WO2015045075A1 - Disconnection detection device, determination device, and disconnection detection system - Google Patents

Disconnection detection device, determination device, and disconnection detection system Download PDF

Info

Publication number
WO2015045075A1
WO2015045075A1 PCT/JP2013/076138 JP2013076138W WO2015045075A1 WO 2015045075 A1 WO2015045075 A1 WO 2015045075A1 JP 2013076138 W JP2013076138 W JP 2013076138W WO 2015045075 A1 WO2015045075 A1 WO 2015045075A1
Authority
WO
WIPO (PCT)
Prior art keywords
disconnection
ground fault
accident
disconnection detection
detected
Prior art date
Application number
PCT/JP2013/076138
Other languages
French (fr)
Japanese (ja)
Inventor
板屋 伸彦
洪作 松村
高野 富裕
聖一 北村
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2013/076138 priority Critical patent/WO2015045075A1/en
Publication of WO2015045075A1 publication Critical patent/WO2015045075A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H3/00Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection
    • H02H3/02Details
    • H02H3/05Details with means for increasing reliability, e.g. redundancy arrangements
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H3/00Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection
    • H02H3/02Details
    • H02H3/04Details with warning or supervision in addition to disconnection, e.g. for indicating that protective apparatus has functioned
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/50Testing of electric apparatus, lines, cables or components for short-circuits, continuity, leakage current or incorrect line connections
    • G01R31/52Testing for short-circuits, leakage current or ground faults

Definitions

  • the present invention relates to a disconnection detection device, a determination device, and a disconnection detection system for detecting disconnection of a distribution line.
  • the present invention provides a disconnection detection unit that detects a disconnection of a distribution line that is not detected by a ground fault detection relay in a substation, and a disconnection in the disconnection detection unit.
  • a disconnection accident notification unit that causes the ground fault detection relay to recognize the occurrence of an accident by causing a ground fault to occur in the second distribution line that is different from the first distribution line in which the disconnection is detected. It is characterized by.
  • FIG. 7 is a flowchart illustrating an example of an operation in which the disconnection detection device according to the embodiment notifies the distribution substation of the detection of the disconnection.
  • FIG. 8 is a flowchart showing an example of a method for identifying the location of the disconnection accident at the distribution substation.
  • FIG. 9 is a flowchart illustrating an example of an operation in which the disconnection detection device according to the embodiment notifies the distribution substation of the detection of the disconnection.
  • FIG. FIG. 1 is a diagram showing an example of a power distribution system to which the disconnection detecting device according to the present invention is applied.
  • the disconnection detection device 1 is installed at a plurality of predetermined locations on the power distribution path from the power distribution substation 2 to the customer.
  • the disconnection detection device 1 may be installed at a ratio of one unit to several utility poles.
  • FIG. 2 is a diagram illustrating a configuration example of the disconnection detection device 1 and the distribution substation 2.
  • the disconnection detection device 1 includes a disconnection detection unit 11 that detects disconnection of a distribution line, and a disconnection accident notification unit 12 that notifies the distribution substation 2 of a disconnection detected by the disconnection detection unit 11. ing.
  • the disconnection accident notifying unit 12 includes a switch for forcibly grounding each distribution line of the A phase, the B phase, and the C phase.
  • the distribution substation 2 includes a ground fault detection relay 21 that detects a ground fault of the distribution line, and a circuit breaker 22 that shuts off power supply to the customer side when a ground fault is detected by the ground fault detection relay 21.
  • a transformer 23 that transforms the electric power supplied from the host (power station side).
  • a ground fault occurs due to disconnection of the distribution line or occurrence of dielectric breakdown in the pole transformer, an abnormal current flows. Therefore, when the abnormal current flows, the ground fault detection relay 21 determines that a ground fault occurs.
  • the circuit breaker 22 is controlled to stop power feeding. However, the state where the distribution line is simply cut and does not reach the ground fault, that is, the distribution line is disconnected but does not reach the ground fault for some reason (for example, the cut surface of the disconnected distribution line reaches the ground) In this case, no abnormal current flows, and the ground fault detection relay 21 cannot detect an accident. In order to deal with such a case, the disconnection detection device 1 is installed in various places of the power distribution system.
  • ground fault when “disconnected” is described, it means “disconnected without ground fault”. In addition, when “ground fault” is described, it means “a state in which one or more distribution lines are grounded due to disconnection or the like”.
  • the disconnection detection unit 11 monitors whether or not a disconnection has occurred in each of the distribution lines of the A phase, the B phase, and the C phase.
  • the disconnection detection method is not particularly defined, for example, the disconnection can be detected by monitoring the voltage between the phases. For example, when the voltage between the A phase and the B phase and the voltage between the A phase and the C phase are lower than the voltage between the B phase and the C phase, it is determined that the A phase distribution line is disconnected.
  • the disconnection detection unit 11 issues an instruction by outputting a closing signal to the switch of the disconnection accident notification unit 12 to forcibly ground the distribution lines of the phases that are not disconnected.
  • phase A For example, if phase A is disconnected, B phase forced ground fault is instructed; if phase B is disconnected, phase C forced ground fault is indicated; if phase C is disconnected, phase A forced ground fault is indicated. Instruct.
  • the disconnection accident notifying unit 12 closes the switch corresponding to the instruction content, and forcibly causes the distribution line of the instructed phase to ground.
  • the ground fault detection relay 21 of the distribution substation 2 can detect the occurrence of the accident, and the occurrence of a disaster such as an electric shock by stopping the power supply to the disconnection occurrence point. Can be prevented.
  • FIG. 3 is a diagram illustrating an implementation example of the disconnection detection device.
  • the disconnection detection device 1a shown in FIG. 3 includes a disconnection detection unit 11a that detects a disconnection by monitoring the voltage between the R phase and the T phase after being transformed by the pole transformer, and a disconnection accident notification unit 12a. I have.
  • the disconnection detection unit 11a determines that a disconnection has occurred when the monitored voltage decreases.
  • the pole transformer is configured to transform the voltage between the A phase and the B phase
  • the disconnection accident notifying unit 12a determines the C phase when the disconnection detecting unit 11a detects the disconnection. Make a ground fault.
  • the disconnection detection device forcibly grounds a disconnected distribution line when the disconnection detection unit 11 detects the disconnection of the distribution line and the disconnection detection unit 11 detects the disconnection.
  • the disconnection accident notifying unit 12 that notifies the distribution substation 2 of the occurrence of the disconnection is provided. Thereby, it is possible to reliably notify the distribution substation 2 of the occurrence of a disconnection accident that cannot be detected by monitoring the abnormal current.
  • the occurrence of an accident is notified by forcibly grounding the distribution line, there is no need to provide a separate communication means, and a highly reliable distribution system can be realized with a minimum cost increase. .
  • Embodiment 2 a disconnection accident notification method to the distribution substation 2 by the disconnection detection device 1 described in the first embodiment will be described in detail.
  • the overall configuration of the power distribution system and the configuration of each device are the same as those in the first embodiment (see FIGS. 1 and 2).
  • the circuit is disconnected.
  • the voltage may fluctuate instantaneously due to a factor other than the disconnection.
  • uniformity it is first determined that there is a possibility of disconnection.
  • step S14 a disconnection detection timer is added (step S14). That is, the elapsed time after detecting the disconnection is calculated. Next, it is confirmed whether or not the value of the disconnection detection timer is a certain value (for example, 5 seconds) or more (step S16). If it is over a certain time (step S16: Yes), it is determined that there is a disconnection, (Hereinafter referred to as the disconnection phase) is recorded (step S17). When the value of the disconnection detection timer is less than a certain value (step S16: No), the process returns to step S11 and continues the operation.
  • step S12 If it is determined in step S12 that there is no possibility of disconnection (step S13: No), the disconnection detection timer is reset (step S15), and the operation returns to step S11 to continue the operation.
  • step S17 after the disconnection phase is recorded in step S17, the phase previously associated with the recorded disconnection phase (phase in which no disconnection has occurred) is forcibly grounded.
  • the disconnection phase recorded in step S17 is recorded until it is manually reset by the operator after the disconnection accident is removed.
  • FIG. 5 is a flowchart illustrating an example of an operation in which the disconnection detection device 1 notifies the distribution substation 2 of detection of disconnection.
  • the disconnection detection device 1 monitors whether or not a predetermined time (for example, 0.1 second) has elapsed (step S21). When the predetermined time has elapsed (step S21: Yes), the disconnection detection device 1 It is confirmed whether or not the system is in an energized state (charged state) (step S22). When it is not in the charged state (step S22: No), the process returns to step S21 and continues the operation.
  • a predetermined time for example, 0.1 second
  • step S22 Yes
  • step S23 it is confirmed whether or not a disconnection phase is recorded, that is, whether or not a disconnection is detected in the operation shown in FIG. 4 (step S23).
  • step S23: No the process returns to step S21 to continue the operation.
  • step S24 it is confirmed whether it is during a forced ground fault (step S24). If a forced ground fault is occurring (step S24: Yes), after waiting for a certain time (for example, 2 seconds), the forced ground fault is canceled. That is, the switch of the disconnection accident notification unit 12 (see FIG. 2) is opened (steps S27 and S28).
  • step S28 After executing step S28, the process returns to step S21 to continue the operation.
  • the standby time in step S27 is longer than the time required for detecting a ground fault in the distribution substation 2 and shutting off the power supply.
  • the ground fault detection relay 21 (see FIG. 2) of the distribution substation 2 generally opens the circuit breaker 22 when about 1 second has elapsed since the ground fault was detected. Therefore, the standby time may be set to about 2 seconds. Instead of waiting for a certain time in step S27, the switch may be opened when a power failure occurs (when the circuit breaker 22 of the distribution substation 2 is opened and the power supply is stopped).
  • step S24 when it is not during the forced ground fault (step S24: No), waiting for the specific forced ground fault start waiting time (T seconds) for each disconnection detecting device 1 in the system, and when T seconds have elapsed, A phase different from the disconnected phase is forcibly grounded (the switch of the disconnection accident notification unit 12 is turned on) (steps S25 and S26). After executing Step S26, the process returns to Step S21 and continues the operation.
  • T seconds the specific forced ground fault start waiting time
  • T seconds a method for setting the forced ground fault start waiting time (T seconds) will be described.
  • a plurality of disconnection detectors 1 are installed in the power distribution system. Then, by setting different forced ground fault start waiting times (T seconds) for the plurality of disconnection detection devices 1, the distribution substation 2 can know where the disconnection accident has occurred. The reason will be explained.
  • the ground fault detection relay 21 opens the circuit breaker 22 and temporarily stops the power supply, and then restarts the power supply when a certain time has elapsed. To do.
  • the power supply is resumed, not all areas are energized at once, but are divided into a plurality of blocks. For example, every 10 seconds, the energization resume area is sequentially expanded by one block.
  • the above T seconds of the disconnection detecting device 1 in the same block are set to be less than 10 seconds.
  • the distribution substation 2 detects the ground fault again after resuming energization to a certain block, it can be seen that a disconnection accident has occurred in this block, and the ground has been resumed after resuming energization. It is possible to identify the disconnection detection device 1 that has detected the disconnection accident from the time required until the fault is detected again. Thus, by setting a different value for each device as the T, it is possible to notify the distribution substation 2 of the occurrence location of the disconnection accident. In the distribution substation 2, for example, the ground fault detection relay 21 specifies the disconnection detection device 1 that detects the disconnection accident. You may make it pinpoint other than the ground fault detection relay 21. FIG. When the number of disconnection detection devices 1 set in the power distribution system is small, the power supply area may be restarted all at once without dividing the power supply area into a plurality of blocks (for each disconnection detection device 1). Set different forced ground fault start waiting times T).
  • FIG. 6 is a flowchart showing an example of a method for identifying the location where the disconnection accident occurs in the distribution substation 2. The description will be made assuming that the ground fault detection relay 21 identifies the location where the disconnection accident occurs.
  • the ground fault detection relay 21 of the distribution substation 2 opens the circuit breaker 22 when a ground fault is detected, and then reopens (recloses) the circuit breaker 22 when a predetermined time elapses. Then, measurement of the elapsed time is started (steps S51 and S52). Thereafter, the occurrence of ground fault is monitored (step S53), and when the occurrence of ground fault is detected (step S53: Yes), an elapsed time T1 from the execution of step S51 is calculated (step S54). Next, a ground fault section (a block in which a ground fault has occurred) is specified (step S55). Specifically, the ground fault section number is obtained by adding 1 to the integer part obtained by dividing T1 by X.
  • the ground fault section number 4
  • This ground fault section number indicates the block in which energization has been started fourth, and a ground fault occurrence location exists in the block.
  • step S57 If 1 ⁇ T2 is satisfied (step S57: Yes), T (forced ground fault start waiting time) matches T2. It is determined that the disconnection detecting device 1 is a ground fault generating device (step S58). On the other hand, if 1 ⁇ T2 is not satisfied (step S57: No), it is determined that there is a ground fault (an accident that is not forcibly caused by the disconnection detection device 1) (step S59).
  • step S53 when a ground fault is detected by step S53, the process which open
  • the disconnection detection device 1 determines that a disconnection has occurred when a state in which a disconnection is suspected continues for a certain period of time, for example, the interphase voltage becomes non-uniform. Thereby, the detection accuracy of disconnection can be improved.
  • a forced ground fault start waiting time T having a value different from that of the other disconnection detection devices 1 in the block where energization is started at the same timing has elapsed.
  • the phase other than the disconnection phase was forcibly grounded. Thereby, the occurrence location of the disconnection accident can be specified on the distribution substation 2 side.
  • Embodiment 3 the disconnection detection device 1 sets the waiting time (forced ground fault start waiting time T) from when the disconnection is detected until the forced ground fault is performed to a value unique to the device, thereby causing a disconnection accident.
  • the disconnection accident can be identified.
  • the place of occurrence can be specified on the distribution substation 2 side.
  • FIG. 7 is a flowchart illustrating an example of an operation in which the disconnection detection device 1 according to the third embodiment notifies the distribution substation 2 of detection of disconnection. Steps S21 to S23 shown in FIG. 7 are the same processes as steps S21 to S23 shown in FIG.
  • the disconnection detection device 1 of the present embodiment is different from the disconnection phase in the period, time width, and number of times unique to each disconnection detection device 1 in the system.
  • the phase is repeatedly grounded (step S31). That is, the switch of the disconnection accident notification unit 12 is periodically opened and closed at a timing different from that of the other disconnection detection devices 1 in the system.
  • cycle indicates the occurrence period of forced ground fault
  • time width indicates the duration of forced ground fault
  • “number of times” indicates the number of repeated occurrences of forced ground fault. It suffices that at least one of the period, the time width, and the number of times is different from that of the other disconnection detection devices 1.
  • the switch is opened and closed at a timing when the circuit breaker 22 of the distribution substation 2 is not opened.
  • the cycle is 100 msec
  • the time width is 40 ms
  • the number of times is 10
  • the disconnection detection unit 11 of the disconnection detection device 1 is a distribution line of a phase that is not disconnected among the switches in the disconnection accident notification unit 12.
  • the operation of opening the switch connected to is opened for 40 msec and then opened for 60 msec is repeated 10 times.
  • FIG. 8 is a flowchart showing an example of a method for identifying the location where the disconnection accident occurs in the distribution substation 2. The description will be made assuming that the ground fault detection relay 21 identifies the location where the disconnection accident occurs.
  • step S63: No When the ground fault does not occur periodically (step S63: No), the process returns to step S61 and continues the operation. If a ground fault occurs periodically (step S63: Yes), the ground fault occurrence time and resolution time recorded in the past and the ground fault occurrence time and resolution time newly recorded this time are The occurrence cycle, time width, and number of occurrences of the fault are calculated, and the ground fault generator is specified based on the calculation result (steps S64 and S65).
  • step S31 the disconnection detection device 1 according to the present embodiment is forced to perform a ground fault repeatedly in a phase different from the disconnection phase with a unique period, time width, and number of times for each disconnection detection device 1 in the system.
  • the ground fault is continued for a certain time, and then the forced ground fault is terminated (steps S41 to S43). That is, after step S31 is performed and the occurrence location of the disconnection accident is specified on the distribution substation 2 side, steps S41 and S42 are performed to open the circuit breaker 22 and stop the power supply.
  • the disconnection detection device 1 of the present embodiment detects a disconnection, it repeatedly generates a forced ground fault at a timing different from that of other disconnection detection devices 1 in the system, and then the power supply is stopped. Until then, the forced ground fault condition was continued. As a result, the occurrence location of the disconnection accident can be specified on the distribution substation 2 side, and the power supply can be stopped to prevent a disaster such as an electric shock accident.
  • the disconnection detection device is useful as a device that detects a disconnection of a distribution line in a distribution system and notifies a substation.

Landscapes

  • Testing Of Short-Circuits, Discontinuities, Leakage, Or Incorrect Line Connections (AREA)
  • Emergency Protection Circuit Devices (AREA)

Abstract

To achieve a disconnection detection device having a reduced cost compared to conventional systems, a disconnection detection device (1) according to the present invention is provided with a disconnection detection unit (11) for detecting, in a power distribution system, a power distribution line disconnection not detected by a ground fault detection relay (21) inside a power distribution substation, and a disconnection incident notification unit (12) for causing the ground fault detection relay (21) to recognize the occurrence of an incident if the disconnection detection unit (11) detects a disconnection by causing a ground fault in a second power distribution line different from a first power distribution line in which the disconnection was detected.

Description

断線検出装置、判定装置および断線検出システムDisconnection detection device, determination device, and disconnection detection system
 本発明は、配電線の断線検出を行う断線検出装置、判定装置および断線検出システムに関するものである。 The present invention relates to a disconnection detection device, a determination device, and a disconnection detection system for detecting disconnection of a distribution line.
 配電線の断線を検出する従来の装置として、特許文献1に記載の断線検出装置が存在する。この断線検出装置は、電圧や電流を検出する複数のセンサと、各センサで測定された電圧等に基づいて断線の有無を判定する断線判定装置とにより構成されている。センサは配電線の所定位置に設置されており、断線検出装置は、通信線を介して各センサから取得した測定結果に基づいて断線検出を行う。 As a conventional device for detecting disconnection of a distribution line, there is a disconnection detection device described in Patent Document 1. This disconnection detection device includes a plurality of sensors that detect voltage and current, and a disconnection determination device that determines the presence or absence of disconnection based on the voltage measured by each sensor. The sensor is installed at a predetermined position of the distribution line, and the disconnection detection device detects disconnection based on the measurement result acquired from each sensor via the communication line.
特開2004-233255号公報JP 2004-233255 A
 特許文献1に記載された断線検出装置は、各センサと断線判定装置が通信する必要がある。すなわち、各装置(センサ,断線判定装置)が通信を行うための構成を必要とするため、実現のためにはコストを要する。専用の通信網を使用する場合にはメンテナンスが必要となり、既存の公衆通信網を利用する場合には通信費などが発生する。 In the disconnection detection device described in Patent Document 1, it is necessary for each sensor to communicate with the disconnection determination device. That is, since each device (sensor, disconnection determination device) requires a configuration for performing communication, a cost is required for realization. When a dedicated communication network is used, maintenance is required, and when an existing public communication network is used, communication costs are incurred.
 本発明は、上記に鑑みてなされたものであって、従来よりもコストを抑えた断線検出装置、判定装置および断線検出システムを得ることを目的とする。 The present invention has been made in view of the above, and an object of the present invention is to obtain a disconnection detection device, a determination device, and a disconnection detection system that are less costly than conventional ones.
 上述した課題を解決し、目的を達成するために、本発明は、配電系統において、変電所内の地絡検出リレーが検出しない配電線の断線を検出する断線検出部と、前記断線検出部で断線が検出された場合、断線が検出された第1の配電線とは異なる第2の配電線を地絡させて前記地絡検出リレーに事故の発生を認識させる断線事故通知部と、を備えることを特徴とする。 In order to solve the above-described problems and achieve the object, the present invention provides a disconnection detection unit that detects a disconnection of a distribution line that is not detected by a ground fault detection relay in a substation, and a disconnection in the disconnection detection unit. A disconnection accident notification unit that causes the ground fault detection relay to recognize the occurrence of an accident by causing a ground fault to occur in the second distribution line that is different from the first distribution line in which the disconnection is detected. It is characterized by.
 この発明によれば、断線事故を検出して変電所へ通知する断線検出装置を低コストで実現することができる、という効果を奏する。 According to the present invention, there is an effect that it is possible to realize a disconnection detecting device that detects a disconnection accident and notifies a substation at a low cost.
図1は、本発明にかかる断線検出装置を適用した配電システムの一例を示す図である。FIG. 1 is a diagram showing an example of a power distribution system to which the disconnection detecting device according to the present invention is applied. 図2は、断線検出装置および配電用変電所の構成例を示す図である。FIG. 2 is a diagram illustrating a configuration example of a disconnection detection device and a distribution substation. 図3は、断線検出装置の実装例を示す図である。FIG. 3 is a diagram illustrating an implementation example of the disconnection detection device. 図4は、断線検出装置における断線事故検出動作の一例を示すフローチャートである。FIG. 4 is a flowchart illustrating an example of a disconnection accident detection operation in the disconnection detection device. 図5は、断線検出装置が配電用変電所へ断線の検出を通知する動作の一例を示すフローチャートである。FIG. 5 is a flowchart illustrating an example of an operation in which the disconnection detection device notifies the distribution substation of detection of disconnection. 図6は、配電用変電所において断線事故発生場所を特定する方法の一例を示すフローチャートである。FIG. 6 is a flowchart illustrating an example of a method for identifying a disconnection accident occurrence place in a distribution substation. 図7は、実施の形態の断線検出装置が配電用変電所へ断線の検出を通知する動作の一例を示すフローチャートである。FIG. 7 is a flowchart illustrating an example of an operation in which the disconnection detection device according to the embodiment notifies the distribution substation of the detection of the disconnection. 図8は、配電用変電所において断線事故発生場所を特定する方法の一例を示すフローチャートである。FIG. 8 is a flowchart showing an example of a method for identifying the location of the disconnection accident at the distribution substation. 図9は、実施の形態の断線検出装置が配電用変電所へ断線の検出を通知する動作の一例を示すフローチャートである。FIG. 9 is a flowchart illustrating an example of an operation in which the disconnection detection device according to the embodiment notifies the distribution substation of the detection of the disconnection.
 以下に、本発明にかかる断線検出装置、判定装置および断線検出システムの実施の形態を図面に基づいて詳細に説明する。なお、この実施の形態によりこの発明が限定されるものではない。 Hereinafter, embodiments of the disconnection detection device, determination device, and disconnection detection system according to the present invention will be described in detail with reference to the drawings. Note that the present invention is not limited to the embodiments.
実施の形態1.
 図1は、本発明にかかる断線検出装置を適用した配電システムの一例を示す図である。断線検出装置1は、配電用変電所2から需要家への配電経路上の所定の複数個所に設置される。図1の例では各電柱に設置しているが数本の電柱に対して1台の割合で断線検出装置1を設置するようにするなどしてもよい。
Embodiment 1 FIG.
FIG. 1 is a diagram showing an example of a power distribution system to which the disconnection detecting device according to the present invention is applied. The disconnection detection device 1 is installed at a plurality of predetermined locations on the power distribution path from the power distribution substation 2 to the customer. In the example of FIG. 1, the disconnection detection device 1 may be installed at a ratio of one unit to several utility poles.
 図2は、断線検出装置1および配電用変電所2の構成例を示す図である。断線検出装置1は、配電線の断線を検出する断線検出部11と、断線検出部11で断線が検出された場合にそれを配電用変電所2に通知する断線事故通知部12と、を備えている。断線事故通知部12は、A相、B相およびC相の各配電線を強制的に地絡させるための開閉器を含んでいる。配電用変電所2は、配電線の地絡を検出する地絡検出リレー21と、地絡検出リレー21で地絡が検出された場合に需要家側への電力供給を遮断する遮断器22と、上位(発電所側)から供給された電力を変圧する変圧器23と、を備えている。配電線の切断や柱上変圧器での絶縁破壊発生などにより地絡事故が発生した場合、異常電流が流れるため、地絡検出リレー21は、異常電流が流れると地絡事故発生と判断し、遮断器22を制御して給電を停止させる。しかし、単に配電線が切断しただけで地絡には至っていない状態、すなわち、配電線が断線したが何らかの理由により地絡には至っていない状態(例えば、断線した配電線の切断面が地面に届かずに垂れ下がった状態)となった場合、異常電流は流れず、地絡検出リレー21は事故を検出することができない。このようなケースに対応するために断線検出装置1が配電系統の各所に設置されている。 FIG. 2 is a diagram illustrating a configuration example of the disconnection detection device 1 and the distribution substation 2. The disconnection detection device 1 includes a disconnection detection unit 11 that detects disconnection of a distribution line, and a disconnection accident notification unit 12 that notifies the distribution substation 2 of a disconnection detected by the disconnection detection unit 11. ing. The disconnection accident notifying unit 12 includes a switch for forcibly grounding each distribution line of the A phase, the B phase, and the C phase. The distribution substation 2 includes a ground fault detection relay 21 that detects a ground fault of the distribution line, and a circuit breaker 22 that shuts off power supply to the customer side when a ground fault is detected by the ground fault detection relay 21. And a transformer 23 that transforms the electric power supplied from the host (power station side). When a ground fault occurs due to disconnection of the distribution line or occurrence of dielectric breakdown in the pole transformer, an abnormal current flows. Therefore, when the abnormal current flows, the ground fault detection relay 21 determines that a ground fault occurs. The circuit breaker 22 is controlled to stop power feeding. However, the state where the distribution line is simply cut and does not reach the ground fault, that is, the distribution line is disconnected but does not reach the ground fault for some reason (for example, the cut surface of the disconnected distribution line reaches the ground) In this case, no abnormal current flows, and the ground fault detection relay 21 cannot detect an accident. In order to deal with such a case, the disconnection detection device 1 is installed in various places of the power distribution system.
 なお、以下の説明では、「断線」と記載した場合、「地絡を伴わない断線」を意味するものとする。また、「地絡」と記載した場合、「断線などにより1つ以上の配電線が地絡した状態」を意味するものとする。 In the following description, when “disconnected” is described, it means “disconnected without ground fault”. In addition, when “ground fault” is described, it means “a state in which one or more distribution lines are grounded due to disconnection or the like”.
