WO2015044286A1 - Lunettes anti-éblouissement et de vision à trois dimensions - Google Patents

Lunettes anti-éblouissement et de vision à trois dimensions Download PDF

Info

Publication number
WO2015044286A1
WO2015044286A1 PCT/EP2014/070519 EP2014070519W WO2015044286A1 WO 2015044286 A1 WO2015044286 A1 WO 2015044286A1 EP 2014070519 W EP2014070519 W EP 2014070519W WO 2015044286 A1 WO2015044286 A1 WO 2015044286A1
Authority
WO
WIPO (PCT)
Prior art keywords
glasses
screens
occultation
mode
incident light
Prior art date
Application number
PCT/EP2014/070519
Other languages
English (en)
Inventor
David Hue
Benoist Fleury
Original Assignee
Valeo Vision
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Valeo Vision filed Critical Valeo Vision
Priority to US14/916,300 priority Critical patent/US10073275B2/en
Priority to JP2016517448A priority patent/JP2016538579A/ja
Priority to CN201480053049.1A priority patent/CN105579893A/zh
Priority to KR1020167008008A priority patent/KR20160055165A/ko
Priority to EP14777057.2A priority patent/EP3049861A1/fr
Publication of WO2015044286A1 publication Critical patent/WO2015044286A1/fr

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B30/00Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images
    • G02B30/20Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes
    • G02B30/22Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the stereoscopic type
    • G02B30/24Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the stereoscopic type involving temporal multiplexing, e.g. using sequentially activated left and right shutters
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/02Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the intensity of light
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B30/00Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images
    • G02B30/20Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes
    • G02B30/22Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the stereoscopic type
    • G02B30/25Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the stereoscopic type using polarisation techniques
    • GPHYSICS
    • G02OPTICS
    • G02CSPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
    • G02C7/00Optical parts
    • G02C7/10Filters, e.g. for facilitating adaptation of the eyes to the dark; Sunglasses
    • G02C7/101Filters, e.g. for facilitating adaptation of the eyes to the dark; Sunglasses having an electro-optical light valve
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/1313Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells specially adapted for a particular application
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/30Image reproducers
    • H04N13/332Displays for viewing with the aid of special glasses or head-mounted displays [HMD]
    • H04N13/341Displays for viewing with the aid of special glasses or head-mounted displays [HMD] using temporal multiplexing

