WO2015045212A1 - Vacuum processing apparatus, vacuum processing method, method for manufacturing magnetoresistance effect element, and apparatus for manufacturing magnetoresistance effect element - Google Patents

Vacuum processing apparatus, vacuum processing method, method for manufacturing magnetoresistance effect element, and apparatus for manufacturing magnetoresistance effect element Download PDF

Info

Publication number
WO2015045212A1
WO2015045212A1 PCT/JP2014/002743 JP2014002743W WO2015045212A1 WO 2015045212 A1 WO2015045212 A1 WO 2015045212A1 JP 2014002743 W JP2014002743 W JP 2014002743W WO 2015045212 A1 WO2015045212 A1 WO 2015045212A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
substrate
vacuum vessel
vacuum
vacuum processing
Prior art date
Application number
PCT/JP2014/002743
Other languages
French (fr)
Japanese (ja)
Inventor
正人 品田
太一 廣見
Original Assignee
キヤノンアネルバ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by キヤノンアネルバ株式会社 filed Critical キヤノンアネルバ株式会社
Priority to JP2015538839A priority Critical patent/JP6068662B2/en
Priority to TW103132794A priority patent/TWI545661B/en
Publication of WO2015045212A1 publication Critical patent/WO2015045212A1/en

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/127Structure or manufacture of heads, e.g. inductive
    • G11B5/33Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only
    • G11B5/39Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects
    • G11B5/3903Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects using magnetic thin film layers or their effects, the films being part of integrated structures
    • G11B5/3906Details related to the use of magnetic thin film layers or to their effects
    • G11B5/3909Arrangements using a magnetic tunnel junction
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux
    • G01R33/06Measuring direction or magnitude of magnetic fields or magnetic flux using galvano-magnetic devices
    • G01R33/09Magnetoresistive devices
    • G01R33/091Constructional adaptation of the sensor to specific applications
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67155Apparatus for manufacturing or treating in a plurality of work-stations
    • H01L21/67207Apparatus for manufacturing or treating in a plurality of work-stations comprising a chamber adapted to a particular process
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N50/00Galvanomagnetic devices
    • H10N50/01Manufacture or treatment

