WO2015029179A1 - Radio-propagation measurement system, remote operation system, and radio-propagation measurement method - Google Patents

Radio-propagation measurement system, remote operation system, and radio-propagation measurement method Download PDF

Info

Publication number
WO2015029179A1
WO2015029179A1 PCT/JP2013/073097 JP2013073097W WO2015029179A1 WO 2015029179 A1 WO2015029179 A1 WO 2015029179A1 JP 2013073097 W JP2013073097 W JP 2013073097W WO 2015029179 A1 WO2015029179 A1 WO 2015029179A1
Authority
WO
WIPO (PCT)
Prior art keywords
unit
reflection
radio wave
positions
specific area
Prior art date
Application number
PCT/JP2013/073097
Other languages
French (fr)
Japanese (ja)
Inventor
佐藤 義人
山田 勉
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Priority to JP2015533861A priority Critical patent/JPWO2015029179A1/en
Priority to PCT/JP2013/073097 priority patent/WO2015029179A1/en
Publication of WO2015029179A1 publication Critical patent/WO2015029179A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/22Traffic simulation tools or models

Definitions

  • the present invention relates to a technique for measuring radio wave propagation.
  • Work sites include bases such as loading and unloading stations, parking lots for refueling and maintenance.
  • work for loading earth and sand into the dump truck is carried out, and excavation work and loading work by heavy equipment such as a wheel loader and a hydraulic excavator are performed.
  • the dump truck discharges the earth and sand loaded at the loading site at the dumping ground.
  • the sorting machine sorts the discharged sediment into ore and topsoil.
  • the remote operation system performs remote control and operation management of these unmanned vehicles. That is, the remote operation system moves a wheel loader or a hydraulic excavator to a designated loading place according to a mining plan, and performs excavation work by mining control. In addition, the remote operation system performs operation control within the work site and remote operation such as earth removal for the dump truck. Not all vehicles in the work site are unmanned vehicles. If it can be recognized on the system side, manned vehicles may be mixed. In order to perform such remote control, it is necessary to construct a wireless network in the work site.
  • the wireless network required here can always communicate with each vehicle, for example, in a work site of several hundreds of kilometers and a depth of several hundred meters.
  • work starts from nothing, and based on the preliminary survey results of the ore reserves, an excavation plan is made and the excavation is gradually changed to proceed with excavation. Therefore, the topography changes greatly depending on the season during the work.
  • a wireless relay station hereinafter referred to as access point: AP
  • AP access point
  • Patent Document 1 discloses a technique for measuring terrain using a camera mounted on a vehicle.
  • Patent Document 2 discloses a technique for measuring the dielectric constant of a non-measurement object by radiating radio waves to a road surface and measuring the intensity of reflected waves.
  • Patent Document 1 In order to construct a wireless network in a wide area, it is difficult to grasp the characteristics of radio wave propagation in that area.
  • the technique of Patent Document 1 can measure the surrounding shape, but cannot measure the electrical characteristics.
  • the technique of Patent Document 2 has a problem that a measurement error increases depending on the shape of the non-measurement object.
  • a radio wave propagation measurement system is directed to a shape measurement unit that measures the three-dimensional shape of the surface of a specific area and each of a plurality of positions in the three-dimensional shape.
  • the position specifying unit that specifies the position, the transmission wave that is a radio signal in a specific frequency band is transmitted to the target position, the reflected wave is received, the transmission wave and the reflected wave are compared, and the reflection intensity that is the result of the comparison is thus determined.
  • the reflection characteristic calculation unit Based on the transmission / reception unit to be calculated, the reflection characteristic calculation unit to calculate the reflection characteristic of the radio wave at the target position based on the target position and the reflection intensity, and based on the reflection characteristics at the plurality of positions and the plurality of positions, A quality calculation unit that calculates the quality of wireless communication between the first position and the second position in the specific area.
  • a wireless network can be constructed and maintained in an area where the terrain changes.
  • FIG. 1 shows a configuration of a radio wave propagation measurement system according to a first embodiment.
  • the structure of the radio wave irradiation receiving part 101 is shown.
  • the structure of the control part 103 is shown.
  • the measurement process is shown.
  • the positional relationship among the divided object, the transmission antenna 205, and the reception antenna 206 is shown.
  • An irradiation direction, an incident direction, a reflection direction, and a reception direction are shown.
  • the analysis process is shown.
  • the structure of the remote operation system of Example 1 is shown.
  • segmentation object group of Example 2 is shown.
  • the structure of the radio wave propagation measuring system of Example 3 is shown.
  • An example of map data is shown.
  • the radio wave propagation measurement system of this embodiment determines the position of the AP of the wireless network in a specific area. It is arranged toward the target object in the specific area, and the radio wave propagation characteristics of the target object are measured.
  • the radio wave propagation measurement system may be mounted on a vehicle, move within a specific area, and change the target object.
  • the specific area is, for example, a mine.
  • the target object forms a topography within a specific area.
  • FIG. 1 shows the configuration of the radio wave propagation measurement system of the first embodiment.
  • the radio wave propagation measurement system 100 includes a radio wave irradiation reception unit 101, a shape detection unit 102, a control unit 103, a reflective object data storage unit 104, an antenna arrangement determination unit 105, an antenna arrangement data storage unit 106, and a position detection. Part 107.
  • the shape detection unit 102 is a three-dimensional distance sensor such as a 3D image camera or a laser range scanner, measures the three-dimensional shape of the surface of the target object, and controls the three-dimensional coordinate point sequence data indicating the measured three-dimensional shape. Output to the unit 103.
  • the coordinate system at this time may be adjusted in advance by calibration so that the coordinate systems of the shape detection unit 102 and the control unit 103 are the same. The same applies to the coordinate systems of the radio wave irradiation receiving unit 101 and the control unit 103.
  • the position detection unit 107 is a GPS (Global Positioning System) receiver or the like, and detects the position of the radio wave propagation measurement system 100 and outputs it as position data.
  • the position detection unit 107 may detect the position of the radio wave propagation measurement system 100 based on wireless communication with the AP.
  • the reflective object data storage unit 104 and the antenna arrangement data storage unit 106 may be physically different storage devices or may be physically one storage device.
  • the control unit 103 and the antenna arrangement determination unit 105 are, for example, computers.
  • the computer has a memory for storing programs and data, and a microprocessor connected to the memory.
  • This program is a program that causes the microprocessor to function as the control unit 103 or a program that causes the microprocessor to function as the antenna arrangement determination unit 105.
  • This program may be stored in a computer-readable medium, or may be read from the medium by a computer.
  • the control unit 103 and the antenna arrangement determining unit 105 may be one computer or different computers.
  • FIG. 2 shows a configuration of the radio wave irradiation receiving unit 101.
  • the radio wave irradiation receiving unit 101 includes a frequency tuning unit 201, an amplifier 202, a distance direction adjustment unit 204, a transmission antenna 205, a reception antenna 206, a distance direction adjustment unit 207, an amplifier 208, and a signal comparison unit 209. And a reflection intensity detection unit 210.
  • the frequency tuning unit 201 generates a transmission signal having a designated frequency.
  • the transmission signal branches to the amplifier 202 and the signal comparison unit 209.
  • the amplifier 202 amplifies the transmission signal.
  • the distance direction adjustment unit 204 adjusts the directivity of the transmission antenna 205 in the direction specified by the control unit 103.
  • the transmission antenna 205 transmits the amplified transmission signal as a radio signal. Thereby, the transmission antenna 205 can irradiate the beam of the transmission wave in the designated direction. Also, a transmission wave beam can be irradiated from the position of the radio wave propagation measurement system 100 to a plurality of positions.
  • the receiving antenna 206 receives a radio signal reflected by the target object.
  • the distance direction adjustment unit 207 adjusts the directivity of the reception antenna 206 in the direction specified by the control unit 103 in synchronization with the distance direction adjustment unit 204. Thereby, the receiving antenna 206 can efficiently receive the reflected wave from the target object.
  • the amplifier 208 amplifies the signal received by the receiving antenna 206 and outputs it as a received signal.
  • the transmission antenna 205 and the reception antenna 206 may be a single antenna.
  • the transmission antenna 205 and the reception antenna 206 are antennas that can control the direction of directivity.
  • the transmission antenna 205 and the reception antenna 206 may be adaptive array antennas having a plurality of antenna elements, and the distance direction adjustment units 204 and 207 may be phase amplitude adjustment circuits that adjust the phases of the plurality of antenna elements.
  • the transmitting antenna 205 and the receiving antenna 206 may be horn antennas, and the distance direction adjusting units 204 and 207 may be stepping motors that rotate a pedestal that supports the horn antenna.
  • the signal comparison unit 209 receives the transmission signal and the reception signal, and outputs the relative amplitude and phase of the reception signal with respect to the transmission signal. For example, the signal comparison unit 209 down-converts the transmission signal and splits it into two to make the first transmission signal and the second transmission signal, down-converts the reception signal and splits it into two, and one of them becomes the first reception signal, The other is moved 90 degrees to obtain a second received signal. Further, the signal comparison unit 209 mixes the first transmission signal and the first reception signal, passes through a low-pass filter, outputs an I component which is an in-phase component, mixes the second transmission signal and the second reception signal, By passing the low-pass filter, the Q component which is an orthogonal component is output.
  • the reflection intensity detection unit 210 includes an A / D (Analog to Digital) conversion circuit, converts the output of the signal comparison unit 209 into a digital signal, and sets the complex reflection intensity.
  • the complex reflection intensity includes an I component and a Q component. Further, the reflection intensity detection unit 210 calculates a reflection intensity and a reflection phase from the complex reflection intensity and outputs the calculated reflection intensity and reflection phase to the control unit 103.
  • the reflection intensity includes an attenuation amount due to distance and an attenuation amount due to reflection.
  • the radio wave irradiation receiving unit 101 can irradiate the target object in the direction specified by the control unit 103, receive the reflected wave from the target object, and detect the reflection intensity and the reflection phase. is there.
  • FIG. 3 shows the configuration of the control unit 103.
  • the control unit 103 includes a direction determination unit 701, a reflection characteristic calculation unit 702, and a reflection object data generation unit 703.
  • the direction determination unit 701 acquires the three-dimensional coordinate point sequence data from the shape detection unit 102, divides the shape represented by the three-dimensional coordinate point sequence data, determines a divided object indicating the divided shape, Output as object data. Further, the direction determining unit 701 calculates the distance and direction of each divided object and outputs the calculated distance and direction as direction distance data. Further, the direction determining unit 701 outputs an irradiation instruction for irradiating radio waves in the calculated direction to the radio wave irradiation receiving unit 101.
  • the reflection characteristic calculation unit 702 acquires the direction distance data from the direction determination unit 701, acquires the reflection intensity based on the reception result from the radio wave irradiation reception unit 101, and determines the reflection characteristic of the target object based on the direction distance data and the reflection intensity. Calculate and output as material data.
  • the reflective object data generation unit 703 maps the three-dimensional coordinates of the position of the target object surface to the entire coordinate system of the specific area in the position data from the position detection unit 107, and obtains the three-dimensional coordinates indicating the topography and the material data.
  • the reflection object data is generated in association with the data and stored in the reflection object data storage unit 104.
  • FIG. 4 shows the measurement process
  • the control unit 103 executes a measurement process in response to an instruction by communication or an input from the user to the control unit 103. In addition, the control unit 103 repeats the measurement process according to a change in the position of the radio wave propagation measurement system 100.
  • step S302 the direction determination unit 701 acquires the three-dimensional coordinate point sequence data generated by the shape detection unit 102.
  • the control unit 103 and the shape detection unit 102 are connected by a wired communication path capable of transferring data, such as a data bus or a serial signal. Note that the control unit 103 and the shape detection unit 102 may be connected by wireless communication.
  • step S303 the direction determining unit 701 generates shape data that is three-dimensional polygon data from the obtained three-dimensional coordinate point sequence data.
  • a method for converting the three-dimensional coordinate point sequence data into the three-dimensional polygon data a method of extracting a plane area in a robust manner such as a RANSAC (RANdom Sample Consensus) method or a LMedS (minimum median) method can be used.
  • RANSAC Random Sample Consensus
  • LMedS minimum median
  • step S304 the direction determining unit 701 divides the shape data into divided objects that are plane portions (mesh) having a predetermined divided size D, and generates divided object data indicating the positions of the divided objects.
  • FIG. 5 shows a positional relationship among the divided object, the transmission antenna 205, and the reception antenna 206.
  • the divided object data 401 in this figure represents the divided object with x, y, and z coordinates.
  • the radio wave irradiated to the divided object from the transmission antenna 205 has a spread 402 on the surface of the target object according to the directivity characteristic of the transmission antenna 205 and the distance to the divided object.
  • the division size D is larger than the spread 402.
  • step S305 the direction determining unit 701 sequentially selects each element from among the plurality of divided objects as the target divided object 501, and executes the processes from step S306 to S311 on the selected target divided object 501.
  • step S306 the direction determining unit 701 determines the direction of radio wave irradiation from the transmission antenna 205 to the target split object 501, the direction of radio wave incident on the target split object 501, and the target based on the normal direction of the target split object 501.
  • the direction of reflection of radio waves from the divided object 501 and the direction of reception of radio waves from the target divided object 501 to the receiving antenna 206 are calculated.
  • FIG. 6 shows an irradiation direction, an incident direction, a reflection direction, and a reception direction.
  • the irradiation direction ( ⁇ t, ⁇ t), the incident direction ( ⁇ i, ⁇ i), the reflection direction ( ⁇ s, ⁇ s), and the reception direction ( ⁇ r, ⁇ r) are respectively determined by the transmission antenna 205, the target divided object 501, and the reception antenna 206. It is represented by an angle defined in the local coordinate system.
  • step S307 the direction determination unit 701 outputs a direction instruction including the directions of the transmission antenna 205 and the reception antenna 206 to the radio wave irradiation reception unit 101 based on the calculated irradiation direction and reception direction.
  • the radio wave irradiation receiving unit 101 changes the irradiation direction and the reception direction according to the direction instruction.
  • the reflection characteristic calculation unit 702 calculates a reference attenuation amount indicating attenuation due to the distance from the transmission antenna 205 to the reception antenna 206 via the target divided object 501.
  • the reference attenuation amount indicates the attenuation of the intensity of the reflected wave with respect to the intensity of the transmitted wave when the target divided object 501 is a perfect conductor.
  • the direction determining unit 701 instructs the radio wave irradiation receiving unit 101 to radiate radio waves.
  • This instruction may include the frequency and output of the radio wave.
  • the radio wave irradiation receiving unit 101 irradiates the target divided object 501 with a radio wave transmission wave, receives a reflected wave from the target divided object 501, and reflects the reflected wave intensity with respect to the intensity of the transmitted wave. Calculate the intensity.
  • the reflection characteristic calculation unit 702 acquires the reflection intensity from the radio wave irradiation reception unit 101.
  • the reflection characteristic calculation unit 702 calculates the reflectance of the target divided object 501 by subtracting the distance correction amount from the reflection intensity, and sets it as material data.
  • the reflectance of the target divided object 501 is a ratio of the intensity of the reflected radio wave to the intensity of the radio wave incident on the target divided object 501, and depends on the material of the target divided object 501.
  • the reflection characteristic calculation unit 702 may calculate a reflection characteristic such as a phase change amount due to reflection or a complex reflectance.
  • step S ⁇ b> 311 the reflective object data generation unit 703 maps the divided object data to position data, generates reflective object data in which the mapped divided object data and the material data are associated with each other, and stores the reflected object data in the reflective object data storage unit 104.
  • the reflective object data includes the x and y coordinates of the coordinate points of the divided object, the height of the divided object, and the reflectance of the divided object.
  • the above is the measurement process.
  • the measurement process is performed on the target objects in the detectable range of both the shape detection unit 102 and the radio wave irradiation reception unit 101.
  • the detectable range varies depending on the distance detection performance of the three-dimensional distance sensor in the shape detection unit 102, the output of radio waves at the frequency used by the radio wave irradiation reception unit 101, and the like.
  • the radio wave propagation measurement system 100 may generate and accumulate the reflected object data in the entire specific area by moving the radio wave propagation measurement system 100 in the specific area, changing the target object, and performing measurement processing. According to the measurement process, it is possible to measure the topography and radio wave reflection characteristics of a specific area.
  • the reflectance of each divided object can be measured.
  • mapping the divided object data to the position data the topography of the entire specific area can be generated, and the distribution of the reflection characteristics of the entire specific area can be generated.
  • the antenna arrangement determination unit 105 acquires the entire reflection object data of the specific area stored in the reflection object data storage unit 104, determines the position of the AP antenna for constructing the wireless network in the specific area, and the antenna arrangement The data is stored in the antenna arrangement data storage unit 106 as data.
  • the antenna arrangement determining unit 105 determines the position of the AP antenna so that the communication quality of the wireless network in a predetermined communication area satisfies a predetermined condition.
  • the communication area is, for example, an area that requires wireless communication within a specific area.
  • the wireless communication terminals in the communication area are connected by a wireless network by performing wireless communication with the AP.
  • the communication quality is represented, for example, by an index such as required reception power, noise-to-noise ratio, communication bit rate, and communication channel capacity required between the wireless communication terminal and the AP in the communication area.
  • the antenna arrangement determining unit 105 selects an antenna arrangement that satisfies a predetermined communication area requirement condition. For example, the antenna arrangement determining unit 105 calculates a communicable area where the index is equal to or greater than a predetermined index threshold. For example, the communication area requirement condition is that the ratio of the communicable area to the area of the communication area is not less than a predetermined ratio.
  • the antenna arrangement determining unit 105 selects an antenna arrangement that satisfies the cost and feasibility by considering the number of AP antennas and the conditions of the places where antennas can be installed.
  • the antenna arrangement determining unit 105 stores a plurality of AP antenna position candidates, selects some target AP antenna position candidates from the plurality of AP antenna position candidates, and based on the reflected object data, the target AP antenna position candidates Radio wave propagation analysis between the communication area and the communication area to determine whether the communication area requirement is satisfied.
  • the antenna arrangement determining unit 105 performs a radio wave propagation analysis using the reflected object data obtained by measuring the topography of the site and the reflected wave of the radio wave, so that the AP antenna position candidate and an arbitrary position in the communication area are It is possible to analyze the radio wave propagation state between them with high accuracy.
  • the antenna arrangement determination unit 105 uses a genetic algorithm, a search method for an optimal solution such as a linear programming method, and a simplex method.
  • the AP antenna position may be determined.
  • FIG. 7 shows the analysis process
  • the antenna arrangement determination unit 105 executes an analysis process after the measurement process.
  • the antenna arrangement determining unit 105 acquires a communication area request condition.
  • the communication area requirement condition is, for example, a combination of designation of one or more communication area ranges that require communication within a specific area and an index threshold value of communication quality required in each communication area.
  • the antenna arrangement determining unit 105 may accept the communication area request condition by an input from the user.
  • the communication area request condition may be stored in the reflective object data storage unit 104.
  • step S603 the antenna arrangement determination unit 105 acquires the reflection object data from the reflection object data storage unit 104.
  • the antenna arrangement determining unit 105 acquires a previously stored AP antenna position candidate set.
  • the AP antenna position candidate set is a set of coordinate points where the AP antenna can be arranged.
  • the antenna arrangement determining unit 105 may acquire an AP antenna position candidate set based on an input from the user.
  • the AP antenna position candidate set may be stored in the reflective object data storage unit 104.
  • step S605 the antenna arrangement determining unit 105 sequentially selects each element from the AP antenna position candidate set as the AP antenna position candidate p, and executes steps S606 and S607 on the selected AP antenna position candidate p. .
  • the antenna arrangement determination unit 105 analyzes how the radio waves propagate when the AP antenna is arranged at the point p by performing radio wave propagation analysis based on the reflected object data and the AP antenna position candidate p. To do.
  • the antenna arrangement determining unit 105 can use an electromagnetic field analysis method such as a ray tracing method or an FDTD (Finite-difference time-domain method) method in radio wave propagation analysis.
  • the analysis result outputs, for example, communication quality indicating how much received power can be obtained when radio waves from the AP antenna are received at a point group arranged at a predetermined interval in a specific area.
  • the attenuation position of the radio wave from the AP antenna can be calculated by specifying the reflection position and using the reflectance corresponding to the reflection position in the reflection object data.
  • the antenna arrangement determining unit 105 may analyze the radio wave propagation characteristics between the AP antenna and a specific position in the communication area.
  • communication quality such as an error rate at each position in the communication area may be calculated by performing analysis using an AP wireless communication method such as modulation / demodulation and error correction.
  • step S607 the antenna arrangement determination unit 105 stores the analysis result in the antenna arrangement data storage unit 106 in association with p.
  • the antenna arrangement determining unit 105 stores the analysis results for all AP antenna position candidates in the antenna arrangement data storage unit 106.
  • step S608 the antenna arrangement determining unit 105 selects an AP antenna position candidate from the AP antenna position candidate set, and repeatedly executes the processes from step S609 to S611 until the analysis result of the AP antenna position candidate satisfies the communication area requirement condition. To do.
  • the antenna arrangement determining unit 105 selects one or more AP antenna position candidates from the AP antenna position candidate set.
  • the selected subset of AP antenna position candidates represents the arrangement of AP antennas.
  • the antenna arrangement determining unit 105 can reduce the number of search iterations by applying various optimal solution search algorithms in selecting a subset.
  • step S610 the antenna arrangement determining unit 105 acquires the analysis result corresponding to the selected AP antenna position candidate from the reflective object data storage unit 104.
  • step S611 the antenna arrangement determining unit 105 evaluates whether the analysis result satisfies the communication area requirement condition.
  • the antenna arrangement determining unit 105 ends the repetition in step S608 and shifts the processing to step S612.
  • the antenna arrangement determining unit 105 stores the AP antenna position candidates determined to satisfy the communication area requirement condition in the antenna arrangement determining unit 105.
  • This process makes it possible to determine the optimal antenna arrangement based on the actual topography and material in the communication area. Moreover, a plurality of candidates can be compared by analyzing radio wave propagation for a plurality of candidates for the position of the AP antenna. Further, by selecting a candidate satisfying the communication area request from a plurality of candidates, it is possible to easily construct and maintain a wireless network.
  • FIG. 8 shows the configuration of the remote operation system of the first embodiment.
  • the remote operation system includes an instruction device 801, a plurality of APs 802, and a plurality of vehicles 803.
  • the instruction device 801 is connected to a plurality of APs 802 via a wired or wireless network 804.
  • the vehicle 803 is, for example, a work machine in a mine.
  • the vehicle 803 includes a driving device 811 and a radio wave propagation measurement system 100.
  • the driving device 811 connects to the AP 802 by wireless communication.
  • the instruction device 801 transmits an instruction to the driving device 811 by communicating with the driving device 811 via the AP 802.
  • the driving device 811 communicates with the instruction device 801 via the AP 802 and drives the vehicle 803 according to the instruction from the instruction device 801.
  • the range (service area) of the vehicle 803 where the AP 802 can wirelessly communicate is called a communication area.
  • the communication area is an area where the vehicle 803 moves in a mine, for example.
  • the AP antenna position candidate for placing the AP 802 antenna is, for example, a place where the work machine of the remote operation system moves and is not a place where excavation is planned, and where a space for placing the AP antenna exists. It is.
  • the radio wave propagation measurement system 100 may be mounted on a work machine other than the vehicle 803.
  • the radio wave propagation measurement system 100 may not include the reflecting object data storage unit 104, the antenna arrangement determination unit 105, and the antenna arrangement data storage unit 106.
  • a device that can communicate with the radio wave propagation measurement system 100 such as the pointing device 801, includes the reflective object data storage unit 104, the antenna arrangement determination unit 105, and the antenna arrangement data storage unit 106.
  • the radio wave propagation measurement system 100 performs measurement processing in accordance with an instruction from the instruction device 801, calculates reflection object data, and transmits it to the instruction device 801.
  • the antenna arrangement determination unit 105 in the instruction device 801 stores the reflection object data received from the radio wave propagation measurement system 100 in the reflection object data storage unit 104, and executes analysis processing.
  • the vehicle 803 when the terrain in a specific area changes due to excavation work by the vehicle 803, the vehicle 803 can measure the reflection object data.
  • the antenna arrangement determining unit 105 can determine the arrangement of the antennas of the AP 802 in accordance with the change in topography, and can build and maintain a wireless network that satisfies the communication area requirement condition.
  • the radio wave propagation measurement system of the present embodiment calculates the reflectance in consideration of scattered electromagnetic waves from a plurality of divided objects.
  • the difference from the first embodiment will be mainly described.
  • FIG. 9 shows a configuration of a target divided object group according to the second embodiment.
  • the reflection characteristic calculation unit 702 calculates a reference attenuation amount indicating attenuation from the transmission antenna 205 to the reception antenna 206 via the target divided object group 502 including the target divided object 501. calculate.
  • the target divided object group 502 is a divided object located within a range of a predetermined size A centering on the target divided object 501.
  • the magnitude A is, for example, a value obtained by multiplying the wavelength of the radio signal by a preset integer.
  • the reflected wave in the present embodiment includes a scattered wave from the target divided object group 502.
  • the reference attenuation amount indicates the attenuation of the intensity of the reflected wave with respect to the intensity of the transmitted wave when the target divided object 501 is assumed to be a complete conductor.
  • the reflection characteristic calculation unit 702 uses a uniform theory of diffraction (UTD), a FDTD (Finite Difference Time Domain) method, a finite element method, a moment method, or the like as a calculation method of scattered electromagnetic waves.
  • the reflection characteristic calculation unit 702 calculates the reflectance by subtracting the reference attenuation amount from the reflection intensity.
  • the reflectance calculation accuracy can be improved by calculating the reflectance based on the shape of the target divided object group 502.
  • the radio wave propagation measurement system of the present embodiment updates the map data based on the reflective object data.
  • the difference from the first embodiment will be mainly described.
  • FIG. 10 shows the configuration of the radio wave propagation measurement system of the third embodiment.
  • the radio wave propagation measurement system 100 newly has a map data storage unit 821.
  • the map data storage unit 821 stores map data.
  • the map data is data representing the terrain in a specific area, and includes, for example, the positions of coordinate points on a 10 m-interval mesh on a plane represented by a coordinate system of latitude and longitude, and elevations at the coordinate points. If the coordinate system of the map data does not match the coordinate system of the reflective object data, one of the coordinate systems is converted so as to match.
  • FIG. 11 shows an example of map data.
  • Each line of map data represents one coordinate point entry.
  • Each entry includes a coordinate point number 901 that is an ID assigned to identify a coordinate point, an x coordinate 902 of the coordinate point, a y coordinate 903 of the coordinate point, and an elevation 904 that is a z coordinate of the coordinate point. And have.
  • the reflective object data generation unit 703 maps the coordinate points of the reflective object data to the coordinate points of the map data.
  • the reflective object data generation unit 703 interpolates the reflective object data when the coordinate points of the map data are between a plurality of coordinate points of the reflective object data.
  • the reflective object data generation unit 703 updates the altitude in the map data based on the terrain represented in the reflective object data. According to the present embodiment, the topography measured by the measurement process can be reflected in the map data.
  • a shape measuring unit that measures the three-dimensional shape of the surface of a specific area
  • a position designating unit that designates each of a plurality of positions in the three-dimensional shape as a target position
  • a transmission / reception unit that calculates a reflection intensity as a result of the comparison by transmitting a transmission wave that is a radio signal of a specific frequency band to the target position, receiving a reflection wave, and comparing the transmission wave and the reflection wave;
  • a reflection characteristic calculation unit that calculates a reflection characteristic of radio waves at the target position
  • a quality calculating unit that calculates the quality of wireless communication between the first position in the specific area and the second position in the specific area based on the plurality of positions and the reflection characteristics of the plurality of positions
  • a radio wave propagation measurement system comprising: (Expression 2) The position specifying unit calculates a direction of the target position; The transceiver unit controls a transmission direction of the transmission wave based
  • the reflection characteristic calculation unit calculates the reflectance of the radio wave at the target position as the reflection characteristic based on the target position and the reflection intensity.
  • the quality calculation unit calculates an attenuation amount of radio waves due to radio wave propagation between the first position and the second position based on the plurality of positions and the reflectance, and the quality based on the attenuation amount To calculate,
  • the position specifying unit divides the three-dimensional shape into a plurality of plane portions, and specifies the plurality of plane portions as the plurality of positions.
  • Example 6 A position detection unit for detecting a position of measurement by the shape measurement unit and the transmission / reception unit; The reflection characteristic calculation unit associates the plurality of positions with a coordinate system of the measurement positions.
  • Example 7) A storage unit for storing map data indicating a three-dimensional map of the specific area; The reflection characteristic calculation unit updates the map data based on the plurality of positions.
  • the radio wave propagation measurement system according to expression 6.
  • the quality calculation unit stores a plurality of candidates for the position of a wireless communication antenna for wireless communication with a wireless communication device in the specific area, selects each of the plurality of candidates as the first position, Calculating the quality of wireless communication between the first position and the second position based on a plurality of positions and reflection characteristics of the plurality of positions;
  • the radio wave propagation measurement system according to expression 7. (Expression 9) The quality calculation unit selects a candidate satisfying a predetermined quality condition from the plurality of candidates based on the quality calculated for the plurality of candidates.
  • the radio wave propagation measurement system according to Expression 8.
  • An instruction unit for outputting an instruction of operation of a work machine in a specific area;
  • a wireless communication unit for wirelessly transmitting the instruction;
  • Mounted on the work machine receiving the instruction and operating the work machine according to the instruction;
  • Mounted on the work machine a shape measuring unit for measuring the three-dimensional shape of the surface of the specific area,
  • Mounted on the work machine a position specifying unit for specifying each of a plurality of positions in the three-dimensional shape as a target position; It is mounted on the work machine, transmits a transmission wave, which is a radio signal of a specific frequency band, to the target position, receives a reflected wave, and compares the transmission wave and the reflected wave.
  • a transmission / reception unit for calculating a certain reflection intensity; Based on the target position and the reflection intensity, a reflection characteristic calculation unit that calculates a reflection characteristic of radio waves at the target position; A quality calculating unit that calculates the quality of wireless communication between the first position in the specific area and the second position in the specific area based on the plurality of positions and the reflection characteristics of the plurality of positions;
  • a remote driving system comprising: (Expression 11) Measure the three-dimensional shape of the surface of a specific area, Specify each of a plurality of positions in the three-dimensional shape as a target position, Transmitting a transmission wave that is a radio signal of a specific frequency band to the target position and receiving a reflected wave; By comparing the transmitted wave and the reflected wave, the reflection intensity as a result of the comparison is calculated, Based on the target position and the reflection intensity, the radio wave reflection characteristics at the target position are calculated, Calculating a quality of wireless communication between the first position in the specific area and the second position in the specific area based on the plurality
  • the shape measuring unit corresponds to the shape detecting unit 102 and the like.
  • the position specifying unit corresponds to the direction determining unit 701 and the like.
  • the transmission / reception unit corresponds to the radio wave irradiation reception unit 101 and the like.
  • the quality calculation unit corresponds to the antenna arrangement determination unit 105 and the like.
  • the storage unit corresponds to the map data storage unit 821 and the like.
  • the instruction unit corresponds to the instruction device 801 and the like.
  • the wireless communication unit corresponds to the AP 802 or the like.
  • the driving unit corresponds to the driving device 801 and the like.
  • the first position corresponds to an AP antenna position candidate or the like.
  • the second position corresponds to a position in the communication area.
  • DESCRIPTION OF SYMBOLS 100 Radio wave propagation measuring system, 101: Radio wave irradiation receiving part, 102: Shape detection part, 103: Control part, 104: Reflecting object data storage part, 105: Antenna arrangement

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Length Measuring Devices With Unspecified Measuring Means (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Radar Systems Or Details Thereof (AREA)

Abstract

In this invention, a wireless network is constructed and maintained in a region in which the contours of the ground change. This radio-propagation measurement system is provided with the following: a geometry measurement unit that measures the three-dimensional geometry of the surface in a specific region; a location designation unit that designates each of a plurality of locations within the aforementioned three-dimensional geometry as a target location; a transmission/reception unit that transmits a wireless signal in a specific frequency band to a target location, receives reflected radio waves, and compares the transmitted radio waves with the reflected radio waves to compute a reflection strength; a reflection-characteristics computation unit that, on the basis of the aforementioned target location and the aforementioned reflection strength, computes radio-wave reflection characteristics for said target location; and a quality computation unit that computes the quality of wireless communication between a first location in the abovementioned specific region and a second location in said specific region on the basis of a plurality of locations and the reflection characteristics therefor.

Description

電波伝搬測定システム、遠隔運転システム、および電波伝搬測定方法Radio wave propagation measurement system, remote operation system, and radio wave propagation measurement method
 本発明は、電波伝搬を測定する技術に関する。 The present invention relates to a technique for measuring radio wave propagation.
 採鉱現場、鉱山などの広域の作業現場では、土砂運搬作業を行うための車両(作業機械)が用いられている。土砂運搬作業に際し、車両運転者の疲労などによる事故の回避や、省人化や、車両の稼働時間の長時間化などによる、生産性向上が検討されている。このような生産性向上のために、無人のダンプトラックやホイルローダや油圧ショベル等の重機を稼働させるための遠隔運転システムが開発されている。 車 両 Vehicles (work machines) for carrying out sediment transport work are used at work sites in wide areas such as mining sites and mines. In the case of earth and sand transport work, productivity improvements are being studied by avoiding accidents due to fatigue of vehicle drivers, saving labor, and extending the operating time of vehicles. In order to improve productivity, a remote operation system for operating heavy machinery such as unmanned dump trucks, wheel loaders, and hydraulic excavators has been developed.
 作業現場には、積込場、放土場、給油や整備を行う駐機場などの拠点がある。積込場においては、ダンプトラックへ土砂を積み込む作業が実施され、ホイルローダや油圧ショベル等の重機による掘削作業および積込作業が行われる。ダンプトラックは、積込場で搭載した土砂を、放土場で排出する。分別機械は、排出された土砂を鉱石や表土に分別する。 Work sites include bases such as loading and unloading stations, parking lots for refueling and maintenance. At the loading site, work for loading earth and sand into the dump truck is carried out, and excavation work and loading work by heavy equipment such as a wheel loader and a hydraulic excavator are performed. The dump truck discharges the earth and sand loaded at the loading site at the dumping ground. The sorting machine sorts the discharged sediment into ore and topsoil.
 遠隔運転システムは、これらの無人車両の遠隔操作および運行管理を行う。すなわち、遠隔運転システムは、採掘計画に従い、ホイルローダや油圧ショベルを指定された積込場へ移動させ、採掘制御による掘削作業を行わせる。また、遠隔運転システムは、ダンプトラックに対して、作業現場内の運行制御や、排土等の遠隔操作を行う。作業現場内の車両の全てが、無人車両とは限らない。システム側で認識できていれば、有人車両が混在してもよい。このような遠隔制御を行うためには、作業現場内における無線ネットワークの構築が必要となる。 The remote operation system performs remote control and operation management of these unmanned vehicles. That is, the remote operation system moves a wheel loader or a hydraulic excavator to a designated loading place according to a mining plan, and performs excavation work by mining control. In addition, the remote operation system performs operation control within the work site and remote operation such as earth removal for the dump truck. Not all vehicles in the work site are unmanned vehicles. If it can be recognized on the system side, manned vehicles may be mixed. In order to perform such remote control, it is necessary to construct a wireless network in the work site.
 ここで必要な無線ネットワークは、例えば、数キロ四方の範囲で深さ数百メートルに及ぶ作業現場の中で、各車両と常時通信可能である。また、作業は、何もない状態から開始し、鉱石の埋蔵場所の事前調査結果に基づき、掘削計画を立て、徐々に掘削場所を変えて掘削を進めていく。そのため、作業中、時期により地形が大きく変化していく。このような作業場所に無線中継局(以下アクセスポイント:APと称す)を配置することにより、無線ネットワークが構築される。 The wireless network required here can always communicate with each vehicle, for example, in a work site of several hundreds of kilometers and a depth of several hundred meters. In addition, work starts from nothing, and based on the preliminary survey results of the ore reserves, an excavation plan is made and the excavation is gradually changed to proceed with excavation. Therefore, the topography changes greatly depending on the season during the work. By arranging a wireless relay station (hereinafter referred to as access point: AP) in such a work place, a wireless network is constructed.
 特許文献1では、車両に搭載されたカメラを用いて地形の計測を行う技術が開示されている。また、特許文献2には、路面に対して電波を放射し、反射波の強度を測定することで非測定物の誘電率を測定する技術が開示されている。 Patent Document 1 discloses a technique for measuring terrain using a camera mounted on a vehicle. Patent Document 2 discloses a technique for measuring the dielectric constant of a non-measurement object by radiating radio waves to a road surface and measuring the intensity of reflected waves.
特開平11-211473号公報JP-A-11-212473 特開2007-57362号公報JP 2007-57362 A
 広い地域に無線ネットワークを構築するために、その地域の電波伝搬の特性を把握することは困難である。特許文献1の技術は、周囲の形状を測定することは可能であるが、電気的特性を計測することはできない。特許文献2の技術は、非測定物の形状によって、測定誤差が大きくなるという問題がある。 In order to construct a wireless network in a wide area, it is difficult to grasp the characteristics of radio wave propagation in that area. The technique of Patent Document 1 can measure the surrounding shape, but cannot measure the electrical characteristics. The technique of Patent Document 2 has a problem that a measurement error increases depending on the shape of the non-measurement object.
 上記課題を解決するために、本発明の一態様である電波伝搬測定システムは、特定地域の表面の三次元形状を測定する形状測定部と、三次元形状の中の複数の位置の夫々を対象位置として指定する位置指定部と、特定周波数帯の無線信号である送信波を対象位置へ送信し反射波を受信し、送信波および反射波を比較することにより、比較の結果である反射強度を算出する送受信部と、対象位置および反射強度に基づいて、対象位置における電波の反射特性を算出する反射特性算出部と、複数の位置と複数の位置の反射特性とに基づいて、特定地域内の第1位置と特定地域内の第2位置との間の無線通信の品質を算出する品質算出部と、を備える。 In order to solve the above problems, a radio wave propagation measurement system according to an aspect of the present invention is directed to a shape measurement unit that measures the three-dimensional shape of the surface of a specific area and each of a plurality of positions in the three-dimensional shape. The position specifying unit that specifies the position, the transmission wave that is a radio signal in a specific frequency band is transmitted to the target position, the reflected wave is received, the transmission wave and the reflected wave are compared, and the reflection intensity that is the result of the comparison is thus determined. Based on the transmission / reception unit to be calculated, the reflection characteristic calculation unit to calculate the reflection characteristic of the radio wave at the target position based on the target position and the reflection intensity, and based on the reflection characteristics at the plurality of positions and the plurality of positions, A quality calculation unit that calculates the quality of wireless communication between the first position and the second position in the specific area.
 本発明の一態様によれば、地形が変化する地域において無線ネットワークの構築および維持を行うことができる。 According to one aspect of the present invention, a wireless network can be constructed and maintained in an area where the terrain changes.
実施例1の電波伝搬測定システムの構成を示す。1 shows a configuration of a radio wave propagation measurement system according to a first embodiment. 電波照射受信部101の構成を示す。The structure of the radio wave irradiation receiving part 101 is shown. 制御部103の構成を示す。The structure of the control part 103 is shown. 測定処理を示す。The measurement process is shown. 分割物体と送信アンテナ205と受信アンテナ206の位置関係を示す。The positional relationship among the divided object, the transmission antenna 205, and the reception antenna 206 is shown. 照射方向と入射方向と反射方向と受信方向とを示す。An irradiation direction, an incident direction, a reflection direction, and a reception direction are shown. 解析処理を示す。The analysis process is shown. 実施例1の遠隔運転システムの構成を示す。The structure of the remote operation system of Example 1 is shown. 実施例2の対象分割物体群を示す。The target division | segmentation object group of Example 2 is shown. 実施例3の電波伝搬測定システムの構成を示す。The structure of the radio wave propagation measuring system of Example 3 is shown. 地図データの一例を示す。An example of map data is shown.
 以下、本発明の実施例について図面を参照しつつ説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
 本実施例の電波伝搬測定システムは、特定地域内の無線ネットワークのAPの位置を決定する。特定地域内の対象物体に向けて配置され、対象物体の電波伝搬特性を測定する。なお、電波伝搬測定システムは、車両に搭載され、特定地域内を移動し、対象物体を変更しても良い。特定地域は、例えば鉱山である。対象物体は、特定地域内の地形を形成する。 The radio wave propagation measurement system of this embodiment determines the position of the AP of the wireless network in a specific area. It is arranged toward the target object in the specific area, and the radio wave propagation characteristics of the target object are measured. The radio wave propagation measurement system may be mounted on a vehicle, move within a specific area, and change the target object. The specific area is, for example, a mine. The target object forms a topography within a specific area.
 図1は、実施例1の電波伝搬測定システムの構成を示す。 FIG. 1 shows the configuration of the radio wave propagation measurement system of the first embodiment.
 電波伝搬測定システム100は、電波照射受信部101と、形状検出部102と、制御部103と、反射物体データ記憶部104と、アンテナ配置決定部105と、アンテナ配置データ記憶部106と、位置検出部107とを有する。 The radio wave propagation measurement system 100 includes a radio wave irradiation reception unit 101, a shape detection unit 102, a control unit 103, a reflective object data storage unit 104, an antenna arrangement determination unit 105, an antenna arrangement data storage unit 106, and a position detection. Part 107.
 形状検出部102は、3D画像カメラやレーザーレンジスキャナ等の三次元距離センサであり、対象物体の表面の三次元形状を計測し、計測された三次元形状を示す三次元座標点列データを制御部103へ出力する。このときの座標系は、形状検出部102と制御部103の座標系が同一になるように予めキャリブレーションによって合わせておけばよい。電波照射受信部101と制御部103の座標系についても同様である。 The shape detection unit 102 is a three-dimensional distance sensor such as a 3D image camera or a laser range scanner, measures the three-dimensional shape of the surface of the target object, and controls the three-dimensional coordinate point sequence data indicating the measured three-dimensional shape. Output to the unit 103. The coordinate system at this time may be adjusted in advance by calibration so that the coordinate systems of the shape detection unit 102 and the control unit 103 are the same. The same applies to the coordinate systems of the radio wave irradiation receiving unit 101 and the control unit 103.
 位置検出部107は、GPS(Global Positioning System)受信機などであり、電波伝搬測定システム100の位置を検出し位置データとして出力する。なお、位置検出部107は、APとの無線通信に基づいて電波伝搬測定システム100の位置を検出しても良い。 The position detection unit 107 is a GPS (Global Positioning System) receiver or the like, and detects the position of the radio wave propagation measurement system 100 and outputs it as position data. The position detection unit 107 may detect the position of the radio wave propagation measurement system 100 based on wireless communication with the AP.
 反射物体データ記憶部104およびアンテナ配置データ記憶部106は、物理的に別の記憶装置でもよいし、物理的に一つの記憶装置でもよい。 The reflective object data storage unit 104 and the antenna arrangement data storage unit 106 may be physically different storage devices or may be physically one storage device.
 制御部103およびアンテナ配置決定部105は、例えばコンピュータである。コンピュータは、プログラム及びデータを格納するメモリと、メモリに接続されたマイクロプロセッサとを有する。このプログラムは、マイクロプロセッサを制御部103として機能させるプログラムや、アンテナ配置決定部105として機能させるプログラムである。このプログラムは、コンピュータ読み取り可能な媒体に格納されても良く、その媒体からコンピュータにより読み出されても良い。制御部103およびアンテナ配置決定部105は、一つのコンピュータであっても良いし、互いに異なるコンピュータであっても良い。 The control unit 103 and the antenna arrangement determination unit 105 are, for example, computers. The computer has a memory for storing programs and data, and a microprocessor connected to the memory. This program is a program that causes the microprocessor to function as the control unit 103 or a program that causes the microprocessor to function as the antenna arrangement determination unit 105. This program may be stored in a computer-readable medium, or may be read from the medium by a computer. The control unit 103 and the antenna arrangement determining unit 105 may be one computer or different computers.
 図2は、電波照射受信部101の構成を示す。 FIG. 2 shows a configuration of the radio wave irradiation receiving unit 101.
 電波照射受信部101は、周波数チューニング部201と、アンプ202と、距離方向調節部204と、送信アンテナ205と、受信アンテナ206と、距離方向調節部207と、アンプ208と、信号比較部209と、反射強度検出部210とを有する。 The radio wave irradiation receiving unit 101 includes a frequency tuning unit 201, an amplifier 202, a distance direction adjustment unit 204, a transmission antenna 205, a reception antenna 206, a distance direction adjustment unit 207, an amplifier 208, and a signal comparison unit 209. And a reflection intensity detection unit 210.
 周波数チューニング部201は、指定された周波数の送信信号を生成する。送信信号は、アンプ202と信号比較部209へ分岐する。アンプ202は、送信信号を増幅する。距離方向調節部204は、送信アンテナ205の指向性を、制御部103により指定された方向に調節する。送信アンテナ205は、増幅された送信信号を無線信号として送信する。これにより、送信アンテナ205は、指定された方向へ送信波のビームを照射することができる。また、電波伝搬測定システム100の位置から複数の位置へ送信波のビームを照射することができる。 The frequency tuning unit 201 generates a transmission signal having a designated frequency. The transmission signal branches to the amplifier 202 and the signal comparison unit 209. The amplifier 202 amplifies the transmission signal. The distance direction adjustment unit 204 adjusts the directivity of the transmission antenna 205 in the direction specified by the control unit 103. The transmission antenna 205 transmits the amplified transmission signal as a radio signal. Thereby, the transmission antenna 205 can irradiate the beam of the transmission wave in the designated direction. Also, a transmission wave beam can be irradiated from the position of the radio wave propagation measurement system 100 to a plurality of positions.
 受信アンテナ206は、対象物体によって反射された無線信号を受信する。距離方向調節部207は、距離方向調節部204と同期して受信アンテナ206の指向性を制御部103により指定された方向に調節する。これにより、受信アンテナ206は、対象物体からの反射波を効率よく受信することができる。アンプ208は、受信アンテナ206により受信された信号を増幅し受信信号として出力する。 The receiving antenna 206 receives a radio signal reflected by the target object. The distance direction adjustment unit 207 adjusts the directivity of the reception antenna 206 in the direction specified by the control unit 103 in synchronization with the distance direction adjustment unit 204. Thereby, the receiving antenna 206 can efficiently receive the reflected wave from the target object. The amplifier 208 amplifies the signal received by the receiving antenna 206 and outputs it as a received signal.
 送信アンテナ205および受信アンテナ206は、一つのアンテナであっても良い。送信アンテナ205および受信アンテナ206は、指向性の方向を制御可能なアンテナである。例えば、送信アンテナ205および受信アンテナ206が複数のアンテナ素子を有するアダプティブアレイアンテナであり、距離方向調節部204、207が複数のアンテナ素子の位相を調整する位相振幅調整回路であってもよい。また、送信アンテナ205および受信アンテナ206がホーンアンテナであり、距離方向調節部204、207がホーンアンテナを支持する台座を回転させるステッピングモータであってもよい。 The transmission antenna 205 and the reception antenna 206 may be a single antenna. The transmission antenna 205 and the reception antenna 206 are antennas that can control the direction of directivity. For example, the transmission antenna 205 and the reception antenna 206 may be adaptive array antennas having a plurality of antenna elements, and the distance direction adjustment units 204 and 207 may be phase amplitude adjustment circuits that adjust the phases of the plurality of antenna elements. Further, the transmitting antenna 205 and the receiving antenna 206 may be horn antennas, and the distance direction adjusting units 204 and 207 may be stepping motors that rotate a pedestal that supports the horn antenna.
 信号比較部209は、送信信号および受信信号を入力され、送信信号に対する受信信号の相対振幅および位相を出力する。例えば、信号比較部209は、送信信号をダウンコンバートして2分岐して第1送信信号及び第2送信信号とし、受信信号をダウンコンバートして2分岐して、一方を第1受信信号とし、他方を90度移送して第2受信信号とする。更に信号比較部209は、第1送信信号と第1受信信号をミキシングし、ローパスフィルタを通すことにより、同相成分であるI成分を出力し、第2送信信号と第2受信信号をミキシングし、ローパスフィルタを通すことにより、直交成分であるQ成分を出力する。 The signal comparison unit 209 receives the transmission signal and the reception signal, and outputs the relative amplitude and phase of the reception signal with respect to the transmission signal. For example, the signal comparison unit 209 down-converts the transmission signal and splits it into two to make the first transmission signal and the second transmission signal, down-converts the reception signal and splits it into two, and one of them becomes the first reception signal, The other is moved 90 degrees to obtain a second received signal. Further, the signal comparison unit 209 mixes the first transmission signal and the first reception signal, passes through a low-pass filter, outputs an I component which is an in-phase component, mixes the second transmission signal and the second reception signal, By passing the low-pass filter, the Q component which is an orthogonal component is output.
 反射強度検出部210は、A/D(Analog to Digital)変換回路を含み、信号比較部209の出力をデジタル信号に変換し、複素反射強度とする。複素反射強度はI成分及びQ成分を含む。更に反射強度検出部210は、複素反射強度から反射強度および反射位相を算出して制御部103へ出力する。反射強度は、距離による減衰量と、反射による減衰量とを含む。 The reflection intensity detection unit 210 includes an A / D (Analog to Digital) conversion circuit, converts the output of the signal comparison unit 209 into a digital signal, and sets the complex reflection intensity. The complex reflection intensity includes an I component and a Q component. Further, the reflection intensity detection unit 210 calculates a reflection intensity and a reflection phase from the complex reflection intensity and outputs the calculated reflection intensity and reflection phase to the control unit 103. The reflection intensity includes an attenuation amount due to distance and an attenuation amount due to reflection.
 このような構成により、電波照射受信部101は、制御部103により指定された方向の対象物体へ電波を照射し、対象物体からの反射波を受信し、反射強度および反射位相の検出が可能である。 With such a configuration, the radio wave irradiation receiving unit 101 can irradiate the target object in the direction specified by the control unit 103, receive the reflected wave from the target object, and detect the reflection intensity and the reflection phase. is there.
 図3は、制御部103の構成を示す。 FIG. 3 shows the configuration of the control unit 103.
 制御部103は、方向決定部701と、反射特性算出部702と、反射物体データ生成部703とを有する。 The control unit 103 includes a direction determination unit 701, a reflection characteristic calculation unit 702, and a reflection object data generation unit 703.
 方向決定部701は、形状検出部102から三次元座標点列データを取得し、三次元座標点列データにより表されている形状を分割し、分割された形状を示す分割物体を決定し、分割物体データとして出力する。更に方向決定部701は、夫々の分割物体の距離および方向を算出し、方向距離データとして出力する。更に方向決定部701は、算出された方向へ電波を照射する照射指示を電波照射受信部101へ出力する。 The direction determination unit 701 acquires the three-dimensional coordinate point sequence data from the shape detection unit 102, divides the shape represented by the three-dimensional coordinate point sequence data, determines a divided object indicating the divided shape, Output as object data. Further, the direction determining unit 701 calculates the distance and direction of each divided object and outputs the calculated distance and direction as direction distance data. Further, the direction determining unit 701 outputs an irradiation instruction for irradiating radio waves in the calculated direction to the radio wave irradiation receiving unit 101.
 反射特性算出部702は、方向決定部701から方向距離データを取得し、電波照射受信部101から受信結果に基づく反射強度を取得し、方向距離データおよび反射強度に基づいて対象物体の反射特性を算出し材質データとして出力する。 The reflection characteristic calculation unit 702 acquires the direction distance data from the direction determination unit 701, acquires the reflection intensity based on the reception result from the radio wave irradiation reception unit 101, and determines the reflection characteristic of the target object based on the direction distance data and the reflection intensity. Calculate and output as material data.
 反射物体データ生成部703は、位置検出部107からの位置データにおける特定地域の全体の座標系に、対象物体表面の位置の三次元座標をマッピングし、地形を示す三次元座標と材質データとを対応付けて反射物体データを生成し、反射物体データ記憶部104へ保存する。 The reflective object data generation unit 703 maps the three-dimensional coordinates of the position of the target object surface to the entire coordinate system of the specific area in the position data from the position detection unit 107, and obtains the three-dimensional coordinates indicating the topography and the material data. The reflection object data is generated in association with the data and stored in the reflection object data storage unit 104.
 図4は、測定処理を示す。 FIG. 4 shows the measurement process.
 制御部103は、通信による指示、またはユーザから制御部103への入力に応じて、測定処理を実行する。また、制御部103は、電波伝搬測定システム100の位置の変化に応じて測定処理を繰り返す。 The control unit 103 executes a measurement process in response to an instruction by communication or an input from the user to the control unit 103. In addition, the control unit 103 repeats the measurement process according to a change in the position of the radio wave propagation measurement system 100.
 ステップS302において方向決定部701は、形状検出部102により生成された三次元座標点列データを取得する。制御部103と形状検出部102の間は、データバスや、シリアル信号等、データ転送可能な有線の通信路により接続されている。なお、制御部103と形状検出部102の間は、無線通信により接続されてもよい。 In step S302, the direction determination unit 701 acquires the three-dimensional coordinate point sequence data generated by the shape detection unit 102. The control unit 103 and the shape detection unit 102 are connected by a wired communication path capable of transferring data, such as a data bus or a serial signal. Note that the control unit 103 and the shape detection unit 102 may be connected by wireless communication.
 ステップS303において方向決定部701は、得られた三次元座標点列データから、三次元のポリゴンデータである形状データを生成する。三次元座標点列データから三次元のポリゴンデータに変換する手法として、RANSAC(RANdom Sample Consensus)法や、LMedS(最小メディアン)法など、ロバストに平面領域を抽出する手法が利用可能である。 In step S303, the direction determining unit 701 generates shape data that is three-dimensional polygon data from the obtained three-dimensional coordinate point sequence data. As a method for converting the three-dimensional coordinate point sequence data into the three-dimensional polygon data, a method of extracting a plane area in a robust manner such as a RANSAC (RANdom Sample Consensus) method or a LMedS (minimum median) method can be used.
 ステップS304において方向決定部701は、形状データを、所定の分割サイズDの大きさの平面の部分(メッシュ)である分割物体に分割し、分割物体の位置を示す分割物体データを生成する。 In step S304, the direction determining unit 701 divides the shape data into divided objects that are plane portions (mesh) having a predetermined divided size D, and generates divided object data indicating the positions of the divided objects.
 図5は、分割物体と送信アンテナ205と受信アンテナ206の位置関係を示す。この図における分割物体データ401は、分割物体をx、y、z座標で表す。送信アンテナ205から分割物体へ照射された電波は、送信アンテナ205の指向特性と分割物体までの距離とに応じて、対象物体の表面における広がり402を有する。分割サイズDは、この広がり402より大きい。送信アンテナ205の指向特性による電波の広がり角度がθであり、送信アンテナ205から対象分割物体までの距離がLであるとき、分割サイズDは、次式により決定される。 FIG. 5 shows a positional relationship among the divided object, the transmission antenna 205, and the reception antenna 206. The divided object data 401 in this figure represents the divided object with x, y, and z coordinates. The radio wave irradiated to the divided object from the transmission antenna 205 has a spread 402 on the surface of the target object according to the directivity characteristic of the transmission antenna 205 and the distance to the divided object. The division size D is larger than the spread 402. When the spread angle of the radio wave due to the directivity characteristic of the transmission antenna 205 is θ and the distance from the transmission antenna 205 to the target divided object is L, the division size D is determined by the following equation.
 D=2L・cotθ … (1) D = 2L · cot θ (1)
 ステップS305において方向決定部701は、複数の分割物体の中から各要素を対象分割物体501として順次選択し、選択された対象分割物体501に対して、ステップS306からS311までの処理を実行する。 In step S305, the direction determining unit 701 sequentially selects each element from among the plurality of divided objects as the target divided object 501, and executes the processes from step S306 to S311 on the selected target divided object 501.
 ステップS306において方向決定部701は、対象分割物体501の法線方向に基づいて、送信アンテナ205から対象分割物体501への電波の照射方向と、対象分割物体501への電波の入射方向と、対象分割物体501からの電波の反射方向と、対象分割物体501から受信アンテナ206への電波の受信方向とを算出する。 In step S306, the direction determining unit 701 determines the direction of radio wave irradiation from the transmission antenna 205 to the target split object 501, the direction of radio wave incident on the target split object 501, and the target based on the normal direction of the target split object 501. The direction of reflection of radio waves from the divided object 501 and the direction of reception of radio waves from the target divided object 501 to the receiving antenna 206 are calculated.
 図6は、照射方向と入射方向と反射方向と受信方向とを示す。 FIG. 6 shows an irradiation direction, an incident direction, a reflection direction, and a reception direction.
 照射方向(θt,φt)と入射方向(θi,φi)と反射方向(θs,φs)と受信方向(θr,φr)との夫々は、送信アンテナ205と対象分割物体501と受信アンテナ206との局所的な座標系で定義される角度により表される。 The irradiation direction (θt, φt), the incident direction (θi, φi), the reflection direction (θs, φs), and the reception direction (θr, φr) are respectively determined by the transmission antenna 205, the target divided object 501, and the reception antenna 206. It is represented by an angle defined in the local coordinate system.
 ステップS307において方向決定部701は、算出された照射方向および受信方向に基づき、送信アンテナ205と受信アンテナ206の方向を含む方向指示を電波照射受信部101へ出力する。電波照射受信部101は、方向指示に従って、照射方向および受信方向を変更する。 In step S307, the direction determination unit 701 outputs a direction instruction including the directions of the transmission antenna 205 and the reception antenna 206 to the radio wave irradiation reception unit 101 based on the calculated irradiation direction and reception direction. The radio wave irradiation receiving unit 101 changes the irradiation direction and the reception direction according to the direction instruction.
 ステップS308において反射特性算出部702は、送信アンテナ205から対象分割物体501を経て受信アンテナ206へ到達するまでの距離による減衰を示す基準減衰量を算出する。言い換えれば、基準減衰量は、対象分割物体501が完全導体である場合の、送信波の強度に対する反射波の強度の減衰を示す。 In step S308, the reflection characteristic calculation unit 702 calculates a reference attenuation amount indicating attenuation due to the distance from the transmission antenna 205 to the reception antenna 206 via the target divided object 501. In other words, the reference attenuation amount indicates the attenuation of the intensity of the reflected wave with respect to the intensity of the transmitted wave when the target divided object 501 is a perfect conductor.
 ステップS309において方向決定部701は、電波照射受信部101に対し電波の照射を指示する。この指示は、電波の周波数や出力などを含んでも良い。電波照射受信部101は、この指示に応じて対象分割物体501へ無線信号の送信波を照射し、対象分割物体501からの反射波を受信し、送信波の強度に対する反射波の強度を示す反射強度を算出する。これにより、反射特性算出部702は、電波照射受信部101から反射強度を取得する。 In step S309, the direction determining unit 701 instructs the radio wave irradiation receiving unit 101 to radiate radio waves. This instruction may include the frequency and output of the radio wave. In response to this instruction, the radio wave irradiation receiving unit 101 irradiates the target divided object 501 with a radio wave transmission wave, receives a reflected wave from the target divided object 501, and reflects the reflected wave intensity with respect to the intensity of the transmitted wave. Calculate the intensity. Thereby, the reflection characteristic calculation unit 702 acquires the reflection intensity from the radio wave irradiation reception unit 101.
 ステップS310において反射特性算出部702は、反射強度から距離補正量を減ずることにより、対象分割物体501の反射率を算出して材質データとする。対象分割物体501の反射率は、対象分割物体501へ入射した電波の強度に対する反射した電波の強度の比であり、対象分割物体501の材質に依存する。反射特性算出部702は、反射による位相の変化量や、複素反射率などの反射特性を算出しても良い。 In step S310, the reflection characteristic calculation unit 702 calculates the reflectance of the target divided object 501 by subtracting the distance correction amount from the reflection intensity, and sets it as material data. The reflectance of the target divided object 501 is a ratio of the intensity of the reflected radio wave to the intensity of the radio wave incident on the target divided object 501, and depends on the material of the target divided object 501. The reflection characteristic calculation unit 702 may calculate a reflection characteristic such as a phase change amount due to reflection or a complex reflectance.
 ステップS311において反射物体データ生成部703は、分割物体データを位置データにマッピングし、マッピングされた分割物体データと材質データとを対応付けた反射物体データを生成し反射物体データ記憶部104に保存する。反射物体データは、分割物体の座標点のx座標およびy座標と、当該分割物体の高さと、当該分割物体の反射率とを有する。 In step S <b> 311, the reflective object data generation unit 703 maps the divided object data to position data, generates reflective object data in which the mapped divided object data and the material data are associated with each other, and stores the reflected object data in the reflective object data storage unit 104. . The reflective object data includes the x and y coordinates of the coordinate points of the divided object, the height of the divided object, and the reflectance of the divided object.
 以上が測定処理である。測定処理は、形状検出部102および電波照射受信部101の両方の検出可能範囲の対象物体に対して行われる。検出可能範囲は、形状検出部102における三次元距離センサの距離検出性能や、電波照射受信部101により使用される周波数における電波の出力等によって異なる。特定地域内で電波伝搬測定システム100を移動させ、対象物体を変更して測定処理を行うことにより、電波伝搬測定システム100が特定地域の全体における反射物体データを生成し、蓄積しても良い。測定処理によれば、特定地域の地形や電波反射特性を測定することができる。対象物体の三次元形状を複数の平面部分である分割物体に分割することにより、分割物体毎の反射率を測定することができる。分割物体毎の反射率を算出することにより、特定地域内の電波伝搬による減衰量を算出することができる。分割物体データを位置データにマッピングすることにより、特定地域全体の地形を生成することができ、特定地域全体の反射特性の分布を生成することができる。 The above is the measurement process. The measurement process is performed on the target objects in the detectable range of both the shape detection unit 102 and the radio wave irradiation reception unit 101. The detectable range varies depending on the distance detection performance of the three-dimensional distance sensor in the shape detection unit 102, the output of radio waves at the frequency used by the radio wave irradiation reception unit 101, and the like. The radio wave propagation measurement system 100 may generate and accumulate the reflected object data in the entire specific area by moving the radio wave propagation measurement system 100 in the specific area, changing the target object, and performing measurement processing. According to the measurement process, it is possible to measure the topography and radio wave reflection characteristics of a specific area. By dividing the three-dimensional shape of the target object into divided objects that are a plurality of planar portions, the reflectance of each divided object can be measured. By calculating the reflectance for each divided object, it is possible to calculate the attenuation due to radio wave propagation in the specific area. By mapping the divided object data to the position data, the topography of the entire specific area can be generated, and the distribution of the reflection characteristics of the entire specific area can be generated.
 アンテナ配置決定部105は、反射物体データ記憶部104に蓄積された特定地域の全体の反射物体データを取得し、特定地域内の無線ネットワークを構築するためのAPアンテナの位置を決定し、アンテナ配置データとしてアンテナ配置データ記憶部106へ保存する。ここでアンテナ配置決定部105は、所定の通信エリアにおける無線ネットワークの通信品質が所定の条件を満たすようにAPアンテナの位置を決定する。ここで、通信エリアは、例えば、特定地域の内で無線通信が必要なエリアである。通信エリア内の無線通信端末は、APとの無線通信を行うことにより、無線ネットワークにより接続する。通信品質は、例えば、通信エリア内の無線通信端末とAPの間に必要な所要受信電力、ノイズ対雑音比、通信ビットレート、通信チャンネル容量等の指標により表される。 The antenna arrangement determination unit 105 acquires the entire reflection object data of the specific area stored in the reflection object data storage unit 104, determines the position of the AP antenna for constructing the wireless network in the specific area, and the antenna arrangement The data is stored in the antenna arrangement data storage unit 106 as data. Here, the antenna arrangement determining unit 105 determines the position of the AP antenna so that the communication quality of the wireless network in a predetermined communication area satisfies a predetermined condition. Here, the communication area is, for example, an area that requires wireless communication within a specific area. The wireless communication terminals in the communication area are connected by a wireless network by performing wireless communication with the AP. The communication quality is represented, for example, by an index such as required reception power, noise-to-noise ratio, communication bit rate, and communication channel capacity required between the wireless communication terminal and the AP in the communication area.
 アンテナ配置決定部105は、所定の通信エリア要求条件を満たすアンテナ配置を選択する。例えばアンテナ配置決定部105は、指標が所定の指標閾値以上となる通信可能面積を算出する。例えば通信エリア要求条件は、通信エリアの面積に対する通信可能面積の比率が所定の比率以上となることである。アンテナ配置決定部105は、APアンテナ数や、アンテナ設置可能な箇所の条件を考慮することで、コストや実現性を満たすアンテナ配置を選択する。アンテナ配置決定部105は、複数のAPアンテナ位置候補を記憶し、複数のAPアンテナ位置候補の中から幾つかの対象APアンテナ位置候補を選択し、反射物体データに基づいて、対象APアンテナ位置候補と通信エリアの間の電波伝搬解析を行い、通信エリア要求条件を満たしているか否かを判断する。 The antenna arrangement determining unit 105 selects an antenna arrangement that satisfies a predetermined communication area requirement condition. For example, the antenna arrangement determining unit 105 calculates a communicable area where the index is equal to or greater than a predetermined index threshold. For example, the communication area requirement condition is that the ratio of the communicable area to the area of the communication area is not less than a predetermined ratio. The antenna arrangement determining unit 105 selects an antenna arrangement that satisfies the cost and feasibility by considering the number of AP antennas and the conditions of the places where antennas can be installed. The antenna arrangement determining unit 105 stores a plurality of AP antenna position candidates, selects some target AP antenna position candidates from the plurality of AP antenna position candidates, and based on the reflected object data, the target AP antenna position candidates Radio wave propagation analysis between the communication area and the communication area to determine whether the communication area requirement is satisfied.
 アンテナ配置決定部105は、現場の地形および電波の反射波を計測して得られた反射物体データを用いて電波伝搬解析を行うことにより、APアンテナ位置候補と通信エリア内の任意の位置との間の電波伝搬状態を精度よく解析することが可能となる。 The antenna arrangement determining unit 105 performs a radio wave propagation analysis using the reflected object data obtained by measuring the topography of the site and the reflected wave of the radio wave, so that the AP antenna position candidate and an arbitrary position in the communication area are It is possible to analyze the radio wave propagation state between them with high accuracy.
 また、APアンテナ位置候補の数が多い場合、膨大な組合せテストが必要となるため、アンテナ配置決定部105は、遺伝的アルゴリズムや、線形計画法、シンプレックス法等の最適解の探索手法を用いてAPアンテナ位置を決定しても良い。 In addition, when the number of AP antenna position candidates is large, an enormous combination test is required. Therefore, the antenna arrangement determination unit 105 uses a genetic algorithm, a search method for an optimal solution such as a linear programming method, and a simplex method. The AP antenna position may be determined.
 図7は、解析処理を示す。 FIG. 7 shows the analysis process.
 アンテナ配置決定部105は、測定処理の後に解析処理を実行する。 The antenna arrangement determination unit 105 executes an analysis process after the measurement process.
 ステップS602において、アンテナ配置決定部105は、通信エリア要求条件を取得する。通信エリア要求条件は、例えば特定地域内で通信が必要な領域である一つ以上の通信エリアの範囲の指定と、各通信エリアにおいて必要な通信品質の指標閾値の組み合わせである。 In step S602, the antenna arrangement determining unit 105 acquires a communication area request condition. The communication area requirement condition is, for example, a combination of designation of one or more communication area ranges that require communication within a specific area and an index threshold value of communication quality required in each communication area.
 アンテナ配置決定部105は、ユーザからの入力により通信エリア要求条件を受け付けても良い。通信エリア要求条件は、反射物体データ記憶部104に保存されていても良い。 The antenna arrangement determining unit 105 may accept the communication area request condition by an input from the user. The communication area request condition may be stored in the reflective object data storage unit 104.
 ステップS603において、アンテナ配置決定部105は、反射物体データ記憶部104から反射物体データを取得する。 In step S603, the antenna arrangement determination unit 105 acquires the reflection object data from the reflection object data storage unit 104.
 ステップS604において、アンテナ配置決定部105は、予め記憶されたAPアンテナ位置候補集合を取得する。APアンテナ位置候補集合とは、APアンテナを配置できる座標点の集合である。アンテナ配置決定部105は、ユーザからの入力に基づいてAPアンテナ位置候補集合を取得しても良い。APアンテナ位置候補集合は、反射物体データ記憶部104に保存されていても良い。 In step S604, the antenna arrangement determining unit 105 acquires a previously stored AP antenna position candidate set. The AP antenna position candidate set is a set of coordinate points where the AP antenna can be arranged. The antenna arrangement determining unit 105 may acquire an AP antenna position candidate set based on an input from the user. The AP antenna position candidate set may be stored in the reflective object data storage unit 104.
 ステップS605においてアンテナ配置決定部105は、APアンテナ位置候補集合の中から各要素をAPアンテナ位置候補pとして順次選択し、選択されたAPアンテナ位置候補pに対して、ステップS606およびS607を実行する。 In step S605, the antenna arrangement determining unit 105 sequentially selects each element from the AP antenna position candidate set as the AP antenna position candidate p, and executes steps S606 and S607 on the selected AP antenna position candidate p. .