Definitions

  • Anti-glare glasses and three-dimensional vision are provided.
  • the present invention relates to anti-glare and three-dimensional vision glasses.
  • a known technology consists in alternately emitting the images intended for each eye.
  • spectacle lenses include screens that hide images that are not intended for them.
  • each eye receives a different image so that it can reconstruct a three-dimensional image.
  • the alternation of the data and the occultation is performed at frequencies sufficient to not be perceptible by the user.
  • glasses technologies reduce the incident light that is intended to pass through the glass to the user, to avoid the risk of glare, such as sunglasses.
  • CN 102,707,456 discloses a pair of spectacles capable of performing both of these functions with reversible lenses.
  • the glasses On one side the glasses are used for three-dimensional vision, and by turning them on the other side, the glasses serve as sunglasses.
  • the lenses include a polarizing filter on one side and a quarter wave plate on the other side of the glass.
  • the object of the invention is to overcome this drawback, and proposes for this purpose glasses provided with two glasses and intended to be worn by a user, said glasses each comprising a screen capable of transmitting or occulting at least partially a incident light intended to pass through the lens towards said user, the spectacles being configured so as, in a first occultation mode, to attenuate the intensity of the incident light by simultaneous occultation of the two screens, and in a second mode of occultation, to allow a three-dimensional view of data transmitted by a display device, by alternating occultation of the two screens.
  • the glasses are configured to, in the first mode of occultation, occult alternately each screen in synchronism with the alternate transmission of data for each eye, in particular at a frequency corresponding to the frequency of alternation of the emission said data,
  • simultaneous blanking of the two screens is performed at a predefined frequency, a function of a transmission coefficient of said screens,
  • said glasses are configured to adapt the transmission coefficient of the anti-glare screen according to the intensity of the incident light
  • the transmission coefficient is determined by pulse width modulation
  • the alternating occultation of the glasses is determined by modulation of pulse width, the modulation is performed at a fixed frequency with a variable duty cycle,
  • the glasses comprise means of control of the mode of occultation, in particular means of control of said cyclic ratio of each screen,
  • control means are configured to detect whether the spectacles need to be used to attenuate the intensity of the incident light, or for a three-dimensional vision
  • control means comprise a photometric sensor, configured to pick up the frequency of a pulsed optical signal
  • the glasses comprise a switch configured to control either the alternating occultation or the simultaneous concealment of said screens,
  • the screens are provided with a vertically polarized layer and a horizontally polarized layer,
  • the screens are provided with a liquid-crystal layer arranged between the two polarization layers,
  • the screens are provided with a micro-electromechanical layer.
  • FIG. 1 schematically illustrates a perspective view of a pair of anti-glare and three-dimensional vision spectacles according to the invention
  • FIG. 2 schematically illustrates the operation of the control means 7 in a mode. embodiment of the spectacles according to the invention.
  • the spectacles 1, according to the invention have here two glasses 2, two branches 3 and a frame 4 on which the lenses 2 are fixed.
  • the term glass designates object attached to the mount and through which the wearer of the glasses looks at the scene in front of him.
  • the glass 2 may be made of a mineral or organic glass material for example, but also in any other material known to those skilled in the art for this purpose.
  • the eyes of the wearer of the glasses 1 are located on a first side of the glasses 2, and the scene that he observes is located on a second side of the glasses 2.
  • the incident light arrives on the glasses coming from the second side , then crosses them by the outer face of the glasses 2, and emerges from the inner face towards the wearer of the glasses 1.
  • the glasses 2 further comprise, each, a screen 8 capable of transmitting or obscuring at least partially the incident light.
  • the glasses 1 are configured to, in a first mode of occultation, attenuate the intensity of the incident light, and in a second mode of occultation, to allow a three-dimensional vision of data emitted by a display device 1 1, such as a TV screen.
  • the attenuation of the intensity of the incident light is effected by simultaneous blanking of the two screens 8 at a predefined frequency, which generates, by mean value, a transmission coefficient of the incident light through the glasses 1 .
  • the transmission coefficient is determined, for example, by pulse width modulation.
  • the modulation is performed at a fixed frequency, preferably at least 100 Hz, with a duty cycle defining the transmission coefficient of the screen.
  • a screen 8 therefore has a light transmission coefficient that varies periodically between:
  • a cyclic ratio a is determined by the ratio between the duration t1 during which the transmission is maximum, and the duration T of the period, and thus varies from 0 to 100%:
  • the time t1 during which the transparency is maximum is elongated or shortened, compared to the time t2 during which the light does not pass.
  • the duty cycle decreases.
  • the transmission coefficient is thus dependent on the value of the duty cycle a.
  • the duty cycle is variable and chosen according to the light intensity of the incident light. The scene in front of the wearer of the glasses 1 is only visible for a fraction of time equal to the duty cycle a. The apparent brightness, through the screen 8 variable transmission, is reduced compared to the actual brightness of a factor equal to a.
  • said glasses 1 may be configured to adapt the transmission coefficient of the screen 8 according to the intensity of the incident light.
  • the glasses 1 thus make it possible to protect the user substantially equally regardless of the intensity of the incident light.
  • the glasses 1 allow a three-dimensional view of data transmitted by a display device 1 1, by alternately occulting the two screens 8.
  • the display device 1 1 alternately displays two images at a time. frequency not perceptible by the user, each image being intended for one of the two eyes of the user. Both images are configured to allow the user to form a single three-dimensional image.
  • each screen 8 pass alternately light so that each eye receives the image that is intended for it.
  • the blanking of each screen 8 is coupled to the alternating transmission of the data intended for each eye, at a frequency corresponding to the alternating frequency of the transmission of the data by the display device 11.
  • the alternating occultation of each lens 2 by the screens 8 is determined by pulse width modulation, the modulation being performed at a fixed frequency with a variable duty cycle.
  • the glasses advantageously comprise control means 7 of the occultation mode and the duty cycle of each screen 8.
  • the duty ratio is variable and preferably chosen as a function of the light intensity of the incident light for the first mode, and according to the frequency of the alternation of the data displayed by the display device 1 1 in the second mode.
  • the control means 7 are powered by a battery 6
  • the glasses 1 comprise a switch 9 configured to control either the alternating occultation or the concealment of said screens 8.
  • the switch 9 modifies the settings controlling the screens 8 to switch from an alternate occultation mode to a simultaneous occultation mode, and vice versa.
  • the screens 8 obscure the incident light at a frequency of 250Hz, in order to lower the incident light.
  • the screens 8 alternately obscure the incident light, for example at a frequency of 72 Hz, which corresponds to the display frequency of the data of certain display devices 11 in three dimensions.
  • the control means 7 are configured to detect whether the glasses 1 need to be used to attenuate the intensity of the incident light, or for a three-dimensional vision .
  • the control means 7 comprise, for example, a photometric sensor for capturing the frequency of a pulsed optical signal.
  • the control means 7 order an alternating occultation of the screens 8.
  • the control means order a simultaneous occultation of the screens 8, to reduce the brightness for the user.
  • the control means 7 may also comprise wireless link means for remotely receiving information on the mode of use to be chosen. For example, a three-dimensional TV screen sends a signal to the control means 7 to choose the three-dimensional mode.
  • the screens 8 are provided with a vertically polarized layer and a horizontally polarized layer, arranged on the lenses 2, as well as a liquid-crystal layer arranged between the two polarization layers. .
  • the polarization layers each polarize the incident light in a different direction.
  • the direction of the polarized light is modified by the liquid crystals.
  • the orientation of the liquid crystals determines the direction of polarization of the light. Thus when they are oriented in a direction that modifies the polarization in the same direction as that of the polarization layer that follows, the light passes through. On the other hand, if the direction is different, the light is not transmitted to the wearer of the glasses 1.
  • the modulation is effected by orienting the liquid crystals in the same direction as that of the next polarization layer during the time t1, to transmit the light, and then directing it in a different direction during the time t2, to block the light.
  • the screens 8 are provided with a micro-electromechanical layer of the MEMS (micro-electro-mechanical system) type, arranged on the lenses 2. This layer is composed of electrically actuatable microelectronic elements. , which block or let the incident light pass.
  • MEMS micro-electro-mechanical system
  • Microelectromechanical systems are, for example, of the type described in document US Pat. No. 7,684,105.
  • the modulation is carried out by letting the incident light pass during the time t1, and blocking it during the time t2, by actuating the layer MEMS.
  • control means 7 are represented according to an embodiment in which the glasses receive information by wireless link.
  • the control means 7 comprise a charger 13 powered by the battery 6, and a connector 12 for the case where the glasses require a connection with a power supply cable, in particular for recharging the battery 6.
  • the charger 13 supplies power to the batteries. other components of said control means 7.
  • control means 7 comprise a remote communication electronic chip 10, of the Bluetooth type, which receives information 15 for determining the mode of occultation of the glasses, or even information on the ambient brightness.
  • the chip 10 is clocked by a quartz electronic clock 1 1, and sends data on the mode and frequency of blanking screens 8 to a control unit 14. These data allow the use of the glasses, either in a mode three-dimensional vision, in a mode of attenuation of the intensity of the incident light.
  • control unit 14 controls the shading of each screen 8 so that they block the light simultaneously or alternately at a predetermined frequency corresponding to the mode of use of the glasses.
  • the glasses are used as a device for assisting the driving of a motor vehicle.
  • This application is developed by way of example, but does not limit the application of the glasses of the invention to this example.
  • the road scene in front of the vehicle is strongly lit.
  • the driver may not only be dazzled, but may not be able to distinguish details of the road scene that are important for his safety, such as signs warning of the proximity of a hazard, or state of the roadway on which it travels. It is even for night traffic, during which the driver may be dazzled by the lights of other vehicles. Glare can also be important at night, when vehicles traveling in the opposite direction are crossed with their lights on towards the driver.
  • the glasses then serve to protect the driver and / or the passengers who wear them against any form of glare or significant variation in the incident light intensity.
  • the glasses also make it possible to display information appearing in three dimensions.
  • This information is for example driving information for the driver, such as those usually displayed on the dashboard.
  • the information can be displayed in three dimensions on a "head-up" screen type HUD (for Head-Up Display in English), or on a screen of the dashboard.
  • three-dimensional TV-type screens may be present in the passenger compartment.
  • the glasses offer the possibility to these passengers to watch movies or other videos of this format.
  • the invention therefore provides in this application, to provide the driver and / or a passenger with a pair of adaptive glasses to modulate the amount of light reaching the eye in a first mode of use, and also to present him with three-dimensional information in a second mode of use.
  • a single pair of glasses is sufficient to fulfill two different functions, an anti-glare function and a three-dimensional information display function.
  • the anti-glare function corresponding to the first mode of occultation, is coupled to the lighting of the vehicle lights, to reduce the glare of vehicles traveling in the opposite direction, while maintaining a sufficient perception of the road lighting by the driver.
  • the glasses can both be used for night driving operating in this manner and for a three-dimensional viewing mode.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Health & Medical Sciences (AREA)
  • Ophthalmology & Optometry (AREA)
  • General Health & Medical Sciences (AREA)
  • Nonlinear Science (AREA)
  • Signal Processing (AREA)
  • Multimedia (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Testing, Inspecting, Measuring Of Stereoscopic Televisions And Televisions (AREA)
  • Liquid Crystal (AREA)
  • Eyeglasses (AREA)
  • Stereoscopic And Panoramic Photography (AREA)

Abstract

La présente invention concerne des lunettes (1) munies de deux verres (2) et destinées à être portées par un utilisateur, lesdits verres (2) comprenant chacun un écran (8) capable de transmettre ou d'occulter au moins partiellement une lumière incidente destinée à traverser le verre (2) vers ledit utilisateur, les lunettes (1) étant configurées pour, dans un premier mode d'occultation, atténuer l'intensité de la lumière incidente par occultation simultanée des deux écrans (8), et dans un deuxième mode d'occultation, permettre une vision en trois dimensions de données émises par un dispositif d'affichage (11), par occultation alternée des deux écrans (8).