Definitions

  • the present invention relates to a vacuum processing apparatus, a vacuum processing method, a magnetoresistive effect element manufacturing method, and a magnetoresistive effect element manufacturing apparatus.
  • the magnetoresistive effect type magnetic head is a read-only magnetic head using a magnetoresistive effect element as a magnetic sensitive element, and has been put into practical use as a reproduction unit of a hard disk drive or the like.
  • TMR Tunnelneling Magneto Resistance
  • the TMR element has a multilayer structure in which a very thin insulator serving as a tunnel barrier is sandwiched between ferromagnetic metal electrodes, and the magnetization direction of the ferromagnetic metal electrode sandwiching the insulator is opposite to that when parallel.
  • the effect of changing the electrical resistance of the TMR element when parallel (TMR effect) is used.
  • MgO is used as an insulator of the TMR element, and the quality of MgO greatly affects the performance of the magnetic head.
  • MgO As the formation process of MgO, there are a formation process of MgO by RF sputtering and a formation process of oxidizing by flowing oxygen after forming Mg. In the latter case, for example, after the Mg single film is formed, the substrate is transferred to a vacuum vessel for oxidation treatment, and MgO is formed by flowing oxygen.
  • the size of the lead sensor has become smaller, and accordingly the specific resistance of the sensor itself has to be reduced. That is, it is necessary to make the film thickness of the insulator MgO very thin. Specifically, an MgO film thickness of 1 nm or less is required. There is also a need for improved film thickness uniformity.
  • FIGS. 10A and 10B are diagrams illustrating the configuration of a conventional vacuum processing apparatus.
  • a conventional vacuum processing apparatus for oxidation treatment introduces a gas from an opening 1003 provided in a ring (hereinafter referred to as a gas ring) above a substrate (FIG. 10A).
  • a shower plate 1007 in which a plurality of openings 1009 are formed at a predetermined pitch is arranged above the substrate, and a gas obtained by dispersing the gas from the supply port 1006 through the openings 1009 is introduced toward the substrate 1008. Yes (see FIG. 10B: Patent Document 1).
  • the effect of the reached particle distribution did not appear remarkably, but in the case of an extremely thin film of 1 nm or less, the reached particle distribution is strongly reflected in the film thickness distribution.
  • the distribution of oxygen reaching the substrate affects the MgO film thickness distribution.
  • the gas when the gas is introduced using the gas ring 1001, the gas is supplied from the outside of the vacuum processing apparatus via the pipe 1002.
  • the supplied gas flows through the hollow gas ring 1001, and the gas is introduced into the vacuum container from the opening 1003 provided along the outer periphery of the gas ring 1001.
  • the introduced gas reaches the substrate 1004 and is then exhausted by the pump 1005.
  • the distribution of the gas reaching the substrate 1008 tends to be biased near the supply port 1006 for supplying the gas.
  • a substrate mounting portion exists between the supply port 1006 and the exhaust port communicating with the pump 1010.
  • the gas introduced through the shower plate 1007 from the supply port 1006 located above the substrate platform flows toward the substrate platform.
  • the gas flows from the center of the substrate platform to the side surface of the substrate platform, and is exhausted from an exhaust port communicating with a pump 1010 provided below the substrate platform. Is done.
  • the pressure at the central portion of the substrate 1008 placed on the substrate placement portion tends to increase locally.
  • a pressure gradient is generated on the surface of the substrate 1008, and the distribution of particles reaching the substrate 1008 becomes non-uniform.
  • the position where the gas is introduced, the direction in which the gas is introduced, and the structure inside the vacuum vessel have a great influence on the gas distribution on the substrate surface (distribution of reached particles). It was difficult to introduce.
  • the conventional MFC, the vacuum processing apparatus using the gas ring 1001 and the shower plate 1007 cannot obtain a very thin insulator film thickness and a satisfactory film thickness distribution.
  • the present invention has been made in view of the above-mentioned problems of the prior art, and the reactive gas pressure during the formation of the insulator is reduced and the pressure distribution is made uniform, that is, the reactive gas particles reaching the substrate surface are more than conventional.
  • a vacuum processing technique capable of forming an insulator serving as a tunnel barrier having an extremely thin and uniform film thickness by uniformly supplying a small amount.
  • a vacuum processing apparatus includes: a vacuum container capable of depressurization to which an exhaust means is connected; and a substrate mounting surface on which a substrate placed in the vacuum container is mounted.
  • a vacuum processing apparatus comprising: a substrate holder provided; and a gas introduction means having a gas introduction port for introducing a reactive gas into the vacuum vessel, The gas inlet is a position where molecules of the reactive gas released from the gas inlet into the vacuum vessel are blocked from linearly reaching the substrate mounting surface from the gas inlet.
  • the reactive gas is disposed at a position on a substantial central axis of the substrate mounting surface, and the reactive gas reaches the substrate mounting surface by diffusion of a molecular flow.
  • the present invention in the TMR element, it is possible to reduce the pressure of the insulating material, for example, the oxygen distribution pressure during the formation of MgO, and to make it uniform, and to improve the film thickness distribution of the insulating material. Can be formed.
  • the pressure of the insulating material for example, the oxygen distribution pressure during the formation of MgO
  • FIG. 1A is a diagram showing a schematic cross-sectional configuration of the vacuum processing apparatus of the first embodiment.
  • the vacuum processing apparatus can be used for manufacturing a magnetoresistive effect element (magnetoresistance device), and includes a vacuum container 101 for performing an insulator formation process.
  • magnetoresistive effect element magnetoresistance device
  • a predetermined formation process is performed in another vacuum vessel, and the substrate 102 having a metal film (for example, Mg film) formed on the substrate surface is carried into the vacuum vessel 101.
  • an insulator formation process for example, an insulation process
  • an insulator for example, MgO
  • the substrate 102 that has been subjected to the insulator formation process is carried out of the vacuum vessel 101.
  • the illustration of the transfer unit that carries in and out the substrate 102 is omitted.
  • a substrate holder 103 (substrate stage) having a substrate placement surface on which a substrate 102 to be processed can be placed inside the vacuum vessel 101, and a gas (for example, oxygen gas or the like) inside the vacuum vessel 101
  • a gas for example, oxygen gas or the like
  • This pipe functions as a gas introduction unit 104 that introduces gas from the gas introduction source 108 into the vacuum vessel 101.
  • the gas introduction unit 104 includes a gas introduction port 150 for introducing a reactive gas into the vacuum vessel 101.
  • the gas introduction unit 104 is provided with an MFC for controlling the gas supply amount.
  • the vacuum processing apparatus is provided with a pump 105 (turbo molecular pump) for bringing the inside of the vacuum vessel 101 into a predetermined vacuum state.
  • the inside of the vacuum vessel 101 can be depressurized to a low pressure of 1 ⁇ 10 ⁇ 5 Pa or less by the pump 105.
  • the valve unit includes a plate-like valve body 106, and the moving unit 107 can move the valve body 106 of the valve unit in the vertical direction. In a state where the valve body 106 is moved downward by the moving unit 107 (lowered state), the valve body closes the exhaust port 160, and the inside of the vacuum vessel 101 is airtight.
  • the exhaust port 160 is opened in a state where the valve body 106 is moved upward by the moving unit 107 (upward state), and the pump 105 connected to the tip of the exhaust port 160 communicates with the inside of the vacuum vessel 101. .
  • the pump 105 exhausts the gas introduced from the gas introduction unit 104 through the exhaust port 160.
  • the exhaust flow rate of the pump 105 can be controlled, whereby the oxygen supply amount of the gas introduced into the vacuum vessel 101 can be controlled.
  • the exhaust port 160 and the pump 105 function as an exhaust unit capable of reducing the pressure inside the vacuum vessel 101.
  • FIG. 1B is a diagram illustrating the flow of the vacuum processing method of the vacuum processing apparatus according to the embodiment.
  • the vacuum processing method of the vacuum processing apparatus includes the following steps.
  • step S1 the substrate 102 is placed on the substrate holder 103.
  • a reactive gas is introduced from the gas introduction port 150 of the gas introduction unit 104.
  • the reactive gas molecules released from the gas inlet into the vacuum chamber 101 are shielded from reaching the surface of the substrate 102 linearly from the gas inlet, and the substantial center of the surface of the substrate.
  • a reaction gas is introduced into the vacuum chamber from a gas inlet arranged at a position on the shaft.
  • the reactive gas to be introduced is, for example, oxygen gas.
  • the molecules of the reactive gas released from the gas inlet 150 into the vacuum vessel 101 are shielded by the valve body 106.
  • a shielding member different from the back surface of the substrate holder 103, the upper surface of the vacuum vessel, and the valve body 106 may be used. Is possible. A configuration example of the shielding structure will be specifically described later in the second to sixth embodiments.
  • step S3 the gas is allowed to reach the substrate mounting surface of the substrate holder 103 by the diffusion of the molecular flow.
  • a metal film is formed on the substrate surface of the substrate 102 placed in the previous step S1, and in step S4, the metal film is insulated (for example, oxidized) by the gas.
  • the method of manufacturing a magnetoresistive element includes a step of forming a tunnel barrier layer made of an insulator (for example, MgO) using the vacuum processing method of steps S1 to S3 described above.
  • a tunnel barrier layer made of an insulator for example, MgO
  • the vacuum processing method it is possible to improve the film thickness distribution of the insulating material (for example, MgO) to be formed, and to reduce and equalize the gas pressure during the formation.
  • the method of manufacturing a magnetoresistive effect element using a vacuum processing method it is possible to form an insulator of an extremely thin film having a thickness of 1 nm or less, for example, and to provide a higher quality magnetoresistive effect element (TMR element). Is possible.
  • gas is introduced from a single gas inlet that is aligned with the central axis of the substrate in a manner that does not directly hit the substrate, and the gas is concentrically drawn from the central axis into the vacuum vessel. It is preferable that the insulating treatment is performed with oxygen particles of the gas that has been diffused by the gas and reaches the substrate. Further, in order to suppress the generation of a pressure gradient due to the position of the exhaust port 160 and to allow oxygen particles to reach the substrate uniformly, the exhaust port 160 should be disposed directly below the substrate holder along the central axis of the substrate 102. good.
  • oxygen which is a reactive gas
  • one gas inlet 150 by a method that does not directly hit the substrate 102 and the exhaust port 160 be arranged directly below the substrate holder along the central axis of the substrate. Conceivable.
  • the mean free path in the assumed use state of the vacuum vessel 101 is sufficiently longer than the diameter of the vacuum vessel 101, it is considered that oxygen particles reach the wall surface of the vacuum vessel 101 almost without collision and are reflected (vacuum vessel Ignore wall adsorption probability). Since it is considered that the particles reflected by the wall surface also reach the substrate, it is desirable that the side surface of the vacuum vessel 101 is also circular in order to allow oxygen particles to uniformly reach the circular substrate.
  • FIG. 2 is a cross-sectional view showing a schematic configuration of the vacuum processing apparatus according to the first embodiment.
  • the gas introduction unit 104 introduces gas from the outside of the vacuum vessel 101 into the vacuum vessel via a pipe.
  • a gas introduction port 150 provided at the tip of the gas introduction unit 104 is disposed between the substrate holder 103 and the valve body 106 so as to coincide with the central axis of the substrate 102.
  • the term “match” refers to a substantial match that takes into account tolerances when processing or assembling parts, and is not limited to a physical perfect match (the same applies to the embodiments described below). .
  • the gas inlet 150 is provided with one opening for releasing a reactive gas in the vacuum vessel 101.
  • the insulator forming process is performed by utilizing the diffusion phenomenon of the molecular flow caused by applying the gas to the valve body 106.
  • the cross-sectional shape of the vacuum vessel 101 is circular, and the cross-sectional shape of the vacuum vessel 101, the substrate holder 103 arranged in the vacuum vessel 101, and the substrate 102 placed on the substrate holder 103 are concentric. By making the cross-sectional shape of the vacuum vessel and the substrate holder 103 and the substrate 102 concentric, uniform gas diffusion is possible.
  • the inside of the vacuum vessel 101 is spherical as a configuration in which reactive gas (for example, oxygen) particles uniformly reach the circular substrate. You may comprise.
  • the gas inlet 150 faces downward and faces the valve element 106. However, if the substrate holder 103 and other shielding members are arranged so that the gas is not directly applied to the substrate.
  • the gas inlet 150 may be arranged upward. A configuration example in which the direction of the gas inlet 150 is changed and a configuration example using a shielding member will be described in later embodiments.
  • the gas inlet 150 is arranged facing the valve body 106 side, and gas is introduced from the gas inlet 150.
  • Arrows 201 and 202 in FIG. 2 schematically show how the introduced gas diffuses in the vacuum vessel 101.
  • the gas introduced from the gas introduction port 150 reaches the valve body 106 and then diffuses from the center of the valve body 106 in the outer peripheral direction (left-right direction in FIG. 2). Then, after reaching the vicinity of the side surface of the vacuum vessel 101, it diffuses into a gas (arrow 201) directed upward of the vacuum vessel and a gas (arrow 202) directed downward of the vacuum vessel.
  • the gas (arrow 202) heading below the vacuum vessel is exhausted by the pump 105 from the exhaust port 160.
  • the gas that diffuses in the vacuum vessel 101 and reaches the substrate 102 decreases, and the reactive gas (for example, oxygen) pressure during the formation of the insulating film is reduced. can do.
  • the gas (arrow 201) heading above the vacuum vessel diffuses above the substrate in the vacuum vessel and reaches the substrate.
  • the oxygen particles of the gas (arrow 201) reach the center of the substrate 102 in order from the end of the substrate 102 by introducing the gas from below the substrate 102. Due to such gas diffusion, the distribution of the diffused particles becomes uniform, and the film thickness distribution of the formed insulator can be improved.
  • FIG. 9 is a diagram showing the pressure distribution of the gas introduced from one gas inlet 150 aligned with the central axis of the substrate.
  • the horizontal axis indicates the length (m) of the valve body 106
  • the vertical axis indicates the pressure (Pa). From this figure, it can be seen that the central portion of the valve body 106 is a position corresponding to the gas inlet 150, and the pressure peaks in the vicinity of the central portion of the valve body 106, resulting in an even pressure distribution on the left and right. It is possible to cause uniform gas diffusion (201, 202 in FIG. 2) due to the uniform pressure gradient.
  • FIG. 8 is a diagram showing a simulation result of a pressure distribution performed for comparing the configuration of the conventional example and the configuration according to the embodiment.
  • Reference numeral 801 denotes a case where a shower plate is used
  • reference numeral 802 denotes a case where a ring (gas ring) is used
  • reference numeral 803 denotes a simulation result when the configuration of the present embodiment (single point gas introduction at the substrate stage) is used.
  • Reference numeral 804 denotes a simulation result when the configuration of the second embodiment described later is used, which will be described in detail later.
  • the conditions used for the simulation are as follows.
  • the configuration of the present embodiment it is possible to improve the film thickness distribution of the insulator. It is also possible to reduce the oxygen distribution pressure during formation.
  • FIG. 3 is a cross-sectional view showing a schematic configuration of a vacuum processing apparatus according to the second embodiment.
  • the gas introduction unit 104 introduces gas (for example, reactive gas such as oxygen gas) from the outside of the vacuum vessel 101 into the vacuum vessel via a pipe.
  • An opening is provided in the central part of the valve body 106, and the gas introduction part 104 is inserted into the opening, and the gas introduction port 150 protrudes below the valve body 106.
  • the moving unit 107 can move the valve body 106 in a state where the gas introduction unit 104 is inserted. In a state where the valve body 106 is moved downward (lowered state) by the moving unit 107, the valve body 106 closes the exhaust port 160, and the inside of the vacuum vessel 101 is airtight.
  • the exhaust port 160 is opened in a state where the valve body 106 is moved upward by the moving unit 107 (upward state), and the pump 105 connected to the tip of the exhaust port 160 communicates with the inside of the vacuum vessel 101. .
  • the gas inlet 150 that protrudes downward from the valve body 106 is disposed so as to coincide with the central axis of the substrate holder 103 and the substrate 102.
  • gas is introduced downward from the gas inlet 150 below the valve body 106.
  • Arrows 301 and 302 in FIG. 3 schematically show how the introduced gas diffuses in the vacuum vessel 101.
  • the gas introduced from the gas inlet 150 is divided into a gas (arrow 301) directed upward of the vacuum vessel 101 and a gas (arrow 302) directed downward of the vacuum vessel.
  • the gas (arrow 302) heading below the vacuum vessel is exhausted by the pump 105 from the exhaust port.
  • the gas that diffuses in the vacuum vessel 101 and reaches the substrate 102 is reduced, and the oxygen distribution pressure at the time of formation can be reduced.
  • the gas (arrow 301) heading above the vacuum vessel diffuses above the substrate in the vacuum vessel and reaches the substrate.
  • the oxygen particles of the gas (arrow 301) sequentially reach the center of the substrate 102 from the end of the substrate 102. Due to such gas diffusion, the distribution of the diffusion particles becomes uniform, and the film thickness distribution of the formed insulator can be improved.
  • FIG. 4 is a cross-sectional view showing a schematic configuration of a vacuum processing apparatus according to the third embodiment.
  • the gas introduction unit 104 introduces gas (for example, reactive gas such as oxygen gas) from the outside of the vacuum vessel 101 into the vacuum vessel via a pipe.
  • a gas introduction port 150 provided at the tip of the gas introduction unit 104 is disposed between the substrate holder 103 and the pump 105 so as to coincide with the central axis of the substrate 102.
  • the gas introduction port 150 is arranged facing the pump 105 side (the exhaust port 160 side in FIG. 1), and reactive gas is introduced from the gas introduction port 150 toward the pump 105.
  • Arrows 401 and 402 in FIG. 4 schematically show how the introduced gas diffuses in the vacuum vessel 101.
  • the gas introduced from the gas inlet 150 is divided into a gas (arrow 401) directed upward of the vacuum container 101 and a gas (arrow 402) directed downward of the vacuum container.
  • the gas (arrow 402) heading below the vacuum vessel is exhausted by the pump 105 from the exhaust port.
  • the gas that diffuses in the vacuum vessel 101 and reaches the substrate 102 is reduced, and the oxygen distribution pressure at the time of formation can be reduced.
  • the gas (arrow 401) heading above the vacuum vessel diffuses above the substrate in the vacuum vessel and reaches the substrate.
  • oxygen particles of the gas (arrow 401) reach the center of the substrate 102 in order from the end of the substrate 102. Due to such gas diffusion, the distribution of the diffusion particles becomes uniform, and the film thickness distribution of the formed insulator can be improved.
  • a gas for example, a reactive gas such as oxygen gas
  • molecules obtained by applying the gas to the shielding member 510 disposed between the valve body 106 and the substrate holder 103 are used.
  • Insulating (for example, oxidation) treatment is performed by utilizing a flow diffusion phenomenon.
  • FIG. 5 is a cross-sectional view showing a schematic configuration of a vacuum processing apparatus according to the fourth embodiment.
  • the gas introduction unit 104 introduces gas (for example, reactive gas such as oxygen gas) from the outside of the vacuum vessel 101 into the vacuum vessel via a pipe.
  • the gas inlet 150 provided at the tip of the gas inlet is disposed between the substrate holder 103 and the shielding member 510 so as to coincide with the central axis of the substrate 102.
  • the gas inlet 150 is arranged facing the shielding member 510 side, and gas is introduced from the gas inlet 150.
  • Arrows 501 and 502 in FIG. 5 schematically show how the introduced gas diffuses in the vacuum vessel 101.
  • the gas introduced from the gas introduction port reaches the shielding member 510 and then diffuses from the center of the shielding member 510 in the outer peripheral direction (left-right direction in FIG. 5). Then, after reaching the vicinity of the side surface of the vacuum container 101, the gas diffuses into a gas (arrow 501) directed upward of the vacuum container and a gas (arrow 502) directed downward of the vacuum container.
  • the gas (arrow 502) heading below the vacuum container is exhausted by the pump 105 from the exhaust port.
  • the gas that diffuses in the vacuum vessel 101 and reaches the substrate 102 is reduced, and the oxygen distribution pressure at the time of formation can be reduced.
  • the gas (arrow 501) heading above the vacuum vessel diffuses above the substrate in the vacuum vessel and reaches the substrate.
  • oxygen particles of the gas (arrow 501) sequentially reach the center of the substrate 102 from the end of the substrate 102. Due to such gas diffusion, the distribution of the diffusion particles becomes uniform, and the film thickness distribution of the formed insulator can be improved.
  • the back surface of the substrate holder 103 refers to a surface opposite to the substrate mounting surface on which the substrate holder 103 can mount the substrate 102.
  • the back side (back surface) of the substrate holder 103 functions as a shielding member that shields the molecules of the reactive gas from reaching the surface of the substrate 102 linearly.
  • FIG. 6 is a cross-sectional view showing a schematic configuration of a vacuum processing apparatus according to the fifth embodiment.
  • the gas introduction unit 104 introduces gas (for example, reactive gas such as oxygen gas) from the outside of the vacuum vessel 101 into the vacuum vessel via a pipe.
  • the gas introduction port 150 provided at the tip of the gas introduction part is arranged so as to coincide with the central axis of the substrate holder 103 and the central axis of the substrate 102.
  • the gas inlet 150 is arranged facing the back side (back side) of the substrate holder 103, and gas is introduced from the gas inlet 150.
  • Arrows 601 and 602 in FIG. 6 schematically show how the introduced gas diffuses in the vacuum vessel 101.
  • the gas introduced from the gas inlet 150 reaches the back side of the substrate holder 103 and then diffuses from the center of the back side surface of the substrate holder 103 toward the outer periphery. Then, after reaching the vicinity of the side surface of the vacuum vessel 101, it diffuses into a gas (arrow 601) directed upward of the vacuum vessel and a gas (arrow 602) directed downward of the vacuum vessel.
  • the gas (arrow 602) heading below the vacuum container is exhausted by the pump 105 from the exhaust port.
  • the gas that diffuses in the vacuum vessel 101 and reaches the substrate 102 is reduced, and the oxygen distribution pressure at the time of formation can be reduced.
  • the gas (arrow 601) heading above the vacuum vessel diffuses above the substrate in the vacuum vessel and reaches the substrate.
  • oxygen particles of the gas (arrow 601) sequentially reach the center of the substrate 102 from the end of the substrate 102. Due to such gas diffusion, the distribution of the diffusion particles becomes uniform, and the film thickness distribution of the formed insulator can be improved.
  • FIG. 7 is a cross-sectional view showing a schematic configuration of a vacuum processing apparatus according to the sixth embodiment.
  • the gas introduction unit 104 introduces gas from the outside of the vacuum vessel 101 into the vacuum vessel via a pipe.
  • the gas introduction port 150 provided at the tip of the gas introduction part is arranged so as to coincide with the central axis of the substrate holder 103 and the central axis of the substrate 102.
  • the gas inlet 150 is arranged facing the upper surface 710 side of the vacuum vessel 101, and gas is introduced from the gas inlet 150.
  • An arrow 701 in FIG. 7 schematically shows how the introduced gas diffuses in the vacuum vessel 101.
  • the gas introduced from the gas introduction port 150 reaches the upper surface 710 of the vacuum vessel 101 and then diffuses from the center of the upper surface 710 of the vacuum vessel 101 in the outer peripheral direction (left-right direction in FIG. 7). After reaching the vicinity of the side surface of the vacuum vessel 101, the gas is divided into a gas diffusing toward the substrate 102 in the vacuum vessel 101 and a gas diffusing toward the exhaust port side of the pump 105.
  • the gas diffused to the exhaust port side of the pump 105 is exhausted by the pump 105 from the exhaust port.
  • a part of the gas introduced to form the insulator is exhausted by the pump 105, so that the gas that diffuses in the vacuum vessel 101 and reaches the substrate 102 is reduced, and the oxygen distribution pressure at the time of formation is reduced. can do.
  • the gas diffusing to the substrate 102 side sequentially reaches the center of the substrate 102 from the end of the substrate 102. Due to such gas diffusion, the distribution of the diffusion particles becomes uniform, and the film thickness distribution of the formed insulator can be improved.
  • FIG. 1C is a diagram for explaining a configuration of a magnetoresistive element manufacturing apparatus.
  • the magnetoresistive element manufacturing apparatus includes at least one vacuum container for formation, 1 One insulating (for example, oxidation) vacuum vessel and one heat treatment vacuum vessel are provided.
  • the substrate transported from the load lock chamber 8 is transported to the forming vacuum vessel 9a (forming chamber), where the underlayer, the antiferromagnetic layer, the ferromagnetic layer, the nonmagnetic intermediate layer, and the second ferromagnetic layer are transported. Is formed on the substrate.
  • the substrate is transferred to a forming vacuum vessel 9b (forming chamber), and a first metal layer (for example, a first Mg layer) is formed.
  • a first metal layer for example, a first Mg layer
  • the substrate on which the first metal layer is formed is transferred to the vacuum chamber 10 (insulation chamber) for insulation treatment, and the first metal layer is insulated (for example, oxidized).
  • the thickness of the insulator (MgO) to be formed by applying the configuration of the vacuum processing apparatus described in the first to sixth embodiments to the vacuum container 10 (insulating chamber) for insulating processing. It is possible to improve the distribution and reduce the oxygen distribution pressure during formation.
  • the substrate with the first metal layer insulated is returned to the forming vacuum vessel 9b, and a second metal layer (for example, a second Mg layer) is formed on the insulated first metal layer. It is formed.
  • the substrate on which the second metal layer is formed is transferred to the vacuum vessel 11 for heat treatment, and heat treatment is performed.
  • the heat-treated substrate returns to the forming vacuum vessel 9b, and a magnetization free layer and a protective layer are formed.
  • the load lock chamber 8, the forming vacuum containers 9 a and 9 b, the insulating processing vacuum container 10, and the heating processing vacuum container 11 are connected to the transfer chamber 12.
  • Each vacuum vessel (chamber) is equipped with an evacuation device and can be independently evacuated, so that the substrate can be processed in a consistent vacuum.
  • the metal layer can be selected from an Al film, a Ti film, a Zn film, or the like in addition to the Mg film.
  • the magnetoresistive effect element manufacturing apparatus of the present embodiment for example, it is possible to form an ultrathin film having a thickness of 1 nm or less, and it is possible to provide a higher quality magnetoresistive effect element (TMR element).
  • TMR element magnetoresistive effect element

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Hall/Mr Elements (AREA)
  • Magnetic Heads (AREA)
  • Formation Of Insulating Films (AREA)

Abstract

This vacuum processing apparatus has: a vacuum container, which has an air releasing unit connected thereto, and which can be depressurized; a substrate holder that is provided with a substrate placing surface for placing a substrate that is disposed in the vacuum container; and a gas introduction unit that is provided with a gas introduction port for introducing a reactive gas into the vacuum container. The gas introduction port is disposed at a position where molecules of the reactive gas discharged into the vacuum container from the gas introduction port are blocked from linearly reaching the substrate placing surface from the gas introduction port, said position being substantially on the center axis of the substrate placing surface, and the reactive gas reaches the substrate placing surface by means of diffusion of a molecular flow.

Description

真空処理装置、真空処理方法、磁気抵抗効果素子の製造方法および磁気抵抗効果素子の製造装置Vacuum processing apparatus, vacuum processing method, magnetoresistive effect element manufacturing method, and magnetoresistive effect element manufacturing apparatus
 本発明は、真空処理装置、真空処理方法、磁気抵抗効果素子の製造方法および磁気抵抗効果素子の製造装置に関するものである。 The present invention relates to a vacuum processing apparatus, a vacuum processing method, a magnetoresistive effect element manufacturing method, and a magnetoresistive effect element manufacturing apparatus.
 磁気抵抗効果型磁気ヘッドは、磁気感応素子として磁気抵抗効果素子を用いた再生専用の磁気ヘッドであり、ハードディスクドライブ等の再生部として実用化されている。近年、磁気抵抗効果素子としてTMR(Tunneling Magneto Resistance)素子が採用されつつある。 The magnetoresistive effect type magnetic head is a read-only magnetic head using a magnetoresistive effect element as a magnetic sensitive element, and has been put into practical use as a reproduction unit of a hard disk drive or the like. In recent years, TMR (Tunneling Magneto Resistance) elements are being adopted as magnetoresistive elements.
 TMR素子は、トンネル障壁となる非常に薄い絶縁体を強磁性金属の電極で挟んだ多層膜構造をしており、絶縁体を挟んだ強磁性金属の電極の磁化方向が、平行なときと反平行なときでTMR素子の電気抵抗が変化する効果(TMR効果)を利用している。最近では、TMR素子の絶縁体にMgOが用いられ、MgOの品質が磁気ヘッドの性能に大きく影響を与える。 The TMR element has a multilayer structure in which a very thin insulator serving as a tunnel barrier is sandwiched between ferromagnetic metal electrodes, and the magnetization direction of the ferromagnetic metal electrode sandwiching the insulator is opposite to that when parallel. The effect of changing the electrical resistance of the TMR element when parallel (TMR effect) is used. Recently, MgO is used as an insulator of the TMR element, and the quality of MgO greatly affects the performance of the magnetic head.
 MgOの形成プロセスとしては、MgOのRFスパッタによる形成プロセスと、Mg形成後に酸素を流して酸化する形成プロセスがある。後者の場合、例えば、Mg単膜を形成した後、酸化処理用の真空容器に基板を搬送し、酸素を流すことでMgOを形成している。 As the formation process of MgO, there are a formation process of MgO by RF sputtering and a formation process of oxidizing by flowing oxygen after forming Mg. In the latter case, for example, after the Mg single film is formed, the substrate is transferred to a vacuum vessel for oxidation treatment, and MgO is formed by flowing oxygen.
 近年、ハードディスクドライブの高密度化に伴い、リードセンサーサイズも小さくなってきており、それに伴いセンサー自体の比抵抗も小さくする必要がある。つまり、絶縁体であるMgOの膜厚を極薄膜にする必要がある。具体的には、1nm以下のMgOの膜厚が要求されている。また、膜厚均一性の向上も求められている。 In recent years, along with the increase in the density of hard disk drives, the size of the lead sensor has become smaller, and accordingly the specific resistance of the sensor itself has to be reduced. That is, it is necessary to make the film thickness of the insulator MgO very thin. Specifically, an MgO film thickness of 1 nm or less is required. There is also a need for improved film thickness uniformity.
 図10A、図10Bは、従来の真空処理装置の構成を例示する図である。 10A and 10B are diagrams illustrating the configuration of a conventional vacuum processing apparatus.
 従来の酸化処理用の真空処理装置としては、基板上方のリング(以下、ガスリング)に設けられた開口部1003からガスを導入するものがある(図10A)。 A conventional vacuum processing apparatus for oxidation treatment introduces a gas from an opening 1003 provided in a ring (hereinafter referred to as a gas ring) above a substrate (FIG. 10A).
 あるいは、複数の開口部1009が所定のピッチで形成されたシャワープレート1007を基板上方に配置して、供給口1006からのガスを開口部1009により分散したガスを基板1008に向けて導入するものもある(図10B:特許文献1を参照)。 Alternatively, a shower plate 1007 in which a plurality of openings 1009 are formed at a predetermined pitch is arranged above the substrate, and a gas obtained by dispersing the gas from the supply port 1006 through the openings 1009 is introduced toward the substrate 1008. Yes (see FIG. 10B: Patent Document 1).
特開2000-294538号公報JP 2000-294538 A
 従来技術では、Mg成膜後に酸素を流して酸化する場合、酸素の供給制御をガスの流量制御を行うマスフローコントローラ(MFC: Mass Flow Controller)を用いて行っていた。MgOの膜厚は酸素供給量に比例する。よって、極薄膜のMgOを形成する為には、酸素供給量を極僅かな量に制御できるMFCが必要であるが、現状の機器性能では限界である。 In the prior art, when oxygen is flowed after Mg film formation to oxidize, oxygen supply is controlled using a mass flow controller (MFC: “Mass” Flow ”Controller) that controls the flow rate of gas. The film thickness of MgO is proportional to the oxygen supply amount. Therefore, in order to form an ultrathin MgO, an MFC capable of controlling the oxygen supply amount to an extremely small amount is necessary, but the current device performance is limited.
 ある程度の膜厚(数nm程度)の場合、到達粒子分布の影響が顕著に現れなかったが、1nm以下の極薄膜の場合、到達粒子分布が膜厚分布に強く反映される。例えば、Mg成膜後に酸素を供給して酸化する場合、基板に到達した酸素の分布が、MgOの膜厚分布に影響する。 In the case of a certain film thickness (about several nm), the effect of the reached particle distribution did not appear remarkably, but in the case of an extremely thin film of 1 nm or less, the reached particle distribution is strongly reflected in the film thickness distribution. For example, when oxygen is supplied to oxidize after Mg film formation, the distribution of oxygen reaching the substrate affects the MgO film thickness distribution.
 図10Aに示すようにガスリング1001を用いてガスを導入する場合、真空処理装置の外部から配管1002を介してガスが供給される。供給されたガスは中空のガスリング1001の中を流れ、ガスリング1001の外周に沿って設けられた開口部1003からガスが真空容器内に導入される。導入されたガスは基板1004に到達した後、ポンプ1005により排気される。 As shown in FIG. 10A, when the gas is introduced using the gas ring 1001, the gas is supplied from the outside of the vacuum processing apparatus via the pipe 1002. The supplied gas flows through the hollow gas ring 1001, and the gas is introduced into the vacuum container from the opening 1003 provided along the outer periphery of the gas ring 1001. The introduced gas reaches the substrate 1004 and is then exhausted by the pump 1005.
 ガス導入元となる配管1002から離れた位置の開口部に比べて配管1002付近の開口部からは、より多くのガスが噴出するために、ガスの分布は不均一になり、真空容器内の基板1004に対して均一にガスを導入することは困難なものとなっていた。 Since more gas is ejected from the opening in the vicinity of the pipe 1002 than in the opening at a position away from the pipe 1002 as the gas introduction source, the gas distribution becomes uneven, and the substrate in the vacuum vessel It has been difficult to uniformly introduce gas into 1004.
 図10Bに示すようなシャワープレート1007を用いてガスを導入した場合、基板1008に到達するガスの分布(到達粒子分布)は、ガスを供給する供給口1006付近に偏りが生じる傾向がある。 When the gas is introduced using the shower plate 1007 as shown in FIG. 10B, the distribution of the gas reaching the substrate 1008 (arrival particle distribution) tends to be biased near the supply port 1006 for supplying the gas.
 また、真空処理装置の真空容器内部の構造として、供給口1006とポンプ1010と連通した排気口との間に基板載置部が存在する。基板載置部の上方に位置する供給口1006からシャワープレート1007を介して導入されたガスは基板載置部に向かって流れる。ガスが基板載置部に達すると、基板載置部の中央部から基板載置部の側面部に向かって流れ、基板載置部の下方に設けられているポンプ1010と連通した排気口より排気される。 Also, as a structure inside the vacuum container of the vacuum processing apparatus, a substrate mounting portion exists between the supply port 1006 and the exhaust port communicating with the pump 1010. The gas introduced through the shower plate 1007 from the supply port 1006 located above the substrate platform flows toward the substrate platform. When the gas reaches the substrate platform, the gas flows from the center of the substrate platform to the side surface of the substrate platform, and is exhausted from an exhaust port communicating with a pump 1010 provided below the substrate platform. Is done.
 このような真空容器内部の構造のため、基板載置部に載置された基板1008の中央部の圧力が局所的に高くなる傾向がある。結果として、基板1008の表面に圧力勾配が生じ、基板1008に到達する粒子の分布は不均一なものとなる。 Because of such a structure inside the vacuum vessel, the pressure at the central portion of the substrate 1008 placed on the substrate placement portion tends to increase locally. As a result, a pressure gradient is generated on the surface of the substrate 1008, and the distribution of particles reaching the substrate 1008 becomes non-uniform.
 このように、ガスを導入する位置やガスを導入する方向、および真空容器内部の構造は、基板表面のガスの分布(到達粒子分布)に大きな影響を与え、基板1008に対して均一にガスを導入することは困難なものとなっていた。 As described above, the position where the gas is introduced, the direction in which the gas is introduced, and the structure inside the vacuum vessel have a great influence on the gas distribution on the substrate surface (distribution of reached particles). It was difficult to introduce.
 従来のMFCや、ガスリング1001やシャワープレート1007を使用した真空処理装置では、極薄膜の絶縁体膜厚が得られず、また満足できる膜厚分布も得られていない。 The conventional MFC, the vacuum processing apparatus using the gas ring 1001 and the shower plate 1007 cannot obtain a very thin insulator film thickness and a satisfactory film thickness distribution.
 極薄膜の絶縁体膜厚形成を制御するためには、反応性ガスの圧力を分布良く均一に下げる必要があり、具体的には、基板上に従来よりも少量の反応性ガス粒子をまんべんなく均一に到達させる手法が必要とされる。 In order to control the formation of a very thin insulator film, it is necessary to uniformly reduce the pressure of the reactive gas with a good distribution. Specifically, a smaller amount of reactive gas particles are uniformly distributed on the substrate than before. A technique to reach this is needed.
 本発明は上記の従来技術の課題を鑑みてなされたもので、絶縁物形成時の反応性ガス圧力の低圧化と圧力分布の均一化、すなわち基板表面へ到達する反応性ガス粒子を従来よりも少量で均一に供給することを図り、極薄で均一な膜厚のトンネル障壁となる絶縁体を形成可能な真空処理技術を提供する。 The present invention has been made in view of the above-mentioned problems of the prior art, and the reactive gas pressure during the formation of the insulator is reduced and the pressure distribution is made uniform, that is, the reactive gas particles reaching the substrate surface are more than conventional. Provided is a vacuum processing technique capable of forming an insulator serving as a tunnel barrier having an extremely thin and uniform film thickness by uniformly supplying a small amount.
 上記の目的を達成する本発明の一つの側面に係る真空処理装置は、排気手段が接続された減圧可能な真空容器と、該真空容器内に配される基板を載置する基板載置面を備えた基板ホルダと、前記真空容器内に反応性ガスを導入するガス導入口を備えたガス導入手段と、を有する真空処理装置であって、
 前記ガス導入口は、該ガス導入口より前記真空容器内に放出される前記反応性ガスの分子が前記ガス導入口から直線的に前記基板載置面に到達するのが遮蔽される位置であると共に、前記基板載置面の実質的な中心軸上の位置に配されており、前記反応性ガスが分子流の拡散により前記基板載置面に到達することを特徴とする。
A vacuum processing apparatus according to one aspect of the present invention that achieves the above object includes: a vacuum container capable of depressurization to which an exhaust means is connected; and a substrate mounting surface on which a substrate placed in the vacuum container is mounted. A vacuum processing apparatus comprising: a substrate holder provided; and a gas introduction means having a gas introduction port for introducing a reactive gas into the vacuum vessel,
The gas inlet is a position where molecules of the reactive gas released from the gas inlet into the vacuum vessel are blocked from linearly reaching the substrate mounting surface from the gas inlet. In addition, the reactive gas is disposed at a position on a substantial central axis of the substrate mounting surface, and the reactive gas reaches the substrate mounting surface by diffusion of a molecular flow.
 本発明によれば、TMR素子において、絶縁物例えばMgO形成時の酸素分布圧力の低圧化と均一化を図ることが可能になり、絶縁物の膜厚分布改善を図りつつ、極薄な絶縁物を形成することが可能になる。 According to the present invention, in the TMR element, it is possible to reduce the pressure of the insulating material, for example, the oxygen distribution pressure during the formation of MgO, and to make it uniform, and to improve the film thickness distribution of the insulating material. Can be formed.
 本発明のその他の特徴及び利点は、添付図面を参照とした以下の説明により明らかになるであろう。なお、添付図面においては、同じ若しくは同様の構成には、同じ参照番号を付す。 Other features and advantages of the present invention will become apparent from the following description with reference to the accompanying drawings. In the accompanying drawings, the same or similar components are denoted by the same reference numerals.
 添付図面は明細書に含まれ、その一部を構成し、本発明の実施の形態を示し、その記述と共に本発明の原理を説明するために用いられる。
実施形態に係る真空処理装置の断面構成を示す図である。 実施形態に係る真空処理方法の流れを説明する図である。 実施形態に係る磁気抵抗効果素子の製造装置の構成図である。 第1実施形態に係る真空処理装置の構成を示す断面模式図である。 第2実施形態に係る真空処理装置の構成を示す断面模式図である。 第3実施形態に係る真空処理装置の構成を示す断面模式図である。 第4実施形態に係る真空処理装置の構成を示す断面模式図である。 第5実施形態に係る真空処理装置の構成を示す断面模式図である。 第6実施形態に係る真空処理装置の構成を示す断面模式図である。 圧力分布のシミュレーション結果を示す図である。 第1実施形態で、基板の中心軸に合わせた一つのガス導入口より導入されるガスの圧力分布を示す図である。 従来の真空処理装置の構成を示す図である。 従来の真空処理装置の構成を示す図である。
The accompanying drawings are included in the specification, constitute a part thereof, show an embodiment of the present invention, and are used to explain the principle of the present invention together with the description.
It is a figure which shows the cross-sectional structure of the vacuum processing apparatus which concerns on embodiment. It is a figure explaining the flow of the vacuum processing method concerning an embodiment. It is a block diagram of the manufacturing apparatus of the magnetoresistive effect element which concerns on embodiment. It is a cross-sectional schematic diagram which shows the structure of the vacuum processing apparatus which concerns on 1st Embodiment. It is a cross-sectional schematic diagram which shows the structure of the vacuum processing apparatus which concerns on 2nd Embodiment. It is a cross-sectional schematic diagram which shows the structure of the vacuum processing apparatus which concerns on 3rd Embodiment. It is a cross-sectional schematic diagram which shows the structure of the vacuum processing apparatus which concerns on 4th Embodiment. It is a cross-sectional schematic diagram which shows the structure of the vacuum processing apparatus which concerns on 5th Embodiment. It is a cross-sectional schematic diagram which shows the structure of the vacuum processing apparatus which concerns on 6th Embodiment. It is a figure which shows the simulation result of a pressure distribution. It is a figure which shows pressure distribution of the gas introduce | transduced from one gas introduction port match | combined with the central axis of the board | substrate in 1st Embodiment. It is a figure which shows the structure of the conventional vacuum processing apparatus. It is a figure which shows the structure of the conventional vacuum processing apparatus.
 以下、図面を参照して、本発明の実施形態を例示的に詳しく説明する。ただし、この実施形態に記載されている構成要素はあくまで例示であり、本発明の技術的範囲は、特許請求の範囲によって確定されるのであって、以下の個別の実施形態によって限定されるわけではない。 Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the drawings. However, the components described in this embodiment are merely examples, and the technical scope of the present invention is determined by the scope of the claims, and is not limited by the following individual embodiments. Absent.
 (第1実施形態)
 図1Aは第1実施形態の真空処理装置の概略的な断面構成を示す図である。真空処理装置は、磁気抵抗効果素子(磁気抵抗デバイス)の製造に用いることが可能であり、絶縁物形成処理を行うための真空容器101を備える。
(First embodiment)
FIG. 1A is a diagram showing a schematic cross-sectional configuration of the vacuum processing apparatus of the first embodiment. The vacuum processing apparatus can be used for manufacturing a magnetoresistive effect element (magnetoresistance device), and includes a vacuum container 101 for performing an insulator formation process.
 他の真空容器で所定の形成処理が行われ、基板表面に金属膜(例えば、Mg膜)が形成された基板102が真空容器101の内部に搬入される。真空容器101の内部では、導入されたガス(例えば、酸素ガスなどの反応性ガス)により絶縁物(例えば、MgO)を基板102上に形成するための絶縁物形成処理(例えば、絶縁物化処理)が行われる。絶縁物形成処理が終了した基板102は真空容器101の外部へ搬出される。基板102の搬入および搬出を行う搬送部の図示は省略されている。 A predetermined formation process is performed in another vacuum vessel, and the substrate 102 having a metal film (for example, Mg film) formed on the substrate surface is carried into the vacuum vessel 101. Inside the vacuum vessel 101, an insulator formation process (for example, an insulation process) for forming an insulator (for example, MgO) on the substrate 102 by the introduced gas (for example, a reactive gas such as oxygen gas). Is done. The substrate 102 that has been subjected to the insulator formation process is carried out of the vacuum vessel 101. The illustration of the transfer unit that carries in and out the substrate 102 is omitted.
 真空容器101の内部には、処理対象の基板102を載置することが可能な基板載置面を有する基板ホルダ103(基板ステージ)と、真空容器101の内部にガス(例えば、酸素ガスなどの反応性ガス)を導入するための配管が設けられている。この配管は、ガス導入元108から真空容器101の内部にガスを導入するガス導入部104として機能する。ガス導入部104は真空容器101内に反応性ガスを導入するガス導入口150を備える。ガス導入部104には、ガスの供給量を制御する為MFCが設置されている。 A substrate holder 103 (substrate stage) having a substrate placement surface on which a substrate 102 to be processed can be placed inside the vacuum vessel 101, and a gas (for example, oxygen gas or the like) inside the vacuum vessel 101 A pipe for introducing a reactive gas) is provided. This pipe functions as a gas introduction unit 104 that introduces gas from the gas introduction source 108 into the vacuum vessel 101. The gas introduction unit 104 includes a gas introduction port 150 for introducing a reactive gas into the vacuum vessel 101. The gas introduction unit 104 is provided with an MFC for controlling the gas supply amount.
 また、真空処理装置には、真空容器101の内部を所定の真空状態にするポンプ105(ターボ分子ポンプ)が設けられている。ポンプ105により真空容器101の内部は1×10-5Pa以下の低圧に減圧可能である。 Further, the vacuum processing apparatus is provided with a pump 105 (turbo molecular pump) for bringing the inside of the vacuum vessel 101 into a predetermined vacuum state. The inside of the vacuum vessel 101 can be depressurized to a low pressure of 1 × 10 −5 Pa or less by the pump 105.
 バルブ部は板状の弁体106を備え、移動部107はバルブ部の弁体106を上下方向に移動することが可能である。移動部107によって弁体106が下方に移動した状態(降下状態)で、弁体は排気口160を塞ぎ、真空容器101の内部は気密状態となる。 The valve unit includes a plate-like valve body 106, and the moving unit 107 can move the valve body 106 of the valve unit in the vertical direction. In a state where the valve body 106 is moved downward by the moving unit 107 (lowered state), the valve body closes the exhaust port 160, and the inside of the vacuum vessel 101 is airtight.
 また、移動部107によって弁体106が上方に移動した状態(上昇状態)で、排気口160は開放され、排気口160の先に接続されているポンプ105と真空容器101の内部とが連通する。ポンプ105はガス導入部104から導入されたガスを、排気口160を介して排気する。ポンプ105の排気流量は制御可能であり、これにより、真空容器101内に導入されるガスの酸素供給量を制御することが可能である。ここで、排気口160およびポンプ105は真空容器101の内部を減圧可能な排気部として機能する。 Further, the exhaust port 160 is opened in a state where the valve body 106 is moved upward by the moving unit 107 (upward state), and the pump 105 connected to the tip of the exhaust port 160 communicates with the inside of the vacuum vessel 101. . The pump 105 exhausts the gas introduced from the gas introduction unit 104 through the exhaust port 160. The exhaust flow rate of the pump 105 can be controlled, whereby the oxygen supply amount of the gas introduced into the vacuum vessel 101 can be controlled. Here, the exhaust port 160 and the pump 105 function as an exhaust unit capable of reducing the pressure inside the vacuum vessel 101.
 図1Bは、実施形態に係る真空処理装置の真空処理方法の流れを説明する図である。真空処理装置の真空処理方法は以下の工程を有する。 FIG. 1B is a diagram illustrating the flow of the vacuum processing method of the vacuum processing apparatus according to the embodiment. The vacuum processing method of the vacuum processing apparatus includes the following steps.
 ステップS1で、基板ホルダ103に基板102を載置する。 In step S1, the substrate 102 is placed on the substrate holder 103.
 ステップS2で、ガス導入部104のガス導入口150から反応性ガスを導入する。ガス導入口より真空容器101内に放出される反応性ガスの分子がガス導入口から直線的に基板102の表面に到達するのが遮蔽される位置であると共に、基板の表面の実質的な中心軸上の位置に配されたガス導入口より、真空容器内に反応ガスを導入する。導入する反応性ガスは、例えば、酸素ガスである。ガス導入口150より真空容器101内に放出される反応性ガスの分子は、本実施形態では弁体106により遮蔽される。反応性ガスの分子が直線的に基板102の表面に到達するのを遮蔽する構成としては、この他、基板ホルダ103の裏面、真空容器の上面、弁体106とは異なる遮蔽部材を用いることも可能である。遮蔽構造の構成例については、後に第2実施形態から第6実施形態で具体的に説明する。 In step S2, a reactive gas is introduced from the gas introduction port 150 of the gas introduction unit 104. The reactive gas molecules released from the gas inlet into the vacuum chamber 101 are shielded from reaching the surface of the substrate 102 linearly from the gas inlet, and the substantial center of the surface of the substrate. A reaction gas is introduced into the vacuum chamber from a gas inlet arranged at a position on the shaft. The reactive gas to be introduced is, for example, oxygen gas. In this embodiment, the molecules of the reactive gas released from the gas inlet 150 into the vacuum vessel 101 are shielded by the valve body 106. As a configuration for shielding the reactive gas molecules from reaching the surface of the substrate 102 linearly, a shielding member different from the back surface of the substrate holder 103, the upper surface of the vacuum vessel, and the valve body 106 may be used. Is possible. A configuration example of the shielding structure will be specifically described later in the second to sixth embodiments.
 ステップS3で、ガスを分子流の拡散により基板ホルダ103の基板載置面に到達させる。 In step S3, the gas is allowed to reach the substrate mounting surface of the substrate holder 103 by the diffusion of the molecular flow.
 先のステップS1で載置された基板102の基板表面には金属膜が形成されており、ステップS4で、ガスにより金属膜の絶縁物化(例えば酸化)が施される。 A metal film is formed on the substrate surface of the substrate 102 placed in the previous step S1, and in step S4, the metal film is insulated (for example, oxidized) by the gas.
 磁気抵抗効果素子の製造方法においては、上記のステップS1~S3の真空処理方法を用いて、絶縁物(例えば、MgO)からなるトンネル障壁層を形成する工程を有する。 The method of manufacturing a magnetoresistive element includes a step of forming a tunnel barrier layer made of an insulator (for example, MgO) using the vacuum processing method of steps S1 to S3 described above.
 真空処理方法によれば、形成する絶縁物(例えば、MgO)の膜厚分布の改善、および、形成時のガス圧力の低圧化と均一化を図ることが可能となる。また、真空処理方法を用いた磁気抵抗効果素子の製造方法によれば、例えば、1nm以下のような極薄膜の絶縁物形成が可能となり、より高品位の磁気抵抗効果素子(TMR素子)の提供が可能になる。 According to the vacuum processing method, it is possible to improve the film thickness distribution of the insulating material (for example, MgO) to be formed, and to reduce and equalize the gas pressure during the formation. In addition, according to the method of manufacturing a magnetoresistive effect element using a vacuum processing method, it is possible to form an insulator of an extremely thin film having a thickness of 1 nm or less, for example, and to provide a higher quality magnetoresistive effect element (TMR element). Is possible.
 (ガス拡散のための条件)
 本実施形態では、一つのガス導入部104により真空容器101内にガスを導入する構成(ガス一点導入)を、導入するガスとして酸素を例に説明する。想定している真空容器の使用状態において、酸素分子が拡散する酸素分子の平均自由工程λは、以下の関係式により求めることが可能である。
    λ = k・T /(√2・π・σ2・P)・・・(1)
  σ 酸素分子直径 :0.306nm(ファンデルワールス半径)
   k  ボルツマン係数: 1.38 E-23 J/K
  P  圧力     : 1.0E-6 Pa /1.0E-5 Pa
   T  温度(室温)    : 300K
 真空容器内部の圧力が1.0E-6 Paの場合、ガスの酸素分子の平均自由工程λ=1.0E+4 (m)となり、1.0E-5Paの場合、酸素分子の平均自由工程λ=1.0E+3 (m)となる。真空処理装置に用いる真空容器101の直径は50cm程度であるので、真空容器101の直径に比べて十分長い平均自由工程を持っていることになる。つまり、真空容器101内部の圧力下において、分子流領域における拡散現象を利用した絶縁物化(例えば酸化)処理を実施することが可能である。
(Conditions for gas diffusion)
In the present embodiment, a configuration in which gas is introduced into the vacuum vessel 101 by one gas introduction unit 104 (gas single point introduction) will be described by taking oxygen as an example of the introduced gas. In the assumed use state of the vacuum vessel, the mean free path λ of oxygen molecules in which oxygen molecules diffuse can be obtained by the following relational expression.
λ = k · T / (√2 · π · σ 2 · P) (1)
σ Oxygen molecule diameter: 0.306 nm (Van der Waals radius)
k Boltzmann coefficient: 1.38 E-23 J / K
P pressure: 1.0E-6 Pa /1.0E-5 Pa
T temperature (room temperature): 300K
When the pressure inside the vacuum vessel is 1.0E-6 Pa, the mean free path of gas oxygen molecules is λ = 1.0E + 4 (m). When the pressure is 1.0E-5Pa, the mean free path of oxygen molecules is λ = 1.0E. +3 (m). Since the diameter of the vacuum vessel 101 used in the vacuum processing apparatus is about 50 cm, the mean free process is sufficiently longer than the diameter of the vacuum vessel 101. That is, under the pressure inside the vacuum vessel 101, it is possible to perform an insulation (for example, oxidation) process using a diffusion phenomenon in the molecular flow region.
 より単純な構造で所望の特性を得るために、基板の中心軸に合わせた一つのガス導入口より、基板に直接当たらない方法でガスを導入し、中心軸から同心円状にガスを真空容器内で拡散させて、基板に到達したガスの酸素粒子により絶縁物化処理を行う方法が良い。また、排気口160の位置による圧力勾配の発生を抑え、基板に対し酸素粒子を均一に到達させるために、排気口160は基板102の中心軸に沿って、基板ホルダの直下に配置するのが良い。つまり、反応性ガスである酸素が基板102に直接当たらない方法で一つのガス導入口150より導入し、排気口160を基板の中心軸に沿って、基板ホルダの直下に配置させる構造が良いと考えられる。 In order to obtain desired characteristics with a simpler structure, gas is introduced from a single gas inlet that is aligned with the central axis of the substrate in a manner that does not directly hit the substrate, and the gas is concentrically drawn from the central axis into the vacuum vessel. It is preferable that the insulating treatment is performed with oxygen particles of the gas that has been diffused by the gas and reaches the substrate. Further, in order to suppress the generation of a pressure gradient due to the position of the exhaust port 160 and to allow oxygen particles to reach the substrate uniformly, the exhaust port 160 should be disposed directly below the substrate holder along the central axis of the substrate 102. good. In other words, it is preferable that oxygen, which is a reactive gas, be introduced from one gas inlet 150 by a method that does not directly hit the substrate 102 and the exhaust port 160 be arranged directly below the substrate holder along the central axis of the substrate. Conceivable.
 また、想定している真空容器101の使用状態における平均自由工程は真空容器101の直径に比べ十分長いので、酸素粒子は真空容器101の壁面にほぼ無衝突で到達し反射すると考えられる(真空容器壁面の吸着確率は無視する)。壁面で反射した粒子も、基板に到達すると考えられるので、円形の基板に均一に酸素粒子を到達させるためには、真空容器101の側面も円形であることが望ましい。 Moreover, since the mean free path in the assumed use state of the vacuum vessel 101 is sufficiently longer than the diameter of the vacuum vessel 101, it is considered that oxygen particles reach the wall surface of the vacuum vessel 101 almost without collision and are reflected (vacuum vessel Ignore wall adsorption probability). Since it is considered that the particles reflected by the wall surface also reach the substrate, it is desirable that the side surface of the vacuum vessel 101 is also circular in order to allow oxygen particles to uniformly reach the circular substrate.
 図2は、第1実施形態に係る真空処理装置の概略的な構成を示す断面図である。ガス導入部104は、真空容器101の外部から配管を介して真空容器内にガスを導入する。ガス導入部104の先端に設けられているガス導入口150は、基板ホルダ103と、弁体106との間で、基板102の中心軸と一致するように配置されている。ここで、一致とは、部品の加工や組み立ての際の公差を加味した実質的な一致であり、物理的な完全一致に限定されるもではない(以下に説明する実施形態でも同様である)。 FIG. 2 is a cross-sectional view showing a schematic configuration of the vacuum processing apparatus according to the first embodiment. The gas introduction unit 104 introduces gas from the outside of the vacuum vessel 101 into the vacuum vessel via a pipe. A gas introduction port 150 provided at the tip of the gas introduction unit 104 is disposed between the substrate holder 103 and the valve body 106 so as to coincide with the central axis of the substrate 102. Here, the term “match” refers to a substantial match that takes into account tolerances when processing or assembling parts, and is not limited to a physical perfect match (the same applies to the embodiments described below). .
 ガス導入口150は真空容器101内に反応性ガスを放出させる開口を一つ備えたものである。本実施形態では、ガスを基板に直接当てない方法として、弁体106にガスを当てることによる分子流の拡散現象を利用して絶縁物形成処理を行う。真空容器101の断面形状は円形であり、真空容器101の断面形状と、真空容器101内に配置された基板ホルダ103と、基板ホルダ103に載置された基板102とは同心円状である。真空容器の断面形状、基板ホルダ103および基板102を同心円状とすることで、均一なガスの拡散が可能になる。尚、真空容器101の断面形状として円形の場合を例示的に説明しているが、円形の基板に均一に反応性ガス(例えば、酸素)粒子を到達させる構成として、真空容器101の内部を球状に構成してもよい。 The gas inlet 150 is provided with one opening for releasing a reactive gas in the vacuum vessel 101. In the present embodiment, as a method in which the gas is not directly applied to the substrate, the insulator forming process is performed by utilizing the diffusion phenomenon of the molecular flow caused by applying the gas to the valve body 106. The cross-sectional shape of the vacuum vessel 101 is circular, and the cross-sectional shape of the vacuum vessel 101, the substrate holder 103 arranged in the vacuum vessel 101, and the substrate 102 placed on the substrate holder 103 are concentric. By making the cross-sectional shape of the vacuum vessel and the substrate holder 103 and the substrate 102 concentric, uniform gas diffusion is possible. In addition, although the case where the cross-sectional shape of the vacuum vessel 101 is circular has been exemplarily described, the inside of the vacuum vessel 101 is spherical as a configuration in which reactive gas (for example, oxygen) particles uniformly reach the circular substrate. You may comprise.
 図2に示す例では、ガス導入口150は、下向きで弁体106に対向した状態を示しているが、ガスを基板に直接当てないように、基板ホルダ103やその他の遮蔽部材を配置すれば、ガス導入口150は、上向きに配置してもよい。ガス導入口150の向きを変えた構成例や遮蔽部材を用いた構成例については、後の実施形態で説明する。 In the example shown in FIG. 2, the gas inlet 150 faces downward and faces the valve element 106. However, if the substrate holder 103 and other shielding members are arranged so that the gas is not directly applied to the substrate. The gas inlet 150 may be arranged upward. A configuration example in which the direction of the gas inlet 150 is changed and a configuration example using a shielding member will be described in later embodiments.
 図2に示す構成例では、ガス導入口150は弁体106側を向いて配置されており、ガス導入口150からガスが導入される。図2の矢印201、202は、導入されたガスが真空容器101内で拡散する様子を模式的に示すものである。ガス導入口150から導入されたガスは、弁体106に到達した後、弁体106の中心から外周方向(図2の左右方向)に拡散する。そして、真空容器101の側面近傍に到達した後、真空容器の上方に向かうガス(矢印201)と、真空容器の下方に向かうガス(矢印202)と、にわかれて拡散する。 In the configuration example shown in FIG. 2, the gas inlet 150 is arranged facing the valve body 106 side, and gas is introduced from the gas inlet 150. Arrows 201 and 202 in FIG. 2 schematically show how the introduced gas diffuses in the vacuum vessel 101. The gas introduced from the gas introduction port 150 reaches the valve body 106 and then diffuses from the center of the valve body 106 in the outer peripheral direction (left-right direction in FIG. 2). Then, after reaching the vicinity of the side surface of the vacuum vessel 101, it diffuses into a gas (arrow 201) directed upward of the vacuum vessel and a gas (arrow 202) directed downward of the vacuum vessel.
 真空容器の下方に向かうガス(矢印202)は、排気口160からポンプ105により排気される。導入したガスの一部がポンプ105により排気されることにより、真空容器101内を拡散して基板102に到達するガスは減少し、絶縁膜形成時の反応性ガス(例えば、酸素)圧力を低減することができる。 The gas (arrow 202) heading below the vacuum vessel is exhausted by the pump 105 from the exhaust port 160. When a part of the introduced gas is exhausted by the pump 105, the gas that diffuses in the vacuum vessel 101 and reaches the substrate 102 decreases, and the reactive gas (for example, oxygen) pressure during the formation of the insulating film is reduced. can do.
 一方、真空容器の上方に向かうガス(矢印201)は、真空容器内の基板の上方を拡散して基板に到達する。この場合、基板102の下方からガスを導入することによって、ガス(矢印201)の酸素粒子は基板102の端部から順に基板102の中心に向かって到達すると考えられる。このようなガスの拡散により拡散粒子の分布は均一なものとなり、形成する絶縁物化物の膜厚分布の改善を図ることが可能になる。 On the other hand, the gas (arrow 201) heading above the vacuum vessel diffuses above the substrate in the vacuum vessel and reaches the substrate. In this case, it is considered that the oxygen particles of the gas (arrow 201) reach the center of the substrate 102 in order from the end of the substrate 102 by introducing the gas from below the substrate 102. Due to such gas diffusion, the distribution of the diffused particles becomes uniform, and the film thickness distribution of the formed insulator can be improved.
 図9は、基板の中心軸に合わせた一つのガス導入口150より導入されるガスの圧力分布を示す図である。横軸は弁体106の長さ(m)を示し、縦軸は圧力(Pa)を示す。この図より弁体106の中央部はガス導入口150に対応する位置であり、弁体106の中央部付近で圧力はピークとなり、左右均等な圧力分布となっていることがわかる。均等な圧力勾配により均等なガスの拡散(図2の201、202)を起こすことが可能になる。 FIG. 9 is a diagram showing the pressure distribution of the gas introduced from one gas inlet 150 aligned with the central axis of the substrate. The horizontal axis indicates the length (m) of the valve body 106, and the vertical axis indicates the pressure (Pa). From this figure, it can be seen that the central portion of the valve body 106 is a position corresponding to the gas inlet 150, and the pressure peaks in the vicinity of the central portion of the valve body 106, resulting in an even pressure distribution on the left and right. It is possible to cause uniform gas diffusion (201, 202 in FIG. 2) due to the uniform pressure gradient.
 図8は、従来例の構成と実施形態に係る構成とを比較するために行った圧力分布のシミュレーション結果を示す図である。801はシャワープレートを用いた場合を示し、802はリング(ガスリング)を用いた場合を示し、803は本実施形態の構成(基板ステージ下部ガス一点導入)を用いた場合のシミュレーション結果を示す。804は後に説明する第2実施形態の構成を用いた場合のシミュレーション結果を示すもので、これについては後に詳細に説明する。 FIG. 8 is a diagram showing a simulation result of a pressure distribution performed for comparing the configuration of the conventional example and the configuration according to the embodiment. Reference numeral 801 denotes a case where a shower plate is used, reference numeral 802 denotes a case where a ring (gas ring) is used, and reference numeral 803 denotes a simulation result when the configuration of the present embodiment (single point gas introduction at the substrate stage) is used. Reference numeral 804 denotes a simulation result when the configuration of the second embodiment described later is used, which will be described in detail later.
 シミュレーションに用いた条件は以下のとおりである。 The conditions used for the simulation are as follows.
 初期真空容器到達圧力:5.0×E-8Pa
 酸素ガス導入量      :0.01sccm
 基板                : 6インチ Si基板
 酸素吸着確率        : 0%
 ポンプ排気能力     : 3000L/s
 3σの結果を比較すると、シャワープレートを用いた構成では、3σ=6.06×10-7(Pa)であり、ガスリングを用いた構成では、3σ=2.40×10-7(Pa)である。これに対して、本実施形態の構成(ガス一点導入)では、3σ=6.32×10-8(Pa)となり、酸素圧力分布が従来例に比べて改善されている。
Initial vacuum vessel ultimate pressure: 5.0 × E-8Pa
Oxygen gas introduction amount: 0.01sccm
Substrate: 6 inch Si substrate Oxygen adsorption probability: 0%
Pump exhaust capacity: 3000L / s
Comparing the results of 3σ, in the configuration using the shower plate, 3σ = 6.06 × 10 −7 (Pa), and in the configuration using the gas ring, 3σ = 2.40 × 10 −7 (Pa). On the other hand, in the configuration of this embodiment (introducing one point of gas), 3σ = 6.32 × 10 −8 (Pa), and the oxygen pressure distribution is improved as compared with the conventional example.
 また、3σ/平均圧力の結果を比較すると、シャワープレートを用いた構成では、3σ/平均圧力=5.91%であり、ガスリングを用いた構成では、3σ/平均圧力=4.06%である。これに対して、本実施形態の構成(ガス一点導入)では、3σ/平均圧力=0.81%であり酸素圧力分布のばらつきは、従来例のシャワープレートを用いた構成およびガスリングを用いた構成に比べて改善されていることがわかる。 Further, when the results of 3σ / average pressure are compared, in the configuration using the shower plate, 3σ / average pressure = 5.91%, and in the configuration using the gas ring, 3σ / average pressure = 4.06%. On the other hand, in the configuration of this embodiment (introduction of one point of gas), 3σ / average pressure = 0.81%, and the variation in oxygen pressure distribution is the same as the configuration using the conventional shower plate and the configuration using the gas ring. It can be seen that this is an improvement.
 本実施形態の構成によれば、絶縁化物の膜厚分布の改善を図ることが可能になる。また、形成時の酸素分布圧力の低圧化を図ることが可能になる。 According to the configuration of the present embodiment, it is possible to improve the film thickness distribution of the insulator. It is also possible to reduce the oxygen distribution pressure during formation.
 (第2実施形態)
 本実施形態では、ガス(例えば、酸素ガスなどの反応性ガス)を基板102に直接当てない方法として、弁体106の下方からガスを導入する構成(バルブ下部ガス一点導入)を説明する。図3は第2実施形態に係る真空処理装置の概略的な構成を示す断面図である。ガス導入部104は、真空容器101の外部から配管を介して真空容器内にガス(例えば、酸素ガスなどの反応性ガス)を導入する。
(Second Embodiment)
In the present embodiment, as a method for not directly applying a gas (for example, a reactive gas such as oxygen gas) to the substrate 102, a configuration in which gas is introduced from below the valve body 106 (single point introduction of the valve lower gas) will be described. FIG. 3 is a cross-sectional view showing a schematic configuration of a vacuum processing apparatus according to the second embodiment. The gas introduction unit 104 introduces gas (for example, reactive gas such as oxygen gas) from the outside of the vacuum vessel 101 into the vacuum vessel via a pipe.
 弁体106の中央部には開口部が設けられており、この開口部にガス導入部104が挿入され、弁体106の下方にガス導入口150が突出した状態になっている。ガス導入部104が開口部に挿入されることにより、弁体106の開口部は封止される。ガス導入部104が挿入された状態で、移動部107は弁体106を移動させることが可能である。移動部107によって弁体106が下方に移動した状態(降下状態)で、弁体106は排気口160を塞ぎ、真空容器101の内部は気密状態となる。また、移動部107によって弁体106が上方に移動した状態(上昇状態)で、排気口160は開放され、排気口160の先に接続されているポンプ105と真空容器101の内部とが連通する。弁体106の下方に突出した状態のガス導入口150は、基板ホルダ103と、基板102の中心軸と一致するように配置されている。 An opening is provided in the central part of the valve body 106, and the gas introduction part 104 is inserted into the opening, and the gas introduction port 150 protrudes below the valve body 106. By inserting the gas introduction part 104 into the opening part, the opening part of the valve body 106 is sealed. The moving unit 107 can move the valve body 106 in a state where the gas introduction unit 104 is inserted. In a state where the valve body 106 is moved downward (lowered state) by the moving unit 107, the valve body 106 closes the exhaust port 160, and the inside of the vacuum vessel 101 is airtight. Further, the exhaust port 160 is opened in a state where the valve body 106 is moved upward by the moving unit 107 (upward state), and the pump 105 connected to the tip of the exhaust port 160 communicates with the inside of the vacuum vessel 101. . The gas inlet 150 that protrudes downward from the valve body 106 is disposed so as to coincide with the central axis of the substrate holder 103 and the substrate 102.
 図3に示す例では、弁体106の下方において、ガス導入口150から下向きにガスが導入される。図3の矢印301、302は、導入されたガスが真空容器101内で拡散する様子を模式的に示すものである。ガス導入口150から導入されたガスは、真空容器101の上方に向かうガス(矢印301)と、真空容器の下方に向かうガス(矢印302)と、にわかれて拡散する。 In the example shown in FIG. 3, gas is introduced downward from the gas inlet 150 below the valve body 106. Arrows 301 and 302 in FIG. 3 schematically show how the introduced gas diffuses in the vacuum vessel 101. The gas introduced from the gas inlet 150 is divided into a gas (arrow 301) directed upward of the vacuum vessel 101 and a gas (arrow 302) directed downward of the vacuum vessel.
 真空容器の下方に向かうガス(矢印302)は、排気口からポンプ105により排気される。導入したガスの一部がポンプ105により排気されることにより、真空容器101内を拡散して基板102に到達するガスは減少し、形成時の酸素分布圧力を低減することができる。 The gas (arrow 302) heading below the vacuum vessel is exhausted by the pump 105 from the exhaust port. When a part of the introduced gas is exhausted by the pump 105, the gas that diffuses in the vacuum vessel 101 and reaches the substrate 102 is reduced, and the oxygen distribution pressure at the time of formation can be reduced.
 一方、真空容器の上方に向かうガス(矢印301)は、真空容器内の基板の上方を拡散して基板に到達する。この場合、基板102(基板載置面)の下方からガスを導入することによって、ガス(矢印301)の酸素粒子は基板102の端部から順に基板102の中心に向かって到達する。このようなガスの拡散により拡散粒子の分布は均一なものとなり、形成する絶縁化物の膜厚分布の改善を図ることが可能になる。 On the other hand, the gas (arrow 301) heading above the vacuum vessel diffuses above the substrate in the vacuum vessel and reaches the substrate. In this case, by introducing the gas from below the substrate 102 (substrate mounting surface), the oxygen particles of the gas (arrow 301) sequentially reach the center of the substrate 102 from the end of the substrate 102. Due to such gas diffusion, the distribution of the diffusion particles becomes uniform, and the film thickness distribution of the formed insulator can be improved.
 図8の804は第2実施形態の構成を用いた場合のシミュレーション結果を示すもので、3σ=5.43×10-8(Pa)となり、酸素圧力分布が従来例に比べて改善されている。 804 in FIG. 8 shows a simulation result when the configuration of the second embodiment is used, and 3σ = 5.43 × 10 −8 (Pa), and the oxygen pressure distribution is improved as compared with the conventional example.
 また、3σ/平均圧力=1.34%であり酸素圧力分布のばらつきは、従来例のシャワープレートを用いた構成およびガスリングを用いた構成に比べて改善されていることがわかる。本実施形態の構成によれば、絶縁化物の膜厚分布の改善を図ることが可能になる。また、形成時の酸素分布圧力の低圧化を図ることが可能になる。 Further, it is found that 3σ / average pressure = 1.34%, and the variation in oxygen pressure distribution is improved as compared with the configuration using the conventional shower plate and the configuration using the gas ring. According to the configuration of the present embodiment, it is possible to improve the film thickness distribution of the insulator. It is also possible to reduce the oxygen distribution pressure during formation.
 (第3実施形態)
 本実施形態では、ガス(例えば、酸素ガスなどの反応性ガス)を基板に直接当てない方法として、ポンプ105の排気口に向けてガスを導入する構成を説明する。図4は第3実施形態に係る真空処理装置の概略的な構成を示す断面図である。ガス導入部104は、真空容器101の外部から配管を介して真空容器内にガス(例えば、酸素ガスなどの反応性ガス)を導入する。ガス導入部104の先端に設けられているガス導入口150は、基板ホルダ103と、ポンプ105との間で、基板102の中心軸と一致するように配置されている。
(Third embodiment)
In the present embodiment, a configuration in which gas is introduced toward the exhaust port of the pump 105 will be described as a method in which a gas (for example, a reactive gas such as oxygen gas) is not directly applied to the substrate. FIG. 4 is a cross-sectional view showing a schematic configuration of a vacuum processing apparatus according to the third embodiment. The gas introduction unit 104 introduces gas (for example, reactive gas such as oxygen gas) from the outside of the vacuum vessel 101 into the vacuum vessel via a pipe. A gas introduction port 150 provided at the tip of the gas introduction unit 104 is disposed between the substrate holder 103 and the pump 105 so as to coincide with the central axis of the substrate 102.
 図4に示す構成例では、ガス導入口150はポンプ105側(図1の排気口160側)を向いて配置されており、ガス導入口150から反応性ガスがポンプ105に向けて導入される。図4の矢印401、402は、導入されたガスが真空容器101内で拡散する様子を模式的に示すものである。ガス導入口150から導入されたガスは、真空容器101の上方に向かうガス(矢印401)や、真空容器の下方に向かうガス(矢印402)と、にわかれて拡散する。 In the configuration example shown in FIG. 4, the gas introduction port 150 is arranged facing the pump 105 side (the exhaust port 160 side in FIG. 1), and reactive gas is introduced from the gas introduction port 150 toward the pump 105. . Arrows 401 and 402 in FIG. 4 schematically show how the introduced gas diffuses in the vacuum vessel 101. The gas introduced from the gas inlet 150 is divided into a gas (arrow 401) directed upward of the vacuum container 101 and a gas (arrow 402) directed downward of the vacuum container.
 真空容器の下方に向かうガス(矢印402)は、排気口からポンプ105により排気される。導入したガスの一部がポンプ105により排気されることにより、真空容器101内を拡散して基板102に到達するガスは減少し、形成時の酸素分布圧力を低減することができる。 The gas (arrow 402) heading below the vacuum vessel is exhausted by the pump 105 from the exhaust port. When a part of the introduced gas is exhausted by the pump 105, the gas that diffuses in the vacuum vessel 101 and reaches the substrate 102 is reduced, and the oxygen distribution pressure at the time of formation can be reduced.
 一方、真空容器の上方に向かうガス(矢印401)は、真空容器内の基板の上方を拡散して基板に到達する。この場合、基板102の下方からガスを導入することによって、ガス(矢印401)の酸素粒子は基板102の端部から順に基板102の中心に向かって到達する。このようなガスの拡散により拡散粒子の分布は均一なものとなり、形成する絶縁化物の膜厚分布の改善を図ることが可能になる。 On the other hand, the gas (arrow 401) heading above the vacuum vessel diffuses above the substrate in the vacuum vessel and reaches the substrate. In this case, by introducing a gas from below the substrate 102, oxygen particles of the gas (arrow 401) reach the center of the substrate 102 in order from the end of the substrate 102. Due to such gas diffusion, the distribution of the diffusion particles becomes uniform, and the film thickness distribution of the formed insulator can be improved.
 (第4実施形態)
 本実施形態では、ガス(例えば、酸素ガスなどの反応性ガス)を基板に直接当てない方法として、弁体106と、基板ホルダ103との間に配置した遮蔽部材510にガスを当てることによる分子流の拡散現象を利用して絶縁化(例えば酸化)処理を行う。
(Fourth embodiment)
In the present embodiment, as a method of not directly applying a gas (for example, a reactive gas such as oxygen gas) to the substrate, molecules obtained by applying the gas to the shielding member 510 disposed between the valve body 106 and the substrate holder 103 are used. Insulating (for example, oxidation) treatment is performed by utilizing a flow diffusion phenomenon.
 図5は、第4実施形態に係る真空処理装置の概略的な構成を示す断面図である。ガス導入部104は、真空容器101の外部から配管を介して真空容器内にガス(例えば、酸素ガスなどの反応性ガス)を導入する。ガス導入部の先端に設けられているガス導入口150は、基板ホルダ103と、遮蔽部材510との間で、基板102の中心軸と一致するように配置されている。 FIG. 5 is a cross-sectional view showing a schematic configuration of a vacuum processing apparatus according to the fourth embodiment. The gas introduction unit 104 introduces gas (for example, reactive gas such as oxygen gas) from the outside of the vacuum vessel 101 into the vacuum vessel via a pipe. The gas inlet 150 provided at the tip of the gas inlet is disposed between the substrate holder 103 and the shielding member 510 so as to coincide with the central axis of the substrate 102.
 図5に示す構成例では、ガス導入口150は遮蔽部材510側を向いて配置されており、ガス導入口150からガスが導入される。図5の矢印501、502は、導入されたガスが真空容器101内で拡散する様子を模式的に示すものである。ガス導入口から導入されたガスは、遮蔽部材510に到達した後、遮蔽部材510の中心から外周方向(図5では左右方向)に拡散する。そして、真空容器101の側面近傍に到達した後、真空容器の上方に向かうガス(矢印501)と、真空容器の下方に向かうガス(矢印502)と、にわかれて拡散する。 In the configuration example shown in FIG. 5, the gas inlet 150 is arranged facing the shielding member 510 side, and gas is introduced from the gas inlet 150. Arrows 501 and 502 in FIG. 5 schematically show how the introduced gas diffuses in the vacuum vessel 101. The gas introduced from the gas introduction port reaches the shielding member 510 and then diffuses from the center of the shielding member 510 in the outer peripheral direction (left-right direction in FIG. 5). Then, after reaching the vicinity of the side surface of the vacuum container 101, the gas diffuses into a gas (arrow 501) directed upward of the vacuum container and a gas (arrow 502) directed downward of the vacuum container.
 真空容器の下方に向かうガス(矢印502)は、排気口からポンプ105により排気される。導入したガスの一部がポンプ105により排気されることにより、真空容器101内を拡散して基板102に到達するガスは減少し、形成時の酸素分布圧力を低減することができる。 The gas (arrow 502) heading below the vacuum container is exhausted by the pump 105 from the exhaust port. When a part of the introduced gas is exhausted by the pump 105, the gas that diffuses in the vacuum vessel 101 and reaches the substrate 102 is reduced, and the oxygen distribution pressure at the time of formation can be reduced.
 一方、真空容器の上方に向かうガス(矢印501)は、真空容器内の基板の上方を拡散して基板に到達する。この場合、基板102の下方からガスを導入することによって、ガス(矢印501)の酸素粒子は基板102の端部から順に基板102の中心に向かって到達する。このようなガスの拡散により拡散粒子の分布は均一なものとなり、形成する絶縁化物の膜厚分布の改善を図ることが可能になる。 On the other hand, the gas (arrow 501) heading above the vacuum vessel diffuses above the substrate in the vacuum vessel and reaches the substrate. In this case, by introducing a gas from below the substrate 102, oxygen particles of the gas (arrow 501) sequentially reach the center of the substrate 102 from the end of the substrate 102. Due to such gas diffusion, the distribution of the diffusion particles becomes uniform, and the film thickness distribution of the formed insulator can be improved.
 (第5実施形態)
 本実施形態では、ガス(例えば、酸素ガスなどの反応性ガス)を基板に直接当てない方法として、基板ホルダ103の裏側(裏面)にガスを当てることによる分子流の拡散現象を利用して絶縁化(例えば酸化)処理を行う構成を説明する。ここで、基板ホルダ103の裏面とは、基板ホルダ103が基板102を載置可能な基板載置面に対する反対側の面をいう。本実施形態では、基板ホルダ103の裏側(裏面)は、反応性ガスの分子が直線的に基板102の表面に到達するのを遮蔽する遮蔽部材として機能する。
(Fifth embodiment)
In this embodiment, as a method in which a gas (for example, a reactive gas such as oxygen gas) is not directly applied to the substrate, insulation is performed by utilizing a molecular flow diffusion phenomenon caused by applying a gas to the back side (back surface) of the substrate holder 103. A configuration for performing the oxidation (for example, oxidation) treatment will be described. Here, the back surface of the substrate holder 103 refers to a surface opposite to the substrate mounting surface on which the substrate holder 103 can mount the substrate 102. In the present embodiment, the back side (back surface) of the substrate holder 103 functions as a shielding member that shields the molecules of the reactive gas from reaching the surface of the substrate 102 linearly.
 図6は、第5実施形態に係る真空処理装置の概略的な構成を示す断面図である。ガス導入部104は、真空容器101の外部から配管を介して真空容器内にガス(例えば、酸素ガスなどの反応性ガス)を導入する。ガス導入部の先端に設けられているガス導入口150は、基板ホルダ103の中心軸および基板102の中心軸と一致するように配置されている。 FIG. 6 is a cross-sectional view showing a schematic configuration of a vacuum processing apparatus according to the fifth embodiment. The gas introduction unit 104 introduces gas (for example, reactive gas such as oxygen gas) from the outside of the vacuum vessel 101 into the vacuum vessel via a pipe. The gas introduction port 150 provided at the tip of the gas introduction part is arranged so as to coincide with the central axis of the substrate holder 103 and the central axis of the substrate 102.
 図6に示す構成例では、ガス導入口150は基板ホルダ103の裏側(裏面)を向いて配置されており、ガス導入口150からガスが導入される。図6の矢印601、602は、導入されたガスが真空容器101内で拡散する様子を模式的に示すものである。ガス導入口150から導入されたガスは、基板ホルダ103の裏側に到達した後、基板ホルダ103裏側面の中心から外周方向に拡散する。そして、真空容器101の側面近傍に到達した後、真空容器の上方に向かうガス(矢印601)と、真空容器の下方に向かうガス(矢印602)と、にわかれて拡散する。 In the configuration example shown in FIG. 6, the gas inlet 150 is arranged facing the back side (back side) of the substrate holder 103, and gas is introduced from the gas inlet 150. Arrows 601 and 602 in FIG. 6 schematically show how the introduced gas diffuses in the vacuum vessel 101. The gas introduced from the gas inlet 150 reaches the back side of the substrate holder 103 and then diffuses from the center of the back side surface of the substrate holder 103 toward the outer periphery. Then, after reaching the vicinity of the side surface of the vacuum vessel 101, it diffuses into a gas (arrow 601) directed upward of the vacuum vessel and a gas (arrow 602) directed downward of the vacuum vessel.
 真空容器の下方に向かうガス(矢印602)は、排気口からポンプ105により排気される。導入したガスの一部がポンプ105により排気されることにより、真空容器101内を拡散して基板102に到達するガスは減少し、形成時の酸素分布圧力を低減することができる。 The gas (arrow 602) heading below the vacuum container is exhausted by the pump 105 from the exhaust port. When a part of the introduced gas is exhausted by the pump 105, the gas that diffuses in the vacuum vessel 101 and reaches the substrate 102 is reduced, and the oxygen distribution pressure at the time of formation can be reduced.
 一方、真空容器の上方に向かうガス(矢印601)は、真空容器内の基板の上方を拡散して基板に到達する。この場合、基板102の下方からガスを導入することによって、ガス(矢印601)の酸素粒子は基板102の端部から順に基板102の中心に向かって到達する。このようなガスの拡散により拡散粒子の分布は均一なものとなり、形成する絶縁化物の膜厚分布の改善を図ることが可能になる。 On the other hand, the gas (arrow 601) heading above the vacuum vessel diffuses above the substrate in the vacuum vessel and reaches the substrate. In this case, by introducing a gas from below the substrate 102, oxygen particles of the gas (arrow 601) sequentially reach the center of the substrate 102 from the end of the substrate 102. Due to such gas diffusion, the distribution of the diffusion particles becomes uniform, and the film thickness distribution of the formed insulator can be improved.
 (第6実施形態)
 本実施形態では、ガス(例えば、酸素ガスなどの反応性ガス)を基板に直接当てない方法として、真空容器101の上面にガスを当てることによる分子流の拡散現象を利用して絶縁化(例えば酸化)処理を行う構成を説明する。本実施形態では、真空容器101の上面は、ガス(例えば、酸素ガスなどの反応性ガス)の分子が直線的に基板102の表面に到達するのを遮蔽する遮蔽部材として機能する。
(Sixth embodiment)
In this embodiment, as a method in which a gas (for example, a reactive gas such as oxygen gas) is not directly applied to the substrate, insulation (for example, by utilizing a molecular flow diffusion phenomenon caused by applying a gas to the upper surface of the vacuum vessel 101) A configuration for performing (oxidation) treatment will be described. In the present embodiment, the upper surface of the vacuum container 101 functions as a shielding member that shields molecules of a gas (for example, a reactive gas such as oxygen gas) from reaching the surface of the substrate 102 linearly.
 図7は、第6実施形態に係る真空処理装置の概略的な構成を示す断面図である。ガス導入部104は、真空容器101の外部から配管を介して真空容器内にガスを導入する。ガス導入部の先端に設けられているガス導入口150は、基板ホルダ103の中心軸および基板102の中心軸と一致するように配置されている。 FIG. 7 is a cross-sectional view showing a schematic configuration of a vacuum processing apparatus according to the sixth embodiment. The gas introduction unit 104 introduces gas from the outside of the vacuum vessel 101 into the vacuum vessel via a pipe. The gas introduction port 150 provided at the tip of the gas introduction part is arranged so as to coincide with the central axis of the substrate holder 103 and the central axis of the substrate 102.
 図7に示す構成例では、ガス導入口150は真空容器101の上面710側を向いて配置されており、ガス導入口150からガスが導入される。図7の矢印701は、導入されたガスが真空容器101内で拡散する様子を模式的に示すものである。ガス導入口150から導入されたガスは、真空容器101の上面710に到達した後、真空容器101の上面710の中心から外周方向(図7の左右方向)に拡散する。そして、真空容器101の側面近傍に到達した後、真空容器101内の基板102側に拡散するガスと、ポンプ105の排気口側に拡散するガスとに分かれる。 In the configuration example shown in FIG. 7, the gas inlet 150 is arranged facing the upper surface 710 side of the vacuum vessel 101, and gas is introduced from the gas inlet 150. An arrow 701 in FIG. 7 schematically shows how the introduced gas diffuses in the vacuum vessel 101. The gas introduced from the gas introduction port 150 reaches the upper surface 710 of the vacuum vessel 101 and then diffuses from the center of the upper surface 710 of the vacuum vessel 101 in the outer peripheral direction (left-right direction in FIG. 7). After reaching the vicinity of the side surface of the vacuum vessel 101, the gas is divided into a gas diffusing toward the substrate 102 in the vacuum vessel 101 and a gas diffusing toward the exhaust port side of the pump 105.
 ポンプ105の排気口側に拡散するガスは、排気口からポンプ105により排気される。絶縁化物を形成するために導入したガスの一部は、ポンプ105により排気されることにより、真空容器101内を拡散して基板102に到達するガスは減少し、形成時の酸素分布圧力を低減することができる。 The gas diffused to the exhaust port side of the pump 105 is exhausted by the pump 105 from the exhaust port. A part of the gas introduced to form the insulator is exhausted by the pump 105, so that the gas that diffuses in the vacuum vessel 101 and reaches the substrate 102 is reduced, and the oxygen distribution pressure at the time of formation is reduced. can do.
 一方、基板102側に拡散するガスは、基板102の端部から順に基板102の中心に向かって到達する。このようなガスの拡散により拡散粒子の分布は均一なものとなり、形成する絶縁化物の膜厚分布の改善を図ることが可能になる。 On the other hand, the gas diffusing to the substrate 102 side sequentially reaches the center of the substrate 102 from the end of the substrate 102. Due to such gas diffusion, the distribution of the diffusion particles becomes uniform, and the film thickness distribution of the formed insulator can be improved.
 (第7実施形態)
 本実施形態では、第1実施形態から第6実施形態で説明した真空処理装置の構成を含む磁気抵抗効果素子(TMR素子)の製造装置の構成を説明する。
(Seventh embodiment)
In the present embodiment, a configuration of a magnetoresistive effect element (TMR element) manufacturing apparatus including the configuration of the vacuum processing apparatus described in the first to sixth embodiments will be described.
 図1Cは、磁気抵抗効果素子の製造装置の構成を説明する図であり、TMR素子を作製するために、磁気抵抗効果素子の製造装置は、少なくとも、1つ以上の形成用の真空容器、1つの絶縁化(例えば酸化)処理用の真空容器、1つの加熱処理用の真空容器を有する。例えば、ロードロックチャンバ8から搬送された基板は、形成用の真空容器9a(形成チャンバ)に搬送され、下地層、反強磁性層、強磁性層、非磁性中間層および第2の強磁性層が基板上に形成される。その後、基板は形成用の真空容器9b(形成チャンバ)に搬送され、第1の金属層(例えば、第1のMg層)が形成される。その後、第1の金属層が形成された基板は絶縁化処理用の真空容器10(絶縁化チャンバ)に搬送され、第1の金属層が絶縁化(例えば酸化)される。絶縁化処理用の真空容器10(絶縁化チャンバ)に対して、第1実施形態から第6実施形態で説明した真空処理装置の構成を適用することにより、形成する絶縁物(MgO)の膜厚分布の改善、および、形成時の酸素分布圧力の低圧化を図ることが可能となる。 FIG. 1C is a diagram for explaining a configuration of a magnetoresistive element manufacturing apparatus. In order to manufacture a TMR element, the magnetoresistive element manufacturing apparatus includes at least one vacuum container for formation, 1 One insulating (for example, oxidation) vacuum vessel and one heat treatment vacuum vessel are provided. For example, the substrate transported from the load lock chamber 8 is transported to the forming vacuum vessel 9a (forming chamber), where the underlayer, the antiferromagnetic layer, the ferromagnetic layer, the nonmagnetic intermediate layer, and the second ferromagnetic layer are transported. Is formed on the substrate. Thereafter, the substrate is transferred to a forming vacuum vessel 9b (forming chamber), and a first metal layer (for example, a first Mg layer) is formed. Thereafter, the substrate on which the first metal layer is formed is transferred to the vacuum chamber 10 (insulation chamber) for insulation treatment, and the first metal layer is insulated (for example, oxidized). The thickness of the insulator (MgO) to be formed by applying the configuration of the vacuum processing apparatus described in the first to sixth embodiments to the vacuum container 10 (insulating chamber) for insulating processing. It is possible to improve the distribution and reduce the oxygen distribution pressure during formation.
 その後、第1の金属層が絶縁化された基板は形成用の真空容器9bに戻され、絶縁化された第1の金属層上に第2の金属層(例えば、第2のMg層)が形成される。その後、第2の金属層が形成された基板は加熱処理用の真空容器11に搬送され、加熱処理が行われる。その後、加熱処理された基板は形成用の真空容器9bに戻り、磁化自由層および保護層が形成される。ここでロードロックチャンバ8、形成用の真空容器9a、9b、絶縁化処理用の真空容器10、および加熱処理用の真空容器11は、トランスファーチャンバ12に接続されている。各真空容器(チャンバ)は排気装置を夫々備えて独立に排気可能であり、真空一貫で基板処理することが可能である。尚、金属層は、Mg膜の他、Al膜、Ti膜、Zn膜等から選択して用いることができる。 Thereafter, the substrate with the first metal layer insulated is returned to the forming vacuum vessel 9b, and a second metal layer (for example, a second Mg layer) is formed on the insulated first metal layer. It is formed. Thereafter, the substrate on which the second metal layer is formed is transferred to the vacuum vessel 11 for heat treatment, and heat treatment is performed. Thereafter, the heat-treated substrate returns to the forming vacuum vessel 9b, and a magnetization free layer and a protective layer are formed. Here, the load lock chamber 8, the forming vacuum containers 9 a and 9 b, the insulating processing vacuum container 10, and the heating processing vacuum container 11 are connected to the transfer chamber 12. Each vacuum vessel (chamber) is equipped with an evacuation device and can be independently evacuated, so that the substrate can be processed in a consistent vacuum. The metal layer can be selected from an Al film, a Ti film, a Zn film, or the like in addition to the Mg film.
 本実施形態の磁気抵抗効果素子の製造装置によれば、例えば、1nm以下のような極薄膜の形成が可能となり、より高品位の磁気抵抗効果素子(TMR素子)の提供が可能になる。 According to the magnetoresistive effect element manufacturing apparatus of the present embodiment, for example, it is possible to form an ultrathin film having a thickness of 1 nm or less, and it is possible to provide a higher quality magnetoresistive effect element (TMR element).
 本発明は上記実施の形態に制限されるものではなく、本発明の精神及び範囲から離脱することなく、様々な変更及び変形が可能である。従って、本発明の範囲を公にするために、以下の請求項を添付する。 The present invention is not limited to the above embodiment, and various changes and modifications can be made without departing from the spirit and scope of the present invention. Therefore, in order to make the scope of the present invention public, the following claims are attached.
 本願は、2013年9月25日提出の日本国特許出願特願2013-198827を基礎として優先権を主張するものであり、その記載内容の全てを、ここに援用する。 This application claims priority on the basis of Japanese Patent Application No. 2013-198827 filed on Sep. 25, 2013, the entire contents of which are incorporated herein by reference.

Claims (12)

  1.  排気手段が接続された減圧可能な真空容器と、該真空容器内に配される基板を載置する基板載置面を備えた基板ホルダと、前記真空容器内に反応性ガスを導入するガス導入口を備えたガス導入手段と、を有する真空処理装置であって、
     前記ガス導入口は、該ガス導入口より前記真空容器内に放出される前記反応性ガスの分子が前記ガス導入口から直線的に前記基板載置面に到達するのが遮蔽される位置であると共に、前記基板載置面の実質的な中心軸上の位置に配されており、前記反応性ガスが分子流の拡散により前記基板載置面に到達することを特徴とする真空処理装置。
    Depressurizable vacuum vessel connected to an exhaust means, a substrate holder provided with a substrate placement surface for placing a substrate disposed in the vacuum vessel, and gas introduction for introducing a reactive gas into the vacuum vessel A vacuum processing apparatus having a gas introduction means having a mouth,
    The gas inlet is a position where molecules of the reactive gas released from the gas inlet into the vacuum vessel are blocked from linearly reaching the substrate mounting surface from the gas inlet. In addition, the vacuum processing apparatus is disposed at a position on a substantial central axis of the substrate mounting surface, and the reactive gas reaches the substrate mounting surface by diffusion of a molecular flow.
  2.  前記ガス導入口が、前記排気手段を構成する排気口と、前記基板ホルダと、の間に位置していることを特徴とする請求項1に記載の真空処理装置。 The vacuum processing apparatus according to claim 1, wherein the gas introduction port is located between an exhaust port constituting the exhaust unit and the substrate holder.
  3.  前記ガス導入口は、前記基板ホルダの裏側に位置していることを特徴とする請求項2に記載の真空処理装置。 3. The vacuum processing apparatus according to claim 2, wherein the gas introduction port is located on the back side of the substrate holder.
  4.  前記ガス導入口は、前記真空容器内に前記反応性ガスを放出させる開口を一つ備えることを特徴とする請求項1乃至3のいずれか1項に記載の真空処理装置。 The vacuum processing apparatus according to any one of claims 1 to 3, wherein the gas introduction port includes one opening for discharging the reactive gas into the vacuum vessel.
  5.  前記排気手段は、前記真空容器に設けられた排気口を含んで構成され、該排気口が前記基板ホルダの直下に位置することを特徴とする請求項1乃至4のいずれか1項に記載の真空処理装置。 The said exhaust means is comprised including the exhaust port provided in the said vacuum vessel, and this exhaust port is located directly under the said substrate holder, The any one of Claims 1 thru | or 4 characterized by the above-mentioned. Vacuum processing equipment.
  6.  前記排気手段は、前記真空容器を、1×10-5Pa以下の低圧に減圧することを特徴とする請求項1乃至5のいずれか1項に記載の真空処理装置。 The vacuum processing apparatus according to any one of claims 1 to 5, wherein the exhaust unit decompresses the vacuum container to a low pressure of 1 × 10 -5 Pa or less.
  7.  排気手段が接続された減圧可能な真空容器と、該真空容器内に配される基板を載置する基板載置面を備えた基板ホルダと、前記真空容器内に反応性ガスを導入するガス導入口を備えたガス導入手段と、を有する真空処理装置の真空処理方法であって、
     前記真空容器内に配された基板ホルダに基板を載置する載置工程と、
     前記ガス導入手段のガス導入口より前記真空容器内に放出される反応性ガスの分子が前記ガス導入口から直線的に前記基板の表面に到達するのが遮蔽される位置であると共に、前記基板の表面の実質的な中心軸上の位置に配されたガス導入口より、前記真空容器内に前記反応性ガスを導入する導入工程と、
     前記反応性ガスを分子流の拡散により前記基板載置面に到達させる到達工程と、
     を有することを特徴とする真空処理方法。
    Depressurizable vacuum vessel connected to an exhaust means, a substrate holder provided with a substrate placement surface for placing a substrate disposed in the vacuum vessel, and gas introduction for introducing a reactive gas into the vacuum vessel A vacuum processing method of a vacuum processing apparatus having a gas introducing means having a mouth,
    A placing step of placing a substrate on a substrate holder disposed in the vacuum vessel;
    The reactive gas molecules released into the vacuum vessel from the gas introduction port of the gas introduction means are shielded from reaching the surface of the substrate linearly from the gas introduction port, and the substrate. An introduction step of introducing the reactive gas into the vacuum vessel from a gas introduction port arranged at a position on a substantial central axis of the surface of
    An arrival step of causing the reactive gas to reach the substrate mounting surface by diffusion of a molecular flow;
    The vacuum processing method characterized by having.
  8.  前記反応性ガスは、酸素ガスであること特徴とする請求項7に記載の真空処理方法。 The vacuum processing method according to claim 7, wherein the reactive gas is oxygen gas.
  9.  前記基板の表面には金属膜が形成されており、前記到達工程で前記基板載置面に到達した前記反応性ガスにより、前記金属膜の酸化処理を行う酸化工程を更に有することを特徴とする請求項8に記載の真空処理方法。 A metal film is formed on the surface of the substrate, and the method further includes an oxidation step of oxidizing the metal film with the reactive gas that has reached the substrate mounting surface in the arrival step. The vacuum processing method according to claim 8.
  10.  前記金属膜は、Mg膜、Al膜、Ti膜、Zn膜から選択されるものであることを特徴とする請求項9に記載の真空処理方法。 10. The vacuum processing method according to claim 9, wherein the metal film is selected from an Mg film, an Al film, a Ti film, and a Zn film.
  11.  請求項7乃至10のいずれか1項に記載の真空処理方法を用いて、MgOからなるトンネル障壁層を形成する工程を有することを特徴とする磁気抵抗効果素子の製造方法。 A method for manufacturing a magnetoresistive element, comprising a step of forming a tunnel barrier layer made of MgO using the vacuum processing method according to any one of claims 7 to 10.
  12.  請求項1乃至6のいずれか1項に記載の真空処理装置を有することを特徴とする磁気抵抗効果素子の製造装置。 An apparatus for manufacturing a magnetoresistive effect element, comprising the vacuum processing apparatus according to any one of claims 1 to 6.
PCT/JP2014/002743 2013-09-25 2014-05-26 Vacuum processing apparatus, vacuum processing method, method for manufacturing magnetoresistance effect element, and apparatus for manufacturing magnetoresistance effect element WO2015045212A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2015538839A JP6068662B2 (en) 2013-09-25 2014-05-26 Vacuum processing apparatus, vacuum processing method, magnetoresistive effect element manufacturing method, and magnetoresistive effect element manufacturing apparatus
TW103132794A TWI545661B (en) 2013-09-25 2014-09-23 Vacuum processing device, vacuum processing method, manufacturing method of magnetoresistive effect element, and manufacturing device of magnetoresistive effect element

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-198827 2013-09-25
JP2013198827 2013-09-25

Publications (1)

Publication Number Publication Date
WO2015045212A1 true WO2015045212A1 (en) 2015-04-02

Family

ID=52742396

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/002743 WO2015045212A1 (en) 2013-09-25 2014-05-26 Vacuum processing apparatus, vacuum processing method, method for manufacturing magnetoresistance effect element, and apparatus for manufacturing magnetoresistance effect element

Country Status (3)

Country Link
JP (1) JP6068662B2 (en)
TW (1) TWI545661B (en)
WO (1) WO2015045212A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6700165B2 (en) 2016-12-22 2020-05-27 東京エレクトロン株式会社 Film forming apparatus and film forming method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04370924A (en) * 1991-06-20 1992-12-24 Fujitsu Ltd Cvd device
JP2005142234A (en) * 2003-11-04 2005-06-02 Canon Inc Processor and method
WO2011081203A1 (en) * 2009-12-28 2011-07-07 キヤノンアネルバ株式会社 Method for manufacturing a magnetoresistive element

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04370924A (en) * 1991-06-20 1992-12-24 Fujitsu Ltd Cvd device
JP2005142234A (en) * 2003-11-04 2005-06-02 Canon Inc Processor and method
WO2011081203A1 (en) * 2009-12-28 2011-07-07 キヤノンアネルバ株式会社 Method for manufacturing a magnetoresistive element

Also Published As

Publication number Publication date
TWI545661B (en) 2016-08-11
JPWO2015045212A1 (en) 2017-03-09
TW201530664A (en) 2015-08-01
JP6068662B2 (en) 2017-01-25

Similar Documents

Publication Publication Date Title
CN101517768B (en) Magnetoresistive element manufacturing method, and multi-chamber apparatus for manufacturing the magnetoresistive element
US7318947B1 (en) Method and apparatus for controlling magnetostriction in a spin valve sensor
TWI673891B (en) Oxidation treatment device, oxidation method, and method of manufacturing electronic device
JP5341082B2 (en) Tunnel magnetoresistive element manufacturing method and manufacturing apparatus
JP4673858B2 (en) Sputtering apparatus and film forming method
JP5999543B2 (en) Method for manufacturing tunnel magnetoresistive element
JP5745699B2 (en) Tunnel magnetoresistive element manufacturing equipment
JP2009224775A (en) Gas supply equipment, film-forming apparatus, and film formation method
TW201448301A (en) Method for manufacturing magnetoresistance effect element
US10361363B2 (en) Method of manufacturing tunnel magnetoresistive effect element and sputtering apparatus
US20130134032A1 (en) Method of fabricating and apparatus of fabricating tunnel magnetic resistive element
TW200949975A (en) Substrate stage, sputtering apparatus therewith, and film deposition method
JP6068662B2 (en) Vacuum processing apparatus, vacuum processing method, magnetoresistive effect element manufacturing method, and magnetoresistive effect element manufacturing apparatus
US20090139855A1 (en) Manufacturing method and manufacturing apparatus of magnetoresistance elements
JP5689932B2 (en) Method for manufacturing tunnel magnetoresistive element
US8435596B2 (en) Oxidizing method and oxidizing apparatus
JP2008226987A (en) Method and device for manufacturing magnetoresistive element and method and device for manufacturing magnetic device
JP2010106290A (en) Film forming device, film forming method, magnetic recording medium and magnetic recording and reproducing device
JP5624931B2 (en) Method for producing spinel ferrite thin film
JP2011122193A (en) Gas introducing apparatus, sputtering apparatus and sputtering method
US20190109282A1 (en) Method of Processing Workpiece
WO2010038593A1 (en) Device and method for depositing hard bias stack, and device and method for manufacturing magnetic sensor stack
JP6103919B2 (en) High-speed atomic beam source, room-temperature bonding apparatus, and room-temperature bonding method
JPWO2009084445A1 (en) Dry etching method, magnetoresistive effect element, manufacturing method and manufacturing apparatus thereof
TW201531579A (en) Magnetoresistive-element manufacturing method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14847013

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015538839

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14847013

Country of ref document: EP

Kind code of ref document: A1