 ステップS606においてアンテナ配置決定部105は、反射物体データとAPアンテナ位置候補pに基づいて電波伝搬解析を行うことにより、点pにAPアンテナを配置した場合にどのように電波が伝搬するかを解析する。アンテナ配置決定部105は、電波伝搬解析において、レイトレーシング法や、FDTD(Finite-difference time-domain method)法等の電磁界解析手法を用いることができる。解析結果は、例えば、特定地域内に所定間隔に配置された点群において、APアンテナからの電波を受信した場合にどれだけの受信電力を得られるかを示す通信品質を出力する。例えば、電波伝搬解析において、反射位置を特定し、反射物体データにおいて反射位置に対応する反射率を用いることにより、APアンテナからの電波の減衰量を算出することができる。なお、アンテナ配置決定部105は、APアンテナと通信エリア内の特定の位置との間の電波伝搬特性を解析しても良い。なお、電波伝搬解析は、変復調や誤り訂正など、APの無線通信方式を用いて解析することにより、通信エリア内の各位置の誤り率などの通信品質を算出しても良い。 In step S606, the antenna arrangement determination unit 105 analyzes how the radio waves propagate when the AP antenna is arranged at the point p by performing radio wave propagation analysis based on the reflected object data and the AP antenna position candidate p. To do. The antenna arrangement determining unit 105 can use an electromagnetic field analysis method such as a ray tracing method or an FDTD (Finite-difference time-domain method) method in radio wave propagation analysis. The analysis result outputs, for example, communication quality indicating how much received power can be obtained when radio waves from the AP antenna are received at a point group arranged at a predetermined interval in a specific area. For example, in the radio wave propagation analysis, the attenuation position of the radio wave from the AP antenna can be calculated by specifying the reflection position and using the reflectance corresponding to the reflection position in the reflection object data. The antenna arrangement determining unit 105 may analyze the radio wave propagation characteristics between the AP antenna and a specific position in the communication area. In the radio wave propagation analysis, communication quality such as an error rate at each position in the communication area may be calculated by performing analysis using an AP wireless communication method such as modulation / demodulation and error correction.
 ステップS607においてアンテナ配置決定部105は、解析結果をpに対応付けてアンテナ配置データ記憶部106に保持する。全てのAPアンテナ位置候補に対してステップS606およびS607を繰り返すことにより、アンテナ配置決定部105は、全てのAPアンテナ位置候補に対する解析結果をアンテナ配置データ記憶部106に保存する。 In step S607, the antenna arrangement determination unit 105 stores the analysis result in the antenna arrangement data storage unit 106 in association with p. By repeating steps S606 and S607 for all AP antenna position candidates, the antenna arrangement determining unit 105 stores the analysis results for all AP antenna position candidates in the antenna arrangement data storage unit 106.
 ステップS608においてアンテナ配置決定部105は、APアンテナ位置候補集合からAPアンテナ位置候補を選択し、APアンテナ位置候補の解析結果が通信エリア要求条件を満たすまで、ステップS609からS611までの処理を繰り返し実行する。 In step S608, the antenna arrangement determining unit 105 selects an AP antenna position candidate from the AP antenna position candidate set, and repeatedly executes the processes from step S609 to S611 until the analysis result of the AP antenna position candidate satisfies the communication area requirement condition. To do.
 ステップS609においてアンテナ配置決定部105は、APアンテナ位置候補集合から、一つ以上のAPアンテナ位置候補を選択する。選択されたAPアンテナ位置候補の部分集合は、APアンテナの配置を表す。アンテナ配置決定部105は、部分集合の選択において、種々の最適解探索アルゴリズムを適用することで、探索の繰り返し数を削減することが可能となる。 In step S609, the antenna arrangement determining unit 105 selects one or more AP antenna position candidates from the AP antenna position candidate set. The selected subset of AP antenna position candidates represents the arrangement of AP antennas. The antenna arrangement determining unit 105 can reduce the number of search iterations by applying various optimal solution search algorithms in selecting a subset.
 ステップS610においてアンテナ配置決定部105は、選択されたAPアンテナ位置候補に対応する解析結果を反射物体データ記憶部104から取得する。 In step S610, the antenna arrangement determining unit 105 acquires the analysis result corresponding to the selected AP antenna position candidate from the reflective object data storage unit 104.
 ステップS611においてアンテナ配置決定部105は、解析結果が通信エリア要求条件を満たすか否かを評価する。ここで、解析結果が通信エリア要求条件を満たす場合、アンテナ配置決定部105は、ステップS608による繰り返しを終了し、処理をステップS612へ移行させる。 In step S611, the antenna arrangement determining unit 105 evaluates whether the analysis result satisfies the communication area requirement condition. Here, when the analysis result satisfies the communication area requirement condition, the antenna arrangement determining unit 105 ends the repetition in step S608 and shifts the processing to step S612.
 ステップS612においてアンテナ配置決定部105は、通信エリア要求条件を満たすと判定されたAPアンテナ位置候補をアンテナ配置決定部105へ保存する。 In step S612, the antenna arrangement determining unit 105 stores the AP antenna position candidates determined to satisfy the communication area requirement condition in the antenna arrangement determining unit 105.
 以上が解析処理である。 The above is the analysis process.
 この処理によれば、通信エリア内の実際の地形や材質に基づいて最適なアンテナ配置を決定することが可能となる。また、APアンテナの位置の複数の候補について、電波伝搬を解析することにより、複数の候補を比較することができる。また、複数の候補の中から通信エリア要求を満たす候補を選択することにより、容易に無線ネットワークの構築および維持を行うことができる。 This process makes it possible to determine the optimal antenna arrangement based on the actual topography and material in the communication area. Moreover, a plurality of candidates can be compared by analyzing radio wave propagation for a plurality of candidates for the position of the AP antenna. Further, by selecting a candidate satisfying the communication area request from a plurality of candidates, it is possible to easily construct and maintain a wireless network.
 以下、本実施例の電波伝搬測定システムを適用した遠隔運転システムについて説明する。 Hereinafter, a remote operation system to which the radio wave propagation measurement system of the present embodiment is applied will be described.
 図8は、実施例1の遠隔運転システムの構成を示す。 FIG. 8 shows the configuration of the remote operation system of the first embodiment.
 遠隔運転システムは、指示装置801と、複数のAP802と、複数の車両803とを有する。指示装置801は、有線または無線のネットワーク804を介して複数のAP802に接続されている。車両803は、例えば、鉱山における作業機械である。 The remote operation system includes an instruction device 801, a plurality of APs 802, and a plurality of vehicles 803. The instruction device 801 is connected to a plurality of APs 802 via a wired or wireless network 804. The vehicle 803 is, for example, a work machine in a mine.
 車両803は、運転装置811と、電波伝搬測定システム100とを有する。運転装置811は、無線通信によりAP802に接続する。指示装置801は、AP802を介して運転装置811と通信することにより、運転装置811へ指示を送信する。運転装置811は、AP802を介して、指示装置801と通信を行い、指示装置801からの指示に従って、車両803を運転する。 The vehicle 803 includes a driving device 811 and a radio wave propagation measurement system 100. The driving device 811 connects to the AP 802 by wireless communication. The instruction device 801 transmits an instruction to the driving device 811 by communicating with the driving device 811 via the AP 802. The driving device 811 communicates with the instruction device 801 via the AP 802 and drives the vehicle 803 according to the instruction from the instruction device 801.
 AP802が無線通信できる車両803の位置の範囲(サービスエリア)を通信エリアと呼ぶ。通信エリアは例えば、鉱山において車両803が移動する領域である。AP802のアンテナを配置するためのAPアンテナ位置候補は、例えば、遠隔運転システムの作業機械が移動する場所でなく、且つ掘削予定の場所でもなく、且つAPアンテナを配置するためのスペースが存在する場所である。電波伝搬測定システム100は、車両803以外の作業機械に搭載されていても良い。 The range (service area) of the vehicle 803 where the AP 802 can wirelessly communicate is called a communication area. The communication area is an area where the vehicle 803 moves in a mine, for example. The AP antenna position candidate for placing the AP 802 antenna is, for example, a place where the work machine of the remote operation system moves and is not a place where excavation is planned, and where a space for placing the AP antenna exists. It is. The radio wave propagation measurement system 100 may be mounted on a work machine other than the vehicle 803.
 なお、電波伝搬測定システム100は、反射物体データ記憶部104と、アンテナ配置決定部105と、アンテナ配置データ記憶部106とを有していなくても良い。この場合、指示装置801など、電波伝搬測定システム100と通信可能な装置が、反射物体データ記憶部104と、アンテナ配置決定部105と、アンテナ配置データ記憶部106を有する。電波伝搬測定システム100は、指示装置801からの指示に従って測定処理を実行し、反射物体データを算出し、指示装置801へ送信する。指示装置801内のアンテナ配置決定部105は、電波伝搬測定システム100から受信した反射物体データを反射物体データ記憶部104へ保存し、解析処理を実行する。 Note that the radio wave propagation measurement system 100 may not include the reflecting object data storage unit 104, the antenna arrangement determination unit 105, and the antenna arrangement data storage unit 106. In this case, a device that can communicate with the radio wave propagation measurement system 100, such as the pointing device 801, includes the reflective object data storage unit 104, the antenna arrangement determination unit 105, and the antenna arrangement data storage unit 106. The radio wave propagation measurement system 100 performs measurement processing in accordance with an instruction from the instruction device 801, calculates reflection object data, and transmits it to the instruction device 801. The antenna arrangement determination unit 105 in the instruction device 801 stores the reflection object data received from the radio wave propagation measurement system 100 in the reflection object data storage unit 104, and executes analysis processing.
 この遠隔運転システムによれば、車両803による掘削作業などで特定地域内の地形が変化した場合、その車両803が、反射物体データを測定することができる。これにより、アンテナ配置決定部105が地形の変化に応じてAP802のアンテナの配置を決定し、通信エリア要求条件を満たす無線ネットワークを構築し維持することができる。 According to this remote operation system, when the terrain in a specific area changes due to excavation work by the vehicle 803, the vehicle 803 can measure the reflection object data. Thereby, the antenna arrangement determining unit 105 can determine the arrangement of the antennas of the AP 802 in accordance with the change in topography, and can build and maintain a wireless network that satisfies the communication area requirement condition.
 本実施例の電波伝搬測定システムは、複数の分割物体からの散乱電磁波を考慮して反射率を算出する。以下、実施例1との相違点を中心に説明する。 The radio wave propagation measurement system of the present embodiment calculates the reflectance in consideration of scattered electromagnetic waves from a plurality of divided objects. Hereinafter, the difference from the first embodiment will be mainly described.
 図9は、実施例2の対象分割物体群の構成を示す。 FIG. 9 shows a configuration of a target divided object group according to the second embodiment.
 本実施例の測定処理のステップS308において反射特性算出部702は、送信アンテナ205から、対象分割物体501を含む対象分割物体群502を経て受信アンテナ206へ到達するまでの減衰を示す基準減衰量を算出する。対象分割物体群502は、対象分割物体501を中心とする所定の大きさAの範囲内に位置する分割物体である。大きさAは例えば、無線信号の波長に予め設定された整数を乗じた値である。本実施例における反射波は、対象分割物体群502からの散乱波を含む。基準減衰量は、対象分割物体501を完全導体と仮定した場合の、送信波の強度に対し、反射波の強度の減衰を示す。反射特性算出部702は、散乱電磁波の計算方法として、UTD(Uniform Theory of Diffraction)や、FDTD(Finite Difference Time Domain)法、有限要素法、モーメント法等を用いる。反射特性算出部702は、反射強度から基準減衰量を減ずることにより、反射率を算出する。 In step S308 of the measurement processing according to the present exemplary embodiment, the reflection characteristic calculation unit 702 calculates a reference attenuation amount indicating attenuation from the transmission antenna 205 to the reception antenna 206 via the target divided object group 502 including the target divided object 501. calculate. The target divided object group 502 is a divided object located within a range of a predetermined size A centering on the target divided object 501. The magnitude A is, for example, a value obtained by multiplying the wavelength of the radio signal by a preset integer. The reflected wave in the present embodiment includes a scattered wave from the target divided object group 502. The reference attenuation amount indicates the attenuation of the intensity of the reflected wave with respect to the intensity of the transmitted wave when the target divided object 501 is assumed to be a complete conductor. The reflection characteristic calculation unit 702 uses a uniform theory of diffraction (UTD), a FDTD (Finite Difference Time Domain) method, a finite element method, a moment method, or the like as a calculation method of scattered electromagnetic waves. The reflection characteristic calculation unit 702 calculates the reflectance by subtracting the reference attenuation amount from the reflection intensity.
 本実施例の測定処理によれば、対象分割物体群502の形状に基づいて反射率を算出することにより、反射率の算出の精度を向上させることができる。 According to the measurement process of the present embodiment, the reflectance calculation accuracy can be improved by calculating the reflectance based on the shape of the target divided object group 502.
 本実施例の電波伝搬測定システムは、反射物体データに基づいて地図データを更新する。以下、実施例1との相違点を中心に説明する。 The radio wave propagation measurement system of the present embodiment updates the map data based on the reflective object data. Hereinafter, the difference from the first embodiment will be mainly described.
 図10は、実施例3の電波伝搬測定システムの構成を示す。 FIG. 10 shows the configuration of the radio wave propagation measurement system of the third embodiment.
 本実施例の電波伝搬測定システム100は、新たに地図データ記憶部821を有する。 The radio wave propagation measurement system 100 according to the present embodiment newly has a map data storage unit 821.
 地図データ記憶部821は、地図データを格納する。地図データは、特定地域内の地形をあらわすデータであり、例えば、緯度および経度の座標系により表される平面上の10m間隔のメッシュにおける座標点の位置と、その座標点における標高とを含む。地図データの座標系と反射物体データの座標系とを一致していない場合、一致するように何れかの座標系が変換される。 The map data storage unit 821 stores map data. The map data is data representing the terrain in a specific area, and includes, for example, the positions of coordinate points on a 10 m-interval mesh on a plane represented by a coordinate system of latitude and longitude, and elevations at the coordinate points. If the coordinate system of the map data does not match the coordinate system of the reflective object data, one of the coordinate systems is converted so as to match.
 図11は、地図データの一例を示す。 FIG. 11 shows an example of map data.
 地図データの各行は一つの座標点のエントリを表す。各エントリは、座標点を識別するために割り振られるIDである座標点番号901と、当該座標点のx座標902と、当該座標点のy座標903と、当該座標点のz座標である標高904とを有する。 Each line of map data represents one coordinate point entry. Each entry includes a coordinate point number 901 that is an ID assigned to identify a coordinate point, an x coordinate 902 of the coordinate point, a y coordinate 903 of the coordinate point, and an elevation 904 that is a z coordinate of the coordinate point. And have.
 反射物体データ生成部703は、反射物体データの座標点を地図データの座標点にマッピングする。ここで反射物体データ生成部703は、地図データの座標点が、反射物体データの複数の座標点の間にある場合、反射物体データを補間する。これにより、反射物体データ生成部703は、反射物体データに表された地形に基づいて地図データ内の標高を更新する。本実施例によれば、測定処理により測定された地形を地図データに反映することができる。 The reflective object data generation unit 703 maps the coordinate points of the reflective object data to the coordinate points of the map data. Here, the reflective object data generation unit 703 interpolates the reflective object data when the coordinate points of the map data are between a plurality of coordinate points of the reflective object data. Thereby, the reflective object data generation unit 703 updates the altitude in the map data based on the terrain represented in the reflective object data. According to the present embodiment, the topography measured by the measurement process can be reflected in the map data.
 以上の複数の実施例が組み合わせられても良い。 A plurality of the above embodiments may be combined.
 以上の実施例で説明された技術は、次のように表現することもできる。
(表現1)
 特定地域の表面の三次元形状を測定する形状測定部と、
 前記三次元形状の中の複数の位置の夫々を対象位置として指定する位置指定部と、
 特定周波数帯の無線信号である送信波を前記対象位置へ送信し反射波を受信し、前記送信波および前記反射波を比較することにより、前記比較の結果である反射強度を算出する送受信部と、
 前記対象位置および前記反射強度に基づいて、前記対象位置における電波の反射特性を算出する反射特性算出部と、
 前記複数の位置と前記複数の位置の反射特性とに基づいて、前記特定地域内の第1位置と前記特定地域内の第2位置との間の無線通信の品質を算出する品質算出部と、
を備える電波伝搬測定システム。
(表現2)
 前記位置指定部は、前記対象位置の方向を算出し、
 前記送受信部は、前記対象位置の方向に基づいて前記送信波の送信の方向を制御する、
表現1に記載の電波伝搬測定システム。
(表現3)
 前記反射特性算出部は、前記対象位置および前記反射強度に基づいて、前記対象位置における電波の反射率を前記反射特性として算出する、
表現2に記載の電波伝搬測定システム。
(表現4)
 前記品質算出部は、前記複数の位置および前記反射率に基づいて、前記第1位置と前記第2位置との間の電波伝搬による電波の減衰量を算出し、前記減衰量に基づいて前記品質を算出する、
表現3に記載の電波伝搬測定システム。
(表現5)
 前記位置指定部は、前記三次元形状を複数の平面部分に分割し、前記複数の平面部分を前記複数の位置として指定する、
表現4に記載の電波伝搬測定システム。
(表現6)
 前記形状測定部および前記送受信部による測定の位置を検出する位置検出部を更に備え、
 前記反射特性算出部は、前記測定の位置の座標系に前記複数の位置を対応付ける、
表現5に記載の電波伝搬測定システム。
(表現7)
 前記特定地域の三次元地図を示す地図データを記憶する記憶部を更に備え、
 前記反射特性算出部は、前記複数の位置に基づいて前記地図データを更新する、
表現6に記載の電波伝搬測定システム。
(表現8)
 前記品質算出部は、前記特定地域内の無線通信装置との無線通信のための無線通信アンテナの位置の複数の候補を記憶し、前記複数の候補の夫々を前記第1位置として選択し、前記複数の位置と前記複数の位置の反射特性とに基づいて、前記第1位置と前記第2位置との間の無線通信の品質を算出する、
表現7に記載の電波伝搬測定システム。
(表現9)
 前記品質算出部は、前記複数の候補に対して算出された品質に基づいて、前記複数の候補の中から品質が所定の品質条件を満たす候補を選択する、
表現8に記載の電波伝搬測定システム。
(表現10)
 特定地域内の作業機械の運転の指示を出力する指示部と、
 前記指示を無線送信する無線通信部と、
 前記作業機械に搭載されており、前記指示を受信し前記指示に応じて前記作業機械を運転する運転部と、
 前記作業機械に搭載されており、前記特定地域の表面の三次元形状を測定する形状測定部と、
 前記作業機械に搭載されており、前記三次元形状の中の複数の位置の夫々を対象位置として指定する位置指定部と、
 前記作業機械に搭載されており、前記対象位置へ特定周波数帯の無線信号である送信波を送信し反射波を受信し、前記送信波および前記反射波を比較することにより、前記比較の結果である反射強度を算出する送受信部と、
 前記対象位置および前記反射強度に基づいて、前記対象位置における電波の反射特性を算出する反射特性算出部と、
 前記複数の位置と前記複数の位置の反射特性とに基づいて、前記特定地域内の第1位置と前記特定地域内の第2位置との間の無線通信の品質を算出する品質算出部と、
を備える遠隔運転システム。
(表現11)
 特定地域の表面の三次元形状を測定し、
 前記三次元形状の中の複数の位置の夫々を対象位置として指定し、
 前記対象位置へ特定周波数帯の無線信号である送信波を送信し反射波を受信し、
 前記送信波および前記反射波を比較することにより、前記比較の結果である反射強度を算出し、
 前記対象位置および前記反射強度に基づいて、前記対象位置における電波の反射特性を算出し、
 前記複数の位置と前記複数の位置の反射特性とに基づいて、前記特定地域内の第1位置と前記特定地域内の第2位置との間の無線通信の品質を算出する、
ことを備える電波伝搬測定方法。
The techniques described in the above embodiments can also be expressed as follows.
(Expression 1)
A shape measuring unit that measures the three-dimensional shape of the surface of a specific area;
A position designating unit that designates each of a plurality of positions in the three-dimensional shape as a target position;
A transmission / reception unit that calculates a reflection intensity as a result of the comparison by transmitting a transmission wave that is a radio signal of a specific frequency band to the target position, receiving a reflection wave, and comparing the transmission wave and the reflection wave; ,
Based on the target position and the reflection intensity, a reflection characteristic calculation unit that calculates a reflection characteristic of radio waves at the target position;
A quality calculating unit that calculates the quality of wireless communication between the first position in the specific area and the second position in the specific area based on the plurality of positions and the reflection characteristics of the plurality of positions;
A radio wave propagation measurement system comprising:
(Expression 2)
The position specifying unit calculates a direction of the target position;
The transceiver unit controls a transmission direction of the transmission wave based on a direction of the target position;
The radio wave propagation measurement system according to expression 1.
(Expression 3)
The reflection characteristic calculation unit calculates the reflectance of the radio wave at the target position as the reflection characteristic based on the target position and the reflection intensity.
The radio wave propagation measurement system according to expression 2.
(Expression 4)
The quality calculation unit calculates an attenuation amount of radio waves due to radio wave propagation between the first position and the second position based on the plurality of positions and the reflectance, and the quality based on the attenuation amount To calculate,
The radio wave propagation measurement system according to expression 3.
(Expression 5)
The position specifying unit divides the three-dimensional shape into a plurality of plane portions, and specifies the plurality of plane portions as the plurality of positions.
The radio wave propagation measurement system according to expression 4.
(Expression 6)
A position detection unit for detecting a position of measurement by the shape measurement unit and the transmission / reception unit;
The reflection characteristic calculation unit associates the plurality of positions with a coordinate system of the measurement positions.
The radio wave propagation measurement system according to expression 5.
(Expression 7)
A storage unit for storing map data indicating a three-dimensional map of the specific area;
The reflection characteristic calculation unit updates the map data based on the plurality of positions.
The radio wave propagation measurement system according to expression 6.
(Expression 8)
The quality calculation unit stores a plurality of candidates for the position of a wireless communication antenna for wireless communication with a wireless communication device in the specific area, selects each of the plurality of candidates as the first position, Calculating the quality of wireless communication between the first position and the second position based on a plurality of positions and reflection characteristics of the plurality of positions;
The radio wave propagation measurement system according to expression 7.
(Expression 9)
The quality calculation unit selects a candidate satisfying a predetermined quality condition from the plurality of candidates based on the quality calculated for the plurality of candidates.
The radio wave propagation measurement system according to Expression 8.
(Expression 10)
An instruction unit for outputting an instruction of operation of a work machine in a specific area;
A wireless communication unit for wirelessly transmitting the instruction;
Mounted on the work machine, receiving the instruction and operating the work machine according to the instruction;
Mounted on the work machine, a shape measuring unit for measuring the three-dimensional shape of the surface of the specific area,
Mounted on the work machine, a position specifying unit for specifying each of a plurality of positions in the three-dimensional shape as a target position;
It is mounted on the work machine, transmits a transmission wave, which is a radio signal of a specific frequency band, to the target position, receives a reflected wave, and compares the transmission wave and the reflected wave. A transmission / reception unit for calculating a certain reflection intensity;
Based on the target position and the reflection intensity, a reflection characteristic calculation unit that calculates a reflection characteristic of radio waves at the target position;
A quality calculating unit that calculates the quality of wireless communication between the first position in the specific area and the second position in the specific area based on the plurality of positions and the reflection characteristics of the plurality of positions;
A remote driving system comprising:
(Expression 11)
Measure the three-dimensional shape of the surface of a specific area,
Specify each of a plurality of positions in the three-dimensional shape as a target position,
Transmitting a transmission wave that is a radio signal of a specific frequency band to the target position and receiving a reflected wave;
By comparing the transmitted wave and the reflected wave, the reflection intensity as a result of the comparison is calculated,
Based on the target position and the reflection intensity, the radio wave reflection characteristics at the target position are calculated,
Calculating a quality of wireless communication between the first position in the specific area and the second position in the specific area based on the plurality of positions and the reflection characteristics of the plurality of positions;
A radio wave propagation measuring method comprising:
 以上の表現における用語について説明する。形状測定部は、形状検出部102などに対応する。位置指定部は、方向決定部701などに対応する。送受信部は、電波照射受信部101などに対応する。品質算出部は、アンテナ配置決定部105などに対応する。記憶部は、地図データ記憶部821などに対応する。指示部は、指示装置801などに対応する。無線通信部は、AP802などに対応する。運転部は、運転装置801などに対応する。第1位置は、APアンテナ位置候補などに対応する。第2位置は、通信エリア内の位置などに対応する。 Explain the terms in the above expression. The shape measuring unit corresponds to the shape detecting unit 102 and the like. The position specifying unit corresponds to the direction determining unit 701 and the like. The transmission / reception unit corresponds to the radio wave irradiation reception unit 101 and the like. The quality calculation unit corresponds to the antenna arrangement determination unit 105 and the like. The storage unit corresponds to the map data storage unit 821 and the like. The instruction unit corresponds to the instruction device 801 and the like. The wireless communication unit corresponds to the AP 802 or the like. The driving unit corresponds to the driving device 801 and the like. The first position corresponds to an AP antenna position candidate or the like. The second position corresponds to a position in the communication area.
 本発明は、以上の実施例に限定されるものでなく、その趣旨から逸脱しない範囲で、他の様々な形に変更することができる。 The present invention is not limited to the above embodiments, and can be modified in various other forms without departing from the spirit of the present invention.
 100:電波伝搬測定システム、 101:電波照射受信部、 102:形状検出部、 103:制御部、 104:反射物体データ記憶部、 105:アンテナ配置決定部、 106:アンテナ配置データ記憶部、 107:位置検出部、 201:周波数チューニング部、 202:アンプ、 204:距離方向調節部、 205:送信アンテナ、 206:受信アンテナ、 207:距離方向調節部、 208:アンプ、 209:信号比較部、 210:反射強度検出部、 401:分割物体データ、 501:対象分割物体、 502:対象分割物体群、 701:方向決定部、 702:反射特性算出部、 703、703b:反射物体データ生成部、 801:指示装置、 803:車両、 804:ネットワーク、 811:運転装置、 821:地図データ記憶部
 
DESCRIPTION OF SYMBOLS 100: Radio wave propagation measuring system, 101: Radio wave irradiation receiving part, 102: Shape detection part, 103: Control part, 104: Reflecting object data storage part, 105: Antenna arrangement | positioning determination part, 106: Antenna arrangement | positioning data storage part, 107: Position detection unit 201: Frequency tuning unit 202: Amplifier 204: Distance direction adjustment unit 205: Transmission antenna 206: Reception antenna 207: Distance direction adjustment unit 208: Amplifier 209: Signal comparison unit 210: Reflection intensity detection unit, 401: divided object data, 501: target divided object, 502: target divided object group, 701: direction determination unit, 702: reflection characteristic calculation unit, 703, 703b: reflected object data generation unit, 801: instruction Device, 803: vehicle, 804: network, 811: driving device, 821: map data storage

Claims (11)

  1.  特定地域の表面の三次元形状を測定する形状測定部と、
     前記三次元形状の中の複数の位置の夫々を対象位置として指定する位置指定部と、
     特定周波数帯の無線信号である送信波を前記対象位置へ送信し反射波を受信し、前記送信波および前記反射波を比較することにより、前記比較の結果である反射強度を算出する送受信部と、
     前記対象位置および前記反射強度に基づいて、前記対象位置における電波の反射特性を算出する反射特性算出部と、
     前記複数の位置と前記複数の位置の反射特性とに基づいて、前記特定地域内の第1位置と前記特定地域内の第2位置との間の無線通信の品質を算出する品質算出部と、
    を備える電波伝搬測定システム。
    A shape measuring unit that measures the three-dimensional shape of the surface of a specific area;
    A position designating unit that designates each of a plurality of positions in the three-dimensional shape as a target position;
    A transmission / reception unit that calculates a reflection intensity as a result of the comparison by transmitting a transmission wave that is a radio signal of a specific frequency band to the target position, receiving a reflection wave, and comparing the transmission wave and the reflection wave; ,
    Based on the target position and the reflection intensity, a reflection characteristic calculation unit that calculates a reflection characteristic of radio waves at the target position;
    A quality calculating unit that calculates the quality of wireless communication between the first position in the specific area and the second position in the specific area based on the plurality of positions and the reflection characteristics of the plurality of positions;
    A radio wave propagation measurement system comprising:
  2.  前記位置指定部は、前記対象位置の方向を算出し、
     前記送受信部は、前記対象位置の方向に基づいて前記送信波の送信の方向を制御する、
    請求項1に記載の電波伝搬測定システム。
    The position specifying unit calculates a direction of the target position;
    The transceiver unit controls a transmission direction of the transmission wave based on a direction of the target position;
    The radio wave propagation measurement system according to claim 1.
  3.  前記反射特性算出部は、前記対象位置および前記反射強度に基づいて、前記対象位置における電波の反射率を前記反射特性として算出する、
    請求項2に記載の電波伝搬測定システム。
    The reflection characteristic calculation unit calculates the reflectance of the radio wave at the target position as the reflection characteristic based on the target position and the reflection intensity.
    The radio wave propagation measurement system according to claim 2.
  4.  前記品質算出部は、前記複数の位置および前記反射率に基づいて、前記第1位置と前記第2位置との間の電波伝搬による電波の減衰量を算出し、前記減衰量に基づいて前記品質を算出する、
    請求項3に記載の電波伝搬測定システム。
    The quality calculation unit calculates an attenuation amount of radio waves due to radio wave propagation between the first position and the second position based on the plurality of positions and the reflectance, and the quality based on the attenuation amount To calculate,
    The radio wave propagation measurement system according to claim 3.
  5.  前記位置指定部は、前記三次元形状を複数の平面部分に分割し、前記複数の平面部分を前記複数の位置として指定する、
    請求項4に記載の電波伝搬測定システム。
    The position specifying unit divides the three-dimensional shape into a plurality of plane portions, and specifies the plurality of plane portions as the plurality of positions.
    The radio wave propagation measurement system according to claim 4.
  6.  前記形状測定部および前記送受信部による測定の位置を検出する位置検出部を更に備え、
     前記反射特性算出部は、前記測定の位置の座標系に前記複数の位置を対応付ける、
    請求項5に記載の電波伝搬測定システム。
    A position detection unit for detecting a position of measurement by the shape measurement unit and the transmission / reception unit;
    The reflection characteristic calculation unit associates the plurality of positions with a coordinate system of the measurement positions.
    The radio wave propagation measurement system according to claim 5.
  7.  前記特定地域の三次元地図を示す地図データを記憶する記憶部を更に備え、
     前記反射特性算出部は、前記複数の位置に基づいて前記地図データを更新する、
    請求項6に記載の電波伝搬測定システム。
    A storage unit for storing map data indicating a three-dimensional map of the specific area;
    The reflection characteristic calculation unit updates the map data based on the plurality of positions.
    The radio wave propagation measurement system according to claim 6.
  8.  前記品質算出部は、前記特定地域内の無線通信装置との無線通信のための無線通信アンテナの位置の複数の候補を記憶し、前記複数の候補の夫々を前記第1位置として選択し、前記複数の位置と前記複数の位置の反射特性とに基づいて、前記第1位置と前記第2位置との間の無線通信の品質を算出する、
    請求項7に記載の電波伝搬測定システム。
    The quality calculation unit stores a plurality of candidates for the position of a wireless communication antenna for wireless communication with a wireless communication device in the specific area, selects each of the plurality of candidates as the first position, Calculating the quality of wireless communication between the first position and the second position based on a plurality of positions and reflection characteristics of the plurality of positions;
    The radio wave propagation measurement system according to claim 7.
  9.  前記品質算出部は、前記複数の候補に対して算出された品質に基づいて、前記複数の候補の中から品質が所定の品質条件を満たす候補を選択する、
    請求項8に記載の電波伝搬測定システム。
    The quality calculation unit selects a candidate satisfying a predetermined quality condition from the plurality of candidates based on the quality calculated for the plurality of candidates.
    The radio wave propagation measurement system according to claim 8.
  10.  特定地域内の作業機械の運転の指示を出力する指示部と、
     前記指示を無線送信する無線通信部と、
     前記作業機械に搭載されており、前記指示を受信し前記指示に応じて前記作業機械を運転する運転部と、
     前記作業機械に搭載されており、前記特定地域の表面の三次元形状を測定する形状測定部と、
     前記作業機械に搭載されており、前記三次元形状の中の複数の位置の夫々を対象位置として指定する位置指定部と、
     前記作業機械に搭載されており、前記対象位置へ特定周波数帯の無線信号である送信波を送信し反射波を受信し、前記送信波および前記反射波を比較することにより、前記比較の結果である反射強度を算出する送受信部と、
     前記対象位置および前記反射強度に基づいて、前記対象位置における電波の反射特性を算出する反射特性算出部と、
     前記複数の位置と前記複数の位置の反射特性とに基づいて、前記特定地域内の第1位置と前記特定地域内の第2位置との間の無線通信の品質を算出する品質算出部と、
    を備える遠隔運転システム。
    An instruction unit for outputting an instruction of operation of a work machine in a specific area;
    A wireless communication unit for wirelessly transmitting the instruction;
    Mounted on the work machine, receiving the instruction and operating the work machine according to the instruction;
    Mounted on the work machine, a shape measuring unit for measuring the three-dimensional shape of the surface of the specific area,
    Mounted on the work machine, a position specifying unit for specifying each of a plurality of positions in the three-dimensional shape as a target position;
    It is mounted on the work machine, transmits a transmission wave, which is a radio signal of a specific frequency band, to the target position, receives a reflected wave, and compares the transmission wave and the reflected wave. A transmission / reception unit for calculating a certain reflection intensity;
    Based on the target position and the reflection intensity, a reflection characteristic calculation unit that calculates a reflection characteristic of radio waves at the target position;
    A quality calculating unit that calculates the quality of wireless communication between the first position in the specific area and the second position in the specific area based on the plurality of positions and the reflection characteristics of the plurality of positions;
    A remote driving system comprising:
  11.  特定地域の表面の三次元形状を測定し、
     前記三次元形状の中の複数の位置の夫々を対象位置として指定し、
     前記対象位置へ特定周波数帯の無線信号である送信波を送信し反射波を受信し、
     前記送信波および前記反射波を比較することにより、前記比較の結果である反射強度を算出し、
     前記対象位置および前記反射強度に基づいて、前記対象位置における電波の反射特性を算出し、
     前記複数の位置と前記複数の位置の反射特性とに基づいて、前記特定地域内の第1位置と前記特定地域内の第2位置との間の無線通信の品質を算出する、
    ことを備える電波伝搬測定方法。
     
    Measure the three-dimensional shape of the surface of a specific area,
    Specify each of a plurality of positions in the three-dimensional shape as a target position,
    Transmitting a transmission wave that is a radio signal of a specific frequency band to the target position and receiving a reflected wave;
    By comparing the transmitted wave and the reflected wave, the reflection intensity as a result of the comparison is calculated,
    Based on the target position and the reflection intensity, the radio wave reflection characteristics at the target position are calculated,
    Calculating a quality of wireless communication between the first position in the specific area and the second position in the specific area based on the plurality of positions and the reflection characteristics of the plurality of positions;
    A radio wave propagation measuring method comprising:
PCT/JP2013/073097 2013-08-29 2013-08-29 Radio-propagation measurement system, remote operation system, and radio-propagation measurement method WO2015029179A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2015533861A JPWO2015029179A1 (en) 2013-08-29 2013-08-29 Radio wave propagation measurement system, remote operation system, and radio wave propagation measurement method
PCT/JP2013/073097 WO2015029179A1 (en) 2013-08-29 2013-08-29 Radio-propagation measurement system, remote operation system, and radio-propagation measurement method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/073097 WO2015029179A1 (en) 2013-08-29 2013-08-29 Radio-propagation measurement system, remote operation system, and radio-propagation measurement method

Publications (1)

Publication Number Publication Date
WO2015029179A1 true WO2015029179A1 (en) 2015-03-05

Family

ID=52585797

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/073097 WO2015029179A1 (en) 2013-08-29 2013-08-29 Radio-propagation measurement system, remote operation system, and radio-propagation measurement method

Country Status (2)

Country Link
JP (1) JPWO2015029179A1 (en)
WO (1) WO2015029179A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019509685A (en) * 2016-03-10 2019-04-04 ヴァーレ、ソシエダージ、アノニマVale S.A. Network planning method and mining planning method
KR102114322B1 (en) * 2018-12-05 2020-05-22 국방과학연구소 Apparatus for numerical analysis of electromagnetic wave, system for finding direction including the same and method for numerical analysis of electromagnetic wave using the same
JP7085077B1 (en) * 2022-03-16 2022-06-15 ソフトバンク株式会社 Information processing equipment, programs, systems, and information processing methods
WO2023276771A1 (en) * 2021-07-01 2023-01-05 株式会社日立製作所 Radio propagation simulation system and method of creating radio propagation model

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08317458A (en) * 1995-05-19 1996-11-29 Sanyo Electric Co Ltd Method for deciding installation pattern of phs base station
JP2000049677A (en) * 1998-07-29 2000-02-18 Ohbayashi Corp Communication equipment for construction site
JP2003333041A (en) * 2002-05-17 2003-11-21 Penta Ocean Constr Co Ltd Unattended working system
JP2010256120A (en) * 2009-04-23 2010-11-11 Shimizu Corp Method of measuring equipped frequency of radio control device, equipped frequency measuring device, equipped frequency measurement program, and transmission frequency limiting device
WO2012147232A1 (en) * 2011-04-27 2012-11-01 株式会社日立産機システム Wireless device and wireless network system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08317458A (en) * 1995-05-19 1996-11-29 Sanyo Electric Co Ltd Method for deciding installation pattern of phs base station
JP2000049677A (en) * 1998-07-29 2000-02-18 Ohbayashi Corp Communication equipment for construction site
JP2003333041A (en) * 2002-05-17 2003-11-21 Penta Ocean Constr Co Ltd Unattended working system
JP2010256120A (en) * 2009-04-23 2010-11-11 Shimizu Corp Method of measuring equipped frequency of radio control device, equipped frequency measuring device, equipped frequency measurement program, and transmission frequency limiting device
WO2012147232A1 (en) * 2011-04-27 2012-11-01 株式会社日立産機システム Wireless device and wireless network system

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019509685A (en) * 2016-03-10 2019-04-04 ヴァーレ、ソシエダージ、アノニマVale S.A. Network planning method and mining planning method
KR102114322B1 (en) * 2018-12-05 2020-05-22 국방과학연구소 Apparatus for numerical analysis of electromagnetic wave, system for finding direction including the same and method for numerical analysis of electromagnetic wave using the same
WO2023276771A1 (en) * 2021-07-01 2023-01-05 株式会社日立製作所 Radio propagation simulation system and method of creating radio propagation model
JP7085077B1 (en) * 2022-03-16 2022-06-15 ソフトバンク株式会社 Information processing equipment, programs, systems, and information processing methods

Also Published As

Publication number Publication date
JPWO2015029179A1 (en) 2017-03-02

Similar Documents

Publication Publication Date Title
AU2015200366B2 (en) Adaptive control system and method for machine implements
US10551494B2 (en) Road information detection apparatus and road information detection method
JP7051864B2 (en) Magnetic positioning system
JPH10504907A (en) Apparatus and method for determining position of work implement
WO2015029179A1 (en) Radio-propagation measurement system, remote operation system, and radio-propagation measurement method
JP5399459B2 (en) Information collection system for mining equipment
US10520320B2 (en) Management system for work machine, work machine, and management device for work machine
US9307369B2 (en) Wireless position detection apparatus and storage medium
CN104375135A (en) Radio frequency positioning method, device and system
JP6517096B2 (en) Travel support system for work machine and transport vehicle
CN105556338A (en) Positioning system using radio frequency signals
JPWO2016148310A1 (en) Work machine control system, work machine, and work machine control method
KR101979770B1 (en) Apparatus and method for simulating beam-focusing of near-field in aesa radar
WO2014102999A1 (en) Wireless network system and method for constructing same
JP2015143647A (en) Wireless positioning system
RU2360378C1 (en) Method of determining location of mobile terminal in wireless information network
KR101576583B1 (en) Method and Apparatus for Stock Pile Scanning by Position Measurement of Stacker
JP6478578B2 (en) Exploration equipment
Koc et al. Finding deformation of the straight rail track by GNSS measurements
JP2013083532A (en) Apparatus and method for detecting position information
KR102649097B1 (en) Method and apparatus for performing drive test in a mobile communication system
US5402348A (en) Method and apparatus for determining the position of an object within lanes determined utilizing two independent techniques
KR101988213B1 (en) Apparatus for measuring position of train
JP5556764B2 (en) MOBILE COMMUNICATION SYSTEM, MOBILE BODY, AND BEAM DIRECTION CONTROL METHOD
JP2831205B2 (en) Group control device for positioning of moving objects

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13892539

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015533861

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13892539

Country of ref document: EP

Kind code of ref document: A1