Description

Lunettes anti-éblouissement et de vision à trois dimensions.
La présente invention concerne des lunettes anti-éblouissement et de vision à trois dimensions.
Dans le domaine des dispositifs optiques portatifs munis de technologies liées au domaine de l'information et de la communication de données, il est connu des lunettes permettant la vision de données en trois dimensions. Les images sont émises pas un dispositif d'affichage vers un utilisateur portant lesdites lunettes.
Pour obtenir une vision en trois dimensions, une technologie connue consiste à émettre alternativement les images destinées à chaque œil. Simultanément, les verres des lunettes comportent des écrans qui occultent les images qui ne lui sont pas destinées. Ainsi, chaque œil reçoit une image différente de façon à pouvoir reconstruire une image en trois dimensions. L'alternance des données et de l'occultation est effectuée à des fréquences suffisantes pour ne pas être perceptible par l'utilisateur.
Il existe aussi des lunettes à verres polarisants qui filtrent les images émises avec des longueurs d'ondes spécifiques, en les différentiant afin que chaque œil reçoive une image qui lui est destinée. Ainsi, chaque œil perçoit une image différente, alors que le dispositif d'affichage émet les images simultanément pour les deux yeux. Cependant, cette technologie requiert certains types d'écrans TV, contrairement à la technologie par alternance qui fonctionne avec des écrans ne nécessitant pas une telle complexité.
En outre, d'autres technologies de lunettes permettent d'atténuer la lumière incidente qui est destinée à traverser le verre jusqu'à l'utilisateur, afin d'éviter les risques d'éblouissement, telles des lunettes de soleil.
Pour éviter de multiplier le nombre de paires de lunettes, ainsi que d'avoir à les échanger à chaque occasion, il est avantageux d'avoir une seule paire remplissant les deux fonctions, et ainsi de pouvoir l'utiliser non seulement pour regarder des images en trois dimensions, mais aussi pour atténuer la lumière en cas d'éblouissement.
Le document CN 102 707 456 décrit une paire de lunettes capable de remplir ces deux fonctions, avec des verres réversibles. D'un côté les verres servent à la vision en trois dimensions, et en les retournant de l'autre côté, les verres servent de lunettes de soleil. A cette fin, les verres comportent un filtre polarisant sur une face et une lame quart d'onde sur l'autre face du verre.
Néanmoins, cette solution nécessite une manipulation des lunettes.
Le but de l'invention est de remédier à cet inconvénient, et propose à cette fin des lunettes munies de deux verres et destinées à être portées par un utilisateur, lesdits verres comprenant chacun un écran capable de transmettre ou d'occulter au moins partiellement une lumière incidente destinée à traverser le verre vers ledit utilisateur, les lunettes étant configurées pour, dans un premier mode d'occultation, atténuer l'intensité de la lumière incidente par occultation simultanée des deux écrans, et dans un deuxième mode d'occultation, permettre une vision en trois dimensions de données émises par un dispositif d'affichage, par occultation alternée des deux écrans.
Ainsi, il suffit de changer de mode d'occultation pour passer d'une paire de lunettes utilisables pour la vision en trois dimensions, à une paire de lunettes configurées pour atténuer la luminosité. Il n'est pas nécessaire d'effectuer des manipulations complexes sur les verres ou sur la monture.
Selon différents modes de réalisation de l'invention, qui pourront être pris ensemble ou séparément :
- les lunettes sont configurées pour, dans le premier mode d'occultation, occulter de façon alternée chaque écran en synchronisme avec l'émission alternée de données destinées à chaque œil, notamment à une fréquence correspondant à la fréquence d'alternance de l'émission desdites données,
- dans le second mode d'occultation, l'occultation simultanée des deux écrans est effectuée à une fréquence prédéfinie, fonction d'un coefficient de transmission desdits écrans,
- le coefficient de transmission est variable,
- lesdites lunettes sont configurées pour adapter le coefficient de transmission de l'écran anti-éblouissement en fonction de l'intensité de la lumière incidente,
- le coefficient de transmission est déterminé par modulation de largeur d'impulsions,
- l'occultation alternée des verres est déterminée par modulation de largeur d'impulsions, - la modulation est effectuée à fréquence fixe avec un rapport cyclique variable,
- les lunettes comprennent des moyens de commande du mode d'occultation, en particulier des moyens de commande dudit rapport cyclique de chaque écran,
- les moyens de commande sont configurés pour détecter si les lunettes nécessitent d'être utilisées pour atténuer l'intensité de la lumière incidente, ou pour une vision en trois dimensions,
- lesdits moyens de commande comprennent un capteur photométrique, configuré pour capter la fréquence d'un signal optique puisé,
- les lunettes comprennent un commutateur configuré pour commander, soit l'occultation alternée, soit l'occultation simultanée desdits écrans,
- les écrans sont munis d'une couche à polarisation verticale et d'une couche à polarisation horizontale,
- les écrans sont munis d'une couche à cristaux-liquides agencée entre les deux couches de polarisation,
- les écrans sont munis d'une couche micro-électromécanique.
L'invention sera mieux comprise à la lumière de la description suivante qui n'est donnée qu'à titre indicatif et qui n'a pas pour but de la limiter, accompagnée des dessins joints parmi lesquels :
la figure 1 illustre de façon schématique, une vue en perspective d'une paire de lunettes anti-éblouissement et de vision à trois dimensions selon l'invention, la figure 2 illustre de façon schématique, le fonctionnement des moyens de commande 7 dans un mode de réalisation des lunettes selon l'invention.
Comme illustré sur la figure 1 , les lunettes 1 , selon l'invention, ont ici deux verres 2, deux branches 3 et une monture 4 sur laquelle sont fixés les verres 2. Dans la description de l'invention, le terme verre désigne l'objet fixé à la monture et à travers lequel le porteur des lunettes regarde la scène qui est devant lui. Le verre 2 peut être fabriqué dans un matériau en verre minéral ou organique par exemple, mais aussi dans tout autre matériau connu de l'homme du métier à cette fin.
Les yeux du porteur des lunettes 1 sont situés d'un premier côté des verres 2, et la scène qu'il observe est située d'un deuxième côté des verres 2. Ainsi, la lumière incidente arrive sur les verres en venant du deuxième côté, puis les traverse par la face extérieure des verres 2, et ressort par la face intérieure vers le porteur des lunettes 1 .
Les verres 2 comportent en outre, chacun, un écran 8 capable de transmettre ou d'occulter au moins partiellement la lumière incidente. Grâce à ces écrans 8, les lunettes 1 sont configurées pour, dans un premier mode d'occultation, atténuer l'intensité de la lumière incidente, et dans un deuxième mode d'occultation, permettre une vision en trois dimensions de données émises par un dispositif d'affichage 1 1 , tel un écran TV.
Dans le premier mode, l'atténuation de l'intensité de la lumière incidente est effectuée par occultation simultanée des deux écrans 8 à une fréquence prédéfinie, qui génère, par valeur moyenne, un coefficient de transmission de la lumière incidente à travers les lunettes 1 .
Le coefficient de transmission est déterminé, par exemple, par modulation de largeur d'impulsions. La modulation est effectuée à fréquence fixe, de préférence à au moins 100 Hz, avec un rapport cyclique définissant le coefficient de transmission de l'écran.
Un écran 8 a donc un coefficient de transmission de la lumière qui varie périodiquement entre :
une valeur maximale, pour laquelle la transparence est maximale pendant un temps t1 , et
une valeur minimale, pour laquelle la transparence est minimale pendant un temps t2.
Un rapport cyclique a est déterminé par le ratio entre la durée t1 pendant laquelle la transmission est maximale, et la durée T de la période, et varie donc de 0 à 100 % :
Figure imgf000005_0001
En modifiant le rapport cyclique, le temps t1 pendant lequel la transparence est maximale est allongé ou raccourci, par rapport au temps t2 pendant lequel la lumière ne passe pas. Ainsi, en augmentant t1 , le rapport cyclique augmente, et en augmentant t2, le rapport cyclique diminue. En valeur moyenne, le coefficient de transmission est ainsi dépendant de la valeur du rapport cyclique a . Le rapport cyclique est variable et choisi en fonction de l'intensité lumineuse de la lumière incidente. La scène située devant le porteur des lunettes 1 n'est donc visible que pendant une fraction de temps égale au rapport cyclique a . La luminosité apparente, à travers l'écran 8 à transmission variable, est donc diminuée par rapport à la luminosité réelle d'un facteur égal à a .
En outre, lesdites lunettes 1 pourront être configurées pour adapter le coefficient de transmission de l'écran 8 en fonction de l'intensité de la lumière incidente. Les lunettes 1 permettent de la sorte, de protéger l'utilisateur de manière sensiblement égale quelque soit l'intensité de la lumière incidente.
