WO2015029637A1 - Ultrasonograph - Google Patents

Ultrasonograph Download PDF

Info

Publication number
WO2015029637A1
WO2015029637A1 PCT/JP2014/069089 JP2014069089W WO2015029637A1 WO 2015029637 A1 WO2015029637 A1 WO 2015029637A1 JP 2014069089 W JP2014069089 W JP 2014069089W WO 2015029637 A1 WO2015029637 A1 WO 2015029637A1
Authority
WO
WIPO (PCT)
Prior art keywords
probe
ultrasonic
diagnostic apparatus
ultrasonic diagnostic
case
Prior art date
Application number
PCT/JP2014/069089
Other languages
French (fr)
Japanese (ja)
Inventor
田中 宏樹
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Publication of WO2015029637A1 publication Critical patent/WO2015029637A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/44Constructional features of the ultrasonic, sonic or infrasonic diagnostic device
    • A61B8/4444Constructional features of the ultrasonic, sonic or infrasonic diagnostic device related to the probe
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/44Constructional features of the ultrasonic, sonic or infrasonic diagnostic device
    • A61B8/4483Constructional features of the ultrasonic, sonic or infrasonic diagnostic device characterised by features of the ultrasound transducer
    • A61B8/4488Constructional features of the ultrasonic, sonic or infrasonic diagnostic device characterised by features of the ultrasound transducer the transducer being a phased array
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/44Constructional features of the ultrasonic, sonic or infrasonic diagnostic device
    • A61B8/4483Constructional features of the ultrasonic, sonic or infrasonic diagnostic device characterised by features of the ultrasound transducer
    • A61B8/4494Constructional features of the ultrasonic, sonic or infrasonic diagnostic device characterised by features of the ultrasound transducer characterised by the arrangement of the transducer elements
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/54Control of the diagnostic device
    • A61B8/546Control of the diagnostic device involving monitoring or regulation of device temperature
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/88Sonar systems specially adapted for specific applications
    • G01S15/89Sonar systems specially adapted for specific applications for mapping or imaging
    • G01S15/8906Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques
    • G01S15/8909Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques using a static transducer configuration
    • G01S15/8915Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques using a static transducer configuration using a transducer array
    • G01S15/8925Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques using a static transducer configuration using a transducer array the array being a two-dimensional transducer configuration, i.e. matrix or orthogonal linear arrays
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K11/00Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/18Methods or devices for transmitting, conducting or directing sound
    • G10K11/26Sound-focusing or directing, e.g. scanning
    • G10K11/34Sound-focusing or directing, e.g. scanning using electrical steering of transducer arrays, e.g. beam steering
    • G10K11/341Circuits therefor
    • G10K11/346Circuits therefor using phase variation

Definitions

  • the present invention relates to an ultrasonic diagnostic apparatus including an ultrasonic probe and an apparatus main body.
  • the ultrasonic diagnostic apparatus is composed of an ultrasonic probe (probe) and an apparatus main body, and images an internal structure of a living body or the like using ultrasonic waves.
  • the ultrasonic probe incorporates an ultrasonic transducer (electroacoustic transducer), and transmits and receives an ultrasonic signal to the subject.
  • an ultrasonic transducer electroacoustic transducer
  • the ultrasonic vibrator for example, a piezoelectric ceramic type, a single crystal type, a piezoelectric polymer type, or a capacitance type transducer is used. These devices generate ultrasonic waves by applying a voltage, and transmit the ultrasonic waves to the outside. These devices also generate electrical signals when they receive sound waves.
  • An acoustic matching layer for efficiently transmitting acoustic energy to the front surface may be provided on the front surface side (radiation surface side) of the ultrasonic transducer.
  • a lens material for concentrating acoustic energy in a certain region may be installed on the front side (radiation surface side) of the ultrasonic transducer.
  • a back material (backing material) for preventing unnecessary acoustic reflection may be installed on the back side of the ultrasonic transducer.
  • An ultrasonic probe is usually arrayed with transducers divided into innumerable channels. At the time of imaging, an appropriate delay time is given to the transmission / reception signal of each channel, and an ultrasonic beam focused on a certain point is created.
  • FIG. 1 shows transmission beam forming in an ultrasonic probe.
  • FIG. 1 shows a state in which input signals having different delay times are applied to each channel of the one-dimensional array probe during transmission.
  • the ultrasonic probe shown in FIG. 1 includes a plurality of ultrasonic transducers 1.
  • a delay circuit in the ultrasonic probe or in the main body apparatus gives a different delay time 3 to each channel of the ultrasonic transducer 1 to form an ultrasonic beam focused on the focus point 2.
  • FIG. 2 shows reception beam forming in the ultrasonic probe.
  • FIG. 2 shows a state where echo signals are received in each channel of the one-dimensional array probe.
  • the ultrasonic probe includes an adder circuit 4 connected to a plurality of ultrasonic transducers 1. At the time of reception, the reception time of the echo signal received by each channel of the ultrasonic transducer 1 varies depending on the distance from the focus point 2.
  • a delay circuit in the ultrasonic probe or in the main body apparatus applies a delay time 3 corresponding to the propagation time difference to the reception signals of the respective channels to align the phases.
  • the addition signals 4 in the ultrasonic probe or the main unit add the respective signals having the same phase, so that the reception signal is extracted as a signal focused on one point.
  • a circuit that performs such processing is called a phasing circuit or a beam former. This circuit is called a phasing addition circuit when the addition processing is included.
  • the ultrasonic probe moves the focus point by changing the above delay time, and acquires the signal of the entire imaging region.
  • the obtained signal is displayed as an image on the display of the ultrasonic diagnostic apparatus through weighting processing, detection processing, filtering processing, and the like.
  • a matrix array in which channels are two-dimensionally arranged as shown in FIGS. 3 and 4 has been put into practical use.
  • the number of channels to be handled by the ultrasonic probe may increase to the order of several thousand channels. Therefore, the number of channels of the main body beam former is overwhelmingly insufficient with respect to the number of channels of the probe.
  • Patent Document 1 it is considered to combine a plurality of channels in the ultrasonic probe into one and form a subarray.
  • the number of signal lines connected to the main body beamformer (main beamformer) at the time of reception can be reduced.
  • This method is called channel reduction.
  • a minute delay time is added to each channel in the preceding circuit, and then a plurality of channel signals are added.
  • Circuits that implement this technique are called “micro delay adder circuits” and “micro beam formers”.
  • this method is called a “sub-beamformer” in the sense that the main circuit is called a main beamformer.
  • a voltage generation circuit that generates a voltage to be applied to the vibrator may be provided inside the probe. Further, by distributing the voltage signal from one transmission line to a plurality of channels of the ultrasonic transducer, it becomes possible to handle more channels with a limited number of main body channels. Such a circuit is called a “micro delay distribution circuit” or the like.
  • These transmission / reception sub-beamformer circuits can handle more probe channels even if the main unit has a limited number of channels. Also, like a two-dimensional matrix array, the number of channels of 1000 or more can be handled, and three-dimensional volume imaging becomes possible.
  • wireless probes that separate the probe and the main body and exchange information between the probe and the main body wirelessly are being put into practical use.
  • the wireless probe In order for the wireless probe to communicate with the main body, it is necessary to mount an electronic circuit inside the probe.
  • an ultrasonic probe is often equipped with some electronic circuit.
  • a circuit such as a low-noise amplifier may be mounted for the purpose of sensitivity amplification or the like, not limited to a matrix array or a wireless probe.
  • the waveform, frequency, repetition period, and the like of the ultrasonic waves generated from the ultrasonic probe vary depending on the measurement purpose, and various transmitted sound waves are generated.
  • Patent Document 2 a structure is used in which a refrigerant is circulated between a device main body and a probe using a pump, heat generated by the probe is transported to the main device side, and heat is radiated by a cooling fan installed in the main device. adopt.
  • a refrigerant is circulated between a device main body and a probe using a pump, heat generated by the probe is transported to the main device side, and heat is radiated by a cooling fan installed in the main device.
  • disadvantages and risks such as an increase in weight due to the use of liquid as the refrigerant, an increase in cable diameter due to the built-in circulation tube, and liquid leakage.
  • it since it is premised on heat transport to the main unit, it cannot be applied to a wireless probe.
  • a heat pipe is used to efficiently transport the heat generated in the probe to the cable side.
  • a structure is adopted in which a heat pipe is wound around a heat source and the other end of the heat pipe is impregnated with a mold resin at a cable connection point.
  • the mold resin has a low heat transfer rate, and sufficient heat dissipation performance cannot be obtained.
  • liquids such as water and chemicals may be applied to the ultrasonic probe for the purpose of disinfection.
  • a jelly for efficiently transmitting sound to a living body may be applied to the ultrasonic probe.
  • the probe In order to operate the probe electrically without malfunction under such use conditions, the probe usually has a sealed structure. Therefore, it is difficult to provide a structure in which heat is released to the outside using a fan or a fluid as an open system with a hole in the housing.
  • Patent Document 4 the air flow is created inside the probe and the heat dissipation capacity is increased by the convection effect.
  • the probe since the probe has a hole, the inside of the probe is opened to the outside. ing. For this reason, it cannot be applied to a sealed probe.
  • An object of the present invention is to efficiently transport heat generated inside an ultrasonic probe to the outer surface of the probe to dissipate heat.
  • the present invention provides an outside of an ultrasonic probe so that heat can be efficiently transferred from a heat source inside the ultrasonic probe having a sealed structure to the surface of the ultrasonic probe. Or an airflow generator is arranged inside.
  • the convection effect on the surface of the ultrasonic probe is enhanced, and the heat dissipation and cooling performance of the ultrasonic probe is improved.
  • the conventional method it is possible to improve the performance of a circuit mounted inside the probe, which is limited due to heat generated inside the probe, and to increase the transmission energy of ultrasonic waves.
  • improvement of ultrasonic image performance, improvement of accuracy of various measurement values, and longer operation time are realized.
  • FIG. 3 is a diagram illustrating a structure of an ultrasound probe according to the first embodiment (a perspective view seen from the upper surface side).
  • positioned four airflow generators around a probe (sectional drawing seen from the back side).
  • positioned both the inlet port and discharge port of an airflow generator on the back side of a probe (perspective view seen from the upper surface side).
  • the figure explaining the structure which forms the flow path of the air by an airflow generator cyclically
  • FIG. 1 The figure which shows the flow path formed in the outer surface of a probe case by an airflow generator (sectional drawing seen from the side surface).
  • the figure which shows the structure which provides a duct inside a probe and circulates an airflow (perspective view seen from the upper surface side).
  • the figure which shows the structure which provides a duct inside a probe and circulates an airflow (sectional drawing seen from the back side).
  • FIG. 6 is a diagram showing a structure of an ultrasonic probe according to a second embodiment (a perspective view seen from the upper surface side).
  • FIG. 6 is a diagram (a perspective view seen from the upper surface side) showing a structure in which a thermal conversion element is installed inside an ultrasonic probe according to a second embodiment.
  • FIG. 5 shows an apparatus configuration of a typical ultrasonic diagnostic apparatus, which includes an ultrasonic probe and an apparatus main body.
  • the ultrasonic diagnostic apparatus includes an ultrasonic probe 100, a transmission / reception changeover switch 40, a transmission system and reception system circuit 400 (transmission amplifier 43, reception amplifier 44, DC power supply 45), a voltage limiter 41, and a power supply 42.
  • 52 a display unit 53, and a user interface 54.
  • the DC power supply 45 does not necessarily have to be provided when an ultrasonic probe that does not require a DC voltage is connected. Note that whether each part shown in FIG. 5 is mounted on the ultrasonic probe or the apparatus main body differs depending on the product.
  • the ultrasonic probe 100 shown in FIG. 5 corresponds to the ultrasonic transducer 1 having a plurality of channels shown in FIGS. Individual channels of the ultrasonic probe 100 are switched to a transmission system circuit and a reception system circuit via a transmission / reception changeover switch 40.
  • the ultrasonic probe 100 operates as an array for forming an ultrasonic beam by a transmission amplifier 43 and a reception amplifier 44 driven by a power source 42, and is used for transmission / reception of ultrasonic waves.
  • the ultrasonic probe 100 requires a bias power source such as a CMUT (Capacitive Micro-machined Ultrasonic Transducer), the ultrasonic probe 100 is connected to the DC power source 45.
  • CMUT Capacitive Micro-machined Ultrasonic Transducer
  • the plurality of channels of the ultrasonic probe 100 are connected to the transmission beam former 48 and the reception beam former 49 of the ultrasonic imaging apparatus.
  • the transmission / reception signal is controlled by the control unit 50 in accordance with an operation by the user interface 54.
  • the transmission signal is controlled by the control unit 50, and the waveform, amplitude, and delay time are set for each channel. Further, the control unit 50 may perform control to weight the amplitude.
  • the transmission signal is transmitted to the ultrasonic probe 100 via the transmission beam former 48, the D / A converter 46, and the transmission amplifier 43.
  • the voltage whose waveform is formed by the control of the control unit 50 is input to the transmission amplifier 43, and the voltage is amplified by the transmission amplifier 43 and output.
  • a plurality of independent drive voltage signals for generating ultrasonic waves are input to the plurality of channels of the ultrasonic probe 100.
  • the voltage limiter 41 is provided so as not to apply an excessive voltage to the ultrasonic probe 100 or for the purpose of transmission waveform control.
  • the ultrasonic probe 100 When the ultrasonic probe 100 receives an ultrasonic signal, the received signals in a plurality of channels are subjected to phasing (delay) addition processing.
  • the reception signal is transmitted to the signal processing unit (image processing unit) 51 after passing through the reception amplifier 44, the A / D converter 47, and the reception beam former 49.
  • the signal processing unit 51 executes processing according to functions such as B-mode tomographic image processing, blood flow color mode, or Doppler, and converts the received signal into a video signal. Thereafter, the video signal is transmitted to the display unit 53 via the scan converter 52, and an image and a numerical value are displayed on the display unit 53.
  • the reception amplifier 44 is configured by an LNA (Low Noise Amplifier), a variable gain amplifier, or the like.
  • a circuit when a circuit is mounted inside the probe, some of the components described above are mounted. Alternatively, a sub-array receiving circuit and a sub-array transmitting circuit for reducing signals inside the probe are mounted.
  • a plurality of ultrasonic transducers 1 are combined to form a subarray 5.
  • the ultrasonic signal from the ultrasonic transducer 1 is separated into a transmission signal and a reception signal by the transmission / reception separating circuit 7.
  • the signal passes through an LNA (or buffer amplifier) 8 and passes through a variable gain amplifier (VGA: Variable Gain Amplifier) 9.
  • VGA Variable Gain Amplifier
  • signals from a plurality of elements are added by the adding circuit 11 via the minute delay line 10.
  • the signal is amplified by the buffer amplifier 12 as needed and sent to the main beam former of the main unit.
  • the LNA 8 and the variable gain amplifier 9 may be mounted as necessary and are not necessarily essential.
  • FIG. 7 shows a structural example of the ultrasonic probe 100 according to the present embodiment.
  • the left side of the figure is the acoustic emission and reception surface. In the following description, the left side of the figure is also referred to as the front surface or the front surface side of the ultrasound probe 100.
  • an acoustic lens 20, an acoustic matching layer 21, an ultrasonic transducer 22, an interposer 23, an in-probe circuit (integrated circuit IC) 24, A back material (backing material) 25 is disposed.
  • the interposer 23 may not be used, or the probe-mounted circuit 24 may exist at a different position.
  • heat sources such as the ultrasonic transducer 22 and the probe-mounted circuit 24 are arranged on the front side of the ultrasonic probe 100.
  • the entire ultrasonic probe 100 is covered with a cylindrical probe case 26.
  • the probe case 26 here corresponds to the housing of the ultrasonic probe 100 described above.
  • a heat conductive material 27 is disposed on the inner peripheral surface of the probe case 26.
  • the heat conducting material 27 is arranged to transmit heat generated by the heat source to the entire casing and the rear side of the ultrasonic probe with high efficiency. It is desirable that the heat conducting material 27 has a contact area as large as possible with the probe case 26 from the viewpoint of heat dissipation to the outside of the probe.
  • the probe case 26 seals the entire probe together with the probe cable boot 35 described later. In the case of a wireless probe, the entire probe is sealed only by the probe case 26.
  • An opening is formed in the rear surface (rear surface) of the ultrasonic probe 100, and one end of the signal line cable 36 is connected to various electric and electronic devices inside the probe through the opening.
  • a wireless communication device (interface) in the probe case 26 and various electric / electronic devices in the probe are connected.
  • the probe cable boot 35 is in close contact with the outer surface of the cable 36 and the rear opening of the probe case 26 to seal the inside of the probe. Further, the probe case 26 and the probe cable boot 35 are in close contact with each other to form a sealed structure. Thereby, the penetration
  • a heat source such as the ultrasonic transducer 22 or the probe internal circuit 24 is present on the relatively front side (biological contact surface side) of the probe
  • the temperature rise on the biological side is increased.
  • a high-efficiency heat transport material 28 such as metal, carbon graphite, or heat pipe is also arranged inside the probe.
  • the high-efficiency heat transport material 28 is desirably connected from the rear material (backing material) 25 on the front side to the heat sink 31 on the rear side.
  • various electric / electronic devices (elements) 30 may be installed on the electric / electronic board 29.
  • the electric / electronic board 29 includes metal wiring, it has a relatively high thermal conductivity. That is, the electrical / electronic board 29 also has an effect of transporting or diffusing heat from a heat source to the surroundings.
  • an air flow generator 34 composed of a fan, a blower or the like is installed on the outer surface of the probe.
  • the thick lines in the figure indicate the outer surfaces of the probe case 26 and the probe cable boot 35.
  • a cylindrical guide cover 32 is installed outside the airflow generator 34. Since the guide cover 32 has openings before and after the probe, the outside air flows from the front side to the rear side along the surface of the probe case 26 as indicated by arrows in FIG. Normally, the outside air is lower than the temperature due to the heat generated by the probe. For this reason, the convection effect is enhanced by the flow of air by the airflow generator 34 on the probe surface, and the heat dissipation performance to the outside air is improved.
  • the temperature of the heat sink may become very high depending on the amount of heat energy of the heat source and the heat transfer and heat transport capability inside the probe.
  • the guide cover 32 is installed so as to cover the entire outside of the heat sink 31 so that the user does not directly touch the high temperature part. Further, by changing the airflow direction from the front side to the back side (cable side) as shown in FIG. 7, it is possible to prevent the heated air from directly hitting the subject and the examiner and causing discomfort.
  • the guide cover 32 is provided on the cable side so as not to interfere with the region where the inspector holds the probe. In this embodiment, since it is not necessary to transport heat to the main unit, it can be applied to a wireless probe or the like.
  • FIG. 8A is a perspective view of the guide cover 32 and the airflow generator 34 of FIG. 7 as seen from the upper side of FIG. 8B is a perspective view seen from the back side of FIG. 7 (right side of FIG. 7).
  • one airflow generator 34 is arranged on each of the upper and lower sides of the probe.
  • FIGS. 7 and 8B two air flow generators 34 are arranged on the probe.
  • the number of air flow generators 34 may be selected according to the heat radiation performance, and the number of air flow generators 34 may be any number. But you can.
  • the position where the airflow generator 34 is installed is not limited to the position shown in FIG. What is necessary is just to install in the area
  • FIG. 9 shows an example in which four air flow generators 34 are arranged on the outer surface of the probe.
  • the guide cover 32 that covers the region of the airflow generator 34 and the heat sink 31 does not cover the probe cable boot 35, but as shown in FIG.
  • the hood 37 that extends the opening of the guide cover 32 to the area 35 or the cable 36 may be extended.
  • FIG. 11 shows a configuration in which both the airflow inlet and exhaust ports formed in the guide cover 32 are installed on the cable side (rear side). In this case, the front side of the guide cover 32 is closed. Further, as shown in FIG. 11, a path through which air flows is formed inside the guide cover 32. By adopting the structure as shown in FIG. 11, it is possible to prevent the airflow created by the intake air from hitting the examiner or the subject. Although an example is shown in FIG. 11, the structure of the guide cover 32 and the position and number of the airflow generators 34 can be arbitrarily changed based on the same concept.
  • FIG. 12 shows an example in which the airflow path is changed.
  • the air taken in from the rear surface side turns forward after flowing forward along the side surface of the probe, and flows out from the rear surface side.
  • the guide cover 32 is installed so that the air taken in from the vertical direction with respect to the side surface of the probe goes around along the cylindrical side surface and flows out in the vertical direction again with respect to the side surface. The With this configuration, the airflow flows along the entire side surface area in contact with the heat sink 31, and heat can be radiated more efficiently.
  • two fans or blowers are installed, but the number and position may be changed according to the application and heat dissipation performance.
  • FIG. 13 and 14 show a structure in which the rear intake / rear exhaust structure shown in FIG. 11 is extended to the front side of the probe.
  • FIG. 13 shows a structure as seen from a certain surface of the probe surface.
  • FIG. 14 shows a structure in which the same configuration is arranged on the upper and lower surfaces of the probe.
  • FIG. 13 is an example in which the front end portion of the structure shown in FIG. 11 (the guide cover 32 having both the intake port and the exhaust port on the rear side) is extended to the front of the probe.
  • FIG. 14 shows an example in which the front end portion of the structure shown in FIG. 7 (the guide cover 32 having the intake port on the front side and the exhaust port on the rear side) is extended to the front of the probe.
  • this structure means that the guide cover 32 is installed up to an area held by the inspector by hand.
  • the probe case 26 and the guide cover 32 have a double structure, it is possible to prevent the entire structure from being changed.
  • the inspector can hold the probe as in the conventional case.
  • FIG. 15 is an example in which the intake port is provided on the front side or the side surface when the guide cover 32 covers most of the side surface of the probe case 26 as shown in FIG. In this case, the air flow is one-way from the front surface to the rear surface. If the intake port is installed so as to exclude the region held by the examiner, the same effect as in FIG. 14 can be obtained. An infinite number of intake ports may be provided instead of one.
  • FIG. 16 shows an example in which the region of the heat sink 31 to be cooled by the airflow is changed.
  • FIG. 7 an airflow flowing along the side surface from the front surface to the rear surface of the probe is generated, but in the example of FIG. 16, the inside of the probe is sealed by the partition wall 60.
  • the partition wall 60 is disposed in contact with the heat sink 31.
  • the air flow generator 34 is disposed on the surface of the partition wall 60.
  • the airflow generator 34 sucks air from the intake port 70 provided on one side surface of the probe and flows it along the surface of the partition wall 60, and then from the exhaust port provided on the side surface opposite to the intake port 70. Drain behind the probe. In this case, the air can efficiently remove heat from the partition wall 60 in contact with the heat sink 31.
  • the number and position of the air flow path and the intake port are arbitrary.
  • FIG. 17 and 18 show a case where a path through which airflow passes is provided inside the probe.
  • a U-shaped duct 80 for flowing air sucked from the air inlet 70 of the guide cover 32 is inserted into the probe.
  • the air flowing in from the intake port 82 of the duct 80 is discharged by the airflow generator 34 from the exhaust port 81 on the opposite side of the duct 80.
  • the duct 80 is desirably installed so as to be in contact with the heat source.
  • the duct 80 is disposed at a position closer to the heat source than in the above-described embodiment. Therefore, the internal heat can be taken away more effectively.
  • the airflow generator 34 may be directly attached to the exhaust port 81, or may be installed inside the duct 80 if a sufficient space can be secured.
  • FIG. 19 illustrates a configuration example of the ultrasonic transducer according to the second embodiment.
  • the air flow generator 34 is installed outside the sealed probe.
  • the airflow generator 34 is arranged inside a sealed probe.
  • the heat source is an electric / electronic circuit mounted in the ultrasonic transducer 22 and the probe. Such a heat source exists locally.
  • measures are taken to efficiently transfer heat to the probe case 26 using the high-efficiency heat transport material 28.
  • the size of the probe is limited to a certain size, so there is a limit to the area that can be used for heat propagation. In this case, the heat dissipation capability is determined from the limit of the heat conduction performance.
  • the air flow generator 34 is installed inside the probe, and two rectifying plates 38 are installed to form an air circulation path.
  • the airflow generator 34 is disposed between the two rectifying plates 38.
  • the air sent forward flows through the inside of the probe again through the gap formed at the front end portion of the current plate 38. That is, in the case of the present embodiment, a circulating air current can be generated inside the probe.
  • the heat from the position close to the heat source is taken away by the convection effect of the air, and the circulated heat is used to convection with the entire case where the temperature is relatively low.
  • the inside of the transducer can be soaked with high efficiency. By soaking, it becomes possible to suppress a local temperature rise and to obtain a heat dissipation effect over a wider area.
  • FIG. 20 shows an example in which a heat conversion device 39 such as a Peltier element is installed on the back surface side (rear surface side) of the back material 25 serving as a heat sink. Since the heat conversion device 39 is arranged on the surface (boundary surface) in contact with the air circulation path, the heat of the heat source can be more efficiently distributed to the entire probe as compared with FIG.
  • the present invention is not limited to the configuration of the embodiment described above, and includes various modifications. For example, it can be applied to a wireless ultrasonic probe. Moreover, in order to explain this invention in an easy-to-understand manner, the above-described embodiments are described in detail for some of the embodiments, and it is not always necessary to have all the configurations described. Further, a part of a certain embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of a certain embodiment. It is also possible to add other configurations to the configuration of each embodiment, replace a partial configuration of each embodiment with another configuration, or delete a partial configuration of each embodiment.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Medical Informatics (AREA)
  • Biophysics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Pathology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Physics & Mathematics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Gynecology & Obstetrics (AREA)
  • Ultra Sonic Daignosis Equipment (AREA)
  • Transducers For Ultrasonic Waves (AREA)

Abstract

In order to efficiently transfer the heat generated inside of an ultrasound probe to the outer surface of the probe and to dissipate said heat, an airflow generator is arranged outside or inside the ultrasound probe so as to allow heat to move efficiently from the heat source inside of the sealed-structure ultrasound probe to the surface of the ultrasound probe.

Description

超音波診断装置Ultrasonic diagnostic equipment
 本発明は、超音波探触子及び装置本体で構成される超音波診断装置に関する。 The present invention relates to an ultrasonic diagnostic apparatus including an ultrasonic probe and an apparatus main body.
 超音波診断装置は、超音波探触子(プローブ)と装置本体から構成され、超音波を用いて生体等の内部構造を画像化する。超音波探触子には、超音波振動子(電気音響変換素子)が内蔵されており、被検体に対する超音波信号を送受信する。超音波振動子には、例えば圧電セラミック型、単結晶型、圧電ポリマー型、静電容量型トランスデューサが用いられる。これらのデバイスは、電圧を印加することにより超音波を発生し、その超音波を外部に送信する。また、これらのデバイスは、音波を受信すると電気信号を生成する。 The ultrasonic diagnostic apparatus is composed of an ultrasonic probe (probe) and an apparatus main body, and images an internal structure of a living body or the like using ultrasonic waves. The ultrasonic probe incorporates an ultrasonic transducer (electroacoustic transducer), and transmits and receives an ultrasonic signal to the subject. As the ultrasonic vibrator, for example, a piezoelectric ceramic type, a single crystal type, a piezoelectric polymer type, or a capacitance type transducer is used. These devices generate ultrasonic waves by applying a voltage, and transmit the ultrasonic waves to the outside. These devices also generate electrical signals when they receive sound waves.
 超音波振動子の前面側(放射面側)には、音響エネルギーを効率的に前面に伝達させるための音響整合層が設置されていることがある。また、超音波振動子の前面側(放射面側)には、ある一定領域に音響エネルギーを集中させるためのレンズ材が設置されることもある。また、超音波振動子の背面側には、不要な音響反射を防ぐための背面材(バッキング材)が設置されることがある。 An acoustic matching layer for efficiently transmitting acoustic energy to the front surface may be provided on the front surface side (radiation surface side) of the ultrasonic transducer. In addition, a lens material for concentrating acoustic energy in a certain region may be installed on the front side (radiation surface side) of the ultrasonic transducer. In addition, a back material (backing material) for preventing unnecessary acoustic reflection may be installed on the back side of the ultrasonic transducer.
 超音波探触子は、通常、振動子が無数のチャンネルに区切られており、アレイ化されている。撮像時には、これらの各チャンネルの送受信号に適宜遅延時間を与え、ある点にフォーカスされた超音波ビームを作り出す。図1は、超音波探触子における送信ビームフォーミングを示す。図1では、送信時において各々異なる遅延時間を付与した入力信号を一次元アレイ探触子の各チャンネルに印加している様子が示されている。図1の超音波探触子は、複数の超音波振動子1を備える。超音波探触子内もしくは本体装置内の遅延回路が、超音波振動子1の各チャンネルに異なる遅延時間3を付与することにより、フォーカス点2に集束した超音波ビームを形成する。 An ultrasonic probe is usually arrayed with transducers divided into innumerable channels. At the time of imaging, an appropriate delay time is given to the transmission / reception signal of each channel, and an ultrasonic beam focused on a certain point is created. FIG. 1 shows transmission beam forming in an ultrasonic probe. FIG. 1 shows a state in which input signals having different delay times are applied to each channel of the one-dimensional array probe during transmission. The ultrasonic probe shown in FIG. 1 includes a plurality of ultrasonic transducers 1. A delay circuit in the ultrasonic probe or in the main body apparatus gives a different delay time 3 to each channel of the ultrasonic transducer 1 to form an ultrasonic beam focused on the focus point 2.
 図2は、超音波探触子における受信ビームフォーミングを示す。図2では、一次元アレイ探触子の各チャンネルにおいてエコー信号を受信している様子が示されている。超音波探触子は、複数の超音波振動子1に接続された加算回路4を備える。受信時において、超音波振動子1の各チャンネルで受信するエコー信号は、フォーカス点2からの距離によって受信時間が異なる。超音波探触子内もしくは本体装置内の遅延回路が、各チャンネルの受信信号に、伝搬時間差に応じた遅延時間3を与えて位相を揃える。位相を揃えた各々の信号を、超音波探触子内もしくは本体装置内の加算回路4が加算することにより、受信信号は1点にフォーカスされた信号として取り出される。このような処理を行う回路を整相回路あるいはビームフォーマなどと呼ぶ。この回路は、加算処理まで含めた場合、整相加算回路と呼ばれる。 FIG. 2 shows reception beam forming in the ultrasonic probe. FIG. 2 shows a state where echo signals are received in each channel of the one-dimensional array probe. The ultrasonic probe includes an adder circuit 4 connected to a plurality of ultrasonic transducers 1. At the time of reception, the reception time of the echo signal received by each channel of the ultrasonic transducer 1 varies depending on the distance from the focus point 2. A delay circuit in the ultrasonic probe or in the main body apparatus applies a delay time 3 corresponding to the propagation time difference to the reception signals of the respective channels to align the phases. The addition signals 4 in the ultrasonic probe or the main unit add the respective signals having the same phase, so that the reception signal is extracted as a signal focused on one point. A circuit that performs such processing is called a phasing circuit or a beam former. This circuit is called a phasing addition circuit when the addition processing is included.
 超音波探触子は、上記の遅延時間を変えることでフォーカス点を移動させ、撮像領域全体の信号を取得する。得られた信号は、重み付け処理、検波処理、フィルター処理等を経て、超音波診断装置のディスプレイ上に画像として表示される。また、超音波探触子では、図3および図4に示すようにチャンネルを2次元的に配列したマトリクスアレイが実用化されている。マトリクスアレイでは、超音波探触子で扱うべきチャンネル数が数千チャンネルオーダと増加する場合がある。従って、探触子のチャンネル数に対して、本体ビームフォーマのチャンネル数が圧倒的に不足するという事態となる。 The ultrasonic probe moves the focus point by changing the above delay time, and acquires the signal of the entire imaging region. The obtained signal is displayed as an image on the display of the ultrasonic diagnostic apparatus through weighting processing, detection processing, filtering processing, and the like. In the ultrasonic probe, a matrix array in which channels are two-dimensionally arranged as shown in FIGS. 3 and 4 has been put into practical use. In the matrix array, the number of channels to be handled by the ultrasonic probe may increase to the order of several thousand channels. Therefore, the number of channels of the main body beam former is overwhelmingly insufficient with respect to the number of channels of the probe.
 そこで、超音波探触子内の複数のチャンネルを一つにまとめ、サブアレイ化することが考えられている(特許文献1)。サブアレイ化により、受信時における本体ビームフォーマ(メインビームフォーマ)へ接続する信号線の本数を減らすことが可能となる。本手法は、チャンネルリダクションと呼ばれる。本手法では、メインビームフォーマでの主遅延時間とは別に、前段回路で各チャンネルに微小な遅延時間を加えた後、複数のチャンネル信号を加算する。本手法を実現する回路は、「微小遅延加算回路」や「マイクロビームフォーマ」と呼ばれる。また、本手法は、本体回路をメインビームフォーマと呼ぶのに対する意味で、「サブビームフォーマ」などと呼ばれる。 Therefore, it is considered to combine a plurality of channels in the ultrasonic probe into one and form a subarray (Patent Document 1). By subarraying, the number of signal lines connected to the main body beamformer (main beamformer) at the time of reception can be reduced. This method is called channel reduction. In this method, apart from the main delay time in the main beamformer, a minute delay time is added to each channel in the preceding circuit, and then a plurality of channel signals are added. Circuits that implement this technique are called “micro delay adder circuits” and “micro beam formers”. In addition, this method is called a “sub-beamformer” in the sense that the main circuit is called a main beamformer.
 一方、本手法の送信用回路では、振動子に印加する電圧を発生する電圧発生回路が探触子の内部に設けられることがある。また、一本の送信線から超音波振動子の複数のチャンネルに電圧信号を分配することにより、限られた本体チャンネル数でより多くのチャンネルを取り扱うことが可能になる。このような回路を「微小遅延分配回路」などと呼ぶ。 On the other hand, in the transmission circuit of this method, a voltage generation circuit that generates a voltage to be applied to the vibrator may be provided inside the probe. Further, by distributing the voltage signal from one transmission line to a plurality of channels of the ultrasonic transducer, it becomes possible to handle more channels with a limited number of main body channels. Such a circuit is called a “micro delay distribution circuit” or the like.
 これらの送受信用のサブビームフォーマ回路によって、本体装置が限られたチャンネル数であっても、より多くの探触子チャンネルを扱えるようになる。また、2次元マトリクスアレイのように、1000個以上のチャンネル数を取り扱えるようになり、3次元ボリューム撮像が可能になる。 These transmission / reception sub-beamformer circuits can handle more probe channels even if the main unit has a limited number of channels. Also, like a two-dimensional matrix array, the number of channels of 1000 or more can be handled, and three-dimensional volume imaging becomes possible.
 さらに最近では、探触子と本体を分離し、探触子と本体の情報を無線でやり取りするワイヤレス型探触子が実用化されつつある。ワイヤレス型探触子も本体と通信を行うために電子回路を探触子内部に搭載する必要がある。このように、超音波探触子には、何らかの電子回路が搭載されることが多くなっている。マトリクスアレイやワイヤレス型探触子に限らず、感度増幅等の目的で低ノイズ増幅器等の回路が搭載される場合もある。また、超音波探触子から発生させる超音波の波形や周波数、繰り返し周期などは測定目的に応じて変わり、様々な送信音波が生成される。 More recently, wireless probes that separate the probe and the main body and exchange information between the probe and the main body wirelessly are being put into practical use. In order for the wireless probe to communicate with the main body, it is necessary to mount an electronic circuit inside the probe. As described above, an ultrasonic probe is often equipped with some electronic circuit. A circuit such as a low-noise amplifier may be mounted for the purpose of sensitivity amplification or the like, not limited to a matrix array or a wireless probe. In addition, the waveform, frequency, repetition period, and the like of the ultrasonic waves generated from the ultrasonic probe vary depending on the measurement purpose, and various transmitted sound waves are generated.
特開2005-270423号公報JP 2005-270423 A 特開2011-4874号公報JP 2011-4874 A 特開平9―140706号公報JP-A-9-140706 登録実用新案第3061292号公報Registered Utility Model No. 3061292
 超音波探触子に電子回路を内蔵した場合、電子回路の発生する熱が問題となる。より多くの信号の処理、多くの機能を搭載するほど、すなわち回路規模が増大するほど回路の消費電力が増大し、結果的に多くの熱を発生することになる。また、電子回路を搭載しない探触子であっても、血流速度測定の目的で多くの超音波エネルギー照射を必要とする場合がある。このとき、振動子内部や探触子表面に接着された音響レンズ等で音響エネルギーの吸収による熱が発生する。 When the electronic circuit is built in the ultrasonic probe, the heat generated by the electronic circuit becomes a problem. As more signals are processed and more functions are installed, that is, as the circuit scale increases, the power consumption of the circuit increases, and as a result, more heat is generated. Even a probe not equipped with an electronic circuit may require a lot of ultrasonic energy irradiation for blood flow velocity measurement. At this time, heat is generated by absorption of acoustic energy in an acoustic lens or the like bonded to the inside of the vibrator or the probe surface.
 特に医療用の超音波探触子は、プローブ本体を検査者が手に持ち、前面(表面)を被検査者に直接接触させるため、安全性を担保する必要がある。このため、医療用の超音波探触子では、温度の上限や上昇率等の様々な規格が法的に定められている。そして、所望の回路性能や所望の測定を実現するためには、回路の消費電力を低減する工夫、もしくは発生した熱を探触子外部へと逃がす放熱技術や冷却技術が必要となる。 Especially for medical ultrasonic probes, it is necessary to ensure safety because the inspector holds the probe body in hand and the front surface (surface) is in direct contact with the inspected person. For this reason, in medical ultrasonic probes, various standards such as the upper limit of temperature and the rate of increase are legally defined. In order to realize the desired circuit performance and desired measurement, a device for reducing the power consumption of the circuit, or a heat dissipation technique or a cooling technique for releasing generated heat to the outside of the probe is required.
 特許文献2では、ポンプを用いて装置本体と探触子の間に冷媒を循環させ、探触子で発生した熱を本体装置側へ輸送し、本体装置に設置した冷却ファンにより放熱する構造を採用する。しかし、このような構成では、機構が複雑になるのに加え、冷媒に液体を用いることによる重量増加、循環チューブを内蔵することによるケーブル径の増加、液漏れなどのデメリットやリスクも大きい。また、本体装置側への熱輸送が前提であるため、ワイヤレス型探触子には適用できない。 In Patent Document 2, a structure is used in which a refrigerant is circulated between a device main body and a probe using a pump, heat generated by the probe is transported to the main device side, and heat is radiated by a cooling fan installed in the main device. adopt. However, in such a configuration, in addition to the complexity of the mechanism, there are also disadvantages and risks such as an increase in weight due to the use of liquid as the refrigerant, an increase in cable diameter due to the built-in circulation tube, and liquid leakage. In addition, since it is premised on heat transport to the main unit, it cannot be applied to a wireless probe.
 特許文献3では、探触子内で発生した熱を効率的にケーブル側へ輸送するために、ヒートパイプを用いる。具体的には、熱源にヒートパイプを巻き付け、ヒートパイプのもう1方の端をケーブル接続点のモールド樹脂で含浸する構造を採用する。これにより、熱源で発生した熱は、ケーブル接続点付近まで輸送され、放熱される。しかし、モールド樹脂は熱伝達率が低く、充分な放熱性能が得られない。また、探触子表面から熱を逃がすためには、より広い面積に熱を広げて均熱化することが望ましいが、熱源をヒートパイプで覆えない構造の場合、熱源とヒートパイプの間に介在物が入るため、熱伝達効率が悪くなる。 In Patent Document 3, a heat pipe is used to efficiently transport the heat generated in the probe to the cable side. Specifically, a structure is adopted in which a heat pipe is wound around a heat source and the other end of the heat pipe is impregnated with a mold resin at a cable connection point. Thereby, the heat generated by the heat source is transported to the vicinity of the cable connection point and radiated. However, the mold resin has a low heat transfer rate, and sufficient heat dissipation performance cannot be obtained. Also, in order to release heat from the probe surface, it is desirable to spread the heat over a wider area and equalize the temperature, but in the case where the heat source is not covered with a heat pipe, it is interposed between the heat source and the heat pipe. Since an object enters, the heat transfer efficiency deteriorates.
 また、超音波探触子には、消毒などの目的のために水や薬品などの液体が塗布されることがある。また、超音波探触子には、生体に音を効率的に伝播させるためのゼリーが塗布されることがある。このような使用条件において電気的に不具合なく探触子を動作させるために、探触子は、通常、密閉構造となっている。従って、筐体に穴を開けた開放系としてファンや流体を用いて外部に熱を逃がす構造とすることは難しい。 Also, liquids such as water and chemicals may be applied to the ultrasonic probe for the purpose of disinfection. In addition, a jelly for efficiently transmitting sound to a living body may be applied to the ultrasonic probe. In order to operate the probe electrically without malfunction under such use conditions, the probe usually has a sealed structure. Therefore, it is difficult to provide a structure in which heat is released to the outside using a fan or a fluid as an open system with a hole in the housing.
 特許文献4では、探触子内部に空気の流れを作り、その対流効果により放熱能力を高める工夫をしているが、探触子に穴が開いているため探触子内部が外部へ開放されている。このため、密閉型の探触子には適用することはできない。 In Patent Document 4, the air flow is created inside the probe and the heat dissipation capacity is increased by the convection effect. However, since the probe has a hole, the inside of the probe is opened to the outside. ing. For this reason, it cannot be applied to a sealed probe.
 本発明は、超音波探触子の内部で発生した熱を効率的に探触子の外部表面に輸送し、放熱することを目的とする。 An object of the present invention is to efficiently transport heat generated inside an ultrasonic probe to the outer surface of the probe to dissipate heat.
 上記課題を解決するために、本発明は、密閉構造の超音波探触子の内部の熱源から超音波探触子の表面に効率的に熱を移動できるように、超音波探触子の外部又は内部に気流発生機を配置する。 In order to solve the above-described problems, the present invention provides an outside of an ultrasonic probe so that heat can be efficiently transferred from a heat source inside the ultrasonic probe having a sealed structure to the surface of the ultrasonic probe. Or an airflow generator is arranged inside.
 本発明によれば、超音波探触子の表面における対流効果が増進され、超音波探触子の放熱・冷却性能が向上する。従来方式では、探触子内部で発生する熱のために制限されていた探触子の内部に搭載された回路の性能の向上や超音波の送信エネルギーの増加が可能となる。これにより、超音波画像性能の向上、様々な測定値の精度向上、より長い動作時間が実現する。上記した以外の、課題、構成および効果は、以下の実施例の説明により明らかにされる。 According to the present invention, the convection effect on the surface of the ultrasonic probe is enhanced, and the heat dissipation and cooling performance of the ultrasonic probe is improved. In the conventional method, it is possible to improve the performance of a circuit mounted inside the probe, which is limited due to heat generated inside the probe, and to increase the transmission energy of ultrasonic waves. Thereby, improvement of ultrasonic image performance, improvement of accuracy of various measurement values, and longer operation time are realized. Problems, configurations, and effects other than those described above will become apparent from the description of the following examples.
超音波探触子における送信ビームフォーミングを説明する図。The figure explaining the transmission beam forming in an ultrasonic probe. 超音波探触子における受信ビームフォーミングを説明する図。The figure explaining the receiving beam forming in an ultrasonic probe. 1.5Dアレイを示す図。The figure which shows a 1.5D array. 2Dアレイを示す図。The figure which shows 2D array. 超音波診断装置の機能構成を説明する図。The figure explaining the functional structure of an ultrasound diagnosing device. サブアレイ回路の機能構成を説明する図。The figure explaining the functional structure of a subarray circuit. 実施例1に係る超音波探触子の構造を示す図(上面側から見た透視図)。FIG. 3 is a diagram illustrating a structure of an ultrasound probe according to the first embodiment (a perspective view seen from the upper surface side). 探触子外部に設置した気流発生機とその周辺構造を説明する図(上面側から見た透視図)。The figure explaining the airflow generator installed in the exterior of a probe, and its peripheral structure (perspective view seen from the upper surface side). 探触子外部に設置した気流発生機とその周辺構造を説明する図(背面側から見た 断面図)。The figure explaining the air flow generator installed in the exterior of a probe and its peripheral structure (sectional view seen from the back side). 気流発生機を探触子周囲に4個配置した図(背面側から見た断面図)。The figure which arrange | positioned four airflow generators around a probe (sectional drawing seen from the back side). 気流発生機の排気方向にフードを取り付けた構造を説明する図(上面側から見た透視図)。The figure explaining the structure which attached the hood to the exhaust direction of an airflow generator (perspective view seen from the upper surface side). 気流発生機の吸気口と排出口の両方を探触子の背面側に配置した構造を示す図(上面側から見た透視図)。The figure which shows the structure which has arrange | positioned both the inlet port and discharge port of an airflow generator on the back side of a probe (perspective view seen from the upper surface side). 気流発生機による空気の流路を探触子ケースに対して環状に形成する構造を説明する図(背面側から見た断面図)。The figure explaining the structure which forms the flow path of the air by an airflow generator cyclically | annularly with respect to a probe case (sectional drawing seen from the back side). 気流発生機により探触子ケースの外部表面に形成される流路を示す図(上面側から見た透視図)。The figure which shows the flow path formed in the outer surface of a probe case by an airflow generator (perspective view seen from the upper surface side). 気流発生機により探触子ケースの外部表面に形成される流路を示す図(側面側から見た断面図)。The figure which shows the flow path formed in the outer surface of a probe case by an airflow generator (sectional drawing seen from the side surface). 気流発生機により探触子ケースの外部表面に形成される流路を示す図(上面側から見た透視図)。The figure which shows the flow path formed in the outer surface of a probe case by an airflow generator (perspective view seen from the upper surface side). 気流発生機により探触子ケースの外部表面に形成される流路を示す図(上面側から見た透視図)。The figure which shows the flow path formed in the outer surface of a probe case by an airflow generator (perspective view seen from the upper surface side). 探触子内部にダクトを設け、気流を循環させる構造を示す図(上面側から見た透視図)。The figure which shows the structure which provides a duct inside a probe and circulates an airflow (perspective view seen from the upper surface side). 探触子内部にダクトを設け、気流を循環させる構造を示す図(背面側から見た断面図)。The figure which shows the structure which provides a duct inside a probe and circulates an airflow (sectional drawing seen from the back side). 実施例2に係る超音波探触子の構造を示す図(上面側から見た透視図)。FIG. 6 is a diagram showing a structure of an ultrasonic probe according to a second embodiment (a perspective view seen from the upper surface side). 実施例2に係る超音波探触子の内部に熱変換素子を設置した構造を示す図(上面側から見た透視図)。FIG. 6 is a diagram (a perspective view seen from the upper surface side) showing a structure in which a thermal conversion element is installed inside an ultrasonic probe according to a second embodiment.
 以下、添付図面を参照し、本発明の実施例を説明する。なお、添付図面は本発明の原理に則った具体的な実施例を示しているが、これらは本発明の理解のために用意した図面に過ぎず、決して本発明を限定的に解釈するために用いるべきではない。 Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings. The accompanying drawings show specific embodiments in accordance with the principle of the present invention, but these are only drawings prepared for understanding the present invention, and are not intended to limit the present invention in any way. Should not be used.
[実施例1]
 はじめに、超音波診断装置の装置構成と画像化までの信号の流れについて説明する。図5は、代表的な超音波診断装置の装置構成を示し、超音波探触子と装置本体で構成される。超音波診断装置は、超音波探触子100と、送受切替スイッチ40と、送信系及び受信系回路400(送信アンプ43、受信アンプ44、直流電源45)と、電圧リミッター41と、電源42と、D/Aコンバータ(Digital to Analog)46と、A/D(Analog to Digital)コンバータ47と、送信ビームフォーマ48と、受信ビームフォーマ49と、制御部50と、信号処理部51と、スキャンコンバータ52と、表示部53と、ユーザインターフェース54と、を備える。
[Example 1]
First, the apparatus configuration of the ultrasonic diagnostic apparatus and the signal flow until imaging will be described. FIG. 5 shows an apparatus configuration of a typical ultrasonic diagnostic apparatus, which includes an ultrasonic probe and an apparatus main body. The ultrasonic diagnostic apparatus includes an ultrasonic probe 100, a transmission / reception changeover switch 40, a transmission system and reception system circuit 400 (transmission amplifier 43, reception amplifier 44, DC power supply 45), a voltage limiter 41, and a power supply 42. A D / A converter (Digital to Analog) 46, an A / D (Analog to Digital) converter 47, a transmission beam former 48, a reception beam former 49, a control unit 50, a signal processing unit 51, and a scan converter. 52, a display unit 53, and a user interface 54.
 後述するように、直流電源45は、直流電圧を必要としてない超音波探触子を接続する場合には必ずしも備えている必要はない。なお、図5に示す各部を、超音波探触子と装置本体のいずれに搭載するかは製品により異なる。 As will be described later, the DC power supply 45 does not necessarily have to be provided when an ultrasonic probe that does not require a DC voltage is connected. Note that whether each part shown in FIG. 5 is mounted on the ultrasonic probe or the apparatus main body differs depending on the product.
 図5に示す超音波探触子100は、図1及び図2に示した複数のチャンネルを持つ超音波振動子1に相当する。超音波探触子100の個々のチャンネルは、送受切替スイッチ40を介し、送信系回路と受信系回路に切り替えられる。超音波探触子100は、電源42によって駆動する送信アンプ43及び受信アンプ44により超音波ビームを形成するアレイとして動作し、超音波の送受信のために利用される。 The ultrasonic probe 100 shown in FIG. 5 corresponds to the ultrasonic transducer 1 having a plurality of channels shown in FIGS. Individual channels of the ultrasonic probe 100 are switched to a transmission system circuit and a reception system circuit via a transmission / reception changeover switch 40. The ultrasonic probe 100 operates as an array for forming an ultrasonic beam by a transmission amplifier 43 and a reception amplifier 44 driven by a power source 42, and is used for transmission / reception of ultrasonic waves.
 なお、超音波探触子100が、CMUT(Capacitive Micro-machined Ultrasonic Transducer)のようなバイアス電源を必要とするものである場合は、超音波探触子100が直流電源45に接続されている。 If the ultrasonic probe 100 requires a bias power source such as a CMUT (Capacitive Micro-machined Ultrasonic Transducer), the ultrasonic probe 100 is connected to the DC power source 45.
 超音波探触子100の複数のチャンネルは、超音波撮像装置の送信ビームフォーマ48及び受信ビームフォーマ49に接続されている。送受信の信号は、ユーザインターフェース54による操作に応じて制御部50によって制御される。信号を送信する場合、送信信号は、制御部50で制御され、個々のチャンネルに波形、振幅及び遅延時間が設定される。また、制御部50では、振幅に重みを付する制御を行ってもよい。 The plurality of channels of the ultrasonic probe 100 are connected to the transmission beam former 48 and the reception beam former 49 of the ultrasonic imaging apparatus. The transmission / reception signal is controlled by the control unit 50 in accordance with an operation by the user interface 54. When transmitting a signal, the transmission signal is controlled by the control unit 50, and the waveform, amplitude, and delay time are set for each channel. Further, the control unit 50 may perform control to weight the amplitude.
 送信信号は、送信ビームフォーマ48、D/Aコンバータ46、送信アンプ43を介して超音波探触子100に送信される。ここで、送信アンプ43には、制御部50による制御により波形形成された電圧が入力され、送信アンプ43で電圧が増幅されて出力される。これにより、超音波を発生させるための複数の独立な駆動電圧信号が超音波探触子100の複数のチャンネルに入力される。なお、電圧リミッター41は、超音波探触子100に過大な電圧が印加しないよう、あるいは送信波形制御の目的で設けられている。 The transmission signal is transmitted to the ultrasonic probe 100 via the transmission beam former 48, the D / A converter 46, and the transmission amplifier 43. Here, the voltage whose waveform is formed by the control of the control unit 50 is input to the transmission amplifier 43, and the voltage is amplified by the transmission amplifier 43 and output. As a result, a plurality of independent drive voltage signals for generating ultrasonic waves are input to the plurality of channels of the ultrasonic probe 100. The voltage limiter 41 is provided so as not to apply an excessive voltage to the ultrasonic probe 100 or for the purpose of transmission waveform control.
 超音波探触子100において超音波の信号を受信した場合は、複数のチャンネルにおける受信信号が整相(遅延)加算処理される。受信信号は、受信アンプ44、A/Dコンバータ47、受信ビームフォーマ49を介した後、信号処理部(画像処理部)51に送信される。信号処理部51は、Bモード断層像処理や血流カラーモードあるいはドップラー等の機能に応じた処理を実行し、受信信号をビデオ信号に変換する。その後、ビデオ信号は、スキャンコンバータ52を介して表示部53に送信され、表示部53には画像や数値が表示される。なお、受信アンプ44は、LNA(Low Noise Amplifier)や可変ゲインアンプなどによって構成される。 When the ultrasonic probe 100 receives an ultrasonic signal, the received signals in a plurality of channels are subjected to phasing (delay) addition processing. The reception signal is transmitted to the signal processing unit (image processing unit) 51 after passing through the reception amplifier 44, the A / D converter 47, and the reception beam former 49. The signal processing unit 51 executes processing according to functions such as B-mode tomographic image processing, blood flow color mode, or Doppler, and converts the received signal into a video signal. Thereafter, the video signal is transmitted to the display unit 53 via the scan converter 52, and an image and a numerical value are displayed on the display unit 53. The reception amplifier 44 is configured by an LNA (Low Noise Amplifier), a variable gain amplifier, or the like.
 図6に示すように、探触子内部に回路を搭載する場合は、上述した構成要素の一部が搭載される。あるいは、信号を探触子内部で減らすためのサブアレイ受信回路やサブアレイ送信回路が搭載される。図6では、複数の超音波振動子1をまとめてサブアレイ5を形成する。超音波振動子1からの超音波信号は、送受分離回路7で送信信号と受信信号に分離される。受信の場合、信号はLNA(もしくはバッファアンプ)8を通過し、可変ゲインアンプ(VGA:Variable Gain Amplifier)9を通過する。その後、微小遅延線10を経由して加算回路11で複数の素子からの信号が加算される。必要に応じてバッファアンプ12で増幅され、本体装置のメインビームフォーマへと送られる。LNA8や可変ゲインアンプ9は必要に応じて搭載すればよく、必ずしも必須ではない。 As shown in FIG. 6, when a circuit is mounted inside the probe, some of the components described above are mounted. Alternatively, a sub-array receiving circuit and a sub-array transmitting circuit for reducing signals inside the probe are mounted. In FIG. 6, a plurality of ultrasonic transducers 1 are combined to form a subarray 5. The ultrasonic signal from the ultrasonic transducer 1 is separated into a transmission signal and a reception signal by the transmission / reception separating circuit 7. In the case of reception, the signal passes through an LNA (or buffer amplifier) 8 and passes through a variable gain amplifier (VGA: Variable Gain Amplifier) 9. Thereafter, signals from a plurality of elements are added by the adding circuit 11 via the minute delay line 10. The signal is amplified by the buffer amplifier 12 as needed and sent to the main beam former of the main unit. The LNA 8 and the variable gain amplifier 9 may be mounted as necessary and are not necessarily essential.
 送信の場合、送信アンプもしくはパルサーで発生した電気信号を分配回路15で複数の信号に分配し、微小遅延回路14で個々の遅延が与えられた後、送受分離回路7を介して、超音波振動子1に印加される。これらの構成は、探触子回路の一例であって、類似する回路構成が存在する。本特許においては、回路構成の違いは特に問題とならない。 In the case of transmission, an electrical signal generated by a transmission amplifier or a pulsar is distributed to a plurality of signals by a distribution circuit 15, and each delay is given by a micro delay circuit 14, and then ultrasonic vibration is transmitted via a transmission / reception separation circuit 7. Applied to the child 1. These configurations are examples of the probe circuit, and similar circuit configurations exist. In this patent, the difference in circuit configuration is not particularly problematic.
 図7に、本実施例に係る超音波探触子100の構造例を示す。図の左側が、音響放射および受信面である。なお、以下の説明では、図の左側を、超音波探触子100の前面又は前面側ともいう。超音波探触子100の筐体内には、図の左側より順に、音響レンズ20、音響整合層21、超音波振動子22、インターポーザー23、探触子内搭載回路(集積回路IC)24、背面材(バッキング材)25が配置される。これらの構造は一例であり、インターポーザー23を使わない場合や、探触子内搭載回路24が別の位置に存在する場合もある。図7の場合、超音波振動子22や探触子内搭載回路24などの熱源は、超音波探触子100の前面側に配置されている。 FIG. 7 shows a structural example of the ultrasonic probe 100 according to the present embodiment. The left side of the figure is the acoustic emission and reception surface. In the following description, the left side of the figure is also referred to as the front surface or the front surface side of the ultrasound probe 100. In the housing of the ultrasonic probe 100, in order from the left side of the figure, an acoustic lens 20, an acoustic matching layer 21, an ultrasonic transducer 22, an interposer 23, an in-probe circuit (integrated circuit IC) 24, A back material (backing material) 25 is disposed. These structures are merely examples, and the interposer 23 may not be used, or the probe-mounted circuit 24 may exist at a different position. In the case of FIG. 7, heat sources such as the ultrasonic transducer 22 and the probe-mounted circuit 24 are arranged on the front side of the ultrasonic probe 100.
 超音波探触子100の全体は、筒状の探触子ケース26で覆われている。ここでの探触子ケース26が、前述した超音波探触子100の筐体に相当する。探触子ケース26の内周面には熱伝導材27が配置される。熱伝導材27は、熱源で発生した熱を高効率で筐体全体や超音波探触子後方に伝達するために配置される。熱伝導材27は、探触子外部への放熱性の観点から探触子ケース26と極力大きな接触面積を持つことが望ましい。探触子ケース26は、後述する探触子ケーブルブーツ35と共に探触子の全体を密閉する。なお、ワイヤレス型探触子の場合、探触子ケース26だけで探触子の全体が密閉される。 The entire ultrasonic probe 100 is covered with a cylindrical probe case 26. The probe case 26 here corresponds to the housing of the ultrasonic probe 100 described above. A heat conductive material 27 is disposed on the inner peripheral surface of the probe case 26. The heat conducting material 27 is arranged to transmit heat generated by the heat source to the entire casing and the rear side of the ultrasonic probe with high efficiency. It is desirable that the heat conducting material 27 has a contact area as large as possible with the probe case 26 from the viewpoint of heat dissipation to the outside of the probe. The probe case 26 seals the entire probe together with the probe cable boot 35 described later. In the case of a wireless probe, the entire probe is sealed only by the probe case 26.
 超音波探触子100の後面(背面)には開口が形成されており、当該開口を通じ、信号線用のケーブル36の一端が探触子内部の各種電気電子デバイスと接続される。なお、ワイヤレス型探触子の場合には、探触子ケース26内の無線通信デバイス(インタフェース)と探触子内部の各種電気電子デバイスが接続される。探触子ケーブルブーツ35は、ケーブル36の外表面部及び探触子ケース26の後面開口部と密着し、探触子内部を密閉する。また、探触子ケース26と探触子ケーブルブーツ35とは互いに密着し、密閉構造を形成する。これにより、探触子の外部から内部への液体や気体の侵入が防止される。 An opening is formed in the rear surface (rear surface) of the ultrasonic probe 100, and one end of the signal line cable 36 is connected to various electric and electronic devices inside the probe through the opening. In the case of a wireless probe, a wireless communication device (interface) in the probe case 26 and various electric / electronic devices in the probe are connected. The probe cable boot 35 is in close contact with the outer surface of the cable 36 and the rear opening of the probe case 26 to seal the inside of the probe. Further, the probe case 26 and the probe cable boot 35 are in close contact with each other to form a sealed structure. Thereby, the penetration | invasion of the liquid and gas from the outside to the inside of a probe is prevented.
 図7に示すように、超音波振動子22や探触子内搭載回路24などの熱源が、探触子の比較的前面側(生体接触面側)に存在する場合、生体側の温度上昇を防ぐために、熱源に発生した熱を効率良く後面(背面)側に輸送する必要がある。そのため、金属、カーボングラファイト、ヒートパイプ等の高効率熱輸送材28を探触子内部にも配置する。高効率熱輸送材28は、図7に示すように、前面側の背面材(バッキング材)25から後面側のヒートシンク31まで接続することが望ましい。一般的に、探触子内部に回路を搭載する場合、電気電子基板29にも様々な電気電子デバイス(素子)30を設置する場合がある。なお、電気電子基板29は、金属配線を含むため、比較的高い熱伝導率を有している。すなわち、電気電子基板29は、熱源から熱を周囲に輸送もしくは拡散する効果も有している。 As shown in FIG. 7, when a heat source such as the ultrasonic transducer 22 or the probe internal circuit 24 is present on the relatively front side (biological contact surface side) of the probe, the temperature rise on the biological side is increased. In order to prevent this, it is necessary to efficiently transport the heat generated in the heat source to the rear (back) side. For this reason, a high-efficiency heat transport material 28 such as metal, carbon graphite, or heat pipe is also arranged inside the probe. As shown in FIG. 7, the high-efficiency heat transport material 28 is desirably connected from the rear material (backing material) 25 on the front side to the heat sink 31 on the rear side. Generally, when a circuit is mounted inside a probe, various electric / electronic devices (elements) 30 may be installed on the electric / electronic board 29. In addition, since the electric / electronic board 29 includes metal wiring, it has a relatively high thermal conductivity. That is, the electrical / electronic board 29 also has an effect of transporting or diffusing heat from a heat source to the surroundings.
 従来の探触子では、熱伝導材やヒートシンク31に伝導された熱が探触子の外部に輸送された後、外気との自然対流および放射によって放熱している。本実施例では、探触子の外部表面にファンやブロワなどで構成される気流発生機34を設置する。図中の太線が探触子ケース26及び探触子ケーブルブーツ35の外部表面を示す。また、気流発生機34の外側には、筒状のガイドカバー32を設置する。このガイドカバー32は、探触子の前後に開口を有するため、外気は、図7に矢印で示したように、探触子ケース26の表面に沿って前面側から後面側に流れる。通常、外気は、探触子で発生する熱による温度よりも低い。このため、探触子表面に気流発生機34により空気の流れができることで対流効果が増強され、外気への放熱性能が向上する。 In the conventional probe, after the heat conducted to the heat conducting material or the heat sink 31 is transported to the outside of the probe, it is dissipated by natural convection and radiation with the outside air. In this embodiment, an air flow generator 34 composed of a fan, a blower or the like is installed on the outer surface of the probe. The thick lines in the figure indicate the outer surfaces of the probe case 26 and the probe cable boot 35. A cylindrical guide cover 32 is installed outside the airflow generator 34. Since the guide cover 32 has openings before and after the probe, the outside air flows from the front side to the rear side along the surface of the probe case 26 as indicated by arrows in FIG. Normally, the outside air is lower than the temperature due to the heat generated by the probe. For this reason, the convection effect is enhanced by the flow of air by the airflow generator 34 on the probe surface, and the heat dissipation performance to the outside air is improved.
 なお、熱源の熱エネルギー量や探触子内部の熱伝達および熱輸送能力によっては、ヒートシンク部の温度が非常に高くなる可能性がある。そのような場合には、ガイドカバー32を、ヒートシンク31の外側全体を覆うように設置し、使用者が、高温部分に直接触れないようにする。また、図7のように気流の流れる方向を前面側から背面側(ケーブル側)とすることで、熱せられた空気が被験者や検査者へ直接当たり、不快感を与えるおそれを防いでいる。ガイドカバー32は、検査者が探触子を保持する領域に干渉しないようケーブル側に設けている。本実施例では、本体装置へ熱を輸送する必要がないため、ワイヤレス探触子などへも適用可能である。 Note that the temperature of the heat sink may become very high depending on the amount of heat energy of the heat source and the heat transfer and heat transport capability inside the probe. In such a case, the guide cover 32 is installed so as to cover the entire outside of the heat sink 31 so that the user does not directly touch the high temperature part. Further, by changing the airflow direction from the front side to the back side (cable side) as shown in FIG. 7, it is possible to prevent the heated air from directly hitting the subject and the examiner and causing discomfort. The guide cover 32 is provided on the cable side so as not to interfere with the region where the inspector holds the probe. In this embodiment, since it is not necessary to transport heat to the main unit, it can be applied to a wireless probe or the like.
 ガイドカバー32の内部には1個または複数個のフィン33を設け、空気との接触面積を増やすことにより、フィン33を設けない場合に比して効率的に放熱することが望ましい。図8Aは、図7のガイドカバー32及び気流発生機34を図7の上部側から見た透視図である。図8Bは、図7の背面側(図7の右側)から見た透視図である。この例では、気流発生装置34が探触子の上下両方にそれぞれ1個ずつ配置されている。 It is desirable that one or a plurality of fins 33 is provided inside the guide cover 32 and the contact area with the air is increased to radiate heat more efficiently than when the fins 33 are not provided. FIG. 8A is a perspective view of the guide cover 32 and the airflow generator 34 of FIG. 7 as seen from the upper side of FIG. 8B is a perspective view seen from the back side of FIG. 7 (right side of FIG. 7). In this example, one airflow generator 34 is arranged on each of the upper and lower sides of the probe.
 なお、図7及び図8Bの例では、探触子に2個の気流発生機34を配置しているが、気流発生機34の個数は放熱性能に応じて選択すればよく、個数は何個でもよい。また、気流発生機34を設置する位置についても、図7に示した位置に限らない。探触子ケース26で密閉された探触子の外部であって、使用上の不都合が生じない領域に設置すればよく、特に限定されるものではない。図9に、気流発生器34を探触子の外部表面に4個配置した例を示す。 In the example of FIGS. 7 and 8B, two air flow generators 34 are arranged on the probe. However, the number of air flow generators 34 may be selected according to the heat radiation performance, and the number of air flow generators 34 may be any number. But you can. Further, the position where the airflow generator 34 is installed is not limited to the position shown in FIG. What is necessary is just to install in the area | region which is the exterior of the probe sealed with the probe case 26, and does not produce the inconvenience in use, and it does not specifically limit. FIG. 9 shows an example in which four air flow generators 34 are arranged on the outer surface of the probe.
 図7の例では、気流発生機34及びヒートシンク31の領域部分を覆うガイドカバー32は、探触子ケーブルブーツ35までは覆ってはいないが、図10に示したように、探触子ケーブルブーツ35やケーブル36の領域までガイドカバー32の開口を延長するフード37を拡張してもよい。これにより、より高い整流性能、検査者や被験者へ吹き付ける気流の低減、またブーツ部やケーブル表面の近傍を空気が対流することによる放熱性能の向上が可能となる。 In the example of FIG. 7, the guide cover 32 that covers the region of the airflow generator 34 and the heat sink 31 does not cover the probe cable boot 35, but as shown in FIG. The hood 37 that extends the opening of the guide cover 32 to the area 35 or the cable 36 may be extended. As a result, higher rectification performance, reduction of airflow blown to the examiner or subject, and improvement of heat dissipation performance due to air convection near the boot portion and the cable surface can be achieved.
 図11は、ガイドカバー32に形成する気流の吸気口と排気口の両方を、ケーブル側(後面側)に設置した構成を示す。この場合、ガイドカバー32の前面側は閉じられている。また、ガイドカバー32の内部において、図11に示すように、U字に空気が流れる経路が形成される。図11に示すような構造とすることで、吸気によって作られる気流が検査者や被験者へ当たることを防ぐことができる。図11には一例を示したが、同様の考え方で、ガイドカバー32の構造や気流発生機34の位置や個数は任意に変更できる。 FIG. 11 shows a configuration in which both the airflow inlet and exhaust ports formed in the guide cover 32 are installed on the cable side (rear side). In this case, the front side of the guide cover 32 is closed. Further, as shown in FIG. 11, a path through which air flows is formed inside the guide cover 32. By adopting the structure as shown in FIG. 11, it is possible to prevent the airflow created by the intake air from hitting the examiner or the subject. Although an example is shown in FIG. 11, the structure of the guide cover 32 and the position and number of the airflow generators 34 can be arbitrarily changed based on the same concept.
 図12は、気流の経路を変えた例である。図11の場合には、後面側から採り込まれた空気は、探触子の側面に沿って前方に流れた後折り返し、後面側から流れ出す。図12の場合、探触子の側面に対して垂直方向から採り込まれた空気は、筒状の側面に沿って一周し、再び側面に対して垂直方向に流れ出すようにガイドカバー32が設置される。この構成により、ヒートシンク31が接触する側面領域の全体に沿って気流が流れることになり、より効率的に放熱することができる。図12では、ファンまたはブロワを2個設置しているが、個数や位置は用途や放熱性能に応じて変えても良い。 FIG. 12 shows an example in which the airflow path is changed. In the case of FIG. 11, the air taken in from the rear surface side turns forward after flowing forward along the side surface of the probe, and flows out from the rear surface side. In the case of FIG. 12, the guide cover 32 is installed so that the air taken in from the vertical direction with respect to the side surface of the probe goes around along the cylindrical side surface and flows out in the vertical direction again with respect to the side surface. The With this configuration, the airflow flows along the entire side surface area in contact with the heat sink 31, and heat can be radiated more efficiently. In FIG. 12, two fans or blowers are installed, but the number and position may be changed according to the application and heat dissipation performance.
 図13及び図14には、図11で示した後面吸気・後面排気の構造を、探触子の前面側まで拡張した構造を示す。図13は、探触子表面のある一面を見た構造である。図14は、探触子の上下2面に同様の構成を配置した構造を示している。なお、図13は、図11に示す構造(吸気口と排気口の両方を後面側に有するガイドカバー32)について、そのカバーの前端部を探触子の前方まで拡張した例である。また、図14は、図7に示す構造(吸気口を前面側に、排気口を後面側に有するガイドカバー32)について、そのカバーの前端部を探触子の前方まで拡張した例である。 13 and 14 show a structure in which the rear intake / rear exhaust structure shown in FIG. 11 is extended to the front side of the probe. FIG. 13 shows a structure as seen from a certain surface of the probe surface. FIG. 14 shows a structure in which the same configuration is arranged on the upper and lower surfaces of the probe. FIG. 13 is an example in which the front end portion of the structure shown in FIG. 11 (the guide cover 32 having both the intake port and the exhaust port on the rear side) is extended to the front of the probe. FIG. 14 shows an example in which the front end portion of the structure shown in FIG. 7 (the guide cover 32 having the intake port on the front side and the exhaust port on the rear side) is extended to the front of the probe.
 図13又は図14の構造を採用することにより、探触子ケース26の表面に沿って気流が対流する面積を増やすことができる。このため、放熱性能が向上する。また、この構造は、検査者が手で保持する領域までガイドカバー32を設置することを意味する。このように、探触子ケース26とガイドカバー32が二重構造となるようにすることで、全体の構造を変えることを防止することができる。これにより検査者は従来と同じように探触子を保持することができる。 By adopting the structure of FIG. 13 or FIG. 14, it is possible to increase the area where airflow convects along the surface of the probe case 26. For this reason, the heat dissipation performance is improved. In addition, this structure means that the guide cover 32 is installed up to an area held by the inspector by hand. Thus, by making the probe case 26 and the guide cover 32 have a double structure, it is possible to prevent the entire structure from being changed. Thus, the inspector can hold the probe as in the conventional case.
 図15は、図14に示すように、探触子ケース26の側面の大部分をガイドカバー32で覆う場合に、吸気口を前面側や側面に設ける例である。この場合、空気の流れは、前面から後面側への一方通行となる。検査者が保持する領域を除くように吸気口を設置すれば、図14と同様の効果を得ることができる。吸気口は1個ではなく、無数に設けてもよい。 FIG. 15 is an example in which the intake port is provided on the front side or the side surface when the guide cover 32 covers most of the side surface of the probe case 26 as shown in FIG. In this case, the air flow is one-way from the front surface to the rear surface. If the intake port is installed so as to exclude the region held by the examiner, the same effect as in FIG. 14 can be obtained. An infinite number of intake ports may be provided instead of one.
 図16は、気流で冷却すべきヒートシンク31の領域を変えた例である。図7では、探触子の前面から後面へ向け、側面に沿って流れる気流を発生させていたが、図16の例では、隔壁60で探触子内部は密閉する。隔壁60は、ヒートシンク31と接触するように配置する。気流発生機34は、隔壁60の表面に配置する。気流発生機34は、探触子の一方の側面に設けた吸気口70から空気を吸い上げて隔壁60の表面に沿って流し、その後、吸気口70とは反対側の側面に設けた排気口から探触子の後方に排出する。この場合、空気は、ヒートシンク31に接する隔壁60から効率的に熱を奪うことができる。気流経路および吸気口の個数および位置は任意である。 FIG. 16 shows an example in which the region of the heat sink 31 to be cooled by the airflow is changed. In FIG. 7, an airflow flowing along the side surface from the front surface to the rear surface of the probe is generated, but in the example of FIG. 16, the inside of the probe is sealed by the partition wall 60. The partition wall 60 is disposed in contact with the heat sink 31. The air flow generator 34 is disposed on the surface of the partition wall 60. The airflow generator 34 sucks air from the intake port 70 provided on one side surface of the probe and flows it along the surface of the partition wall 60, and then from the exhaust port provided on the side surface opposite to the intake port 70. Drain behind the probe. In this case, the air can efficiently remove heat from the partition wall 60 in contact with the heat sink 31. The number and position of the air flow path and the intake port are arbitrary.
 図17及び図18は、気流が通過する経路を探触子内部に設ける場合を示す。本例では、ガイドカバー32の吸気口70から吸い上げた空気を流すU字状のダクト80を探触子の内部に挿入する。この構造の場合、ダクト80の吸気口82から流入した空気は、ダクト80の反対側の排気口81から気流発生機34により排出される。なお、ダクト80の周囲に穴はなく、探触子内部の密閉性は保たれる。また、放熱効率の観点からダクト80は、より熱源に接触するように設置することが望ましい。本構成の場合、ダクト80は、前述の実施例よりも熱源に近い位置に配置されることになる。従って、より効果的に内部の熱を奪うことができる。なお、気流発生機34は、排気口81に直接取り付けてもよいし、充分な場所が確保できれば、ダクト80の内部に設置してもよい。 17 and 18 show a case where a path through which airflow passes is provided inside the probe. In this example, a U-shaped duct 80 for flowing air sucked from the air inlet 70 of the guide cover 32 is inserted into the probe. In the case of this structure, the air flowing in from the intake port 82 of the duct 80 is discharged by the airflow generator 34 from the exhaust port 81 on the opposite side of the duct 80. In addition, there is no hole around the duct 80, and the hermeticity inside the probe is maintained. Further, from the viewpoint of heat dissipation efficiency, the duct 80 is desirably installed so as to be in contact with the heat source. In the case of this configuration, the duct 80 is disposed at a position closer to the heat source than in the above-described embodiment. Therefore, the internal heat can be taken away more effectively. The airflow generator 34 may be directly attached to the exhaust port 81, or may be installed inside the duct 80 if a sufficient space can be secured.
[実施例2]
 図19に、実施例2に係る超音波振動子の構成例を示す。前述の実施例1では、気流発生機34を密閉された探触子の外部に設置した。実施例2では、気流発生機34を密閉された探触子の内部に配置する。多くの場合、熱源は、超音波振動子22及び探触子内に搭載される電気電子回路である。このような熱源は局所的に存在する。実施例1では、高効率熱輸送材28を用いて効率的に探触子ケース26に伝熱させる措置を取っている。しかし、材料の熱伝達率には限界がある。また実用上の制約から、探触子のサイズはある一定のサイズに制限されるため、熱の伝搬に使用できる面積にも限界がある。この場合、放熱能力は、熱伝導性能の限界から決まってしまう。
[Example 2]
FIG. 19 illustrates a configuration example of the ultrasonic transducer according to the second embodiment. In Example 1 described above, the air flow generator 34 is installed outside the sealed probe. In the second embodiment, the airflow generator 34 is arranged inside a sealed probe. In many cases, the heat source is an electric / electronic circuit mounted in the ultrasonic transducer 22 and the probe. Such a heat source exists locally. In the first embodiment, measures are taken to efficiently transfer heat to the probe case 26 using the high-efficiency heat transport material 28. However, there is a limit to the heat transfer coefficient of materials. In addition, due to practical restrictions, the size of the probe is limited to a certain size, so there is a limit to the area that can be used for heat propagation. In this case, the heat dissipation capability is determined from the limit of the heat conduction performance.
 本実施例では、この課題を克服するため、気流発生機34を探触子の内部に設置すると共に、空気の循環経路を形成するために2枚の整流板38を設置する。気流発生機34は、2枚の整流板38の間に配置される。これにより、空気は、2枚の整流板38の間を前面側から後面側に流れ、その後、整流板38の後端部に形成された隙間を通じて探触子の側面に沿って後方から前方に流れる。なお、前方に送られた空気は、整流板38の前端部に形成された隙間を通じ、再び、探触子の内部を後方に流れる。すなわち、本実施例の場合、探触子の内側に、循環する気流を発生させることができる。 In this embodiment, in order to overcome this problem, the air flow generator 34 is installed inside the probe, and two rectifying plates 38 are installed to form an air circulation path. The airflow generator 34 is disposed between the two rectifying plates 38. As a result, air flows between the two rectifying plates 38 from the front side to the rear side, and then from the rear to the front along the side surface of the probe through the gap formed at the rear end of the rectifying plate 38. Flowing. In addition, the air sent forward flows through the inside of the probe again through the gap formed at the front end portion of the current plate 38. That is, in the case of the present embodiment, a circulating air current can be generated inside the probe.
 本実施例の構造を採用すれば、発熱源に近い位置からの熱を空気の対流効果で奪い、奪われた熱が循環する空気によって、相対的に温度が低いケース全体と対流することで探触子内部を高効率に均熱化させることができる。均熱化することで、局所的な温度上昇を抑えることが可能となり、またより広い面積での放熱効果が得られるようになる。 If the structure of this embodiment is adopted, the heat from the position close to the heat source is taken away by the convection effect of the air, and the circulated heat is used to convection with the entire case where the temperature is relatively low. The inside of the transducer can be soaked with high efficiency. By soaking, it becomes possible to suppress a local temperature rise and to obtain a heat dissipation effect over a wider area.
 図20では、ヒートシンク部となる背面材25の背面側(後面側)に、ペルチェ素子などの熱変換デバイス39を設置する例を示している。熱変換デバイス39を空気の循環路に接する面(境界面)に配置するので、図19に比して、より効率的に熱源の熱を探触子全体へ分散させることが可能となる。 FIG. 20 shows an example in which a heat conversion device 39 such as a Peltier element is installed on the back surface side (rear surface side) of the back material 25 serving as a heat sink. Since the heat conversion device 39 is arranged on the surface (boundary surface) in contact with the air circulation path, the heat of the heat source can be more efficiently distributed to the entire probe as compared with FIG.
[他の実施例]
 本発明は、上述した実施例の構成に限定されるものでなく、様々な変形例を含んでいる。例えばワイヤレス方式の超音波探触子にも応用することができる。また、上述した実施例は、本発明を分かりやすく説明するために、一部の実施例について詳細に説明したものであり、必ずしも説明した全ての構成を備える必要は無い。また、ある実施例の一部を他の実施例の構成に置き換えることが可能であり、ある実施例の構成に他の実施例の構成を加えることも可能である。また、各実施例の構成に他の構成を追加し、又は、各実施例の一部構成を他の構成で置換し、又は各実施例の一部構成を削除することも可能である。
[Other embodiments]
The present invention is not limited to the configuration of the embodiment described above, and includes various modifications. For example, it can be applied to a wireless ultrasonic probe. Moreover, in order to explain this invention in an easy-to-understand manner, the above-described embodiments are described in detail for some of the embodiments, and it is not always necessary to have all the configurations described. Further, a part of a certain embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of a certain embodiment. It is also possible to add other configurations to the configuration of each embodiment, replace a partial configuration of each embodiment with another configuration, or delete a partial configuration of each embodiment.
1  超音波振動子(Ultrasonic transducers)
2  フォーカス点(Focus point)
3  遅延時間
4  加算回路
5  サブアレイ
6  探触子チャンネル
7  送受分離回路(もしくは保護回路)
8  LNA(Low Noise Amplifier)
9  VGA(Variable Gain Amplifier)
10 微小遅延回路(受信用)
11 加算回路
12 バッファアンプ
13 サブアレイ受信回路(受信用サブビームフォーマ)
14 微小遅延回路(送信用)
15 分配回路
16 サブアレイ送信回路(送信用サブビームフォーマ)
20 音響レンズ
21 音響整合層
22 超音波振動子
23 インターポーザー
24 探触子内搭載回路(IC)
25 背面材(バッキング材)
26 探触子ケース
27 熱伝導材
28 高効率熱輸送材
29 電気電子基板
30 電気電子デバイス(素子)
31 ヒートシンク
32 ガイドカバー
33 放熱板(フィン)
34 気流発生機
35 探触子ケーブルブーツ
36 ケーブル
37 フード
38 整流板
39 熱変換デバイス
40 送受切替スイッチ
41 電圧リミッター
42 電源
43 送信アンプ
44 受信アンプ
45 直流電源
46 D/A(digital to Analog)コンバータ
47 A/D(Analog to Digital)コンバータ
48 送信ビームフォーマ
49 受信ビームフォーマ
50 制御部
51 信号処理部
52 スキャンコンバータ
53 表示部
54 ユーザインターフェース
400 送信系及び受信系回路
60 隔壁
70 吸気口
80 ダクト
81 排気口
82 吸気口
1 Ultrasonic transducers
2 Focus point
3 Delay time 4 Adder circuit 5 Subarray 6 Probe channel 7 Transmission / reception separation circuit (or protection circuit)
8 LNA (Low Noise Amplifier)
9 VGA (Variable Gain Amplifier)
10 Micro delay circuit (for reception)
11 Adder circuit 12 Buffer amplifier 13 Subarray receiver circuit (Reception subbeamformer)
14 Micro delay circuit (for transmission)
15 Distribution circuit 16 Subarray transmission circuit (Transmission sub-beamformer)
DESCRIPTION OF SYMBOLS 20 Acoustic lens 21 Acoustic matching layer 22 Ultrasonic transducer 23 Interposer 24 Circuit mounted in a probe (IC)
25 Back material (backing material)
26 Probe Case 27 Thermal Conductive Material 28 High Efficiency Heat Transport Material 29 Electrical / Electronic Board 30 Electrical / Electronic Device (Element)
31 Heat sink 32 Guide cover 33 Heat sink (fin)
34 Airflow generator 35 Probe cable boot 36 Cable 37 Hood 38 Rectifier plate 39 Thermal conversion device 40 Transmission / reception switch 41 Voltage limiter 42 Power supply 43 Transmission amplifier 44 Reception amplifier 45 DC power supply 46 D / A (digital to Analog) converter 47 A / D (Analog to Digital) converter 48 Transmission beamformer 49 Reception beamformer 50 Control unit 51 Signal processing unit 52 Scan converter 53 Display unit 54 User interface 400 Transmission system and reception system circuit 60 Bulkhead 70 Inlet port 80 Duct 81 Exhaust port 82 Inlet

Claims (13)

  1.  超音波の送受信が可能な超音波振動子と、前記超音波振動子を含むデバイスの全体を密閉するケースと、探触子内部で発生した熱を前記ケースの表面まで伝達する熱輸送部と、前記ケースの外部に設置される気流発生機と、前記ケースの外部に設置され、前記気流発生機に対する空気の経路を提供するカバーとを有する超音波探触子と、
     前記超音波探触子と有線又は無線通信するインタフェースと、前記超音波探触子から撮像領域の信号を取得して画像処理する信号処理部と、信号処理後の画像を表示する表示部とを有する装置本体と
     を有する超音波診断装置。
    An ultrasonic transducer capable of transmitting and receiving ultrasonic waves, a case that seals the entire device including the ultrasonic transducer, a heat transport unit that transmits heat generated inside the probe to the surface of the case, and An ultrasonic probe having an air flow generator installed outside the case, and a cover installed outside the case and providing a path of air to the air flow generator;
    An interface for wired or wireless communication with the ultrasonic probe, a signal processing unit that acquires a signal of an imaging region from the ultrasonic probe and performs image processing, and a display unit that displays an image after the signal processing An ultrasonic diagnostic apparatus having the apparatus main body.
  2.  請求項1に記載の超音波診断装置において、
     前記カバーは、前記ケースのヒートシンク領域を覆う
     ことを特徴とする超音波診断装置。
    The ultrasonic diagnostic apparatus according to claim 1,
    The ultrasonic diagnostic apparatus, wherein the cover covers a heat sink region of the case.
  3.  請求項1に記載の超音波診断装置において、
     前記カバーは、探触子に接続されたケーブルブーツ及び/又はケーブルの少なくとも一部を覆うように設置される
     ことを特徴とする超音波診断装置。
    The ultrasonic diagnostic apparatus according to claim 1,
    The ultrasonic diagnostic apparatus, wherein the cover is installed so as to cover at least a part of a cable boot and / or a cable connected to a probe.
  4.  請求項1に記載の超音波診断装置において、
     前記カバーは、探触子の使用者が手で保持する領域範囲まで覆うように設置される
     ことを特徴とする超音波診断装置。
    The ultrasonic diagnostic apparatus according to claim 1,
    The ultrasonic diagnostic apparatus according to claim 1, wherein the cover is installed so as to cover an area range held by a probe user by hand.
  5.  請求項1に記載の超音波診断装置において、
     前記経路の吸気口を超音波の送受信面側に有し、前記経路の排気口を超音波の前記送受信面側とは反対側に有する
     ことを特徴とする超音波診断装置。
    The ultrasonic diagnostic apparatus according to claim 1,
    An ultrasonic diagnostic apparatus comprising: an intake port of the path on an ultrasonic transmission / reception surface side; and an exhaust port of the path on an opposite side to the ultrasonic transmission / reception surface side.
  6.  請求項1の超音波診断装置において、
     前記経路の吸気口及び排気口の両方を、超音波の送受信面側とは反対側に形成される
     ことを特徴とする超音波診断装置。
    The ultrasonic diagnostic apparatus according to claim 1,
    The ultrasonic diagnostic apparatus, wherein both the intake port and the exhaust port of the path are formed on the side opposite to the ultrasonic transmission / reception surface side.
  7.  請求項6に記載の超音波診断装置において、
     前記経路は、前記ケースに対して環状に形成される
     ことを特徴とする超音波診断装置。
    The ultrasonic diagnostic apparatus according to claim 6,
    The ultrasound diagnostic apparatus, wherein the path is formed in an annular shape with respect to the case.
  8.  請求項6に記載の超音波診断装置において、
     前記経路は、前記ケースの軸方向に対してU字形状に形成される
     ことを特徴とする超音波診断装置。
    The ultrasonic diagnostic apparatus according to claim 6,
    The ultrasonic diagnostic apparatus, wherein the path is formed in a U shape with respect to an axial direction of the case.
  9.  請求項6に記載の超音波診断装置において、
     前記経路は、前記ケースの内部に形成された密閉構造の空気の経路の吸気口及び排気口に接続される
     ことを特徴とする超音波診断装置。
    The ultrasonic diagnostic apparatus according to claim 6,
    The ultrasonic diagnostic apparatus, wherein the path is connected to an intake port and an exhaust port of an air path having a sealed structure formed inside the case.
  10.  請求項9に記載の超音波診断装置において、
     前記経路は、前記ケースの軸方向に対してU字形状に形成される
     ことを特徴とする超音波診断装置。
    The ultrasonic diagnostic apparatus according to claim 9,
    The ultrasonic diagnostic apparatus, wherein the path is formed in a U shape with respect to an axial direction of the case.
  11.  請求項1に記載の超音波診断装置において、
     前記熱輸送部は、熱伝導性材料であり、探触子内部で発生した熱をヒートシンク領域まで伝達する
     ことを特徴とする超音波診断装置。
    The ultrasonic diagnostic apparatus according to claim 1,
    The ultrasonic diagnostic apparatus, wherein the heat transporting part is made of a heat conductive material and transmits heat generated inside the probe to a heat sink region.
  12.  超音波の送受信が可能な超音波振動子と、前記超音波振動子を含むデバイスの全体を密閉するケースと、探触子内部で発生した熱を前記ケースの表面まで伝達する熱輸送部と、前記ケースの内部に設置される気流発生機と、前記ケースの内部に設置され、前記気流発生機を空気の経路に含む内部循環路を形成する整流板とを有する超音波探触子と、
     前記超音波探触子と有線又は無線通信するインタフェースと、前記超音波探触子から撮像領域の信号を取得して画像処理する信号処理部と、信号処理後の画像を表示する表示部とを有する装置本体と
     を有する超音波診断装置。
    An ultrasonic transducer capable of transmitting and receiving ultrasonic waves, a case that seals the entire device including the ultrasonic transducer, a heat transport unit that transmits heat generated inside the probe to the surface of the case, and An ultrasonic probe having an airflow generator installed inside the case, and a rectifying plate installed inside the case and forming an internal circulation path including the airflow generator in an air path;
    An interface for wired or wireless communication with the ultrasonic probe, a signal processing unit that acquires a signal of an imaging region from the ultrasonic probe and performs image processing, and a display unit that displays an image after the signal processing An ultrasonic diagnostic apparatus having the apparatus main body.
  13.  請求項12に記載の超音波診断装置において、
     前記ケース内のヒートシンク部と前記内部循環路との境界面に熱交換デバイスを有する
     ことを特徴とする超音波診断装置。
    The ultrasonic diagnostic apparatus according to claim 12,
    An ultrasonic diagnostic apparatus comprising a heat exchange device at a boundary surface between the heat sink portion in the case and the internal circulation path.
PCT/JP2014/069089 2013-09-02 2014-07-17 Ultrasonograph WO2015029637A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-181132 2013-09-02
JP2013181132A JP2016202190A (en) 2013-09-02 2013-09-02 Ultrasound diagnostic device

Publications (1)

Publication Number Publication Date
WO2015029637A1 true WO2015029637A1 (en) 2015-03-05

Family

ID=52586212

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/069089 WO2015029637A1 (en) 2013-09-02 2014-07-17 Ultrasonograph

Country Status (2)

Country Link
JP (1) JP2016202190A (en)
WO (1) WO2015029637A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3243572A1 (en) * 2016-05-10 2017-11-15 Honda Electronics Co., Ltd. Oscillating velocity detecting device
EP3338639A1 (en) * 2016-12-14 2018-06-27 Samsung Medison Co., Ltd. Ultrasonic probe
JP2018517439A (en) * 2015-04-10 2018-07-05 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. System, method and apparatus for active thermal management of ultrasonic transducers
CN110326303A (en) * 2017-02-13 2019-10-11 株式会社电装 Ultrasonic wave output device
EP3808277A4 (en) * 2018-06-12 2021-06-09 Edan Instruments, Inc. Ultrasound transducer, ultrasonic probe, and ultrasonic detection apparatus
US11540813B2 (en) * 2014-06-10 2023-01-03 Fujifilm Sonosite, Inc. Handheld ultrasound imaging systems and methods for cooling transducers and electronics in the probe housing via air circulation through the housing

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022101023A (en) * 2020-12-24 2022-07-06 浜松ホトニクス株式会社 Active energy irradiation device and active energy irradiation system

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61268238A (en) * 1985-05-24 1986-11-27 横河メディカルシステム株式会社 Probe for ultrasonic diagnostic apparatus
US20050215892A1 (en) * 2004-03-22 2005-09-29 Siemens Medical Solutions Usa, Inc. System and method for transducer array cooling through forced convection
JP2008284003A (en) * 2007-05-15 2008-11-27 Aloka Co Ltd Ultrasonic probe
JP2010088610A (en) * 2008-10-07 2010-04-22 Toshiba Corp Ultrasonic probe
JP2010220791A (en) * 2009-03-24 2010-10-07 Fujifilm Corp Ultrasonic probe and ultrasonic diagnostic apparatus

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61268238A (en) * 1985-05-24 1986-11-27 横河メディカルシステム株式会社 Probe for ultrasonic diagnostic apparatus
US20050215892A1 (en) * 2004-03-22 2005-09-29 Siemens Medical Solutions Usa, Inc. System and method for transducer array cooling through forced convection
JP2008284003A (en) * 2007-05-15 2008-11-27 Aloka Co Ltd Ultrasonic probe
JP2010088610A (en) * 2008-10-07 2010-04-22 Toshiba Corp Ultrasonic probe
JP2010220791A (en) * 2009-03-24 2010-10-07 Fujifilm Corp Ultrasonic probe and ultrasonic diagnostic apparatus

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11540813B2 (en) * 2014-06-10 2023-01-03 Fujifilm Sonosite, Inc. Handheld ultrasound imaging systems and methods for cooling transducers and electronics in the probe housing via air circulation through the housing
JP2018517439A (en) * 2015-04-10 2018-07-05 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. System, method and apparatus for active thermal management of ultrasonic transducers
US11540814B2 (en) * 2015-04-10 2023-01-03 Koninklijke Philips N.V. Systems, methods, and apparatuses for active thermal management of ultrasound transducers
EP3243572A1 (en) * 2016-05-10 2017-11-15 Honda Electronics Co., Ltd. Oscillating velocity detecting device
EP3338639A1 (en) * 2016-12-14 2018-06-27 Samsung Medison Co., Ltd. Ultrasonic probe
CN110326303A (en) * 2017-02-13 2019-10-11 株式会社电装 Ultrasonic wave output device
EP3808277A4 (en) * 2018-06-12 2021-06-09 Edan Instruments, Inc. Ultrasound transducer, ultrasonic probe, and ultrasonic detection apparatus
US11642105B2 (en) 2018-06-12 2023-05-09 Edan Instruments, Inc. Ultrasonic transducer, ultrasonic probe, and ultrasonic detection apparatus

Also Published As

Publication number Publication date
JP2016202190A (en) 2016-12-08

Similar Documents

Publication Publication Date Title
WO2015029637A1 (en) Ultrasonograph
JP5619380B2 (en) Ultrasonic probe
JP4934300B2 (en) Ultrasonic transducer with enhanced thermal conductivity
CN103533896B (en) There is the matrix ultrasonic probe that passive heat dissipates
EP3132748B1 (en) Portable ultrasonic diagnostic device comprising heat dissipation structure
JP5258493B2 (en) Ultrasonic probe
JP4632800B2 (en) Ultrasonic probe
JP4685408B2 (en) Ultrasonic probe
US10117642B2 (en) Ultrasound transducer with sealed, active cooling
KR20150006519A (en) Ultrasound Probe and Manufacturing Method thereof
JP2008149135A (en) System and method for actively cooling ultrasound probe
KR20140144420A (en) Ultrasonic Probe and manufacturing method thereof
JP2009261840A (en) Ultrasonic probe and ultrasonograph
JP2007209699A (en) Ultrasonic probe
JP2010259695A (en) Ultrasonic probe
JP4594710B2 (en) Ultrasonic probe and ultrasonic diagnostic apparatus
KR100992446B1 (en) Probe
US11497469B2 (en) Coolable ultrasound probe and ultrasound system
KR20160084255A (en) Ultrasound Probe and Manufacturing Method thereof
US20180014813A1 (en) Ultrasound transducer probe with heat transfer device
JP4851210B2 (en) Ultrasonic diagnostic equipment
JP2009160068A (en) Ultrasonic probe and ultrasonic diagnostic equipment using the same
JP2008307086A (en) Ultrasonic diagnostic system
JP2017164307A (en) Ultrasonic diagnostic apparatus
KR20150065632A (en) Ultrasound Probe and Manufacturing Method thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14840967

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14840967

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP