WO2015046155A1 - 通信制御方法 - Google Patents

通信制御方法 Download PDF

Info

Publication number
WO2015046155A1
WO2015046155A1 PCT/JP2014/075110 JP2014075110W WO2015046155A1 WO 2015046155 A1 WO2015046155 A1 WO 2015046155A1 JP 2014075110 W JP2014075110 W JP 2014075110W WO 2015046155 A1 WO2015046155 A1 WO 2015046155A1
Authority
WO
WIPO (PCT)
Prior art keywords
communication
coverage
user terminal
control method
information
Prior art date
Application number
PCT/JP2014/075110
Other languages
English (en)
French (fr)
Inventor
裕之 安達
憲由 福田
真人 藤代
空悟 守田
Original Assignee
京セラ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京セラ株式会社 filed Critical 京セラ株式会社
Priority to JP2015539209A priority Critical patent/JPWO2015046155A1/ja
Priority to US15/024,359 priority patent/US9699767B2/en
Priority to EP14849680.5A priority patent/EP3051911B1/en
Publication of WO2015046155A1 publication Critical patent/WO2015046155A1/ja
Priority to US15/166,811 priority patent/US10397900B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/06Selective distribution of broadcast services, e.g. multimedia broadcast multicast service [MBMS]; Services to user groups; One-way selective calling services
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/90Services for handling of emergency or hazardous situations, e.g. earthquake and tsunami warning systems [ETWS]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/27Control channels or signalling for resource management between access points
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/30Resource management for broadcast services
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/56Allocation or scheduling criteria for wireless resources based on priority criteria
    • H04W72/563Allocation or scheduling criteria for wireless resources based on priority criteria of the wireless resources
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/14Direct-mode setup
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W92/00Interfaces specially adapted for wireless communication networks
    • H04W92/16Interfaces between hierarchically similar devices
    • H04W92/18Interfaces between hierarchically similar devices between terminal devices

Definitions

  • the present invention relates to a communication control method used in a mobile communication system that supports D2D communication.
  • D2D communication direct inter-terminal communication is performed without going through a network within a terminal group composed of a plurality of adjacent user terminals.
  • cellular communication which is normal communication in a mobile communication system
  • user terminals communicate via a network.
  • D2D communication can perform wireless communication with low transmission power between adjacent user terminals, the power consumption of the user terminal and the load on the network can be reduced compared to cellular communication.
  • D2D communication is performed under the management of the network (base station).
  • a user terminal group that performs D2D communication includes a user terminal that is out of the coverage of the mobile communication system, information from the network cannot be transmitted to the user terminal.
  • an object of the present invention is to provide a communication control method capable of appropriately controlling D2D communication.
  • the communication control method is used in a mobile communication system that supports D2D communication that is direct inter-terminal communication.
  • the communication control method includes a step A in which a first user terminal within the coverage of the mobile communication system receives broadcast information transmitted from a base station, and the first user terminal covers the coverage of the mobile communication system.
  • Step B for transferring the broadcast information to an external second user terminal
  • Step C for receiving the broadcast information transferred from the first user terminal by the second user terminal.
  • the communication control method is a method used in a mobile communication system that supports D2D communication that is direct inter-terminal communication.
  • the first user terminal in the RRC connection mode within the coverage of the base station of the mobile communication system transmits request information for requesting allocation of radio resources used for the D2D communication to the base station.
  • the communication control method is a method used in a mobile communication system that supports D2D communication that is direct terminal-to-terminal communication.
  • the base station of the mobile communication system determines a radio resource to be used for the D2D communication based on the number of user terminals interested in the D2D communication, and the base station includes: Broadcasting the resource allocation information indicating the determined radio resource.
  • the communication control method is a method used in a mobile communication system that supports D2D communication that is direct terminal-to-terminal communication. Radio resources used for the D2D communication are defined in advance.
  • the communication control method includes a step in which a first user terminal outside the coverage of the mobile communication system autonomously performs the D2D communication using the predefined radio resource.
  • FIG. 6 is a diagram for explaining D2D-cellular interference in a partial coverage case (part 1);
  • FIG. 10 is a diagram for explaining D2D-cellular interference in the Partial coverage case (part 2);
  • D2D resource management method which concerns on 1st Embodiment.
  • D2D resource management method which concerns on 1st Embodiment.
  • wireless resource which concerns on 1st Embodiment.
  • the communication control method according to the first embodiment is used in a mobile communication system that supports D2D communication that is direct inter-terminal communication.
  • the communication control method includes a step A in which a first user terminal within the coverage of the mobile communication system receives broadcast information transmitted from a base station, and the first user terminal covers the coverage of the mobile communication system.
  • Step B for transferring the broadcast information to an external second user terminal
  • Step C for receiving the broadcast information transferred from the first user terminal by the second user terminal.
  • the broadcast information includes D2D resource information indicating radio resources that can be used for the D2D communication.
  • the broadcast information includes alarm information distributed by an alarm distribution system.
  • the communication control method uses the radio resource that can be used for the D2D communication based on the broadcast information, and the D2D communication between the first user terminal and the second user terminal.
  • the step of performing is further included.
  • a part of radio resources available for the D2D communication is reserved as a special radio resource for transferring the broadcast information.
  • the first user terminal transfers the broadcast information to the second user terminal using the special radio resource.
  • a part of radio resources that can be used for the D2D communication is secured as a special radio resource for transmitting information that requires high reliability and low delay in the D2D communication.
  • the first user terminal when the first user terminal receives the warning information in the step A, the first user terminal can use the wireless that can be used for the D2D communication in the step B.
  • the resource is preferentially assigned to the transfer of the alarm information, and then the alarm information is transferred to the second user terminal.
  • the first user terminal is located within the coverage of the mobile communication system in a mobile communication system that supports D2D communication that is direct inter-terminal communication.
  • the first user terminal receives a broadcast information transmitted from a base station, a control unit transfers the broadcast information to a second user terminal outside the coverage of the mobile communication system, Have
  • the second user terminal according to the first embodiment is located outside the coverage of the mobile communication system in a mobile communication system that supports D2D communication that is direct inter-terminal communication.
  • the second user terminal receives the broadcast information transmitted from the first user terminal, which is broadcast information received from a base station by the first user terminal within the coverage of the mobile communication system. It has a receiving part.
  • the communication control method is a method used in a mobile communication system that supports D2D communication that is direct inter-terminal communication.
  • the first user terminal in the RRC connection mode within the coverage of the base station of the mobile communication system transmits request information for requesting allocation of radio resources used for the D2D communication to the base station.
  • the communication control method further includes a step C in which the first user terminal transfers the resource allocation information to a second user terminal outside the coverage.
  • the communication control method is a method used in a mobile communication system that supports D2D communication that is direct inter-terminal communication.
  • the base station of the mobile communication system determines a radio resource to be used for the D2D communication based on the number of user terminals interested in the D2D communication, and the base station includes: Broadcasting the resource allocation information indicating the determined radio resource.
  • the communication control method includes a step C in which a first user terminal within the coverage of the base station receives the resource allocation information, and a step in which the first user terminal is out of the coverage. And D for transferring the resource allocation information to the second user terminal.
  • the communication control method is a method used in a mobile communication system that supports D2D communication that is direct inter-terminal communication. Radio resources used for the D2D communication are defined in advance.
  • the communication control method includes a step in which a first user terminal outside the coverage of the mobile communication system autonomously performs the D2D communication using the predefined radio resource.
  • FIG. 1 is a configuration diagram of an LTE system according to the first embodiment.
  • the LTE system according to the first embodiment includes a UE (User Equipment) 100, an E-UTRAN (Evolved-UMTS Terrestrial Radio Access Network) 10, and an EPC (Evolved Packet Core) 20.
  • UE User Equipment
  • E-UTRAN Evolved-UMTS Terrestrial Radio Access Network
  • EPC Evolved Packet Core
  • the UE 100 corresponds to a user terminal.
  • the UE 100 is a mobile communication device, and performs wireless communication with a connection destination cell (serving cell).
  • the configuration of the UE 100 will be described later.
  • the E-UTRAN 10 corresponds to a radio access network.
  • the E-UTRAN 10 includes an eNB 200 (evolved Node-B).
  • the eNB 200 corresponds to a base station.
  • the eNB 200 is connected to each other via the X2 interface. The configuration of the eNB 200 will be described later.
  • the eNB 200 manages one or a plurality of cells and performs radio communication with the UE 100 that has established a connection with the own cell.
  • the eNB 200 has a radio resource management (RRM) function, a user data routing function, a measurement control function for mobility control / scheduling, and the like.
  • RRM radio resource management
  • Cell is used as a term indicating a minimum unit of a radio communication area, and is also used as a term indicating a function of performing radio communication with the UE 100.
  • the EPC 20 corresponds to a core network.
  • the LTE system network is configured by the E-UTRAN 10 and the EPC 20.
  • the EPC 20 includes an MME (Mobility Management Entity) / S-GW (Serving-Gateway) 300.
  • the MME performs various mobility controls for the UE 100.
  • the S-GW controls user data transfer.
  • the MME / S-GW 300 is connected to the eNB 200 via the S1 interface.
  • FIG. 2 is a block diagram of the UE 100.
  • the UE 100 includes a plurality of antennas 101, a radio transceiver 110, a user interface 120, a GNSS (Global Navigation Satellite System) receiver 130, a battery 140, a memory 150, and a processor 160.
  • the memory 150 and the processor 160 constitute a control unit.
  • the UE 100 may not have the GNSS receiver 130.
  • the memory 150 may be integrated with the processor 160, and this set (that is, a chip set) may be used as the processor 160 '.
  • the antenna 101 and the wireless transceiver 110 are used for transmitting and receiving wireless signals.
  • the radio transceiver 110 converts the baseband signal (transmission signal) output from the processor 160 into a radio signal and transmits it from the antenna 101. Further, the radio transceiver 110 converts a radio signal received by the antenna 101 into a baseband signal (received signal) and outputs the baseband signal to the processor 160.
  • the user interface 120 is an interface with a user who owns the UE 100, and includes, for example, a display, a microphone, a speaker, and various buttons.
  • the user interface 120 receives an operation from the user and outputs a signal indicating the content of the operation to the processor 160.
  • the GNSS receiver 130 receives a GNSS signal and outputs the received signal to the processor 160 in order to obtain location information indicating the geographical location of the UE 100.
  • the battery 140 stores power to be supplied to each block of the UE 100.
  • the memory 150 stores a program executed by the processor 160 and information used for processing by the processor 160.
  • the processor 160 includes a baseband processor that modulates / demodulates and encodes / decodes a baseband signal, and a CPU (Central Processing Unit) that executes programs stored in the memory 150 and performs various processes. .
  • the processor 160 may further include a codec that performs encoding / decoding of an audio / video signal.
  • the processor 160 executes various processes and various communication protocols described later.
  • FIG. 3 is a block diagram of the eNB 200.
  • the eNB 200 includes an antenna 201, a radio transceiver 210, a network interface 220, a memory 230, and a processor 240.
  • the memory 230 and the processor 240 constitute a control unit.
  • the antenna 201 and the wireless transceiver 210 are used for transmitting and receiving wireless signals.
  • the radio transceiver 210 converts the baseband signal (transmission signal) output from the processor 240 into a radio signal and transmits it from the antenna 201.
  • the radio transceiver 210 converts a radio signal received by the antenna 201 into a baseband signal (received signal) and outputs the baseband signal to the processor 240.
  • the network interface 220 is connected to the neighboring eNB 200 via the X2 interface and is connected to the MME / S-GW 300 via the S1 interface.
  • the network interface 220 is used for communication performed on the X2 interface and communication performed on the S1 interface.
  • the memory 230 stores a program executed by the processor 240 and information used for processing by the processor 240.
  • the processor 240 includes a baseband processor that performs modulation / demodulation and encoding / decoding of a baseband signal, and a CPU that executes a program stored in the memory 230 and performs various processes.
  • the processor 240 executes various processes and various communication protocols described later.
  • FIG. 4 is a protocol stack diagram of a radio interface in the LTE system. As shown in FIG. 4, the radio interface protocol is divided into the first to third layers of the OSI reference model, and the first layer is a physical (PHY) layer.
  • the second layer includes a MAC (Medium Access Control) layer, an RLC (Radio Link Control) layer, and a PDCP (Packet Data Convergence Protocol) layer.
  • the third layer includes an RRC (Radio Resource Control) layer.
  • the physical layer performs encoding / decoding, modulation / demodulation, antenna mapping / demapping, and resource mapping / demapping. Between the physical layer of UE100 and the physical layer of eNB200, user data and a control signal are transmitted via a physical channel.
  • the MAC layer performs data priority control, retransmission processing by hybrid ARQ (HARQ), and the like. Between the MAC layer of the UE 100 and the MAC layer of the eNB 200, user data and control signals are transmitted via a transport channel.
  • the MAC layer of the eNB 200 includes a scheduler for determining (scheduling) an uplink / downlink transport format (transport block size, modulation / coding scheme) and an allocation resource block to the UE 100.
  • the RLC layer transmits data to the RLC layer on the receiving side using the functions of the MAC layer and the physical layer. Between the RLC layer of the UE 100 and the RLC layer of the eNB 200, user data and control signals are transmitted via a logical channel.
  • the PDCP layer performs header compression / decompression and encryption / decryption.
  • the RRC layer is defined only in the control plane that handles control signals. Control signals (RRC messages) for various settings are transmitted between the RRC layer of the UE 100 and the RRC layer of the eNB 200.
  • the RRC layer controls the logical channel, the transport channel, and the physical channel according to establishment, re-establishment, and release of the radio bearer.
  • RRC connection When there is a connection (RRC connection) between the RRC of the UE 100 and the RRC of the eNB 200, the UE 100 is in a connected state (RRC connection mode), and otherwise, the UE 100 is in an idle state (RRC idle mode).
  • the NAS (Non-Access Stratum) layer located above the RRC layer performs session management and mobility management.
  • FIG. 5 is a configuration diagram of a radio frame used in the LTE system.
  • OFDMA Orthogonal Frequency Division Multiple Access
  • SC-FDMA Single Carrier Frequency Multiple Access
  • the radio frame is composed of 10 subframes arranged in the time direction.
  • Each subframe is composed of two slots arranged in the time direction.
  • the length of each subframe is 1 ms, and the length of each slot is 0.5 ms.
  • Each subframe includes a plurality of resource blocks (RB) in the frequency direction and includes a plurality of symbols in the time direction.
  • Each resource block includes a plurality of subcarriers in the frequency direction.
  • a resource element is composed of one subcarrier and one symbol.
  • frequency resources are configured by resource blocks, and time resources are configured by subframes (or slots).
  • the section of the first few symbols of each subframe is an area mainly used as a physical downlink control channel (PDCCH) for transmitting a downlink control signal.
  • the remaining part of each subframe is an area that can be used mainly as a physical downlink shared channel (PDSCH) for transmitting downlink user data.
  • PDCH physical downlink control channel
  • PDSCH physical downlink shared channel
  • both ends in the frequency direction in each subframe are regions used mainly as physical uplink control channels (PUCCH) for transmitting uplink control signals.
  • the remaining part in each subframe is an area that can be used mainly as a physical uplink shared channel (PUSCH) for transmitting uplink user data.
  • PUSCH physical uplink shared channel
  • D2D communication The LTE system according to the first embodiment supports D2D communication that is direct inter-terminal communication (UE-UE communication).
  • FIG. 6 is a diagram for explaining D2D communication according to the first embodiment.
  • D2D communication will be described in comparison with cellular communication, which is normal communication of the LTE system.
  • Cellular communication is a communication mode in which a data path passes through a network (E-UTRAN10, EPC20).
  • a data path is a transmission path for user data.
  • D2D communication is a communication mode in which a data path set between UEs does not pass through a network.
  • a plurality of UEs 100 (UE 100-1 and UE 100-2) that are close to each other directly perform radio communication with low transmission power.
  • the frequency band of D2D communication may be shared with the frequency band of cellular communication, or may be a frequency band different from the frequency band of cellular communication.
  • the frequency band of D2D communication is shared with the frequency band of cellular communication.
  • the radio resource that can be used for cellular communication and / or the radio resource that can be used for D2D communication may be variable in accordance with traffic conditions.
  • broadcast is mainly assumed as a form of D2D communication in the lower layer.
  • CSMA Carrier Sense Multiple Access
  • Such D2D communication by broadcasting is particularly suitable for public safety applications during disasters.
  • encryption etc. in an upper layer it can be applied to group cast (multicast) or unicast.
  • FIG. 7 is a diagram for explaining the operating environment according to the first embodiment.
  • a plurality of UEs 100 form a UE group (hereinafter referred to as “D2D group”) that performs D2D communication.
  • D2D group may be referred to as a cluster.
  • the D2D group shown in FIG. 7 is formed by the UE 100-1 within the coverage of the eNB 200 (hereinafter simply referred to as “coverage”) and the UE 100-2 outside the coverage.
  • the UE 100-1 and the UE 100-2 are synchronized.
  • each of the UE 100-1 and the UE 100-2 may recognize the partner UE by the proximity discovery (Discovery) process.
  • Discovery proximity discovery
  • Partial coverage a case where some UEs 100 in the D2D group are located in the coverage and the remaining UEs 100 are located outside the coverage is referred to as “Partial coverage”.
  • Partial coverage case a Partial coverage case is mainly assumed.
  • the In coverage case includes a case where UEs 100 forming a D2D group exist in the same cell, and a case where UEs 100 forming a D2D group exist in a plurality of cells.
  • FIG. 8 is a diagram for explaining the D2D-cellular interference in the Partial coverage case. In the following, it is assumed that the frequency band of D2D communication is shared with the uplink frequency band of cellular communication.
  • the D2D transmission is transmitted to the uplink of the UE in the coverage other than the UE 100-1 (cellular UE). There is a risk of interference.
  • FIG. 9 is a diagram for explaining the transmission / reception timing overlap in the Partial coverage case.
  • D2D communication is performed under the management of the network (eNB 200).
  • FIG. 10 is a diagram for explaining the communication control method (D2D resource management method) according to the first embodiment.
  • the communication control method includes step A in which UE 100-1 in the coverage receives broadcast information transmitted from eNB 200.
  • the broadcast information includes D2D resource information indicating radio resources (for example, resource blocks and subframes) that can be used for D2D communication.
  • the broadcast information is, for example, a system information block (SIB).
  • SIB is a common RRC message that is commonly applied to a plurality of in-coverage UEs.
  • radio resources that can be used for D2D communication are broadcast from the eNB 200 to the in-coverage UE 100-1.
  • the D2D resource is managed by the eNB 200. Therefore, since the UE 100-1 in the coverage area performs D2D communication using the radio resources managed by the eNB 200, it is possible to avoid D2D-cellular interference.
  • resource allocation in cellular communication is generally performed dynamically on the PDCCH.
  • D2D resources are not dynamically scheduled, and quasi-static scheduling is applied. Therefore, unlike resource allocation in cellular communication, it is preferable to notify D2D resources by SIB.
  • in-coverage UE 100-1 transfers the broadcast information to UE 100-2 that is out of coverage, and UE 100-2 is transferred from UE 100-1. Receiving broadcast information.
  • the in-coverage UE 100-1 transfers the D2D resource information to the out-of-coverage UE 100-2 by broadcasting again.
  • the UE 100-2 outside the coverage area also knows the D2D resource and performs D2D communication using the radio resource managed by the eNB 200, so that transmission / reception timing duplication can be avoided.
  • the communication control method it is possible to avoid D2D-cellular interference and transmission / reception timing duplication in the Partial coverage case.
  • D2D-cellular interference and transmission / reception timing duplication can be avoided.
  • the communication control method according to the first embodiment can be applied not only to D2D resource information but also to alarm information distributed by an alarm distribution system.
  • the alarm distribution system include ETWS (Earthquake and Tsunami Warning System), CMAS (Commercial Mobile Alert System), and the like.
  • Alarm information is broadcast by SIB.
  • FIG. 11 is a diagram for explaining the communication control method (alarm transfer method) according to the first embodiment.
  • the in-coverage UE 100-1 receives the alarm information broadcast by the SIB from the eNB 200 and then broadcasts the alarm information again to transfer it to the out-of-coverage UE 100-2. Thereby, the alarm information distributed by the alarm distribution system can be acquired even in the UE 100-2 outside the coverage.
  • a part of the D2D resource is secured as a special radio resource for transferring broadcast information (D2D resource information, alarm information).
  • FIG. 12 is a diagram for explaining D2D resources including special radio resources.
  • D2D resources composed of a plurality of resource blocks are periodically allocated.
  • a part of the D2D resource is reserved without being used for data transmission in D2D communication as a special radio resource for transferring broadcast information (special resource). Therefore, the in-coverage UE 100-1 can transfer the broadcast information to the out-of-coverage UE 100-2 more reliably and with low delay.
  • Special radio resources are determined in advance.
  • a special radio resource may be determined according to a predetermined rule.
  • a special radio resource may be designated from the eNB 200.
  • the eNB 200 may transmit information indicating a special radio resource by broadcasting.
  • ENB 200 restricts the use of D2D resources (including special radio resources) in cellular communication.
  • FIG. 13 is an operation sequence diagram according to the first embodiment.
  • step S11 the eNB 200 secures D2D resources and broadcasts D2D resource information (D2D resource notification) by SIB.
  • the in-coverage UE 100-1 receives the D2D resource information from the eNB 200.
  • step S12 the in-coverage UE 100-1 transmits D2D resource information by broadcast using a special radio resource. Since special radio resources are reserved in advance, the D2D resource information can be transferred to the out-of-coverage UE 100-2 with high reliability and low delay.
  • step S13 the in-coverage UE 100-1 and the out-of-coverage UE 100-2 perform D2D communication using D2D resources other than special radio resources.
  • step S14 the eNB 200 broadcasts alarm information (ETWS information or CMAS information) by SIB.
  • the in-coverage UE 100-1 receives the alarm information from the eNB 200.
  • step S15 the in-coverage UE 100-1 broadcasts alarm information using a special radio resource. Since the special radio resource is secured in advance, the alarm information can be transferred to the out-of-coverage UE 100-2 with high reliability and low delay.
  • the D2D resource is notified from the eNB 200 to the in-coverage UE 100-1 by broadcast.
  • the UE 100-1 within the coverage broadcasts the D2D resource information again to transfer it to the UE 100-2 outside the coverage. Therefore, even in the case of partial coverage, it is possible to avoid D2D-cellular interference and overlapping transmission / reception timing.
  • a part of the D2D resource is secured as a special radio resource for transferring broadcast information. Therefore, broadcast information (D2D resource information, alarm information) can be transferred to the out-of-coverage UE 100-2 more reliably and with low delay.
  • the Partial coverage case has been mainly described, but the present invention can also be applied to the In coverage case.
  • a part of the D2D resource may be secured as a special radio resource for transmitting information that requires high reliability and low delay in D2D communication.
  • Information that requires high reliability and low delay is control signals or data that requires high quality of service (QoS) such as voice data (especially emergency calls).
  • QoS quality of service
  • a special radio resource can be used for transmitting information that requires high reliability and low delay, instead of using a special radio resource for transferring broadcast information.
  • the control UE (UE 100-1) assigns the D2D resource preferentially to the transfer of the alarm information, and then sends it to the UE 100-2 outside the coverage area.
  • Alarm information may be forwarded to the user.
  • each of UE1 to UE3 is a control UE within the coverage.
  • each of UE1 to UE3 forms a D2D group, it receives a special radio resource assignment for its own group from eNB 200, and transmits alarm information or transmits information that requires high reliability and low delay.
  • Use special radio resources Or you may determine a special radio
  • the control UE that has detected the presence of the proximity control UE notifies the proximity control UE of a special radio resource being used or a special radio resource desired to be used by broadcast or unicast.
  • the proximity control UE makes a response (OK / NG or the like) to the notification.
  • special radio resource allocation by the eNB 200 and negotiation between control UEs may be used in combination.
  • the D2D resource is secured as a special radio resource for transmitting information that requires high reliability and low delay in D2D communication.
  • special radio resources may be used not only for D2D transmission but also for notification for D2D transmission.
  • the special radio resource may be a radio resource for notifying transmission of information that requires high reliability and low delay.
  • the LTE system has been described as an example of the mobile communication system, but the present invention is not limited to the LTE system, and the present invention may be applied to a system other than the LTE system.
  • the first embodiment described above may be appropriately combined with the second embodiment described later.
  • D2D direct communication is not limited to a dedicated carrier and can be performed on the same carrier as normal LTE. There is room for consideration as to how the network controls which resources are used for D2D communication (especially in-coverage UEs).
  • 1-to-M D2D communication is unidirectional, and there is no feedback in layer 2 (MAC / RLC / PDCP).
  • Out-of-coverage UEs without this information may broadcast D2D communication during the time that the out-of-coverage D2D receiving UE (UE 100-1 in FIG. 7) attempts to transmit to the eNB in a cellular manner. . Under this state, the UE 100-1 may not be able to receive broadcast D2D communication from the UE 100-2. If D2D communication is performed on the downlink, this problem can be further exacerbated because D2D transmission from UE 100-2 interferes with the downlink cellular signal.
  • FIG. 15 is a diagram showing an in-coverage multi-cell scenario. As shown in FIG. 15, in order to realize direct D2D communication between UEs located in different cells, the same radio resource needs to be allocated to each D2D UE for D2D communication by each cell. If in-coverage multi-cell scenarios are supported in Release 12, D2D capable cells should coordinate.
  • Centralized resource allocation means that all D2D UEs are individually scheduled by the eNB. Therefore, all UEs involved in D2D communication must operate in the RRC connection mode.
  • Quasi-distributed resource allocation means that the eNB allocates D2D resources to each group.
  • the eNB transmits resource allocation information to each of the cluster head UEs.
  • D2D UEs can be scheduled by the associated cluster head UE. In this scheme, at least the cluster head UE must operate in the RRC connected mode.
  • all D2D UEs are allocated the same D2D resource by the eNB (or network).
  • the D2D UE can autonomously use these resources for D2D communication (eg, via CSMA).
  • this resource allocation scheme is selected, the UE for D2D communication may be able to transmit D2D in the RRC idle mode.
  • Table 1 shows entities responsible for D2D link scheduling within the group for the D2D subframes allocated by the eNB.
  • the centralized resource allocation method If the centralized resource allocation method is selected, all UEs related to D2D transmission must operate in the RRC connection mode. When the semi-distributed resource allocation scheme is selected, at least the cluster head UE must operate in the RRC connection mode.
  • FIG. 16 is a diagram illustrating a procedure for centralized resource allocation for an in-coverage scenario. As shown in FIG. 16, in the in-coverage scenario, the following three steps are performed to realize centralized resource allocation.
  • Step 1 Each D2D UE transmits an SR (scheduling request) and a buffer status report to the eNB. Thereby, eNB can judge the quantity of D2D resource required for each D2D UE.
  • SR scheduling request
  • eNB can judge the quantity of D2D resource required for each D2D UE.
  • Step 2 The eNB allocates D2D communication resource (s) for each D2D UE.
  • D2D communication resource s
  • both single resource assignments and multiple resource assignments eg, using SPS are possible.
  • Step 3 D2D communication.
  • the centralized resource allocation method is very similar to the resource allocation method for cellular communication. Therefore, the collision of D2D Tx (transmission) / Rx (reception) can be easily avoided. If D2D communication is no longer possible for some D2D UEs in the group (for example, D2D coverage loss based on discovery requirements), eNB can also return some D2D UEs to cellular communication It is. However, in order to support an in-coverage multi-cell scenario, scheduling coordination is required between neighboring cells. Further study is needed as to how much cooperation will be carried out. Because of the potential complexity, it would be worth comparing the advantages and disadvantages associated with this resource allocation scheme.
  • Cons: -Signaling overhead may increase depending on the number of D2D UEs requesting transmission resources.
  • FIG. 17 is a diagram showing a procedure for centralized resource allocation for a partial coverage scenario. As shown in FIG. 17, in the partial coverage scenario, the following three steps are assumed for the case where traffic is generated from an out-of-coverage UE.
  • Step 1 The out-of-coverage UE transmits the SR and the buffer status to the relay UE using the D2D communicable resource.
  • the relay UE transfers the SR and the buffer status report to the eNB.
  • Step 2 The eNB allocates D2D communication resources and transmits the information to the relay UE.
  • the relay UE forwards this information to all members of the group.
  • Other in-coverage UEs may also receive this information from the relay UE.
  • Step 3 D2D communication.
  • the eNB selects a UE that relays the eNB message to the remaining out-of-coverage D2D UEs from among each D2D group within the cellular coverage. Since the eNB is responsible for scheduling all D2D links, it is assumed that the eNB knows whether the signal transmitted by the D2D UE can reach all other D2D UEs in the group. As described in Step 1, this resource allocation scheme requires that the out-of-area UE sends an SR and a buffer status report to the eNB via the relay UE. The complexity of the eNB and relay UE required for this requirement is considerable.
  • -Higher frequency efficiency may be achieved by reusing cellular UE resources for D2D.
  • Cons: -Signaling overhead may increase depending on the number of D2D UEs requesting transmission resources.
  • the cluster head is an eNB.
  • Each D2D group has a cluster head UE.
  • Option 1 resource allocation scheme is the same as the centralized resource allocation scheme for scenarios within coverage. For this reason, the following procedure and analysis are performed based on Option 2.
  • the cluster head UE is only allowed to control D2D resources allocated by the eNB. The cluster head UE cannot use other D2D resources that are not assigned to the cluster head UE. This assumes a resource allocation procedure based on the following three steps.
  • FIG. 18 is a diagram showing a quasi-distributed resource allocation procedure for an in-coverage scenario.
  • Step 1 The UE transmits an SR and a buffer status report to the cluster head UE. Assume that there is a special subframe, eg, a discovery subframe, that can be used by an out-of-coverage UE to request resources for access from the cluster head UE.
  • a special subframe eg, a discovery subframe
  • Step 2 The cluster head UE requests D2D communication resources from the eNB based on the total resources required by all D2D UEs in the group. This allows the eNB to determine the amount of required D2D resources for the D2D group. Allocate multiple resources (eg, using SPS). Other in-coverage UEs may receive this information. The cluster head UE may simply report the number of in-group D2D UEs, not the buffer status information.
  • Step 3 The cluster head UE schedules D2D transmission or simply transfers resources allocated from the eNB to other D2D UEs in the group. Non-cluster head UEs can transmit (broadcast) on the resources allocated or notified to the remaining D2D UEs in the group.
  • D2D resources may be scheduled for use by a specific D2D UE by the cluster head UE (ie, no non-contention based scheduling is required). Alternatively, D2D resources can be scheduled for use by all D2D UEs in the group by the cluster head UE (ie, using contention based scheduling). As described in step 1, special subframes or discovery subframes are defined for non-cluster head UEs to send SR and buffer status reports to cluster head UEs prior to allocation of dedicated D2D resources. There is a need.
  • This method has the following advantages and disadvantages.
  • the eNB cannot be used as a cluster head for all D2D UEs because the out-of-coverage D2D UE is not directly connected to the eNB.
  • a UE with a cellular link is assigned as the cluster head and relays the eNB message to the remaining D2D UEs in the same cluster. Since the cluster head UE schedules the D2D transmission using the resources allocated by the eNB, it is possible to avoid a collision between the cellular uplink and the D2D transmission.
  • FIG. 19 is a diagram showing a quasi-distributed resource allocation procedure for a partial coverage scenario. As shown in FIG. 19, the procedure for this scheme has the following three steps for traffic generated by out-of-coverage UEs:
  • Step 1 The out-of-area UE transmits an SR and a buffer status report to the cluster head UE. Assume that there is a special subframe that can be used by the out-of-coverage UE, eg, a discovery subframe, to request access resources from the cluster head D2D UE.
  • a discovery subframe a special subframe that can be used by the out-of-coverage UE
  • Step 2 The cluster head UE requests D2D communication resources from the eNB based on the total resources required by all D2D UEs in the group. This allows the eNB to determine the amount of D2D resources required for each D2D group. Allocate multiple resources (eg, using SPS). Other in-coverage UEs may receive this information. The cluster head UE may simply report the number of in-group D2D UEs, not the buffer status information.
  • Step 3 The cluster head UE schedules D2D transmission or simply transfers resources allocated from the eNB to other D2D UEs in the group. Non-cluster head UEs can transmit (broadcast) on the resources allocated or notified to the remaining D2D UEs in the group. The cluster head UE may transfer a transmission from a D2D UE to another D2D UE when the D2D UE cannot reach one or more D2D UEs in the same group.
  • D2D resources may be scheduled for use by a specific D2D UE by the cluster head UE (ie, no non-contention based scheduling is required). Alternatively, D2D resources can be scheduled for use by all D2D UEs in the group by the cluster head UE (ie, using contention based scheduling). As described in step 1, special subframes or discovery subframes are defined for non-cluster head UEs to send SR and buffer status reports to cluster head UEs prior to allocation of dedicated D2D resources. There is a need.
  • This method has the following advantages and disadvantages.
  • the cluster head UE can relay eNB messages to D2D UEs (particularly, out-of-coverage D2D UEs) in the group.
  • Out-of-coverage scenarios are not considered in pre-release 12 networks. Therefore, some new features that are not in the current specification should be introduced to handle this scenario. As one possibility, which resources are used for the group by the cluster head UEs negotiating with each other or finding free resources for the cluster head UE (eg using CSMA). Decide.
  • FIG. 20 is a diagram showing a quasi-distributed resource allocation procedure for a scenario outside coverage. As shown in FIG. 20, the procedure assumes resource allocation based on the following two steps.
  • Step 1 The UE sends an SR and a buffer status report to the cluster head UE. Assume that there is a special subframe, eg, a discovery subframe, that can be used by an out-of-coverage UE to request resources for access from the cluster head UE.
  • a special subframe eg, a discovery subframe
  • Step 2 The cluster head UE schedules D2D transmission within the group, or notifies other D2D UEs of resources available for D2D communication.
  • Non-cluster head D2D UEs can transmit (broadcast) on the resources allocated or notified to the remaining D2D UEs in the group.
  • the cluster head UE may transfer a transmission from a D2D UE to another D2D UE when the D2D UE cannot reach one or more D2D UEs in the same group.
  • This method has the following advantages and disadvantages.
  • D2D resources can be scheduled for use by a specific D2D UE by the cluster head UE.
  • the D2D resource can be scheduled for use by all D2D UEs in the group by the cluster head UE.
  • each UE independently decides whether to perform transmission (for example, using CSMA). In other words, since there is no cluster head UE that adjusts the D2D resource, for each D2D subframe, each D2D UE determines whether to transmit in that D2D subframe.
  • FIG. 21 is a diagram illustrating a procedure for distributed resource allocation for an in-coverage scenario. As shown in FIG. 21, a resource allocation procedure based on the following three steps is assumed.
  • Step 1 The eNB determines how much D2D resources should be allocated. For example, this may be based on the number of UEs involved in D2D communication.
  • Step 2 The eNB allocates D2D communication resource (s) by broadcasting.
  • Step 3 D2D communication on available resource (s) selected by the UE among the resources notified in Step 2.
  • This procedure assumes that the eNB has to determine the amount of D2D resources that need to be allocated. This may require new mechanisms such as counting the number of UEs interested in D2D communication. Depending on the accuracy of such a mechanism, there may be situations where the allocated resources are insufficient or excessive. However, this has the advantage of reducing the complexity of supporting in-coverage multi-cell scenarios. The technology is already working well in unlicensed bands.
  • This method has the following advantages and disadvantages.
  • the UE can perform D2D transmission without a dedicated control signal from the network.
  • the allocated resource may not be used.
  • FIG. 22 is a diagram showing a distributed resource allocation procedure for a partial coverage scenario. As shown in FIG. 22, the following three steps are required for distributed resource allocation.
  • Step 1 The eNB determines how much D2D resources should be allocated. For example, this can be based on the number of UEs interested in D2D communication.
  • Step 2 The eNB allocates D2D communication resource (s) by broadcasting.
  • the relay UE notices the presence of the out-of-coverage D2D UE, the relay UE transfers this information to the out-of-coverage D2D UE.
  • the relay UE transfers this information to the out-of-coverage D2D UE.
  • Step 3 D2D communication on available resource (s) selected by the UE among the resources notified in Step 2.
  • This method has the following advantages and disadvantages.
  • the UE can perform D2D transmission without a dedicated control signal from the network.
  • the allocated resource may not be used.
  • Step 1 Each UE independently decides whether to transmit on a predefined resource (eg, using CSMA).
  • a predefined resource eg, using CSMA
  • Step 2 D2D communication.
  • This method has the following advantages and disadvantages.
  • the UE can perform D2D transmission without a dedicated control signal from the network.
  • the same resource allocation method can be applied to both in-coverage scenarios and partial coverage scenarios. Regardless of the resource allocation scheme, it is assumed that the D2D UE relays the resource allocation information to the out-of-coverage D2D UE due to the partial coverage scenario.
  • Centralized resource allocation and semi-distributed resource allocation methods control resources for each group, but distributed resource allocation methods do not provide control for each group.
  • the centralized resource allocation and quasi-distributed resource allocation schemes have the relative advantage of having higher frequency efficiency than the distributed resource allocation scheme, but at the cost of overhead signaling compared to the distributed resource allocation scheme.
  • the present invention is useful in the mobile communication field.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Multimedia (AREA)
  • Business, Economics & Management (AREA)
  • Health & Medical Sciences (AREA)
  • Emergency Management (AREA)
  • Environmental & Geological Engineering (AREA)
  • Public Health (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

 通信制御方法は、移動通信システムのカバレッジ内のUE100-1が、eNB200から送信されるブロードキャスト情報を受信するステップAと、UE100-1が、移動通信システムのカバレッジ外のUE100-2に対して、ブロードキャスト情報を転送するステップBと、UE100-2が、UE100-1から転送されたブロードキャスト情報を受信するステップCと、を有する。

Description

通信制御方法
 本発明は、D2D通信をサポートする移動通信システムにおいて用いられる通信制御方法に関する。
 移動通信システムの標準化プロジェクトである3GPP(3rd Generation Partnership Project)では、リリース12以降の新機能として、端末間(Device to Device:D2D)通信の導入が検討されている(非特許文献1参照)。
 D2D通信では、近接する複数のユーザ端末からなる端末グループ内で、ネットワークを介さずに直接的な端末間通信を行う。一方、移動通信システムの通常の通信であるセルラ通信では、ユーザ端末がネットワークを介して通信を行う。
 D2D通信は、近接するユーザ端末間で低送信電力の無線通信を行うことができるため、セルラ通信に比べて、ユーザ端末の消費電力及びネットワークの負荷を削減できる。
3GPP技術報告書 「TR 22.803 V12.2.0」 2013年6月
 D2D通信とセルラ通信との間の干渉を回避するためには、ネットワーク(基地局)の管理下でD2D通信が行われることが好ましい。
 しかしながら、D2D通信を行うユーザ端末群の中に、移動通信システムのカバレッジ外のユーザ端末が含まれるケースには、当該ユーザ端末に対してネットワークからの情報を伝送できない。
 そこで、本発明は、D2D通信を適切に制御可能な通信制御方法を提供することを目的とする。
 第1の特徴に係る通信制御方法は、直接的な端末間通信であるD2D通信をサポートする移動通信システムにおいて用いられる。前記通信制御方法は、前記移動通信システムのカバレッジ内の第1のユーザ端末が、基地局から送信されるブロードキャスト情報を受信するステップAと、前記第1のユーザ端末が、前記移動通信システムのカバレッジ外の第2のユーザ端末に対して、前記ブロードキャスト情報を転送するステップBと、前記第2のユーザ端末が、前記第1のユーザ端末から転送された前記ブロードキャスト情報を受信するステップCと、を有する。
 第2の特徴に係る通信制御方法は、直接的な端末間通信であるD2D通信をサポートする移動通信システムにおいて用いられる方法である。前記通信制御方法は、前記移動通信システムの基地局のカバレッジ内においてRRC接続モードの第1のユーザ端末が、前記D2D通信に使用する無線リソースの割り当てを要求するための要求情報を前記基地局に送信するステップAと、前記第1のユーザ端末が、前記要求情報に応じて割り当てられた前記無線リソースを示すリソース割り当て情報を前記基地局から受信するステップBと、を有する。
 第3の特徴に係る通信制御方法は、直接的な端末間通信であるD2D通信をサポートする移動通信システムにおいて用いられる方法である。前記通信制御方法は、前記移動通信システムの基地局が、前記D2D通信に興味を持つユーザ端末の数に基づいて、前記D2D通信に使用する無線リソースを決定するステップAと、前記基地局が、前記決定した無線リソースを示すリソース割り当て情報をブロードキャストするステップBと、を有する。
 第4の特徴に係る通信制御方法は、直接的な端末間通信であるD2D通信をサポートする移動通信システムにおいて用いられる方法である。前記D2D通信に使用する無線リソースが予め規定されている。前記通信制御方法は、前記移動通信システムのカバレッジ外の第1のユーザ端末が、前記予め規定された無線リソースを使用して、自律的に前記D2D通信を行うステップを有する。
第1実施形態及び第2実施形態に係るLTEシステムの構成図である。 第1実施形態及び第2実施形態に係るUEのブロック図である。 第1実施形態及び第2実施形態に係るeNBのブロック図である。 第1実施形態及び第2実施形態に係る無線インターフェイスのプロトコルスタック図である。 第1実施形態及び第2実施形態に係る無線フレームの構成図である。 第1実施形態及び第2実施形態に係るD2D通信を説明するための図である。 第1実施形態に係る動作環境を説明するための図である。 Partial coverageケースにおけるD2D-セルラ間干渉を説明するための図である(その1)。 Partial coverageケースにおけるD2D-セルラ間干渉を説明するための図である(その2)。 第1実施形態に係る通信制御方法(D2Dリソース管理方法)を説明するための図である。 第1実施形態に係る通信制御方法(警報転送方法)を説明するための図である。 第1実施形態に係る特別な無線リソースを含むD2Dリソースを説明するための図である。 第1実施形態に係る動作シーケンス図である。 第1実施形態の変更例2を説明するための図である。 カバレッジ内マルチセル・シナリオを示す図である。 第2実施形態に係る、カバレッジ内シナリオについて、集中型リソース割り当ての手順を示す図である。 第2実施形態に係る、部分的カバレッジ・シナリオについて、集中型リソース割り当ての手順を示す図である。 第2実施形態に係る、カバレッジ内シナリオについて、準分散型リソース割り当ての手順を示す図である。 第2実施形態に係る、部分的カバレッジ・シナリオについて、準分散型リソース割り当ての手順を示す図である。 第2実施形態に係る、カバレッジ外シナリオについて、準分散型リソース割り当ての手順を示す図である。 第2実施形態に係る、カバレッジ内シナリオについて、分散型リソース割り当ての手順を示す図である。 第2実施形態に係る、部分的カバレッジ・シナリオについて、分散型リソース割り当ての手順を示す図である。
 [実施形態の概要]
 第1実施形態に係る通信制御方法は、直接的な端末間通信であるD2D通信をサポートする移動通信システムにおいて用いられる。前記通信制御方法は、前記移動通信システムのカバレッジ内の第1のユーザ端末が、基地局から送信されるブロードキャスト情報を受信するステップAと、前記第1のユーザ端末が、前記移動通信システムのカバレッジ外の第2のユーザ端末に対して、前記ブロードキャスト情報を転送するステップBと、前記第2のユーザ端末が、前記第1のユーザ端末から転送された前記ブロードキャスト情報を受信するステップCと、を有する。
 第1実施形態では、前記ブロードキャスト情報は、前記D2D通信に利用可能な無線リソースを示すD2Dリソース情報を含む。
 第1実施形態では、前記ブロードキャスト情報は、警報配信システムにより配信される警報情報を含む。
 第1実施形態では、前記通信制御方法は、前記ブロードキャスト情報に基づいて、前記D2D通信に利用可能な無線リソースで、前記第1のユーザ端末と前記第2のユーザ端末との間で前記D2D通信を行うステップをさらに有する。
 第1実施形態では、前記D2D通信に利用可能な無線リソースの一部は、前記ブロードキャスト情報を転送するための特別な無線リソースとして確保される。前記ステップBにおいて、前記第1のユーザ端末は、前記特別な無線リソースで、前記第2のユーザ端末に対して前記ブロードキャスト情報を転送する。
 第1実施形態の変更例では、前記D2D通信に利用可能な無線リソースの一部は、高信頼性かつ低遅延が要求される情報を前記D2D通信において送信するための特別な無線リソースとして確保される。
 第1実施形態の変更例では、前記ステップAにおいて前記第1のユーザ端末が前記警報情報を受信した場合に、前記ステップBにおいて、前記第1のユーザ端末は、前記D2D通信に利用可能な無線リソースを前記警報情報の転送に優先的に割り当てた上で、前記第2のユーザ端末に対して前記警報情報を転送する。
 第1実施形態に係る第1のユーザ端末は、直接的な端末間通信であるD2D通信をサポートする移動通信システムにおいて、前記移動通信システムのカバレッジ内に位置する。前記第1のユーザ端末は、基地局から送信されるブロードキャスト情報を受信する受信部と、前記移動通信システムのカバレッジ外の第2のユーザ端末に対して、前記ブロードキャスト情報を転送する制御部と、を有する。
 第1実施形態に係る第2のユーザ端末は、直接的な端末間通信であるD2D通信をサポートする移動通信システムにおいて、前記移動通信システムのカバレッジ外に位置する。前記第2のユーザ端末は、前記移動通信システムのカバレッジ内の第1のユーザ端末が基地局から受信したブロードキャスト情報であって、かつ前記第1のユーザ端末から転送された前記ブロードキャスト情報を受信する受信部を有する。
 第2実施形態に係る通信制御方法は、直接的な端末間通信であるD2D通信をサポートする移動通信システムにおいて用いられる方法である。前記通信制御方法は、前記移動通信システムの基地局のカバレッジ内においてRRC接続モードの第1のユーザ端末が、前記D2D通信に使用する無線リソースの割り当てを要求するための要求情報を前記基地局に送信するステップAと、前記第1のユーザ端末が、前記要求情報に応じて割り当てられた前記無線リソースを示すリソース割り当て情報を前記基地局から受信するステップBと、を有する。
 第2実施形態では、前記通信制御方法は、前記第1のユーザ端末が、前記カバレッジ外の第2のユーザ端末に対し、前記リソース割り当て情報を転送するステップCをさらに有する。
 第2実施形態に係る通信制御方法は、直接的な端末間通信であるD2D通信をサポートする移動通信システムにおいて用いられる方法である。前記通信制御方法は、前記移動通信システムの基地局が、前記D2D通信に興味を持つユーザ端末の数に基づいて、前記D2D通信に使用する無線リソースを決定するステップAと、前記基地局が、前記決定した無線リソースを示すリソース割り当て情報をブロードキャストするステップBと、を有する。
 第2実施形態では、前記通信制御方法は、前記基地局のカバレッジ内の第1のユーザ端末が、前記リソース割り当て情報を受信するステップCと、前記第1のユーザ端末が、前記カバレッジ外の第2のユーザ端末に対し、前記リソース割り当て情報を転送するステップDと、をさらに有する。
 第2実施形態に係る通信制御方法は、直接的な端末間通信であるD2D通信をサポートする移動通信システムにおいて用いられる方法である。前記D2D通信に使用する無線リソースが予め規定されている。前記通信制御方法は、前記移動通信システムのカバレッジ外の第1のユーザ端末が、前記予め規定された無線リソースを使用して、自律的に前記D2D通信を行うステップを有する。
 [第1実施形態]
 以下において、本発明をLTEシステムに適用する場合の実施形態を説明する。
 (システム構成)
 図1は、第1実施形態に係るLTEシステムの構成図である。図1に示すように、第1実施形態に係るLTEシステムは、UE(User Equipment)100、E-UTRAN(Evolved-UMTS Terrestrial Radio Access Network)10、及びEPC(Evolved Packet Core)20を備える。
 UE100は、ユーザ端末に相当する。UE100は、移動型の通信装置であり、接続先のセル(サービングセル)との無線通信を行う。UE100の構成については後述する。
 E-UTRAN10は、無線アクセスネットワークに相当する。E-UTRAN10は、eNB200(evolved Node-B)を含む。eNB200は、基地局に相当する。eNB200は、X2インターフェイスを介して相互に接続される。eNB200の構成については後述する。
 eNB200は、1又は複数のセルを管理しており、自セルとの接続を確立したUE100との無線通信を行う。eNB200は、無線リソース管理(RRM)機能、ユーザデータのルーティング機能、モビリティ制御・スケジューリングのための測定制御機能などを有する。「セル」は、無線通信エリアの最小単位を示す用語として使用される他に、UE100との無線通信を行う機能を示す用語としても使用される。
 EPC20は、コアネットワークに相当する。E-UTRAN10及びEPC20によりLTEシステムのネットワークが構成される。EPC20は、MME(Mobility Management Entity)/S-GW(Serving-Gateway)300を含む。MMEは、UE100に対する各種モビリティ制御などを行う。S-GWは、ユーザデータの転送制御を行う。MME/S-GW300は、S1インターフェイスを介してeNB200と接続される。
 図2は、UE100のブロック図である。図2に示すように、UE100は、複数のアンテナ101、無線送受信機110、ユーザインターフェイス120、GNSS(Global Navigation Satellite System)受信機130、バッテリ140、メモリ150、及びプロセッサ160を備える。メモリ150及びプロセッサ160は、制御部を構成する。UE100は、GNSS受信機130を有していなくてもよい。また、メモリ150をプロセッサ160と一体化し、このセット(すなわち、チップセット)をプロセッサ160’としてもよい。
 アンテナ101及び無線送受信機110は、無線信号の送受信に用いられる。無線送受信機110は、プロセッサ160が出力するベースバンド信号(送信信号)を無線信号に変換してアンテナ101から送信する。また、無線送受信機110は、アンテナ101が受信する無線信号をベースバンド信号(受信信号)に変換してプロセッサ160に出力する。
 ユーザインターフェイス120は、UE100を所持するユーザとのインターフェイスであり、例えば、ディスプレイ、マイク、スピーカ、及び各種ボタンなどを含む。ユーザインターフェイス120は、ユーザからの操作を受け付けて、該操作の内容を示す信号をプロセッサ160に出力する。GNSS受信機130は、UE100の地理的な位置を示す位置情報を得るために、GNSS信号を受信して、受信した信号をプロセッサ160に出力する。バッテリ140は、UE100の各ブロックに供給すべき電力を蓄える。
 メモリ150は、プロセッサ160により実行されるプログラム、及びプロセッサ160による処理に使用される情報を記憶する。プロセッサ160は、ベースバンド信号の変調・復調及び符号化・復号などを行うベースバンドプロセッサと、メモリ150に記憶されるプログラムを実行して各種の処理を行うCPU(Central Processing Unit)と、を含む。プロセッサ160は、さらに、音声・映像信号の符号化・復号を行うコーデックを含んでもよい。プロセッサ160は、後述する各種の処理及び各種の通信プロトコルを実行する。
 図3は、eNB200のブロック図である。図3に示すように、eNB200は、アンテナ201、無線送受信機210、ネットワークインターフェイス220、メモリ230、及びプロセッサ240を備える。メモリ230及びプロセッサ240は、制御部を構成する。
 アンテナ201及び無線送受信機210は、無線信号の送受信に用いられる。無線送受信機210は、プロセッサ240が出力するベースバンド信号(送信信号)を無線信号に変換してアンテナ201から送信する。また、無線送受信機210は、アンテナ201が受信する無線信号をベースバンド信号(受信信号)に変換してプロセッサ240に出力する。
 ネットワークインターフェイス220は、X2インターフェイスを介して隣接eNB200と接続され、S1インターフェイスを介してMME/S-GW300と接続される。ネットワークインターフェイス220は、X2インターフェイス上で行う通信及びS1インターフェイス上で行う通信に用いられる。
 メモリ230は、プロセッサ240により実行されるプログラム、及びプロセッサ240による処理に使用される情報を記憶する。プロセッサ240は、ベースバンド信号の変調・復調及び符号化・復号などを行うベースバンドプロセッサと、メモリ230に記憶されるプログラムを実行して各種の処理を行うCPUと、を含む。プロセッサ240は、後述する各種の処理及び各種の通信プロトコルを実行する。
 図4は、LTEシステムにおける無線インターフェイスのプロトコルスタック図である。図4に示すように、無線インターフェイスプロトコルは、OSI参照モデルの第1層乃至第3層に区分されており、第1層は物理(PHY)層である。第2層は、MAC(Medium Access Control)層、RLC(Radio Link Control)層、及びPDCP(Packet Data Convergence Protocol)層を含む。第3層は、RRC(Radio Resource Control)層を含む。
 物理層は、符号化・復号、変調・復調、アンテナマッピング・デマッピング、及びリソースマッピング・デマッピングを行う。UE100の物理層とeNB200の物理層との間では、物理チャネルを介してユーザデータ及び制御信号が伝送される。
 MAC層は、データの優先制御、及びハイブリッドARQ(HARQ)による再送処理などを行う。UE100のMAC層とeNB200のMAC層との間では、トランスポートチャネルを介してユーザデータ及び制御信号が伝送される。eNB200のMAC層は、上下リンクのトランスポートフォーマット(トランスポートブロックサイズ、変調・符号化方式)、UE100への割当リソースブロックを決定(スケジューリング)するケジューラを含む。
 RLC層は、MAC層及び物理層の機能を利用してデータを受信側のRLC層に伝送する。UE100のRLC層とeNB200のRLC層との間では、論理チャネルを介してユーザデータ及び制御信号が伝送される。
 PDCP層は、ヘッダ圧縮・伸張、及び暗号化・復号化を行う。
 RRC層は、制御信号を取り扱う制御プレーンでのみ定義される。UE100のRRC層とeNB200のRRC層との間では、各種設定のための制御信号(RRCメッセージ)が伝送される。RRC層は、無線ベアラの確立、再確立及び解放に応じて、論理チャネル、トランスポートチャネル、及び物理チャネルを制御する。UE100のRRCとeNB200のRRCとの間に接続(RRC接続)がある場合、UE100は接続状態(RRC接続モード)であり、そうでない場合、UE100はアイドル状態(RRCアイドルモード)である。
 RRC層の上位に位置するNAS(Non-Access Stratum)層は、セッション管理及びモビリティ管理などを行う。
 図5は、LTEシステムで使用される無線フレームの構成図である。LTEシステムは、下りリンク(DL)にはOFDMA(Orthogonal Frequency Division Multiple Access)、上りリンク(UL)にはSC-FDMA(Single Carrier Frequency Division Multiple Access)がそれぞれ適用される。
 図5に示すように、無線フレームは、時間方向に並ぶ10個のサブフレームで構成される。各サブフレームは、時間方向に並ぶ2個のスロットで構成される。各サブフレームの長さは1msであり、各スロットの長さは0.5msである。各サブフレームは、周波数方向に複数個のリソースブロック(RB)を含み、時間方向に複数個のシンボルを含む。各リソースブロックは、周波数方向に複数個のサブキャリアを含む。1つのサブキャリア及び1つのシンボルによりリソースエレメントが構成される。
 UE100に割り当てられる無線リソースのうち、周波数リソースはリソースブロックにより構成され、時間リソースはサブフレーム(又はスロット)により構成される。
 下りリンクにおいて、各サブフレームの先頭数シンボルの区間は、主に下りリンク制御信号を伝送するための物理下りリンク制御チャネル(PDCCH)として使用される領域である。また、各サブフレームの残りの部分は、主に下りリンクユーザデータを伝送するための物理下りリンク共有チャネル(PDSCH)として使用できる領域である。
 上りリンクにおいて、各サブフレームにおける周波数方向の両端部は、主に上りリンク制御信号を伝送するための物理上りリンク制御チャネル(PUCCH)として使用される領域である。各サブフレームにおける残りの部分は、主に上りリンクユーザデータを伝送するための物理上りリンク共有チャネル(PUSCH)として使用できる領域である。
 (D2D通信)
 第1実施形態に係るLTEシステムは、直接的な端末間通信(UE間通信)であるD2D通信をサポートする。図6は、第1実施形態に係るD2D通信を説明するための図である。
 ここでは、D2D通信を、LTEシステムの通常の通信であるセルラ通信と比較して説明する。セルラ通信は、データパスがネットワーク(E-UTRAN10、EPC20)を経由する通信形態である。データパスとは、ユーザデータの伝送経路である。
 これに対し、図6に示すように、D2D通信は、UE間に設定されるデータパスがネットワークを経由しない通信形態である。相互に近接する複数のUE100(UE100-1及びUE100-2)は、低送信電力で直接的に無線通信を行う。
 このように、近接する複数のUE100が低送信電力で直接的に無線通信を行うことにより、セルラ通信と比べて、UE100の消費電力を削減し、かつ、隣接セルへの干渉を低減できる。
 D2D通信の周波数帯は、セルラ通信の周波数帯と共用されてもよく、セルラ通信の周波数帯と異なる周波数帯であってもよい。第1実施形態では、周波数利用効率の観点から、D2D通信の周波数帯がセルラ通信の周波数帯と共用されるケースを想定する。
 周波数利用効率をさらに高めるために、セルラ通信に利用可能な無線リソース及び/又はD2D通信に利用可能な無線リソースは、トラフィック状況などに応じて可変としてもよい。
 また、第1実施形態では、下位レイヤにおけるD2D通信の形態として主としてブロードキャストを想定する。例えばD2D通信にCSMA(Carrier Sense Multiple Access)が適用される。このようなブロードキャストによるD2D通信は、災害時などにおける公安(Public Safety)の用途に特に好適である。なお、上位レイヤで暗号化などを行うことにより、グループキャスト(マルチキャスト)又はユニキャストに応用可能である。
 (第1実施形態に係る動作)
 図7は、第1実施形態に係る動作環境を説明するための図である。
 図7に示すように、複数のUE100により、D2D通信を行うUE群(以下、「D2Dグループ」という)が形成されている。なお、D2Dグループは、クラスタと称されることがある。
 図7に示すD2Dグループは、eNB200のカバレッジ(以下、単に「カバレッジ」という)内のUE100-1とカバレッジ外のUE100-2とにより形成される。UE100-1及びUE100-2は同期がとられている。また、UE100-1及びUE100-2のそれぞれは、近傍発見(Discovery)処理により相手UEを認識していてもよい。
 以下において、D2Dグループのうち一部のUE100がカバレッジ内に位置し、残りのUE100がカバレッジ外に位置するケースを「Partial coverage(部分的カバレッジ)」という。第1実施形態では、Partial coverageケースを主として想定する。
 なお、D2Dグループを形成する全UE100がカバレッジ内に位置するケースを「In coverage(カバレッジ内)」という。D2Dグループを形成する全UE100がカバレッジ外に位置するケースを「Out of coverage(カバレッジ外)」という。さらに、In coverageケースには、D2Dグループを形成するUE100が同一セル内に存在するケースと、D2Dグループを形成するUE100が複数セルに分散して存在するケースと、がある。
 上述したように、D2D通信の周波数帯がセルラ通信の周波数帯と共用される場合には、D2D通信とセルラ通信との間の干渉(D2D-セルラ間干渉)若しくは送受信タイミング重複が問題になる。
 図8は、Partial coverageケースにおけるD2D-セルラ間干渉を説明するための図である。以下では、D2D通信の周波数帯がセルラ通信の上りリンクの周波数帯と共用されるケースを想定する。
 図8に示すように、カバレッジ内UE100-1がD2D通信における送信(D2D送信)を自由に行う場合、当該D2D送信は、UE100-1以外のカバレッジ内UE(セルラUE)の上りリンクに対して干渉を与える虞がある。
 図9は、Partial coverageケースにおける送受信タイミング重複を説明するための図である。
 図9に示すように、カバレッジ内UE100-1がセルラ通信及びD2D通信を併用する場合で、かつ、カバレッジ外UE100-2がD2D送信を自由に行う場合、UE100-1へのD2D送信のタイミングとUE100-1のセルラ送信のタイミングとが重複する。よって、セルラ送信中にD2D受信を行うことができないUE100-1は、D2D通信が成功しない可能性がある。
 よって、D2D-セルラ間干渉及び送受信タイミング重複を回避するためには、ネットワーク(eNB200)の管理下でD2D通信が行われることが好ましい。
 図10は、第1実施形態に係る通信制御方法(D2Dリソース管理方法)を説明するための図である。
 図10に示すように、第1実施形態に係る通信制御方法は、カバレッジ内UE100-1が、eNB200から送信されるブロードキャスト情報を受信するステップAを有する。ブロードキャスト情報は、D2D通信に利用可能な無線リソース(例えばリソースブロック、サブフレームなど)を示すD2Dリソース情報を含む。ブロードキャスト情報は、例えばシステム情報ブロック(SIB)である。SIBは、複数のカバレッジ内UEに共通に適用される共通RRCメッセージである。
 このように、第1実施形態では、D2D通信に利用可能な無線リソース(以下、「D2Dリソース」という)がeNB200からブロードキャストでカバレッジ内UE100-1に通知される。D2Dリソースは、eNB200により管理されている。よって、カバレッジ内UE100-1は、eNB200により管理された無線リソースでD2D通信を行うため、D2D-セルラ間干渉を回避できる。
 なお、セルラ通信におけるリソース割り当てはPDCCH上で動的に行われることが一般的である。一方、下位レイヤにおけるD2D通信の形態としてブロードキャストを想定すると、D2Dリソースは動的にはスケジューリングされず、準静的なスケジューリングが適用されると考えられる。よって、セルラ通信におけるリソース割り当てとは異なり、SIBによりD2Dリソースを通知することが好ましい。
 また、第1実施形態に係る通信制御方法は、カバレッジ内UE100-1が、カバレッジ外UE100-2に対して、ブロードキャスト情報を転送するステップBと、UE100-2が、UE100-1から転送されたブロードキャスト情報を受信するステップCと、を有する。ステップBにおいて、カバレッジ内UE100-1は、D2Dリソース情報を再度ブロードキャストすることでカバレッジ外UE100-2に転送する。これにより、カバレッジ外UE100-2もD2Dリソースを把握し、eNB200により管理された無線リソースでD2D通信を行うため、送受信タイミング重複を回避できる。
 従って、第1実施形態に係る通信制御方法によれば、Partial coverageケースにおいてD2D-セルラ間干渉及び送受信タイミング重複を回避できる。また、In coverageケースにおいてもD2D-セルラ間干渉及び送受信タイミング重複を回避できることは勿論である。
 第1実施形態に係る通信制御方法は、D2Dリソース情報だけでなく、警報配信システムにより配信される警報情報にも適用できる。警報配信システムとは、ETWS(Earthquake and Tsunami Warning System)、CMAS(Commercial Mobile Alert System)などである。警報情報はSIBによりブロードキャストされる。図11は、第1実施形態に係る通信制御方法(警報転送方法)を説明するための図である。
 図11に示すように、カバレッジ内UE100-1は、eNB200からSIBによりブロードキャストされる警報情報を受信した後、警報情報を再度ブロードキャストすることでカバレッジ外UE100-2に転送する。これにより、カバレッジ外UE100-2においても、警報配信システムにより配信される警報情報を取得できる。
 第1実施形態では、D2Dリソースの一部は、ブロードキャスト情報(D2Dリソース情報、警報情報)を転送するための特別な無線リソースとして確保される。図12は、特別な無線リソースを含むD2Dリソースを説明するための図である。
 図12に示すように、複数のリソースブロックからなるD2Dリソースが周期的に割り当てられている。D2Dリソースの一部は、ブロードキャスト情報を転送するための特別な無線リソース(Special resource)として、D2D通信におけるデータ送信に使用されずに確保される。よって、カバレッジ内UE100-1は、より確実に、かつ低遅延で、ブロードキャスト情報をカバレッジ外UE100-2に転送できる。
 特別な無線リソースは、予め定められている。或いは、予め定められた規則により特別な無線リソースが決定されてもよい。或いは、eNB200から特別な無線リソースが指定されてもよい。この場合、eNB200は、特別な無線リソースを示す情報をブロードキャストで送信してもよい。
 eNB200は、セルラ通信においてD2Dリソース(特別な無線リソースを含む)の使用を制限する。
 図13は、第1実施形態に係る動作シーケンス図である。
 図13に示すように、ステップS11において、eNB200は、D2Dリソースを確保し、D2Dリソース情報(D2D resource notification)をSIBによりブロードキャストする。カバレッジ内UE100-1は、D2Dリソース情報をeNB200から受信する。
 ステップS12において、カバレッジ内UE100-1は、特別な無線リソースにより、D2Dリソース情報をブロードキャストで送信する。特別な無線リソースは予め確保されているため、高信頼かつ低遅延でD2Dリソース情報をカバレッジ外UE100-2に転送できる。
 ステップS13において、カバレッジ内UE100-1及びカバレッジ外UE100-2は、特別な無線リソース以外のD2Dリソースにより、D2D通信を行う。
 ステップS14において、eNB200は、警報情報(ETWS情報又はCMAS情報)をSIBによりブロードキャストする。カバレッジ内UE100-1は、警報情報をeNB200から受信する。
 ステップS15において、カバレッジ内UE100-1は、特別な無線リソースにより、警報情報をブロードキャストで送信する。特別な無線リソースは予め確保されているため、高信頼かつ低遅延で警報情報をカバレッジ外UE100-2に転送できる。
 (第1実施形態のまとめ)
 上述したように、D2Dリソースは、eNB200からブロードキャストでカバレッジ内UE100-1に通知される。また、カバレッジ内UE100-1がD2Dリソース情報を再度ブロードキャストすることでカバレッジ外UE100-2に転送する。従って、Partial coverageケースであっても、D2D-セルラ間干渉及び送受信タイミング重複を回避できる。
 第1実施形態では、D2Dリソースの一部は、ブロードキャスト情報を転送するための特別な無線リソースとして確保される。よって、より確実に、かつ低遅延で、ブロードキャスト情報(D2Dリソース情報、警報情報)をカバレッジ外UE100-2に転送できる。
 [変更例1]
 また、上述した第1実施形態では、Partial coverageケースを主として説明したが、In coverageケースにも応用可能である。In coverageケースでは、D2Dリソースの一部を、高信頼性かつ低遅延が要求される情報をD2D通信において送信するための特別な無線リソースとして確保してもよい。高信頼性かつ低遅延が要求される情報とは、制御信号、又は音声データ(特に、緊急呼)などの高いQoS(Quality of Service)が要求されるデータなどである。このように、ブロードキャスト情報の転送用に特別な無線リソースを使用するのではなく、高信頼性かつ低遅延が要求される情報の送信用に特別な無線リソースを使用できる。
 [変更例2]
 上述した第1実施形態では、D2Dグループ(クラスタ)においてD2D通信を制御する制御UE(クラスタヘッド)の存在を特に考慮していなかった。
 制御UEが存在する場合には、D2Dグループ内の送信側と受信側とが時分割で切り替わるようにスケジューリングが可能である。よって、カバレッジ内UE100-1が制御UEである場合には、図9で示した送受信タイミング重複の問題は回避できる。このようなスケジューリングに拘わらず、制御UE(UE100-1)は、eNB200から警報情報を受信した場合には、D2Dリソースを警報情報の転送に優先的に割り当てた上で、カバレッジ外UE100-2に対して警報情報を転送してもよい。
 また、複数のD2Dグループのそれぞれに制御UEが存在する場合には、図14に示すように、特別な無線リソースをD2Dグループごとに異ならせてもよい。図14の例では、UE1乃至UE3のそれぞれがカバレッジ内の制御UEであるケースを想定している。UE1乃至UE3のそれぞれは、D2Dグループを形成した際に、自グループのための特別な無線リソースの割り当てをeNB200から受けて、警報情報の転送又は高信頼性かつ低遅延が要求される情報の送信に特別な無線リソースを使用する。或いは、特別な無線リソースを制御UE同士のネゴシエーションによって決定してもよい。この場合、近傍制御UEの存在を検知した制御UEは、近傍制御UEに対して、使用中の特別な無線リソース又は使用を希望する特別な無線リソースをブロードキャスト又はユニキャストで通知する。ユニキャストの場合、当該近傍制御UEは、当該通知に対する応答(OK/NG等)を行う。なお、eNB200による特別な無線リソースの割り当てと制御UE同士のネゴシエーションとを併用してもよい。
 [その他の変更例]
 上述した第1実施形態では、D2D通信の周波数帯がセルラ通信の上りリンクの周波数帯と共用されるケースを想定していたが、D2D通信の周波数帯がセルラ通信の下りリンクの周波数帯と共用されてもよい。
 上述した第1実施形態の変更例1では、D2Dリソースの一部を、高信頼性かつ低遅延が要求される情報をD2D通信において送信するための特別な無線リソースとして確保する一例について説明した。しかしながら、特別な無線リソースをD2D送信に使用するだけでなく、D2D送信のための通知に使用してもよい。例えば、特別な無線リソースを、高信頼性かつ低遅延が要求される情報の送信を通知するための無線リソースとしてもよい。
 上述した第1実施形態では、移動通信システムの一例としてLTEシステムを説明したが、LTEシステムに限定されるものではなく、LTEシステム以外のシステムに本発明を適用してもよい。
 上述した第1実施形態は、後述する第2実施形態と適宜組み合わせて実施してもよい。
 [第2実施形態]
 以下において、第2実施形態について、第1実施形態との相違点を主として説明する。
 D2D通信について以下の前提を想定する。
 インフラストラクチャ・カバレッジの可用性にかかわらず、公安通信が可能とされるべきである。全てのケース(例えば、カバレッジ内)でD2D直接通信によりそれが達成されるかは検討の余地がある。
 D2D直接通信は、専用のキャリアに制限されず、通常のLTEと同じキャリア上で実施し得る。どのリソースをD2D通信(特に、カバレッジ内UE)に使用するかをどのようにネットワークが制御するかは検討の余地がある。
 また、1対MのD2D通信は一方向であり、レイヤ2(MAC/RLC/PDCP)でのフィードバックは存在しない。
 これらの前提に基づいて、4つのシナリオ(すなわち、カバレッジ外、部分的カバレッジ、カバレッジ内シングルセル、カバレッジ内マルチセル)について検討する。また、D2D直接通信が通常のLTE通信と共存することが要求される。
 以下において、カバレッジ内、カバレッジ外、部分的カバレッジについて、リソース割り当て方式の3つの選択肢を検討する。なお、D2D通信に参加するUEは同期がとられており、互いに発見されていることを前提とする。また、D2D直接通信が通常のLTE通信と同じキャリア上に共存し得るため、D2D通信及びセルラ通信のリソースは、固定ではなく、カバレッジ内及び部分的カバレッジ・シナリオにおけるトラフィック需要に基づいて可変とされる。
 各シナリオについて、D2Dリソース割り当て方式のための潜在的な問題を分析する。
 カバレッジ外シナリオでは、全てのUEは、ネットワークから直接シグナリングを受信することはできない。このシナリオは、リリース12よりも前には検討されたことがないため、いくつかの新しいメカニズムを導入すべきである。
 カバレッジ内シナリオでは、D2D通信に興味を持つ全てのUEが直接ネットワークシグナリングを受信することができる。
 一方、部分的カバレッジ・シナリオでは、少なくとも1つのUEがネットワークから直接シグナリングを受信することができない。従って、カバレッジエリア外領域に位置するUEが如何にD2D通信用の無線リソース情報を取得するかを検討する必要がある。この情報がないカバレッジ外UE(図7のUE100-2)は、カバレッジ外のD2D受信側UE(図7のUE100-1)がeNBにセルラでの送信を試みる時間中にD2D通信をブロードキャストし得る。この状態下では、UE100-1はUE100-2からのブロードキャストのD2D通信を受信できないことがある。D2D通信が下りリンク上で実行される場合、UE100-2からのD2D送信が下りリンクのセルラ信号と干渉するため、この問題はさらに深刻になり得る。
 図15は、カバレッジ内マルチセル・シナリオを示す図である。図15に示すように、異なるセルに位置するUE間の直接のD2D通信を実現するために、各セルによってD2D通信用に同じ無線リソースが各D2D UEに割り当てられる必要がある。カバレッジ内マルチセル・シナリオがリリース12でサポートされる場合、D2D可能セルは協調するべきである。
 (リソース割り当て方式の分析)
 第2実施形態では、リソース割り当て方式は、集中型リソース割り当て(Centralized)、準分散型リソース割り当て(Semi-distributed)、分散型リソース割り当て(Distributed)の三種類がある。
 集中型リソース割り当ては、全てのD2D UEが個別にeNBによってスケジューリングされることを意味する。従って、D2D通信に係る全てのUEは、RRC接続モードで動作しなければならない。
 準分散型リソース割り当ては、eNBが各グループにD2Dリソースを割り当てることを意味する。準分散型リソース割り当て方式については、eNBは、クラスタヘッドUEのそれぞれにリソース割り当て情報を送信する。D2Dグループ内では、D2D UEは、関連するクラスタヘッドUEによってスケジューリングされることができる。この方式では、少なくともクラスタヘッドUEはRRC接続モードで動作しなければならない。
 分散型リソース割り当て方式の場合、全てのD2D UEは、eNB(又はネットワーク)によって同一のD2Dリソースが割り当てられる。D2D UEは、これらのリソースを(例えば、CSMAにより)自律的にD2D通信に使用することができる。このリソース割り当て方式が選択されている場合、D2D通信に係るUEは、RRCアイドルモードにおいてD2Dの送信をすることが可能であり得る。
 表1に、eNBにより割り当てられたD2Dサブフレームについてグループ内でD2Dリンク・スケジューリングを担当するエンティティを示す。
 以下においては、準分散型及び分散型リソース割り当て方式を全てのシナリオについて説明する。集中型リソース割り当て方式では、UEがネットワークから直接シグナリングを受信できないため、カバレッジ内及び部分的カバレッジ・シナリオについて説明する。
Figure JPOXMLDOC01-appb-T000001
 
 なお、集中型リソース割り当て方式が選択される場合、D2D伝送に係る全てのUEがRRC接続モードで動作しなければならない。準分散型リソース割り当て方式が選択される場合、少なくともクラスタヘッドUEはRRC接続モードで動作しなければならない。
 (1)集中型リソース割り当て
 (1.1)カバレッジ内シナリオ
 図16は、カバレッジ内シナリオについて、集中型リソース割り当ての手順を示す図である。図16に示すように、カバレッジ内シナリオでは、集中型リソース割り当てを実現するために以下の3つのステップが行われる。
 ステップ1:各D2D UEは、SR(スケジューリング要求)及びバッファ状態報告をeNBに送信する。これにより、eNBは、各D2D UEのために必要なD2Dリソースの量を判断することができる。
 ステップ2:eNBは、各D2D UEのためにD2D通信リソース(複数可)を割り当てる。ここでは、単一のリソースの割り当て、及び(例えば、SPSを使用した)複数のリソース割り当ての両方が可能である。
 ステップ3:D2D通信。
 集中型リソース割り当て方式は、セルラ通信のためのリソース割り当て方式に極めて類似している。従って、D2DのTx(送信)/Rx(受信)の衝突を容易に回避することができる。D2D通信がグループ内のいくつかのD2D UEのためにはもはや不可能である場合(例えば、発見要件に基づくD2Dカバレッジ損失など)、eNBは、いくつかのD2D UEをセルラ通信に戻すことも可能である。しかし、カバレッジ内マルチセルのシナリオをサポートするためには、隣接セル間でスケジューリング協調を必要とする。どの程度の協調を行うかについては更なる検討が必要である。潜在的な複雑さのために、このリソース割り当て方式に関連した長所と短所を比較する価値があるであろう。
 長所:
 ・セルラUEのためのリソースをD2Dに再使用することによって、より高い周波数効率が実現され得る。
 ・リソースは、(QoSを考慮して、)実際の必要性に基づいて割り当てられる。
 ・D2DのTx/Rxの衝突を回避することができる。
 ・既存のプロトコルのメカニズムを可能な限り再利用することができる。
 短所:
 ・送信リソースを要求するD2D UEの数に応じてシグナリングオーバーヘッドが増加し得る。
 ・カバレッジ内マルチセル・シナリオをサポートするために複雑さが追加される。
 (1.2)部分的カバレッジ・シナリオ
 図17は、部分的カバレッジ・シナリオについて、集中型リソース割り当ての手順を示す図である。図17に示すように、部分的カバレッジ・シナリオでは、トラフィックがカバレッジ外UEから生成されるケースについて、以下の3つのステップが想定される。
 ステップ1:カバレッジ外UEは、D2D通信可能リソースにより、中継UEにSR及びバッファ状態を送信する。中継UEは、eNBにSR及びバッファ状態報告を転送する。
 ステップ2:eNBはD2D通信リソースを割り当て、その情報を中継UEに送信する。中継UEは、グループのメンバー全員にこの情報を転送する。他のカバレッジ内UEも中継UEからこの情報を受信してもよい。
 ステップ3:D2D通信。
 部分的カバレッジ・シナリオを取り扱うために、eNBは、セルラカバレッジ内の各D2Dグループの中から、残りのカバレッジ外D2D UEにeNBのメッセージを中継するUEを選択する。eNBが全てのD2Dリンクをスケジューリングする責任を持つため、eNBは、D2D UEが送信する信号がグループ内の他の全てのD2D UEに到達することができるか否かを知っていると仮定する。ステップ1で説明したように、このリソース割り当て方式は、エリア外UEが中継UEを介してeNBにSR及びバッファ状態報告を送信することを要する。この要求に必要とされるeNB及び中継UEの複雑さはかなりのものである。
 長所:
 ・セルラUEのリソースをD2Dに再使用することによって、より高い周波数効率が実現され得る。
 ・リソースは、(QoSを考慮して)実際の必要性に基づいて割り当てられる。
 ・D2DのTx/Rxの衝突を回避することができる。
 短所:
 ・送信リソースを要求するD2D UEの数に応じてシグナリングオーバーヘッドが増加し得る。
 ・中継UEについての高い複雑さ。
 ・その他の複雑さは、中継UEとグループ内の非中継UEの間のシグナリング制御を導入することができる。
 ・UEのD2Dの送信信号がグループ内の他の全てのD2D UEに到達できるか否かをeNBが判断するための追加の複雑さ。
 (2)準分散型リソース割り当て
 (2.1)カバレッジ内シナリオ
 このリソース割り当て方式において、クラスタヘッドは、D2D UEのためのD2Dリソース割り当てを制御する。カバレッジ内シナリオでは、クラスタヘッドのための2つの選択肢がある。
 ・選択肢1:クラスタヘッドがeNBである。
 ・選択肢2:各D2DグループがクラスタヘッドUEを持つ。
 選択肢1のリソース割り当て方式は、カバレッジ内のシナリオのための集中型リソース割り当て方式と同じである。このため、以下の手順及び分析は、選択肢2に基づいて行われる。選択肢2では、クラスタヘッドUEは、eNBによって割り当てられたD2Dリソースの制御を許可されるだけである。クラスタヘッドUEが、クラスタヘッドUEに割り当てられていない他のD2Dリソースを使用することはできない。これは、次の3つのステップに基づくリソース割り当て手順を想定する。
 図18は、カバレッジ内シナリオについて、準分散型リソース割り当ての手順を示す図である。
 ステップ1:UEは、クラスタヘッドUEにSR及びバッファ状態報告を送信する。アクセスのためのリソースをクラスタヘッドUEから要求するために、カバレッジ外UEによって使用され得る特殊なサブフレーム、例えば、発見用サブフレームが存在すると仮定する。
 ステップ2:クラスタヘッドUEは、そのグループ内の全てのD2D UEによって要求される総リソースに基づいて、eNBからのD2D通信リソースを要求する。これにより、eNBがD2Dグループのために必要D2Dリソースの量を決定することができる。(例えば、SPSを使用して、)複数のリソースを割り当てる。他のカバレッジ内UEがこの情報を受信してもよい。クラスタヘッドUEは、バッファ状態の情報ではなく、単にグループ内D2D UEの数を報告してもよい。
 ステップ3:クラスタヘッドUEは、D2D送信をスケジュールするか、又は、そのグループ内の他のD2D UEにeNBから割り当てられたリソースを単に転送する。非クラスタヘッドUEは、グループ内の残りのD2D UEに割り当てられたか又は通知されたリソース上で(ブロードキャスト)送信することができる。
 D2Dリソースは、クラスタヘッドUEにより、特定のD2D UEが使用するためにスケジューリングされ得る(すなわち、非競合ベースのスケジューリングを必要としない)。又は、D2Dリソースは、クラスタヘッドUEにより、グループ内の全てのD2D UEが使用するためにスケジューリングされ得る(すなわち、競合ベースのスケジューリングを使用)。ステップ1で述べたように、個別D2Dリソースの割り当ての前に、非クラスタヘッドUEがSR及びバッファ状態報告をクラスタヘッドUEに送信するために、特殊なサブフレーム又は発見用サブフレームが定義される必要がある。
 この方式は、以下の長所と短所を持っている。
 長所:
 ・リソースは、(QoSを考慮して)実際の必要性に基づいて割り当てられる。
 ・非競合ベースのスケジューリングを使用する場合、セルラUEのリソースをD2Dに再使用することによって、より高い周波数効率を実現することができる。
 短所:
 ・リソース割り当てのためのeNBとクラスタヘッドUEとの間で必要な協調に起因して、シグナリングオーバーヘッドが増加する。
 ・クラスタヘッドUEのためのより高い複雑さ及び負荷。グループ内のD2D伝送のためのスケジューラとして動作することによるクラスタヘッドUEの高い複雑さ。
 ・クラスタヘッドUEと非クラスタヘッドUEとの間の制御シグナリングを導入するための追加の複雑さ。
 ・カバレッジ内マルチセル・シナリオをサポートするための追加の複雑さ。
 (2.2)部分的カバレッジ・シナリオ
 部分的カバレッジ・シナリオでは、カバレッジ外D2D UEがeNBに直接接続されていないため、全てのD2D UEのためのクラスタヘッドとしてeNBを使用することはできない。部分的カバレッジを取り扱うために、セルラリンクを有するUEがクラスタヘッドとして割り当てられ、同じクラスタ内の残りのD2D UEにeNBのメッセージを中継する。クラスタヘッドUEは、eNBによって割り当てられたリソースを使用してD2D送信をスケジュールするので、セルラ上りリンクとD2D送信との間の衝突を回避することができる。
 図19は、部分的カバレッジ・シナリオについて、準分散型リソース割り当ての手順を示す図である。図19に示すように、この方式のための手順は、カバレッジ外UEによって生成されたトラフィックのために以下の3つのステップを有する。
 ステップ1:エリア外UEは、クラスタヘッドUEにSR及びバッファ状態報告を送信する。クラスタヘッドD2D UEからアクセス用リソースを要求するためにカバレッジ外UEによって使用することができる特殊なサブフレーム、例えば、発見用サブフレームが存在すると仮定する。
 ステップ2:クラスタヘッドUEは、そのグループ内の全てのD2D UEによって要求される総リソースに基づいて、eNBからのD2D通信リソースを要求する。これにより、eNBが、各D2Dグループのために必要なD2Dリソースの量を決定することができる。(例えば、SPSを使用して、)複数のリソースを割り当てる。他のカバレッジ内UEがこの情報を受信してもよい。クラスタヘッドUEは、バッファ状態の情報ではなく、単にグループ内D2D UEの数を報告してもよい。
 ステップ3:クラスタヘッドUEは、D2D送信をスケジュールするか、又は、そのグループ内の他のD2D UEにeNBから割り当てられたリソースを単に転送する。非クラスタヘッドUEは、グループ内の残りのD2D UEに割り当てられたか又は通知されたリソース上で(ブロードキャスト)送信することができる。クラスタヘッドUEは、D2D UEが同じグループ内の1つ又は複数のD2D UEに到達できない場合に、D2D UEから他のD2D UEへの送信を転送してもよい。
 D2Dリソースは、クラスタヘッドUEにより、特定のD2D UEが使用するためにスケジューリングされ得る(すなわち、非競合ベースのスケジューリングを必要としない)。又は、D2Dリソースは、クラスタヘッドUEにより、グループ内の全てのD2D UEが使用するためにスケジューリングされ得る(すなわち、競合ベースのスケジューリングを使用)。ステップ1で述べたように、個別D2Dリソースの割り当ての前に、非クラスタヘッドUEがSR及びバッファ状態報告をクラスタヘッドUEに送信するために、特殊なサブフレーム又は発見用サブフレームが定義される必要がある。
 この方式は、以下の長所と短所を持っている。
 長所:
 ・リソースは、(QoSを考慮して)実際の必要性に基づいて割り当てられる。
 ・クラスタヘッドUEは、そのグループ内のD2D UE(特に、カバレッジ外D2D UE)に、eNBのメッセージを中継することができる。
 短所:
 ・リソース割り当てのためのeNBとクラスタヘッドUEとの間で必要な協調に起因して、シグナリングオーバーヘッドが増加する。
 ・クラスタヘッドUEのためのより高い複雑さ及び負荷。グループ内のD2D伝送のためのスケジューラとして動作することによるクラスタヘッドUEの高い複雑さ。
 ・クラスタヘッドUEと非クラスタヘッドUEとの間の制御シグナリングを導入するための追加の複雑さ。
 (2.3)カバレッジ外シナリオ
 カバレッジ外シナリオは、リリース12前のネットワークでは考慮されていない。そのため、現在の仕様にはないいくつかの新しい機能が、このシナリオを取り扱うために導入されるべきである。一つの可能性として、クラスタヘッドUEが相互に交渉するか、(例えば、CSMAを使用して)クラスタヘッドUEのための空きリソースを見つけることで、どのリソースがそのグループのために使用されるかを決める。
 図20は、カバレッジ外シナリオについて、準分散型リソース割り当ての手順を示す図である。図20に示すように、その手順は以下の2つのステップに基づくリソース割り当てを想定する。
 ステップ1:UEはクラスタヘッドUEにSR及びバッファ状態報告を送信する。アクセスのためのリソースをクラスタヘッドUEから要求するために、カバレッジ外UEによって使用され得る特殊なサブフレーム、例えば、発見用サブフレームが存在すると仮定する。
 ステップ2:クラスタヘッドUEは、そのグループ内で、D2D送信をスケジュールするか、又はD2D通信に利用可能なリソースを他のD2D UEに通知する。非クラスタヘッドD2D UEは、グループ内の残りのD2D UEに割り当てられたか又は通知されたリソース上で(ブロードキャスト)送信することができる。クラスタヘッドUEは、D2D UEが同じグループ内の1つ又は複数のD2D UEに到達できない場合に、D2D UEから他のD2D UEへの送信を転送してもよい。
 現在のところ、時間/周波数リソースの全体的な割り当てがあらかじめ定義されるか否かは未定である。さらに、リソースを異なるD2Dグループ間でどのようにリソースが多重化されるか(すなわち、リソースがFDM、又はFDMプラスTDMであるか否か)も未定である。
 この方式は、以下の長所と短所を有する。
 長所:
 ・リソースは、(QoSを考慮して)実際の必要性に基づいて割り当てられる。
 ・D2Dリソースは、クラスタヘッドUEにより、特定のD2D UEが使用するためにスケジューリングされ得る。又は、D2Dリソースは、クラスタヘッドUEにより、グループ内の全てのD2D UEが使用するためにスケジューリングされ得る。
 短所:
 ・リソース割り当てのためのeNBとクラスタヘッドUEとの間で必要な協調に起因して、シグナリングオーバーヘッドが増加する。
 ・クラスタヘッドUEのためのより高い複雑さ及び負荷。グループ内のD2D伝送のためのスケジューラとして動作することによるクラスタヘッドUEの高い複雑さ。
 ・クラスタヘッドUEと非クラスタヘッドUEとの間の制御シグナリングを導入するための追加の複雑さ。
 (3)分散型リソース割り当て
 (3.1)カバレッジ内シナリオ
 分散型リソース割り当て方式では、各UEは、(例えばCSMAを使用し、)独立して、送信を行うか否かを決定する。言い換えれば、D2Dリソースを調整するクラスタヘッドUEが存在しないため、各D2Dサブフレームに対して、各D2D UEは、そのD2Dサブフレームで送信するか否かを決定する。
 図21は、カバレッジ内シナリオについて、分散型リソース割り当ての手順を示す図である。図21に示すように、次の3つのステップに基づくリソース割り当て手順を想定する。
 ステップ1:eNBは、どのくらいのD2Dリソースが割り当てられなければならないかを判断する。例えば、これはD2D通信に係るUEの数に基づいてもよい。
 ステップ2:eNBは、ブロードキャストによりD2D通信リソース(複数可)を割り当てる。
 ステップ3:ステップ2で通知されたリソースの中でUEにより選択された利用可能なリソース(複数可)上でのD2D通信。
 この手順は、eNBが、割り当てる必要があるD2Dリソースの量を決定しなければならないと仮定している。これは、例えばD2D通信に関心のあるUEの数をカウントするといった新たなメカニズムを要するかもしれない。そのような機構の精度によっては、割り当てられたリソースが不十分又は過剰である状況が存在し得る。しかし、これはカバレッジ内マルチセル・シナリオをサポートする複雑さを低減するという利点を有する。また、この技術はすでに免許不要バンドでうまく働いている。
 この方式は、以下の長所と短所を有する。
 長所:
 ・UEは、ネットワークからの専用(dedicated)制御信号がなくてもD2D送信を行うことができる。
 ・クラスタヘッドUEのサポートに関連する複雑さがない。
 ・カバレッジ内マルチセル・シナリオをサポートするための少ない複雑さ。
 短所:
 ・周波数利用効率が低い(QoSのサポートが少なく、セルラUL送信のためにD2Dリソースを再利用することはできず、必要なリソースが事前に知られている必要がある)。
 ・リソースが割り当てられないため、D2Dリソースの使用はCSMAなどの方式が必要である。
 ・割り当てられたリソースを使用することができない可能性がある。
 ・D2Dグループ内のD2D Tx/Rxの衝突回避メカニズムを導入すべき。
 (3.2)部分的カバレッジ・シナリオ
 部分的カバレッジ・シナリオでは、カバレッジ内シナリオと同じメカニズムを再使用することができる。しかし、カバレッジ外D2D UEにD2D通信リソース割り当て情報を中継するカバレッジ内UEのための追加の複雑さがある。
 図22は、部分的カバレッジ・シナリオについて、分散型リソース割り当ての手順を示す図である。図22に示すように、以下の3つのステップが分散型リソース割り当てのために必要とされる。
 ステップ1:eNBはどのくらいのD2Dリソースが割り当てられなければならないかを判断する。例えば、これはD2D通信に関心のあるUEの数に基づくことができる。
 ステップ2:eNBは、ブロードキャストにより、D2D通信リソース(複数可)を割り当てる。中継UEがカバレッジ外D2D UEの存在に気づいた場合、中継UEは、カバレッジ外D2D UEにこの情報を転送する。グループ内の複数のカバレッジ内のD2D UEの1つ又は複数を中継UEとして選択できる場合に、どのように中継UEを決定するかは更なる検討が必要である。
 ステップ3:ステップ2で通知されたリソースの中でUEにより選択された利用可能なリソース(複数可)上でのD2D通信。
 長所と短所はカバレッジ内シナリオに似ている。また、カバレッジ内UEのセルラTxとエリア外D2D UEのRxとの間の衝突回避メカニズムを検討する必要がある。さらに、グループ内でのD2D UE(特に、カバレッジ外D2D UE)にeNBのメッセージを中継する方法の検討が必要である。
 この方式は、以下の長所と短所を有する。
 長所:
 ・UEは、ネットワークからの専用(dedicated)制御信号がなくてもD2D送信を行うことができる。
 ・クラスタヘッドUEのサポートに関連する複雑さがない。
 短所:
 ・周波数利用効率が低い(QoSのサポートが少なく、セルラUL送信のためにD2Dリソースを再利用することはできず、必要なリソースが事前に知られている必要がある)。
 ・リソースが割り当てられないため、D2Dリソースの使用はCSMAなどの方式が必要である。
 ・割り当てられたリソースを使用することができない可能性がある。
 ・グループ内でのD2D UE(特に、カバレッジ外D2D UE)にeNBのメッセージを中継するための追加の複雑さ。
 ・D2Dグループ内のD2D Tx/Rxの衝突回避メカニズムを導入すべき。
 (3.3)カバレッジ外シナリオ
 上述したように、カバレッジ外シナリオにおける時間/周波数リソースの全体的な設計は未定である。カバレッジ外シナリオに対する分散型リソース割り当てのために次の2つのステップを仮定する。
 ステップ1:各UEは、独立して、事前定義されたリソース上で(例えば、CSMAを使用して)、送信を行うか否か決定する。
 ステップ2:D2D通信。
 この方式は、以下の長所と短所を有する。
 長所:
 ・UEは、ネットワークからの専用(dedicated)制御信号がなくてもD2D送信を行うことができる。
 ・クラスタヘッドUEのサポートに関連する複雑さがない。
 ・カバレッジ内マルチセル・シナリオをサポートするための少ない複雑さ。
 短所:
 ・周波数利用効率が低い(QoSのサポートが少なく、セルラUL送信のためにD2Dリソースを再利用することはできず、必要なリソースが事前に知られている必要がある)。
 ・D2Dグループ内のD2D Tx/Rxの衝突回避メカニズムを導入すべき。
 (第2実施形態のまとめ)
 各シナリオについて各リソース割り当て方式の長所と短所を分析し、以下の考察に至った。
 全てのリソース割り当て方式について、カバレッジ内シナリオと部分的カバレッジ・シナリオの両方に同じリソース割り当て方式を適用し得る。リソース割り当て方式にかかわらず、部分的カバレッジ・シナリオのために、D2D UEがカバレッジ外D2D UEにリソース割り当て情報を中継することが想定される。
 集中型リソース割り当て及び準分散型リソース割り当て方式はグループごとにリソースを制御しているが、分散型リソース割り当て方式はグループごとの制御を提供しない。
 集中型リソース割り当て及び準分散型リソース割り当て方式は、分散型リソース割り当て方式よりも高い周波数効率を有する相対的な利点を有するが、分散型リソース割り当て方式に比べてオーバーヘッドシグナリングが犠牲になっている。
 [相互参照]
 米国仮出願第61/883655号(2013年9月27日出願)及び米国仮出願第61/898826号(2013年11月1日出願)の全内容が、参照により、本願明細書に組み込まれている。
 本発明は、移動通信分野において有用である。

Claims (12)

  1.  直接的な端末間通信であるD2D通信をサポートする移動通信システムにおいて用いられる通信制御方法であって、
     前記移動通信システムのカバレッジ内の第1のユーザ端末が、基地局から送信されるブロードキャスト情報を受信するステップAと、
     前記第1のユーザ端末が、前記移動通信システムのカバレッジ外の第2のユーザ端末に対して、前記ブロードキャスト情報を転送するステップBと、
     前記第2のユーザ端末が、前記第1のユーザ端末から転送された前記ブロードキャスト情報を受信するステップCと、
    を有することを特徴とする通信制御方法。
  2.  前記ブロードキャスト情報は、前記D2D通信に利用可能な無線リソースを示すD2Dリソース情報を含むことを特徴とする請求項1に記載の通信制御方法。
  3.  前記ブロードキャスト情報は、警報配信システムにより配信される警報情報を含むことを特徴とする請求項1に記載の通信制御方法。
  4.  前記ブロードキャスト情報に基づいて、前記D2D通信に利用可能な無線リソースで、前記第1のユーザ端末と前記第2のユーザ端末との間で前記D2D通信を行うステップをさらに有することを特徴とする請求項2に記載の通信制御方法。
  5.  前記D2D通信に利用可能な無線リソースの一部は、前記ブロードキャスト情報を転送するための特別な無線リソースとして確保され、
     前記ステップBにおいて、前記第1のユーザ端末は、前記特別な無線リソースで、前記第2のユーザ端末に対して前記ブロードキャスト情報を転送することを特徴とする請求項2に記載の通信制御方法。
  6.  前記D2D通信に利用可能な無線リソースの一部は、高信頼性かつ低遅延が要求される情報を前記D2D通信において送信するための特別な無線リソースとして確保されることを特徴とする請求項2に記載の通信制御方法。
  7.  前記ステップAにおいて前記第1のユーザ端末が前記警報情報を受信した場合に、前記ステップBにおいて、前記第1のユーザ端末は、前記D2D通信に利用可能な無線リソースを前記警報情報の転送に優先的に割り当てた上で、前記第2のユーザ端末に対して前記警報情報を転送することを特徴とする請求項3に記載の通信制御方法。
  8.  直接的な端末間通信であるD2D通信をサポートする移動通信システムにおいて用いられる通信制御方法であって、
     前記移動通信システムの基地局のカバレッジ内においてRRC接続モードの第1のユーザ端末が、前記D2D通信に使用する無線リソースの割り当てを要求するための要求情報を前記基地局に送信するステップAと、
     前記第1のユーザ端末が、前記要求情報に応じて割り当てられた前記無線リソースを示すリソース割り当て情報を前記基地局から受信するステップBと、
    を有することを特徴とする通信制御方法。
  9.  前記第1のユーザ端末が、前記カバレッジ外の第2のユーザ端末に対し、前記リソース割り当て情報を転送するステップCをさらに有することを特徴とする請求項8に記載の通信制御方法。
  10.  直接的な端末間通信であるD2D通信をサポートする移動通信システムにおいて用いられる通信制御方法であって、
     前記移動通信システムの基地局が、前記D2D通信に興味を持つユーザ端末の数に基づいて、前記D2D通信に使用する無線リソースを決定するステップAと、
     前記基地局が、前記決定した無線リソースを示すリソース割り当て情報をブロードキャストするステップBと、
    を有することを特徴とする通信制御方法。
  11.  前記基地局のカバレッジ内の第1のユーザ端末が、前記リソース割り当て情報を受信するステップCと、
     前記第1のユーザ端末が、前記カバレッジ外の第2のユーザ端末に対し、前記リソース割り当て情報を転送するステップDと、
    をさらに有することを特徴とする請求項10に記載の通信制御方法。
  12.  直接的な端末間通信であるD2D通信をサポートする移動通信システムにおいて用いられる通信制御方法であって、
     前記D2D通信に使用する無線リソースが予め規定されており、
     前記移動通信システムのカバレッジ外の第1のユーザ端末が、前記予め規定された無線リソースを使用して、自律的に前記D2D通信を行うステップを有することを特徴とする通信制御方法。
PCT/JP2014/075110 2013-09-27 2014-09-22 通信制御方法 WO2015046155A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2015539209A JPWO2015046155A1 (ja) 2013-09-27 2014-09-22 通信制御方法
US15/024,359 US9699767B2 (en) 2013-09-27 2014-09-22 Communication control method
EP14849680.5A EP3051911B1 (en) 2013-09-27 2014-09-22 Communication control method
US15/166,811 US10397900B2 (en) 2013-09-27 2016-05-27 Communication control method

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US201361883655P 2013-09-27 2013-09-27
US61/883,655 2013-09-27
US201361898826P 2013-11-01 2013-11-01
US61/898,826 2013-11-01

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US15/024,359 A-371-Of-International US9699767B2 (en) 2013-09-27 2014-09-22 Communication control method
US15/166,811 Continuation US10397900B2 (en) 2013-09-27 2016-05-27 Communication control method

Publications (1)

Publication Number Publication Date
WO2015046155A1 true WO2015046155A1 (ja) 2015-04-02

Family

ID=52743291

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/075110 WO2015046155A1 (ja) 2013-09-27 2014-09-22 通信制御方法

Country Status (4)

Country Link
US (2) US9699767B2 (ja)
EP (1) EP3051911B1 (ja)
JP (1) JPWO2015046155A1 (ja)
WO (1) WO2015046155A1 (ja)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016047507A1 (ja) * 2014-09-25 2016-03-31 京セラ株式会社 ユーザ端末、サービス制御装置、及び基地局
WO2017081907A1 (ja) * 2015-11-13 2017-05-18 ソニー株式会社 装置及び方法
WO2017163544A1 (ja) * 2016-03-23 2017-09-28 日本電気株式会社 デバイス・ツー・デバイス通信を制御するための装置、基地局、無線端末、及びこれらの方法
WO2018022518A1 (en) * 2016-07-28 2018-02-01 Qualcomm Incorporated Mechanisms for signaling out-of-coverage sidelink devices in wireless communication
CN107710845A (zh) * 2015-12-01 2018-02-16 广东欧珀移动通信有限公司 无线资源调度的方法、装置和系统
JP2018515969A (ja) * 2015-04-08 2018-06-14 インターデイジタル パテント ホールディングス インコーポレイテッド デバイスツーデバイス(d2d)通信のモバイル中継器の実現
JP2019169844A (ja) * 2018-03-23 2019-10-03 株式会社国際電気通信基礎技術研究所 情報取得装置、移動体、情報取得方法、及びプログラム
WO2021044820A1 (ja) * 2019-09-04 2021-03-11 ソニー株式会社 通信制御装置、通信装置、通信制御方法および通信方法
WO2021106761A1 (ja) * 2019-11-26 2021-06-03 三菱電機株式会社 通信システム、通信端末および基地局
JP2022502928A (ja) * 2018-09-26 2022-01-11 フラウンホーファー−ゲゼルシャフト・ツール・フェルデルング・デル・アンゲヴァンテン・フォルシュング・アインゲトラーゲネル・フェライン グループ通信のためのリソースプールの設計
WO2022153417A1 (ja) * 2021-01-13 2022-07-21 株式会社Nttドコモ 端末、基地局、及び送信方法

Families Citing this family (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI571167B (zh) * 2013-09-28 2017-02-11 財團法人資訊工業策進會 裝置對裝置使用者裝置及基地台
US10028257B2 (en) * 2013-10-03 2018-07-17 Lg Electronics Inc. Method and apparatus for transmitting device-to-device related information in wireless communication system
MX364145B (es) * 2013-10-31 2019-04-12 Ericsson Telefon Ab L M Métodos, dispositivo de comunicación y programa de cómputo.
WO2015065281A1 (en) * 2013-11-01 2015-05-07 Telefonaktiebolaget L M Ericsson (Publ) Device-to-device communication collision resolution
WO2015066930A1 (en) * 2013-11-11 2015-05-14 Telefonaktiebolaget L M Ericsson (Publ) Multi-hop connection establishment between d2d device of established d2d network and not connected d2d device
EP2879418A1 (en) * 2013-11-27 2015-06-03 Nokia Corporation D2d inter cluster communication and configurations
WO2015095583A1 (en) * 2013-12-20 2015-06-25 Kyocera Corporation Handover of device-to-device (d2d) user equipment (ue) devices using d2d subframes with cell identifiers
WO2015109010A1 (en) * 2014-01-14 2015-07-23 Huawei Technologies Co., Ltd. System and method for device-to-device communications
US10212742B2 (en) * 2014-01-30 2019-02-19 Lg Electronics Inc. D2D operation method performed by terminal in wireless communication system and terminal using same
CN106105345B (zh) * 2014-03-19 2019-08-06 Lg电子株式会社 在无线通信系统中由终端实施的d2d(装置到装置)信号发送方法及使用该方法的终端
EP3141057B1 (en) * 2014-05-06 2019-03-06 LG Electronics Inc. Method and apparatus for indicating d2d resource pool in wireless communication system
CN106465353A (zh) * 2014-05-08 2017-02-22 富士通株式会社 无线通信系统、终端、基站及处理方法
US9781585B2 (en) * 2014-09-25 2017-10-03 Sharp Laboratories Of America, Inc. Latency reduction for mode switching in sidelink communications
US10178704B2 (en) * 2014-09-26 2019-01-08 Telefonaktiebolaget Lm Ericsson (Publ) Method, communication device and computer program for enabling out-of-coverage device
US9723623B2 (en) * 2015-03-11 2017-08-01 Qualcomm Incorporated Access point managed concurrent transmissions
US10306599B2 (en) * 2015-05-12 2019-05-28 Samsung Electronics Co., Ltd. Method and device for allocating resources in wireless communication system supporting D2D communication
WO2016186995A1 (en) * 2015-05-15 2016-11-24 Kyocera Corporation Establishing data relay operation between a relay user equipment (relay-ue) device and an out-of-coverage user equipment (ue) device
US9655039B2 (en) * 2015-06-26 2017-05-16 Qualcomm Incorporated Dynamic cell reselection to improve device-to-device communications
US10455611B2 (en) * 2015-09-16 2019-10-22 Lg Electronics Inc. Method for transceiving data in wireless communication system and apparatus for same
GB2548806A (en) * 2016-03-22 2017-10-04 Virtuosys Ltd Content transfer functionality beyond or within cellular networks
US20180092067A1 (en) * 2016-09-28 2018-03-29 Futurewei Technologies, Inc. System and Method for D2D Communication
US11023280B2 (en) 2017-09-15 2021-06-01 Splunk Inc. Processing data streams received from instrumented software using incremental finite window double exponential smoothing
EP3627929B1 (en) * 2017-09-15 2022-04-20 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Resource allocation method, terminal device, and network device
US10506414B1 (en) 2018-04-06 2019-12-10 Sprint Communications Company L.P. Wireless relay delivery of commercial mobile alert system (CMAS) information to wireless user devices
FR3081279A1 (fr) * 2018-05-18 2019-11-22 Orange Procede centralise d'allocation de ressources de transmission a des terminaux d2d dans un reseau d'acces cellulaire.
CN110740509A (zh) * 2018-07-18 2020-01-31 华为技术有限公司 一种数据传输方法、网络设备、通信设备及存储介质
CN112806080A (zh) * 2018-09-26 2021-05-14 弗劳恩霍夫应用研究促进协会 用于管理侧链路资源的方法
EP4136907A4 (en) * 2020-04-14 2023-11-22 NEC Corporation METHOD FOR COMMUNICATION, TERMINAL DEVICE AND COMPUTER READABLE MEDIA
US11937211B2 (en) * 2020-04-30 2024-03-19 Qualcomm Incorporated Sidelink communication resource set configuration and management

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012235375A (ja) * 2011-05-06 2012-11-29 Hitachi Ltd 基地局、干渉制御方法及び無線通信システム

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2382833B1 (en) * 2009-01-16 2018-08-08 Nokia Technologies Oy Enabling device-to-device communication in cellular networks
WO2013010242A1 (en) * 2011-07-15 2013-01-24 Research In Motion Limited Method and system for peer-to-peer (p2p) ad-hoc location determination routing protocol
CN104054282B (zh) * 2012-01-18 2018-02-09 Lg电子株式会社 装置对装置通信方法及其装置
US11496948B2 (en) * 2012-10-19 2022-11-08 Samsung Electronics Co., Ltd. System and method for ad-hoc/network assisted device discovery protocol for device to device communications
US9872123B2 (en) * 2012-12-03 2018-01-16 Sony Corporation Group based PDCCH capability for LTE
US9185697B2 (en) * 2012-12-27 2015-11-10 Google Technology Holdings LLC Method and apparatus for device-to-device communication
US9955408B2 (en) * 2013-02-22 2018-04-24 Samsung Electronics Co., Ltd. Network-assisted multi-cell device discovery protocol for device-to-device communications
US9173200B2 (en) * 2013-02-28 2015-10-27 Intel Mobile Communications GmbH Communication terminal, network component, base station and method for communicating
EP2785092B1 (en) * 2013-03-28 2015-09-23 Fujitsu Limited Wireless communication system
CN110177358B (zh) * 2013-05-01 2022-06-14 三星电子株式会社 用于设备到设备通信系统的方法和装置
WO2015002468A1 (en) * 2013-07-02 2015-01-08 Samsung Electronics Co., Ltd. Apparatus and method for allocating resources in device-to-device communication in wireless network

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012235375A (ja) * 2011-05-06 2012-11-29 Hitachi Ltd 基地局、干渉制御方法及び無線通信システム

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
"TR 22.803 V12.2.0", 3GPP TECHNICAL REPORT, June 2013 (2013-06-01)
ASUSTEK: "Design Guideline for D2D Communication", 3GPP TSG RAN WG1 MEETING #74 RL-133566, 19 August 2013 (2013-08-19), XP008183123 *
ETRI: "Unicast, groupcast/broadcast, and relay for public safety D2D communications", 3GPP TSG-RAN1 MEETING #74 RL-133181, 19 August 2013 (2013-08-19), XP050716390 *
HTC: "Considerations on designs for D2D discovery", 3GPP TSG RAN WG1 MEETING #74 RL-133265, 19 August 2013 (2013-08-19), XP050716421 *
LG ELECTRONICS: "Resource Management for D2D Communications", 3GPP TSG RAN WG1 MEETING #74 RL-133385, 19 August 2013 (2013-08-19), XP050716499 *
See also references of EP3051911A4

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10531458B2 (en) 2014-09-25 2020-01-07 Kyocera Corporation User terminal, service control apparatus, and base station
WO2016047507A1 (ja) * 2014-09-25 2016-03-31 京セラ株式会社 ユーザ端末、サービス制御装置、及び基地局
JP2022024138A (ja) * 2015-04-08 2022-02-08 インターデイジタル パテント ホールディングス インコーポレイテッド デバイスツーデバイス(d2d)通信のモバイル中継器の実現
US10912007B2 (en) 2015-04-08 2021-02-02 Interdigital Patent Holdings, Inc. Realizing mobile relays for device-to-device (D2D) communications
JP2018515969A (ja) * 2015-04-08 2018-06-14 インターデイジタル パテント ホールディングス インコーポレイテッド デバイスツーデバイス(d2d)通信のモバイル中継器の実現
WO2017081907A1 (ja) * 2015-11-13 2017-05-18 ソニー株式会社 装置及び方法
JPWO2017081907A1 (ja) * 2015-11-13 2018-08-30 ソニー株式会社 装置及び方法
EP3376785A4 (en) * 2015-11-13 2018-11-14 Sony Corporation Device and method
EP3301985B1 (en) 2015-12-01 2020-04-08 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Radio resource scheduling method, device and system
JP2018536303A (ja) * 2015-12-01 2018-12-06 グァンドン オッポ モバイル テレコミュニケーションズ コーポレーション リミテッド 無線リソーススケジューリング方法及び装置
CN107710845A (zh) * 2015-12-01 2018-02-16 广东欧珀移动通信有限公司 无线资源调度的方法、装置和系统
US10624115B2 (en) 2015-12-01 2020-04-14 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Radio resource scheduling method, device and system
CN107710845B (zh) * 2015-12-01 2021-01-19 Oppo广东移动通信有限公司 无线资源调度的方法、装置和系统
JPWO2017163544A1 (ja) * 2016-03-23 2019-01-31 日本電気株式会社 デバイス・ツー・デバイス通信を制御するための装置、基地局、無線端末、及びこれらの方法
JP7044057B2 (ja) 2016-03-23 2022-03-30 日本電気株式会社 デバイス・ツー・デバイス通信を制御するための装置及びその方法
WO2017163544A1 (ja) * 2016-03-23 2017-09-28 日本電気株式会社 デバイス・ツー・デバイス通信を制御するための装置、基地局、無線端末、及びこれらの方法
US11071119B2 (en) 2016-03-23 2021-07-20 Nec Corporation Apparatus for controlling device-to-device communication, base station, radio terminal, and method therefor
WO2018022518A1 (en) * 2016-07-28 2018-02-01 Qualcomm Incorporated Mechanisms for signaling out-of-coverage sidelink devices in wireless communication
US10383137B2 (en) 2016-07-28 2019-08-13 Qualcomm Incorporated Mechanisms for signaling out-of-coverage sidelink devices in wireless communication
CN109479298A (zh) * 2016-07-28 2019-03-15 高通股份有限公司 用于在无线通信中发信令通知覆盖外侧链路设备的机制
CN109479298B (zh) * 2016-07-28 2023-05-09 高通股份有限公司 用于无线通信的方法和装置
JP2019169844A (ja) * 2018-03-23 2019-10-03 株式会社国際電気通信基礎技術研究所 情報取得装置、移動体、情報取得方法、及びプログラム
JP2022502928A (ja) * 2018-09-26 2022-01-11 フラウンホーファー−ゲゼルシャフト・ツール・フェルデルング・デル・アンゲヴァンテン・フォルシュング・アインゲトラーゲネル・フェライン グループ通信のためのリソースプールの設計
JP7419358B2 (ja) 2018-09-26 2024-01-22 フラウンホーファー-ゲゼルシャフト・ツール・フェルデルング・デル・アンゲヴァンテン・フォルシュング・アインゲトラーゲネル・フェライン グループ通信のためのリソースプールの設計
WO2021044820A1 (ja) * 2019-09-04 2021-03-11 ソニー株式会社 通信制御装置、通信装置、通信制御方法および通信方法
CN114303422A (zh) * 2019-09-04 2022-04-08 索尼集团公司 通信控制设备、通信设备、通信控制方法和通信方法
WO2021106761A1 (ja) * 2019-11-26 2021-06-03 三菱電機株式会社 通信システム、通信端末および基地局
WO2022153417A1 (ja) * 2021-01-13 2022-07-21 株式会社Nttドコモ 端末、基地局、及び送信方法

Also Published As

Publication number Publication date
EP3051911A4 (en) 2017-07-05
US10397900B2 (en) 2019-08-27
EP3051911A1 (en) 2016-08-03
JPWO2015046155A1 (ja) 2017-03-09
US9699767B2 (en) 2017-07-04
US20160278045A1 (en) 2016-09-22
US20160242144A1 (en) 2016-08-18
EP3051911B1 (en) 2019-08-28

Similar Documents

Publication Publication Date Title
WO2015046155A1 (ja) 通信制御方法
JP6158899B2 (ja) ユーザ端末、プロセッサ、及び基地局
JP6687452B2 (ja) 移動通信システム、ユーザ端末、プロセッサ、記憶媒体及びプログラム
JP6026549B2 (ja) 移動通信システム、基地局及びユーザ端末
JP6773657B2 (ja) 無線端末及び基地局
WO2014129465A1 (ja) 通信制御方法、ユーザ端末及び基地局
WO2016047671A1 (ja) ユーザ端末及びプロセッサ
JP6302129B1 (ja) 基地局及びプロセッサ
JP6140292B2 (ja) ネットワーク装置及びユーザ端末
JP6200078B2 (ja) ユーザ端末、プロセッサ及び方法
JP6130592B2 (ja) ユーザ端末及び装置
JP6140270B2 (ja) 移動通信システム、基地局、及びユーザ端末
JP6398032B2 (ja) 移動通信システム、ユーザ端末、基地局、及びプロセッサ
JP6140013B2 (ja) 移動通信システム、ユーザ端末、ネットワーク装置及びプロセッサ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14849680

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015539209

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15024359

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2014849680

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014849680

Country of ref document: EP