 断線検出装置1において、断線検出部11は、A相、B相およびC相の各配電線について、断線が発生したかどうかを監視する。断線の検出方法については特に規定しないが、例えば、相間の電圧を監視することにより断線を検出できる。例えば、A相とB相の間の電圧およびA相とC相の間の電圧がB相とC相の間の電圧よりも低い場合、A相の配電線が断線していると判断する。断線検出部11は、断線を検出した場合、断線事故通知部12の開閉器に対して投入信号を出力することにより指示を行い、断線していない相の配電線を強制的に地絡させる。例えば、A相が断線した場合はB相の強制地絡を指示し、B相が断線した場合はC相の強制地絡を指示し、C相が断線した場合はA相の強制地絡を指示する。断線事故通知部12は、断線検出部11から指示を受けた場合、指示内容に対応する開閉器を閉じ、指示された相の配電線を強制的に地絡させる。これにより、配電線の断線が発生した場合も配電用変電所2の地絡検出リレー21が事故発生を検知できるようになり、断線発生箇所への電力供給を停止して感電事故などの災害発生を防止できる。 In the disconnection detection device 1, the disconnection detection unit 11 monitors whether or not a disconnection has occurred in each of the distribution lines of the A phase, the B phase, and the C phase. Although the disconnection detection method is not particularly defined, for example, the disconnection can be detected by monitoring the voltage between the phases. For example, when the voltage between the A phase and the B phase and the voltage between the A phase and the C phase are lower than the voltage between the B phase and the C phase, it is determined that the A phase distribution line is disconnected. When the disconnection detection unit 11 detects a disconnection, the disconnection detection unit 11 issues an instruction by outputting a closing signal to the switch of the disconnection accident notification unit 12 to forcibly ground the distribution lines of the phases that are not disconnected. For example, if phase A is disconnected, B phase forced ground fault is instructed; if phase B is disconnected, phase C forced ground fault is indicated; if phase C is disconnected, phase A forced ground fault is indicated. Instruct. When receiving an instruction from the disconnection detecting unit 11, the disconnection accident notifying unit 12 closes the switch corresponding to the instruction content, and forcibly causes the distribution line of the instructed phase to ground. As a result, even when a disconnection of the distribution line occurs, the ground fault detection relay 21 of the distribution substation 2 can detect the occurrence of the accident, and the occurrence of a disaster such as an electric shock by stopping the power supply to the disconnection occurrence point. Can be prevented.
 図3は、断線検出装置の実装例を示す図である。図3に示した断線検出装置1aは、柱上変圧器で変圧された後のR相とT相の間の電圧を監視して断線を検出する断線検出部11aと、断線事故通知部12aを備えている。断線検出部11aは、監視している電圧が低下すると、断線発生と判断する。図3の例ではA相とB相の間の電圧を柱上変圧器が変圧する構成となっており、断線事故通知部12aは、断線検出部11aで断線が検出された場合、C相を地絡させる。 FIG. 3 is a diagram illustrating an implementation example of the disconnection detection device. The disconnection detection device 1a shown in FIG. 3 includes a disconnection detection unit 11a that detects a disconnection by monitoring the voltage between the R phase and the T phase after being transformed by the pole transformer, and a disconnection accident notification unit 12a. I have. The disconnection detection unit 11a determines that a disconnection has occurred when the monitored voltage decreases. In the example of FIG. 3, the pole transformer is configured to transform the voltage between the A phase and the B phase, and the disconnection accident notifying unit 12a determines the C phase when the disconnection detecting unit 11a detects the disconnection. Make a ground fault.
 このように、本実施の形態の断線検出装置は、配電線の断線を検出する断線検出部11と、断線検出部11が断線を検出すると、断線していない配電線を強制的に地絡させることにより配電用変電所2に断線発生を通知する断線事故通知部12と、を備えることとした。これにより、異常電流の監視では検知することができない断線事故の発生を配電用変電所2に確実に通知することができる。また、配電線を強制的に地絡させることにより事故の発生を通知するようにしたので、別途通信手段などを備える必要がなくなり、必要最低限のコストアップで信頼性の高い配電システムを実現できる。 As described above, the disconnection detection device according to the present embodiment forcibly grounds a disconnected distribution line when the disconnection detection unit 11 detects the disconnection of the distribution line and the disconnection detection unit 11 detects the disconnection. Thus, the disconnection accident notifying unit 12 that notifies the distribution substation 2 of the occurrence of the disconnection is provided. Thereby, it is possible to reliably notify the distribution substation 2 of the occurrence of a disconnection accident that cannot be detected by monitoring the abnormal current. In addition, since the occurrence of an accident is notified by forcibly grounding the distribution line, there is no need to provide a separate communication means, and a highly reliable distribution system can be realized with a minimum cost increase. .
実施の形態2.
 本実施の形態では、実施の形態1で説明した断線検出装置1による配電用変電所2への断線事故通知方法について詳しく説明する。配電システムの全体構成、各装置の構成は実施の形態1と同様とする(図1,図2参照)。
Embodiment 2. FIG.
In the present embodiment, a disconnection accident notification method to the distribution substation 2 by the disconnection detection device 1 described in the first embodiment will be described in detail. The overall configuration of the power distribution system and the configuration of each device are the same as those in the first embodiment (see FIGS. 1 and 2).
 図4は、断線検出装置1における断線事故検出動作の一例を示すフローチャートである。図4に示したように、断線検出装置1は、所定時間(例えば0.1秒)周期で配電線の断線の有無を確認する。具体的には、所定時間が経過したかどうかを監視し(ステップS11)、所定時間が経過すると(ステップS11:Yes)、A相、B相およびC相のそれぞれについて、断線の可能性を判定する(ステップS12)。例えば、実施の形態1で説明したように、相間の電圧(A-B相間の電圧、A-C相間の電圧、B-C相間の電圧)を比較し、各電圧が不均一の場合は断線の可能性ありと判断する。実施の形態1では、相間の電圧が一瞬でも不均一であれば断線と判断したが、断線以外の要因で瞬間的に電圧が変動する可能性もあるため、本実施の形態では相間電圧の不均一を検知した場合、まず、断線の可能性ありと判断する。 FIG. 4 is a flowchart showing an example of a disconnection accident detection operation in the disconnection detection device 1. As shown in FIG. 4, the disconnection detection device 1 confirms the presence or absence of disconnection of the distribution line at a predetermined time (for example, 0.1 second) cycle. Specifically, it is monitored whether or not a predetermined time has passed (step S11). When the predetermined time has passed (step S11: Yes), the possibility of disconnection is determined for each of the A phase, the B phase, and the C phase. (Step S12). For example, as described in the first embodiment, the voltages between phases (the voltage between the A and B phases, the voltage between the A and C phases, and the voltage between the B and C phases) are compared. It is judged that there is a possibility. In the first embodiment, if the voltage between phases is not uniform even for a moment, it is determined that the circuit is disconnected. However, in this embodiment, there is a possibility that the voltage may fluctuate instantaneously due to a factor other than the disconnection. When uniformity is detected, it is first determined that there is a possibility of disconnection.
 断線の可能性がある場合(ステップS13:Yes)、断線検出タイマーを加算する(ステップS14)。すなわち、断線を検出してからの経過時間を算出する。次に、断線検出タイマーの値が一定値(例えば5秒)以上かどうかを確認し(ステップS16)、一定時間上の場合(ステップS16:Yes)、断線ありと判断し、断線が発生した相(以下、断線相と称する)を記録する(ステップS17)。断線検出タイマーの値が一定値未満の場合(ステップS16:No)、ステップS11に戻って動作を継続する。 If there is a possibility of disconnection (step S13: Yes), a disconnection detection timer is added (step S14). That is, the elapsed time after detecting the disconnection is calculated. Next, it is confirmed whether or not the value of the disconnection detection timer is a certain value (for example, 5 seconds) or more (step S16). If it is over a certain time (step S16: Yes), it is determined that there is a disconnection, (Hereinafter referred to as the disconnection phase) is recorded (step S17). When the value of the disconnection detection timer is less than a certain value (step S16: No), the process returns to step S11 and continues the operation.
 上記のステップS12において断線の可能性が無いと判断した場合(ステップS13:No)、断線検出タイマーをリセットし(ステップS15)、ステップS11に戻って動作を継続する。 If it is determined in step S12 that there is no possibility of disconnection (step S13: No), the disconnection detection timer is reset (step S15), and the operation returns to step S11 to continue the operation.
 図4への記載は省略したが、断線相をステップS17で記録した後は、記録した断線相に予め対応付けられている相(断線が発生していない相)を強制的に地絡させる。ステップS17で記録した断線相は、断線事故が除去された後に作業者によって手動でリセットされるまで、記録しておく。 Although the description in FIG. 4 is omitted, after the disconnection phase is recorded in step S17, the phase previously associated with the recorded disconnection phase (phase in which no disconnection has occurred) is forcibly grounded. The disconnection phase recorded in step S17 is recorded until it is manually reset by the operator after the disconnection accident is removed.
 断線検出装置1は、断線を検出した場合、例えば、図5に示した手順に従い、断線が発生していない相を強制的に地絡させる。図5は、断線検出装置1が配電用変電所2へ断線の検出を通知する動作の一例を示すフローチャートである。 When the disconnection detection device 1 detects a disconnection, for example, according to the procedure shown in FIG. 5, a phase in which no disconnection has occurred is forcibly grounded. FIG. 5 is a flowchart illustrating an example of an operation in which the disconnection detection device 1 notifies the distribution substation 2 of detection of disconnection.
 断線検出装置1は、所定時間(例えば0.1秒)が経過したかどうかを監視し(ステップS21)、所定時間が経過した場合(ステップS21:Yes)、自装置が設置されている地点の系統が通電状態(充電状態)か否かを確認する(ステップS22)。充電状態ではない場合(ステップS22:No)、ステップS21に戻って動作を継続する。 The disconnection detection device 1 monitors whether or not a predetermined time (for example, 0.1 second) has elapsed (step S21). When the predetermined time has elapsed (step S21: Yes), the disconnection detection device 1 It is confirmed whether or not the system is in an energized state (charged state) (step S22). When it is not in the charged state (step S22: No), the process returns to step S21 and continues the operation.
 充電状態の場合(ステップS22:Yes)、断線相が記録されているか否か、すなわち、図4に示した動作において断線発生が検出されたか否かを確認する(ステップS23)。断線相が記録されていない場合(ステップS23:No)、ステップS21に戻って動作を継続する。断線相が記録されている場合(ステップS23:Yes)、強制地絡中か否かを確認する(ステップS24)。強制地絡中の場合(ステップS24:Yes)、一定時間(例えば2秒)待機した後、強制地絡を解除する。すなわち、断線事故通知部12(図2参照)の開閉器を開放する(ステップS27,S28)。ステップS28を実行した後はステップS21に戻って動作を継続する。なお、ステップS27における待機時間は、配電用変電所2において地絡事故を検出して電力供給を遮断するまでの所要時間よりも長い時間とする。配電用変電所2の地絡検出リレー21(図2参照)は、一般的には、地絡を検出してから1秒程度経過した時点で遮断器22を開放する。よって、待機時間は2秒程度に設定すればよい。ステップS27で一定時間待機するのではなく、停電した場合(配電用変電所2の遮断器22が開放されて電力供給が停止した場合)に開閉器を開放するようにしても構わない。 In the charged state (step S22: Yes), it is confirmed whether or not a disconnection phase is recorded, that is, whether or not a disconnection is detected in the operation shown in FIG. 4 (step S23). When the disconnection phase is not recorded (step S23: No), the process returns to step S21 to continue the operation. When the disconnection phase is recorded (step S23: Yes), it is confirmed whether it is during a forced ground fault (step S24). If a forced ground fault is occurring (step S24: Yes), after waiting for a certain time (for example, 2 seconds), the forced ground fault is canceled. That is, the switch of the disconnection accident notification unit 12 (see FIG. 2) is opened (steps S27 and S28). After executing step S28, the process returns to step S21 to continue the operation. Note that the standby time in step S27 is longer than the time required for detecting a ground fault in the distribution substation 2 and shutting off the power supply. The ground fault detection relay 21 (see FIG. 2) of the distribution substation 2 generally opens the circuit breaker 22 when about 1 second has elapsed since the ground fault was detected. Therefore, the standby time may be set to about 2 seconds. Instead of waiting for a certain time in step S27, the switch may be opened when a power failure occurs (when the circuit breaker 22 of the distribution substation 2 is opened and the power supply is stopped).
 一方、強制地絡中ではない場合(ステップS24:No)、システム内の断線検出装置1ごとに固有の強制地絡開始待ち時間(T秒)が経過するのを待ち、T秒が経過すると、断線した相とは異なる相を強制的に地絡させる(断線事故通知部12の開閉器を投入する)(ステップS25,S26)。ステップS26を実行した後はステップS21に戻って動作を継続する。 On the other hand, when it is not during the forced ground fault (step S24: No), waiting for the specific forced ground fault start waiting time (T seconds) for each disconnection detecting device 1 in the system, and when T seconds have elapsed, A phase different from the disconnected phase is forcibly grounded (the switch of the disconnection accident notification unit 12 is turned on) (steps S25 and S26). After executing Step S26, the process returns to Step S21 and continues the operation.
 ここで、強制地絡開始待ち時間(T秒)の設定方法について説明する。図1に示したように、配電システムには複数の断線検出装置1が設置されている。そして、複数の断線検出装置1に対してそれぞれ異なる強制地絡開始待ち時間(T秒)を設定することにより、配電用変電所2では断線事故の発生場所を知ることができる。その理由を説明する。 Here, a method for setting the forced ground fault start waiting time (T seconds) will be described. As shown in FIG. 1, a plurality of disconnection detectors 1 are installed in the power distribution system. Then, by setting different forced ground fault start waiting times (T seconds) for the plurality of disconnection detection devices 1, the distribution substation 2 can know where the disconnection accident has occurred. The reason will be explained.
 配電用変電所2において、地絡検出リレー21は、地絡を検出した場合、遮断器22を開放して電力供給を一旦停止した後、一定時間が経過した時点で電力供給を再開するものとする。電力供給を再開する場合には全てのエリアに対して一斉に通電するのではなく、複数のブロックに分割し、例えば10秒経過するごとに1ブロックずつ、順次通電再開エリアを広げる。この場合、同一ブロック内の断線検出装置1の上記のT秒は10秒未満に設定する。例えば、同一ブロック内の複数の断線検出装置1の強制地絡開始待ち時間TをそれぞれT=1sec,1.5sec,2sec,2.5sec,…,9secに設定する。これにより、配電用変電所2では、あるブロックに対する通電を再開した後に地絡を再度検出した場合、このブロック内で断線事故が発生していることがわかり、さらに、通電を再開してから地絡を再度検出するまでの所要時間から断線事故を検出した断線検出装置1を特定することができる。このように、上記Tとして装置ごとに異なる値を設定することにより、断線事故の発生場所を配電用変電所2に通知することができる。配電用変電所2においては、例えば、地絡検出リレー21が、断線事故を検出した断線検出装置1を特定する。地絡検出リレー21以外で特定するようにしても構わない。配電システムに設定されている断線検出装置1の台数が少ない場合には、電力供給エリアを複数ブロックに分割することなく、一斉に通電を再開するようにしても構わない(各断線検出装置1にはそれぞれ異なる強制地絡開始待ち時間Tを設定する)。 In the distribution substation 2, when a ground fault is detected, the ground fault detection relay 21 opens the circuit breaker 22 and temporarily stops the power supply, and then restarts the power supply when a certain time has elapsed. To do. When the power supply is resumed, not all areas are energized at once, but are divided into a plurality of blocks. For example, every 10 seconds, the energization resume area is sequentially expanded by one block. In this case, the above T seconds of the disconnection detecting device 1 in the same block are set to be less than 10 seconds. For example, the forced ground fault start waiting time T of the plurality of disconnection detection devices 1 in the same block is set to T = 1 sec, 1.5 sec, 2 sec, 2.5 sec,. As a result, when the distribution substation 2 detects the ground fault again after resuming energization to a certain block, it can be seen that a disconnection accident has occurred in this block, and the ground has been resumed after resuming energization. It is possible to identify the disconnection detection device 1 that has detected the disconnection accident from the time required until the fault is detected again. Thus, by setting a different value for each device as the T, it is possible to notify the distribution substation 2 of the occurrence location of the disconnection accident. In the distribution substation 2, for example, the ground fault detection relay 21 specifies the disconnection detection device 1 that detects the disconnection accident. You may make it pinpoint other than the ground fault detection relay 21. FIG. When the number of disconnection detection devices 1 set in the power distribution system is small, the power supply area may be restarted all at once without dividing the power supply area into a plurality of blocks (for each disconnection detection device 1). Set different forced ground fault start waiting times T).
 配電用変電所2における断線事故発生場所(断線事故を検出した断線検出装置1)の特定方法について、図6を用いて説明する。図6は、配電用変電所2において断線事故発生場所を特定する方法の一例を示すフローチャートである。地絡検出リレー21が断線事故発生場所を特定するものとして説明を行う。 A method for identifying the location where the disconnection accident occurs in the distribution substation 2 (disconnection detection device 1 that detects the disconnection accident) will be described with reference to FIG. FIG. 6 is a flowchart showing an example of a method for identifying the location where the disconnection accident occurs in the distribution substation 2. The description will be made assuming that the ground fault detection relay 21 identifies the location where the disconnection accident occurs.
 前提条件として、配電システムは、電力供給を再開する場合には、エリアを複数のブロックに分割し、X秒が経過するごとに通電させる範囲を1ブロックずつ広げるものとする。すなわち、電力供給を再開する場合、まず、遮断器22を投入することにより最初の1ブロックへの通電を再開する。その後、X秒が経過するごとに、1ブロックずつ通電範囲を拡大するものとする。各ブロック内の断線検出装置1の強制地絡開始待ち時間TをそれぞれT=1sec,2sec,3sec,…とする(ただし、T<X)。 As a precondition, when the power supply is resumed, the power distribution system divides the area into a plurality of blocks, and expands the energized range by one block every X seconds. That is, when resuming power supply, first, the circuit breaker 22 is turned on to resume energization of the first block. Thereafter, the energization range is expanded by one block every time X seconds elapse. Assume that the forced ground fault start waiting time T of the disconnection detecting device 1 in each block is T = 1 sec, 2 sec, 3 sec,... (Where T <X).
 配電用変電所2の地絡検出リレー21は、地絡を検出したことにより遮断器22を開放し、その後、所定時間が経過した時点で遮断器22を再投入(再閉路)し、再閉路してからの経過時間の測定を開始する(ステップS51,S52)。その後、地絡発生を監視し(ステップS53)、地絡発生を検出した場合(ステップS53:Yes)、ステップS51を実行してからの経過時間T1を算出する(ステップS54)。次に、地絡区間(地絡が発生したブロック)を特定する(ステップS55)。具体的には、T1をXで除した結果の整数部分に1を加算したものを地絡区間番号とする。例えば、X=10、T1=35の場合、地絡区間番号=4となる。この地絡区間番号は、4番目に通電が開始されたブロックを示すことになり、当該ブロック内に地絡発生場所が存在する。地絡区間の特定が終了すると、次に、地絡発生装置、すなわち、断線を検出して強制的に地絡を発生させている断線検出装置1の情報を算出する(ステップS56)。具体的には、T2をXで除した余りを地絡発生装置の情報T2とする。次に、情報T2に基づいて地絡発生装置を特定する。具体的には、1≦T2が成立するかどうかを確認し(ステップS57)、1≦T2が成立する場合(ステップS57:Yes)、T(強制地絡開始待ち時間)がT2と一致している断線検出装置1を地絡発生装置と判断する(ステップS58)。一方、1≦T2が成立しない場合(ステップS57:No)、地絡事故(断線検出装置1が強制的に地絡させたものではない事故)と判断する(ステップS59)。 The ground fault detection relay 21 of the distribution substation 2 opens the circuit breaker 22 when a ground fault is detected, and then reopens (recloses) the circuit breaker 22 when a predetermined time elapses. Then, measurement of the elapsed time is started (steps S51 and S52). Thereafter, the occurrence of ground fault is monitored (step S53), and when the occurrence of ground fault is detected (step S53: Yes), an elapsed time T1 from the execution of step S51 is calculated (step S54). Next, a ground fault section (a block in which a ground fault has occurred) is specified (step S55). Specifically, the ground fault section number is obtained by adding 1 to the integer part obtained by dividing T1 by X. For example, when X = 10 and T1 = 35, the ground fault section number = 4. This ground fault section number indicates the block in which energization has been started fourth, and a ground fault occurrence location exists in the block. When the identification of the ground fault section is completed, next, information on the ground fault generating device, that is, the disconnection detecting device 1 that detects the disconnection and forcibly generates the ground fault is calculated (step S56). Specifically, a remainder obtained by dividing T2 by X is set as information T2 of the ground fault generator. Next, a ground fault generator is specified based on the information T2. Specifically, it is confirmed whether 1 ≦ T2 is satisfied (step S57). If 1 ≦ T2 is satisfied (step S57: Yes), T (forced ground fault start waiting time) matches T2. It is determined that the disconnection detecting device 1 is a ground fault generating device (step S58). On the other hand, if 1 ≦ T2 is not satisfied (step S57: No), it is determined that there is a ground fault (an accident that is not forcibly caused by the disconnection detection device 1) (step S59).
 なお、図6においては記載を省略しているがステップS53で地絡を検出した場合には、ステップS53以降の処理と並行して遮断器22を開放する処理を実行する。 In addition, although description is abbreviate | omitted in FIG. 6, when a ground fault is detected by step S53, the process which open | releases the circuit breaker 22 is performed in parallel with the process after step S53.
 このように、本実施の形態の断線検出装置1は、相間電圧が不均一状態になるなど、断線の発生が疑われる状態が一定時間継続した場合に断線発生と判断する。これにより、断線の検出精度を向上させることができる。また、断線を検出した後(断線相を記録した後)、同じタイミングで通電が開始されるブロック内の他の断線検出装置1とは異なる値の強制地絡開始待ち時間Tが経過した時点で、断線相以外の相を強制的に地絡させることとした。これにより、断線事故の発生場所を配電用変電所2側で特定できる。 As described above, the disconnection detection device 1 according to the present embodiment determines that a disconnection has occurred when a state in which a disconnection is suspected continues for a certain period of time, for example, the interphase voltage becomes non-uniform. Thereby, the detection accuracy of disconnection can be improved. In addition, after detecting the disconnection (after recording the disconnection phase), when a forced ground fault start waiting time T having a value different from that of the other disconnection detection devices 1 in the block where energization is started at the same timing has elapsed. The phase other than the disconnection phase was forcibly grounded. Thereby, the occurrence location of the disconnection accident can be specified on the distribution substation 2 side.
実施の形態3.
 実施の形態2では、断線検出装置1が、断線を検出してから強制地絡を実施するまでの待機時間(強制地絡開始待ち時間T)を装置固有の値に設定することにより、断線事故の発生場所を配電用変電所2側で特定できるようにしたが、実施の形態2で説明した図5に代えて図7に示した動作を実行するようにした場合も同様に、断線事故の発生場所を配電用変電所2側で特定できる。図7は、実施の形態3の断線検出装置1が配電用変電所2へ断線の検出を通知する動作の一例を示すフローチャートである。図7に示したステップS21~S23は、図5に示したステップS21~S23と同じ処理である。
Embodiment 3 FIG.
In the second embodiment, the disconnection detection device 1 sets the waiting time (forced ground fault start waiting time T) from when the disconnection is detected until the forced ground fault is performed to a value unique to the device, thereby causing a disconnection accident. In the same way, when the operation shown in FIG. 7 is executed in place of FIG. 5 described in the second embodiment, the disconnection accident can be identified. The place of occurrence can be specified on the distribution substation 2 side. FIG. 7 is a flowchart illustrating an example of an operation in which the disconnection detection device 1 according to the third embodiment notifies the distribution substation 2 of detection of disconnection. Steps S21 to S23 shown in FIG. 7 are the same processes as steps S21 to S23 shown in FIG.
 本実施の形態の断線検出装置1は、断線相が記録されている場合(ステップS23:Yes)、システム内の断線検出装置1ごとに固有の周期、時間幅および回数で、断線相とは異なる相を繰り返し地絡させる(ステップS31)。すなわち、断線事故通知部12の開閉器を、システム内の他の断線検出装置1とは異なるタイミングで周期的に開閉させる。ここで、「周期」は強制地絡の発生周期を示し、「時間幅」は強制地絡の継続時間を示し、「回数」は強制地絡の繰り返し発生回数を示す。周期、時間幅および回数の少なくとも1つが他の断線検出装置1と異なっていればよい。ただし、配電用変電所2の遮断器22が開放されないタイミングで開閉器を開閉させる。例えば、周期を100msec、時間幅を40ms、回数を10回とした場合、断線検出装置1の断線検出部11は、断線事故通知部12内の開閉器のうち、断線していない相の配電線に接続されている開閉器を40msec間投入した後60msec間開放する動作を10回繰り返す。配電用変電所2の遮断器22が開放されないタイミングで開閉器を繰り返し開閉させることにより、地絡事故(地絡を伴う断線事故)と断線事故(地絡を伴わない断線事故)のどちらが発生したのかを配電用変電所2側で判別できるようになる。 When the disconnection phase is recorded (step S23: Yes), the disconnection detection device 1 of the present embodiment is different from the disconnection phase in the period, time width, and number of times unique to each disconnection detection device 1 in the system. The phase is repeatedly grounded (step S31). That is, the switch of the disconnection accident notification unit 12 is periodically opened and closed at a timing different from that of the other disconnection detection devices 1 in the system. Here, “cycle” indicates the occurrence period of forced ground fault, “time width” indicates the duration of forced ground fault, and “number of times” indicates the number of repeated occurrences of forced ground fault. It suffices that at least one of the period, the time width, and the number of times is different from that of the other disconnection detection devices 1. However, the switch is opened and closed at a timing when the circuit breaker 22 of the distribution substation 2 is not opened. For example, when the cycle is 100 msec, the time width is 40 ms, and the number of times is 10, the disconnection detection unit 11 of the disconnection detection device 1 is a distribution line of a phase that is not disconnected among the switches in the disconnection accident notification unit 12. The operation of opening the switch connected to is opened for 40 msec and then opened for 60 msec is repeated 10 times. By repeatedly opening and closing the switch at the timing when the circuit breaker 22 of the distribution substation 2 is not opened, either a ground fault (disconnecting accident with ground fault) or a disconnection accident (disconnecting accident without ground fault) occurred. Can be discriminated on the distribution substation 2 side.
 配電用変電所2における断線事故発生場所(断線事故を検出した断線検出装置1)の特定方法について、図8を用いて説明する。図8は、配電用変電所2において断線事故発生場所を特定する方法の一例を示すフローチャートである。地絡検出リレー21が断線事故発生場所を特定するものとして説明を行う。 A method for identifying the location where the disconnection accident occurs in the distribution substation 2 (disconnection detection device 1 that detects the disconnection accident) will be described with reference to FIG. FIG. 8 is a flowchart showing an example of a method for identifying the location where the disconnection accident occurs in the distribution substation 2. The description will be made assuming that the ground fault detection relay 21 identifies the location where the disconnection accident occurs.
 配電用変電所2の地絡検出リレー21は、地絡発生を検出した場合(ステップS61:Yes)、地絡の発生時刻を記録する(ステップS62)。なお、図8への記載は省略しているが、地絡検出リレー21は、地絡発生を検出してから一定時間(1秒程度)にわたって地絡状態が継続した場合、遮断器22を開放する。このステップS62では、地絡の発生時刻を記録した後、遮断器22が開放されるまでの間、地絡が解消されたかどうかを監視し、解消された場合にはその時刻(地絡解消時刻)も記録する。さらに、過去に記録した地絡の発生時刻と今回新たに記録した地絡の発生時刻を確認して周期的に地絡が発生しているかどうか判別する(ステップS63)。周期的に地絡が発生していない場合(ステップS63:No)、ステップS61に戻って動作を継続する。周期的に地絡が発生している場合(ステップS63:Yes)、過去に記録した地絡の発生時刻および解消時刻と、今回新たに記録した地絡の発生時刻および解消時刻に基づいて、地絡の発生周期、時間幅および発生回数を算出し、算出結果に基づいて地絡発生装置を特定する(ステップS64,S65)。 When the ground fault detection relay 21 of the distribution substation 2 detects the occurrence of a ground fault (step S61: Yes), it records the occurrence time of the ground fault (step S62). Although the description in FIG. 8 is omitted, the ground fault detection relay 21 opens the circuit breaker 22 when the ground fault state continues for a certain time (about 1 second) after detecting the occurrence of the ground fault. To do. In this step S62, after the occurrence time of the ground fault is recorded, it is monitored whether the ground fault has been resolved until the circuit breaker 22 is opened. ) Is also recorded. Further, the occurrence time of the ground fault recorded in the past and the occurrence time of the ground fault newly recorded this time are checked to determine whether or not the ground fault has occurred periodically (step S63). When the ground fault does not occur periodically (step S63: No), the process returns to step S61 and continues the operation. If a ground fault occurs periodically (step S63: Yes), the ground fault occurrence time and resolution time recorded in the past and the ground fault occurrence time and resolution time newly recorded this time are The occurrence cycle, time width, and number of occurrences of the fault are calculated, and the ground fault generator is specified based on the calculation result (steps S64 and S65).
 このように、本実施の形態の断線検出装置1は、断線を検出すると、システム内の他の断線検出装置1とは異なるタイミングで、強制地絡を繰り返し発生させることとした。これにより、断線事故の発生場所を配電用変電所2側で特定できるようになる。 As described above, when the disconnection detecting device 1 of the present embodiment detects the disconnection, the forced ground fault is repeatedly generated at a timing different from that of the other disconnection detecting devices 1 in the system. Thereby, the occurrence location of the disconnection accident can be specified on the distribution substation 2 side.
実施の形態4.
 実施の形態3で説明した動作、すなわち、断線検出装置1が配電用変電所2へ断線の検出を通知する動作(図7)を図9に示した動作としても構わない。図9は、実施の形態4の断線検出装置1が配電用変電所2へ断線の検出を通知する動作の一例を示すフローチャートである。図9に示したステップS21~S23は、図5に示したステップS21~S23と同じ処理、ステップS31は、図7に示したステップS31と同じ処理である。
Embodiment 4 FIG.
The operation described in the third embodiment, that is, the operation in which the disconnection detection device 1 notifies the distribution substation 2 of the detection of the disconnection (FIG. 7) may be the operation illustrated in FIG. FIG. 9 is a flowchart illustrating an example of an operation in which the disconnection detection device 1 according to the fourth embodiment notifies the distribution substation 2 of detection of disconnection. Steps S21 to S23 shown in FIG. 9 are the same processing as steps S21 to S23 shown in FIG. 5, and step S31 is the same processing as step S31 shown in FIG.
 本実施の形態の断線検出装置1は、ステップS31において、システム内の断線検出装置1ごとに固有の周期、時間幅および回数で、断線相とは異なる相を繰り返し地絡させた後、強制的に地絡させた状態を一定時間継続させてから強制地絡を終了する(ステップS41~S43)。すなわち、ステップS31を実行して断線事故の発生場所を配電用変電所2側に特定させた後、ステップS41およびS42を実行して遮断器22を開放させて電力供給を停止させる。 In step S31, the disconnection detection device 1 according to the present embodiment is forced to perform a ground fault repeatedly in a phase different from the disconnection phase with a unique period, time width, and number of times for each disconnection detection device 1 in the system. The ground fault is continued for a certain time, and then the forced ground fault is terminated (steps S41 to S43). That is, after step S31 is performed and the occurrence location of the disconnection accident is specified on the distribution substation 2 side, steps S41 and S42 are performed to open the circuit breaker 22 and stop the power supply.
 このように、本実施の形態の断線検出装置1は、断線を検出すると、システム内の他の断線検出装置1とは異なるタイミングで、強制地絡を繰り返し発生させ、その後、電力供給が停止されるまで、強制地絡状態を継続させることとした。これにより、断線事故の発生場所を配電用変電所2側で特定できるとともに、電力供給を停止して感電事故などの災害発生を防止できる。 As described above, when the disconnection detection device 1 of the present embodiment detects a disconnection, it repeatedly generates a forced ground fault at a timing different from that of other disconnection detection devices 1 in the system, and then the power supply is stopped. Until then, the forced ground fault condition was continued. As a result, the occurrence location of the disconnection accident can be specified on the distribution substation 2 side, and the power supply can be stopped to prevent a disaster such as an electric shock accident.
 以上のように、本発明にかかる断線検出装置は、配電系統において配電線の断線を検出し、変電所に通知する装置として有用である。 As described above, the disconnection detection device according to the present invention is useful as a device that detects a disconnection of a distribution line in a distribution system and notifies a substation.
 1,1a 断線検出装置、2 配電用変電所、11,11a 断線検出部、12,12a 断線事故通知部、21 地絡検出リレー、22 遮断器、23 変圧器。 1, 1a disconnection detection device, 2, distribution substation, 11, 11a disconnection detection unit, 12, 12a disconnection notification unit, 21 ground fault detection relay, 22 breaker, 23 transformer.

Claims (10)

  1.  配電系統において、
     変電所内の地絡検出リレーが検出しない配電線の断線を検出する断線検出部と、
     前記断線検出部で断線が検出された場合、断線が検出された第1の配電線とは異なる第2の配電線を地絡させて前記地絡検出リレーに事故の発生を認識させる断線事故通知部と、
     を備えることを特徴とする断線検出装置。
    In the power distribution system,
    A disconnection detector that detects disconnection of the distribution line that the ground fault detection relay in the substation does not detect;
    When a disconnection is detected by the disconnection detection unit, a disconnection accident notification that causes the ground fault detection relay to recognize the occurrence of an accident by grounding a second distribution line different from the first distribution line in which the disconnection is detected And
    A disconnection detecting device comprising:
  2.  前記断線事故通知部は、前記断線検出部で断線が検出されている状態が所定時間にわたって継続した時点で前記第2の配電線を地絡させることを特徴とする請求項1に記載の断線検出装置。 2. The disconnection detection according to claim 1, wherein the disconnection accident notifying unit causes the second distribution line to be grounded when the state in which the disconnection detection unit detects the disconnection continues for a predetermined time. apparatus.
  3.  前記所定時間の長さを、同一配電系統内の他の断線検出装置で使用されている所定時間とは異なる長さとすることを特徴とする請求項2に記載の断線検出装置。 3. The disconnection detecting device according to claim 2, wherein the length of the predetermined time is different from a predetermined time used in another disconnection detecting device in the same distribution system.
  4.  前記断線事故通知部は、前記第2の配電線を地絡させる動作において、前記第2の配電線を地絡させる第1の動作と地絡を解除する第2の動作を1サイクルとした処理を繰り返し実行することを特徴とする請求項1に記載の断線検出装置。 In the operation of causing the second distribution line to ground, the disconnection accident notifying unit performs processing in which the first operation for grounding the second distribution line and the second operation for canceling the ground fault are performed as one cycle. The disconnection detecting device according to claim 1, wherein the disconnection detecting device is repeatedly executed.
  5.  前記第1の動作の継続時間、前記1サイクルの長さ、および前記処理の繰り返し回数のうち、少なくとも1つの値を、同一配電系統内の他の断線検出装置で使用されているものとは異なる値とすることを特徴とする請求項4に記載の断線検出装置。 At least one of the duration of the first operation, the length of the one cycle, and the number of repetitions of the processing is different from that used in other disconnection detection devices in the same distribution system. It is set as a value, The disconnection detection apparatus of Claim 4 characterized by the above-mentioned.
  6.  前記断線事故通知部は、前記処理を規定回数繰り返した後、前記第2の配電線を地絡させた状態を継続させることを特徴とする請求項4に記載の断線検出装置。 The disconnection detection device according to claim 4, wherein the disconnection accident notifying unit continues the state in which the second distribution line is grounded after repeating the process a predetermined number of times.
  7.  請求項3に記載の断線検出装置が設置されている場所を判定する判定装置であって、
     地絡事故の発生場所の特定が完了していない状態で地絡事故を検出した場合、配電用変電所内の配電線上に設置された遮断器を制御して配電系統への電力供給を一旦停止させた後に電力供給を再開させ、電力供給を再開してからの経過時間に基づいて、断線事故の発生の有無、および断線事故を検出した断線検出装置を判定する、
     ことを特徴とする判定装置。
    A determination device for determining a place where the disconnection detection device according to claim 3 is installed,
    When a ground fault is detected when the location of the ground fault has not been completed, the power supply to the distribution system is temporarily stopped by controlling the circuit breaker installed on the distribution line in the distribution substation. After restarting the power supply, based on the elapsed time since restarting the power supply, the presence or absence of occurrence of a disconnection accident, and the disconnection detection device that detected the disconnection accident is determined.
    A determination apparatus characterized by that.
  8.  請求項5に記載の断線検出装置が設置されている場所を判定する判定装置であって、
     周期的な地絡が発生している状態を検知した場合に断線事故発生と判断し、1回の地絡の継続時間と、地絡の発生周期および発生回数とに基づいて、断線事故を検出した断線検出装置を判定する、
     ことを特徴とする判定装置。
    A determination device for determining a place where the disconnection detection device according to claim 5 is installed,
    When a periodic ground fault is detected, it is determined that a disconnection accident has occurred, and a disconnection accident is detected based on the duration of one ground fault, the frequency of occurrence of the ground fault, and the number of occurrences. Determine the disconnection detection device,
    A determination apparatus characterized by that.
  9.  請求項2に記載の断線検出装置と、
     地絡事故を検出した場合、配電用変電所内の配電線上に設置された遮断器を制御して配電系統への電力供給を一旦停止させた後に電力供給を再開させ、地絡事故を再度検出すると電力供給を再開してから地絡事故を再度検出するまでの経過時間に基づいて、断線事故の発生の有無を判定する判定装置と、
     を備えることを特徴とする断線検出システム。
    A disconnection detecting device according to claim 2;
    When a ground fault is detected, the circuit breaker installed on the distribution line in the distribution substation is controlled to temporarily stop the power supply to the distribution system, then restart the power supply and detect the ground fault again. A determination device that determines whether or not a disconnection accident has occurred based on the elapsed time from restarting the power supply to detecting the ground fault again.
    A disconnection detection system comprising:
  10.  請求項4に記載の断線検出装置と、
     周期的な地絡が発生している状態を検知した場合に断線事故発生と判断する判定装置と、
     を備えることを特徴とする断線検出システム。
    A disconnection detecting device according to claim 4;
    A determination device that determines that a disconnection accident has occurred when a state in which a periodic ground fault has occurred is detected;
    A disconnection detection system comprising:
PCT/JP2013/076138 2013-09-26 2013-09-26 Disconnection detection device, determination device, and disconnection detection system WO2015045075A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/076138 WO2015045075A1 (en) 2013-09-26 2013-09-26 Disconnection detection device, determination device, and disconnection detection system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/076138 WO2015045075A1 (en) 2013-09-26 2013-09-26 Disconnection detection device, determination device, and disconnection detection system

