WO2015022807A1 - Master station device, control device, communication system, and communication method - Google Patents

Master station device, control device, communication system, and communication method Download PDF

Info

Publication number
WO2015022807A1
WO2015022807A1 PCT/JP2014/065594 JP2014065594W WO2015022807A1 WO 2015022807 A1 WO2015022807 A1 WO 2015022807A1 JP 2014065594 W JP2014065594 W JP 2014065594W WO 2015022807 A1 WO2015022807 A1 WO 2015022807A1
Authority
WO
WIPO (PCT)
Prior art keywords
station device
wavelength
slave station
master station
change
Prior art date
Application number
PCT/JP2014/065594
Other languages
French (fr)
Japanese (ja)
Inventor
向井 宏明
隆志 西谷
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Publication of WO2015022807A1 publication Critical patent/WO2015022807A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0278WDM optical network architectures
    • H04J14/0282WDM tree architectures
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q2213/00Indexing scheme relating to selecting arrangements in general and for multiplex systems
    • H04Q2213/1301Optical transmission, optical switches
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q2213/00Indexing scheme relating to selecting arrangements in general and for multiplex systems
    • H04Q2213/13097Numbering, addressing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q2213/00Indexing scheme relating to selecting arrangements in general and for multiplex systems
    • H04Q2213/13292Time division multiplexing, TDM

Definitions

  • the present invention relates to a master station device, a control device, a communication system, and a communication method that accommodate one or more slave station devices.
  • the PON system which is one of the communication systems, accommodates one or more ONUs (Optical Network Units) as slave station devices in the OLT (Optical Line Terminal) as the master station device.
  • ONUs Optical Network Units
  • OLT Optical Line Terminal
  • terminals One or more terminal devices (hereinafter referred to as terminals) can be connected.
  • the OLT assigns LLIDs (Logical Link IDs) to the subordinate ONUs to manage each ONU, and manages the terminals connected to each ONU by MAC address. That is, the OLT holds a correspondence table (MAC address table) between the LLID of each ONU and the MAC address of each terminal.
  • MAC address table MAC address table
  • the OLT When the OLT receives the downstream frame from the upper network, the OLT refers to the MAC address table, assigns the LLID associated with the destination address (DA: Destination Address) to the downstream frame, and broadcasts it to all ONUs. .
  • DA Destination Address
  • each ONU receives a downlink frame assigned with its own LLID, it forwards it to the subordinate terminal, and when it receives a downlink frame assigned with an LLID different from that assigned to itself. Discard without forwarding.
  • the OLT determines a time during which transmission to each ONU is permitted so that the upstream frame from each ONU does not collide, and each ONU transmits an upstream frame at the permitted time.
  • TDM Time Division Multiplexing
  • the conventional TDM PON system communicates using a single wavelength, but TWDM (Time and Wavelength Division Multiplexed) uses multiple wavelengths by wavelength multiplexing the conventional PON system.
  • TWDM Time and Wavelength Division Multiplexed
  • -A PON system has been proposed (see Patent Document 1 and Non-Patent Document 1).
  • the wavelength accommodating the ONU is changed according to the traffic situation. For example, the OLT first starts communication with a predetermined ONU using the wavelength of ⁇ 11. After that, when the traffic passing through ⁇ 11 increases and the transmission capacity becomes insufficient, communication with this ONU is performed. Change the wavelength to be used to ⁇ 12.
  • the LLID of each ONU, the wavelength used for communication with each ONU, and the MAC address of each terminal are registered in the MAC address table managed by the OLT.
  • the TWDM-PON system there can be considered a mode in which the OLT and the ONU use the same wavelength in the upstream and downstream in time division and a mode in which different wavelengths are used in the upstream and downstream.
  • the correspondence relationship between the LLID, the wavelength, and the MAC address registered in the MAC address table does not match the actual correspondence relationship, but the MAC address table is updated in response to reception of the upstream frame ( When an upstream frame is received, the MAC address is relearned). Therefore, the learning result before the wavelength change remains in the MAC address table until the upstream frame is received from the ONU whose wavelength has been changed after the wavelength change has occurred. I will send it. That is, there is a problem in that the downlink frame cannot be correctly transmitted until the uplink frame is transmitted.
  • the present invention has been made in view of the above, and a master station device, a control device, a communication system, and a communication capable of shortening a time required until data transmission / reception can be normally performed after a wavelength change occurs
  • the purpose is to obtain a method.
  • the master station device accommodates one or more slave station devices, and selects one wavelength selected from a plurality of candidates for each slave station device.
  • the slave station device When a slave station device that is assigned and communicates and detects a slave station device that needs to change the wavelength to be used, the slave station device is instructed to change the wavelength, and the terminal device under the slave station device is assigned its own address.
  • a wavelength management unit for notification is provided.
  • the control device is a control device in a master station device that accommodates one or more slave station devices, and assigns each wavelength selected from a plurality of candidates to each slave station device for communication.
  • a slave station device that needs to change the wavelength to be used is detected, the slave station device is instructed to change the wavelength, and the terminal device under the slave station device is notified of its own address.
  • the communication system is a communication system in which a master station device accommodates one or more slave station devices, and one wavelength selected from a plurality of candidates is assigned to each slave station device for communication.
  • the master station device when detecting a slave station device that needs to change the wavelength to be used, instructs the slave station device to change the wavelength, and causes the terminal device under the slave station device to notify its own address.
  • the communication method according to the present invention is a communication method in a communication system in which a master station device accommodates one or more slave station devices, and one wavelength selected from a plurality of candidates is assigned to each slave station device for communication.
  • the master station device the control device, the communication system, and the communication method according to the present invention, it is possible to reduce the service interruption time in which data cannot be transmitted / received after the wavelength change occurs.
  • FIG. 1 is a diagram showing a configuration example of a communication system according to the present invention.
  • FIG. 2 is a diagram illustrating an example of the MAC address table.
  • FIG. 3 is a diagram illustrating a hardware configuration example of the OLT.
  • FIG. 4 is a diagram illustrating an example of the wavelength switching operation.
  • FIG. 5 is a diagram illustrating an example of the updated MAC address table.
  • FIG. 6 is a flowchart illustrating an example of a control operation related to wavelength switching.
  • FIG. FIG. 1 is a diagram showing a configuration example of a communication system according to the present invention.
  • a TWDM-PON system using two waves will be described as an example, but the present invention can also be applied to a system using three or more waves.
  • the description will be made assuming that the same wavelength is used for uplink and downlink communication, the present invention can also be applied to a system using different wavelengths for uplink and downlink.
  • the TWDM-PON system is connected to an OLT 1 via an optical fiber 100 and a station side device (also referred to as “Optical Line Terminal”, hereinafter referred to as “OLT”) that operates as a master station device. .., 109,..., And a user side device (also referred to as “Optical Network Unit”, hereinafter referred to as “ONU”) 101, 102,.
  • the ONU 101 is assigned LLID # 1.
  • LLID # 2 and LLID # 9 are assigned to the ONU 102 and ONU 109, respectively.
  • One or more terminal devices (hereinafter referred to as terminals) can be connected to each ONU.
  • the MAC addresses of the terminals connected to the ONU 101 are MAC-ADDR # 1-1 to MAC-ADDR # 1-l
  • the MAC addresses of the terminals connected to the ONU 102 are MAC-ADDR # 2.
  • the MAC addresses of the terminals connected to the ONU 109 are MAC-ADDR # 9-1 to MAC-ADDR # 9-n.
  • the OLT 1 distributes a downlink frame received from a higher-order network that omits the description to a wavelength management unit 2 that determines and changes a wavelength to be used for communication with each ONU, and distributes each of the ONUs to one of a plurality of wavelengths.
  • a frame distribution unit 3 for transferring the received upstream frame to the upper network, and PON termination units 10 and 20 for terminating the PON control performed between the ONUs are provided.
  • the PON terminators 10 and 20 serving as frame transmission / reception means (frame transmission / reception units) communicate with the subordinate ONUs using different wavelengths. In the example of FIG. 1, the PON terminator 10 communicates with subordinate ONUs 101, 102,...
  • the PON terminator 10 and the PON terminator 20 use different wavelengths ⁇ # 1 and ⁇ # 2, so that two PON systems logically have the same optical fiber. Coexist in the network (optical fiber 100).
  • the frame distribution unit 3 holds a MAC address table (information storage unit) 4.
  • this MAC address table information on the distribution destination of the downstream frame received from the upper network is registered (see FIG. 2). ).
  • FIG. 2 is a diagram illustrating an example of information registered in the MAC address table 4.
  • the transmission destination terminals of frames destined for MAC-ADDR # 1-1 to MAC-ADDR # 1-l are connected to the ONU of LLID # 1, and the LLID # 1
  • the ONU is information indicating that it is accommodated in the PON terminator 10 (PON # 1), and the transmission destination terminal of the frame addressed to MAC-ADDR # 2-1 to MAC-ADDR # 2-m is LLID # 2.
  • PON # 1 Information indicating that the ONU connected to the ONU and the LLID # 2 is accommodated in the PON terminator 10 (PON # 1) is a frame addressed to MAC-ADDR # 9-1 to MAC-ADDR # 9-n Information indicating that the ONU of LLID # 9 is accommodated in the PON terminator 20 (PON # 2) is registered. Therefore, for example, when receiving a downstream frame whose destination address (DA: Destination Address) is MAC-ADDR # 1-1, the frame distribution unit 3 refers to the MAC address table 4 and associates the LLID associated with this destination address. Is assigned to the downstream frame and output to the distribution destination (PON termination unit 10 or 20) associated with MAC-ADDR # 1-1.
  • DA Destination Address
  • the configuration of the MAC address table 4 shown in the figure is merely an example, and any configuration can be used as long as the ONU in which the terminal of each MAC address is accommodated and the wavelength used by each ONU are known. Absent. Moreover, it may not be a table format.
  • Each ONU has a configuration in which the wavelength used for communication with the OLT 1 can be changed, and performs communication using the wavelength specified by the OLT 1. That is, FIG. 1 shows an example in which the ONUs 101 and 102 use the wavelength ⁇ # 1 and the ONU 109 uses the wavelength ⁇ # 2. However, all ONUs including the ONUs 101, 102, and 109 have the wavelength ⁇ # 1. Communication with OLT 1 is performed using one of ⁇ # 2 designated by OLT 1.
  • FIG. 3 is a diagram illustrating a hardware configuration example of the OLT 1.
  • the OLT 1 transmits a PON control unit (control device) 201 that performs processing on the OLT side based on the PON protocol, a reception buffer 202 for storing uplink data received from each ONU, and a transmission to the ONU.
  • a transmission buffer 203 for storing downlink data to be transmitted an optical transceiver 204 that performs optical signal transmission / reception processing, a WDM coupler (WDM) 205 that wavelength-multiplexes a plurality of optical signals having different wavelengths, and a network.
  • a physical layer processing unit (PHY) 206 that realizes a physical interface function of an NNI (Network Node Interface).
  • NNI Network Node Interface
  • the optical transceiver can transmit and receive a plurality of optical signals having different wavelengths.
  • the PON control unit 201 performs band allocation for giving transmission permission so that transmission time zones do not overlap each ONU for each group of ONUs having the same wavelength to be used, as in the conventional PON system.
  • the transmission data from the ONU is prevented from colliding.
  • the PON control unit 201 includes the wavelength management unit 2, the frame distribution unit 3, the PON termination unit 10, and the PON termination unit 20 illustrated in FIG. 1 and has functions of these components.
  • FIG. 4 is a diagram illustrating an example of a wavelength switching operation
  • FIG. 6 is a flowchart illustrating an example of a control operation related to wavelength switching. It is assumed that the OLT 1 and each ONU are communicating in the state shown in FIG. 1, and the operation when wavelength switching is performed from this state will be described.
  • the wavelength management unit 2 transmits traffic passing through the PON termination units 10 and 20. Monitoring. As a result of monitoring, for example, when the traffic passing through the PON termination unit 10 approaches the limit of the transmission capacity, the connection destinations of some of the ONUs connected to the PON termination unit 10 are changed (that is, used) It is determined that the wavelength to be changed is necessary. In this case, for example, it is determined to change the connection destination of the ONU 101 to the PON termination unit 20. Then, the wavelength management unit 2 instructs the ONU 101 via the PON termination unit 10 to switch the wavelength to be used to ⁇ # 2.
  • the ONU 101 Upon receiving this instruction, the ONU 101 changes the wavelength to be used to ⁇ # 2 ((1) in FIG. 4, step S1 in FIG. 6).
  • the instruction may be given by any method. For example, control information instructing wavelength switching is inserted into a downlink data frame to be received by the ONU 101 and transmitted.
  • the wavelength management unit 2 obtains the MAC address of each terminal connected to the ONU 101 from the PON terminating unit 20 that performs communication using the wavelength ⁇ # 2 after switching. For sending an address resolution control frame (ARP: Address Resolution Protocol request).
  • ARP Address Resolution Protocol request
  • the PON terminator 20 Upon receiving the instruction, the PON terminator 20 transmits an ARP request. This ARP request is received by all the ONUs (here, the ONUs 101 and 109) using the wavelength ⁇ # 2, and further forwarded to the terminal. Then, it reaches each terminal connected to the ONUs 101 and 109 ((2) in FIG. 4, step S2 in FIG. 6).
  • Each terminal that receives the ARP request (terminals whose MAC addresses are MAC-ADDR # 1-1 to # 1-1, # 9-1 to # 9-n) returns an ARP response including its own MAC address.
  • Each ARP response is received by the PON termination unit 20 of the OLT 1 as an upstream frame from the ONU 101 or 109 and passed to the frame distribution unit 3 ((3) in FIG. 4).
  • the frame distribution unit 3 When receiving the ARP response, the frame distribution unit 3 updates the held MAC address table 4 based on the MAC address notified by the ARP response ((4) in FIG. 4, step S3 in FIG. 6). When receiving an ARP response from each terminal under the ONU 101 where wavelength switching has occurred, the frame distribution unit 3 updates the MAC address table 4, and MAC-ADDR # 1-1 to MAC-ADDR # 1-1 are set as destination addresses. The set distribution destination of the frame is set to the PON termination unit 20 (see FIG. 5).
  • FIG. 5 is a diagram illustrating an example of the updated MAC address table. When an ARP response is received from each terminal under the ONU 109, the MAC address table 4 is not updated.
  • downstream frames addressed to MAC-ADDR # 1-1 to MAC-ADDR # 1-l are assigned LLID # 1 in the frame distribution unit 3 and then distributed to the PON termination unit 20 And transmitted from the PON terminator 20 at the wavelength ⁇ # 2.
  • the downlink frame assigned LLID # 1 is received by the ONUs 101 and 109 using the wavelength ⁇ # 2, and the ONU 101 assigned LLID # 1 transfers the received downlink frame to the destination terminal.
  • the ONU 109 to which LLID # 1 is not assigned discards the received downlink frame.
  • the OLT 1 monitors whether or not the wavelength used for communication with each ONU needs to be changed, and if the change is necessary, instructs the wavelength change.
  • a control frame for address resolution is broadcast using the wavelength after the change, and notification of the MAC address is instructed to each terminal under the ONU.
  • the MAC address table is updated based on the notified MAC address. Thereby, after wavelength switching, the information registered in the MAC address table, that is, the association between the MAC address of the terminal and the output destination of the downlink frame is immediately updated, and the service interruption time can be reduced.
  • an ARP request is periodically made from a server in the upper network, and the transmission interval of the ARP request is in minutes.
  • the OLT 1 broadcasts an ARP request to instruct each terminal under the ONU to notify the MAC address, and based on the received uplink frame, the MAC address Since the contents of the table are updated quickly, the service interruption time can be reduced to seconds or milliseconds.
  • the master station device according to the present invention is useful for a communication system capable of changing the wavelength of light used for communication with a slave station device.
  • 1 station side device OLT
  • 2 wavelength management unit 3 frame distribution unit
  • 4 MAC address table 10
  • 10 PON termination unit 100 optical fiber, 101, 102, 109 user side device (ONU), 201 PON control Part, 202 reception buffer, 203 transmission buffer, 204 optical transceiver, 205 WDM coupler (WDM), 206 physical layer processing part (PHY).
  • ONT station side device
  • WDM WDM coupler
  • PHY physical layer processing part

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Small-Scale Networks (AREA)
  • Optical Communication System (AREA)

Abstract

The present invention solves the problem of providing a master station device capable of reducing the time required for resuming normal data transmission/reception after the occurrence of a change in wavelength. The present invention is a master station device (OLT1) that accommodates one or more slave station devices (ONU101, 102, …, 109) and allocates one wavelength selected from among multiple candidates to each slave station device in order to communicate with the slave station devices. When a slave station device that requires a change in the used wavelength , the master station device instructs the slave station device to change the wavelength and causes the slave station device to notify terminal devices under the slave station device of the address of the slave station device.

Description

親局装置、制御装置、通信システムおよび通信方法Parent station apparatus, control apparatus, communication system, and communication method
 本発明は、1台以上の子局装置を収容する親局装置、制御装置、通信システムおよび通信方法に関する。 The present invention relates to a master station device, a control device, a communication system, and a communication method that accommodate one or more slave station devices.
 通信システムの一つであるPONシステム(Passive Optical Network)は、親局装置としてのOLT(Optical Line Terminal)が子局装置としてのONU(Optical Network Unit)を1台以上収容し、各ONUには1台以上の端末装置(以下、端末と称する)が接続可能な構成となっている。 The PON system (Passive Optical Network), which is one of the communication systems, accommodates one or more ONUs (Optical Network Units) as slave station devices in the OLT (Optical Line Terminal) as the master station device. One or more terminal devices (hereinafter referred to as terminals) can be connected.
 PONシステムにおいて、OLTは、配下のONUにLLID(Logical Link ID)を割り当てて各ONUを管理し、また、各ONUに接続されている端末をMACアドレスで管理する。すなわち、OLTは、各ONUのLLIDと各端末のMACアドレスの対応テーブル(MACアドレステーブル)を保持しており、端末からの上りフレームをONU経由で受信すると、受信した上りフレームの送信元アドレス(SA:Source Address)をONU(上りフレームを中継したONU)のLLIDと対応付けてMACアドレステーブルに登録する。そしてOLTは、下りフレームを上位のネットワークから受信した場合、MACアドレステーブルを参照し、宛先アドレス(DA:Destination Address)に対応付けられたLLIDを下りフレームに付与して全てのONUへ同報する。各ONUは、自身に割り当てられているLLIDが付与された下りフレームを受信すると配下の端末へ転送し、自身に割り当てられているものとは異なるLLIDが付与された下りフレームを受信した場合には転送せずに破棄する。また、OLTは、各ONUからの上りフレームが衝突しないよう、各ONUに送信を許可する時間を決定し、各ONUは、許可された時間において上りフレームを送信する。このようなPONシステムはTDM(Time Division Multiplexing)方式と呼ばれる。 In the PON system, the OLT assigns LLIDs (Logical Link IDs) to the subordinate ONUs to manage each ONU, and manages the terminals connected to each ONU by MAC address. That is, the OLT holds a correspondence table (MAC address table) between the LLID of each ONU and the MAC address of each terminal. When an upstream frame from the terminal is received via the ONU, the source address ( SA: Source Address) is registered in the MAC address table in association with the LLID of the ONU (ONU that relays the upstream frame). When the OLT receives the downstream frame from the upper network, the OLT refers to the MAC address table, assigns the LLID associated with the destination address (DA: Destination Address) to the downstream frame, and broadcasts it to all ONUs. . When each ONU receives a downlink frame assigned with its own LLID, it forwards it to the subordinate terminal, and when it receives a downlink frame assigned with an LLID different from that assigned to itself. Discard without forwarding. Further, the OLT determines a time during which transmission to each ONU is permitted so that the upstream frame from each ONU does not collide, and each ONU transmits an upstream frame at the permitted time. Such a PON system is called a TDM (Time Division Multiplexing) system.
 また、従来のTDM方式のPONシステムでは1つの波長を使用して通信を行っていたが、従来のPONシステムを波長多重して複数の波長を使用するようにしたTWDM(Time and Wavelength Division Multiplexed)-PONシステムが提案されている(特許文献1、非特許文献1参照)。このTWDM-PONシステムでは、ONUを収容する波長をトラヒック状況に応じて変更する。例えば、OLTは、最初、λ11の波長を使用して所定のONUとの通信を開始し、その後、λ11を通過するトラヒックが増加し、伝送容量が不足してくると、このONUとの通信で使用する波長をλ12に変更する。TWDM-PONシステムでは複数の波長を使用するため、OLTが管理するMACアドレステーブルには、各ONUのLLID、各ONUとの通信で使用する波長、および各端末のMACアドレスが登録されている。TWDM-PONシステムとしては、OLTとONUが上りと下りで同じ波長を時分割使用する形態と上りと下りで異なる波長を使用する形態とが考えられる。 In addition, the conventional TDM PON system communicates using a single wavelength, but TWDM (Time and Wavelength Division Multiplexed) uses multiple wavelengths by wavelength multiplexing the conventional PON system. -A PON system has been proposed (see Patent Document 1 and Non-Patent Document 1). In this TWDM-PON system, the wavelength accommodating the ONU is changed according to the traffic situation. For example, the OLT first starts communication with a predetermined ONU using the wavelength of λ11. After that, when the traffic passing through λ11 increases and the transmission capacity becomes insufficient, communication with this ONU is performed. Change the wavelength to be used to λ12. Since the TWDM-PON system uses a plurality of wavelengths, the LLID of each ONU, the wavelength used for communication with each ONU, and the MAC address of each terminal are registered in the MAC address table managed by the OLT. As the TWDM-PON system, there can be considered a mode in which the OLT and the ONU use the same wavelength in the upstream and downstream in time division and a mode in which different wavelengths are used in the upstream and downstream.
特開2011-228800号公報JP 2011-228800 A
 波長変更が発生した場合、MACアドレステーブルに登録されている、LLID、波長およびMACアドレスの対応関係が実際の対応関係と一致しなくなるが、MACアドレステーブルは上りフレームの受信に応じて更新する(上りフレームを受信するとMACアドレスを再学習する)。そのため、波長変更が発生後、波長を変更したONUからの上りフレームを受信するまで、MACアドレステーブルには波長変更前の学習結果が残ることになり、変更前の波長を使用して下りフレームを送信してしまう。すなわち、上りフレームが送信されてくるまでの間は下りフレームを正しく送信することができないという問題があった。 When the wavelength change occurs, the correspondence relationship between the LLID, the wavelength, and the MAC address registered in the MAC address table does not match the actual correspondence relationship, but the MAC address table is updated in response to reception of the upstream frame ( When an upstream frame is received, the MAC address is relearned). Therefore, the learning result before the wavelength change remains in the MAC address table until the upstream frame is received from the ONU whose wavelength has been changed after the wavelength change has occurred. I will send it. That is, there is a problem in that the downlink frame cannot be correctly transmitted until the uplink frame is transmitted.
 本発明は、上記に鑑みてなされたものであって、波長変更が発生してからデータ送受信が正常に行えるようになるまでの所要時間を短縮可能な親局装置、制御装置、通信システムおよび通信方法を得ることを目的とする。 The present invention has been made in view of the above, and a master station device, a control device, a communication system, and a communication capable of shortening a time required until data transmission / reception can be normally performed after a wavelength change occurs The purpose is to obtain a method.
 上述した課題を解決し、目的を達成するために、本発明に係る親局装置は、1台以上の子局装置を収容し、複数候補の中から選択した一つの波長を各子局装置に割り当てて通信する親局装置であって、使用する波長の変更が必要な子局装置を検出すると、前記子局装置に波長変更を指示するとともに、前記子局装置配下の端末装置に自アドレスを通知させる波長管理部を備えることを特徴とする。 In order to solve the above-described problems and achieve the object, the master station device according to the present invention accommodates one or more slave station devices, and selects one wavelength selected from a plurality of candidates for each slave station device. When a slave station device that is assigned and communicates and detects a slave station device that needs to change the wavelength to be used, the slave station device is instructed to change the wavelength, and the terminal device under the slave station device is assigned its own address. A wavelength management unit for notification is provided.
 また、本発明に係る制御装置は、1台以上の子局装置を収容し、複数候補の中から選択した一つの波長を各子局装置に割り当てて通信する親局装置における制御装置であって、使用する波長の変更が必要な子局装置を検出すると、前記子局装置に波長変更を指示するとともに、前記子局装置配下の端末装置に自アドレスを通知させることを特徴とする。 The control device according to the present invention is a control device in a master station device that accommodates one or more slave station devices, and assigns each wavelength selected from a plurality of candidates to each slave station device for communication. When a slave station device that needs to change the wavelength to be used is detected, the slave station device is instructed to change the wavelength, and the terminal device under the slave station device is notified of its own address.
 また、本発明に係る通信システムは、親局装置が1台以上の子局装置を収容し、複数候補の中から選択した一つの波長を各子局装置に割り当てて通信する通信システムであって、親局装置は、使用する波長の変更が必要な子局装置を検出すると、前記子局装置に波長変更を指示するとともに、前記子局装置配下の端末装置に自アドレスを通知させることを特徴とする。 The communication system according to the present invention is a communication system in which a master station device accommodates one or more slave station devices, and one wavelength selected from a plurality of candidates is assigned to each slave station device for communication. The master station device, when detecting a slave station device that needs to change the wavelength to be used, instructs the slave station device to change the wavelength, and causes the terminal device under the slave station device to notify its own address. And
 また、本発明に係る通信方法は、親局装置が1台以上の子局装置を収容し、複数候補の中から選択した一つの波長を各子局装置に割り当てて通信する通信システムにおける通信方法であって、親局装置が、各子局装置が使用している波長の変更必要性を判断する判断ステップと、親局装置が、波長の変更が必要と判断した子局装置に対して波長変更を指示する指示ステップと、親局装置が、波長変更を指示した子局装置配下の端末装置に自アドレスの通知を要求する要求ステップと、を含むことを特徴とする。 The communication method according to the present invention is a communication method in a communication system in which a master station device accommodates one or more slave station devices, and one wavelength selected from a plurality of candidates is assigned to each slave station device for communication. A determining step in which the master station device determines the necessity of changing the wavelength used by each slave station device; and a wavelength for the slave station device that the master station device has determined that the wavelength needs to be changed. An instruction step for instructing a change, and a request step in which the master station device requests notification of its own address to a terminal device under the slave station device that has instructed the wavelength change.
 本発明にかかる親局装置、制御装置、通信システムおよび通信方法によれば、波長変更が発生した後の、データ送受信ができなくなるサービス断時間を短縮できる、という効果を奏する。 According to the master station device, the control device, the communication system, and the communication method according to the present invention, it is possible to reduce the service interruption time in which data cannot be transmitted / received after the wavelength change occurs.
図1は、本発明にかかる通信システムの構成例を示す図である。FIG. 1 is a diagram showing a configuration example of a communication system according to the present invention. 図2は、MACアドレステーブルの一例を示す図である。FIG. 2 is a diagram illustrating an example of the MAC address table. 図3は、OLTのハードウェア構成例を示す図である。FIG. 3 is a diagram illustrating a hardware configuration example of the OLT. 図4は、波長切り替え動作の一例を示す図である。FIG. 4 is a diagram illustrating an example of the wavelength switching operation. 図5は、更新後のMACアドレステーブルの一例を示す図である。FIG. 5 is a diagram illustrating an example of the updated MAC address table. 図6は、波長切り替えにかかる制御動作の一例を示すフローチャートである。FIG. 6 is a flowchart illustrating an example of a control operation related to wavelength switching.
 以下に、本発明にかかる親局装置、制御装置、通信システムおよび通信方法の実施の形態を図面に基づいて詳細に説明する。なお、この実施の形態によりこの発明が限定されるものではない。 Hereinafter, embodiments of a master station apparatus, a control apparatus, a communication system, and a communication method according to the present invention will be described in detail with reference to the drawings. Note that the present invention is not limited to the embodiments.
実施の形態1.
 図1は、本発明にかかる通信システムの構成例を示す図である。本実施の形態では簡単のため、2波を使用するTWDM-PONシステムを例として説明を行うが、3波以上を使用するシステムにも適用可能である。また、上りと下りの通信で同じ波長を使用するものとして説明を行うが、上りと下りで異なる波長を使用するシステムにも適用可能である。
Embodiment 1 FIG.
FIG. 1 is a diagram showing a configuration example of a communication system according to the present invention. In this embodiment, for the sake of simplicity, a TWDM-PON system using two waves will be described as an example, but the present invention can also be applied to a system using three or more waves. In addition, although the description will be made assuming that the same wavelength is used for uplink and downlink communication, the present invention can also be applied to a system using different wavelengths for uplink and downlink.
 図1に示すように、TWDM-PONシステムは、親局装置として動作する局側装置("Optical Line Terminal"とも言い、以降「OLT」と称す)1と、光ファイバ100を介してOLT1に接続され、子局装置として動作する利用者側装置("Optical Network Unit"とも言い、以降「ONU」と称す)101,102,…,109,…と、を含んで構成されている。ONU101にはLLID#1が割り当てられている。同様に、ONU102、ONU109には、LLID#2、LLID#9がそれぞれ割り当てられている。各ONUには1台以上の端末装置(以下、端末)が接続可能となっている。本実施の形態ではONU101に接続されている各端末のMACアドレスをMAC-ADDR#1-1~MAC-ADDR#1-l、ONU102に接続されている各端末のMACアドレスをMAC-ADDR#2-1~MAC-ADDR#2-m、ONU109に接続されている各端末のMACアドレスをMAC-ADDR#9-1~MAC-ADDR#9-nとする。 As shown in FIG. 1, the TWDM-PON system is connected to an OLT 1 via an optical fiber 100 and a station side device (also referred to as “Optical Line Terminal”, hereinafter referred to as “OLT”) that operates as a master station device. .., 109,..., And a user side device (also referred to as “Optical Network Unit”, hereinafter referred to as “ONU”) 101, 102,. The ONU 101 is assigned LLID # 1. Similarly, LLID # 2 and LLID # 9 are assigned to the ONU 102 and ONU 109, respectively. One or more terminal devices (hereinafter referred to as terminals) can be connected to each ONU. In this embodiment, the MAC addresses of the terminals connected to the ONU 101 are MAC-ADDR # 1-1 to MAC-ADDR # 1-l, and the MAC addresses of the terminals connected to the ONU 102 are MAC-ADDR # 2. -1 to MAC-ADDR # 2-m, and the MAC addresses of the terminals connected to the ONU 109 are MAC-ADDR # 9-1 to MAC-ADDR # 9-n.
 OLT1は、各ONUとの通信で使用する波長を決定・変更する波長管理部2と、記載を省略した上位ネットワークから受信した下りフレームを複数の波長の中の一つに振り分けるとともに、各ONUから受信した上りフレームを上位ネットワークへ転送するフレーム振り分け部3と、各ONUとの間で行うPON制御を終端するPON終端部10および20と、を備えている。フレーム送受信手段(フレーム送受信部)としてのPON終端部10および20はそれぞれ異なる波長を使用して配下の各ONUと通信する。図1の例では、PON終端部10が波長λ#1を使用して配下のONU101,102,…と通信し、PON終端部20が波長λ#2を使用して配下のONU109,…と通信する。このように、図1に示した通信システムでは、PON終端部10とPON終端部20が異なる波長λ#1とλ#2を使用することにより、論理的には2つのPONシステムが同一光ファイバ網(光ファイバ100)内で共存している。 The OLT 1 distributes a downlink frame received from a higher-order network that omits the description to a wavelength management unit 2 that determines and changes a wavelength to be used for communication with each ONU, and distributes each of the ONUs to one of a plurality of wavelengths. A frame distribution unit 3 for transferring the received upstream frame to the upper network, and PON termination units 10 and 20 for terminating the PON control performed between the ONUs are provided. The PON terminators 10 and 20 serving as frame transmission / reception means (frame transmission / reception units) communicate with the subordinate ONUs using different wavelengths. In the example of FIG. 1, the PON terminator 10 communicates with subordinate ONUs 101, 102,... Using the wavelength λ # 1, and the PON terminator 20 communicates with subordinate ONUs 109,. To do. As described above, in the communication system shown in FIG. 1, the PON terminator 10 and the PON terminator 20 use different wavelengths λ # 1 and λ # 2, so that two PON systems logically have the same optical fiber. Coexist in the network (optical fiber 100).
 フレーム振り分け部3は、MACアドレステーブル(情報記憶部)4を保持しており、このMACアドレステーブル4には、上位ネットワークから受信した下りフレームの振り分け先の情報が登録されている(図2参照)。図2は、MACアドレステーブル4に登録されている情報の一例を示す図である。図2に示したMACアドレステーブル4には、MAC-ADDR#1-1~MAC-ADDR#1-lを宛先とするフレームの送信先端末がLLID#1のONUに接続され、LLID#1のONUはPON終端部10(PON#1)に収容されていることを示す情報、MAC-ADDR#2-1~MAC-ADDR#2-mを宛先とするフレームの送信先端末がLLID#2のONUに接続され、LLID#2のONUはPON終端部10(PON#1)に収容されていることを示す情報、MAC-ADDR#9-1~MAC-ADDR#9-nを宛先とするフレームの送信先端末がLLID#9のONUに接続され、LLID#9のONUはPON終端部20(PON#2)に収容されていることを示す情報、などが登録されている。従って、フレーム振り分け部3は、例えば宛先アドレス(DA:Destination Address)がMAC-ADDR#1-1の下りフレームを受信した場合、MACアドレステーブル4を参照し、この宛先アドレスに対応付けられたLLIDを下りフレームに付与し、MAC-ADDR#1-1に対応付けられた振り分け先(PON終端部10または20)へ出力する。なお、図示したMACアドレステーブル4の構成は一例であり、各MACアドレスの端末が収容されているONU、および各ONUが使用している波長が分かるのであればどのような構成であっても構わない。また、テーブル形式でなくてもよい。 The frame distribution unit 3 holds a MAC address table (information storage unit) 4. In this MAC address table 4, information on the distribution destination of the downstream frame received from the upper network is registered (see FIG. 2). ). FIG. 2 is a diagram illustrating an example of information registered in the MAC address table 4. In the MAC address table 4 shown in FIG. 2, the transmission destination terminals of frames destined for MAC-ADDR # 1-1 to MAC-ADDR # 1-l are connected to the ONU of LLID # 1, and the LLID # 1 The ONU is information indicating that it is accommodated in the PON terminator 10 (PON # 1), and the transmission destination terminal of the frame addressed to MAC-ADDR # 2-1 to MAC-ADDR # 2-m is LLID # 2. Information indicating that the ONU connected to the ONU and the LLID # 2 is accommodated in the PON terminator 10 (PON # 1) is a frame addressed to MAC-ADDR # 9-1 to MAC-ADDR # 9-n Information indicating that the ONU of LLID # 9 is accommodated in the PON terminator 20 (PON # 2) is registered. Therefore, for example, when receiving a downstream frame whose destination address (DA: Destination Address) is MAC-ADDR # 1-1, the frame distribution unit 3 refers to the MAC address table 4 and associates the LLID associated with this destination address. Is assigned to the downstream frame and output to the distribution destination (PON termination unit 10 or 20) associated with MAC-ADDR # 1-1. The configuration of the MAC address table 4 shown in the figure is merely an example, and any configuration can be used as long as the ONU in which the terminal of each MAC address is accommodated and the wavelength used by each ONU are known. Absent. Moreover, it may not be a table format.
 各ONUはOLT1との通信で使用する波長を変更可能な構成となっており、OLT1から指定された波長を使用して通信を行う。すなわち、図1ではONU101および102が波長λ#1を使用し、ONU109が波長λ#2を使用する例を示しているが、ONU101、102および109を含む全てのONUは、波長λ#1とλ#2のうち、OLT1から指定された一方を使用してOLT1と通信する。 Each ONU has a configuration in which the wavelength used for communication with the OLT 1 can be changed, and performs communication using the wavelength specified by the OLT 1. That is, FIG. 1 shows an example in which the ONUs 101 and 102 use the wavelength λ # 1 and the ONU 109 uses the wavelength λ # 2. However, all ONUs including the ONUs 101, 102, and 109 have the wavelength λ # 1. Communication with OLT 1 is performed using one of λ # 2 designated by OLT 1.
 図3は、OLT1のハードウェア構成例を示す図である。図示したように、OLT1は、PONプロトコルに基づいてOLT側の処理を実施するPON制御部(制御装置)201と、各ONUから受信した上りデータを格納するための受信バッファ202と、ONUへ送信する下りデータを格納するための送信バッファ203と、光信号の送受信処理を行う光送受信器204と、波長が異なる複数の光信号を波長多重するWDMカプラ(WDM)205と、ネットワークとの間でNNI(Network Node Interface)の物理インタフェース機能を実現する物理層処理部(PHY)206と、を備える。光送受信器は、波長が異なる複数の光信号の送受信が可能となっている。なお、PON制御部201は、使用する波長が同じONUのグループごとに、従来のPONシステムと同様に、各ONUに対して送信時間帯が重ならないように送信許可を与える帯域割り当てを行い、各ONUからの送信データが衝突するのを防いでいる。また、PON制御部201は、図1に示した波長管理部2と、フレーム振り分け部3と、PON終端部10と、PON終端部20とを備え、これら各構成の機能を有する。 FIG. 3 is a diagram illustrating a hardware configuration example of the OLT 1. As shown in the figure, the OLT 1 transmits a PON control unit (control device) 201 that performs processing on the OLT side based on the PON protocol, a reception buffer 202 for storing uplink data received from each ONU, and a transmission to the ONU. Between a transmission buffer 203 for storing downlink data to be transmitted, an optical transceiver 204 that performs optical signal transmission / reception processing, a WDM coupler (WDM) 205 that wavelength-multiplexes a plurality of optical signals having different wavelengths, and a network. A physical layer processing unit (PHY) 206 that realizes a physical interface function of an NNI (Network Node Interface). The optical transceiver can transmit and receive a plurality of optical signals having different wavelengths. Note that the PON control unit 201 performs band allocation for giving transmission permission so that transmission time zones do not overlap each ONU for each group of ONUs having the same wavelength to be used, as in the conventional PON system. The transmission data from the ONU is prevented from colliding. The PON control unit 201 includes the wavelength management unit 2, the frame distribution unit 3, the PON termination unit 10, and the PON termination unit 20 illustrated in FIG. 1 and has functions of these components.
 以下、本実施の形態の通信システムにおける特徴的な動作、具体的には、OLT1と各ONUが通信で使用する波長を切り替える場合の制御動作について図4および図6を参照しながら説明する。図4は、波長切り替え動作の一例を示す図、図6は、波長切り替えにかかる制御動作の一例を示すフローチャートである。OLT1と各ONUは図1に示した状態で通信しているものとし、この状態から波長切り替えを行う場合の動作を説明する。 Hereinafter, a characteristic operation in the communication system according to the present embodiment, specifically, a control operation when the OLT 1 and each ONU switch the wavelength used for communication will be described with reference to FIGS. 4 and 6. FIG. FIG. 4 is a diagram illustrating an example of a wavelength switching operation, and FIG. 6 is a flowchart illustrating an example of a control operation related to wavelength switching. It is assumed that the OLT 1 and each ONU are communicating in the state shown in FIG. 1, and the operation when wavelength switching is performed from this state will be described.
 波長λ#1を使用してONU101および102と通信し、かつ波長λ#2を使用してONU109と通信しているOLT1において、波長管理部2は、PON終端部10および20を通過するトラヒックを監視している。監視の結果、例えば、PON終端部10を通過するトラヒックが伝送容量の限界に近づくと、PON終端部10に接続しているONUのうち、一部のONUの接続先を変更する(すなわち、使用させる波長を変更する)必要があると判断する。この場合、例えばONU101の接続先をPON終端部20に変更させることに決定する。そして、波長管理部2は、ONU101に対し、使用する波長をλ#2へ切り替えるようにPON終端部10経由で指示する。この指示を受けたONU101は、使用する波長をλ#2に変更する(図4の(1)、図6のステップS1)。波長切り替えの指示方法については特に規定しない。どのような方法で指示を行っても構わない。例えば、ONU101に受信させる下りデータフレームに対して波長切り替えを指示する制御情報を挿入して送信する。 In the OLT 1 communicating with the ONUs 101 and 102 using the wavelength λ # 1 and communicating with the ONU 109 using the wavelength λ # 2, the wavelength management unit 2 transmits traffic passing through the PON termination units 10 and 20. Monitoring. As a result of monitoring, for example, when the traffic passing through the PON termination unit 10 approaches the limit of the transmission capacity, the connection destinations of some of the ONUs connected to the PON termination unit 10 are changed (that is, used) It is determined that the wavelength to be changed is necessary. In this case, for example, it is determined to change the connection destination of the ONU 101 to the PON termination unit 20. Then, the wavelength management unit 2 instructs the ONU 101 via the PON termination unit 10 to switch the wavelength to be used to λ # 2. Upon receiving this instruction, the ONU 101 changes the wavelength to be used to λ # 2 ((1) in FIG. 4, step S1 in FIG. 6). There are no specific rules for the wavelength switching instruction method. The instruction may be given by any method. For example, control information instructing wavelength switching is inserted into a downlink data frame to be received by the ONU 101 and transmitted.
 波長管理部2は、ONU101に対する波長切替指示が完了すると、切り替え後の波長λ#2を使用して通信を行うPON終端部20に対し、ONU101に接続されている各端末のMACアドレスを求めるために用いられるアドレス解決用の制御フレーム(ARP:Address Resolution Protocol要求)の送信を指示する。指示を受けたPON終端部20は、ARP要求を送信し、このARP要求は波長λ#2を使用している全てのONU(ここではONU101および109)で受信され、さらに、端末に向けて転送され、ONU101および109に接続されている各端末に到達する(図4の(2)、図6のステップS2)。 When the wavelength switching unit 2 completes the wavelength switching instruction to the ONU 101, the wavelength management unit 2 obtains the MAC address of each terminal connected to the ONU 101 from the PON terminating unit 20 that performs communication using the wavelength λ # 2 after switching. For sending an address resolution control frame (ARP: Address Resolution Protocol request). Upon receiving the instruction, the PON terminator 20 transmits an ARP request. This ARP request is received by all the ONUs (here, the ONUs 101 and 109) using the wavelength λ # 2, and further forwarded to the terminal. Then, it reaches each terminal connected to the ONUs 101 and 109 ((2) in FIG. 4, step S2 in FIG. 6).
 ARP要求を受信した各端末(MACアドレスがMAC-ADDR#1-1~#1-l、#9-1~#9-nの端末)は、自身のMACアドレスを含んだARP応答を返送し(図4の(3))、各ARP応答は、ONU101または109からの上りフレームとしてOLT1のPON終端部20で受信され、フレーム振り分け部3に渡される。 Each terminal that receives the ARP request (terminals whose MAC addresses are MAC-ADDR # 1-1 to # 1-1, # 9-1 to # 9-n) returns an ARP response including its own MAC address. Each ARP response is received by the PON termination unit 20 of the OLT 1 as an upstream frame from the ONU 101 or 109 and passed to the frame distribution unit 3 ((3) in FIG. 4).
 フレーム振り分け部3は、ARP応答を受信すると、ARP応答で通知されたMACアドレスに基づいて、保持しているMACアドレステーブル4を更新する(図4の(4)、図6のステップS3)。フレーム振り分け部3は、波長切り替えが発生したONU101配下の各端末からARP応答を受信すると、MACアドレステーブル4を更新し、宛先アドレスにMAC-ADDR#1-1~MAC-ADDR#1-lが設定されたフレームの振り分け先がPON終端部20となるようにする(図5参照)。図5は、更新後のMACアドレステーブルの一例を示す図である。なお、ONU109配下の各端末からARP応答を受信した場合には、MACアドレステーブル4を更新しない。 When receiving the ARP response, the frame distribution unit 3 updates the held MAC address table 4 based on the MAC address notified by the ARP response ((4) in FIG. 4, step S3 in FIG. 6). When receiving an ARP response from each terminal under the ONU 101 where wavelength switching has occurred, the frame distribution unit 3 updates the MAC address table 4, and MAC-ADDR # 1-1 to MAC-ADDR # 1-1 are set as destination addresses. The set distribution destination of the frame is set to the PON termination unit 20 (see FIG. 5). FIG. 5 is a diagram illustrating an example of the updated MAC address table. When an ARP response is received from each terminal under the ONU 109, the MAC address table 4 is not updated.
 MACアドレステーブル4の更新が終了すると、MAC-ADDR#1-1~MAC-ADDR#1-l宛ての下りフレームは、フレーム振り分け部3においてLLID#1が付与されてからPON終端部20へ振り分けられ、PON終端部20から波長λ#2にて送信される。LLID#1が付与された下りフレームは波長λ#2を使用しているONU101および109で受信され、LLID#1が割り当てられているONU101は、受信した下りフレームを宛先端末へ転送する。LLID#1が割り当てられていないONU109は、受信した下りフレームを破棄する。 When the update of the MAC address table 4 is completed, downstream frames addressed to MAC-ADDR # 1-1 to MAC-ADDR # 1-l are assigned LLID # 1 in the frame distribution unit 3 and then distributed to the PON termination unit 20 And transmitted from the PON terminator 20 at the wavelength λ # 2. The downlink frame assigned LLID # 1 is received by the ONUs 101 and 109 using the wavelength λ # 2, and the ONU 101 assigned LLID # 1 transfers the received downlink frame to the destination terminal. The ONU 109 to which LLID # 1 is not assigned discards the received downlink frame.
 このように、本実施の形態の通信システムにおいてOLT1は、各ONUとの通信で使用する波長の変更が必要かどうかを監視し、変更が必要な場合には波長の変更を指示し、さらに、変更後の波長を使用してアドレス解決用の制御フレームをブロードキャストし、ONU配下の各端末に対してMACアドレスの通知を指示することとした。また、通知されたMACアドレスに基づいてMACアドレステーブルを更新することとした。これにより、波長切替を実施後、MACアドレステーブルに登録されている情報、すなわち、端末のMACアドレスと下りフレームの出力先の関連を即座に更新し、サービス断時間を低減できる。通常、ARP要求は上位ネットワークにあるサーバから定期的になされ、そのARP要求の送信間隔は分単位である。そのため、従来方式では波長変更の発生後、ONUからの上りフレームを受信するまで一定の時間がかかり、MACアドレステーブルを更新できないので、その間はサービス断時間となってしまう。しかし、本実施の形態によれば、上記のようにOLT1が、波長変更の発生後、ARP要求をブロードキャストしてONU配下の各端末にMACアドレス通知を指示し、受信した上りフレームに基づきMACアドレステーブルの内容を素早く更新するので、サービス断となる時間を秒単位やミリ秒単位に短縮可能とすることができる。 As described above, in the communication system according to the present embodiment, the OLT 1 monitors whether or not the wavelength used for communication with each ONU needs to be changed, and if the change is necessary, instructs the wavelength change. A control frame for address resolution is broadcast using the wavelength after the change, and notification of the MAC address is instructed to each terminal under the ONU. Also, the MAC address table is updated based on the notified MAC address. Thereby, after wavelength switching, the information registered in the MAC address table, that is, the association between the MAC address of the terminal and the output destination of the downlink frame is immediately updated, and the service interruption time can be reduced. Usually, an ARP request is periodically made from a server in the upper network, and the transmission interval of the ARP request is in minutes. For this reason, in the conventional method, after a wavelength change occurs, it takes a certain time until an upstream frame is received from the ONU, and the MAC address table cannot be updated. However, according to the present embodiment, as described above, after the wavelength change occurs, the OLT 1 broadcasts an ARP request to instruct each terminal under the ONU to notify the MAC address, and based on the received uplink frame, the MAC address Since the contents of the table are updated quickly, the service interruption time can be reduced to seconds or milliseconds.
 以上のように、本発明にかかる親局装置は、子局装置との通信で使用する光の波長を変更可能な通信システムに有用である。 As described above, the master station device according to the present invention is useful for a communication system capable of changing the wavelength of light used for communication with a slave station device.
 1 局側装置(OLT)、2 波長管理部、3 フレーム振り分け部、4 MACアドレステーブル、10,20 PON終端部、100 光ファイバ、101,102,109 利用者側装置(ONU)、201 PON制御部、202 受信バッファ、203 送信バッファ、204 光送受信器、205 WDMカプラ(WDM)、206 物理層処理部(PHY)。 1 station side device (OLT), 2 wavelength management unit, 3 frame distribution unit, 4 MAC address table, 10, 20 PON termination unit, 100 optical fiber, 101, 102, 109 user side device (ONU), 201 PON control Part, 202 reception buffer, 203 transmission buffer, 204 optical transceiver, 205 WDM coupler (WDM), 206 physical layer processing part (PHY).

Claims (8)

  1.  1台以上の子局装置を収容し、複数候補の中から選択した一つの波長を各子局装置に割り当てて通信する親局装置であって、
     使用する波長の変更が必要な子局装置を検出すると、前記子局装置に波長変更を指示するとともに、前記子局装置配下の端末装置に自アドレスを通知させる波長管理部を備えることを特徴とする親局装置。
    A master station apparatus that accommodates one or more slave station apparatuses and allocates one wavelength selected from a plurality of candidates to each slave station apparatus for communication.
    When detecting a slave station device that needs to change a wavelength to be used, the slave station device is provided with a wavelength management unit that instructs the slave station device to change the wavelength and that notifies a terminal device under the slave station device of its own address. Master station device.
  2.  自身に割り当てられた波長を使用して配下の前記子局装置との間でフレームを送受信する複数のフレーム送受信部を備え、
     前記波長管理部は、前記子局装置に割り当てられた波長が変更されると、前記複数のフレーム送受信部のうち変更後の波長を使用する前記フレーム送受信部を介して、前記子局装置配下の前記端末装置に前記自アドレスを通知させることを特徴とする請求項1に記載の親局装置。
    A plurality of frame transmission / reception units that transmit / receive a frame to / from the slave station device under its control using a wavelength assigned to itself,
    When the wavelength assigned to the slave station device is changed, the wavelength management unit is connected to the slave station device via the frame transmitter / receiver that uses the changed wavelength among the plurality of frame transmitter / receivers. 2. The master station device according to claim 1, wherein the terminal device is notified of the own address.
  3.  送信先の前記端末装置が収容される前記子局装置と前記子局装置が使用する波長についての情報が記憶された情報記憶部と、
     前記情報記憶部の情報に基づき、上位ネットワークから受信した下りフレームを前記フレーム送受信部に振り分けるフレーム振り分け部とを備え、
     前記フレーム振り分け部は、前記子局装置配下の前記端末装置から通知された前記自アドレスの情報に基づいて前記情報記憶部の情報が更新されると、更新後の情報に基づいて、前記下りフレームを変更後の波長を使用する前記フレーム送受信部に振り分けることを特徴とする請求項2に記載の親局装置。
    An information storage unit storing information about the wavelength used by the slave station device and the slave station device in which the terminal device of the transmission destination is accommodated;
    A frame distribution unit that distributes a downlink frame received from an upper network to the frame transmission / reception unit based on information in the information storage unit;
    When the information in the information storage unit is updated based on the information of the own address notified from the terminal device subordinate to the slave station device, the frame distribution unit, based on the updated information, The master station apparatus according to claim 2, wherein the master station apparatus is assigned to the frame transmitting / receiving unit that uses the wavelength after the change.
  4.  TWDM-PONシステムのOLTとして動作することを特徴とする請求項1、2または3に記載の親局装置。 4. The master station device according to claim 1, wherein the master station device operates as an OLT of a TWDM-PON system.
  5.  前記波長管理部は、使用する波長を変更した前記子局装置配下の前記端末装置に対し、ARP要求を用いて前記自アドレスを通知させることを特徴とする請求項1から4のいずれか一つに記載の親局装置。 5. The wavelength management unit according to claim 1, wherein the terminal device under the slave station device whose wavelength to be used is changed is notified of the own address using an ARP request. The master station device described in 1.
  6.  1台以上の子局装置を収容し、複数候補の中から選択した一つの波長を各子局装置に割り当てて通信する親局装置における制御装置であって、
     使用する波長の変更が必要な子局装置を検出すると、前記子局装置に波長変更を指示するとともに、前記子局装置配下の端末装置に自アドレスを通知させることを特徴とする制御装置。
    A control device in a master station device that accommodates one or more slave station devices and communicates by assigning one wavelength selected from a plurality of candidates to each slave station device,
    When a slave station device that requires a change in wavelength to be used is detected, the slave station device is instructed to change the wavelength, and a terminal device under the slave station device is notified of its own address.
  7.  親局装置が1台以上の子局装置を収容し、複数候補の中から選択した一つの波長を各子局装置に割り当てて通信する通信システムであって、
     親局装置は、使用する波長の変更が必要な子局装置を検出すると、前記子局装置に波長変更を指示するとともに、前記子局装置配下の端末装置に自アドレスを通知させることを特徴とする通信システム。
    A communication system in which a master station device accommodates one or more slave station devices and performs communication by assigning one wavelength selected from a plurality of candidates to each slave station device,
    When the master station device detects a slave station device that needs to change the wavelength to be used, the master station device instructs the slave station device to change the wavelength, and causes a terminal device under the slave station device to notify its own address. Communication system.
  8.  親局装置が1台以上の子局装置を収容し、複数候補の中から選択した一つの波長を各子局装置に割り当てて通信する通信システムにおける通信方法であって、
     親局装置が、各子局装置が使用している波長の変更必要性を判断する判断ステップと、
     親局装置が、波長の変更が必要と判断した子局装置に対して波長変更を指示する指示ステップと、
     親局装置が、波長変更を指示した子局装置配下の端末装置に自アドレスの通知を要求する要求ステップと、
     を含むことを特徴とする通信方法。
     
    A communication method in a communication system in which a master station apparatus accommodates one or more slave station apparatuses and assigns and communicates one wavelength selected from a plurality of candidates to each slave station apparatus,
    A determination step in which the master station device determines the necessity of changing the wavelength used by each slave station device;
    An instruction step in which the master station device instructs the slave station device to change the wavelength;
    A request step in which the master station device requests notification of its own address to a terminal device under the slave station device instructed to change the wavelength;
    A communication method comprising:
PCT/JP2014/065594 2013-08-12 2014-06-12 Master station device, control device, communication system, and communication method WO2015022807A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-167705 2013-08-12
JP2013167705A JP2016181734A (en) 2013-08-12 2013-08-12 Master station device, control device, communication system, and communication method

Publications (1)

Publication Number Publication Date
WO2015022807A1 true WO2015022807A1 (en) 2015-02-19

Family

ID=52468197

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/065594 WO2015022807A1 (en) 2013-08-12 2014-06-12 Master station device, control device, communication system, and communication method

Country Status (2)

Country Link
JP (1) JP2016181734A (en)
WO (1) WO2015022807A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108616308A (en) * 2018-05-15 2018-10-02 国网黑龙江省电力有限公司哈尔滨供电公司 Automatization terminal communication device based on optical-fibre communications and wireless private network technological incorporation

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011259063A (en) * 2010-06-07 2011-12-22 O F Networks Co Ltd Management system, center side device, subscriber side device, and management device
WO2013108577A1 (en) * 2012-01-17 2013-07-25 日本電信電話株式会社 Wavelength bandwidth allocation method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011259063A (en) * 2010-06-07 2011-12-22 O F Networks Co Ltd Management system, center side device, subscriber side device, and management device
WO2013108577A1 (en) * 2012-01-17 2013-07-25 日本電信電話株式会社 Wavelength bandwidth allocation method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108616308A (en) * 2018-05-15 2018-10-02 国网黑龙江省电力有限公司哈尔滨供电公司 Automatization terminal communication device based on optical-fibre communications and wireless private network technological incorporation

Also Published As

Publication number Publication date
JP2016181734A (en) 2016-10-13

Similar Documents

Publication Publication Date Title
JP5908051B2 (en) Communication system, master station device, slave station device, control device, and communication control method
US10123101B2 (en) Communication method applied to multi-wavelength passive optical network, apparatus, and system
JP6072285B2 (en) Master station apparatus and communication system
US9780867B2 (en) Optical communication system and optical communication abnormality-recovery method
US9350480B2 (en) Relay device, relay method, and optical communication system which uses relay device
US9680575B2 (en) Relay device, station side device, and communication system and communication method using relay device
WO2014008659A1 (en) Wavelength negotiation method, system, and device for multi-wavelength passive optical network
EP3446418B1 (en) Systems and methods for performing optical line terminal (olt) failover switches in optical networks
US20090252492A1 (en) Optical communication system , and optical communication method and communication unit therefor
WO2012090323A1 (en) Method of managing logical link and communication device
KR20050021791A (en) Gigabit ethernet passive optical network having double link structure and double link setting method using that
JP2007324885A (en) Optical communication method, optical communication network system, host station optical communication device, and slave station optical communication device
WO2014181174A1 (en) Method and apparatus for reconfiguring wavelength of optical network unit
JP2011217298A (en) Pon system, station-side device and terminal-side device thereof, and rtt correction method
JP6582731B2 (en) Station-side terminator, subscriber-side terminator, optical communication system, path switching method, path switching program, and wavelength switching method
JP2016072682A (en) Station side termination device and route changeover method
WO2015022807A1 (en) Master station device, control device, communication system, and communication method
JP2015173384A (en) Communication system, subscriber device, station side device and uninterruptible switching method
CN106464385B (en) Communication method, device and system
JP2014033269A (en) Optical network unit, optical line terminal, controller, communication device, optical transmission system and power saving control method
KR100713526B1 (en) Aggregation link system and method in gigabit ethernet
JP5748372B1 (en) Wavelength monitoring method, wavelength monitoring system, parent node and child node
JP2015154211A (en) Master station device, communication system, communication control method and control device
WO2016157238A1 (en) Station-side device and communication system
JP2019047168A (en) Office side termination device and route changeover method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14836543

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 14836543

Country of ref document: EP

Kind code of ref document: A1