Dans un deuxième mode d'occultation, les lunettes 1 permettent une vision en trois dimensions de données émises par un dispositif d'affichage 1 1 , par occultation alternée des deux écrans 8. Le dispositif d'affichage 1 1 affiche alternativement deux images à une fréquence non perceptible par l'utilisateur, chaque image étant destinée à un des deux yeux de l'utilisateur. Les deux images sont configurées pour permettre à l'utilisateur de former une seule image en trois dimensions.
Concomitamment, les écrans 8 laissent passer alternativement la lumière pour que chaque œil reçoive l'image qui lui est destinée. A cette fin, l'occultation de chaque écran 8 est couplée à l'émission alternée des données destinées à chaque œil, à une fréquence correspondant à la fréquence d'alternance de l'émission des données par le dispositif d'affichage 1 1 .
De manière semblable au premier mode, l'occultation alternée de chaque verre 2 par les écrans 8 est déterminée par modulation de largeur d'impulsions, la modulation étant effectuée à fréquence fixe avec un rapport cyclique variable.
Pour les deux modes, les lunettes comprennent avantageusement des moyens de commande 7 du mode d'occultation et du rapport cyclique de chaque écran 8. Ainsi, le rapport cyclique est variable et préférentiellement choisi en fonction de l'intensité lumineuse de la lumière incidente pour le premier mode, et en fonction de la fréquence de l'alternance des données affichées par le dispositif d'affichage 1 1 dans le second mode. Les moyens de commande 7 sont alimentés par une batterie 6 Dans un premier mode de réalisation, les lunettes 1 comprennent un commutateur 9 configuré pour commander, soit l'occultation alternée, soit l'occultation simultanée desdits écrans 8. Le commutateur 9 modifie les paramétrages de pilotage des écrans 8 pour passer d'un mode d'occultation alterné à un mode d'occultation simultané, et réciproquement. Par exemple, pour un mode d'occultation simultané, les écrans 8 occultent la lumière incidente à une fréquence de 250Hz, afin de faire baisser la lumière incidente. Dans un mode alterné, les écrans 8 occultent alternativement la lumière incidente, par exemple à une fréquence de 72 Hz, ce qui correspond à la fréquence d'affichage des données de certains dispositifs d'affichage 1 1 en trois dimensions.
Dans un deuxième mode de réalisation, qui pourra être combiné avec le précédent, les moyens de commande 7 sont configurés pour détecter si les lunettes 1 nécessitent d'être utilisées pour atténuer l'intensité de la lumière incidente, ou pour une vision en trois dimensions. Pour cela, les moyens de commande 7 comprennent, par exemple, un capteur photométrique afin de capter la fréquence d'un signal optique puisé. Ainsi, si le capteur reçoit un signal correspondant à un signal de vision en trois dimensions émis par des moyens d'affichages 1 1 , les moyens de commande 7 ordonnent une occultation alternée des écrans 8. En revanche, si le capteur reçoit une lumière incidente non puisée, ou puisé dans une gamme de fréquence différente, les moyens de commande ordonnent une occultation simultanée des écrans 8, pour atténuer la luminosité pour l'utilisateur.
Les moyens de commande 7 peuvent aussi comprendre des moyens de liaison sans fil, pour recevoir à distance des informations sur le mode d'utilisation à choisir. Par exemple, un écran TV en trois dimensions envoie un signal aux moyens de commande 7 pour choisir le mode en trois dimensions.
Dans un premier mode de réalisation, les écrans 8 sont munis d'une couche à polarisation verticale et d'une couche à polarisation horizontale, disposées sur les verres 2, ainsi qu'une couche à cristaux-liquides agencée entre les deux couches de polarisation. Les couches de polarisation polarisent chacune la lumière incidente dans une direction différente. Dans la couche à cristaux-liquides, la direction de la lumière polarisée est modifiée par les cristaux liquides. L'orientation des cristaux liquides détermine la direction de polarisation de la lumière. Ainsi lorsqu'ils sont orientés dans un sens qui modifie la polarisation dans une même direction que celle de la couche de polarisation qui suit, la lumière passe au travers. En revanche, si la direction est différente, la lumière n'est pas transmise au porteur des lunettes 1 .
La modulation est effectuée en orientant les cristaux liquides dans la même direction que celle de la couche de polarisation suivante pendant le temps t1 , pour transmettre la lumière, puis en l'orientant dans une direction différente pendant le temps t2, pour bloquer la lumière. Dans un second mode de réalisation, les écrans 8 sont munis d'une couche micro-électromécanique de type MEMS (pour micro-electro-mechanical System en anglais), disposée sur les verres 2. Cette couche est composée d'éléments microélectroniques actionnables électriquement, qui bloquent ou laissent passer la lumière incidente. Les systèmes micro électromécaniques, sont par exemple du type décrit dans le document US 7 684 105. Ici, la modulation est effectuée en laissant passer la lumière incidente pendant le temps t1 , et en la bloquant pendant le temps t2, par actionnement de la couche micro-électromécanique.
Sur la figure 2, les moyens de commande 7 sont représentés selon un mode de réalisation dans lequel les lunettes reçoivent des informations par liaison sans fil. Les moyens de commande 7 comprennent un chargeur 13 alimenté par la batterie 6, et un connecteur 12 pour le cas où les lunettes nécessiteraient un branchement avec un câble d'alimentation électrique, notamment pour le rechargement de la batterie 6. Le chargeur 13 alimente les autres composants desdits moyens de commande 7.
En outre, les moyens de commande 7 comprennent une puce électronique de communication à distance 10, de type Bluetooth, qui reçoit des informations 15 servant à déterminer le mode d'occultation des lunettes, voire des informations sur la luminosité ambiante. La puce 10 est cadencée par une horloge électronique à quartz 1 1 , et envoie des données sur le mode et la fréquence d'occultation des écrans 8 à une unité de commande 14. Ces données permettent l'utilisation des lunettes, soit dans un mode de vision en trois dimensions, soit dans un mode d'atténuation de l'intensité de la lumière incidente.
Ainsi, l'unité de commande 14 pilote l'occultation de chaque écran 8 afin qu'ils bloquent la lumière simultanément ou alternativement à une fréquence prédéfinie correspondant au mode d'utilisation des lunettes.
Dans une application spécifique, les lunettes sont utilisées comme dispositif d'aide à la conduite d'un véhicule automobile. Cette application est développée à titre d'exemple, mais ne limite pas l'application des lunettes de l'invention à cet exemple.
En effet, par temps ensoleillé, notamment en fin de journée lorsque la hauteur du soleil sur l'horizon est faible, la scène de route en avant du véhicule est fortement éclairée. Le conducteur risque donc non seulement d'être ébloui, mais peut aussi ne pas distinguer des détails de cette scène de route, qui sont importants pour sa sécurité, comme par exemple des panneaux de signalisation avertissant de la proximité d'un danger, ou l'état de la chaussée sur laquelle il circule. Il en est de même pour la circulation nocturne, pendant laquelle le conducteur peut être ébloui par les feux des autres véhicules. L'éblouissement peut également être important la nuit, lorsque des véhicules roulant en sens inverse sont croisés avec leurs feux allumés en direction du conducteur.
Les lunettes servent alors à protéger le conducteur et/ou les passagers qui les portent, contre toute forme d'éblouissement ou de variation importante de l'intensité lumineuse incidente.
Grâce à l'invention, les lunettes permettent en plus de pouvoir visualiser des informations apparaissant en trois dimensions. Ces informations sont par exemple des informations de pilotage pour le conducteur, telles que celles affichées habituellement sur le tableau de bord. Les informations peuvent être affichées en trois dimensions sur un écran « tête-haute » de type HUD (pour Head-Up Display en anglais), ou encore sur un écran du tableau de bord.
En outre, des écrans de type TV à trois dimensions peuvent être présents dans l'habitacle pour les passagers. Les lunettes offrent ainsi la possibilité à ces passagers de regarder des films ou autres vidéos de ce format.
L'invention prévoit donc dans cette application, de munir le conducteur et/ou un passager d'une paire de lunettes adaptatives pour moduler la quantité de lumière atteignant l'œil dans un premier mode d'utilisation, et de pouvoir également lui présenter des informations en trois dimensions dans un deuxième mode d'utilisation.
Ainsi, une seule paire de lunettes suffit pour remplir deux fonctions différentes, une fonction d'anti-éblouissement et une fonction de visualisation d'informations en trois dimensions.
Un autre exemple d'application des lunettes selon l'invention est envisagé pour un conducteur de véhicule en conduite de nuit, tel que décrit dans la demande de brevet FR 2 988 493, et dont le contenu est incorporé ici par référence. Dans cette demande, la fonction anti-éblouissement, correspondant au premier mode d'occultation, est couplée à l'éclairage des feux du véhicule, pour atténuer l'éblouissement des véhicules roulant en sens inverse, tout en conservant une perception suffisante de l'éclairage de la route par le conducteur. Ainsi, les lunettes peuvent à la fois être utilisées pour une conduite de nuit fonctionnant de cette manière et pour un mode de visualisation en trois dimensions.

Claims

REVENDICATIONS
1 . Lunettes (1 ) munies de deux verres (2) et destinées à être portées par un utilisateur, lesdits verres (2) comprenant chacun un écran (8) capable de transmettre ou d'occulter au moins partiellement une lumière incidente destinée à traverser le verre (2) vers ledit utilisateur, les lunettes (1 ) étant configurées pour, dans un premier mode d'occultation, atténuer l'intensité de la lumière incidente par occultation simultanée des deux écrans (8), et dans un deuxième mode d'occultation, permettre une vision en trois dimensions de données émises par un dispositif d'affichage (1 1 ), par occultation alternée des deux écrans (8).
2. Lunettes selon la revendication 1 , configurées pour, dans le premier mode d'occultation, occulter de façon alternée chaque écran (8) en synchronisme avec émission alternée de données destinées à chaque œil, à une fréquence correspondant à la fréquence d'alternance de l'émission desdites données.
3. Lunettes selon l'une quelconque des revendications 1 et 2, dans lesquelles, dans le second mode d'occultation, l'occultation simultanée des deux écrans (8) est effectuée à une fréquence prédéfinie, fonction d'un coefficient de transmission desdits écrans (8).
4. Lunettes selon la revendication 3, dans lesquelles le coefficient de transmission est variable.
5. Lunettes selon la revendication 4, dans lesquelles lesdites lunettes (1 ) sont configurées pour adapter le coefficient de transmission des écrans (8) en fonction de l'intensité de la lumière incidente.
6. Lunettes selon l'une quelconque des revendications 3 à 5, dans lesquelles le coefficient de transmission est déterminé par modulation de largeur d'impulsions.
7. Lunettes selon l'une quelconque des revendications précédentes, dans lesquelles l'occultation alternée des verres (2) est déterminée par modulation de largeur d'impulsions.
8. Lunettes selon l'une quelconque des revendications 6 et 7, dans lesquelles la modulation est effectuée à fréquence fixe avec un rapport cyclique variable.
9. Lunettes selon la revendication 8, dans lesquelles les lunettes (1 ) comprennent des moyens de commande (7) du rapport cyclique de chaque écran.
10. Lunettes selon la revendication 9, dans lesquelles les moyens de commande (7) sont configurés pour détecter si les lunettes nécessitent d'être utilisées pour atténuer l'intensité de la lumière incidente, ou pour une vision en trois dimensions.
1 1 . Lunettes selon la revendication 10, dans lesquelles lesdits moyens de commande comprennent un capteur photométrique, configuré pour capter la fréquence d'un signal optique puisé.
12. Lunettes selon l'une quelconque des revendications précédentes, comprenant un commutateur (9) configuré pour commander, soit l'occultation alternée, soit l'occultation simultanée desdits écrans (8).
13. Lunettes selon l'une quelconque des revendications précédentes, dans lesquelles les écrans (8) sont munis d'une couche à polarisation verticale et d'une couche à polarisation horizontale.
14. Lunettes selon la revendication 1 1 , dans lesquelles les écrans (8) sont munis d'une couche à cristaux-liquides agencée entre les deux couches de polarisation.
15. Lunettes selon l'une quelconque des revendications 1 à 10, dans lesquelles les écrans (8) sont munis d'une couche micro-électromécanique.
PCT/EP2014/070519 2013-09-26 2014-09-25 Lunettes anti-éblouissement et de vision à trois dimensions WO2015044286A1 (fr)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US14/916,300 US10073275B2 (en) 2013-09-26 2014-09-25 Anti-glare 3D glasses
JP2016517448A JP2016538579A (ja) 2013-09-26 2014-09-25 防眩3d眼鏡
CN201480053049.1A CN105579893A (zh) 2013-09-26 2014-09-25 防眩3d眼镜
KR1020167008008A KR20160055165A (ko) 2013-09-26 2014-09-25 눈부심 방지 3차원 안경
EP14777057.2A EP3049861A1 (fr) 2013-09-26 2014-09-25 Lunettes anti-éblouissement et de vision à trois dimensions

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1359259A FR3011096B1 (fr) 2013-09-26 2013-09-26 Lunettes anti-eblouissement et de vision a trois dimensions
FR1359259 2013-09-26

Publications (1)

Publication Number Publication Date
WO2015044286A1 true WO2015044286A1 (fr) 2015-04-02

Family

ID=49551684

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2014/070519 WO2015044286A1 (fr) 2013-09-26 2014-09-25 Lunettes anti-éblouissement et de vision à trois dimensions

Country Status (7)

Country Link
US (1) US10073275B2 (fr)
EP (1) EP3049861A1 (fr)
JP (1) JP2016538579A (fr)
KR (1) KR20160055165A (fr)
CN (1) CN105579893A (fr)
FR (1) FR3011096B1 (fr)
WO (1) WO2015044286A1 (fr)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3010941B1 (fr) * 2013-09-26 2017-01-13 Valeo Vision Dispositif et procede d'aide a la conduite
JP7058400B2 (ja) * 2019-12-30 2022-04-22 有限会社むらも 自動感応スイッチ式スマート偏光サングラス

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1992010130A1 (fr) * 1990-12-14 1992-06-25 Humphrey Engineering, Inc. Procede et appareil permettant de commander la luminosite perçue a l'aide d'un obturateur faisant varier la duree
US7684105B2 (en) 2005-02-24 2010-03-23 National Research Council Of Canada Microblinds and a method of fabrication thereof
US20100194857A1 (en) * 2009-02-03 2010-08-05 Bit Cauldron Corporation Method of stereoscopic 3d viewing using wireless or multiple protocol capable shutter glasses
WO2012115301A1 (fr) * 2011-02-21 2012-08-30 Song Young-Chul Verre de lunettes 3d et lunettes l'utilisant
CN102707456A (zh) 2012-01-18 2012-10-03 深圳市时代华影科技开发有限公司 镜片结构及兼具太阳镜功能和3d眼镜功能的两用眼镜
US20130127980A1 (en) * 2010-02-28 2013-05-23 Osterhout Group, Inc. Video display modification based on sensor input for a see-through near-to-eye display
FR2988493A1 (fr) 2012-03-26 2013-09-27 Valeo Vision Lunettes adaptatives pour conducteur ou passager de vehicule automobile

Family Cites Families (94)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1344878A (fr) 1962-02-19 1963-12-06 Procédé et dispositif destinés à supprimer l'éblouissement provoqué, notamment, par les phares de véhicules
DE2001086C3 (de) 1970-01-12 1980-11-06 Siemens Ag, 1000 Berlin U. 8000 Muenchen Vorrichtung zur blendungsfreien Fahrzeugbeleuchtung
US3961181A (en) 1975-02-18 1976-06-01 Golden Eddie R Eye-shading means for automotive vehicle operators
JPS54160255A (en) 1978-06-08 1979-12-18 Toray Industries Shield
US4286308A (en) 1979-09-04 1981-08-25 Polaroid Corporation Apparatus and method for reducing headlight glare
US4848890A (en) 1987-08-27 1989-07-18 Grumman Aerospace Corporation Visor with point sun blocking
EP0341519A3 (fr) 1988-05-11 1990-09-19 Seiko Epson Corporation Lunettes solaires électroniques
DE3836095A1 (de) 1988-10-22 1990-04-26 Bosch Gmbh Robert Vorrichtung zur blendungsfreien fuehrung von fahrzeugen im verkehr
JPH02150818A (ja) * 1988-12-02 1990-06-11 Seiko Epson Corp 液晶サングラス
IL94597A0 (en) 1990-06-01 1991-04-15 Ofek A T Technologies Ltd Anti-dazzle apparatus
ES2094803T3 (es) 1991-02-08 1997-02-01 Alberto Agostini Dispositivo antideslumbrante situado en el campo de vision del conductor de un coche o de otro vehiculo automovil.
US5486938A (en) 1991-02-19 1996-01-23 Thomson-Csf Anti-dazzle system for vehicles
FR2672850B1 (fr) 1991-02-19 1995-01-06 Thomson Csf Systeme anti-eblouissement pour vehicules.
FR2684770B1 (fr) 1991-12-05 1994-09-16 Essilor Int Monture de lunettes equipee de verres a cristaux liquides.
FR2693562A1 (fr) 1992-07-10 1994-01-14 Dynaprog Sarl Lunettes solaires à filtres électro-optiques.
CN1059631C (zh) 1993-11-02 2000-12-20 陈友苏 行车防眩照明的方法及装置
FR2722581A1 (fr) 1994-07-13 1996-01-19 Delanoe Christophe Dispositif de vision polarise, type lunettes, son utilisation, et son procede d'obtention
US5544268A (en) 1994-09-09 1996-08-06 Deacon Research Display panel with electrically-controlled waveguide-routing
US5835458A (en) 1994-09-09 1998-11-10 Gemfire Corporation Solid state optical data reader using an electric field for routing control
US5911018A (en) 1994-09-09 1999-06-08 Gemfire Corporation Low loss optical switch with inducible refractive index boundary and spaced output target
WO1996020846A1 (fr) 1995-01-04 1996-07-11 Baleani, Piergiorgio Procede et dispositif de formation de flux lumineux agissant sur l'organe de la vue d'un conducteur d'un vehicule de transport
US5671035A (en) 1995-06-07 1997-09-23 Barnes; Elwood E. Light intensity reduction apparatus and method
US5859735A (en) 1996-03-14 1999-01-12 U.S. Philips Corporation Optical element and display device provided with said optical element
WO1998008137A1 (fr) 1996-08-20 1998-02-26 Donnelly Corporation Ensemble fenetre muni d'une transmission optique regulable
US6204974B1 (en) 1996-10-08 2001-03-20 The Microoptical Corporation Compact image display system for eyeglasses or other head-borne frames
AU1179997A (en) 1996-12-17 1998-07-15 Christophe Delanoe Glasses with graded polarisation
JP3271565B2 (ja) 1997-02-24 2002-04-02 三菱電機株式会社 カラー陰極線管パネル
US6587573B1 (en) 2000-03-20 2003-07-01 Gentex Corporation System for controlling exterior vehicle lights
US6626532B1 (en) 1997-06-10 2003-09-30 Olympus Optical Co., Ltd. Vari-focal spectacles
US6313587B1 (en) 1998-01-13 2001-11-06 Fusion Lighting, Inc. High frequency inductive lamp and power oscillator
EP0945303B1 (fr) 1998-02-19 1999-10-20 Edmund Szybicki Dispositif électronique de commande de l'éclairage d'un véhicule avec obturation sélective de l'éclairage du traffic opposé pour le conducteur
FR2781289B1 (fr) 1998-07-17 2002-03-01 Jean Claude Dumas Dispositif optique a filtre electro-optique commande automatiquement en fonction de la lumiere qui l'atteint
US6424448B1 (en) 1999-07-20 2002-07-23 George Samuel Levy Antiglare optical device
DE19941125A1 (de) 1999-08-25 2001-03-08 Uwe Peter Braun Optischer Blendungsbegrenzer
US7450618B2 (en) 2001-01-30 2008-11-11 Board Of Trustees Operating Michigan State University Laser system using ultrashort laser pulses
US6624564B2 (en) 2001-05-25 2003-09-23 Chunghwa Picture Tubes, Ltd. Antistatic/antireflective coating for video display screen with adjustable light transmission
US6557995B1 (en) 2002-01-11 2003-05-06 James L. Edwards Temporary, disposable glare shield for eyeglasses
FR2846756A1 (fr) 2002-11-04 2004-05-07 Pechon Stephane Jean Martin Le Dispositif de vision nocturne destine a la conduite
JP4366944B2 (ja) 2003-01-31 2009-11-18 株式会社ニコン ヘッドマウントディスプレイ
FR2850616B1 (fr) * 2003-01-30 2006-02-17 Valeo Vision Procede d'eclairage module d'une route et projecteur de vehicule mettant en oeuvre ce procede
GB0424997D0 (en) 2004-11-12 2004-12-15 Evans Patrick A system for the reduction of unwanted light
US20060140502A1 (en) 2004-12-25 2006-06-29 Allan Tseng Active visor system for eliminating glare in field-of-vision from mobile and transient light sources and reflective surfaces
WO2006085310A1 (fr) 2005-02-10 2006-08-17 Lumus Ltd. Dispositif optique guide par un substrat specifiquement destine aux systemes optiques d’aide a la vision
US7134707B2 (en) 2005-02-10 2006-11-14 Motorola, Inc. Selective light attenuation system
US7970172B1 (en) 2006-01-24 2011-06-28 James Anthony Hendrickson Electrically controlled optical shield for eye protection against bright light
US7990603B2 (en) 2006-06-09 2011-08-02 Gentex Corporation Variable transmission window system
GB2445365A (en) 2007-01-05 2008-07-09 Michael Robert Garrard Anti-dazzle apparatus
KR101238791B1 (ko) 2007-01-31 2013-03-04 도레이 카부시키가이샤 백색 폴리에스테르 필름 및 반사시트
US7893890B2 (en) 2007-03-05 2011-02-22 The Boeing Company Electrically dimmable combiner optics for head-up display
WO2008118967A1 (fr) 2007-03-26 2008-10-02 University Of Washington Lunettes de soleil, visières de casque et lunettes de protection intelligentes à base de polymères électrochromiques
US20100161177A1 (en) 2007-08-06 2010-06-24 Yuter Seymour C Vehicle glare reducing systems
US8143563B2 (en) 2007-09-05 2012-03-27 Craig Broude Enhanced glare reduction
US20090213283A1 (en) 2008-02-27 2009-08-27 Burlingame Robert G Apparatus and method for adjustable variable transmissivity polarized eye glasses
US20110072961A1 (en) 2008-11-20 2011-03-31 GKN Aerospace Transparency Systems, Inc. Environmental seal technology for spaced transparent armor
FR2941786B1 (fr) 2009-02-03 2011-04-29 Laster Dispositif portable d'affichage tete haute et de realite augmentee
JP2010211177A (ja) * 2009-02-12 2010-09-24 Kenichi Kawagoe 液晶シャッタ眼鏡
US8441707B2 (en) 2009-06-11 2013-05-14 Switch Materials, Inc. Variable transmittance optical filter and uses thereof
TW201132526A (en) 2010-03-26 2011-10-01 Ind Tech Res Inst Glare reduction apparatus
JP2012010217A (ja) * 2010-06-28 2012-01-12 Nikon Corp 眼鏡および表示システム
US20120019891A1 (en) 2010-07-22 2012-01-26 Dewell Douglas A Window Having A Selective Light Modulation System
SG179307A1 (en) 2010-09-16 2012-04-27 Ceepro Pte Ltd Ophthalmic glasses
USD665009S1 (en) 2010-10-14 2012-08-07 Adlens Beacon, Inc. Spectacles frame
US20130286163A1 (en) * 2010-11-08 2013-10-31 X6D Limited 3d glasses
US20120126099A1 (en) 2010-11-22 2012-05-24 Gm Global Technology Operations, Inc. Method for reducing glare from light sources through windscreens
CN201903701U (zh) * 2010-12-10 2011-07-20 深圳市优特普科技有限公司 一种3d眼镜
US20120180204A1 (en) 2011-01-13 2012-07-19 Hawkins Victor J Gradient tinted shield
JP2012231296A (ja) * 2011-04-26 2012-11-22 Toshiba Corp シャッタ眼鏡装置、シャッタ眼鏡駆動装置およびシャッタ眼鏡装置の動作モード切替方法
FR2975792B1 (fr) 2011-05-25 2013-12-20 Evelyne Casbi Filtre optique adaptatif
FR2976089B1 (fr) 2011-05-31 2014-01-03 Laster Dispositif de realite augmentee.
CN102879919A (zh) * 2011-07-11 2013-01-16 浙江亿思达显示科技有限公司 太阳眼镜
CN202204988U (zh) * 2011-08-26 2012-04-25 深圳Tcl新技术有限公司 可调节光线亮度的3d眼镜
US9087471B2 (en) 2011-11-04 2015-07-21 Google Inc. Adaptive brightness control of head mounted display
US8888304B2 (en) 2012-05-10 2014-11-18 Christopher V. Beckman Optical control techniques
US9321329B2 (en) 2012-05-10 2016-04-26 Chris Beckman Glare elimination and image enhancement system improving lenses, windows and displays
US9759916B2 (en) 2012-05-10 2017-09-12 Christopher V. Beckman Mediated reality display system improving lenses, windows and screens
US9277159B2 (en) 2011-12-29 2016-03-01 Samsung Electronics Co., Ltd. Display apparatus, and remote control apparatus for controlling the same and controlling methods thereof
DE102012008913A1 (de) 2012-05-03 2012-11-29 Daimler Ag Vorrichtung und Verfahren zur gezielten Lichtabschattung von Raumbereichen innerhalb eines Fahrzeugs
KR20140011574A (ko) * 2012-07-17 2014-01-29 삼성디스플레이 주식회사 표시 장치 및 그 구동 방법
CN203133403U (zh) * 2013-04-02 2013-08-14 金杰 3d显示及遮光眼镜
FR3011091A1 (fr) 2013-09-26 2015-03-27 Valeo Vision Lunettes a affichage de donnees munies d'un ecran anti-eblouissement
FR3010964B1 (fr) 2013-09-26 2017-01-06 Valeo Vision Dispositif d'aide a la conduite, procede et programme d'ordinateur, enregistrable dans une memoire d'un terminal mobile, pour la mise en œuvre dudit dispositif
FR3010941B1 (fr) 2013-09-26 2017-01-13 Valeo Vision Dispositif et procede d'aide a la conduite
US9511650B2 (en) 2014-03-30 2016-12-06 Bob Momot Adjustable opacity control based on operator and light source position
USD717865S1 (en) 2014-04-15 2014-11-18 Tenacious Holdings, Inc. Protective eyewear
USD735799S1 (en) 2014-09-16 2015-08-04 Costa Del Mar, Inc. Eyeglasses
USD734808S1 (en) 2014-09-16 2015-07-21 Costa Del Mar, Inc. Eyeglasses
USD746362S1 (en) 2014-09-23 2015-12-29 Costa Del Mar, Inc. Eyeglasses
USD747403S1 (en) 2014-09-23 2016-01-12 Costa Del Mar, Inc. Eyeglasses
USD763944S1 (en) 2015-05-11 2016-08-16 Oakley, Inc. Eyeglass
FR3039291B1 (fr) 2015-07-23 2018-08-24 Valeo Vision Lunettes anti-eblouissement munies d'un dispositif de commutation automatique
USD769358S1 (en) 2015-08-14 2016-10-18 Costa Del Mar, Inc. Eyeglasses
USD769362S1 (en) 2015-08-14 2016-10-18 Costa Del Mar, Inc. Eyeglasses
USD769962S1 (en) 2015-08-14 2016-10-25 Costa Del Mar, Inc. Eyeglasses
USD765761S1 (en) 2015-08-26 2016-09-06 Tenacious Holdings, Inc. Protective eyewear

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1992010130A1 (fr) * 1990-12-14 1992-06-25 Humphrey Engineering, Inc. Procede et appareil permettant de commander la luminosite perçue a l'aide d'un obturateur faisant varier la duree
US7684105B2 (en) 2005-02-24 2010-03-23 National Research Council Of Canada Microblinds and a method of fabrication thereof
US20100194857A1 (en) * 2009-02-03 2010-08-05 Bit Cauldron Corporation Method of stereoscopic 3d viewing using wireless or multiple protocol capable shutter glasses
US20130127980A1 (en) * 2010-02-28 2013-05-23 Osterhout Group, Inc. Video display modification based on sensor input for a see-through near-to-eye display
WO2012115301A1 (fr) * 2011-02-21 2012-08-30 Song Young-Chul Verre de lunettes 3d et lunettes l'utilisant
CN102707456A (zh) 2012-01-18 2012-10-03 深圳市时代华影科技开发有限公司 镜片结构及兼具太阳镜功能和3d眼镜功能的两用眼镜
FR2988493A1 (fr) 2012-03-26 2013-09-27 Valeo Vision Lunettes adaptatives pour conducteur ou passager de vehicule automobile

Also Published As

Publication number Publication date
US20160209666A1 (en) 2016-07-21
JP2016538579A (ja) 2016-12-08
FR3011096B1 (fr) 2015-10-16
KR20160055165A (ko) 2016-05-17
CN105579893A (zh) 2016-05-11
EP3049861A1 (fr) 2016-08-03
US10073275B2 (en) 2018-09-11
FR3011096A1 (fr) 2015-03-27

Similar Documents

Publication Publication Date Title
EP3049855B1 (fr) Lunettes à affichage de données munies d'un écran anti-éblouissement
EP2830900B1 (fr) Dispositif d'aide à la conduite nocturne des véhicules automobiles
EP3121644A1 (fr) Lunettes anti-éblouissement munies d'un dispositif de commutation automatique
FR2988493A1 (fr) Lunettes adaptatives pour conducteur ou passager de vehicule automobile
EP3049854B1 (fr) Lunettes à affichage de données munies d'un écran anti-éblouissement
EP2830899B1 (fr) Procédé et dispositif d'aide à la conduite diurne des véhicules automobiles
WO2015044286A1 (fr) Lunettes anti-éblouissement et de vision à trois dimensions
FR2705293A1 (fr) Système d'aide à la vision dans un véhicule automobile.
FR3061968B1 (fr) Ecran adaptatif sectorise et systeme d'aide a la conduite comprenant un tel ecran adaptatif
FR2854251A1 (fr) Dispositif d'aide a la conduite
EP0599759A1 (fr) Dispositif de visualisation monté sur casque
EP3122042A1 (fr) Dispositif de visualisation différenciée muni de lunettes actives
FR3011092A1 (fr) Lunettes a affichage de donnees munies d'un ecran anti-eblouissement
FR3026852A1 (fr) Systeme de visualisation a ecran semi-transparent partage par deux observateurs

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480053049.1

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14777057

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14916300

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2014777057

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014777057

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20167008008

Country of ref document: KR

Kind code of ref document: A

Ref document number: 2016517448

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE