンテナと比べて動作帯域が広いことである。 The CRLH leaky wave antenna is a kind of traveling wave antenna. The CRLH leaky wave antenna exhibits several advantages when compared to a resonant antenna. One advantage is that the CRLH leaky wave antenna has a wider operating band than a resonant antenna.
 また上記CRLH漏洩波アンテナは、薄型でも放射効率が比較的高いという利点も有する。これに比べて、共振型アンテナでは、薄型になるほど放射効率が低下する。このためアンテナ装置10は、共振型アンテナを備えるアンテナ装置に比べて、装置の小型化、薄型化の点で有用である。 Also, the CRLH leaky wave antenna has an advantage that the radiation efficiency is relatively high even if it is thin. On the other hand, in the resonance type antenna, the radiation efficiency decreases as the thickness becomes thinner. For this reason, the antenna device 10 is useful in terms of downsizing and thinning of the device as compared with an antenna device including a resonant antenna.
(2.課題と効果の簡単な説明)
 CRLH漏洩波アンテナは導体パターン又は導体エレメントを有する。これらに流れる電流は漏洩波を生じる。しかしながら、それぞれの導体パターン又は導体エレメントに流れる電流の方向を制御することは困難である。
(2. Brief explanation of issues and effects)
The CRLH leaky wave antenna has a conductor pattern or a conductor element. The current flowing through these produces a leaky wave. However, it is difficult to control the direction of current flowing through each conductor pattern or conductor element.
 このため従来技術においては所望の偏波を実現することが難しい。ここで所望の偏波とは、電場及び磁場の振動方向が所望の方向からなる電波である。アンテナ装置10の備えるCRLH漏洩波アンテナは後述するように偏波の制御が可能である。 For this reason, it is difficult to achieve a desired polarization in the prior art. Here, the desired polarization is a radio wave in which the vibration direction of the electric field and magnetic field is in a desired direction. The CRLH leaky wave antenna provided in the antenna device 10 can control the polarization as described later.
(3.導体プレーン)
 図1,2に示すように、導体プレーン11はシート状の導体である。導体プレーン11はスロット14以外にも延在部分を有する。導体プレーン11は金属箔又は金属膜である。金属箔はCu(銅)箔であることが好ましい。金属膜はCu膜であることが好ましい。
(3. Conductor plane)
As shown in FIGS. 1 and 2, the conductor plane 11 is a sheet-like conductor. The conductor plane 11 has an extending portion other than the slot 14. The conductor plane 11 is a metal foil or a metal film. The metal foil is preferably a Cu (copper) foil. The metal film is preferably a Cu film.
 図3に示すようにアンテナ装置10は絶縁層16を有する。絶縁層16は導体プレーン11に対して、信号導体12側に位置する。絶縁層16は導体プレーン11及び信号導体12の間に位置することが好ましい。絶縁層16はさらに導体プレーンの延在部分に対して、信号導体12側に位置してもよい。絶縁層16は導体プレーン11及び信号導体12の間に貫通孔を有してもよい。 As shown in FIG. 3, the antenna device 10 has an insulating layer 16. The insulating layer 16 is located on the signal conductor 12 side with respect to the conductor plane 11. The insulating layer 16 is preferably located between the conductor plane 11 and the signal conductor 12. The insulating layer 16 may further be positioned on the signal conductor 12 side with respect to the extending portion of the conductor plane. The insulating layer 16 may have a through hole between the conductor plane 11 and the signal conductor 12.
(4.信号導体)
 図1~3に示す信号導体12は、金属箔又は金属膜である。金属箔はCu(銅)箔であることが好ましい。金属膜はCu膜であることが好ましい。信号導体12は、絶縁層16に対して、導体プレーン11と反対側に位置する。信号導体12は、導体プレーン11と、実質的に平行な面に位置することが好ましい。
(4. Signal conductor)
The signal conductor 12 shown in FIGS. 1 to 3 is a metal foil or a metal film. The metal foil is preferably a Cu (copper) foil. The metal film is preferably a Cu film. The signal conductor 12 is located on the opposite side of the conductor plane 11 with respect to the insulating layer 16. The signal conductor 12 is preferably located on a plane substantially parallel to the conductor plane 11.
 信号導体12は複数の貫通孔18を備えることが好ましい。複数の貫通孔18は信号導体12の長手方向に沿って、並んでいることが好ましい。複数の導体ビア13は貫通孔18の内壁に接することが好ましい。複数の導体ビア13は貫通孔18を貫通することが好ましい。上記貫通孔18は信号導体12及び導体ビア13の間の電気的な接続を安定にする。 The signal conductor 12 preferably includes a plurality of through holes 18. The plurality of through holes 18 are preferably arranged along the longitudinal direction of the signal conductor 12. The plurality of conductor vias 13 are preferably in contact with the inner wall of the through hole 18. The plurality of conductor vias 13 preferably pass through the through holes 18. The through hole 18 stabilizes the electrical connection between the signal conductor 12 and the conductor via 13.
 信号導体12は図中のx軸と平行な方向に直線状に延在している。信号導体12は複数の貫通孔18以外に開口を有しない、一様な板又は膜であることが好ましい。 The signal conductor 12 extends linearly in a direction parallel to the x axis in the figure. The signal conductor 12 is preferably a uniform plate or film having no openings other than the plurality of through holes 18.
 図2,3に示すように、アンテナ装置10はさらに給電線15及び給電線17を備えることが好ましい。信号導体12の少なくとも一方の端部は、給電線15又は給電線17と接続する。不図示の無線回路は信号を給電線15又は給電線17に送る又は給電する。給電線15及び給電線17は、無線回路から該信号を受け、信号導体12に該信号を入力する。 As shown in FIGS. 2 and 3, the antenna device 10 preferably further includes a feed line 15 and a feed line 17. At least one end of the signal conductor 12 is connected to the feed line 15 or the feed line 17. A radio circuit (not shown) sends or feeds a signal to the feed line 15 or the feed line 17. The feed line 15 and the feed line 17 receive the signal from the radio circuit and input the signal to the signal conductor 12.
 給電線15,17は、例えばCu膜などの金属膜である。給電線15,17は導体プレーン11と対向する。給電線15,17及び導体プレーン11の間に絶縁層16が位置する。 Feed lines 15 and 17 are metal films such as a Cu film, for example. The feeder lines 15 and 17 face the conductor plane 11. An insulating layer 16 is located between the feeder lines 15 and 17 and the conductor plane 11.
 上述のように、給電線15,17は、信号導体12の両端に電気的に接続する。給電線15,17は、信号導体12に直接接続していてもよい。給電線15又は17は、信号導体12に容量結合していてもよい。 As described above, the feeder lines 15 and 17 are electrically connected to both ends of the signal conductor 12. The feeder lines 15 and 17 may be directly connected to the signal conductor 12. The feeder line 15 or 17 may be capacitively coupled to the signal conductor 12.
 所定の場合、無線回路と接続されていない側の給電線が存在する。この場合、不図示のインピーダンスが、かかる給電線の、信号導体12とは反対側の終端に位置することが好ましい。かかるインピーダンスはアンテナ装置10が不要な反射を行わないようになる。所定のインピーダンスが、給電線15,17の終端に接続していなくとも、アンテナ装置10はCRLH漏洩波アンテナとして機能する。 * In certain cases, there is a power supply line that is not connected to the radio circuit. In this case, it is preferable that an impedance (not shown) is located at the end of the feeder line on the side opposite to the signal conductor 12. Such impedance prevents the antenna device 10 from performing unnecessary reflection. Even if the predetermined impedance is not connected to the terminal ends of the feeder lines 15 and 17, the antenna device 10 functions as a CRLH leakage wave antenna.
(5.導体ビア)
 図1~3に示すように、導体ビア13は、導体プレーン11と信号導体12とを電気的に接続する。このため図6に示すように導体ビア13は、インダクタンスLとして機能する。図6については後述する。図3に示すように導体ビア13は、上記絶縁層16の貫通孔56に位置する。
(5. Conductor via)
As shown in FIGS. 1 to 3, the conductor via 13 electrically connects the conductor plane 11 and the signal conductor 12. For this reason, as shown in FIG. 6, the conductor via 13 functions as an inductance L L. FIG. 6 will be described later. As shown in FIG. 3, the conductor via 13 is located in the through hole 56 of the insulating layer 16.
 導体ビア13の形成に際しては、貫通孔56の内壁を金属メッキすることが好ましい。かかる金属メッキ部分は導体ビア13となることができる。上述の通り導体ビア13は導体プレーン11と信号導体12を電気的に接続するものである。かかる導体ビア13の条件を満たす方法であれば、上記金属メッキ以外の他の形成方法を採用できる。 When forming the conductor via 13, it is preferable to metal-plat the inner wall of the through hole 56. Such a metal plating portion can be a conductor via 13. As described above, the conductor via 13 electrically connects the conductor plane 11 and the signal conductor 12. Any method other than the above metal plating can be adopted as long as it satisfies the conditions of the conductor via 13.
 図1~3に示すように複数の導体ビア13は、信号導体12の長手方向に沿って、並んでいる。導体ビア13は、3以上並ぶことが好ましい。導体ビア13は、一定間隔で並ぶことが好ましい。アンテナ装置10は、導体ビア13の繰り返し構造を備える。 1 to 3, the plurality of conductor vias 13 are arranged along the longitudinal direction of the signal conductor 12. Three or more conductor vias 13 are preferably arranged. The conductor vias 13 are preferably arranged at regular intervals. The antenna device 10 has a repeated structure of conductor vias 13.
 複数の導体ビア13は導体プレーン11及び信号導体12の間に位置する。導体ビア13は導体プレーン11に接することが好ましい。導体ビア13は信号導体12に接することが好ましい。上記導体ビア13は導体プレーン11及び信号導体12との間で安定な電気的接続を形成する。 The plurality of conductor vias 13 are located between the conductor plane 11 and the signal conductor 12. The conductor via 13 is preferably in contact with the conductor plane 11. The conductor via 13 is preferably in contact with the signal conductor 12. The conductor via 13 forms a stable electrical connection between the conductor plane 11 and the signal conductor 12.
 また、図1~3では導体ビア13が信号導体12に直接接続される場合を例に示したが、信号導体12と導体プレーン11が電気的に接続されていれば必ずしも図1~3の構成に限定されない。たとえば図4に示すように、信号導体12が複数の分岐52を備え、該分岐と導体ビア13が接続されるような構成を考えることもできる。 1 to 3 show an example in which the conductor via 13 is directly connected to the signal conductor 12. However, if the signal conductor 12 and the conductor plane 11 are electrically connected, the configuration shown in FIGS. It is not limited to. For example, as shown in FIG. 4, a configuration in which the signal conductor 12 includes a plurality of branches 52 and the branches and the conductor vias 13 are connected can be considered.
 上記により、信号導体12と導体プレーン11は、分岐52と導体ビア13を介して電気的に接続される。図4の構成では、導体ビア13だけでなく分岐52も含めてインダクタンスLを形成するため、よりインダクタンスLを大きくすることが可能となる。 As described above, the signal conductor 12 and the conductor plane 11 are electrically connected via the branch 52 and the conductor via 13. In the configuration of FIG. 4, since the inductance L L is formed including not only the conductor via 13 but also the branch 52, the inductance L L can be further increased.
 さらに、図4では分岐52が信号導体12の一方の側面だけに備えられている場合を例に示したが、図5に示すように分岐52,53が信号導体12の両方の側面に備えられるような構成も当然考えることができる。 Further, FIG. 4 shows an example in which the branch 52 is provided only on one side surface of the signal conductor 12, but the branches 52 and 53 are provided on both side surfaces of the signal conductor 12 as shown in FIG. Such a configuration can naturally be considered.
 かかる構成では、分岐52,53に接続する導体ビア13のペア、及び各スロット14は、信号導体12に沿って交互に並んでいる。図5の構成では給電線15側と17側から見て対称になるため、給電線15、17から見たアンテナ入力インピーダンスを互いに同一の値にすることができる。 In such a configuration, the pair of conductor vias 13 connected to the branches 52 and 53 and the slots 14 are alternately arranged along the signal conductor 12. In the configuration of FIG. 5, the antenna input impedance viewed from the feeder lines 15 and 17 can be set to the same value since they are symmetric when viewed from the feeder line 15 side and the 17 side.
(6.スロット)
 図1~3に示すように、スロット14は、信号導体12の長手方向に沿って、並んでいることが好ましい。スロット14は、3以上並ぶことが好ましい。スロット14は、一定間隔で並ぶことが好ましい。導体プレーン11は、スロット14の繰り返し構造を備える。
(6. Slot)
As shown in FIGS. 1 to 3, the slots 14 are preferably arranged along the longitudinal direction of the signal conductor 12. Three or more slots 14 are preferably arranged. The slots 14 are preferably arranged at regular intervals. The conductor plane 11 has a repeating structure of slots 14.
 各スロット14は各導体ビア13と交互に並んでいることが好ましい。スロット14は導体ビア13と列を形成していることが好ましい。導体ビア13及びスロット14のペアが周期的に繰り返すことが好ましい。隣り合うスロット14の間ごとに、導体ビア13が位置していることが好ましい。 Each slot 14 is preferably arranged alternately with each conductor via 13. The slot 14 preferably forms a row with the conductor via 13. Preferably, the pair of conductor vias 13 and slots 14 repeats periodically. Conductive vias 13 are preferably located between adjacent slots 14.
 図2は、導体プレーン11と平行な面に対して平面視した時のアンテナ装置10を示す。上記平面視において、全てのスロット14は、信号導体12と所定の角度をもって交差することが好ましい。より具体的には、上記平面視において、スロット14の長手方向にある端点の内、一方の端点及び他方の端点を結ぶ線分と、信号導体12の中心線とが、所定の角度をもって交差することが好ましい。 FIG. 2 shows the antenna device 10 when viewed in plan with respect to a plane parallel to the conductor plane 11. In the plan view, all the slots 14 preferably intersect with the signal conductor 12 at a predetermined angle. More specifically, in the plan view, among the end points in the longitudinal direction of the slot 14, a line segment connecting one end point and the other end point intersects with the center line of the signal conductor 12 at a predetermined angle. It is preferable.
 また上記平面視において、スロット14の長手方向及び信号導体12の長手方向のなす角度は0度より大きく180度より小さいことが好ましい。また上記平面視において、スロット14の長手方向及び信号導体12の長手方向は、実質的に平行ではないことが好ましい。なおスロット14のうち、二又は三以上のスロット14では、それらの長手方向が、互いに、実質的に平行であることが好ましい。 Also, in the plan view, the angle formed by the longitudinal direction of the slot 14 and the longitudinal direction of the signal conductor 12 is preferably larger than 0 degree and smaller than 180 degrees. In the plan view, the longitudinal direction of the slot 14 and the longitudinal direction of the signal conductor 12 are preferably not substantially parallel. Of the slots 14, two or more slots 14 preferably have their longitudinal directions substantially parallel to each other.
 偏波方向の制御は、スロット14の長手方向及び信号導体12の長手方向のなす角度を適切に設計して行うことが好ましい。 It is preferable to control the polarization direction by appropriately designing the angle formed by the longitudinal direction of the slot 14 and the longitudinal direction of the signal conductor 12.
 図1,2に示すように向かい合う縁部が開口、すなわちスロット14を挟むことが好ましい。導体ビア13の成す列の+y側では、縁部44及び縁部45からなる組が向かい合っている。縁部44は-x側に位置する。縁部45は+x側に位置する。 As shown in FIGS. 1 and 2, it is preferable that the opposite edges sandwich the opening, that is, the slot 14. On the + y side of the row formed of the conductor vias 13, a set of the edge portion 44 and the edge portion 45 faces each other. The edge 44 is located on the −x side. The edge 45 is located on the + x side.
 導体ビア13の成す列の-y側では、縁部46及び縁部47からなる組が向かい合っている。縁部46は-x側に位置する。縁部47は+x側に位置する。かかる縁部の組は導体ビア13の成す列の両側に位置することが好ましい。 On the -y side of the row formed of the conductive vias 13, a set of the edge portion 46 and the edge portion 47 faces each other. The edge 46 is located on the −x side. The edge 47 is located on the + x side. Such edge pairs are preferably located on either side of the row of conductor vias 13.
 かかる縁部は、互いに平行であるか、又は互いの間隔が一定であることが好ましい。本実施形態では互いに直線状であることが好ましい。縁部44~47はそれぞれ直線状の縁部である。縁部44及び縁部45は互いに平行である。縁部46及び縁部47は互いに平行である。 It is preferable that the edges are parallel to each other or have a constant distance from each other. In this embodiment, it is preferable that they are mutually linear. Each of the edges 44 to 47 is a linear edge. The edge 44 and the edge 45 are parallel to each other. The edge 46 and the edge 47 are parallel to each other.
 図6に示すようにスロット14は、ショートスタブ(Short Stub)として機能する。また、スロット14には磁流が生じる。このため、スロット14は電磁波の放射源としても作動する。このときスロット14はスロットアンテナと同様の原理で作動する。本実施形態では、導体プレーン11にスロット14を形成する。スロット14の形成方法は、エッチング処理、又はその他の方法でよい。 As shown in FIG. 6, the slot 14 functions as a short stub. In addition, a magnetic current is generated in the slot 14. For this reason, the slot 14 also operates as an electromagnetic wave radiation source. At this time, the slot 14 operates on the same principle as the slot antenna. In this embodiment, the slot 14 is formed in the conductor plane 11. The slot 14 may be formed by an etching process or other methods.
 図1,2に示す例において、スロット14の形状は直線状である。一方で本実施形態ではスロットの形状は直線に限定されない。 In the example shown in FIGS. 1 and 2, the shape of the slot 14 is linear. On the other hand, in this embodiment, the shape of the slot is not limited to a straight line.
 図7に示すように他の態様にかかるアンテナ装置50はスロット14と異なる形状のスロット54を有する。スロット54は折れ曲がりを有することが好ましい。スロット54の形状の一例はミアンダ形状である。 7, the antenna device 50 according to another aspect includes a slot 54 having a shape different from that of the slot 14. The slot 54 preferably has a bend. An example of the shape of the slot 54 is a meander shape.
 導体プレーン11と平行な面に対して平面視した時、スロット54の始点と終点を結ぶ線分は、信号導体12と所定の角度をもって交差している。ここで始点は開口の一方の端点を示す。終点は開口の他方の端点を示す。 When viewed in plan with respect to a plane parallel to the conductor plane 11, the line segment connecting the start point and the end point of the slot 54 intersects the signal conductor 12 at a predetermined angle. Here, the starting point indicates one end point of the opening. The end point indicates the other end point of the opening.
 スロット54の始点と終点を結ぶ線分は、スロット14の始点と終点を結ぶ線分よりも短い。一方でスロット54は、スロット14と同等の、縁部に沿った開口の一方の端点から他方の端点までの長さを有する。このため、アンテナ装置50は、アンテナ装置10よりも小さい実装面積を有する。上記スロット54を備えるアンテナ装置50は、CRLH漏洩波アンテナの、面積又は体積当たりの実装効率が高い。 The line segment connecting the start point and end point of the slot 54 is shorter than the line segment connecting the start point and end point of the slot 14. On the other hand, the slot 54 has the same length as the slot 14 from one end point of the opening along the edge to the other end point. For this reason, the antenna device 50 has a smaller mounting area than the antenna device 10. The antenna device 50 including the slot 54 has high mounting efficiency per area or volume of the CRLH leakage wave antenna.
(7.ユニットセル及びCRLH線路)
 図2,3に示すように、導体ビア13及びスロット14は、ユニットセル40を形成する要素である。ユニットセル40の構成要素は導体プレーン11の一部、信号導体12の一部、導体ビア13及びスロット14である。
(7. Unit cell and CRLH line)
As shown in FIGS. 2 and 3, the conductor via 13 and the slot 14 are elements forming the unit cell 40. The constituent elements of the unit cell 40 are a part of the conductor plane 11, a part of the signal conductor 12, a conductor via 13 and a slot 14.
 ここで導体プレーン11の一部には、縁部44~47、並びにスロット14の長手方向にある一方及び他方の端点を含む。また信号導体12の一部には、信号導体12中のスロット14と対向する領域から導体ビア13と接する領域までを含む。 Here, a part of the conductor plane 11 includes edges 44 to 47 and one and other end points in the longitudinal direction of the slot 14. Further, a part of the signal conductor 12 includes from a region facing the slot 14 in the signal conductor 12 to a region in contact with the conductor via 13.
 アンテナ装置10中では、複数のユニットセル40が所定の間隔で連続している。アンテナ装置10は、ユニットセル40の繰り返し構造を備える。このため、複数のユニットセル40はCRLH線路19を形成する。CRLH線路19は複数のユニットセル40を備える。給電線15,17は、それぞれ上記CRLH線路19の両端に電気的に接続する。ここでCRLH線路の両端とは、信号導体12の両端である。 In the antenna device 10, a plurality of unit cells 40 are continuous at a predetermined interval. The antenna device 10 includes a repeating structure of unit cells 40. For this reason, the plurality of unit cells 40 form the CRLH line 19. The CRLH line 19 includes a plurality of unit cells 40. The feeder lines 15 and 17 are electrically connected to both ends of the CRLH line 19, respectively. Here, both ends of the CRLH line are both ends of the signal conductor 12.
 いずれかのユニットセル40において、その構成要素の寸法が異なっていてもよい。いずれかのユニットセル40において、構成要素の一部が備わっていなくともよい。例えば図1~3では、CRLH線路19の両端部にスロット14が位置する。このため上記CRLH線路19は、完全に同一なユニットセル40のみを備える繰り返し構造に限定されない。 In any unit cell 40, the dimensions of the constituent elements may be different. Any unit cell 40 may not include some of the components. For example, in FIGS. 1 to 3, slots 14 are located at both ends of the CRLH line 19. For this reason, the CRLH line 19 is not limited to a repetitive structure including only the completely identical unit cell 40.
 しかしながら、かかる構造はCRLH線路19により良い効果をもたらす。かかる構造は、CRLH線路19の給電線15の側の入力インピーダンスと、CRLH線路19の給電線17の側の入力インピーダンスを、より近い値にすることが出来る。好ましい態様において上記入力インピーダンスは実質的に同一である。 However, this structure has a better effect on the CRLH line 19. Such a structure can make the input impedance of the CRLH line 19 on the side of the feeder line 15 closer to the input impedance of the CRLH line 19 on the side of the feeder line 17. In a preferred embodiment, the input impedance is substantially the same.
 上述のとおり、複数のユニットセル40は所定の間隔で連続している。以下、これを周期性という場合がある。しかしながら、一部のユニットセル40において構成要素の一部の位置がずれていてもよい。また、CRLH線路19において、一部のユニットセル40そのものの位置がずれていてもよい。 As described above, the plurality of unit cells 40 are continuous at a predetermined interval. Hereinafter, this may be referred to as periodicity. However, in some unit cells 40, the positions of some of the components may be shifted. Further, in the CRLH line 19, the positions of some of the unit cells 40 themselves may be shifted.
 CRLH線路19においては、厳密な意味での、周期性が崩れていてもよい。上述のとおり、アンテナ装置10は、ユニットセル40の繰り返し構造を備える。このため、CRLH線路19は、CRLH線路としての特性を発揮する。周期性は欠陥を有していてもよい。すなわち例外的に、一部のユニットセル40は所定の間隔で連続していなくともよい。なおこれらの欠陥が生じる要因としては、例えば製造誤差などが考えられる。 In the CRLH line 19, the periodicity in a strict sense may be broken. As described above, the antenna device 10 includes a repeating structure of the unit cells 40. For this reason, the CRLH line 19 exhibits characteristics as a CRLH line. The periodicity may have a defect. That is, exceptionally, some unit cells 40 do not have to be continuous at a predetermined interval. As a factor causing these defects, for example, a manufacturing error can be considered.
(8.ユニットセルの詳細)
 図6に示すように、導体プレーン11と信号導体12とは対向している。このため、これらの間には寄生容量Cが生じる。また導体ビア13は導体プレーン11と信号導体12とを接続している。
(8. Details of unit cell)
As shown in FIG. 6, the conductor plane 11 and the signal conductor 12 face each other. For this reason, a parasitic capacitance CR is generated between them. The conductor via 13 connects the conductor plane 11 and the signal conductor 12.
 導体ビア13は、導体プレーン11と信号導体12との間に、インダクタンスLを生じる。このため、並列回路Sは寄生容量C及びインダクタンスLを有する。並列回路Sは導体プレーン11と信号導体12との間に位置する。 The conductor via 13 generates an inductance L L between the conductor plane 11 and the signal conductor 12. For this reason, the parallel circuit S has a parasitic capacitance CR and an inductance L L. The parallel circuit S is located between the conductor plane 11 and the signal conductor 12.
 本実施形態ではスロット14の長さをdとする。スロット14の長さとは、スロット14を成す開口の、長手方向にある端点の内、一方の端点から他方の端点までの長さである。また縁部44~47に沿って測った長さである。なお本実施形態では縁部44~47の長さはいずれもd/2である。 In this embodiment, the length of the slot 14 is d. The length of the slot 14 is the length from one end point to the other end point in the longitudinal direction of the opening forming the slot 14. The length is measured along the edges 44 to 47. In the present embodiment, the lengths of the edge portions 44 to 47 are all d / 2.
 スロット14はショートスタブを有する。ショートスタブはスロット14の中央から縁部44,45側及び縁部46,47側に向かって延在する。ショートスタブの長さはd/2である。各ショートスタブは互いに並列接続していると考えることが出来る。 The slot 14 has a short stub. The short stub extends from the center of the slot 14 toward the edge portions 44 and 45 and the edge portions 46 and 47. The length of the short stub is d / 2. Each short stub can be considered to be connected in parallel with each other.
 ここでショートスタブの入力インピーダンスをZとする。スロット14はZ/2の負荷又はインピーダンスを生じる。また導体プレーン11は寄生インダクタンスLを有している。このため、導体プレーン11は、スロット14より生じる負荷Z/2及び寄生インダクタンスLを有する直列回路Dを備える。 Here, the input impedance of the short stub is Z S. Slot 14 generates a load or impedance of Z S / 2. The conductive plane 11 has a parasitic inductance L R. Therefore, conductive plane 11 is provided with a series circuit D with the load Z S / 2 and the parasitic inductance L R resulting from the slot 14.
(9.バランス条件)
 上述のとおりCRLH線路19(図1)、又はユニットセル40若しくは直列回路D(図6)に信号が入力する。信号は伝送線路上において所定の波長を有する。かかる波長の1/4、1/2、3/4から定まる周波数を、それぞれf1、f2、f3とする。ここで、f1、f2、f3は、ショートスタブの長さd/2が、波長の1/4、1/2、3/4とおおよそ一致する周波数として定義する。
(9. Balance condition)
As described above, a signal is input to the CRLH line 19 (FIG. 1), the unit cell 40, or the series circuit D (FIG. 6). The signal has a predetermined wavelength on the transmission line. The frequencies determined from 1/4, 1/2, and 3/4 of the wavelength are defined as f1, f2, and f3, respectively. Here, f1, f2, and f3 are defined as frequencies at which the length d / 2 of the short stub approximately matches ¼, ½, and 3/4 of the wavelength.
 上述のように直列回路Dは長さd/2のショートスタブを有する。ここでd/2の値が、上記波長の1/4、1/2、又は3/4に実質的に一致する場合を考察する。並列回路Sは共振周波数fを有するものとする。寄生容量C及びインダクタンスLは、並列回路Sに共振周波数fの共振を生じる。 As described above, the series circuit D has a short stub having a length d / 2. Consider a case where the value of d / 2 substantially matches 1/4, 1/2, or 3/4 of the above wavelength. The parallel circuit S is assumed to have a resonance frequency f S. The parasitic capacitance CR and the inductance L L cause resonance at the resonance frequency f S in the parallel circuit S.
 寄生インダクタンスLが十分小さいときは、ショートスタブの入力インピーダンスZが直列回路Dのインピーダンスを実質的に決定する。 When the parasitic inductance LR is sufficiently small, the input impedance Z S of the short stub substantially determines the impedance of the series circuit D.
 動作周波数fが、f1<f<f2の範囲にあるときは、入力インピーダンスZは容量性となる。またこのとき、CRLH線路19中の実効透磁率は負となる。一方、動作周波数fが、f2<f<f3の範囲にあるとき、入力インピーダンスZは誘導性となる。またこのとき、CRLH線路19中の実効透磁率は正となる。 Operating frequency f is, when the range of f1 <f <f2, the input impedance Z S becomes capacitive. At this time, the effective magnetic permeability in the CRLH line 19 is negative. On the other hand, the operating frequency f is, when it is in the range of f2 <f <f3, the input impedance Z S becomes inductive. At this time, the effective magnetic permeability in the CRLH line 19 is positive.
 動作周波数fが、f<fsの範囲にあるとき、並列回路Sは誘導性となる。またこのとき、CRLH線路19中の実効誘電率は負となる。一方、動作周波数fが、f>fsの範囲にあるとき、並列回路Sは容量性となる。またこのとき、CRLH線路19中の実効誘電率は正となる。 The parallel circuit S is inductive when the operating frequency f is in the range of f <fs. At this time, the effective dielectric constant in the CRLH line 19 is negative. On the other hand, when the operating frequency f is in the range of f> fs, the parallel circuit S is capacitive. At this time, the effective dielectric constant in the CRLH line 19 is positive.
 したがって、動作周波数fが、f1<f<f2かつf<fsの範囲にあるとき、CRLH線路19は、負の実効透磁率と負の実効誘電率を同時に実現する。この場合、CRLH線路19は左手系媒質として動作する。 Therefore, when the operating frequency f is in the range of f1 <f <f2 and f <fs, the CRLH line 19 simultaneously realizes a negative effective permeability and a negative effective dielectric constant. In this case, the CRLH line 19 operates as a left-handed medium.
 このとき伝送線路と空間又は大気中との間の屈折率は負となる。このためCRLH線路19は漏洩波を電力の進行方向に対して後方に放射する。漏洩波は電力の進行方向に対して後方に屈折して放射される。なお電力の進行方向は、給電線15又は給電線17が、信号導体12に信号を入力する方向に依存する(図2,3)。 At this time, the refractive index between the transmission line and the space or the atmosphere is negative. For this reason, the CRLH line 19 radiates leakage waves backward with respect to the traveling direction of the power. The leaky wave is refracted and radiated backward with respect to the traveling direction of power. The power traveling direction depends on the direction in which the feeder 15 or the feeder 17 inputs a signal to the signal conductor 12 (FIGS. 2 and 3).
 また、動作周波数fが、f2<f<f3かつf>fsの範囲にあるとき、CRLH線路19は、正の実効透磁率と正の実効誘電率を同時に実現する。この場合、本実施形態のCRLH線路19は、右手系媒質として動作する。 Further, when the operating frequency f is in the range of f2 <f <f3 and f> fs, the CRLH line 19 realizes a positive effective permeability and a positive effective permittivity simultaneously. In this case, the CRLH line 19 of this embodiment operates as a right-handed medium.
 このとき伝送線路と空間又は大気中の間の屈折率は正となる。このためCRLH線路19は漏洩波を電力の進行方向に対して前方に放射する。漏洩波は電力の進行方向に対しては前方に屈折して放射される。 At this time, the refractive index between the transmission line and space or in the atmosphere is positive. For this reason, the CRLH line 19 radiates a leakage wave forward with respect to the traveling direction of power. The leaky wave is refracted and radiated forward with respect to the traveling direction of power.
 本実施形態では、CRLH線路19が左手系媒質として動作する動作周波数fの帯域を左手系の帯域という。本実施形態では、CRLH線路19が右手系媒質として動作する動作周波数fの帯域を右手系の帯域という。 In this embodiment, the band of the operating frequency f in which the CRLH line 19 operates as a left-handed medium is referred to as a left-handed band. In the present embodiment, the band of the operating frequency f in which the CRLH line 19 operates as a right-handed medium is referred to as a right-handed band.
 本実施形態では、動作周波数fが、左手系の帯域及び右手系の帯域に挟まれた帯域に含まれる場合がある。かかる帯域では、実効誘電率及び実効透磁率のうちの一方が負となり他方が正となる。かかるCRLH線路の特性をバンドギャップ特性という。 In the present embodiment, the operating frequency f may be included in a band sandwiched between a left-handed band and a right-handed band. In such a band, one of the effective permittivity and effective permeability is negative and the other is positive. Such characteristics of the CRLH line are referred to as band gap characteristics.
 本実施形態ではf2=fsとなる条件を「バランス条件」と呼ぶものとする。CRLH線路19がバランス条件を満たす場合には、バンドギャップが消失する。このとき、左手系の帯域と右手系の帯域とが連続する。 In this embodiment, a condition where f2 = fs is referred to as a “balance condition”. When the CRLH line 19 satisfies the balance condition, the band gap disappears. At this time, the left-handed band and the right-handed band are continuous.
 CRLH線路19がバランス条件を満たす場合には、左手系の帯域と右手系の帯域とは所定の動作周波数f又は周波数で切り替わる。かかる周波数ではCRLH線路19が0次共振の状態となる。このとき漏洩波は電力の進行方向に対して垂直に屈折して放射される。 When the CRLH line 19 satisfies the balance condition, the left-handed band and the right-handed band are switched at a predetermined operating frequency f or frequency. At such a frequency, the CRLH line 19 is in the zero-order resonance state. At this time, the leaky wave is refracted and radiated perpendicularly to the traveling direction of power.
 CRLH線路19はバランス条件を満たすことが好ましい。このためCRLH線路19中の各構成要素は所定の条件を満たすことが好ましい。バランス条件を満たす構造パラメータの組み合わせは、アンテナ装置に応じて種々の態様をとることができる。ここで構造パラメータとは、ユニットセル40、導体プレーン11、信号導体12、導体ビア13、及びスロット14の形状、大きさ、長さ、その他を表すパラメータである。 The CRLH line 19 preferably satisfies the balance condition. For this reason, each component in the CRLH line 19 preferably satisfies a predetermined condition. The combination of structural parameters that satisfy the balance condition can take various forms depending on the antenna device. Here, the structural parameters are parameters representing the shape, size, length, and the like of the unit cell 40, the conductor plane 11, the signal conductor 12, the conductor via 13, and the slot 14.
(10.作用及び効果)
 アンテナ装置10は、動作周波数fの信号から漏洩波を生じる。CRLH線路19がバランス条件を満たす場合、動作周波数fは左手系の帯域、右手系の帯域、0次共振のいずれかにある。このためアンテナ装置10は、所望の方向に電磁波を放射する漏洩波アンテナとして機能することが出来る。
(10. Action and effect)
The antenna device 10 generates a leaky wave from the signal having the operating frequency f. When the CRLH line 19 satisfies the balance condition, the operating frequency f is in any of the left-handed band, the right-handed band, and the zeroth-order resonance. Therefore, the antenna device 10 can function as a leaky wave antenna that radiates electromagnetic waves in a desired direction.
 上述のとおり、導体プレーン11と平行な面に対して平面視した時、各スロット14は、信号導体12と所定の角度をもって交差している(図1,2)。このため、アンテナ装置10は、電磁波の放射源となる磁流の方向を変化させることができる。アンテナ装置10が、所望の磁流の方向を有するように所定の角度を適宜設定することが出来る。このためアンテナ装置10は、偏波方向の制御が可能なCRLH漏洩波アンテナとして機能する。 As described above, when viewed in plan with respect to a plane parallel to the conductor plane 11, each slot 14 intersects the signal conductor 12 at a predetermined angle (FIGS. 1 and 2). For this reason, the antenna apparatus 10 can change the direction of the magnetic current used as the radiation source of electromagnetic waves. The predetermined angle can be appropriately set so that the antenna device 10 has a desired magnetic current direction. For this reason, the antenna device 10 functions as a CRLH leakage wave antenna capable of controlling the polarization direction.
[第2実施形態]
 図8,9に示すように、本実施形態のアンテナ装置20は第1プレーンとして、導体プレーン11を備える。アンテナ装置20は第2プレーンとして、他の導体プレーン21をさらに備える。アンテナ装置20は、第2プレーン、及び絶縁層26をさらに有する点を除いてアンテナ装置10と同等の構成を備える。
[Second Embodiment]
As shown in FIGS. 8 and 9, the antenna device 20 of the present embodiment includes a conductor plane 11 as a first plane. The antenna device 20 further includes another conductor plane 21 as the second plane. The antenna device 20 has a configuration equivalent to that of the antenna device 10 except that the antenna device 20 further includes a second plane and an insulating layer 26.
 導体プレーン21は、導体プレーン11と対向する。信号導体12は、導体プレーン11及び導体プレーン21の間に位置する。導体プレーン21は、他の複数の導体ビア23を介して信号導体12と電気的に接続する。 The conductor plane 21 faces the conductor plane 11. The signal conductor 12 is located between the conductor plane 11 and the conductor plane 21. The conductor plane 21 is electrically connected to the signal conductor 12 through other conductor vias 23.
 導体ビア23は絶縁層26を貫通する。図9に示すように導体ビア23は、絶縁層26の貫通孔57に位置する。導体ビア23の形成に際しては、貫通孔56の内壁を金属メッキすることが好ましい。導体ビア23は導体プレーン21を貫通してもよい。 The conductive via 23 penetrates the insulating layer 26. As shown in FIG. 9, the conductor via 23 is located in the through hole 57 of the insulating layer 26. When forming the conductor via 23, it is preferable to metal-plat the inner wall of the through hole 56. The conductor via 23 may penetrate the conductor plane 21.
 導体ビア23及び導体ビア13は、一体化した導体ビアを形成してよい。一体化した導体ビアは上述の貫通孔18を貫通することが好ましい。導体プレーン21は、導体ビア23にかわり、複数の一体化した導体ビアを介して導体プレーン11及び信号導体12と電気的に接続してもよい。 The conductor via 23 and the conductor via 13 may form an integrated conductor via. The integrated conductor via preferably passes through the through hole 18 described above. The conductor plane 21 may be electrically connected to the conductor plane 11 and the signal conductor 12 via a plurality of integrated conductor vias instead of the conductor via 23.
 スロット14は導体ビア23の列の間に位置する。スロット25,27は導体ビア23の列の間の外に位置する。スロット25は導体ビア23の列中、不図示の給電線15側の端にある導体ビア23よりも外側に位置する。スロット27は導体ビア23の列中、不図示の給電線17側の端にある導体ビア23よりも外側に位置する。 The slot 14 is located between the rows of conductor vias 23. Slots 25 and 27 are located outside between the rows of conductor vias 23. The slot 25 is located outside the conductor via 23 at the end of the power supply line 15 (not shown) in the row of the conductor vias 23. The slot 27 is positioned outside the conductor via 23 at the end of the power supply line 17 (not shown) in the row of the conductor vias 23.
 スロット25は信号導体12の、不図示の給電線15近傍の部分と対向する。スロット27は信号導体12の、給電線17近傍の部分と対向する。スロット群24はスロット14,25,27を備える。導体プレーン11はスロット群24を備える。 The slot 25 faces a portion of the signal conductor 12 in the vicinity of the power supply line 15 (not shown). The slot 27 faces the portion of the signal conductor 12 near the feeder line 17. The slot group 24 includes slots 14, 25 and 27. The conductor plane 11 includes a slot group 24.
 図8,9に示すように、スロット25,27はスロット14よりも細い。このため、CRLH線路と給電線15、17との間の容量を増加させることができるため、CRLH線路と給電線路15、17とのインピーダンスを整合する効果をもたらす。ただし、スロット25、27は必ずしもスロット14より細い必要があるわけではない。たとえば、同じ細さでも本質的な動作には大きく影響を与えない。 As shown in FIGS. 8 and 9, the slots 25 and 27 are thinner than the slot 14. For this reason, since the capacity | capacitance between a CRLH line and the feeder lines 15 and 17 can be increased, the effect of matching the impedance of a CRLH line and the feeder lines 15 and 17 is brought about. However, the slots 25 and 27 are not necessarily thinner than the slot 14. For example, even the same fineness does not greatly affect the essential operation.
 図9に示す絶縁層16は、第1絶縁層である。絶縁層26は、第2絶縁層である。絶縁層26は信号導体12及び導体プレーン21の間に位置する。導体プレーン21は金属箔又は金属膜である。金属箔はCu(銅)箔であることが好ましい。金属膜はCu膜であることが好ましい。導体プレーン21はシート状の導体である。導体プレーン21は導体プレーン11と対向する延在部分を有する。 The insulating layer 16 shown in FIG. 9 is a first insulating layer. The insulating layer 26 is a second insulating layer. The insulating layer 26 is located between the signal conductor 12 and the conductor plane 21. The conductor plane 21 is a metal foil or a metal film. The metal foil is preferably a Cu (copper) foil. The metal film is preferably a Cu film. The conductor plane 21 is a sheet-like conductor. The conductor plane 21 has an extending part facing the conductor plane 11.
 導体プレーン21は、上記ショートスタブが導体プレーン11と反対側の方向に放射した電磁波を遮蔽することができる。かかる方向は図中のz軸の正方向である。アンテナ装置20は漏洩波の放射方向を図中のz軸負方向に限定することができる。 The conductor plane 21 can shield electromagnetic waves radiated in the direction opposite to the conductor plane 11 by the short stub. Such a direction is the positive direction of the z-axis in the drawing. The antenna device 20 can limit the radiation direction of leakage waves to the negative z-axis direction in the figure.
 なお導体プレーン21は、導体プレーン11に対して、信号導体12と反対側に位置していてもよい。この場合、アンテナ装置20は漏洩波の放射方向を図中のz軸正方向に限定することができる。 The conductor plane 21 may be located on the opposite side of the signal conductor 12 with respect to the conductor plane 11. In this case, the antenna device 20 can limit the radiation direction of the leakage wave to the z-axis positive direction in the drawing.
 アンテナ装置20は漏洩波のビーム方向を、導体プレーン11の信号導体12側とその反対側のうち、特定の側に向けることが可能である。また、アンテナ装置20は、第1実施形態と同様の作用及び効果に加え、上記作用及び効果を有する。 The antenna device 20 can direct the beam direction of the leaky wave to a specific side among the signal conductor 12 side and the opposite side of the conductor plane 11. The antenna device 20 has the above operations and effects in addition to the same operations and effects as those of the first embodiment.
[第3実施形態]
(1.概要)
 図10に示すようにアンテナ装置30はアンテナを少なくとも2つ備える。本実施形態では、かかる2つのアンテナはアンテナ28及びアンテナ29である。アンテナ装置30は、第1実施形態におけるアンテナ装置10を2つ並べて配置したものに相当する。
[Third Embodiment]
(1. Overview)
As shown in FIG. 10, the antenna device 30 includes at least two antennas. In the present embodiment, the two antennas are an antenna 28 and an antenna 29. The antenna device 30 corresponds to a configuration in which two antenna devices 10 according to the first embodiment are arranged side by side.
 アンテナ28は信号導体12と、複数の導体ビア13とを備える。アンテナ29は信号導体32と、複数の導体ビア33とを備える。信号導体32は信号導体12と同様の構成要素である。導体ビア33は導体ビア33と同様の構成要素である。 The antenna 28 includes a signal conductor 12 and a plurality of conductor vias 13. The antenna 29 includes a signal conductor 32 and a plurality of conductor vias 33. The signal conductor 32 is a component similar to the signal conductor 12. The conductor via 33 is a component similar to the conductor via 33.
 信号導体32は複数の貫通孔38を備えることが好ましい。貫通孔38は貫通孔18と同様の構成要素である。貫通孔38は信号導体32及び導体ビア33の間の電気的な接続を安定にする。アンテナ28,29はアンテナ装置10と同等の構成を有する。 The signal conductor 32 preferably includes a plurality of through holes 38. The through hole 38 is a component similar to the through hole 18. The through hole 38 stabilizes the electrical connection between the signal conductor 32 and the conductor via 33. The antennas 28 and 29 have the same configuration as the antenna device 10.
 アンテナ28,29は別個に、複数のスロットを備える。アンテナ28は複数のスロット14を備える。アンテナ29は複数のスロット34を備える。スロット14,34は導体プレーン11内に位置する。本実施形態においてアンテナ28,29は導体プレーン11を共有する。導体プレーンはアンテナ28,29がそれぞれ別個に有していてもよい。 The antennas 28 and 29 are separately provided with a plurality of slots. The antenna 28 includes a plurality of slots 14. The antenna 29 includes a plurality of slots 34. The slots 14 and 34 are located in the conductor plane 11. In the present embodiment, the antennas 28 and 29 share the conductor plane 11. The conductor planes may be provided separately by the antennas 28 and 29, respectively.
(2.配置の特徴)
 図10に示すように、アンテナ装置30はさらに下記特徴(1)、(2)を有する。
(2. Arrangement characteristics)
As shown in FIG. 10, the antenna device 30 further has the following features (1) and (2).
<特徴(1)>
(1-1)かかる2つのアンテナにおいて、信号導体12,32が互いに実質的に平行である。
(1-2)かかる2つのアンテナにおいて、スロット14,34が互いの延長線上で実質的に直交する。これは、スロット14,34のそれぞれの長手方向の延長線上で互いに直交することをさす。なお本実施形態において延長線上で直交する両スロットは、必ずしも交差していない。
<Feature (1)>
(1-1) In these two antennas, the signal conductors 12 and 32 are substantially parallel to each other.
(1-2) In such two antennas, the slots 14 and 34 are substantially orthogonal to each other on an extension line. This means that they are orthogonal to each other on the longitudinal extension of each of the slots 14 and 34. In the present embodiment, the slots orthogonal to each other on the extension line do not necessarily intersect.
 図10に示すように、本実施形態ではスロット14,34が互いに交差しない。しかしながら上述のように導体プレーンをアンテナごとに設けることができる。かかる場合には、いずれかの導体プレーンに対して平面視したときに、スロット14,34が互いに交差してもよい。 As shown in FIG. 10, in this embodiment, the slots 14 and 34 do not intersect each other. However, a conductor plane can be provided for each antenna as described above. In such a case, the slots 14 and 34 may intersect each other when viewed in plan with respect to any of the conductor planes.
<特徴(2)>
 導体プレーン11と平行な面に対して平面視した時、かかる2つのアンテナのそれぞれにおいて、アンテナ装置30は次の特徴を有する。かかる特徴は第1,2実施形態と同様である。
<Feature (2)>
When viewed in plan with respect to a plane parallel to the conductor plane 11, the antenna device 30 has the following characteristics in each of the two antennas. Such features are the same as in the first and second embodiments.
(2-1)スロット14,34は、信号導体12,32とそれぞれ所定の角度をもって交差している。
(2-2)導体ビア13,33及びスロット14,34は、それぞれ信号導体12,32に沿って交互に並んでいる。
(2-1) The slots 14 and 34 intersect with the signal conductors 12 and 32 respectively at a predetermined angle.
(2-2) The conductor vias 13 and 33 and the slots 14 and 34 are alternately arranged along the signal conductors 12 and 32, respectively.
(3.信号入力装置)
 図10に示すようにアンテナ装置30は信号入力装置39をさらに備えることが好ましい。かかる信号入力装置39は、無線回路に接続する。無線回路は互いに90°の位相差をもつ2つの信号を、信号入力装置39に送る。信号入力装置39はかかる2つの信号を無線回路から受けて、上記アンテナに入力する。
(3. Signal input device)
As shown in FIG. 10, the antenna device 30 preferably further includes a signal input device 39. The signal input device 39 is connected to a radio circuit. The radio circuit sends two signals having a phase difference of 90 ° to the signal input device 39. The signal input device 39 receives these two signals from the radio circuit and inputs them to the antenna.
 具体的には、信号入力装置39は2つの信号の一方を、上記2つのアンテナの一方に入力する。すなわち信号入力装置39は給電線15又は17を介してアンテナ28に、上記2つの信号の一方を入力する。 Specifically, the signal input device 39 inputs one of the two signals to one of the two antennas. That is, the signal input device 39 inputs one of the two signals to the antenna 28 via the feeder line 15 or 17.
 さらに信号入力装置39は2つの信号の他方を、上記2つのアンテナの他方に入力する。すなわち信号入力装置39は給電線35又は37を介してアンテナ29に、上記2つの信号の他方を入力する。たとえば、信号入力装置39は90度ハイブリッドであってもよいし、2分配器と位相器で構成されていてもよい。 Further, the signal input device 39 inputs the other of the two signals to the other of the two antennas. That is, the signal input device 39 inputs the other of the two signals to the antenna 29 via the feeder line 35 or 37. For example, the signal input device 39 may be a 90-degree hybrid, or may be composed of a two distributor and a phase shifter.
(4.作用と効果)
 スロット14に生じる磁流は、スロット34に生じる磁流と実質的に直交する。したがって、アンテナ28及びアンテナ29の放射する電磁波又は偏波も直交する。アンテナ装置30は、アンテナ28,29に、互いに90°位相差を付けた信号を入力する。このため、アンテナ装置30は、円偏波を放射することが可能なCRLH漏洩波アンテナとなる。アンテナ装置30は、第1実施形態と同様の作用及び効果に加え、上記作用及び効果を有する。
(4. Action and effect)
The magnetic current generated in the slot 14 is substantially orthogonal to the magnetic current generated in the slot 34. Therefore, the electromagnetic waves or polarized waves radiated by the antenna 28 and the antenna 29 are also orthogonal. The antenna device 30 inputs signals having a phase difference of 90 ° to the antennas 28 and 29. Therefore, the antenna device 30 is a CRLH leaky wave antenna that can radiate circularly polarized waves. The antenna device 30 has the above operations and effects in addition to the same operations and effects as those of the first embodiment.
 以上、図面を参照して本発明の実施形態について述べたが、これらは本発明の例示であり、上記以外の様々な構成を採用することもできる。アンテナ装置30は、アンテナ装置20と同じ特徴を有してもよい。 As described above, the embodiments of the present invention have been described with reference to the drawings. However, these are exemplifications of the present invention, and various configurations other than the above can be adopted. The antenna device 30 may have the same characteristics as the antenna device 20.
[第4実施形態]
本実施形態のアンテナ装置60は、ユニットセルごとに放射効率が異なるように構成されている点が、第1実施形態の漏洩波アンテナと異なる。
[Fourth Embodiment]
The antenna device 60 of this embodiment is different from the leaky wave antenna of the first embodiment in that the radiation efficiency is different for each unit cell.
 図11に示すように、ユニットセルの構成要素は導体プレーン11の一部、信号導体12の一部、導体ビア13及びスロット群69の各スロット61~68である。スロット群69中、給電線15から近い順にスロット61からスロット68まで並んでいる。図11中では、ユニットセルのうち、スロット63を備えるユニットセル70が代表して描かれている。 As shown in FIG. 11, the constituent elements of the unit cell are a part of the conductor plane 11, a part of the signal conductor 12, the conductor via 13, and the slots 61 to 68 of the slot group 69. In the slot group 69, the slots 61 to 68 are arranged in order from the power supply line 15. In FIG. 11, among the unit cells, the unit cell 70 including the slot 63 is representatively drawn.
 スロット61からスロット64までは、給電線15から遠ざかるにしたがい、信号導体12と交差する部分の開口幅が大きくなっている。スロット65からスロット68までは、給電線17に近づくにしたがい、信号導体12と交差する部分の開口幅が小さくなっている。 From the slot 61 to the slot 64, the opening width of the portion intersecting with the signal conductor 12 increases as the distance from the feeder line 15 increases. From the slot 65 to the slot 68, the opening width of the portion intersecting with the signal conductor 12 becomes smaller as the power supply line 17 is approached.
 上記のようにユニットセルごとにスロット61~68の幅を変化させることで、ユニットセルごとの放射効率を変化させる構成を考えることができる。このとき、スロット61~68の幅が大きい程、放射効率を大きくすることができる。 As described above, a configuration in which the radiation efficiency for each unit cell is changed by changing the width of the slots 61 to 68 for each unit cell can be considered. At this time, the radiation efficiency can be increased as the width of the slots 61 to 68 is increased.
 アレイアンテナの分野において、正規分布(2項分布)に従い、各アンテナ素子の入力パワー比を決定すると、サイドローブのない指向性パターンを実現できることが知られている。 In the field of array antennas, it is known that a directivity pattern without side lobes can be realized by determining the input power ratio of each antenna element according to a normal distribution (binary distribution).
 本実施形態のアンテナ装置60は、信号導体12に沿って各々のスロット61~68の放射効率が正規分布(2項分布)に従うように構成することで、信号導体12に沿って正規分布に近い電力放射量分布を持った漏洩波アンテナを実現することが可能となる。これにより、アレイアンテナと同様にサイドローブレベルの低いアンテナ装置を提供することができる。 The antenna device 60 of the present embodiment is configured so that the radiation efficiency of each of the slots 61 to 68 follows the normal distribution (binary distribution) along the signal conductor 12, and thus is close to the normal distribution along the signal conductor 12. It is possible to realize a leaky wave antenna having a power radiation amount distribution. Thereby, it is possible to provide an antenna device having a low side lobe level as with the array antenna.
 また、アレイアンテナの分野で知られるように、チェビシェフの多項式やテーラー分布に従うような電力放射量を実現するように、スロット61~68の形状を調整することで、サイドローブレベルやメインビーム幅を制御することが可能となる。本発明に係るアンテナ装置60により、そのような電力放射量を実現するようなアンテナ装置を提供することができる。 In addition, as is known in the field of array antennas, the side lobe level and main beam width can be adjusted by adjusting the shapes of slots 61 to 68 so as to realize the amount of power radiation according to Chebyshev's polynomial and Taylor distribution. It becomes possible to control. The antenna device 60 according to the present invention can provide an antenna device that realizes such a power radiation amount.
 図11では、スロット群69中のスロットの幅を変化させることで放射効率を変化させる構成を例に示したが、当然他の方法で放射効率を変化させてもよい。たとえば、スロット61~68の長さを変化させるような構成も当然考えることができる。 FIG. 11 shows an example in which the radiation efficiency is changed by changing the width of the slot in the slot group 69, but the radiation efficiency may naturally be changed by other methods. For example, a configuration in which the lengths of the slots 61 to 68 are changed can be naturally considered.
 なお、本発明は上記実施の形態に限られたものではなく、趣旨を逸脱しない範囲で適宜変更することが可能である。応用例の一つは上記アンテナ装置を少なくとも1つ備える電子装置である。かかる電子装置は、好ましい態様において、移動体通信、衛星通信、携帯無線、自動車電話、誘導無線、ナビゲーション、レーダ、又は放送用の電子装置である。 Note that the present invention is not limited to the above-described embodiment, and can be appropriately changed without departing from the spirit of the present invention. One application example is an electronic device including at least one antenna device. In a preferred embodiment, such an electronic device is an electronic device for mobile communication, satellite communication, portable radio, car phone, guided radio, navigation, radar, or broadcasting.
 以上、実施の形態を参照して本願発明を説明したが、本願発明は上記によって限定されるものではない。本願発明の構成や詳細には、発明のスコープ内で当業者が理解し得る様々な変更をすることができる。 The present invention has been described above with reference to the embodiment, but the present invention is not limited to the above. Various changes that can be understood by those skilled in the art can be made to the configuration and details of the present invention within the scope of the invention.
 この出願は、2013年10月3日に出願された日本出願特願2013-208063を基礎とする優先権を主張し、その開示の全てをここに取り込む。 This application claims priority based on Japanese Patent Application No. 2013-208063 filed on October 3, 2013, the entire disclosure of which is incorporated herein.

Claims (8)

  1.  導体プレーンと、
     前記導体プレーンと対向する、線状の信号導体と、
     前記導体プレーン及び前記信号導体と電気的に接続する、複数の導体ビアと、を備え、
     前記導体プレーンは複数のスロットを有し、
     前記導体プレーンと平行な面に対して平面視した時、前記スロットは、前記信号導体と所定の角度をもって交差しており、
     前記導体ビア及び前記スロットは、前記信号導体に沿って交互に並んでいる、
    アンテナ装置。
    A conductor plane;
    A linear signal conductor facing the conductor plane;
    A plurality of conductor vias electrically connected to the conductor plane and the signal conductor;
    The conductor plane has a plurality of slots;
    When viewed in plan with respect to a plane parallel to the conductor plane, the slot intersects the signal conductor at a predetermined angle;
    The conductor vias and the slots are arranged alternately along the signal conductor,
    Antenna device.
  2.  前記導体プレーンと平行な面に対して平面視した時、前記スロットの長手方向にある端点の内、一方の端点及び他方の端点を結ぶ線分と、前記信号導体の中心線とが、所定の角度をもって交差する、
     請求項1に記載のアンテナ装置。
    When viewed in plan with respect to a plane parallel to the conductor plane, a line segment connecting one end point and the other end point of the end points in the longitudinal direction of the slot, and the center line of the signal conductor have a predetermined line. Intersect at an angle,
    The antenna device according to claim 1.
  3.  前記信号導体の少なくとも一方の端部は、給電線と接続し、
     前記給電線は、無線回路から送られる信号を、前記信号導体に入力する、
     請求項1又は2に記載のアンテナ装置。
    At least one end of the signal conductor is connected to a feeder line,
    The feeder line inputs a signal sent from a radio circuit to the signal conductor.
    The antenna device according to claim 1 or 2.
  4.  第1プレーンとして、前記導体プレーンを備え、
     第2プレーンとして、他の導体プレーンをさらに備え、
     前記第2プレーンは、前記第1プレーンと対向し、
     前記信号導体は、前記第1プレーン及び前記第2プレーンの間に位置し、
     前記第2プレーンは、前記複数の導体ビアを介して前記導体プレーン及び前記信号導体と電気的に接続する、
     請求項1~3のいずれかに記載のアンテナ装置。
    As the first plane, comprising the conductor plane,
    The second plane further includes another conductor plane,
    The second plane faces the first plane,
    The signal conductor is located between the first plane and the second plane;
    The second plane is electrically connected to the conductor plane and the signal conductor through the plurality of conductor vias.
    The antenna device according to any one of claims 1 to 3.
  5.  第1プレーンとして、前記導体プレーンを備え、
     第2プレーンとして、他の導体プレーンをさらに備え、
     前記第2プレーンは、前記第1プレーンと対向し、
     前記信号導体は、前記第1プレーン及び前記第2プレーンの間に位置し、
     前記第2プレーンは、他の複数の導体ビアを介して前記信号導体と電気的に接続する、
     請求項1~3のいずれかに記載のアンテナ装置。
    As the first plane, comprising the conductor plane,
    The second plane further includes another conductor plane,
    The second plane faces the first plane,
    The signal conductor is located between the first plane and the second plane;
    The second plane is electrically connected to the signal conductor through another plurality of conductor vias.
    The antenna device according to any one of claims 1 to 3.
  6.  導体プレーンと対向する、線状の信号導体と、
     前記導体プレーン及び前記各信号導体と電気的に接続する、複数の導体ビアと、
     前記導体プレーンに設けられた複数のスロットと、
     を有するアンテナを少なくとも2つ備え、
    (1)前記2つのアンテナにおいて、
     前記信号導体が互いに実質的に平行であり、
     前記スロットが互いの延長線上で実質的に直交し、
    (2)前記2つのアンテナのそれぞれにおいて、
     前記導体プレーンと平行な面に対して平面視した時、前記スロットは、前記信号導体と所定の角度をもって交差しており、
     前記導体ビア及び前記スロットは、前記信号導体に沿って交互に並んでいる、
     アンテナ装置。
    A linear signal conductor facing the conductor plane;
    A plurality of conductor vias electrically connected to the conductor plane and the signal conductors;
    A plurality of slots provided in the conductor plane;
    Comprising at least two antennas having
    (1) In the two antennas,
    The signal conductors are substantially parallel to each other;
    The slots are substantially orthogonal on each other's extension;
    (2) In each of the two antennas,
    When viewed in plan with respect to a plane parallel to the conductor plane, the slot intersects the signal conductor at a predetermined angle;
    The conductor vias and the slots are arranged alternately along the signal conductor,
    Antenna device.
  7.  信号入力装置をさらに備え、
     前記信号入力装置は、互いに90°の位相差をもつ2つ信号の一方を前記2つのアンテナの一方に入力し、かつ前記2つの信号の他方を前記2つのアンテナの他方に入力する、
     請求項6に記載のアンテナ装置。
    A signal input device;
    The signal input device inputs one of two signals having a phase difference of 90 ° to one of the two antennas, and inputs the other of the two signals to the other of the two antennas.
    The antenna device according to claim 6.
  8.  請求項1から7のいずれかに記載のアンテナ装置を、少なくとも1つ備えることを特徴とする電子装置。 An electronic device comprising at least one antenna device according to any one of claims 1 to 7.
PCT/JP2014/003216 2013-10-03 2014-06-17 Antenna device WO2015049816A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015540362A JPWO2015049816A1 (en) 2013-10-03 2014-06-17 Antenna device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-208063 2013-10-03
JP2013208063 2013-10-03

Publications (1)

Publication Number Publication Date
WO2015049816A1 true WO2015049816A1 (en) 2015-04-09

Family

ID=52778423

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/003216 WO2015049816A1 (en) 2013-10-03 2014-06-17 Antenna device

Country Status (2)

Country Link
JP (1) JPWO2015049816A1 (en)
WO (1) WO2015049816A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11271310B2 (en) 2019-04-10 2022-03-08 Denso Corporation Antenna device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007081825A (en) * 2005-09-14 2007-03-29 Toyota Central Res & Dev Lab Inc Leakage-wave antenna
US20100194500A1 (en) * 2009-02-05 2010-08-05 Fujikura Ltd. Leaky cable

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007081825A (en) * 2005-09-14 2007-03-29 Toyota Central Res & Dev Lab Inc Leakage-wave antenna
US20100194500A1 (en) * 2009-02-05 2010-08-05 Fujikura Ltd. Leaky cable

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11271310B2 (en) 2019-04-10 2022-03-08 Denso Corporation Antenna device

Also Published As

Publication number Publication date
JPWO2015049816A1 (en) 2017-03-09

Similar Documents

Publication Publication Date Title
RU2696676C1 (en) Ridge waveguide without side walls on base of printed-circuit board and containing its multilayer antenna array
US11837787B2 (en) High frequency filter and phased array antenna comprising such a high frequency filter
US8816936B2 (en) Antenna and printed-circuit board using waveguide structure
JP4918594B2 (en) Antenna based on metamaterial structure
JP4736658B2 (en) Leaky wave antenna
US7872609B2 (en) Circular waveguide antenna and circular waveguide array antenna
JP5327214B2 (en) Artificial medium
US9385428B2 (en) Metamaterial structure
KR101378477B1 (en) Substrate integrated waveguide antenna
WO2005067549A2 (en) Multi frequency magnetic dipole antenna structures and methods of reusing the volume of an antenna
JPWO2014045966A1 (en) Dual polarization antenna
WO2012093603A1 (en) Electromagnetic wave transmission sheet
US20130069848A1 (en) Structure
JP6010213B2 (en) Antenna device and design method thereof
WO2020124251A1 (en) Dual end-fed broadside leaky-wave antenna
WO2016165042A1 (en) Patch antenna having programmable frequency and polarization
US10153553B2 (en) Antenna device having patch antenna
CN111682312B (en) Asymmetrically cut patch antenna along E plane
Bertin et al. Switched beam antenna employing metamaterial-inspired radiators
CN113097743A (en) Single-layer realizable high-aperture-efficiency parallel-fed waveguide slot array antenna
US8253641B1 (en) Wideband wide scan antenna matching structure using electrically floating plates
WO2015049816A1 (en) Antenna device
US11362405B2 (en) Filter
JP4637939B2 (en) Stacked aperture array antenna
EP3918668B1 (en) Leaky wave antenna

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14851022

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015540362

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14851022

Country of ref document: EP

Kind code of ref document: A1