Publications (1)

Publication Number Publication Date
WO2015045075A1 true WO2015045075A1 (en) 2015-04-02

Family

ID=52742279

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/076138 WO2015045075A1 (en) 2013-09-26 2013-09-26 Disconnection detection device, determination device, and disconnection detection system

Country Status (1)

Country Link
WO (1) WO2015045075A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109991504A (en) * 2019-03-19 2019-07-09 广东电网有限责任公司 A kind of Substation secondary circuit on-off measuring instrument

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5234340A (en) * 1975-09-12 1977-03-16 Hitachi Ltd Coded grounding system for wire-breaking detection
JPH0434827U (en) * 1990-07-16 1992-03-24
JPH09163586A (en) * 1995-11-30 1997-06-20 Matsushita Electric Ind Co Ltd Ground fault locator
JP2001309552A (en) * 2000-04-24 2001-11-02 Nippon Kouatsu Electric Co Fault section separation system
WO2012128067A1 (en) * 2011-03-18 2012-09-27 ソニー株式会社 Detection device and detection method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5234340A (en) * 1975-09-12 1977-03-16 Hitachi Ltd Coded grounding system for wire-breaking detection
JPH0434827U (en) * 1990-07-16 1992-03-24
JPH09163586A (en) * 1995-11-30 1997-06-20 Matsushita Electric Ind Co Ltd Ground fault locator
JP2001309552A (en) * 2000-04-24 2001-11-02 Nippon Kouatsu Electric Co Fault section separation system
WO2012128067A1 (en) * 2011-03-18 2012-09-27 ソニー株式会社 Detection device and detection method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109991504A (en) * 2019-03-19 2019-07-09 广东电网有限责任公司 A kind of Substation secondary circuit on-off measuring instrument
CN109991504B (en) * 2019-03-19 2024-04-16 广东电网有限责任公司 Transformer substation secondary circuit on-off measuring instrument

Similar Documents

Publication Publication Date Title
RU2491690C2 (en) Automatic circuit-breaker with improved function of reclosure
CA2719587C (en) Device, system and method for automatic self-test for a ground fault interrupter
JP4653238B2 (en) Delta I ground fault protection relay system for DC traction power supply system and control method thereof
EP2991181B1 (en) Systems and methods for identifying fault location using distributed communication
JP5606651B1 (en) Power switching control device and opening control method
EP1928007A1 (en) A method and apparatus for predicting the future behavior of current paths
US20160223620A1 (en) Method for detecting a failing rectifier or rectifier source
US20230148196A1 (en) Detecting electrical arcing in household electrical wiring
JP6431656B2 (en) System and method for monitoring the health of an electrical system
WO2015045075A1 (en) Disconnection detection device, determination device, and disconnection detection system
CN109642920B (en) Method and apparatus for locating insulation faults in an operating device connected to a power supply system
JP5714367B2 (en) Field circuit insulation degradation monitoring device, insulation degradation monitoring method, and insulation degradation monitoring program
EP3748837B1 (en) Insulation degradation monitoring device and insulation degradation monitoring method
EP2439546B1 (en) A method of detecting an overcurrent in a triac
KR101690715B1 (en) Adaptive controlled ultrasonic vibration device
WO2014084980A1 (en) Prediction of electrical service interruption
CN114489290A (en) Fan control method, system, equipment and medium
KR101019462B1 (en) Method for determining by detecting inpulse originated from arc
EP1064716B1 (en) Electric motor monitoring circuit and method
KR200375233Y1 (en) Auto reset earth leakage breaker having function for protecting lightning
US11425501B2 (en) Device for electroinically connecting and disconnecting portions of an electrical line, public address system, method for detecting a failure in an electrical line
FI125428B (en) A method for protecting a power distribution network to eliminate transient type earth faults
JP5589917B2 (en) Distribution line monitoring method and apparatus
JP2004096958A (en) Thunder resistant system
JP2003287557A (en) Motor insulation-monitoring system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13894283

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13894283

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP