WO2015020508A1 - Method and apparatus for reordering pdcp while considering multi-flow in dual connectivity system - Google Patents

Method and apparatus for reordering pdcp while considering multi-flow in dual connectivity system Download PDF

Info

Publication number
WO2015020508A1
WO2015020508A1 PCT/KR2014/007457 KR2014007457W WO2015020508A1 WO 2015020508 A1 WO2015020508 A1 WO 2015020508A1 KR 2014007457 W KR2014007457 W KR 2014007457W WO 2015020508 A1 WO2015020508 A1 WO 2015020508A1
Authority
WO
WIPO (PCT)
Prior art keywords
pdcp
base station
entity
pdus
received
Prior art date
Application number
PCT/KR2014/007457
Other languages
French (fr)
Korean (ko)
Inventor
정명철
허강석
권기범
안재현
Original Assignee
주식회사 팬택
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020140102074A external-priority patent/KR102211469B1/en
Application filed by 주식회사 팬택 filed Critical 주식회사 팬택
Publication of WO2015020508A1 publication Critical patent/WO2015020508A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/15Setup of multiple wireless link connections
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W80/00Wireless network protocols or protocol adaptations to wireless operation
    • H04W80/02Data link layer protocols

Definitions

  • the present invention relates to wireless communication, and more particularly, to a PDCP reordering method and apparatus therefor in consideration of multi-flow in a wireless communication system supporting dual connectivity.
  • a macro cell In a heterogeneous network environment, a macro cell is a large coverage cell, and a small cell such as a femto cell and a pico cell is a small coverage cell. Compared to macro cells, small cells such as femto cells and pico cells use low power and are also referred to as low power networks (LPNs). Coverage overlap occurs between multiple macro cells and small cells in a heterogeneous network environment.
  • LPNs low power networks
  • the terminal may configure dual connectivity through two or more base stations among the base stations configuring at least one serving cell. Dual connectivity is an operation in which the terminal consumes radio resources provided by at least two different network points (eg, macro base station and small base station) in a radio resource control connection (RRC_CONNECTED) mode. In this case, the at least two different network points may be connected by non-ideal backhaul.
  • RRC_CONNECTED radio resource control connection
  • one of the at least two different network points may be called a macro base station (or a master base station or an anchor base station), and the rest may be called small base stations (or secondary base stations or assisting base stations or slave base stations).
  • a wireless communication system has a single flow structure in which a service is provided to a terminal through one radio bearer (RB) for one EPS bearer service.
  • RB radio bearer
  • one EPS bearer may provide a service to a terminal through two RBs configured in a macro cell and a small cell instead of one RB. That is, the service may be provided to the terminal through multi-flow.
  • one RB may be provided through only the macro cell, and the other RB may be configured through two base stations corresponding to the macro cell and the small cell.
  • one RB may be configured in a single base station and the other RB may be configured in a bearer split into two base stations.
  • RLC acknowlegdged mode when a received RLC packet data unit (RDU PDU) is received out of order in downlink, the RLC entity reorders the RLC PDUs.
  • RLC AM the missing RLC PDU may be retransmitted at the receiver.
  • the RLC entity reassembles an RLC Service Date Unit (SDU) based on the rearranged RLC PDUs and sequentially delivers them to a higher layer (ie, PDCP entity).
  • SDU RLC Service Date Unit
  • PDCP entity ie, PDCP entity
  • the PDCP entity should receive the RLC SDUs sequentially, except for re-establishment of the lower layer.
  • an RLC entity for a small base station and an RLC entity for a macro base station may be divided to receive each RLC PDU, and the RLC SDU may be delivered to a higher layer (ie, a PDCP layer). If the PDCP entity does not expect the sequential reception of the RLC SDU. Therefore, in case of a UE configured with multi-flow, a PDCP rearrangement method for ascending delivery of PDCP SDUs to a higher layer in a PDCP entity is required.
  • An object of the present invention is to provide a method and apparatus for rearranging PDCP in consideration of multi-flow in a dual connectivity system.
  • Another technical problem of the present invention is to perform PDCP SDU rearrangement based on PDCP SN comparison in a multiflow structure.
  • Another technical problem of the present invention is to perform PDCP rearrangement based on a timer.
  • a Packet Data Convergence Protocol (PDCP) entity of a UE configured for dual connectivity with a macro base station (Macro eNB) and a small eNB (small eNB) multi-flow
  • a method of reordering PDCP Service Data Units (SDUs) considering multi-flow is provided.
  • the PDCP SDU rearrangement method may include receiving PDCP PDUs through the macro base station and the small base station, and if PDCP SN n PDCP PDUs are received through any one of the macro base station and the small base station, Driving an array timer.
  • a PDCP entity of a terminal configured with dual connectivity with a macro base station and a small base station provides a method for rearranging PDCP SDUs in consideration of multiflow.
  • the PDCP SDU rearrangement method may further include receiving PDCP PDUs through the macro base station and the small base station, and when PDCP SN n PDCP PDUs are received through any one of the macro base station and the small base station, And checking whether a maximum PDCP SN value k of at least one PDCP PDU received through another base station is greater than n.
  • a method for rearranging PDCP SDUs in consideration of multiflow in a PDCP entity of a terminal having dual connectivity with a macro base station and a small base station includes receiving PDCP PDUs through the macro base station and the small base station, and if the rearrangement timer is not running, driving a rearrangement timer when any PDCP PDU is received. It is characterized by.
  • the terminal when the terminal is dual-linked with the macro base station and the small base station, in performing multi-flow downlink reception, due to a transmission path delay, PDCP PDUs are sequentially arranged in the PDCP entity of the terminal. Even if received, the PDCP SDUs may be rearranged, the ascending order of PDCP SDUs may be performed to an upper layer, and transmission efficiency may be improved.
  • FIG. 1 shows a wireless communication system to which the present invention is applied.
  • FIG. 2 is a block diagram illustrating a radio protocol architecture for a user plane.
  • FIG. 3 is a block diagram illustrating a radio protocol structure for a control plane.
  • FIG. 4 is a diagram illustrating an outline of an example of an RLC sublayer model to which the present invention is applied.
  • FIG. 5 is a diagram illustrating an outline of an example of a PDCP sublayer model to which the present invention is applied.
  • FIG. 6 shows an example of a dual connection situation of a terminal applied to the present invention.
  • FIG. 7 shows an example of an EPS bearer structure when a single flow is configured.
  • FIG. 9 shows an example of an EPS bearer structure when a multi flow is configured in a dual connection situation.
  • FIG 10 shows an example of the network structure of the macro base station and the small base station in the multi-flow.
  • FIG. 11 illustrates a packet forwarding process in the case of a single flow when considering dual connectivity.
  • FIG. 13 shows an example of a PDCP PDU reception timing in a PDCP entity of a terminal.
  • 14A to 14B illustrate examples of performing a PDCP SDU rearrangement based on a PDCP SN comparison according to an embodiment of the present invention.
  • 16A to 16B illustrate a case where a problem occurs in PDCP PDU transmission through a small base station in a situation in which a multi-flow is configured with a macro base station and a small base station in the terminal.
  • 17A to 17B illustrate examples of a PDCP SDU rearrangement scheme using a rearrangement timer when PDCP PDUs are not suddenly received through a small base station according to another embodiment of the present invention.
  • FIG. 19 is a flowchart illustrating a rearrangement timer based PDCP SDU rearrangement method according to another embodiment of the present invention.
  • 20A to 20B illustrate a PDCP removal confirmation method according to another example of the present invention.
  • 21 illustrates an example of performing PDCP removal determination based on a PDCP SN comparison and rearrangement timer for each base station according to another embodiment of the present invention.
  • FIG. 22 is a flowchart of a PDCP SDU rearrangement method based on a PDCP SN comparison and rearrangement timer for each base station according to another embodiment of the present invention.
  • 23A to 23E illustrate examples of a PDCP SDU rearrangement method based on a rearrangement timer according to another example of the present invention.
  • 24A to 24D illustrate another example of a PDCP SDU rearrangement method based on a rearrangement timer according to another embodiment of the present invention.
  • FIG. 25 is a flowchart of a rearrangement timer based PDCP SDU rearrangement method according to another embodiment of the present invention.
  • the present specification describes a wireless communication network
  • the operation performed in the wireless communication network is performed in the process of controlling the network and transmitting data in the system (for example, the base station) that is in charge of the wireless communication network, or the corresponding wireless Work may be done at the terminal coupled to the network.
  • the E-UMTS system may be a Long Term Evolution (LTE) or LTE-A (Advanced) system.
  • Wireless communication systems include Code Division Multiple Access (CDMA), Time Division Multiple Access (TDMA), Frequency Division Multiple Access (FDMA), Orthogonal Frequency Division Multiple Access (OFDMA), Single Carrier-FDMA (SC-FDMA), and OFDM-FDMA
  • CDMA Code Division Multiple Access
  • TDMA Time Division Multiple Access
  • FDMA Frequency Division Multiple Access
  • OFDMA Orthogonal Frequency Division Multiple Access
  • SC-FDMA Single Carrier-FDMA
  • OFDM-FDMA OFDM-FDMA
  • Various multiple access schemes such as OFDM, TDMA, and OFDM-CDMA may be used.
  • the E-UTRAN provides a base station 20 (evolved NodeB: eNB) which provides a control plane (CP) and a user plane (UP) to a user equipment (UE). Include.
  • eNB evolved NodeB
  • CP control plane
  • UP user plane
  • UE user equipment
  • the terminal 10 may be fixed or mobile and may be called by other terms such as mobile station (MS), advanced MS (AMS), user terminal (UT), subscriber station (SS), and wireless device (Wireless Device). .
  • MS mobile station
  • AMS advanced MS
  • UT user terminal
  • SS subscriber station
  • Wireless Device Wireless Device
  • the base station 20 generally refers to a station communicating with the terminal 10, and includes a base station (BS), a base transceiver system (BTS), an access point, and a femto-eNB. It may be called other terms such as a pico base station (pico-eNB), a home base station (Home eNB), a relay (relay).
  • the base stations 20 may be connected to each other through an X2 interface.
  • the base station 20 is connected to a Serving Gateway (S-GW) through an MME (Mobility Management Entity) and an S1-U through an Evolved Packet Core (EPC) 30, more specifically, an S1-MME through an S1 interface.
  • S1 interface exchanges OAM (Operation and Management) information for supporting the movement of the terminal 10 by exchanging signals with the MME.
  • OAM Operaation and Management
  • the EPC 30 includes an MME, an S-GW, and a packet data network-gateway (P-GW).
  • the MME has access information of the terminal 10 or information on the capability of the terminal 10, and this information is mainly used for mobility management of the terminal 10.
  • the S-GW is a gateway having an E-UTRAN as an endpoint
  • the P-GW is a gateway having a PDN (Packet Data Network) as an endpoint.
  • Integrating the E-UTRAN and the EPC 30 may be referred to as an EPS (Evoled Packet System), and the traffic flows from the radio link that the terminal 10 connects to the base station 20 to the PDN connecting to the service entity are all IP. It works based on (Internet Protocol).
  • EPS Evoled Packet System
  • the radio interface between the terminal and the base station is called a Uu interface.
  • the layers of the radio interface protocol between the terminal and the network are based on the lower three layers of the Open System Interconnection (OSI) reference model, which are well known in a communication system. It may be divided into a second layer L2 and a third layer L3.
  • OSI Open System Interconnection
  • the physical layer belonging to the first layer provides an information transfer service using a physical channel
  • the RRC (Radio Resource Control) layer located in the third layer exchanges an RRC message for the UE. Control radio resources between network and network.
  • FIG. 2 is a block diagram showing a radio protocol architecture for a user plane
  • FIG. 3 is a block diagram showing a radio protocol architecture for a control plane.
  • the user plane is a protocol stack for user data transmission
  • the control plane is a protocol stack for control signal transmission.
  • a physical layer (PHY) layer provides an information transfer service to a higher layer using a physical channel.
  • the physical layer is connected to a medium access control (MAC) layer, which is an upper layer, through a transport channel.
  • MAC medium access control
  • Data is transmitted through a transport channel between the MAC layer and the physical layer. Transport channels are classified according to how data is transmitted over the air interface.
  • data is transmitted through a physical channel between different physical layers (ie, between physical layers of a transmitter and a receiver).
  • the physical channel may be modulated by an orthogonal frequency division multiplexing (OFDM) scheme and utilizes time and frequency as radio resources.
  • OFDM orthogonal frequency division multiplexing
  • the physical downlink control channel (PDCCH) of the physical channel informs the UE of resource allocation of a paging channel (PCH) and downlink shared channel (DL-SCH) and hybrid automatic repeat request (HARQ) information related to the DL-SCH.
  • the PDCCH may carry an uplink scheduling grant informing the UE of resource allocation of uplink transmission.
  • a physical control format indicator channel (PCFICH) informs the UE of the number of OFDM symbols used for PDCCHs and is transmitted every subframe.
  • the PHICH physical hybrid ARQ Indicator Channel
  • the physical uplink control channel (PUCCH) carries uplink control information such as HARQ ACK / NAK, scheduling request, and CQI for downlink transmission.
  • a physical uplink shared channel (PUSCH) carries an uplink shared channel (UL-SCH).
  • the MAC layer may perform multiplexing or demultiplexing into a transport block provided as a physical channel on a transport channel of a MAC service data unit (SDU) belonging to the logical channel and mapping between the logical channel and the transport channel.
  • SDU MAC service data unit
  • the MAC layer provides a service to a Radio Link Control (RLC) layer through a logical channel.
  • RLC Radio Link Control
  • the logical channel may be divided into a control channel for transmitting control region information and a traffic channel for delivering user region information.
  • Functions of the RLC layer include concatenation, segmentation, and reassembly of RLC SDUs.
  • the RLC layer In order to guarantee the various quality of service (QoS) required by the radio bearer (RB), the RLC layer has a transparent mode (TM), an unacknowledged mode (UM), and an acknowledged mode (Acknowledged Mode). Three modes of operation (AM).
  • the RLC SDUs are supported in various sizes, and for example, may be supported in units of bytes.
  • RLC protocol data units PDUs are defined only when a transmission opportunity is notified from a lower layer (eg, MAC layer), and when the transmission opportunity is notified, the RLC PDUs are delivered to the lower layer. The transmission opportunity may be informed with the size of the total RLC PDUs to be transmitted.
  • a lower layer eg, MAC layer
  • the transmission opportunity may be informed with the size of the total RLC PDUs to be transmitted.
  • the RLC layer will be described in detail with reference to FIG. 4.
  • Functions of the Packet Data Convergence Protocol (PDCP) layer in the user plane include delivery of user data, header compression, and ciphering.
  • Functions of the PDCP layer in the user plane include the transfer of control plane data and encryption / integrity protection.
  • PDCP Packet Data Convergence Protocol
  • the RRC layer is responsible for the control of logical channels, transport channels, and physical channels in connection with configuration, re-configuration, and release of RBs.
  • RB means a logical path provided by the first layer (PHY layer) and the second layer (MAC layer, RLC layer, PDCP layer) for data transmission between the terminal and the network.
  • the configuration of the RB means a process of defining characteristics of a radio protocol layer and a channel to provide a specific service, and setting each specific parameter and operation method.
  • the RB may be further classified into a signaling RB (SRB) and a data RB (DRB).
  • SRB signaling RB
  • DRB data RB
  • the NAS layer is located above the RRC layer and performs functions such as session management and mobility management.
  • the UE If there is an RRC connection between the RRC layer of the UE and the RRC layer of the E-UTRAN, the UE is in an RRC connected state, otherwise it is in an RRC idle state.
  • the downlink transmission channel for transmitting data from the network to the UE includes a BCH (Broadcast Channel) for transmitting system information and a downlink shared channel (SCH) for transmitting user traffic or control messages.
  • Traffic or control messages of a downlink multicast or broadcast service may be transmitted through a downlink SCH or may be transmitted through a separate downlink multicast channel (MCH).
  • the uplink transport channel for transmitting data from the terminal to the network includes a random access channel (RACH) for transmitting an initial control message and an uplink shared channel (SCH) for transmitting user traffic or control messages.
  • RACH random access channel
  • SCH uplink shared channel
  • BCCH broadcast control channel
  • PCCH paging control channel
  • CCCH common control channel
  • MCCH multicast control channel
  • MTCH multicast traffic
  • the physical channel is composed of several symbols in the time domain and several sub-carriers in the frequency domain.
  • One sub-frame consists of a plurality of OFDM symbols in the time domain.
  • One subframe consists of a plurality of resource blocks, and one resource block consists of a plurality of symbols and a plurality of subcarriers.
  • each subframe may use specific subcarriers of specific symbols (eg, the first symbol) of the corresponding subframe for the physical downlink control channel (PDCCH).
  • the transmission time interval (TTI) which is a unit time for transmitting data, is 1 ms corresponding to one subframe.
  • FIG. 4 is a diagram illustrating an example of an example of an RLC sublayer model to which an embodiment of the present invention is applied.
  • RLC entities are classified into different RLC entities according to data transmission schemes. For example, there is a TM RLC entity 400, a UM RLC entity 420, and an AM RLC entity 440.
  • the UM RLC entity 400 may be configured to receive or forward RLC PDUs over logical channels (eg, DL / UL DTCH, MCCH or MTCH).
  • the UM RLC entity may deliver or receive a UMD PDU (Unacknowledged Mode Data PDU).
  • the UM RLC entity consists of a sending UM RLC entity or a receiving UM RLC entity.
  • the transmitting UM RLC entity receives the RLC SDUs from the upper layer and sends the RLC PDUs to the peer receiving UM RLC entity via the lower layer.
  • the sending UM RLC entity constructs UMD PDUs from the RLC SDUs, the total size of the RLC PDUs indicated by the lower layer by segmenting or concatenating the RLC SDUs when a specific transmission opportunity is notified by the lower layer.
  • the UMD PDUs are configured to be within and the related RLC headers are included in the UMD PDU.
  • the receiving UM RLC entity delivers the RLC SDUs to the upper layer and receives the RLC PDUs from the peer receiving UM RLC entity through the lower layer.
  • the receiving UM RLC entity detects whether the UMD PDUs have been received in duplicate, removes the duplicate UMD PDUs, and when the UMD PDUs are received out of sequence.
  • Reorder the UMD PDUs detect loss of UMD PDUs in the lower layer to avoid excessive reordering delays, reassemble RLC SDUs from the rearranged UMD PDUs, and In addition, the reassembled RLC SDUs are delivered to an upper layer in an ascending order of an RLC sequence number, and UMD PDUs cannot be reassembled into an RLC SDU due to a loss of UMD PDUs belonging to a specific RLC SDU in a lower layer. Can be removed.
  • the receiving UM RLC entity Upon RLC re-establishment, the receiving UM RLC entity, if possible, reassembles the RLC SDUs from the received UMD PDUs out of sequence and forwards them to the higher layer, and the remaining UMD PDUs that could not be reassembled into RLC SDUs. Remove all, initialize the relevant state variables and stop the associated timers.
  • the AM RLC entity 440 may be configured to receive or deliver RLC PDUs through logical channels (eg, DL / UL DCCH or DL / UL DTCH).
  • the AM RLC entity delivers or receives an AMD PDU or ADM PDU segment, and delivers or receives an RLC control PDU (eg, a STATUS PDU).
  • AM RLC entity 440 delivers STATUS PDUs to peer AM RLC entities to provide positive and / or negative acknowledgment of RLC PDUs (or portions thereof). This may be called STATUS reporting.
  • a polling procedure may be involved from the peer AM RLC entity to trigger STATUS reporting. That is, an AM RLC entity may poll the peer AM RLC entity to trigger STATUS reporting at its peer AM RLC entity.
  • the STATUS PDU is sent at the next transmission opportunity. Accordingly, the UE estimates the size of the STATUS PDU and considers the STATUS PDU as data available for transmission in the RLC layer.
  • the AM RLC entity is composed of a transmitting side and a receiving side.
  • the transmitter of the AM RLC entity receives the RLC SDUs from the upper layer and sends the RLC PDUs to the peer AM RLC entity via the lower layer.
  • the transmitter of the AM RLC entity configures AMD PDUs from RLC SDUs, it splits the RLC SDUs to fit within the total size of the RLC PDU (s) indicated by the lower layer when a particular transmission opportunity is notified by the lower layer. Segment or concatenate to configure AMD PDUs.
  • the transmitter of the AM RLC entity supports retransmission of RLC data PDUs (ARQ).
  • the AM RLC entity repartitions the RLC data PDU into AMD PDU segments. (re-segment)
  • the number of re-segmentation is not limited.
  • the transmitter of the AM RLC entity creates AMD PDUs from RLC SDUs received from the upper layer or AMD PDU segments from RLC data PDUs to be retransmitted, the relevant RLC headers are included in the RLC data PDU.
  • the receiver of the AM RLC entity delivers the RLC SDUs to the upper layer and receives the RLC PDUs from the peer AM RLC entity via the lower layer.
  • the receiver of the AM RLC entity When the receiver of the AM RLC entity receives the RLC data PDUs, the receiver detects whether the RLC data PDUs are received in duplicate, removes the duplicate RLC data PDUs, and removes the RLC data PDUs out of sequence. Reorder the order of RLC data PDUs, detect the loss of RLC data PDUs occurring in the lower layer, request retransmission to the peer AM RLC entity, and reassemble RLC SDUs from the rearranged RLC data PDUs. reassemble, and deliver the reassembled RLC SDUs to an upper layer in reassembled order.
  • the receiver of the AM RLC entity When resetting the RLC, the receiver of the AM RLC entity, possibly out of sequence, reassembles the RLC SDUs from the received RLC data PDUs and delivers them to the higher layer, all remaining RLC data PDUs that cannot be reassembled into RLC SDUs. Remove it, initialize the relevant state variables and stop the associated timers.
  • FIG. 5 is a diagram illustrating an outline of an example of a PDCP sublayer model to which the present invention is applied.
  • the PDCP sublayer includes at least one PDCP entity 500.
  • Each RB eg, DRB and SRB, except SRB0
  • Each PDCP entity may be associated with one or two RLC entity (s) depending on the characteristics of the RB and the RLC mode.
  • the PDCP entity 500 receives user data from a higher layer (eg an application layer) or passes user data to a higher layer.
  • the user data here is an IP packet.
  • User data may be delivered via a Service Access Point (PDCP-SAP).
  • the PDCP layer receives a PDCP configuration request (PDCP_CONFIG_REQ) message, which is signaling data, from the RRC layer.
  • the PDCP configuration request message may be delivered through a control-service access point (C-SAP).
  • the PDCP configuration request message is a message requesting to configure PDCP according to the PDCP configuration parameters.
  • the transmitting side of the PDCP entity 500 starts a discard timer upon receipt of user data from a higher layer.
  • User data i.e. PDCP SDU
  • PDCP headers i.e., RLC SDUs
  • the transmitter PDCP delivers the PDCP PDU to the lower layer (eg, RLC layer).
  • the PDCP PDU may include a PDCP Data PDU and a PDCP Control PDU.
  • the PDCP Data PDU carries user plane data, control plane data, and the like, and carries a PDCP SDU Sequence Number (SN).
  • PDCP SDU SN may be called PDCP SN.
  • the PDCP Control PDU carries a PDCP status report and header compression control information.
  • the RLC SDU may be delivered to the RLC layer through the RLC-SAP. If the user data is not transmitted until the removal timer expires, the transmitting PDCP removes the user data (PDCP SDU including the user data).
  • the receiving side of the PDCP entity 500 receives an RLC SDU (ie PDCP PDU) from a lower layer.
  • PDCP PDUs become PDCP SDUs through PDCP header decompression, deciphering, and integrity verification (in the control domain).
  • the receiving end of the PDCP entity 500 delivers the PDCP SDUs to higher layers (eg, application layers).
  • the receiving end of the PDCP entity 500 generally expects to receive sequentially RLC SDUs (ie, PDCP PDUs), except for re-establishment of lower layers. Accordingly, except when the receiving end of the PDCP entity 500 receives the RLC SDU through the resetting of the lower layer, when the PDCP PDU is received, the receiving end of the PDCP entity 500 may transmit the corresponding PDCP SDU to the upper layer in ascending order. If there are stored PDCP SDUs, they are delivered to the upper layer in ascending order.
  • RLC SDUs ie, PDCP PDUs
  • the PDCP entity 500 receives a PDCP PDU for a reason other than a reset of a lower layer, the PDCP entity 500 will check all associated stored PDCP SDU (s) with a count value less than the associated count value of the received PDCP SDU. It delivers to the upper layer in ascending order and delivers all stored PDCP SDU (s) of consecutively associated count values starting from the count value of the received PDCP SDU to the upper layer in ascending order.
  • FIG. 6 shows an example in which a dual connection is configured in a terminal to which an embodiment of the present invention is applied.
  • a terminal 650 located in a service area of a macro cell in a macro base station may be a small base station (or a secondary base station or an assisting base station or a slave base station, 610).
  • the mobile station enters an area overlaid with the service area of the small cell.
  • the network configures dual connectivity for the terminal.
  • the user data arriving at the macro cell may be delivered to the terminal through the small cell in the small base station.
  • the F2 frequency band is assigned to the macro base station
  • the F1 frequency band is assigned to the small base station.
  • the terminal may receive a service through the F2 frequency band from the macro base station, and may receive a service through the F1 frequency band from the small base station.
  • FIG. 7 shows an example of an EPS bearer structure when a single flow is configured.
  • an RB is a bearer provided in a Uu interface to support a service of a user.
  • each bearer is defined for each interface to ensure independence between the interfaces.
  • Bearers provided by the wireless communication system are collectively referred to as EPS (Evolved Packet System) bearers.
  • the EPS bearer is a transmission path generated between the UE and the P-GW.
  • the P-GW may receive IP flows from the Internet or send IP flows to the Internet.
  • One or more EPS bearers may be configured per terminal, each EPS bearer may be divided into an E-UTRAN Radio Access Bearer (E-RAB) and an S5 / S8 bearer, and the E-RAB may be a Radio Bearer (RB) or an S1.
  • E-RAB E-UTRAN Radio Access Bearer
  • S5 / S8 bearer S5 / S8 bearer
  • RB Radio Bearer
  • the IP flow may have different Quality of Service (QoS) characteristics, and IP flows having different QoS characteristics may be mapped and transmitted for each EPS bearer.
  • QoS Quality of Service
  • the EPS bearer may be classified based on an EPS bearer identity.
  • the EPS bearer identifier is allocated by the UE or MME.
  • P-GW Packet Gateway
  • EPS bearer is defined between the terminal and the P-GW.
  • EPS bearer is further subdivided between nodes, defined as RB between UE and BS, S1 bearer between BS and S-GW, and S5 / S8 bearer between S-GW and P-GW in EPC. do.
  • Each bearer is defined through QoS.
  • QoS is defined through data rate, error rate, delay, and the like.
  • each QoS is determined for each interface.
  • Each interface establishes a bearer according to the QoS that it must provide. Since bearers of each interface provide QoS of all EPS bearers by interface, EPS bearers, RBs, and S1 bearers are basically in a one-to-one relationship.
  • the LTE wireless communication system is basically a single flow structure, one RB is configured for one EPS bearer.
  • one EPS bearer is mapped with the S1 bearer through one RB.
  • one EPS bearer is serviced through one RB.
  • one RB eg, PDCP entity, RLC entity, MAC entity, PHY layer
  • one RB is configured in the terminal.
  • 8 shows an example of a network structure of a macro base station and a small base station in a single flow in a dual connectivity situation. 8 illustrates a case where a service is provided to a terminal through two EPS bearers.
  • a macro base station includes two PDCP entities, an RLC entity, a MAC entity, and a PHY layer
  • a small base station includes an RLC entity, a MAC entity, and a PHY layer
  • the EPS bearer # 1 800 provides a service to the terminal through the RB (PDCP / RLC / MAC / PHY) configured in the macro base station.
  • the EPS bearer # 2 850 provides a service to the terminal through the PDCP entity configured in the macro base station and the RB (RLC / MAC / PHY) configured in the small base station. Therefore, a service is provided through one RB per EPS bearer in a single flow.
  • FIG. 9 shows an example of an EPS bearer structure when a multi flow is configured in a dual connection situation.
  • a service is provided through two RBs configured for the macro base station and the small base station instead of one RB for one EPS bearer.
  • the terminal may simultaneously receive a service through one RB configured in the macro base station and one RB configured in the small base station for one EPS bearer.
  • This is a form in which one EPS bearer provides a service through two RBs.
  • multi-flow may be configured in the terminal when a service is provided to the terminal through the macro base station and the small base station by dividing one RB.
  • the multi-flow may be configured when the RB providing the service only through the macro base station and another RB providing the RB divided into the macro base station and the small base station are simultaneously provided to the terminal.
  • the case of providing a service to a terminal through a macro base station and a small base station by dividing one RB may be referred to as bearer split.
  • FIG 10 shows an example of the network structure of the macro base station and the small base station in the multi-flow.
  • a macro base station includes a PDCP entity, an RLC entity, a MAC entity, and a PHY layer
  • a small base station includes an RLC entity, a MAC entity, and a PHY layer
  • an RB is configured at a macro base station and a small base station for one EPS bearer 1000 to provide a service to a terminal. That is, a macro base station and a small base station provide a service to a terminal through multiflow for one EPS bearer.
  • the packet forwarding process may be represented as follows.
  • FIG. 11 illustrates a packet forwarding process in the case of a single flow when considering dual connectivity.
  • the macro base station 1130 receives packets for each of two EPS bearers through the P-GW and the S-GW.
  • the flow through which packets are sent is mapped to each EPS bearer.
  • Packets transmitted through the EPS bearer # 1 are called packet 1
  • packets transmitted through the EPS bearer # 2 are assumed to be packet 2.
  • the PDCP 1135-2 of the macro base station 1130 generates a PDCP PDU2 based on Packet 2, and delivers the PDCP PDU2 to the RLC 1170 of the small base station 1160, and sends the MAC 1175 and the PHY 1180. ) Is transformed into a format suitable for each entity and layer and transmitted to the terminal 1100.
  • a radio protocol entity exists for each of the EPS bearer # 1 and the EPS bearer # 2.
  • the PDCP / RLC / MAC / PHY entity exists in the EPS bearer # 1 and the PDCP / RLC / MAC / PHY entity (or layer) exists in the EPS bearer # 2.
  • PHY 1105-1, MAC 1110-1, RLC 1115-1, and PDCP 1120-1 exist with respect to EPS bearer # 1.
  • the PHY 1105-2, the MAC 1110-2, the RLC 1115-2, and the PDCP 1120-2 exist for the EPS bearer # 2, and service data and packets for the EPS bearer # 2 are present. Process.
  • the macro base station 1130 and the small base station 1160 may be connected through an X2 interface. That is, the macro base station 1130 transmits the PDCP PDU2 of the PDCP 1135-2 to the RLC 1140 of the small base station 1160 through the X2 interface.
  • the X2 interface may use other expressions indicating an X3 interface or an interface between other macro base stations and small base stations.
  • a transmission delay of about 20 to 60 ms may occur.
  • the size of the transmission delay may be changed according to a transmission line or a method as an example.
  • the terminal 1100 includes the RLC 1115-1 for the EPS bearer # 1, the PDCP 1120-1 for the EPS bearer # 2, and the RLC 1115-2 for the EPS bearer # 2 and the PDCP 1120-2. Since it is configured separately, no problem occurs even when sequential delivery of RLC SDUs is performed from the RLC entity of the AM to the PDCP entity. In other words, each PDCP entity corresponding to PDCP 1120-1 and PDCP 1120-2 is sequentially processed if it is processed in the order transmitted from each RLC entity corresponding to RLC 1115-1 and RLC 1115-2. Problem does not occur.
  • the macro base station 1230 receives packets for one EPS bearer through the P-GW and the S-GW.
  • the macro base station 1230 and the small base station 1260 each constitute an RB for the one EPS bearer.
  • the macro base station 1230 constitutes a PDCP 1235, an RLC 1240, a MAC 1245, and a PHY 1250
  • the small base station 1240 is an RLC 1270, a MAC 1275, and a PHY 1280.
  • the RB configured by the small base station 1240 shares the PDCP 1235 configured by the macro base station 1230. Therefore, one RB is divided into a macro base station 1230 and a small base station 1260.
  • the PDCP 1235 of the macro base station 1230 receives the packet from the S-GW.
  • the PDCP 1235 generates PDCP PDUs based on packets, and generates the PDCP PDUs according to a predefined rule or any method according to the RLC 1240 of the macro base station 1230 and the RLC 1270 of the small base station 1260.
  • PDCP PDUs having odd SNs among PDCP PDUs are transmitted to the RLC 1240 of the macro base station 1230, and PDCP PDUs having even SNs are transmitted to the RLC 1270 of the small base station 1260.
  • the RLC 1240 generates an RLC PDU1 (s), and the RLC PDU1 (s) is transformed into a format suitable for each entity and layer through the MAC 1245 and the PHY 1250 and transmitted to the terminal 1200.
  • the RLC 1270 generates an RLC PDU2 (s), and the RLC PDU2 (s) is transformed into a format suitable for each entity and layer through the MAC 1275 and the PHY 1280 and transmitted to the terminal 1200. do.
  • the terminal 1200 has two radio protocol entities for the EPS bearer.
  • the terminal 1200 includes a PDCP / RLC / MAC / PHY entity (or layer) as an RB corresponding to the macro base station 1230, and an RLC / MAC / PHY entity (as an RB corresponding to the small base station 1260). Or hierarchy).
  • the PHY 1205-1, the MAC 1210-1, the RLC 1215-1, and the PDCP 1220 corresponding to the macro base station 1230 exist for the EPS bearer, and the small base station 1260 is present.
  • the PDCP 1220 is a PDCP entity corresponding to the macro base station 1230 and the small base station 1260 simultaneously. That is, in this case, two RLC entities 1215-1 and 1215-2 exist at the terminal 1200, but the two RLC entities 1215-1 and 1215-2 are one PDCP entity 1220. Corresponds to.
  • the macro base station 1230 and the small base station 1260 may be connected through an X2 (or Xn) interface. That is, the macro base station 1230 transfers some of the PDCP PDUs of the PDCP 1235-2 to the RLC 1240 of the small base station 1260 through the X2 interface.
  • the X2 interface may use other expressions indicating an Xn interface or an interface between other macro base stations and small base stations. In this case, when the X2 interface between the macro base station 1230 and the small base station 1260 is configured with a non-ideal backhaul, a transmission delay of about 20 to 60 ms may occur.
  • the PDCP entity 1220 of the UE 1200 should receive RLC SDUs (ie, PDCP PDUs) from two RLC entities 1215-1 and 1215-2, respectively, generate PDCP SDUs, and deliver them to a higher layer. Due to the transmission delay, a time difference occurs between the RLC SDUs (ie, PDCP PDUs) received by the PDCP entity 1220 from those received from the RLC entity 1215-1, and from the RLC entity 1215-2.
  • the PDCP entity 1220 may have problems in performing ascending transmission to the upper layer of the PDCP SDU.
  • one PDCP 1235 exists in the macro base station 1230 and one PDCP entity 1220 exists in the UE 1200 for multi-flow in a dual connectivity environment.
  • the RLC entities 1240 and 1270 are present in the macro base station 1230 and the small base station 1230, respectively, and two RLC entities 1215-1 and 1215-2 are also present in the terminal 1200. . That is, in the RLC entities 1215-1 and 1215-2 of the terminal 1210, in-sequence delivery to the upper layer may be guaranteed.
  • RLC SDUs ie PDCP PDUs
  • the transmission of the PDCP PDU (s) from the PDCP entity 1235 of the macro base station 1230 to the RLC entity 1270 of the small base station 1260 may involve a transmission delay of 20 to 60 ms, and the macro base station 1230 There may be a time delay between transmission of PDCP PDU (s) towards RLC entity 1240 and transmission of PDCP PDU (s) to RLC entity 1270 of small base station 1230.
  • 13 illustrates an example of timing of reception of PDCP PDUs in a PDCP entity of a UE.
  • 13 exemplarily shows a time when a PDCP PDU transmitted through a macro base station and a PDCP PDU transmitted through a small base station arrive at a PDCP entity of a terminal.
  • the macro base station may determine a PDCP PDU to be transmitted through the macro base station and a PDCP PDU to be transmitted through the small base station for the service for one EPS bearer.
  • PDCP PDUs associated with an odd number of PDCP sequence numbers (SN) are transmitted to a UE through a macro base station
  • PDCP PDUs associated with an even number are transmitted to a UE through a small base station.
  • SN PDCP sequence numbers
  • a transmission delay difference between a reception time at a terminal of a PDCP PDU transmitted through a macro base station and a reception time at a terminal of a PDCP PDU transmitted through a small base station is a time delay difference between a reception time at a terminal of a PDCP PDU transmitted through a macro base station and a reception time at a terminal of a PDCP PDU transmitted through a small base station.
  • a transmission delay of about 20 to 60 ms may occur in the PDCP PDU transmitted through the small base station. This is mainly caused by transmission delay occurring in the X2 (or Xn) interface when the PDCP PDU is transmitted from the macro base station to the small base station.
  • the PDCP entity of the terminal receives the PDCP PDUs out of order, and the PDCP entity processes them to a higher layer (for example, an application layer).
  • a higher layer for example, an application layer.
  • the PDCP entity of the UE reads the received PDCP PDU and performs header decompression, and transmits the PDCP SDU to the upper layer. At this time, if the PDCP SDU of the SN smaller than the SN (sequence number) of the current PDCP SDU is stored, the PDCP SDU is transmitted to the upper layer in order from the smallest SN to the largest SN.
  • the transmission side of the PDCP entity may operate a discard timer.
  • the duration of the removal timer may be configured from a higher layer, and the timer is started when the PDCP SDU is received from the higher layer.
  • the removal timer expires, the PDCP entity removes the corresponding PDCP SDU. Accordingly, due to expiration of the removal timer, PDCP SDUs of a specific SN may be removed, and the receiving end of the PDCP entity may transmit all PDCP SDUs in ascending order without having to sequentially transmit to the upper layer.
  • the PDCP entity may receive RLC SDUs (PDCP PDUs) from the two RLC entities with which it is associated.
  • PDCP PDUs RLC AMD SDUs
  • PDCP PDUs with a larger PDCP SN may be received first due to transmission path reception delay, and the PDCP entity is moved to a higher layer.
  • PDCP SDU ascending transmission is not guaranteed.
  • a PDCP SDU rearrangement method is required, which enables the PDCP entity to deliver the PDCP SDUs to the upper layer in ascending order.
  • the PDCP SDU rearrangement method based on the PDCP SN comparison proposed in the example of the present invention is as follows.
  • the present invention can be applied to both a downlink data transfer procedure and an uplink data transfer procedure, and the following description will focus on the downlink data transfer procedure.
  • FIG. 14 shows an example of performing a PDCP SDU rearrangement based on a PDCP SN comparison according to an embodiment of the present invention.
  • PDCP PDUs of PDCP SNs 1, 2, 3, 4, 5, 11, 12, 13, 17, 18, 19, 20, 21, 22, and 26 are transmitted through an RLC entity of a macro base station. It is assumed that PDCP PDUs of PDCP SNs 6, 7, 8, 9, 10, 14, 15, 16, and 23 are transmitted through an RLC entity of a small base station. Hereinafter, it is assumed that a PDCP entity of a terminal can distinguish whether received PDCP PDUs are transmitted through an RLC entity of a macro base station or through an RLC entity of a small base station.
  • FIG. 14A illustrates a PDCP PDU of PDCP SN 19 after receiving PDCP PDUs of PDCP SN 1, 2, 3, 4, 5, 11, 12, 6, 13, 7, 17, 8, 18, and 9 from a PDCP entity of a UE. Is received.
  • the PDCP entity of the terminal sequentially receives PDCP PDUs of PDCP SNs 1, 2, 3, 4, and 5 through the macro base station (the RLC entity), and then receives the PDCP PDUs of PDCP SN 11.
  • the PDCP entity of the terminal since the PDCP entity of the terminal has received PDCP PDUs of PDCP SN 11 through the macro base station, it can be seen that there is no possibility of receiving PDCP SN 6 to 10 PDCP PDUs through the macro base station even after a longer time. However, there is a possibility of receiving PDCP PDUs 6 to 10 PDCP PDUs through a small base station (of RLC entity).
  • the PDCP entity of the terminal does not immediately transmit the corresponding PDCP SDU when receiving PDCP PDUs of PDCP SN 11 and stores them in a buffer, and then checks whether PDCP SN 6 to 10 PDCP PDUs are received through the small base station.
  • the PDCP entity of the terminal When the PDCP entity of the terminal receives the PDCP PDU of PDCP SN No. 12 through the macro base station, the PDCP entity stores the corresponding PDCP SDU in the buffer. After receiving the PDCP PDU of PDCP SN No. 6 through the small base station, the PDCP entity of the terminal transmits the corresponding PDCP SDU to the higher layer. After receiving the PDCP PDU of PDCP SN No. 13 through the macro base station, the PDCP entity of the terminal stores the corresponding PDCP SDU in the buffer. After receiving the PDCP PDU of PDCP SN No. 7 through the small base station, the PDCP entity of the terminal transfers the corresponding PDCP SDU to the higher layer.
  • the PDCP entity of the terminal After receiving the PDCP PDU of PDCP SN 17 through the macro base station, the PDCP entity of the terminal stores the corresponding PDCP SDU in the buffer. After receiving the PDCP PDU of PDCP SN No. 8 through the small base station, the PDCP entity of the terminal transmits the corresponding PDCP SDU to the higher layer. After receiving the PDCP PDU of PDCP SN No. 18 through the macro base station, the PDCP entity of the terminal stores the corresponding PDCP SDU in the buffer. After receiving the PDCP PDU of PDCP SN No. 9 through the small base station, the PDCP entity of the terminal transmits the corresponding PDCP SDU to the upper layer. After receiving the PDCP PDU of PDCP SN 19 through the macro base station, the PDCP entity of the terminal stores the corresponding PDCP SDU in the buffer.
  • the PDCP entity of the terminal is the PDCP SN. 6 to 10 PDCP PDUs may no longer be transmitted through the small base station. In this case, the PDCP entity of the terminal may deliver the PDCP SDU of PDCP SN 11 to a higher layer.
  • FIG. 14B assumes a case where the PDCP entity of the UE receives the PDCP PDU of PDCP SN 10 after FIG. 14A.
  • a PDCP entity of a terminal receives a PDCP PDU of PDCP SN 10, PDCP SN 10, 11, 12, and 13 PDCPs, which are all stored PDCP SDUs of PDCP SN values consecutively associated with the PDCP 10 starting from PDCP 10, are received. Deliver SDUs to higher layers.
  • FIG. 15 illustrates an example of performing PDCP SDU removal determination based on a PDCP SN comparison according to an embodiment of the present invention.
  • PDCP PDUs of PDCP SNs 1, 2, 3, 4, 5, 11, 12, 13, 17, 18, 19, 20, 21, 22, and 26 are transmitted through an RLC entity of a macro base station. It is assumed that PDCP PDUs of PDCP SNs 6, 7, 8, 9, 10, 14, 15, 16, and 23 are transmitted through an RLC entity of a small base station. Hereinafter, it is assumed that a PDCP entity of a terminal can distinguish whether received PDCP PDUs are transmitted through an RLC entity of a macro base station or through an RLC entity of a small base station.
  • FIG. 15a illustrates that a PDCP entity of a UE receives PDCP SN 13 and PDCP PDUs without receiving PDCP PDUs of PDCP SN 6 after PDCP SN 1, 2, 3, 4, 5, 11, and 12 PDCP PDUs are received. If it is.
  • a PDCP entity of PDCP SN 5 receives PDCP PDUs of PDCP SN 5, PDCP SN 13 of PDCP SN 13 through a macro base station without receiving PDCP PDUs of PDCP SN 6, and PDCP PDUs of PDCP SN 7 through a small base station Received.
  • the PDCP entity of the terminal receives the PDCP PDUs of PDCP SN No. 7 through the small base station, it can be seen that the PDCP PDUs of PDCP SN No. 6 which are smaller PDCP SNs will not be transmitted through the small base station.
  • the PDCP entity of the terminal checks the reception status of PDCP PDUs through the macro base station. If a PDCP PDU having a PDCP SN value greater than PDCP SN 6 is received to the PDCP entity of the terminal through the macro base station, the PDCP entity of the terminal will no longer transmit the PDCP PDUs of PDCP SN 6 to the macro base station. Able to know. In FIG. 15A, since PDCP PDUs of PDCP SNs 11, 12, and 13 greater than PDCP SN 6 are received through the macro base station, it can be seen that PDCP PDUs of PDCP SN 6 are not transmitted through the macro base station.
  • the PDCP PDUs of PDCP SN 6 are no longer viewed as removed, and the PDCP PDUs of PDCP SN 7 already received are transferred to higher layers.
  • PDCP SDU rearrangement is performed based on a comparison of PDCP SNs without a separate timer for PDCP SDU rearrangement, PDCP PDU removal can be grasped even before the timer expires, and the upper layer of the remaining PDCP SDUs can be identified. Ascending can be performed with
  • FIG. 15B illustrates a case where a plurality of PDCP PDUs are removed.
  • the PDCP entity of the UE receives PDCP SN 17 and PDCP PDUs of 18 times, and then PDCP SN 19 and 9 without receiving PDCP PDUs of PDCP SN 8. It is the case that one PDCP PDU is received.
  • the PDCP entity of the terminal receives the PDCP PDU of the PDCP SN 9 through the small base station without receiving the PDCP PDU of the PDCP SN 8. Accordingly, PDCP PDUs of PDCP SN 8, which are smaller than PDCP SN 9, are no longer received via the small base station. Therefore, in this case, the PDCP PDU of PDCP SN No. 8 should be examined for the possibility of being received through the macro base station. In this case, since the PDCP entity of the current terminal has received PDCP PDUs of PDCP SN 19 through the macro base station, PDCP PDUs of PDCP SN 8 smaller than PDCP SN 19 may no longer be received through the macro base station. Therefore, in this case, the PDCP entity of the terminal determines that the PDCP PDUs of PDCP SN 8 are removed, and delivers the PDCP SDUs associated with PDCP SN 9 to a higher layer.
  • the PDCP entity of the terminal is a peer configured in the terminal corresponding to the RLC entity of the macro base station through the macro base station (RLC entity of) or the small base station (RLC entity).
  • peer distinguishes PDCP PDUs received through a RLC entity or a peer RLC entity configured in a terminal corresponding to an RLC entity of a small base station, and PDCP SNs of PDCP PDUs received through one base station and the other base station Compares PDCP SNs of PDCP PDUs received through the PDCP PDUs and reports the PDCP PDUs of the missing PDCP SNs as removed and forwards the stored PDCP SDUs to a higher layer according to certain rules, or PDCPs of the missing PDCP SNs. It may be decided whether to wait for more PDUs.
  • not waiting for the PDCP PDU of the missing PDCP SN may mean that the PDCP PDU (or PDCP SDU) of the PDCP SN is removed.
  • the removal of a PDCP PDU (or PDCP SDU) of a specific SN may be referred to as PDCP removal of a specific SN.
  • simply PDCP removal may mean PDCP removal of a specific SN.
  • the small base station may be considered as a resource additionally used by the terminal to the macro base station.
  • the radius of the cell of the small base station is also smaller than the radius of the cell of the macro base station. Therefore, from the terminal side, a small base station may be added or removed. In addition, it may be difficult to perform transmission through the small base station according to a wireless situation. In other words, a problem may occur in transmission through the small base station in a multi-flow situation.
  • FIG. 16 illustrates a case where a problem occurs in PDCP PDU transmission through a small base station in a situation in which a multi-flow is configured with a macro base station and a small base station in the terminal.
  • 16 shows PDCP PDUs of PDCP SN 1, 2, 3, 4, 5, 11, 12, 13, 17, 18, 19, 20, 21, 22, 26, 27, 33, 34, and 35.
  • PDCP PDUs of PDCP SN 6, 7, 8, 9, 10, 14, 15, 16, 23, 24, 25, 28, and 29 are transmitted through the small base station (the RLC entity).
  • the RLC entity the small base station
  • This may be a situation in which transmission failures in which PDCP PDUs are not transmitted from the UE through the small base station due to the movement of the UE or the bad situation of the radio section are continued.
  • FIG. 16a illustrates a PDCP entity of a terminal receives PDCP PDUs 13 and 7 without receiving PDCP PDUs of PDCP SN 6 after PDCP SN 1, 2, 3, 4, 5, 11 and 12 PDCP PDUs are received.
  • PDCP SN 18 and 8 PDCP PDUs are received without receiving PDCP PDUs of PDCP SN 17.
  • the PDCP entity of the terminal receives PDCP PDUs of PDCP SN 18 without receiving PDCP PDUs of PDCP SN 17, but when the reception status is confirmed in the small base station, PDCP SN 7 is received.
  • PDCP SN 14, 15, 16, 17 PDCP PDUs are determined to be received through the small base station, the PDCP SDU associated with PDCP SN 18 is stored in a buffer, PDCP PDUs of PDCP SN 14, 15, 16, 17 Wait until the PDCP DPU of the PDCP SN, which is received through the small base station or larger, is received through the small base station to confirm the removal.
  • FIG. 16B illustrates a case in which a PDCP entity of the UE receives PDCP SN 8, 19, 9, 20, 10, 21, and 14 PDCP PDUs after 16 (a).
  • the PDCP entity of the terminal does not transfer PDCP SDUs corresponding to PDCP PDUs of PDCP SN 19, 20, and 21 received after receiving PDCP PDUs of PDCP SN 18 to a higher layer and stores them in a buffer. .
  • PDCP PDUs from PDCP SN 15 are not transmitted due to a problem in transmission through the small base station. In this case, even if the PDCP entity of the UE no longer waits, the PDCP entity cannot determine whether it can deliver the PDCP PDU of PDCP SN 18 to a higher layer.
  • a PDCP PDU to be compared is not received through a small base station (or a macro base station), such as when a small base station or the like causes a problem and no more PDCP PDUs are transmitted, it is determined whether to treat a PDCP PDU as removed. Problems that can't be judged and still pending can occur.
  • FIG. 17 illustrates an example of a PDCP SDU rearrangement scheme using a waiting timer when PDCP PDUs are not suddenly received through a small base station according to another embodiment of the present invention.
  • the wait timer may be referred to as a rearrangement timer or a PDCP rearrangement timer.
  • FIG. 17 shows PDCP PDUs of PDCP SN 1, 2, 3, 4, 5, 11, 12, 13, 17, 18, 19, 20, 21, 22, 26, 27, 33, 34, 35.
  • PDCP PDUs of PDCP SN 6, 7, 8, 9, 10, 14, 15, 16, 23, 24, 25, 28, and 29 are transmitted through the small base station (the RLC entity). In this case, there is a problem in PDCP PDU transmission of PDCP SN 15, 16, 23, 24, 25, 28, 29 through a small base station.
  • FIG. 17a illustrates a PDCP entity of a terminal receives PDCP SNs 13 and 7 without receiving PDCP PDUs of PDCP SN 6 after PDCP SN 1, 2, 3, 4, 5, 11 and 12 PDCP PDUs are received.
  • PDCP PDUs of PDCP SN 18 when the PDCP PDUs of PDCP SN 18 are received by the PDCP entity of the UE through the macro base station, PDCP PDUs of PDCP SNs 14, 15, 16, and 17 may be received through the small base station.
  • the PDCP entity of the terminal drives the rearrangement timer for the PDCP PDU of PDCP SN 18, and stores the PDCP SDU associated with PDCP SN 18 in the buffer.
  • the terminal checks the PDCP PDU received through the small base station.
  • the PDCP entities store PDCP SDUs associated with PDCP SNs 18, 19, 20, 21, 22, 26, 27, 33, 34, and 35 in a buffer.
  • the PDCP entity of the terminal If the PDCP entity of the terminal does not receive PDCP PDUs at all through the small base station during the rearrangement timer driving period, the PDCP entity of the terminal delivers the stored PDCP SDUs to a higher layer after the rearrangement timer expires.
  • the PDCP entity of the terminal has no second PDCP PDU received through the small base station during the second rearrangement timer driving period, and thus no more PDCP PDUs are transmitted through the small base station. It may be determined that it will not be, and the stored PDCP SDUs may be delivered to a higher layer.
  • the rearrangement timer As described above, it is possible to determine the reception status of PDCP PDUs transmitted through the small base station, and the PDCP PDUs transmitted through the small base station are not received by the PDCP entity of the terminal due to a problem such as the small base station. If not, the PDCP SDUs corresponding to the PDCP PDUs previously received in the PDCP entity of the UE may be delivered to the upper layer.
  • FIG. 18 is a flowchart of a PDCP SDU rearrangement method based on PDCP SN comparison according to an embodiment of the present invention.
  • a PDCP entity of a terminal receives PDCP PDUs through a macro base station and a small base station configured with multi-flow with the terminal (S1800).
  • the PDCP entity of the UE When the PDCP entity of the UE receives PDCP SN n PDCP PDUs through one of the macro base station and the small base station, the PDCP entity checks whether the maximum PDCP SN values k of PDCP PDUs received through the other base station are greater than n. (S1810).
  • the PDCP entity of the terminal determines that the PDCP SDUs not yet received associated with a PDCP SN value smaller than PDCP SN n are removed (S1820).
  • the PDCP entity of the UE delivers all stored PDCP SDUs associated with a PDCP SN value smaller than PDCP SN n to a higher layer (S1830), starting from PDCP SN n (starting from), and all stored PDCPs of consecutively related PDCP SN values.
  • the SDUs are delivered to the upper layer in ascending order (S1840).
  • the PDCP entity of the terminal waits to receive a PDCP PDU of the PDCP SN value greater than PDCP SN n times through the other base station, and repeats the operation of S1800 or less.
  • the PDCP entity of the UE may operate a rearrangement timer.
  • FIG. 19 is a flowchart illustrating a rearrangement timer based PDCP SDU rearrangement method according to another embodiment of the present invention.
  • a PDCP entity of a terminal receives PDCP PDUs through a macro base station and a small base station configured with multi-flow with the terminal (S1900).
  • the PDCP entity of the terminal checks whether at least one PDCP PDU is received through the other base station during the rearrangement timer driving period (S1920).
  • the PDCP entity of the terminal is at least one received through the other base station during the rearrangement timer driving period. It is checked whether the maximum PDCP SN value k in the PDCP PDU is greater than n (S1930).
  • the maximum PDCP SN value k of at least one PDCP PDU received through the other base station in S1930 is greater than the n, that is, if a PDCP PDU of PDCP SN k greater than the PDCP SN n times is received.
  • the rearrangement timer is stopped (S1940).
  • the PDCP entity of the terminal determines that PDCP SDUs not yet received associated with a PDCP SN value smaller than PDCP SN n are removed (S1950).
  • the PDCP entity of the UE transmits all stored PDCP SDUs associated with a PDCP SN value smaller than PDCP SN n to a higher layer (S1960), starting with PDCP SN n and sequentially storing all stored PDCP SDUs of associated PDCP SN values in ascending order. Transfer to the upper layer (S1970).
  • the PDCP entity of the terminal drives the rearrangement timer again after the rearrangement timer expires ( S1980).
  • the PDCP entity of the terminal receives PDCP PDUs through the other base station during the rearrangement timer driving period, but the PDCP PDU having a PDCP SN value of PDCP SN greater than PDCP SN n times through the other base station until the rearrangement timer expires. If not received.
  • the method of determining the PDCP removal and performing the PDCP rearrangement described above may be used to solve a problem in which sequential delivery in the PDCP layer is not guaranteed in a situation in which dual connectivity is configured in the terminal.
  • the rearrangement timer may be started when the out-of-sequence PDCP PDU is received.
  • the rearrangement timer is set in consideration of the transmission delay time of the X2 interface between the macro base station and the small base station in which the dual connection is configured in the terminal (about 20 to 60 ms, but this may vary depending on the network layout and the backhaul network environment, for example). Can be.
  • packets transmitted from the upper layer of the macro base station to the PDCP layer are processed through header compression and ciphering.
  • the PDCP PDUs are processed in a layer, and the PDCP PDUs are classified according to a predetermined criterion, and partly transmitted to the terminal through the macro cell of the macro base station, and the other part is transmitted to the terminal through the small cell of the small base station.
  • Each of the PDCP PDUs is indicated by an SN, and even when an out-of-sequence reception occurs in which the PDCP PDUs are not received in the SN order at the terminal, the terminal once receives the PDCP PDU (ie, the missing SN).
  • the rearrangement timer set in consideration of the above-described transmission delay is driven. If the PDCP PDU of the SN is not received until the rearrangement timer expires, then the PDCP PDU of the SN is determined (or determined) to be removed. After the PDCP PDU (PDCP PDU corresponding to sequential reception) of the missing SN is determined to be removed, the PDCP PDUs of the SN larger than the missing SN are transferred (sequentially) to higher layers.
  • 20A to 20B illustrate a PDCP removal confirmation method according to another example of the present invention.
  • the UE expects to receive a PDCP PDU of SN6 after receiving a PDCP PDU of SN5.
  • the PDCP PDU of the SN6, which the UE expects to receive may be regarded as a PDCP PDU of an in-sequence SN.
  • the terminal configured with dual connectivity may receive the PDCP PDU of the SN11 in some cases.
  • the UE upon receiving the PDCP PDU of the SN11, the UE determines that the PDCP PDU of the non-sequential SN is received and drives a rearrangement timer (PDCP rearrangement timer).
  • PDCP rearrangement timer a rearrangement timer
  • the terminal may receive PDCP PDUs of SN 12, 13, 7, 8, and 9.
  • PDCP SDUs associated with the received PDCP PDU are stored in a buffer and are not delivered to the upper layer.
  • the upper layer may correspond to a transmission protocol such as TCP (Transmission Control Protocol), through which an actual service may be performed at an application stage. Therefore, if the PDCP SDUs that cannot be delivered to the upper layer for a certain time or the PDCP SDUs rapidly reach the upper layer, this may lead to a lowering of the transmission rate and may cause a deterioration of quality of service. Therefore, it is desirable that PDCP SDUs be delivered to the upper layer as soon as possible.
  • TCP Transmission Control Protocol
  • 20B illustrates an operation in the PDCP layer of the terminal when the rearrangement timer expires.
  • the terminal determines (or determines) that the PDCP PDU of the SN6 has been removed at the time when the rearrangement timer expires. Therefore, PDCP SDUs stored in the buffer and associated with PDCP PDUs of SN larger than SN6 may be delivered (in ascending order) to a higher layer.
  • PDCP SDUs associated with PDCP PDUs of PDCP SN 7 to 13 may be delivered to a higher layer.
  • PDCP removal and sequential delivery of PDCP SDUs can be supported based on both a rearrangement timer-based scheme and a base station-based PDCP PDU SN comparison scheme.
  • 21 illustrates an example of performing PDCP removal determination based on a PDCP SN comparison and rearrangement timer for each base station according to another embodiment of the present invention.
  • 21 is a PDCP entity of the terminal after receiving PDCP PDUs of PDCP SN 1, 2, 3, 4, 5, 11, 12, without receiving PDCP PDUs of PDCP SN 6, PDCP SN 13, PDCP PDUs 7 received If it is.
  • a PDCP entity of the terminal drives a rearrangement timer when the PDCP PDU of PDCP SN 11 is received through a macro base station without receiving PDCP PDU of PDCP SN 6. Thereafter, the PDCP entity of the terminal receives the PDCP PDU of PDCP SN 7 through the small base station. In this case, the UE may know that the received PDCP PDU of PDCP SN 7 is transmitted from the RLC entity corresponding to the small cell of the small base station.
  • the individual RLC entity delivers the PDCP PDUs to the PDCP entity in ascending order in RLC AM mode. If the rearrangement timer is driven by out-of-sequence PDCP PDU reception from the macro base station (macro cell), it is possible to receive sequential PDCP PDUs from the small base station (small cell), in which case the PDCP stored even before the rearrangement timer expires. SDUs can be delivered to higher layers.
  • Using both the PDCP rearrangement timer and the base station SN comparison method can quickly determine PDCP removal and solve the stability (or reliability) problem of using only the base station SN comparison method without a timer. have.
  • FIG. 22 is a flowchart of a PDCP SDU rearrangement method based on a PDCP SN comparison and rearrangement timer for each base station according to another embodiment of the present invention.
  • a PDCP entity of a terminal receives PDCP PDUs through a macro base station and a small base station configured with multi-flow with the terminal (S2200).
  • the PDCP entity of the terminal may sequentially receive PDCP PDUs up to PDCP SN a.
  • the PDCP entity of the terminal may store PDCP SDUs associated with the received PDCP PDUs in a buffer.
  • the PDCP entity of the terminal drives the rearrangement timer (S2220).
  • the rearrangement timer is driven.
  • the PDCP entity of the terminal determines whether n is greater than the PDCP SN value k of the PDCP PDU received through another base station (S2230).
  • the PDCP entity of the terminal determines that PDCP PDUs of PDCP SN (a + 1) to (k-1) are PDCP removed (S2240).
  • the PDCP entity of the terminal excludes the SN determined to remove the PDCP, the PDCP entity, which is determined to be sequential, transfers the PDCP SDUs related to the received PDCP PDUs to an upper layer in ascending order (S2250).
  • the PDCP SDUs associated with the received PDCP PDUs determined to be sequential may be delivered to the upper layer in ascending order.
  • the PDCP entity of the terminal determines that PDCP PDUs of PDCP SN (a + 1) to (n-1) are PDCP removed (S2260).
  • the PDCP entity of the terminal excludes the SN determined to remove the PDCP, the PDCP entity, which is determined to be sequential, transfers the PDCP SDUs associated with the received PDCP PDUs to an upper layer in ascending order (S2270).
  • PDCP of SN corresponding to 6 (a + 1) to 10 (n-1) PDUs are determined to be removed.
  • PDCP SDUs associated with the received PDCP PDUs determined to be may be delivered to the upper layer in ascending order.
  • the PDCP entity of the UE may store the PDCP SDU associated with the PDCP PDU of the received SN k in a buffer.
  • the PDCP SDUs stored in the buffer are transferred to the upper layer in ascending order (S2280).
  • the PDCP SNs of the PDCP PDUs transmitted from the macro base station and the small base station configured with the dual connectivity with the terminal may be compared, and the PDCP removal determination and the PDCP SDU rearrangement may be performed more efficiently based on the rearrangement timer. have.
  • PDCP SDU rearrangement may be performed based on a fixed timer as well as the above-described method, and the ascending order of PDCP SDUs may be guaranteed.
  • a process when a PDCP PDU is received that does not correspond to a PDCP SN that the PDCP entity of the UE expects to receive sequentially is problematic.
  • the PDCP entity of the UE may deliver the rearranged PDCP SDUs to the upper layer in ascending order after PDCP SDU rearrangement according to the PDCP SN value of the PDCP PDU received after waiting a certain time, or correspond to the PDCP SN expected to be sequentially received.
  • the PDCP PDU (or SDU) may be considered to have already been removed, and the remaining PDCP SDUs may be delivered to the upper layer in ascending order.
  • a method of driving a timer in a specific situation may be used, but in this case, the operation of the existing PDCP layer must be accompanied by a condition for driving a specific timer, a stopping condition, or a timer value.
  • Another example of the present invention proposes a PDCP SDU rearrangement method based on a fixed timer to solve the above problem.
  • the PDCP SDU rearrangement method based on the fixed rearrangement timer proposed in another example of the present invention is as follows.
  • the present invention can be applied to both the downlink data transfer procedure and the uplink data transfer procedure, and will be described below with reference to the downlink data transfer procedure.
  • FIG. 23 illustrates a PDCP SDU rearrangement method based on a rearrangement timer according to another embodiment of the present invention.
  • 20 shows that PDCP PDUs of PDCP SNs 1, 2, 3, 4, 5, 11, 12, 13, 17, 18, 19, 20, 21, 22, 26, 27, 33 represent a macro base station (the RLC entity of).
  • PDCP PDUs of PDCP SN 6, 7, 8, 9, 10, 14, 15, 16, 23, 24, 25 are transmitted through a small base station (the RLC entity).
  • FIG. 23A assumes a case where a PDCP entity of a terminal receives PDCP PDUs of PDCP SNs 1, 2, 3, 4, 5, 11, 12, 6, 13, 7, and 17.
  • FIG. 23A assumes a case where a PDCP entity of a terminal receives PDCP PDUs of PDCP SNs 1, 2, 3, 4, 5, 11, 12, 6, 13, 7, and 17.
  • the rearrangement timer when the PDCP entity of the terminal receives the PDCP PDU of PDCP SN 1, the rearrangement timer does not operate previously, and thus, the rearrangement timer is driven.
  • the value of the rearrangement timer may be a predetermined value.
  • the value of the rearrangement timer may be transmitted from the macro base station to the terminal.
  • the macro base station may transmit the rearrangement timer value to the terminal through dedicated signaling or broadcasting.
  • the rearrangement timer is running, the PDCP entity of the terminal does not stop according to a specific situation. That is, once the rearrangement timer is driven, it is maintained for a set time.
  • PDCP SDUs corresponding to PDCP PDUs of the PDCP SN received out of order are stored in a buffer. While the rearrangement timer is running, PDCP SDUs corresponding to PDCP PDUs of the PDCP SN corresponding to sequential reception are delivered to a higher layer.
  • the non-sequential reception may mean a case where a PDCP PDU of another PDCP SN is received without receiving a PDCP PDU of a PDCP SN that is expected to be sequentially received.
  • the sequential reception may be determined based on, for example, the following criteria. If the PDCP SN of the last PDCP SDU delivered to the upper layer is defined as Last_Submitted_PDCP_RX_SN, and the PDCP SN of the PDCP SDU expected to be sequentially received next is defined as Next_PDCP_RX_SN, Next_PDCP_RX_SN is represented by Equation 1 and Equation 2 below. You can follow one.
  • Maximum_PDCP_SN represents the maximum value of the allowed PDCP SN. That is, Equation 2 indicates that the number starts again from 0 after the maximum value of the PDCP SN.
  • the rearrangement timer expires after receiving PDCP PDUs of PDCP SN # 5 from the PDCP entity of the UE, and when the PDCP entity of the UE receives PDCP PDUs of PDCP SN # 11 which is the next PDCP PDU The timer is running.
  • FIG. 23B assumes a case where the PDCP entity of the UE receives PDCP SN 8, 18, 9, 19, and 10 PDCP PDUs after FIG. 23A.
  • the rearrangement timer is started. Then, PDCP PDUs of PDCP SN 12, 13, 17, and 18 that are sequentially received by the PDCP entity of the terminal are operated. PDCP SDUs corresponding to the PDCP SDUs are stored in a buffer, and PDCP SDUs corresponding to the PDCP PDUs of PDCP SN 6, 7, 8, which are sequentially received are transferred to a higher layer.
  • the rearrangement timer expires after receiving PDCP PDUs of PDCP SN 18, and PDCP SDUs corresponding to PDCP PDUs of PDCP SNs 11, 12, 13, 17, and 18 are delivered to a higher layer even if the rearrangement timer expires. It is stored in a buffer. After the rearrangement timer expires, if a PDCP PDU of PDCP SN 9 is received, the rearrangement timer is newly started.
  • the PDCP entity of the terminal stores the corresponding PDCP SDU in the buffer.
  • the PDCP entity of the terminal receives PDCP PDUs of PDCP SN 10, this is regarded as sequential reception, starting with the PDCP SN values of the sequentially received PDCP PDUs, and all stored PDCP SDUs of consecutively related PDCP SN values are transferred to a higher layer.
  • the PDCP entity of the terminal delivers PDCP SDUs of PDCP SN 10, 11, 12, and 13 to a higher layer.
  • FIG. 23C illustrates a case where PDCP SDUs associated with PDCP SN 7, 10 to be transmitted through the small base station are removed.
  • FIG. 23C illustrates that a PDCP entity of a terminal receives PDCP PDUs of PDCP SNs 1, 2, 3, 4, 5, 11, 12, 6, and 13, and does not receive PDCP PDUs of PDCP SN 7 and does not receive PDCP SNs 17, 8, and 18. It is assumed that PDCP PDUs of Nos. 9 and 19 are received, and PDCP PDUs of PDCP 20 and 14 are received without receiving PDCP PDUs of PDCP SN 10 and 19. In addition, it is assumed that when the PDCP entity of the terminal receives PDCP PDUs of PDCP SNs 1, 11, and 9, the rearrangement timer is driven.
  • the PDCP entity of the UE receives the PDCP PDUs of PDCP SN 8
  • the PDCP PDUs of PDCP SN 7 that are expected to be sequentially received have not yet been received. Can't deliver.
  • the rearrangement timer expires, the PDCP entity of the terminal determines that the PDCP PDU 7 has been removed. Thereafter, when the terminal receives the PDCP PDU of PDCP SN 9, the terminal drives the rearrangement timer again.
  • PDCP entity of the terminal receives PDCP PDUs of PDCP SNs 19, 20, and 14, PDCP PDUs of PDCP SN 10, which are expected to be sequentially received, have not yet been received, so that PDCP SNs 11, 12, 13, 14, 17, Store the PDCP SDUs associated with 18, 19 and 20 in the buffer.
  • FIG. 23D illustrates a case in which a PDCP entity of the UE receives PDCP PDUs of PDCP SNs 14, 21, and 15 after FIG. 23C.
  • the PDCP entity of the terminal receives PDCP PDUs of PDCP SN 14, 21, and 15 while the rearrangement timer is driven. Since the rearrangement timer has not expired and PDCP PDUs of PDCP SN # 10 that are expected to be sequentially received have not yet been received, the PDCP entity of the UE additionally stores PDCP SDUs associated with PDCP SNs 21 and 15 in a buffer.
  • FIG. 23E assumes that the PDCP entity of the terminal receives PDCP PDUs of PDCP SN 22 and 16 after FIG. 23D and then the rearrangement timer expires.
  • the PDCP entity determines that the PDCP PDUs (and SDUs) of PDCP SN # 10 have been removed.
  • the portion of the stored PDCP SDUs which can be viewed as sequential reception, is transferred to the upper layer in ascending order. That is, PDCP SDUs associated with PDCP SNs 11 to 22 are delivered to the upper layer in ascending order.
  • the rearrangement timer it may be determined whether the PDCP PDU not received is removed.
  • the timer is driven when a certain PDCP PDU is received when the timer is not being driven, instead of driving the timer in a specific situation such as sequential reception or non-sequential reception of the PDCP PDU. Therefore, when the rearrangement timer is used, rearrangement between PDCP PDUs received by the UE may be performed during a predetermined time interval, but it may not be determined whether the PDCP PDUs not received are removed even after the timer expires.
  • 24 shows another example of a PDCP SDU rearrangement method based on a rearrangement timer according to another embodiment of the present invention.
  • 24 shows that PDCP PDUs of PDCP SNs 1, 2, 3, 4, 5, 11, 12, 13, 17, 18, 19, 20, 21, 22, 26, 27, 33 represent a macro base station (the RLC entity of).
  • PDCP PDUs of PDCP SN 6, 8, 9, 14, 15, 16, 23, 24, and 25 are transmitted through a small base station (an RLC entity).
  • PDCP PDUs (or SDUs) of PDCP SN 7, 10 to be transmitted through the small base station are removed.
  • FIG. 24a illustrates a PDCP entity of a terminal receiving PDCP PDUs of PDCP SNs 1, 2, 3, 4, 5, 11, 12, 6, and 13, and without receiving PDCP PDUs of PDCP SN 7, PDCP SNs 17, 8, and 18; After receiving PDCP PDUs, it is assumed that the rearrangement timer driven upon reception of PDCP PDUs of PDCP SN 11 expires.
  • the PDCP entity of the terminal may not determine that the PDCP PDU of PDCP SN 7 is removed even when the PDCP PDU of PDCP SN 8 is received and the rearrangement timer expires thereafter.
  • the timer is started for a predetermined time from the reception of any PDCP PDU when the rearrangement timer is not running, not considering the reception status of a specific PDCP PDU, and after the timer expires. This is because the timer is driven again when an arbitrary PDCP PDU is received.
  • the PDCP SNs are listed in the order of receiving PDCP PDUs from the PDCP entity of the UE, 1, 2, 3, 4, 5, 11, 12, 6, 13, 17, 8, and 18 are the same.
  • the rearrangement timer expires, all PDCP SN 7, 9, 10, 14, 15, and 16 PDCP PDUs that have not been received cannot be determined to be removed. Accordingly, the following operation may be further performed to determine whether to remove PDCP PDUs (or SDUs) based on the proposed rearrangement timer.
  • PDCP PDUs received by the PDCP entity of the UE in interval B are PDCP PDUs of PDCP SN 12, 6, 13, 17, 8, and 18.
  • PDCP PDUs of PDCP SN 7, 9, 10, 14, 15 and 16 have not been received in interval B yet.
  • These unreceived PDCP PDUs may then be received in interval C.
  • the PDCP PDU expected to be received after the reception of the last received PDCP PDU in the interval B should be received within a time duration of at least one rearrangement timer.
  • the corresponding PDCP PDUs may be determined to be removed. That is, the next rearrangement timer expires among PDCP SDUs not yet received that are associated with a PDCP SN value that is smaller than the largest PDCP SN value among PDCP PDUs of PDCP PDUs received until the reordering timer of interval B expires. PDCP SDUs not received by the time point are determined to have been removed.
  • 24B is a rearrangement timer is driven when the PDCP entity of the terminal receives the PDCP PDU of PDCP SN 9 (ie, start of section C) after FIG. 24A, and then PDCP SN 19, 20, 14, 21, 15, 22, and 16 When one PDCP PDU has been received and the rearrangement timer has expired.
  • the PDCP SDU associated with PDCP SN 7 may not be determined to be removed even if the interval B for receiving the PDCP PDU of PDCP SN 8, etc., expires. However, if the PDCP PDUs of PDCP SN 7 are not received until the interval C expires, the PDCP SDUs associated with PDCP SN 7 are determined to be removed. And, the PDCP entity of the terminal delivers the PDCP SDUs associated with PDCP SN 8, 9 to the upper layer in ascending order.
  • FIG. 24C illustrates a rearrangement timer when the PDCP entity of the UE receives PDCP PDUs of PDCP SN 26 (that is, start of segment D) after FIG. 24B, and then receives PDCP PDUs of PDCP SNs 23, 27, 24, and 33. Assume the case.
  • the PDCP entity of the terminal may not determine whether the PDCP SDU associated with PDCP SN 10 that is not received in the interval C is removed. Therefore, even if PDCP PDUs after PDCP SN 10 are received, the PDCP entity of the UE does not deliver the corresponding PDCP SDUs to the upper layer in ascending order and stores them in the buffer.
  • the PDCP entity of the terminal determines that the PDCP SDU associated with PDCP SN 10 that has not yet been received is removed. Therefore, except for PDCP SN 10, successively stored PDCP SDUs are delivered to the upper layer in ascending order.
  • FIG. 25 is a flowchart of a rearrangement timer based PDCP SDU rearrangement method according to another embodiment of the present invention.
  • a PDCP entity of a terminal receives PDCP PDUs through a macro base station and a small base station configured with multi-flow with the terminal (S2500).
  • the PDCP entity of the terminal drives the l (L) order rearrangement timer when an arbitrary PDCP PDU is received (S2510).
  • the PDCP entity of the terminal checks the maximum PDCP SN value k of the received PDCP PDUs until the first order rearrangement timer expires (S2520).
  • the PDCP entity of the terminal When the PDCP entity of the terminal receives the PDCP PDU for the first time after the first rearrangement timer expires, the PDCP entity drives the l + 1st rearrangement timer (S2530).
  • the PDCP entity of the terminal determines that the PDCP SDUs that are not yet received associated with the PDCP SN value less than the PDCP SN k have been removed until the l + 1st rearrangement timer expires (S2540), and PDCP Starting from SN k, all stored PDCP SDUs of PDCP SN values consecutively associated are transferred to the upper layer in ascending order (S2550).
  • 26 is a block diagram of a macro base station, a small base station and a terminal according to the present invention.
  • the terminal 2600 may configure a dual connectivity with the macro base station 2630 and the small base station 2660.
  • the terminal 2600, the macro base station 2630, and the small base station 2660 according to the present invention support the above-described multiflow.
  • the macro base station 2630 includes a macro transmitter 2635, a macro receiver 2640, and a macro processor 2650.
  • the macro receiver 2640 receives a packet for one EPS bearer from the S-GW.
  • the macro processor 2650 controls the PDCP entity of the macro base station 2630 to process PDCP SDUs corresponding to the received packet and generate PDCP PDUs.
  • the macro processor 2650 distributes the PDCP PDUs according to a reference, transfers (or transmits) a part of the PDCP PDUs to the RLC entity of the macro base station 2640, and transmits the PDCP PDUs to the terminal through the macro transmitter 2635.
  • the macro processor 2650 transmits (or delivers) the remaining part to the RLC entity of the small base station 2660 through the macro transmitter 2635.
  • PDCP SDUs corresponding to PDCP PDUs may be identified and indicated as PDCP SN.
  • the macro processor 2650 generates information on the PDCP layer timer and transmits the information to the terminal through the macro transmitter 2635.
  • the information about the timer may be signaled exclusively to the terminal 2600 or may be signaled in a broadcast manner.
  • the macro transmitter 2635 may transmit the information about the timer to the terminal 2600 through an RRC message (eg, an RRC connection reconfiguration message).
  • the small base station 2660 includes a small transmitter 2665, a small receiver 2670, and a small processor 2680.
  • the small receiver 2670 receives the remaining PDCP PDUs from the macro base station 2630.
  • the small processor 2680 processes the PDCP PDU by controlling the RLC entity, MAC entity, and PHY layer of the small base station 2660 and transmits the PDCP PDU to the terminal through the small transmitter 2665.
  • the terminal 2600 includes a terminal receiver 2605, a terminal transmitter 2610, and a terminal processor 2620.
  • the terminal processor 2620 performs functions and controls necessary for implementing the above-described features of the present invention.
  • the terminal receiver 2605 receives information on a PDCP layer timer from the macro base station 2630.
  • the rearrangement timer information may be included in an RRC message (eg, an RRC connection reconfiguration message) and received by the terminal receiver 2605.
  • the terminal transmitter 2610 may transmit an RRC connection reconfiguration complete message to the macro base station 2630.
  • the terminal receiving unit 2605 receives data for PDCP PDUs from the macro base station 2630 and the small base station 2660, respectively.
  • the terminal processor 2620 interprets the data and controls the PHY layer (s), the MAC entity (s), the RLC entity (s), and the PDCP entity of the terminal 2600 to obtain PDCP SDUs.
  • the terminal processor 2620 controls the PDCP entity, performs rearrangement of PDCP SDUs, and transfers the rearranged PDCP SDUs to an upper layer of the PDCP layer in ascending order.
  • the terminal processor 2620 may check whether the corresponding PDCP PDU is sequentially received by the PDCP entity based on the PDCP SN of the received PDCP PDU. For example, the PDCP SN value of the PDCP SDU (or PDU) which is expected to be sequentially received based on Equation 1 or 2 may be determined.
  • the terminal processor 2620 may receive the maximum number of PDCP PDUs received through the other base station. Check if PDCP SN value k is greater than n. If k> n, the terminal processor 2620 determines that not yet received PDCP SDUs associated with a PDCP SN value smaller than PDCP SN n are removed.
  • the terminal processor 2620 transfers all stored PDCP SDUs associated with a PDCP SN value smaller than PDCP SN n to a higher layer of the PDCP layer, and sequentially stores all stored PDCP SDUs of the associated PDCP SN values starting from PDCP SN n. Transfer to the upper layer.
  • the terminal processor 2620 drives the rearrangement timer when a PDCP PDU of PDCP SN n is received through one of the macro base station 2630 and the small base station 2660.
  • the terminal processor 2620 confirms whether at least one PDCP PDU is received through the other base station during the rearrangement timer driving period. If at least one PDCP PDU is received through the other base station during the rearrangement timer driving period, the terminal processor 2620 receives at least one received through the other base station during the rearrangement timer driving period. It is checked whether the maximum PDCP SN value k in the PDCP PDU is greater than n.
  • the rearrangement timer is stopped and the PDCP SDUs not yet received associated with a PDCP SN value less than PDCP SN n are determined to have been removed.
  • the terminal processor 2620 transfers all stored PDCP SDUs associated with a PDCP SN value smaller than PDCP SN n to a higher layer of the PDCP layer, and sequentially stores all stored PDCP SDUs of the associated PDCP SN values starting from PDCP SN n. Transfer to the upper layer. If k is not greater than n, the terminal processor 2620 drives the rearrangement timer again after the rearrangement timer expires.
  • the terminal processor 2620 after all the PDCP stored after the rearrangement timer expires. Deliver SDUs to the upper layer.
  • the terminal processor 2620 may perform PDCP removal determination based on both a PDCP SN comparison and a rearrangement timer based method for each base station.
  • the terminal processor 2620 sequentially receives PDCP PDUs up to SN a through the macro base station and the small base station, and when PDCP PDUs of PDCP SN n are received through any one of the macro base station and the small base station, If the PDCP PDU reception of the PDCP SN n times the PDCP PDU reception of the non-sequential SN, and if the PDCP PDU of the non-sequential SN is received, the PDCP entity of the terminal drives the rearrangement timer.
  • the terminal processor 2620 receives PDCP PDUs through another base station, checks whether n is greater than the PDCP SN value k of the PDCP PDU received through the other base station, and when n> k, the terminal processor 2620 PDCP PDUs of PDCP SN (a + 1) to (k-1) are determined to be PDCP removed, and if n ⁇ k, the terminal processor 2620 determines that PDCP SNs (a + 1) to (n-1) PDCP PDUs are determined to be PDCP removed.
  • the terminal processor 2620 transfers the PDCP SDUs associated with the received PDCP PDUs to the upper layer in ascending order. Meanwhile, when the rearrangement timer expires, the terminal processor 2620 transfers PDCP SDUs stored in a buffer to an upper layer in ascending order.
  • the terminal processor 2620 operates a fixed rearrangement timer.
  • the terminal processor 2620 drives the rearrangement timer l (L) when an arbitrary PDCP PDU is received.
  • the terminal processor 2620 drives the first order rearrangement timer when the PDCP PDU is received for the first time after the first order rearrangement timer expires, and is greater than the PDCP SN k until the time of the l + 1st rearrangement timer expires.
  • the PDCP SDUs that are not yet received associated with the low PDCP SN value are determined to have been removed.
  • the terminal processor 2620 transfers all stored PDCP SDUs of PDCP SN values continuously associated with the PDCP SN k to the upper layer of the PDCP layer in ascending order.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

The present invention relates to a method and an apparatus for reordering a PDCP while considering a multi-flow in a wireless communication system supporting dual connectivity. According to the present invention, PDCP SN values of PDCP PDUs, which are transmitted through a macro eNB and a small eNB, can be compared, the PDCP SDUs removed based on a timer can be identified, and the PDCP SDUs can be reordered. According to the present invention, when receiving a multi-flow downlink when dual connectivity is configured between a terminal and the macro eNB and the small eNB, the PDCP SDUs can be delivered to an upper layer, in ascending order, and transmission efficiency can be improved, even if the PDCP PDUs are received non-sequentially by a PDCP entity of the user equipment due to a delay of a transmission path.

Description

이중연결 시스템에서 멀티 플로우를 고려한 PDCP 재배열 방법 및 장치Method and apparatus for rearranging PDC in consideration of multi-flow in dual connectivity system
본 발명은 무선 통신에 관한 것으로, 보다 상세하게는 이중 연결(dual connectivity)를 지원하는 무선 통신 시스템에서 멀티 플로우를 고려한 PDCP 재배열(reordering) 방법 및 그 장치에 관한 것이다.The present invention relates to wireless communication, and more particularly, to a PDCP reordering method and apparatus therefor in consideration of multi-flow in a wireless communication system supporting dual connectivity.
셀 내부의 핫 스팟(hotspot)과 같은 특정 지역에서는 특별히 많은 통신 수요가 발생하고, 셀 경계(cell edge) 또는 커버리지 홀(coverage hole)과 같은 특정 지역에서는 전파의 수신 감도가 떨어질 수 있다. 무선 통신 기술이 발달함에 따라, 핫 스팟이나, 셀 경계, 커버리지 홀과 같은 지역에서 통신을 가능하게 하기 위한 목적으로 매크로 셀(Macro Cell)내에 스몰 셀(small cell)들, 예를 들어, 피코 셀(Pico Cell), 펨토 셀(Femto Cell), 마이크로 셀(Micro Cell), 원격 무선 헤드(remote radio head: RRH), 릴레이(relay), 중계기(repeater)등이 함께 설치된다. 이러한 네트워크를 이종 네트워크(Heterogeneous Network: HetNet)라 부른다. 이종 네트워크 환경에서는 상대적으로 매크로 셀은 커버리지(coverage)가 큰 셀(large cell)이고, 펨토 셀과 피코 셀과 같은 스몰 셀은 커버리지가 작은 셀이다. 매크로 셀에 비하여 펨토 셀과 피코 셀과 같은 스몰 셀은 저전력을 사용함으로 저전력네트웍(LPN: Low Power Network)라고도 한다. 이종 네트워크 환경에서 다수의 매크로 셀들 및 스몰 셀들 간에 커버리지 중첩이 발생한다.In particular areas, such as hot spots inside the cell, there is a great demand for communication, and in certain areas such as cell edges or coverage holes, the reception sensitivity of radio waves may be reduced. With the development of wireless communication technology, small cells, such as pico cells, within a macro cell for the purpose of enabling communication in areas such as hot spots, cell boundaries, and coverage holes. (Pico Cell), femto cell (Femto Cell), micro cell (Micro Cell), remote radio head (RRH), relay (relay), repeater (repeater) is installed together. Such a network is called a heterogeneous network (HetNet). In a heterogeneous network environment, a macro cell is a large coverage cell, and a small cell such as a femto cell and a pico cell is a small coverage cell. Compared to macro cells, small cells such as femto cells and pico cells use low power and are also referred to as low power networks (LPNs). Coverage overlap occurs between multiple macro cells and small cells in a heterogeneous network environment.
단말은 적어도 하나의 서빙셀을 구성하는 기지국들 중 둘 이상의 기지국을 통하여 이중 연결(dual connectivity)을 구성할 수 있다. 이중 연결은 무선 자원 제어 연결(RRC_CONNECTED) 모드에서 적어도 두 개의 서로 다른 네트워크 포인트(예, 매크로 기지국 및 스몰 기지국)에 의해 제공되는 무선 자원들을 해당 단말이 소비하는 동작(operation)이다. 이 경우 상기 적어도 두 개의 서로 다른 네트워크 포인트는 이상적이지 않은 백홀(non-ideal backhaul)로 연결될 수 있다.The terminal may configure dual connectivity through two or more base stations among the base stations configuring at least one serving cell. Dual connectivity is an operation in which the terminal consumes radio resources provided by at least two different network points (eg, macro base station and small base station) in a radio resource control connection (RRC_CONNECTED) mode. In this case, the at least two different network points may be connected by non-ideal backhaul.
이때, 상기 적어도 두개의 서로 다른 네트워크 포인트 중 하나는 매크로 기지국(또는 마스터 기지국 또는 앵커 기지국)이라 불릴 수 있고, 나머지는 스몰 기지국(또는 세컨더리 기지국 또는 어시스팅 기지국 또는 슬레이브 기지국)들이라 불릴 수 있다. In this case, one of the at least two different network points may be called a macro base station (or a master base station or an anchor base station), and the rest may be called small base stations (or secondary base stations or assisting base stations or slave base stations).
일반적으로 무선 통신 시스템은 하나의 EPS 베어러서비스를 위하여 하나의 RB(radio bearer)를 통하여 서비스가 단말에 제공되는 싱글 플로우(single flow) 구조이다. 그러나, 이중 연결을 지원하는 무선 통신 시스템의 경우 하나의 EPS 베어러를 하나의 RB가 아닌 매크로 셀과 스몰 셀에 각각 설정되는 두 개의 RB를 통하여 서비스를 단말에 제공할 수 있다. 즉, 멀티 플로우(multi-flow)를 통하여 서비스가 단말로 제공될 수 있다. 상기에서 하나의 RB는 매크로 셀 만을 통하여 제공되며 다른 하나의 RB는 매크로 셀과 스몰 셀에 해당하는 두 개의 기지국에 거쳐서 설정될 수 있다. 다시 말해, 하나의 RB는 단일 기지국에 설정되며 나머지 하나의 RB는 두 개의 기지국에 분할된 형태 (Bearer split)로 설정될 수 있다.In general, a wireless communication system has a single flow structure in which a service is provided to a terminal through one radio bearer (RB) for one EPS bearer service. However, in a wireless communication system supporting dual connectivity, one EPS bearer may provide a service to a terminal through two RBs configured in a macro cell and a small cell instead of one RB. That is, the service may be provided to the terminal through multi-flow. In the above, one RB may be provided through only the macro cell, and the other RB may be configured through two base stations corresponding to the macro cell and the small cell. In other words, one RB may be configured in a single base station and the other RB may be configured in a bearer split into two base stations.
RLC AM(Acknowlegdged mode)의 경우 하향링크에서 단말의 RLC 엔티티는 수신한 RLC PDU(Packet Data Unit)가 순차에 어긋나게 수신된 경우, 상기 RLC PDU를 재배열(reorder)한다. RLC AM의 경우 수신 측에서 수신누락된 RLC PDU를 송신 측에서 다시 재전송(retransmission)할 수 있다. 상기 RLC 엔티티는 상기 재배열된 RLC PDU를 기반으로 RLC SDU(Service Date Unit)를 재조립(reassemble)하고, 상위 계층(즉, PDCP 엔티티)으로 순차적으로 전달한다. RLC AM의 경우 RLC PDU의 재배열(Reordering)과 재전송(Retransmission) 방식을 통하여 순차적인 전달이 가능하다. 다시 말해, PDCP 엔티티는 하위 계층의 재설정(re-establishment)를 제외한 경우, RLC SDU를 순차적으로 전달받아야 한다. 그러나 멀티 플로우가 구성되는 단말의 경우 스몰 기지국에 대한 RLC 엔티티와 매크로 기지국에 대한 RLC 엔티티가 구분되어 각각의 RLC PDU를 수신하고, RLC SDU를 상위 계층(즉, PDCP 계층)으로 전달할 수 있고, 이 경우 PDCP 엔티티에서는 RLC SDU의 순차적인 수신을 기대할 수 없다. 따라서, 멀티 플로우가 구성된 단말의 경우 PDCP 엔티티에서의 상위계층으로 PDCP SDU의 오름차순 전달을 위한 PDCP 재배열 방안이 요구된다. In the case of an RLC acknowlegdged mode (AMC), when a received RLC packet data unit (RDU PDU) is received out of order in downlink, the RLC entity reorders the RLC PDUs. In the case of RLC AM, the missing RLC PDU may be retransmitted at the receiver. The RLC entity reassembles an RLC Service Date Unit (SDU) based on the rearranged RLC PDUs and sequentially delivers them to a higher layer (ie, PDCP entity). In the case of RLC AM, sequential delivery is possible through reordering and retransmission of the RLC PDU. In other words, the PDCP entity should receive the RLC SDUs sequentially, except for re-establishment of the lower layer. However, in case of a UE configured with multi-flow, an RLC entity for a small base station and an RLC entity for a macro base station may be divided to receive each RLC PDU, and the RLC SDU may be delivered to a higher layer (ie, a PDCP layer). If the PDCP entity does not expect the sequential reception of the RLC SDU. Therefore, in case of a UE configured with multi-flow, a PDCP rearrangement method for ascending delivery of PDCP SDUs to a higher layer in a PDCP entity is required.
본 발명의 기술적 과제는 이중연결 시스템에서 멀티 플로우를 고려한 PDCP 재배열 방법 및 장치를 제공함에 있다.An object of the present invention is to provide a method and apparatus for rearranging PDCP in consideration of multi-flow in a dual connectivity system.
본 발명의 다른 기술적 과제는 멀티 플로우 구조에서 PDCP 엔티티의 수신단이 PDCP SDU를 상위계층으로 오름차순으로 전달하는 방법 및 장치를 제공함에 있다.Another technical problem of the present invention is to provide a method and apparatus for transmitting a PDCP SDU to an upper layer in an ascending order by a receiving end of a PDCP entity in a multiflow structure.
본 발명의 또 다른 기술적 과제는 멀티 플로우 구조에서 PDCP SN 비교를 기반으로, PDCP SDU 재배열을 수행함에 있다.Another technical problem of the present invention is to perform PDCP SDU rearrangement based on PDCP SN comparison in a multiflow structure.
본 발명의 또 다른 기술적 과제는 타이머를 기반으로 PDCP 재배열을 수행함에 있다. Another technical problem of the present invention is to perform PDCP rearrangement based on a timer.
본 발명의 일 양태에 따르면, 매크로 기지국(Macro eNB) 및 스몰 기지국(small eNB)와 이중 연결(dual connectivity)이 구성된 단말(UE)의 PDCP(Packet Data Convergence Protocol) 엔티티(entity)에서, 멀티 플로우(multi-flow)를 고려한 PDCP SDU(Service Data Unit)들 재배열(reordering) 방법을 제공한다. 상기 PDCP SDU 재배열 방법은 상기 매크로 기지국 및 상기 스몰 기지국을 통하여 PDCP PDU들을 수신하는 단계, 및 상기 매크로 기지국 및 상기 스몰 기지국 중 어느 하나의 기지국을 통하여 PDCP SN n번의 PDCP PDU가 수신된 경우, 재배열 타이머를 구동시키는 단계를 포함함을 특징으로 한다.According to an aspect of the present invention, in a Packet Data Convergence Protocol (PDCP) entity of a UE configured for dual connectivity with a macro base station (Macro eNB) and a small eNB (small eNB), multi-flow A method of reordering PDCP Service Data Units (SDUs) considering multi-flow is provided. The PDCP SDU rearrangement method may include receiving PDCP PDUs through the macro base station and the small base station, and if PDCP SN n PDCP PDUs are received through any one of the macro base station and the small base station, Driving an array timer.
본 발명의 다른 일 양태에 따르면, 매크로 기지국 및 스몰 기지국와 이중 연결이 구성된 단말의 PDCP 엔티티에서, 멀티 플로우를 고려한 PDCP SDU들 재배열 방법을 제공한다. 상기 PDCP SDU 재배열 방법은, 상기 매크로 기지국 및 상기 스몰 기지국을 통하여 PDCP PDU들을 수신하는 단계, 및 상기 매크로 기지국 및 상기 스몰 기지국 중 어느 하나의 기지국을 통하여 PDCP SN n번의 PDCP PDU가 수신된 경우, 다른 기지국을 통하여 수신된 적어도 하나의 PDCP PDU 중의 최대 PDCP SN 값 k가 상기 n보다 큰지 확인하는 단계를 포함함을 특징으로 한다.According to another aspect of the present invention, a PDCP entity of a terminal configured with dual connectivity with a macro base station and a small base station provides a method for rearranging PDCP SDUs in consideration of multiflow. The PDCP SDU rearrangement method may further include receiving PDCP PDUs through the macro base station and the small base station, and when PDCP SN n PDCP PDUs are received through any one of the macro base station and the small base station, And checking whether a maximum PDCP SN value k of at least one PDCP PDU received through another base station is greater than n.
본 발명의 또 다른 일 양태에 따르면, 매크로 기지국 및 스몰 기지국와 이중 연결이 구성된 단말의 PDCP 엔티티에서, 멀티 플로우를 고려한 PDCP SDU들 재배열 방법을 제공한다. 상기 PDCP SDU 재배열 방법은, 상기 매크로 기지국 및 상기 스몰 기지국을 통하여 PDCP PDU들을 수신하는 단계, 및 재배열 타이머가 구동 중이 아닌 경우, 임의의 PDCP PDU가 수신되면 재배열 타이머를 구동시키는 단계를 포함함을 특징으로 한다.According to another aspect of the present invention, there is provided a method for rearranging PDCP SDUs in consideration of multiflow in a PDCP entity of a terminal having dual connectivity with a macro base station and a small base station. The PDCP SDU rearrangement method includes receiving PDCP PDUs through the macro base station and the small base station, and if the rearrangement timer is not running, driving a rearrangement timer when any PDCP PDU is received. It is characterized by.
본 발명에 따르면 단말이 매크로 기지국 및 스몰 기지국과 이중 연결이 구성된 경우에, 멀티 플로우(multi flow) 하향링크 수신을 수행함에 있어, 전송경로 지연으로 인하여, 단말의 PDCP 엔티티에 비순차적으로 PDCP PDU들이 수신되더라도, PDCP SDU들의 재배열을 수행하고, 상위 계층으로 PDCP SDU들의 오름차순 전달을 수행할 수 있고, 전송 효율을 향상할 수 있다.According to the present invention, when the terminal is dual-linked with the macro base station and the small base station, in performing multi-flow downlink reception, due to a transmission path delay, PDCP PDUs are sequentially arranged in the PDCP entity of the terminal. Even if received, the PDCP SDUs may be rearranged, the ascending order of PDCP SDUs may be performed to an upper layer, and transmission efficiency may be improved.
도 1은 본 발명이 적용되는 무선통신 시스템을 나타낸다.1 shows a wireless communication system to which the present invention is applied.
도 2는 사용자 평면(user plane)에 대한 무선 프로토콜 구조(radio protocol architecture)를 나타낸 블록도이다. FIG. 2 is a block diagram illustrating a radio protocol architecture for a user plane.
도 3은 제어 평면(control plane)에 대한 무선 프로토콜 구조를 나타낸 블록도이다.3 is a block diagram illustrating a radio protocol structure for a control plane.
도 4는 본 발명이 적용되는 RLC 서브계층 모델의 일 예의 개요를 나타낸 도이다.4 is a diagram illustrating an outline of an example of an RLC sublayer model to which the present invention is applied.
도 5는 본 발명이 적용되는 PDCP 서브계층 모델의 일 예의 개요를 나타낸 도이다.5 is a diagram illustrating an outline of an example of a PDCP sublayer model to which the present invention is applied.
도 6은 본 발명에 적용되는 단말의 이중 연결 상황의 일 예를 나타낸다.6 shows an example of a dual connection situation of a terminal applied to the present invention.
도 7은 싱글 플로우가 구성된 경우의 EPS 베어러 구조 예를 나타낸다. 7 shows an example of an EPS bearer structure when a single flow is configured.
도 8은 이중 연결 상황에서, 싱글 플로우일때 매크로 기지국 및 스몰 기지국의 네트워크 구조의 예를 나타낸다.8 shows an example of a network structure of a macro base station and a small base station in a single flow in a dual connectivity situation.
도 9는 이중 연결 상황에서, 멀티 플로우가 구성된 경우의 EPS 베어러 구조 예를 나타낸다.9 shows an example of an EPS bearer structure when a multi flow is configured in a dual connection situation.
도 10은 멀티 플로우일때 매크로 기지국 및 스몰 기지국의 네트워크 구조의 예를 나타낸다.10 shows an example of the network structure of the macro base station and the small base station in the multi-flow.
도 11은 이중 연결을 고려할 때, 싱글 플로우인 경우 패킷 전달 과정을 나타낸다. 11 illustrates a packet forwarding process in the case of a single flow when considering dual connectivity.
도 12는 이중 연결을 고려할 때, 멀티 플로우인 경우 패킷 전달 과정을 나타낸다. 12 illustrates a packet forwarding process in the case of multi-flow when considering dual connectivity.
도 13은 단말의 PDCP 엔티티에서 PDCP PDU 수신 타이밍의 예를 나타낸다.13 shows an example of a PDCP PDU reception timing in a PDCP entity of a terminal.
도 14a 내지 도 14b는 본 발명의 일 예에 따른 PDCP SN 비교에 기반한 PDCP SDU 재배열을 수행하는 예를 나타낸다.14A to 14B illustrate examples of performing a PDCP SDU rearrangement based on a PDCP SN comparison according to an embodiment of the present invention.
도 15a 내지 도 15b는 본 발명의 일 예에 따른 PDCP SN 비교에 기반한 PDCP SDU 제거 확정을 수행하는 예를 나타낸다.15A to 15B illustrate an example of performing PDCP SDU removal determination based on a PDCP SN comparison according to an embodiment of the present invention.
도 16a 내지 도 16b는 단말에 매크로 기지국 및 스몰 기지국과 멀티 플로우가 구성된 상황에서, 스몰 기지국을 통한 PDCP PDU 전송에 문제가 생긴 경우이다.16A to 16B illustrate a case where a problem occurs in PDCP PDU transmission through a small base station in a situation in which a multi-flow is configured with a macro base station and a small base station in the terminal.
도 17a 내지 도 17b는 본 발명의 다른 예에 따른 스몰 기지국을 통한 PDCP PDU들의 수신이 갑자기 이루어지지 않는 경우에 재배열 타이머를 이용한 PDCP SDU 재배열 방안의 예를 나타낸다.17A to 17B illustrate examples of a PDCP SDU rearrangement scheme using a rearrangement timer when PDCP PDUs are not suddenly received through a small base station according to another embodiment of the present invention.
도 18은 본 발명의 일 예에 따른 PDCP SN 비교에 기반한 PDCP SDU 재배열 방법의 흐름도이다.18 is a flowchart of a PDCP SDU rearrangement method based on PDCP SN comparison according to an embodiment of the present invention.
도 19는 본 발명의 다른 예에 따른 재배열 타이머 기반한 PDCP SDU 재배열 방법의 흐름도이다.19 is a flowchart illustrating a rearrangement timer based PDCP SDU rearrangement method according to another embodiment of the present invention.
도 20a 내지 도 20b는 본 발명의 다른 예에 따른 PDCP 제거 확정 방법을 나타낸다.20A to 20B illustrate a PDCP removal confirmation method according to another example of the present invention.
도 21은 본 발명의 또 다른 예에 따른 기지국 단위의 PDCP SN 비교 및 재배열 타이머에 기반한 PDCP 제거 확정을 수행하는 예를 나타낸다.21 illustrates an example of performing PDCP removal determination based on a PDCP SN comparison and rearrangement timer for each base station according to another embodiment of the present invention.
도 22는 본 발명의 또 다른 예에 따른 기지국 단위의 PDCP SN 비교 및 재배열 타이머에 기반한 PDCP SDU 재배열 방법의 흐름도이다.22 is a flowchart of a PDCP SDU rearrangement method based on a PDCP SN comparison and rearrangement timer for each base station according to another embodiment of the present invention.
도 23a 내지 도 23e는 본 발명의 또 다른 예에 따른 재배열 타이머에 기반한 PDCP SDU 재배열 방법의 예를 나타낸다.23A to 23E illustrate examples of a PDCP SDU rearrangement method based on a rearrangement timer according to another example of the present invention.
도 24a 내지 도 24d는 본 발명의 또 다른 예에 따른 재배열 타이머에 기반한 PDCP SDU 재배열 방법의 다른 예를 나타낸다.24A to 24D illustrate another example of a PDCP SDU rearrangement method based on a rearrangement timer according to another embodiment of the present invention.
도 25는 본 발명의 또 다른 예에 따른 재배열 타이머 기반한 PDCP SDU 재배열 방법의 흐름도이다.25 is a flowchart of a rearrangement timer based PDCP SDU rearrangement method according to another embodiment of the present invention.
도 26은 본 발명에 따른 매크로 기지국, 스몰 기지국 및 단말의 블록도이다.26 is a block diagram of a macro base station, a small base station and a terminal according to the present invention.
이하, 본 명세서에서는 본 발명과 관련된 내용을 본 발명의 내용과 함께 예시적인 도면과 실시 예를 통해 상세하게 설명한다. 각 도면의 구성 요소들에 참조 부호를 부가함에 있어서, 동일한 구성 요소들에 대해서는 비록 다른 도면상에 표시되더라도 가능한 한 동일한 부호를 가지도록 하고 있음에 유의해야 한다. 또한, 본 명세서의 실시 예를 설명함에 있어, 관련된 공지 구성 또는 기능에 대한 구체적인 설명이 본 명세서의 요지를 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명은 생략한다.Hereinafter, the present disclosure will be described in detail with reference to the accompanying drawings and examples, together with the contents of the present disclosure. In adding reference numerals to the components of each drawing, it should be noted that the same reference numerals are used as much as possible even though they are shown in different drawings. In addition, in describing the embodiments of the present specification, when it is determined that a detailed description of a related well-known configuration or function may obscure the gist of the present specification, the detailed description thereof will be omitted.
또한 본 명세서는 무선 통신 네트워크를 대상으로 설명하며, 무선 통신 네트워크에서 이루어지는 작업은 해당 무선 통신 네트워크를 관할하는 시스템(예를 들어 기지국)에서 네트워크를 제어하고 데이터를 송신하는 과정에서 이루어지거나, 해당 무선 네트워크에 결합한 단말에서 작업이 이루어질 수 있다. In addition, the present specification describes a wireless communication network, the operation performed in the wireless communication network is performed in the process of controlling the network and transmitting data in the system (for example, the base station) that is in charge of the wireless communication network, or the corresponding wireless Work may be done at the terminal coupled to the network.
도 1은 본 발명이 적용되는 무선통신 시스템을 나타낸다. 이는 E-UMTS 시스템(Evolved- Universal Mobile Telecommunications System)의 네트워크 구조일 수 있다. E-UMTS 시스템은 LTE(Long Term Evolution) 또는 LTE-A(advanced)시스템 일 수 있다. 무선통신 시스템은 CDMA(Code Division Multiple Access), TDMA(Time Division Multiple Access), FDMA(Frequency Division Multiple Access), OFDMA(Orthogonal Frequency Division Multiple Access), SC-FDMA(Single Carrier-FDMA), OFDM-FDMA, OFDM-TDMA, OFDM-CDMA와 같은 다양한 다중 접속 기법을 사용할 수 있다. 1 shows a wireless communication system to which the present invention is applied. This may be a network structure of an Evolved-Universal Mobile Telecommunications System. The E-UMTS system may be a Long Term Evolution (LTE) or LTE-A (Advanced) system. Wireless communication systems include Code Division Multiple Access (CDMA), Time Division Multiple Access (TDMA), Frequency Division Multiple Access (FDMA), Orthogonal Frequency Division Multiple Access (OFDMA), Single Carrier-FDMA (SC-FDMA), and OFDM-FDMA Various multiple access schemes such as OFDM, TDMA, and OFDM-CDMA may be used.
도 1을 참조하면, E-UTRAN은 단말(10; User Equipment, UE)에게 제어 평면(control plane:CP)과 사용자 평면(user plane:UP)을 제공하는 기지국(20; evolved NodeB :eNB)을 포함한다. Referring to FIG. 1, the E-UTRAN provides a base station 20 (evolved NodeB: eNB) which provides a control plane (CP) and a user plane (UP) to a user equipment (UE). Include.
단말(10)은 고정되거나 이동성을 가질 수 있으며, MS(Mobile station), AMS(Advanced MS), UT(User Terminal), SS(Subscriber Station), 무선기기(Wireless Device) 등 다른 용어로 불릴 수 있다. The terminal 10 may be fixed or mobile and may be called by other terms such as mobile station (MS), advanced MS (AMS), user terminal (UT), subscriber station (SS), and wireless device (Wireless Device). .
기지국(20)은 일반적으로 단말(10)과 통신하는 지점(station)을 말하며, BS(Base Station, BS), BTS(Base Transceiver System), 액세스 포인트(Access Point), 펨토 기지국(femto-eNB), 피코 기지국(pico-eNB), 홈기지국(Home eNB), 릴레이(relay) 등 다른 용어로 불릴 수 있다. 기지국(20)들은 X2 인터페이스를 통하여 서로 연결될 수 있다. 기지국(20)은 S1 인터페이스를 통해 EPC(Evolved Packet Core, 30), 보다 상세하게는 S1-MME를 통해 MME(Mobility Management Entity)와 S1-U를 통해 S-GW(Serving Gateway)와 연결된다. S1 인터페이스는 MME와 신호를 교환함으로써 단말(10)의 이동을 지원하기 위한 OAM(Operation and Management) 정보를 주고받는다. The base station 20 generally refers to a station communicating with the terminal 10, and includes a base station (BS), a base transceiver system (BTS), an access point, and a femto-eNB. It may be called other terms such as a pico base station (pico-eNB), a home base station (Home eNB), a relay (relay). The base stations 20 may be connected to each other through an X2 interface. The base station 20 is connected to a Serving Gateway (S-GW) through an MME (Mobility Management Entity) and an S1-U through an Evolved Packet Core (EPC) 30, more specifically, an S1-MME through an S1 interface. The S1 interface exchanges OAM (Operation and Management) information for supporting the movement of the terminal 10 by exchanging signals with the MME.
EPC(30)는 MME, S-GW 및 P-GW(Packet data network-Gateway)를 포함한다. MME는 단말(10)의 접속 정보나 단말(10)의 능력에 관한 정보를 가지고 있으며, 이러한 정보는 단말(10)의 이동성 관리에 주로 사용된다. S-GW는 E-UTRAN을 종단점으로 갖는 게이트웨이이며, P-GW는 PDN(Packet Data Network)을 종단점으로 갖는 게이트웨이이다.The EPC 30 includes an MME, an S-GW, and a packet data network-gateway (P-GW). The MME has access information of the terminal 10 or information on the capability of the terminal 10, and this information is mainly used for mobility management of the terminal 10. The S-GW is a gateway having an E-UTRAN as an endpoint, and the P-GW is a gateway having a PDN (Packet Data Network) as an endpoint.
E-UTRAN과 EPC(30)를 통합하여 EPS(Evoled Packet System)라 불릴 수 있으며, 단말(10)이 기지국(20)에 접속하는 무선링크로부터 서비스 엔티티로 연결해주는 PDN까지의 트래픽 흐름은 모두 IP(Internet Protocol) 기반으로 동작한다. Integrating the E-UTRAN and the EPC 30 may be referred to as an EPS (Evoled Packet System), and the traffic flows from the radio link that the terminal 10 connects to the base station 20 to the PDN connecting to the service entity are all IP. It works based on (Internet Protocol).
단말과 기지국간의 무선 인터페이스를 Uu 인터페이스라 한다. 단말과 네트워크 사이의 무선 인터페이스 프로토콜(Radio Interface Protocol)의 계층들은 통신시스템에서 널리 알려진 개방형 시스템간 상호접속(Open System Interconnection; OSI) 기준 모델의 하위 3개 계층을 바탕으로 제1계층(L1), 제2계층(L2), 제3계층(L3)로 구분될 수 있다. 이 중에서 제1계층에 속하는 물리계층은 물리채널(Physical Channel)을 이용한 정보전송서비스(Information Transfer Service)를 제공하며, 제3계층에 위치하는 RRC(Radio Resource Control) 계층은 RRC 메시지를 교환하여 단말과 네트워크 간에 무선자원을 제어한다.The radio interface between the terminal and the base station is called a Uu interface. The layers of the radio interface protocol between the terminal and the network are based on the lower three layers of the Open System Interconnection (OSI) reference model, which are well known in a communication system. It may be divided into a second layer L2 and a third layer L3. Among these, the physical layer belonging to the first layer provides an information transfer service using a physical channel, and the RRC (Radio Resource Control) layer located in the third layer exchanges an RRC message for the UE. Control radio resources between network and network.
도 2는 사용자 평면(user plane)에 대한 무선 프로토콜 구조(radio protocol architecture)를 나타낸 블록도이고, 도 3은 제어 평면(control plane)에 대한 무선 프로토콜 구조를 나타낸 블록도이다. 사용자 평면은 사용자 데이터 전송을 위한 프로토콜 스택(protocol stack)이고, 제어 평면은 제어신호 전송을 위한 프로토콜 스택이다.FIG. 2 is a block diagram showing a radio protocol architecture for a user plane, and FIG. 3 is a block diagram showing a radio protocol architecture for a control plane. The user plane is a protocol stack for user data transmission, and the control plane is a protocol stack for control signal transmission.
도 2 및 도 3을 참조하면, 물리계층(PHY(physical) layer)은 물리채널(physical channel)을 이용하여 상위 계층에게 정보 전송 서비스(information transfer service)를 제공한다. 물리계층은 상위 계층인 매체접근제어(Medium Access Control: MAC) 계층과는 전송채널(transport channel)을 통해 연결된다. MAC 계층과 물리계층 사이에서 전송채널을 통해 데이터가 전달된다. 무선 인터페이스를 통해 데이터가 어떻게 전송되는가에 따라 전송채널이 분류된다. 2 and 3, a physical layer (PHY) layer provides an information transfer service to a higher layer using a physical channel. The physical layer is connected to a medium access control (MAC) layer, which is an upper layer, through a transport channel. Data is transmitted through a transport channel between the MAC layer and the physical layer. Transport channels are classified according to how data is transmitted over the air interface.
또한, 서로 다른 물리계층 사이(즉, 송신기와 수신기의 물리계층 사이)에서 물리채널을 통해 데이터가 전달된다. 상기 물리채널은 OFDM(Orthogonal Frequency Division Multiplexing) 방식으로 변조될 수 있으며, 시간과 주파수를 무선자원으로 활용한다. In addition, data is transmitted through a physical channel between different physical layers (ie, between physical layers of a transmitter and a receiver). The physical channel may be modulated by an orthogonal frequency division multiplexing (OFDM) scheme and utilizes time and frequency as radio resources.
일 예로, 물리채널 중 PDCCH(physical downlink control channel)는 단말에게 PCH(paging channel)와 DL-SCH(downlink shared channel)의 자원 할당 및 DL-SCH와 관련된 HARQ(hybrid automatic repeat request) 정보를 알려주며, PDCCH는 단말에게 상향링크 전송의 자원 할당을 알려주는 상향링크 스케줄링 그랜트를 나를 수 있다. 또한, PCFICH(physical control format indicator channel)는 단말에게 PDCCH들에 사용되는 OFDM 심벌의 수를 알려주고, 매 서브프레임마다 전송된다. 또한, PHICH(physical Hybrid ARQ Indicator Channel)는 상향링크 전송의 응답으로 HARQ ACK/NAK 신호를 나른다. 또한, PUCCH(Physical uplink control channel)은 하향링크 전송에 대한 HARQ ACK/NAK, 스케줄링 요청 및 CQI와 같은 상향링크 제어 정보를 나른다. 또한, PUSCH(Physical uplink shared channel)은 UL-SCH(uplink shared channel)을 나른다. For example, the physical downlink control channel (PDCCH) of the physical channel informs the UE of resource allocation of a paging channel (PCH) and downlink shared channel (DL-SCH) and hybrid automatic repeat request (HARQ) information related to the DL-SCH. The PDCCH may carry an uplink scheduling grant informing the UE of resource allocation of uplink transmission. In addition, a physical control format indicator channel (PCFICH) informs the UE of the number of OFDM symbols used for PDCCHs and is transmitted every subframe. In addition, the PHICH (physical hybrid ARQ Indicator Channel) carries a HARQ ACK / NAK signal in response to uplink transmission. In addition, the physical uplink control channel (PUCCH) carries uplink control information such as HARQ ACK / NAK, scheduling request, and CQI for downlink transmission. In addition, a physical uplink shared channel (PUSCH) carries an uplink shared channel (UL-SCH).
MAC 계층은 논리채널과 전송채널간의 맵핑 및 논리채널에 속하는 MAC SDU(service data unit)의 전송채널 상으로 물리채널로 제공되는 전송블록(transport block)으로의 다중화 또는 역다중화를 수행할 수 있다. MAC 계층은 논리채널을 통해 RLC(Radio Link Control) 계층에 서비스를 제공한다. 논리채널은 제어 영역 정보의 전달을 위한 제어채널과 사용자 영역 정보의 전달을 위한 트래픽 채널로 나눌 수 있다.The MAC layer may perform multiplexing or demultiplexing into a transport block provided as a physical channel on a transport channel of a MAC service data unit (SDU) belonging to the logical channel and mapping between the logical channel and the transport channel. The MAC layer provides a service to a Radio Link Control (RLC) layer through a logical channel. The logical channel may be divided into a control channel for transmitting control region information and a traffic channel for delivering user region information.
RLC 계층의 기능은 RLC SDU의 연결(concatenation), 분할(segmentation) 및 재결합(reassembly)를 포함한다. 무선 베어러(Radio Bearer:RB)가 요구하는 다양한 QoS(Quality of Service)를 보장하기 위해, RLC 계층은 투명모드(Transparent Mode, TM), 비확인 모드(Unacknowledged Mode, UM) 및 확인모드(Acknowledged Mode, AM)의 세 가지의 동작모드를 제공한다. Functions of the RLC layer include concatenation, segmentation, and reassembly of RLC SDUs. In order to guarantee the various quality of service (QoS) required by the radio bearer (RB), the RLC layer has a transparent mode (TM), an unacknowledged mode (UM), and an acknowledged mode (Acknowledged Mode). Three modes of operation (AM).
RLC SDU들은 다양한 사이즈로 지원되며, 일 예로 바이트(byte) 단위로 지원될 수 있다. RLC PDU(protocol data unit)들은 하위계층(예, MAC 계층)으로부터 전송 기회(transmission opportunity)가 통보(notify)될 때에만 규정되며, 상기 전송기회가 통보될 때 RLC PDU들은 하위계층으로 전달된다. 상기 전송기회는 전송될 총 RLC PDU들의 크기와 함께 통보될 수 있다. 이하 도 4에서 RLC 계층에 대해서 자세히 설명한다.The RLC SDUs are supported in various sizes, and for example, may be supported in units of bytes. RLC protocol data units (PDUs) are defined only when a transmission opportunity is notified from a lower layer (eg, MAC layer), and when the transmission opportunity is notified, the RLC PDUs are delivered to the lower layer. The transmission opportunity may be informed with the size of the total RLC PDUs to be transmitted. Hereinafter, the RLC layer will be described in detail with reference to FIG. 4.
사용자 평면에서의 PDCP(Packet Data Convergence Protocol) 계층의 기능은 사용자 데이터의 전달, 헤더 압축(header compression) 및 암호화(ciphering)를 포함한다. 사용자 평면에서의 PDCP 계층의 기능은 제어 평면 데이터의 전달 및 암호화/무결점 보호(integrity protection)를 포함한다. Functions of the Packet Data Convergence Protocol (PDCP) layer in the user plane include delivery of user data, header compression, and ciphering. Functions of the PDCP layer in the user plane include the transfer of control plane data and encryption / integrity protection.
RRC 계층은 RB들의 구성(configuration), 재구성(re-configuration) 및 해제(release)와 관련되어 논리채널, 전송채널 및 물리채널들의 제어를 담당한다. RB는 단말과 네트워크간의 데이터 전달을 위해 제1 계층(PHY 계층) 및 제2 계층(MAC 계층, RLC 계층, PDCP 계층)에 의해 제공되는 논리적 경로를 의미한다. RB가 구성된다는 것은 특정 서비스를 제공하기 위해 무선 프로토콜 계층 및 채널의 특성을 규정하고, 각각의 구체적인 파라미터 및 동작 방법을 설정하는 과정을 의미한다. RB는 다시 SRB(Signaling RB), DRB(Data RB)로 구분될 수 있다. SRB는 제어 평면에서 RRC 메시지 및 NAS(Non-Access Stratum) 메시지를 전송하는 통로로 사용되며, DRB는 사용자 평면에서 사용자 데이터를 전송하는 통로로 사용된다.The RRC layer is responsible for the control of logical channels, transport channels, and physical channels in connection with configuration, re-configuration, and release of RBs. RB means a logical path provided by the first layer (PHY layer) and the second layer (MAC layer, RLC layer, PDCP layer) for data transmission between the terminal and the network. The configuration of the RB means a process of defining characteristics of a radio protocol layer and a channel to provide a specific service, and setting each specific parameter and operation method. The RB may be further classified into a signaling RB (SRB) and a data RB (DRB). The SRB is used as a path for transmitting RRC messages and non-access stratum (NAS) messages in the control plane, and the DRB is used as a path for transmitting user data in the user plane.
NAS 계층은 RRC 계층 상위에 위치하며 연결관리(Session Management)와 이동성 관리(Mobility Management) 등의 기능을 수행한다.The NAS layer is located above the RRC layer and performs functions such as session management and mobility management.
단말의 RRC 계층과 E-UTRAN의 RRC 계층 사이에 RRC 연결(RRC Connection)이 있을 경우 단말은 RRC 연결 상태(RRC connected state)에 있고, 그렇지 못할 경우 RRC 휴지 상태(RRC idle state)에 있다.If there is an RRC connection between the RRC layer of the UE and the RRC layer of the E-UTRAN, the UE is in an RRC connected state, otherwise it is in an RRC idle state.
네트워크에서 단말로 데이터를 전송하는 하향링크 전송채널로는 시스템정보를 전송하는 BCH(Broadcast Channel)과 그 이외에 사용자 트래픽이나 제어메시지를 전송하는 하향링크 SCH(Shared Channel)이 있다. 하향링크 멀티캐스트 또는 브로드캐스트 서비스의 트래픽 또는 제어메시지의 경우 하향링크 SCH를 통해 전송될 수도 있고, 또는 별도의 하향링크 MCH(Multicast Channel)을 통해 전송될 수도 있다. 한편, 단말에서 네트워크로 데이터를 전송하는 상향링크 전송채널로는 초기 제어메시지를 전송하는 RACH(Random Access Channel)와 그 이외에 사용자 트래픽이나 제어메시지를 전송하는 상향링크 SCH(Shared Channel)가 있다.The downlink transmission channel for transmitting data from the network to the UE includes a BCH (Broadcast Channel) for transmitting system information and a downlink shared channel (SCH) for transmitting user traffic or control messages. Traffic or control messages of a downlink multicast or broadcast service may be transmitted through a downlink SCH or may be transmitted through a separate downlink multicast channel (MCH). Meanwhile, the uplink transport channel for transmitting data from the terminal to the network includes a random access channel (RACH) for transmitting an initial control message and an uplink shared channel (SCH) for transmitting user traffic or control messages.
전송채널 상위에 있으며, 전송채널에 매핑되는 논리채널(Logical Channel)로는 BCCH(Broadcast Control Channel), PCCH(Paging Control Channel), CCCH(Common Control Channel), MCCH(Multicast Control Channel), MTCH(Multicast Traffic Channel) 등이 있다.It is located above the transport channel, and the logical channel mapped to the transport channel is a broadcast control channel (BCCH), a paging control channel (PCCH), a common control channel (CCCH), a multicast control channel (MCCH), and a multicast traffic (MTCH). Channel).
물리채널(Physical Channel)은 시간 영역에서 여러 개의 심벌과 주파수 영역에서 여러 개의 부반송파(Sub-carrier)로 구성된다. 하나의 서브프레임(Sub-frame)은 시간 영역에서 복수의 OFDM 심볼(Symbol)들로 구성된다. 하나의 서브프레임은 복수의 자원블록(Resource Block)들로 구성되며, 하나의 자원블록은 복수의 심볼들과 복수의 부반송파(sub-carrier)들로 구성된다. 또한 각 서브프레임은 PDCCH(Physical Downlink Control Channel)를 위해 해당 서브프레임의 특정 심볼들(가령, 첫 번째 심볼)의 특정 부반송파들을 이용할 수 있다. 데이터가 전송되는 단위시간인 TTI(Transmission Time Interval)는 1개의 서브프레임에 해당하는 1ms이다.The physical channel is composed of several symbols in the time domain and several sub-carriers in the frequency domain. One sub-frame consists of a plurality of OFDM symbols in the time domain. One subframe consists of a plurality of resource blocks, and one resource block consists of a plurality of symbols and a plurality of subcarriers. In addition, each subframe may use specific subcarriers of specific symbols (eg, the first symbol) of the corresponding subframe for the physical downlink control channel (PDCCH). The transmission time interval (TTI), which is a unit time for transmitting data, is 1 ms corresponding to one subframe.
도 4는 본 발명의 실시예가 적용되는 RLC 서브계층 모델의 일 예의 개요를 나타낸 도이다.4 is a diagram illustrating an example of an example of an RLC sublayer model to which an embodiment of the present invention is applied.
도 4를 참조하면, 임의의 RLC 엔티티(entity)는 데이터 전송 방식에 따라 서로 다른 RLC 엔티티로 분류된다. 일 예로, TM RLC 엔티티(400), UM RLC 엔티티(420), AM RLC 엔티티(440)가 있다.Referring to FIG. 4, certain RLC entities are classified into different RLC entities according to data transmission schemes. For example, there is a TM RLC entity 400, a UM RLC entity 420, and an AM RLC entity 440.
UM RLC 엔티티(400)는 RLC PDU들을 논리채널들(예, DL/UL DTCH, MCCH 또는 MTCH)을 통해 수신 또는 전달되도록 구성될 수 있다. 또한, UM RLC 엔티티는 UMD PDU(Unacknowledged Mode Data PDU)를 전달하거나 수신할 수 있다. The UM RLC entity 400 may be configured to receive or forward RLC PDUs over logical channels (eg, DL / UL DTCH, MCCH or MTCH). In addition, the UM RLC entity may deliver or receive a UMD PDU (Unacknowledged Mode Data PDU).
UM RLC 엔티티는 송신 UM RLC 엔티티 또는 수신 UM RLC 엔티티로 구성된다. The UM RLC entity consists of a sending UM RLC entity or a receiving UM RLC entity.
송신 UM RLC 엔티티는 상위 계층으로부터 RLC SDU들을 수신하고 RLC PDU들을 하위 계층을 통해 피어 수신 UM RLC 엔티티로 전송한다. 송신 UM RLC 엔티티가 RLC SDU들로부터 UMD PDU들을 구성할 때, 하위계층에 의해 특정 전송 기회가 통보되면 RLC SDU들을 분할(segment)하거나 연접(concatenate)하여 하위계층에 의해 지시된 RLC PDU들의 총 크기 이내가 되도록 UMD PDU들을 구성하고, UMD PDU내에 관련 RLC 헤더들이 포함되도록 구성한다.The transmitting UM RLC entity receives the RLC SDUs from the upper layer and sends the RLC PDUs to the peer receiving UM RLC entity via the lower layer. When the sending UM RLC entity constructs UMD PDUs from the RLC SDUs, the total size of the RLC PDUs indicated by the lower layer by segmenting or concatenating the RLC SDUs when a specific transmission opportunity is notified by the lower layer. The UMD PDUs are configured to be within and the related RLC headers are included in the UMD PDU.
수신 UM RLC 엔티티는 상위 계층으로 RLC SDU들을 전달하고 하위 계층을 통해 피어(peer) 수신 UM RLC 엔티티로부터 RLC PDU들을 수신한다. 수신 UM RLC 엔티티가 UMD PDU들을 수신했을 때, 수신 UM RLC 엔티티는 UMD PDU들이 중복으로 수신되었는지 여부를 감지하여 중복된 UMD PDU들은 제거하고, UMD PDU들이 순차에서 벗어나(out of sequence) 수신된 경우 UMD PDU들의 순서를 재배열(reorder)하고, 하위계층에서의 UMD PDU들의 손실을 감지하여 과도한 재배열 지연들을 방지하고(avoid), 재배열된 UMD PDU들로부터 RLC SDU들을 재조립(reassemble)하고, 상기 재조립된 RLC SDU들을 RLC SN(sequence number)의 오름차순(ascending order)으로 상위계층으로 전달하고, 하위계층에서의 특정 RLC SDU에 속한 UMD PDU 손실로 인해 RLC SDU로 재조립이 불가능한 UMD PDU들은 제거할 수 있다. RLC 재설정(re-establishment)시, 수신 UM RLC 엔티티는 가능하다면 순차에서 벗어나 수신된 UMD PDU들로부터 RLC SDU들을 재조립하여 상위계층으로 전달하고, RLC SDU들로 재조립할 할 수 없었던 남아있는 UMD PDU들은 모두 제거하고, 관련 상태 변수들을 초기화하고 관련 타이머들을 중지한다.The receiving UM RLC entity delivers the RLC SDUs to the upper layer and receives the RLC PDUs from the peer receiving UM RLC entity through the lower layer. When the receiving UM RLC entity receives UMD PDUs, the receiving UM RLC entity detects whether the UMD PDUs have been received in duplicate, removes the duplicate UMD PDUs, and when the UMD PDUs are received out of sequence. Reorder the UMD PDUs, detect loss of UMD PDUs in the lower layer to avoid excessive reordering delays, reassemble RLC SDUs from the rearranged UMD PDUs, and In addition, the reassembled RLC SDUs are delivered to an upper layer in an ascending order of an RLC sequence number, and UMD PDUs cannot be reassembled into an RLC SDU due to a loss of UMD PDUs belonging to a specific RLC SDU in a lower layer. Can be removed. Upon RLC re-establishment, the receiving UM RLC entity, if possible, reassembles the RLC SDUs from the received UMD PDUs out of sequence and forwards them to the higher layer, and the remaining UMD PDUs that could not be reassembled into RLC SDUs. Remove all, initialize the relevant state variables and stop the associated timers.
한편, AM RLC 엔티티(440)는 RLC PDU들을 논리채널(예, DL/UL DCCH or DL/UL DTCH)들을 통해 수신 또는 전달되도록 구성될 수 있다. AM RLC 엔티티는 AMD PDU 또는 ADM PDU 세그먼트(segnement)를 전달하거나 수신하고, RLC 제어 PDU(예, STATUS PDU)를 전달하거나 수신한다. Meanwhile, the AM RLC entity 440 may be configured to receive or deliver RLC PDUs through logical channels (eg, DL / UL DCCH or DL / UL DTCH). The AM RLC entity delivers or receives an AMD PDU or ADM PDU segment, and delivers or receives an RLC control PDU (eg, a STATUS PDU).
AM RLC 엔티티(440)은 RLC PDUs(또는 그 일부분)의 포지티브(positive) 및/또는 네거티브(negative) ACK(akcnowledgement)을 제공하기 위하여 STATUS PDUs를 피어 AM RLC 엔티티로 전달한다. 이는 STATUS 보고(reporting)라고 불릴 수 있다. STATUS 보고를 트리거하기 위하여 피어 AM RLC 엔티티로부터 폴링(polling) 절차가 수반될 수 있다. 즉, AM RLC 엔티티는 그의 피어 AM RLC 엔티티에서 STATUS 보고를 트리거하기 위하여 상기 피어 AM RLC 엔티티를 폴(poll)할 수 있다. AM RLC entity 440 delivers STATUS PDUs to peer AM RLC entities to provide positive and / or negative acknowledgment of RLC PDUs (or portions thereof). This may be called STATUS reporting. A polling procedure may be involved from the peer AM RLC entity to trigger STATUS reporting. That is, an AM RLC entity may poll the peer AM RLC entity to trigger STATUS reporting at its peer AM RLC entity.
만약, STATUS 보고가 트리거되어 있으며 차단타이머(t-StatusProhibit)가 진행중(running)이지 않거나 만료되었을 때, 상기 STATUS PDU는 다음 전송 기회에 전송된다. 따라서 단말은 STATUS PDU의 크기를 예측하고, RLC 계층에서 전송을 위해 사용 가능한 데이터로써 상기 STATUS PDU를 고려한다.If a STATUS report is triggered and the t-StatusProhibit is not running or has expired, the STATUS PDU is sent at the next transmission opportunity. Accordingly, the UE estimates the size of the STATUS PDU and considers the STATUS PDU as data available for transmission in the RLC layer.
AM RLC 엔티티는 송신부(transmitting side)와 수신부(receiving side)로 구성된다. The AM RLC entity is composed of a transmitting side and a receiving side.
AM RLC 엔티티의 송신부는 상위 계층으로부터 RLC SDU들을 수신하고 RLC PDU들을 하위 계층을 통해 피어 AM RLC 엔티티로 전송한다. AM RLC 엔티티의 송신부는 RLC SDU들로부터 AMD PDU들을 구성할 때, 하위계층에 의해 특정 전송 기회가 통보될 때 하위계층에 의해 지시된 RLC PDU(들)의 총 크기 내로 맞추기 위해 RLC SDU들을 분할(segment)하거나 연접(concatenate)하여 AMD PDU들을 구성한다. AM RLC 엔티티의 송신부는 RLC data PDU들의 재전송(ARQ)을 지원한다. 만일 재전송될 상기 RLC data PDU가 하위계층에 의해 특정 전송 기회가 통보될 때 하위계층에 의해 지시된 RLC PDU(들)의 총 크기 내로 맞지 않는다면 AM RLC 엔티티는 RLC data PDU를 AMD PDU segment들로 재분할(re-segment)한다.The transmitter of the AM RLC entity receives the RLC SDUs from the upper layer and sends the RLC PDUs to the peer AM RLC entity via the lower layer. When the transmitter of the AM RLC entity configures AMD PDUs from RLC SDUs, it splits the RLC SDUs to fit within the total size of the RLC PDU (s) indicated by the lower layer when a particular transmission opportunity is notified by the lower layer. Segment or concatenate to configure AMD PDUs. The transmitter of the AM RLC entity supports retransmission of RLC data PDUs (ARQ). If the RLC data PDU to be retransmitted does not fit within the total size of the RLC PDU (s) indicated by the lower layer when a particular transmission opportunity is informed by the lower layer, then the AM RLC entity repartitions the RLC data PDU into AMD PDU segments. (re-segment)
이때, 재분할의 개수(the number of re-segmentation)는 제한되지 않는다. AM RLC 엔티티의 송신부가 상위계층으로부터 수신된 RLC SDU들로부터 AMD PDU들을 만들거나 또는 재전송될 RLC data PDU들로부터 AMD PDU 세그먼트들을 만들 때, RLC data PDU안에 관련 RLC 헤더들이 포함된다.At this time, the number of re-segmentation is not limited. When the transmitter of the AM RLC entity creates AMD PDUs from RLC SDUs received from the upper layer or AMD PDU segments from RLC data PDUs to be retransmitted, the relevant RLC headers are included in the RLC data PDU.
AM RLC 엔티티의 수신부는 상위 계층으로 RLC SDU들을 전달하고 RLC PDU들을 하위 계층을 통해 피어 AM RLC 엔티티로부터 수신한다. The receiver of the AM RLC entity delivers the RLC SDUs to the upper layer and receives the RLC PDUs from the peer AM RLC entity via the lower layer.
AM RLC 엔티티의 수신부는 RLC 데이터 PDU들을 수신했을 때, RLC 데이터 PDU들이 중복으로 수신되었는지 여부를 감지하고, 중복된 RLC 데이터 PDU들은 제거하고, RLC 데이터 PDU들이 시퀀스에서 벗어나(out of sequence) 수신된 경우 RLC 데이터 PDU들의 순서를 재배열(reorder)하고, 하위계층에서 발생한 RLC 데이터 PDU들의 손실을 감지하고 피어 AM RLC 엔티티에 재전송을 요구하고, 재배열된 RLC 데이터 PDU들로부터 RLC SDU들을 재조립(reassemble)하고, 상기 재조립된 RLC SDU들을 재조립된 순차대로(in sequence) 상위계층으로 전달한다.When the receiver of the AM RLC entity receives the RLC data PDUs, the receiver detects whether the RLC data PDUs are received in duplicate, removes the duplicate RLC data PDUs, and removes the RLC data PDUs out of sequence. Reorder the order of RLC data PDUs, detect the loss of RLC data PDUs occurring in the lower layer, request retransmission to the peer AM RLC entity, and reassemble RLC SDUs from the rearranged RLC data PDUs. reassemble, and deliver the reassembled RLC SDUs to an upper layer in reassembled order.
RLC 재설정시, AM RLC 엔티티의 수신부는 가능하다면 시퀀스에서 벗어나 수신된 RLC 데이터 PDU들로부터 RLC SDU들을 재조립하여 상위계층으로 전달하고, RLC SDU들로 재조립할 할 수 없는 남아있는 RLC 데이터 PDU들을 모두 제거하고, 관련 상태 변수들을 초기화하고 관련 타이머들을 중지한다.When resetting the RLC, the receiver of the AM RLC entity, possibly out of sequence, reassembles the RLC SDUs from the received RLC data PDUs and delivers them to the higher layer, all remaining RLC data PDUs that cannot be reassembled into RLC SDUs. Remove it, initialize the relevant state variables and stop the associated timers.
도 5는 본 발명이 적용되는 PDCP 서브계층 모델의 일 예의 개요를 나타낸 도이다.5 is a diagram illustrating an outline of an example of a PDCP sublayer model to which the present invention is applied.
PDCP 서브계층은 적어도 하나의 PDCP 엔티티(500)를 포함한다. 각 RB(예를 들어, DRB 및 SRB, 다만 SRB0는 제외)는 하나의 PDCP 엔티티(500)와 연관(associated)된다. 각 PDCP 엔티티는 RB의 특성(characteristic) 및 RLC 모드에 따라 하나 또는 두개의 RLC 엔티티(들)과 연관될 수 있다.The PDCP sublayer includes at least one PDCP entity 500. Each RB (eg, DRB and SRB, except SRB0) is associated with one PDCP entity 500. Each PDCP entity may be associated with one or two RLC entity (s) depending on the characteristics of the RB and the RLC mode.
PDCP 엔티티(500)는 상위 계층(예를 들어 어플리케이션 계층)으로부터 사용자 데이터를 수신하거나 상위 계층으로 사용자 데이터(user data)를 전달한다. 여기서 사용자 데이터는 IP 패킷이다. 사용자 데이터는 PDCP-SAP(Service Access Point)를 통해 전달될 수 있다. PDCP 계층은 RRC 계층으로부터 시그널링 데이터인 PDCP 구성 요청(PDCP_CONFIG_REQ) 메시지를 전달받는다. PDCP 구성 요청 메시지는 C-SAP(Control-Service Access Point)를 통해 전달될 수 있다. PDCP 구성 요청 메시지는 PDCP 구성 파라미터에 따라 PDCP를 구성할 것을 요청하는 메시지이다. The PDCP entity 500 receives user data from a higher layer (eg an application layer) or passes user data to a higher layer. The user data here is an IP packet. User data may be delivered via a Service Access Point (PDCP-SAP). The PDCP layer receives a PDCP configuration request (PDCP_CONFIG_REQ) message, which is signaling data, from the RRC layer. The PDCP configuration request message may be delivered through a control-service access point (C-SAP). The PDCP configuration request message is a message requesting to configure PDCP according to the PDCP configuration parameters.
PDCP 엔티티(500)의 송신단(trnasmitting side)은 상위 계층으로부터 사용자 데이터의 수신에 따라 제거(discard) 타이머를 개시(start)한다. 사용자 데이터(즉, PDCP SDU)는 헤더 압축, 무결점 보호(제어 평면에서), 암호화(cipering)을 거쳐 PDCP 헤더가 부가되어, PDCP PDU(즉, RLC SDU)가 된다. 송신단 PDCP는 PDCP PDU를 하위 계층(예를 들어 RLC 계층)으로 전달한다. PDCP PDU는 PDCP Data PDU 및 PDCP Control PDU를 포함할 수 있다. PDCP Data PDU는 사용자 평면 데이터, 제어 평면 데이터 등을 나르며, PDCP SDU SN(Sequence Number)을 나른다. PDCP SDU SN은 PDCP SN이라 불릴 수 있다. PDCP Control PDU는 PDCP 상태 보고(PDCP status report) 및 헤더 압축 제어 정보를 나른다.The transmitting side of the PDCP entity 500 starts a discard timer upon receipt of user data from a higher layer. User data (i.e. PDCP SDU) is subject to PDCP headers (i.e., RLC SDUs) through header compression, flawless protection (in the control plane), and encryption. The transmitter PDCP delivers the PDCP PDU to the lower layer (eg, RLC layer). The PDCP PDU may include a PDCP Data PDU and a PDCP Control PDU. The PDCP Data PDU carries user plane data, control plane data, and the like, and carries a PDCP SDU Sequence Number (SN). PDCP SDU SN may be called PDCP SN. The PDCP Control PDU carries a PDCP status report and header compression control information.
RLC SDU는 RLC-SAP를 통해 RLC 계층으로 전달될 수 있다. 만일, 제거 타이머가 만료될 때까지 사용자 데이터가 전송되지 않으면, 송신단 PDCP는 사용자 데이터(사용자 데이터를 포함하는 PDCP SDU)를 제거한다.The RLC SDU may be delivered to the RLC layer through the RLC-SAP. If the user data is not transmitted until the removal timer expires, the transmitting PDCP removes the user data (PDCP SDU including the user data).
PDCP 엔티티(500)의 수신단(receiving side)은 하위 계층으로부터 RLC SDU(즉, PDCP PDU)를 수신한다. PDCP PDU는 PDCP 헤더 압축해제, 판독(deciphering) 및 무결점 검사(integrity verification, 제어 영역에서)을 거쳐 PDCP SDU가 된다. PDCP 엔티티(500)의 수신단은 PDCP SDU를 상위 계층(예를 들어 어플리케이션 계층)으로 전달한다.The receiving side of the PDCP entity 500 receives an RLC SDU (ie PDCP PDU) from a lower layer. PDCP PDUs become PDCP SDUs through PDCP header decompression, deciphering, and integrity verification (in the control domain). The receiving end of the PDCP entity 500 delivers the PDCP SDUs to higher layers (eg, application layers).
PDCP 엔티티(500)의 수신단은 하위 계층의 재설정(re-establishment)를 제외한 경우, 일반적으로 RLC SDU(즉, PDCP PDU)를 순차적으로 전달받는 것으로 기대한다. 따라서 PDCP 엔티티(500)의 수신단은 하위 계층의 재설정을 통하여 RLC SDU를 수신한 경우를 제외하고는, PDCP PDU를 수신한 경우, 이에 대응하는 PDCP SDU를 오름차순으로 상위계층으로 전달할 수 있었다. 만약 저장되어 있는 PDCP SDU가 있으면, 오름차순으로 상위 계층으로 전달한다. 예를 들어, PDCP 엔티티(500)는 하위계층의 재설정이 아닌 이유로 PDCP PDU를 수신한 경우, 수신된 PDCP SDU의 연관된 카운트 값보다 낮은(less than) 카운트 값의 연관된 모든 저장된 PDCP SDU(s)을 오름차순으로 상위 계층으로 전달하고, 수신된 PDCP SDU의 카운트 값에서 시작하여(starting from) 연속적으로(consecutively) 연관된 카운트 값의 모든 저장된 PDCP SDU(s)을 오름차순으로 상위 계층으로 전달한다. The receiving end of the PDCP entity 500 generally expects to receive sequentially RLC SDUs (ie, PDCP PDUs), except for re-establishment of lower layers. Accordingly, except when the receiving end of the PDCP entity 500 receives the RLC SDU through the resetting of the lower layer, when the PDCP PDU is received, the receiving end of the PDCP entity 500 may transmit the corresponding PDCP SDU to the upper layer in ascending order. If there are stored PDCP SDUs, they are delivered to the upper layer in ascending order. For example, if the PDCP entity 500 receives a PDCP PDU for a reason other than a reset of a lower layer, the PDCP entity 500 will check all associated stored PDCP SDU (s) with a count value less than the associated count value of the received PDCP SDU. It delivers to the upper layer in ascending order and delivers all stored PDCP SDU (s) of consecutively associated count values starting from the count value of the received PDCP SDU to the upper layer in ascending order.
도 6은 본 발명의 실시예가 적용되는 단말에 이중 연결이 구성된 일 예를 나타낸다.6 shows an example in which a dual connection is configured in a terminal to which an embodiment of the present invention is applied.
도 6을 참조하면, 매크로 기지국(또는 마스터 기지국 또는 앵커 기지국, 600) 내 매크로 셀의 서비스 지역에 위치하는 단말(650)이 스몰 기지국(또는 세컨더리 기지국 또는 어시스팅(assisting) 기지국 또는 슬레이브 기지국, 610) 내 스몰 셀의 서비스 지역과 중첩(over-laid)된 지역으로 진입한 경우이다. Referring to FIG. 6, a terminal 650 located in a service area of a macro cell in a macro base station (or a master base station or an anchor base station 600) may be a small base station (or a secondary base station or an assisting base station or a slave base station, 610). In this case, the mobile station enters an area overlaid with the service area of the small cell.
매크로 기지국 내 매크로 셀을 통한 기존 무선 연결 및 데이터 서비스 연결을 유지한 채로 스몰 기지국 내 스몰 셀을 통한 추가적인 데이터 서비스를 지원하기 위하여, 네트워크는 단말에 대하여 이중 연결을 구성한다.In order to support additional data service through the small cell in the small base station while maintaining the existing wireless connection and data service connection through the macro cell in the macro base station, the network configures dual connectivity for the terminal.
이에 따라, 매크로 셀에 도착한 사용자 데이터는 스몰 기지국내 스몰 셀을 통해 단말에게 전달될 수 있다. 구체적으로, F2 주파수 대역이 매크로 기지국에 할당되고, F1 주파수 대역이 스몰 기지국에 할당된다. 단말은 매크로 기지국으로부터 F2 주파수 대역을 통해 서비스를 수신하는 동시에, 스몰 기지국으로부터 F1 주파수 대역을 통해 서비스를 수신할 수 있는 상황이다.Accordingly, the user data arriving at the macro cell may be delivered to the terminal through the small cell in the small base station. Specifically, the F2 frequency band is assigned to the macro base station, and the F1 frequency band is assigned to the small base station. The terminal may receive a service through the F2 frequency band from the macro base station, and may receive a service through the F1 frequency band from the small base station.
도 7은 싱글 플로우가 구성된 경우의 EPS 베어러 구조 예를 나타낸다. 7 shows an example of an EPS bearer structure when a single flow is configured.
도 7을 참조하면, RB는 사용자의 서비스를 지원하기 위해 Uu 인터페이스에서 제공되는 베어러(bearer)이다. 상기 무선통신 시스템에서는 각 인터페이스마다 각각의 베어러를 정의하여, 인터페이스들간의 독립성을 보장하고 있다.Referring to FIG. 7, an RB is a bearer provided in a Uu interface to support a service of a user. In the wireless communication system, each bearer is defined for each interface to ensure independence between the interfaces.
상기 무선통신 시스템이 제공하는 베어러를 총칭하여 EPS(Evolved Packet System) 베어러라고 한다. EPS 베어러는 단말과 P-GW 간에 생성되는 전송로(transmission path)이다. P-GW는 인터넷으로부터 IP 플로우를 수신 또는 인터넷으로 IP 플로우를 전송할 수 있다. EPS 베어러는 단말당 하나 이상 구성될 수 있으며, 각 EPS 베어러는 E-RAB(E-UTRAN Radio Access Bearer) 및 S5/S8 베어러로 나누어질 수 있고, 상기 E-RAB는 RB(Radio Bearer), S1 베어러로 나누어질 수 있다. 즉, 하나의 EPS 베어러는 각각 하나의 RB, S1 베어러, S5/S8 베어러에 대응된다. 어떤 서비스(또는 어플리케이션)을 이용하는가에 따라 IP 플로우는 다른 QoS(Quality of Service) 특성을 가질 수 있고, 각 EPS 베어러별로 서로 다른 QoS 특성을 가지는 IP 플로우가 맵핑되어 전송될 수 있다. EPS 베어러 식별자(EPS bearer identity)를 기반으로 EPS 베어러가 구분될 수 있다. 상기 EPS 베어러 식별자는 UE 또는 MME에 의하여 할당(allocate)된다. Bearers provided by the wireless communication system are collectively referred to as EPS (Evolved Packet System) bearers. The EPS bearer is a transmission path generated between the UE and the P-GW. The P-GW may receive IP flows from the Internet or send IP flows to the Internet. One or more EPS bearers may be configured per terminal, each EPS bearer may be divided into an E-UTRAN Radio Access Bearer (E-RAB) and an S5 / S8 bearer, and the E-RAB may be a Radio Bearer (RB) or an S1. Can be divided into bearers. That is, one EPS bearer corresponds to one RB, S1 bearer, and S5 / S8 bearer, respectively. Depending on which service (or application) is used, the IP flow may have different Quality of Service (QoS) characteristics, and IP flows having different QoS characteristics may be mapped and transmitted for each EPS bearer. The EPS bearer may be classified based on an EPS bearer identity. The EPS bearer identifier is allocated by the UE or MME.
P-GW(Packet Gateway)는 본 발명에 따른 무선통신 네크워크(예를 들어 LTE 네트워크)와 다른 네트워크 사이를 연결하는 네트워크 노드이다. EPS 베어러는 단말과 P-GW사이에 정의된다. EPS 베어러는 각 노드(node) 사이에 더욱 세분화되어, 단말과 기지국 사이는 RB, 기지국과 S-GW 사이는 S1 베어러, 그리고 EPC 내부의 S-GW와 P-GW 사이는 S5/S8 베어러로 정의된다. 각각의 베어러는 QoS를 통해 정의된다. QoS는 데이터율(data rate), 에러율(error rate), 지연(delay) 등을 통해 정의된다.P-GW (Packet Gateway) is a network node connecting between a wireless communication network (for example, LTE network) and another network according to the present invention. EPS bearer is defined between the terminal and the P-GW. EPS bearer is further subdivided between nodes, defined as RB between UE and BS, S1 bearer between BS and S-GW, and S5 / S8 bearer between S-GW and P-GW in EPC. do. Each bearer is defined through QoS. QoS is defined through data rate, error rate, delay, and the like.
따라서, 상기 무선통신 시스템이 전체적으로 제공해야 하는 QoS가 EPS 베어러로 정의되고 나면, 각 인터페이스마다 각각의 QoS가 정해진다. 각 인터페이스는 자신이 제공해야 하는 QoS에 맞춰 베어러를 설정하는 것이다. 각 인터페이스의 베어러는 전체 EPS 베어러의 QoS를 인터페이스별로 나누어 제공하므로, EPS 베어러와 RB, S1 베어러 등은 모두 기본적으로 일대일의 관계에 있다. Therefore, once the QoS that the wireless communication system should provide as a whole is defined as an EPS bearer, each QoS is determined for each interface. Each interface establishes a bearer according to the QoS that it must provide. Since bearers of each interface provide QoS of all EPS bearers by interface, EPS bearers, RBs, and S1 bearers are basically in a one-to-one relationship.
즉, LTE 무선 통신 시스템은 기본적으로 싱글 플로우 구조로서, 하나의 EPS 베어러를 위하여 하나의 RB가 구성된다. 다시 말해, 하나의 EPS 베어러는 하나의 RB를 통하여 S1 베어러와 맵핑된다. 싱글 플로우의 경우 하나의 EPS 베어러가 하나의 RB를 통하여 서비스된다. 이 경우 기지국에는 해당 EPS 베어러를 위하여 하나의 RB(예를 들어, PDCP 엔티티, RLC 엔티티, MAC 엔티티, PHY 계층)가 설정되고, 단말에서도 하나의 RB가 설정된다.That is, the LTE wireless communication system is basically a single flow structure, one RB is configured for one EPS bearer. In other words, one EPS bearer is mapped with the S1 bearer through one RB. In the case of a single flow, one EPS bearer is serviced through one RB. In this case, one RB (eg, PDCP entity, RLC entity, MAC entity, PHY layer) is configured for the corresponding EPS bearer, and one RB is configured in the terminal.
도 8은 이중 연결 상황에서, 싱글 플로우일때 매크로 기지국 및 스몰 기지국의 네트워크 구조의 예를 나타낸다. 도 8은 두 EPS 베어러를 통하여 단말에 서비스가 제공되고 있는 경우이다. 8 shows an example of a network structure of a macro base station and a small base station in a single flow in a dual connectivity situation. 8 illustrates a case where a service is provided to a terminal through two EPS bearers.
도 8을 참조하면, 매크로 기지국은 2개의 PDCP 엔티티, RLC 엔티티, MAC 엔티티, 그리고 PHY 계층을 포함하지만, 스몰 기지국은 RLC 엔티티, MAC 엔티티 그리고 PHY 계층을 포함한다. EPS 베어러 #1(800)은 매크로 기지국에 구성된 RB(PDCP/RLC/MAC/PHY)를 통하여 단말에 서비스를 제공한다. 반면에 EPS 베어러 #2(850)는 매크로 기지국에 구성된 PDCP 엔티티와 스몰 기지국에 구성된 RB(RLC/MAC/PHY)를 통하여 단말에 서비스를 제공한다. 따라서, 싱글 플로우에서 하나의 EPS 베어러 별로 하나의 RB를 통하여 서비스가 제공된다.Referring to FIG. 8, a macro base station includes two PDCP entities, an RLC entity, a MAC entity, and a PHY layer, while a small base station includes an RLC entity, a MAC entity, and a PHY layer. The EPS bearer # 1 800 provides a service to the terminal through the RB (PDCP / RLC / MAC / PHY) configured in the macro base station. On the other hand, the EPS bearer # 2 850 provides a service to the terminal through the PDCP entity configured in the macro base station and the RB (RLC / MAC / PHY) configured in the small base station. Therefore, a service is provided through one RB per EPS bearer in a single flow.
도 9는 이중 연결 상황에서, 멀티 플로우가 구성된 경우의 EPS 베어러 구조 예를 나타낸다.9 shows an example of an EPS bearer structure when a multi flow is configured in a dual connection situation.
도 9를 참조하면, 멀티 플로우가 구성된 경우 하나의 EPS 베어러에 대하여 하나의 RB가 아닌 매크로 기지국 및 스몰 기지국에 각각 구성된 2개의 RB를 통하여 서비스가 제공된다. 단말은 하나의 EPS 베어러에 대하여 매크로 기지국에 구성된 RB와 스몰 기지국에 구성된 RB를 통하여 동시에 서비스를 제공받을 수 있다. 이는 하나의 EPS 베어러가 두 개의 RB를 통하여 서비스를 제공하는 형태이다. 상기와 같이 하나의 EPS 베어러가 두 개 이상의 RB를 통하여 단말에 서비스를 제공하는 경우를 단말에 멀티 플로우가 구성되었다고 볼 수 있다. 또는 하나의 RB를 분할하여 매크로 기지국 및 스몰 기지국을 통해 단말에 서비스를 제공하는 경우를 단말에 멀티 플로우가 구성되었다고 할 수도 있다. 또는 매크로 기지국을 통해서만 서비스를 제공하는 RB와 매크로 기지국과 스몰 기지국으로 하나의 RB를 분할하여 제공하는 다른 RB가 동시에 단말에 제공될 경우에 멀티 플로우가 구성되었다고 볼 수 있다. 상기에서 하나의 RB를 분할하여 매크로 기지국과 스몰 기지국을 통해 단말에 서비스를 제공하는 경우를 베어러 분할 (Bearer split) 이라고 할 수 있다. Referring to FIG. 9, when multi-flow is configured, a service is provided through two RBs configured for the macro base station and the small base station instead of one RB for one EPS bearer. The terminal may simultaneously receive a service through one RB configured in the macro base station and one RB configured in the small base station for one EPS bearer. This is a form in which one EPS bearer provides a service through two RBs. As described above, when one EPS bearer provides a service to a terminal through two or more RBs, it may be regarded that multi-flow is configured in the terminal. Alternatively, multi-flow may be configured in the terminal when a service is provided to the terminal through the macro base station and the small base station by dividing one RB. Alternatively, the multi-flow may be configured when the RB providing the service only through the macro base station and another RB providing the RB divided into the macro base station and the small base station are simultaneously provided to the terminal. The case of providing a service to a terminal through a macro base station and a small base station by dividing one RB may be referred to as bearer split.
도 10은 멀티 플로우일때 매크로 기지국 및 스몰 기지국의 네트워크 구조의 예를 나타낸다.10 shows an example of the network structure of the macro base station and the small base station in the multi-flow.
도 10을 참조하면, 매크로 기지국은 PDCP 엔티티, RLC 엔티티, MAC 엔티티, 그리고 PHY 계층을 포함하지만, 스몰 기지국은 RLC 엔티티, MAC 엔티티 그리고 PHY 계층을 포함한다. 도 10에서는 도 8과 달리 하나의 EPS 베어러(1000)에 대하여 매크로 기지국 및 스몰 기지국에 RB가 각각 구성되어 단말에 서비스를 제공한다. 즉, 하나의 EPS 베어러에 대하여 매크로 기지국 및 스몰 기지국이 멀티플로우를 통하여 단말에 서비스를 제공한다. Referring to FIG. 10, a macro base station includes a PDCP entity, an RLC entity, a MAC entity, and a PHY layer, while a small base station includes an RLC entity, a MAC entity, and a PHY layer. In FIG. 10, unlike FIG. 8, an RB is configured at a macro base station and a small base station for one EPS bearer 1000 to provide a service to a terminal. That is, a macro base station and a small base station provide a service to a terminal through multiflow for one EPS bearer.
한편, 이중 연결을 고려할 때, 싱글 플로우인 경우와 멀티 플로우인 경우 패킷 전달 과정은 다음과 같이 나타낼 수 있다.On the other hand, in consideration of dual connectivity, in the case of single flow and multi-flow, the packet forwarding process may be represented as follows.
도 11은 이중 연결을 고려할 때, 싱글 플로우인 경우 패킷 전달 과정을 나타낸다. 11 illustrates a packet forwarding process in the case of a single flow when considering dual connectivity.
도 11을 참조하면, 매크로 기지국(1130)은 P-GW 및 S-GW를 통하여 2개의 EPS 베어러 각각에 대한 패킷들을 수신한다. 여기서 패킷들이 전송되는 플로우는 각 EPS 베어러에 맵핑된다. EPS 베어러 #1을 통하여 전송되는 패킷들을 패킷1이라 하고, EPS 베어러 #2를 통하여 전송되는 패킷들을 패킷2라고 가정한다. Referring to FIG. 11, the macro base station 1130 receives packets for each of two EPS bearers through the P-GW and the S-GW. Here, the flow through which packets are sent is mapped to each EPS bearer. Packets transmitted through the EPS bearer # 1 are called packet 1, and packets transmitted through the EPS bearer # 2 are assumed to be packet 2.
매크로 기지국(1130)의 PDCP(1135-1)은 패킷1을 S-GW로부터 수신하고, PDCP(1135-2)는 패킷2를 S-GW로부터 수신한다. PDCP(1135-1)은 패킷1을 기반으로 PDCP PDU1을 생성하고, 상기 PDCP PDU1은 매크로 기지국(1130)의 RLC(1140)으로 전달되고, MAC(1145), PHY(1150)를 통하여 각 엔티티 및 계층에 맞는 형식으로 변형되어 단말(1100)로 전송된다. The PDCP 1135-1 of the macro base station 1130 receives Packet 1 from the S-GW, and the PDCP 1135-2 receives Packet 2 from the S-GW. The PDCP 1135-1 generates PDCP PDU1 based on Packet 1, and the PDCP PDU1 is delivered to the RLC 1140 of the macro base station 1130, and each entity and the MAC 1145 through the PHY 1150. It is transformed into a form suitable for a layer and transmitted to the terminal 1100.
매크로 기지국(1130)의 PDCP(1135-2)는 패킷2를 기반으로 PDCP PDU2를 생성하고, 상기 PDCP PDU2는 스몰 기지국(1160)의 RLC(1170)로 전달하고, MAC(1175), PHY(1180)을 통하여 각 엔티티 및 계층에 맞는 형식으로 변형되어 단말(1100)로 전송된다.The PDCP 1135-2 of the macro base station 1130 generates a PDCP PDU2 based on Packet 2, and delivers the PDCP PDU2 to the RLC 1170 of the small base station 1160, and sends the MAC 1175 and the PHY 1180. ) Is transformed into a format suitable for each entity and layer and transmitted to the terminal 1100.
단말(1100)에는 EPS 베어러 #1 및 EPS 베어러 #2 각각에 대하여 무선 프로토콜 엔티티가 존재한다. 다시 말해 단말(1100)에는 EPS 베어러 #1에 대하여 PDCP/RLC/MAC/PHY 엔티티(또는 계층)가 존재하고, EPS 베어러 #2에 대하여 PDCP/RLC/MAC/PHY 엔티티(또는 계층)이 존재한다. 구체적으로 EPS 베어러 #1에 대하여 PHY(1105-1), MAC(1110-1), RLC(1115-1), 및 PDCP(1120-1)이 존재하여 EPS 베어러 #1에 대한 서비스 데이터 및 패킷 등을 처리한다. EPS 베어러 #2에 대하여 PHY(1105-2), MAC(1110-2), RLC(1115-2), 및 PDCP(1120-2)가 존재하며, EPS 베어러 #2에 대한 서비스 데이터 및 패킷 등을 처리한다. In the terminal 1100, a radio protocol entity exists for each of the EPS bearer # 1 and the EPS bearer # 2. In other words, the PDCP / RLC / MAC / PHY entity (or layer) exists in the EPS bearer # 1 and the PDCP / RLC / MAC / PHY entity (or layer) exists in the EPS bearer # 2. . In more detail, PHY 1105-1, MAC 1110-1, RLC 1115-1, and PDCP 1120-1 exist with respect to EPS bearer # 1. To deal with. The PHY 1105-2, the MAC 1110-2, the RLC 1115-2, and the PDCP 1120-2 exist for the EPS bearer # 2, and service data and packets for the EPS bearer # 2 are present. Process.
한편, 매크로 기지국(1130)과 스몰 기지국(1160)은 X2 인터페이스를 통하여 연결될 수 있다. 즉, 매크로 기지국(1130)는 PDCP(1135-2)의 PDCP PDU2를 X2 인터페이스를 통하여 스몰 기지국(1160)의 RLC(1140)로 전달한다. 여기서 X2 인터페이스는 X3 인터페이스 혹은 기타 매크로 기지국과 스몰 기지국 간의 인터페이스를 지칭하는 다른 표현이 사용될 수 있다. 이 경우 상기 매크로 기지국(1130)과 스몰 기지국(1160) 간의 X2 인터페이스가 비-이상적인 백홀(non-ideal backhaul)로 구성된 경우 약 20~60ms 정도의 전송 지연이 발생할 수 있다. 상기 전송 지연의 크기는 하나의 예로서 전송 선로 혹은 방식 등에 따라서 변경될 수 있다. Meanwhile, the macro base station 1130 and the small base station 1160 may be connected through an X2 interface. That is, the macro base station 1130 transmits the PDCP PDU2 of the PDCP 1135-2 to the RLC 1140 of the small base station 1160 through the X2 interface. Herein, the X2 interface may use other expressions indicating an X3 interface or an interface between other macro base stations and small base stations. In this case, when the X2 interface between the macro base station 1130 and the small base station 1160 is configured with a non-ideal backhaul, a transmission delay of about 20 to 60 ms may occur. The size of the transmission delay may be changed according to a transmission line or a method as an example.
다만, 이 경우에도 단말(1100)에는 EPS 베어러 #1에 대한 RLC(1115-1), PDCP(1120-1)와 EPS 베어러 #2에 대한 RLC(1115-2), PDCP(1120-2)가 따로 구성되므로, AM의 RLC 엔티티에서 PDCP 엔티티로 RLC SDU의 순차적인 전달을 수행하는 경우에도 문제가 발생하지 않는다. 다시 말해, PDCP(1120-1)와 PDCP(1120-2) 에 해당하는 각 PDCP 엔티티는 RLC(1115-1)와 RLC(1115-2) 에 해당하는 각 RLC 엔티티에서 전송되는 순차대로 처리하면 순차가 바뀌거나 하는 문제가 발생하지 않는다. However, even in this case, the terminal 1100 includes the RLC 1115-1 for the EPS bearer # 1, the PDCP 1120-1 for the EPS bearer # 2, and the RLC 1115-2 for the EPS bearer # 2 and the PDCP 1120-2. Since it is configured separately, no problem occurs even when sequential delivery of RLC SDUs is performed from the RLC entity of the AM to the PDCP entity. In other words, each PDCP entity corresponding to PDCP 1120-1 and PDCP 1120-2 is sequentially processed if it is processed in the order transmitted from each RLC entity corresponding to RLC 1115-1 and RLC 1115-2. Problem does not occur.
도 12는 이중 연결을 고려할 때, 멀티 플로우인 경우 패킷 전달 과정을 나타낸다. 12 illustrates a packet forwarding process in the case of multi-flow when considering dual connectivity.
도 12를 참조하면, 매크로 기지국(1230)은 P-GW 및 S-GW를 통하여 하나의 EPS 베어러에 대한 패킷들을 수신한다. 상기 하나의 EPS 베어러에 대하여 매크로 기지국(1230) 및 스몰 기지국(1260)은 각각 RB를 구성한다. 구체적으로 매크로 기지국(1230)은 PDCP(1235), RLC(1240), MAC(1245), PHY(1250)을 구성하고, 스몰 기지국(1240)은 RLC(1270), MAC(1275), PHY(1280)을 구성한다. 스몰 기지국(1240)이 구성한 RB는 매크로 기지국(1230)이 구성한 PDCP (1235)를 공유한다. 따라서, 하나의 RB가 매크로 기지국(1230)과 스몰 기지국(1260)으로 분할되어 구성된다. Referring to FIG. 12, the macro base station 1230 receives packets for one EPS bearer through the P-GW and the S-GW. The macro base station 1230 and the small base station 1260 each constitute an RB for the one EPS bearer. Specifically, the macro base station 1230 constitutes a PDCP 1235, an RLC 1240, a MAC 1245, and a PHY 1250, and the small base station 1240 is an RLC 1270, a MAC 1275, and a PHY 1280. ). The RB configured by the small base station 1240 shares the PDCP 1235 configured by the macro base station 1230. Therefore, one RB is divided into a macro base station 1230 and a small base station 1260.
매크로 기지국(1230)의 PDCP(1235)는 패킷을 S-GW로부터 수신한다. PDCP(1235)은 패킷을 기반으로 PDCP PDUs를 생성하고, 미리 정의된 규칙 또는 임의의 방법을 따라 상기 PDCP PDUs를 매크로 기지국(1230)의 RLC(1240) 및 스몰 기지국(1260)의 RLC(1270)로 적절히 배분하여 전달한다. 예를 들면, PDCP PDU 들 중에 홀수 번의 SN을 가지는 PDCP PDU는 매크로 기지국(1230)의 RLC(1240)로 전송하고, 짝수 번의 SN을 가지는 PDCP PDU는 스몰 기지국(1260)의 RLC(1270)로 전송할 수 있다. The PDCP 1235 of the macro base station 1230 receives the packet from the S-GW. The PDCP 1235 generates PDCP PDUs based on packets, and generates the PDCP PDUs according to a predefined rule or any method according to the RLC 1240 of the macro base station 1230 and the RLC 1270 of the small base station 1260. Properly distribute to For example, PDCP PDUs having odd SNs among PDCP PDUs are transmitted to the RLC 1240 of the macro base station 1230, and PDCP PDUs having even SNs are transmitted to the RLC 1270 of the small base station 1260. Can be.
RLC(1240)은 RLC PDU1(s)를 생성하고, 상기 RLC PDU1(s)는 MAC(1245), PHY(1250)를 통하여 각 엔티티 및 계층에 맞는 형식으로 변형되어 단말(1200)로 전송된다. 또한, RLC(1270)은 RLC PDU2(s)를 생성하고, 상기 RLC PDU2(s)는 MAC(1275), PHY(1280)을 통하여 각 엔티티 및 계층에 맞는 형식으로 변형되어 단말(1200)로 전송된다.The RLC 1240 generates an RLC PDU1 (s), and the RLC PDU1 (s) is transformed into a format suitable for each entity and layer through the MAC 1245 and the PHY 1250 and transmitted to the terminal 1200. In addition, the RLC 1270 generates an RLC PDU2 (s), and the RLC PDU2 (s) is transformed into a format suitable for each entity and layer through the MAC 1275 and the PHY 1280 and transmitted to the terminal 1200. do.
단말(1200)에는 EPS 베어러에 대하여 두개의 무선 프로토콜 엔티티가 존재한다. 다시 말해 단말(1200)에는 매크로 기지국(1230)에 대응하는 RB로서 PDCP/RLC/MAC/PHY 엔티티(또는 계층)가 존재하고, 스몰 기지국(1260)에 대응하는 RB로서 RLC/MAC/PHY 엔티티(또는 계층)이 존재한다. 구체적으로 EPS 베어러에 대하여 매크로 기지국(1230)에 대응하는 PHY(1205-1), MAC(1210-1), RLC(1215-1), 및 PDCP(1220)이 존재하고, 스몰 기지국(1260)에 대응하는 PHY(1205-2), MAC(1210-2), RLC(1215-2)가 존재한다. PDCP(1220)는 매크로 기지국(1230) 및 스몰 기지국(1260)에 동시에 대응되는 PDCP 엔티티이다. 즉, 이 경우는 단말(1200) 단에 2개의 RLC 엔티티(1215-1, 1215-2)가 존재하나, 상기 두 개의 RLC 엔티티(1215-1, 1215-2)는 하나의 PDCP 엔티티(1220)에 대응한다. The terminal 1200 has two radio protocol entities for the EPS bearer. In other words, the terminal 1200 includes a PDCP / RLC / MAC / PHY entity (or layer) as an RB corresponding to the macro base station 1230, and an RLC / MAC / PHY entity (as an RB corresponding to the small base station 1260). Or hierarchy). In detail, the PHY 1205-1, the MAC 1210-1, the RLC 1215-1, and the PDCP 1220 corresponding to the macro base station 1230 exist for the EPS bearer, and the small base station 1260 is present. There is a corresponding PHY 1205-2, MAC 1210-2, and RLC 1215-2. The PDCP 1220 is a PDCP entity corresponding to the macro base station 1230 and the small base station 1260 simultaneously. That is, in this case, two RLC entities 1215-1 and 1215-2 exist at the terminal 1200, but the two RLC entities 1215-1 and 1215-2 are one PDCP entity 1220. Corresponds to.
상술한 바와 같이 매크로 기지국(1230)과 스몰 기지국(1260)은 X2(또는 Xn) 인터페이스를 통하여 연결될 수 있다. 즉, 매크로 기지국(1230)는 PDCP(1235-2)의 PDCP PDUs 중 일부를 X2 인터페이스를 통하여 스몰 지기국(1260)의 RLC(1240)로 전달한다. 여기서 X2 인터페이스는 Xn 인터페이스 혹은 기타 매크로 기지국과 스몰 기지국 간의 인터페이스를 지칭하는 다른 표현이 사용될 수 있다. 이 경우 상기 매크로 기지국(1230)과 스몰 기지국(1260) 간의 X2 인터페이스가 비-이상적인 백홀로 구성된 경우 약 20~60ms 정도의 전송 지연이 발생할 수 있다. 단말(1200)의 PDCP 엔티티(1220)는 두개의 RLC 엔티티(1215-1, 1215-2)로부터 RLC SDU(즉, PDCP PDU)들을 각각 수신하고, PDCP SDU를 생성하여 상위 계층으로 전달해야 하는데, 상기 전송 지연으로 인하여 PDCP 엔티티(1220)에서 수신하는 RLC SDU(즉, PDCP PDU)들은 RLC 엔티티(1215-1)로부터 수신되는 것과, RLC 엔티티(1215-2)로부터 수신되는 것에 시간차가 발생하고, PDCP 엔티티(1220)는 PDCP SDU의 상위 계층으로의 오름차순 전송을 수행함에 있어 문제가 발생할 수 있다.As described above, the macro base station 1230 and the small base station 1260 may be connected through an X2 (or Xn) interface. That is, the macro base station 1230 transfers some of the PDCP PDUs of the PDCP 1235-2 to the RLC 1240 of the small base station 1260 through the X2 interface. Herein, the X2 interface may use other expressions indicating an Xn interface or an interface between other macro base stations and small base stations. In this case, when the X2 interface between the macro base station 1230 and the small base station 1260 is configured with a non-ideal backhaul, a transmission delay of about 20 to 60 ms may occur. The PDCP entity 1220 of the UE 1200 should receive RLC SDUs (ie, PDCP PDUs) from two RLC entities 1215-1 and 1215-2, respectively, generate PDCP SDUs, and deliver them to a higher layer. Due to the transmission delay, a time difference occurs between the RLC SDUs (ie, PDCP PDUs) received by the PDCP entity 1220 from those received from the RLC entity 1215-1, and from the RLC entity 1215-2. The PDCP entity 1220 may have problems in performing ascending transmission to the upper layer of the PDCP SDU.
도 12에서 볼 수 있는 바와 같이 이중 연결 환경에서 멀티 플로우를 위하여 매크로 기지국(1230)에 하나의 PDCP(1235)가 존재하고, 단말(1200)에 하나의 PDCP 엔티티(1220)가 존재한다. 그리고, 매크로 기지국(1230) 및 스몰 기지국(1230)에 RLC 엔티티(1240, 1270)가 각각 존재하고, 단말(1200)에도 이에 대응하여 2개의 RLC 엔티티(1215-1, 1215-2)가 존재한다. 즉, 단말(1210)의 RLC 엔티티(1215-1, 1215-2) 단에서는 상위 계층으로 순차적인(in-sequence) 전달이 보장될 수 있다. 하지만 단말(1210)의 PDCP 엔티티(1220) 단에서는 하나의 RLC 엔티티가 아닌 두개의 RLC 엔티티(1215-1, 1215-2)로부터 RLC SDU(즉, PDCP PDU)가 전달된다. 따라서, RLC 엔티티(1215-1, 1215-2) 단에서의 순차적인 전달이 PDCP 엔티티 단에서의 PDCP PDU의 순차적인 수신을 보장하지 못한다. 또한, 매크로 기지국(1230)의 PDCP 엔티티(1235)로부터 스몰 기지국(1260)의 RLC 엔티티(1270)로의 PDCP PDU(s)의 전송은 20~60ms의 전송 지연을 수반할 수 있으며, 매크로 기지국(1230)의 RLC 엔티티(1240)를 향한 PDCP PDU(s)의 전송과 스몰 기지국(1230)의 RLC 엔티티(1270)을 향한 PDCP PDU(s)의 전송 사이에는 시간지연이 발생할 수 있다. 결국 매크로 기지국(1230)의 PDCP 엔티티(1235)에서 전송한 PDCP PDU(s)를 단말(1200) 단의 PDCP 엔티티(1220)에서 수신함에 있어도 매크로 기지국(1230)의 RLC 이하 단을 통한 전송과 스몰 기지국(1260)의 RLC 이하 단을 통한 전송에 있어 수신시간에 차이가 발생하고, 단말(1200) 단의 PDCP 엔티티(1220)는 PDCP PDU(s)의 순차적인 수신을 기대하기 어렵게 된다.As shown in FIG. 12, one PDCP 1235 exists in the macro base station 1230 and one PDCP entity 1220 exists in the UE 1200 for multi-flow in a dual connectivity environment. In addition, the RLC entities 1240 and 1270 are present in the macro base station 1230 and the small base station 1230, respectively, and two RLC entities 1215-1 and 1215-2 are also present in the terminal 1200. . That is, in the RLC entities 1215-1 and 1215-2 of the terminal 1210, in-sequence delivery to the upper layer may be guaranteed. However, at the PDCP entity 1220 end of the terminal 1210, RLC SDUs (ie PDCP PDUs) are transmitted from two RLC entities 1215-1 and 1215-2 instead of one RLC entity. Thus, sequential delivery at the RLC entity 1215-1, 1215-2 end does not guarantee sequential reception of PDCP PDUs at the PDCP entity end. In addition, the transmission of the PDCP PDU (s) from the PDCP entity 1235 of the macro base station 1230 to the RLC entity 1270 of the small base station 1260 may involve a transmission delay of 20 to 60 ms, and the macro base station 1230 There may be a time delay between transmission of PDCP PDU (s) towards RLC entity 1240 and transmission of PDCP PDU (s) to RLC entity 1270 of small base station 1230. As a result, even when the PDCP PDU (s) transmitted from the PDCP entity 1235 of the macro base station 1230 is received by the PDCP entity 1220 of the terminal 1200, transmission and small through the RLC sub-terminal of the macro base station 1230 are performed. In the transmission through the RLC stage of the base station 1260, a difference occurs in the reception time, and the PDCP entity 1220 of the terminal 1200 is difficult to expect the sequential reception of the PDCP PDU (s).
도 13은 단말의 PDCP 엔티티에서 PDCP PDU들 수신 타이밍의 예를 나타낸다. 도 13은 매크로 기지국을 통하여 전송된 PDCP PDU와 스몰 기지국을 통하여 전송된 PDCP PDU가 단말의 PDCP 엔티티에 도착하는 시간을 예시적으로 나타낸다. 매크로 기지국은 하나의 EPS 베어러에 대한 서비스에 대하여 매크로 기지국을 통하여 전송할 PDCP PDU와 스몰 기지국을 통하여 전송할 PDCP PDU를 결정할 수 있다. 도 13에서는 PDCP SN(Sequence Number) 중 홀수 번에 연관된 PDCP PDU들은 매크로 기지국을 통하여 단말로 전송되고, 짝수 번에 연관된 PDCP PDU들은 스몰 기지국을 통하여 단말로 전송되는 경우를 예시적으로 나타낸다.13 illustrates an example of timing of reception of PDCP PDUs in a PDCP entity of a UE. 13 exemplarily shows a time when a PDCP PDU transmitted through a macro base station and a PDCP PDU transmitted through a small base station arrive at a PDCP entity of a terminal. The macro base station may determine a PDCP PDU to be transmitted through the macro base station and a PDCP PDU to be transmitted through the small base station for the service for one EPS bearer. In FIG. 13, PDCP PDUs associated with an odd number of PDCP sequence numbers (SN) are transmitted to a UE through a macro base station, and PDCP PDUs associated with an even number are transmitted to a UE through a small base station.
도 13를 참조하면, 매크로 기지국을 통하여 전송된 PDCP PDU의 단말에서의 수신 시점과 스몰 기지국을 통하여 전송된 PDCP PDU의 단말에서의 수신 시점은 시간 지연 차이가 있다. 스몰 기지국을 통하여 전송되는 PDCP PDU에 약 20~60ms의 전송 지연이 발생할 수 있다. 이는 매크로 기지국에서 스몰 기지국으로 PDCP PDU를 전송하는 경우 X2(또는 Xn) 인터페이스에서 발생하는 전송지연이 주된 원인이다. 이러한 경우 단말의 PDCP 엔티티가 두 개의 RLC 엔티티로부터 전달받는 RLC (AMD) SDU의 시간 차이로 인하여 비순차적으로 PDCP PDU를 수신하게 되고, PDCP 엔티티가 이를 처리하여 상위계층(예를 들어 어플리케이션 계층)으로 전송하게 될 경우, PDCP SDU들의 오름차순 전송을 보장하기 어렵다. 즉, 멀티 플로우 구조에서 매크로 기지국의 하나의 PDCP 엔티티에서 전송되는 PDCP PDU들이 매크로 기지국의 RLC 엔티티 및 스몰 기지국의 RLC 엔티티를 통하여 전송되기에 단말의 PDCP 엔티티에서 PDCP PDU를 수신함에 있어, 시간 지연이 발생하고, 따라서 PDCP 엔티티에서 상위계층으로 PDCP SDU의 오름차순 전송을 수행하는 데 있어 문제가 발생하게 된다. Referring to FIG. 13, there is a time delay difference between a reception time at a terminal of a PDCP PDU transmitted through a macro base station and a reception time at a terminal of a PDCP PDU transmitted through a small base station. A transmission delay of about 20 to 60 ms may occur in the PDCP PDU transmitted through the small base station. This is mainly caused by transmission delay occurring in the X2 (or Xn) interface when the PDCP PDU is transmitted from the macro base station to the small base station. In this case, due to the time difference between the RLC (AMD) SDUs received from the two RLC entities, the PDCP entity of the terminal receives the PDCP PDUs out of order, and the PDCP entity processes them to a higher layer (for example, an application layer). In case of transmission, it is difficult to guarantee the ascending transmission of PDCP SDUs. That is, since the PDCP PDUs transmitted from one PDCP entity of the macro base station in the multi-flow structure are transmitted through the RLC entity of the macro base station and the RLC entity of the small base station, the PDCP PDU of the UE receives a time delay. Therefore, a problem arises in performing ascending transmission of the PDCP SDU from the PDCP entity to the higher layer.
단말의 PDCP 엔티티는 수신한 PDCP PDU를 판독(deciphering) 및 헤더 압축해제(header decompression) 등을 수행하고, PDCP SDU를 상위 계층으로 전송한다. 이 때, 만약 현재의 PDCP SDU의 SN(sequence number)보다 작은 SN의 PDCP SDU가 저장되어 있으면 작은 SN부터 큰 SN 순으로 PDCP SDU를 상위 계층으로 전송한다.The PDCP entity of the UE reads the received PDCP PDU and performs header decompression, and transmits the PDCP SDU to the upper layer. At this time, if the PDCP SDU of the SN smaller than the SN (sequence number) of the current PDCP SDU is stored, the PDCP SDU is transmitted to the upper layer in order from the smallest SN to the largest SN.
한편, PDCP 엔티티의 전송단(transmission side)는 제거 타이머(discard timer)를 운용할 수 있다. 상기 제거 타이머의 지속시간(duration)은 상위 계층으로부터 구성될 수 있으며, 상위계층으로부터 PDCP SDU를 수신하면 타이머가 시작된다. 상기 제거 타이머가 만료되면 PDCP 엔티티는 해당하는 PDCP SDU를 제거한다. 따라서, 제거 타이머의 만료로 인하여 특정 SN의 PDCP SDU가 제거될 수 있고, PDCP 엔티티의 수신단은 모든 PDCP SDU들을 순차적으로 상위 계층에 전송할 필요 없이 오름차순으로 전송할 있다. Meanwhile, the transmission side of the PDCP entity may operate a discard timer. The duration of the removal timer may be configured from a higher layer, and the timer is started when the PDCP SDU is received from the higher layer. When the removal timer expires, the PDCP entity removes the corresponding PDCP SDU. Accordingly, due to expiration of the removal timer, PDCP SDUs of a specific SN may be removed, and the receiving end of the PDCP entity may transmit all PDCP SDUs in ascending order without having to sequentially transmit to the upper layer.
하지만, 상술한 이중 연결 상황에서 멀티 플로우를 지원하는 경우, PDCP 엔티티는 연관되는 두 개의 RLC 엔티티들로부터 RLC SDU(PDCP PDU)들을 수신할 수 있다. 이와 같은 경우 PDCP 엔티티에 PDCP PDU(특히, RLC AMD SDU)들이 순차적으로 수신되지 않고, 전송경로 수신지연의 문제로 인하여 PDCP SN이 더 큰 PDCP PDU가 먼저 수신될 수 있고, PDCP 엔티티가 상위계층으로 PDCP SDU 오름차순 전송을 보장하지 못하는 경우가 발생할 수 있다. 멀티 플로우로 인한 경로 지연시간을 고려하여, PDCP 엔티티에서 PDCP SDU를 오름차순으로 상위계층으로 전달할 수 있는, PDCP SDU 재배열 방법이 요구된다. However, when supporting the multi-flow in the aforementioned dual connectivity situation, the PDCP entity may receive RLC SDUs (PDCP PDUs) from the two RLC entities with which it is associated. In this case, PDCP PDUs (particularly, RLC AMD SDUs) are not sequentially received at the PDCP entity, and PDCP PDUs with a larger PDCP SN may be received first due to transmission path reception delay, and the PDCP entity is moved to a higher layer. There may be cases where PDCP SDU ascending transmission is not guaranteed. In consideration of the path delay caused by the multi-flow, a PDCP SDU rearrangement method is required, which enables the PDCP entity to deliver the PDCP SDUs to the upper layer in ascending order.
본 발명의 일 예에서 제안하는 PDCP SN 비교에 기반한 PDCP SDU 재배열 방법은 다음과 같다. 본 발명은 하향링크 데이터 전달(DL data transfer) 절차 및 상향링크 데이터 전달(UL data transfer) 절차 모두에 적용될 수 있으며, 이하 하향링크 데이터 전달 절차를 위주로 설명한다.The PDCP SDU rearrangement method based on the PDCP SN comparison proposed in the example of the present invention is as follows. The present invention can be applied to both a downlink data transfer procedure and an uplink data transfer procedure, and the following description will focus on the downlink data transfer procedure.
도 14는 본 발명의 일 예에 따른 PDCP SN 비교에 기반한 PDCP SDU 재배열을 수행하는 예를 나타낸다.14 shows an example of performing a PDCP SDU rearrangement based on a PDCP SN comparison according to an embodiment of the present invention.
도 14를 참조하면, PDCP SN 1, 2, 3, 4, 5, 11, 12, 13, 17, 18, 19, 20, 21, 22, 26번의 PDCP PDU는 매크로 기지국의 RLC 엔티티를 통하여 전송되고, PDCP SN 6, 7, 8, 9, 10, 14, 15, 16, 23번의 PDCP PDU는 스몰 기지국의 RLC 엔티티를 통하여 전송되는 경우를 가정한다. 이하 단말의 PDCP 엔티티는 수신된 PDCP PDU들이 매크로 기지국의 RLC 엔티티를 통하여 전송된 것인지, 또는 스몰 기지국의 RLC 엔티티를 통하여 전송된 것인지 구분할 수 있음을 가정한다. Referring to FIG. 14, PDCP PDUs of PDCP SNs 1, 2, 3, 4, 5, 11, 12, 13, 17, 18, 19, 20, 21, 22, and 26 are transmitted through an RLC entity of a macro base station. It is assumed that PDCP PDUs of PDCP SNs 6, 7, 8, 9, 10, 14, 15, 16, and 23 are transmitted through an RLC entity of a small base station. Hereinafter, it is assumed that a PDCP entity of a terminal can distinguish whether received PDCP PDUs are transmitted through an RLC entity of a macro base station or through an RLC entity of a small base station.
도 14a는 단말의 PDCP 엔티티에서 PDCP SN 1, 2, 3, 4, 5, 11, 12, 6, 13, 7, 17, 8, 18, 9번의 PDCP PDU를 수신 후, PDCP SN 19번의 PDCP PDU를 수신한 경우이다.FIG. 14A illustrates a PDCP PDU of PDCP SN 19 after receiving PDCP PDUs of PDCP SN 1, 2, 3, 4, 5, 11, 12, 6, 13, 7, 17, 8, 18, and 9 from a PDCP entity of a UE. Is received.
단말의 PDCP 엔티티는 매크로 기지국(의 RLC 엔티티)을 통하여 PDCP SN 1, 2, 3, 4, 5번의 PDCP PDU를 순서대로 수신하고, 그 후 PDCP SN 11의 PDCP PDU를 수신한다. 이 경우 단말의 PDCP 엔티티는 매크로 기지국을 통하여 PDCP SN 11번의 PDCP PDU를 수신하였기에, 더 시간이 지나더라도 매크로 기지국을 통하여는 PDCP SN 6 내지 10번의 PDCP PDU들을 수신할 가능성이 없음을 알 수 있다. 하지만, 스몰 기지국(의 RLC 엔티티)을 통하여 PDCP SN 6 내지 10번의 PDCP PDU들을 수신할 가능성은 존재한다. 따라서, 단말의 PDCP 엔티티는 PDCP SN 11번의 PDCP PDU 수신 시에 대응하는 PDCP SDU를 바로 전송하지 못하고 버퍼에 저장한 후에, 스몰 기지국을 통하여 PDCP SN 6 내지 10번의 PDCP PDU들이 수신되는지 확인한다. The PDCP entity of the terminal sequentially receives PDCP PDUs of PDCP SNs 1, 2, 3, 4, and 5 through the macro base station (the RLC entity), and then receives the PDCP PDUs of PDCP SN 11. In this case, since the PDCP entity of the terminal has received PDCP PDUs of PDCP SN 11 through the macro base station, it can be seen that there is no possibility of receiving PDCP SN 6 to 10 PDCP PDUs through the macro base station even after a longer time. However, there is a possibility of receiving PDCP PDUs 6 to 10 PDCP PDUs through a small base station (of RLC entity). Therefore, the PDCP entity of the terminal does not immediately transmit the corresponding PDCP SDU when receiving PDCP PDUs of PDCP SN 11 and stores them in a buffer, and then checks whether PDCP SN 6 to 10 PDCP PDUs are received through the small base station.
단말의 PDCP 엔티티는 매크로 기지국을 통하여 PDCP SN 12번의 PDCP PDU가 수신되면, 대응하는 PDCP SDU를 버퍼에 저장한다. 단말의 PDCP 엔티티는 이후 스몰 기지국을 통하여 PDCP SN 6번의 PDCP PDU가 수신되면, 대응하는 PDCP SDU를 상위계층으로 전달한다. 단말의 PDCP 엔티티는 이후 매크로 기지국을 통하여 PDCP SN 13번의 PDCP PDU가 수신되면, 대응하는 PDCP SDU를 버퍼에 저장한다. 단말의 PDCP 엔티티는 이후 스몰 기지국을 통하여 PDCP SN 7번의 PDCP PDU가 수신되면, 대응하는 PDCP SDU를 상위계층으로 전달한다. 단말의 PDCP 엔티티는 이후 매크로 기지국을 통하여 PDCP SN 17번의 PDCP PDU가 수신되면, 대응하는 PDCP SDU를 버퍼에 저장한다. 단말의 PDCP 엔티티는 이후 스몰 기지국을 통하여 PDCP SN 8번의 PDCP PDU가 수신되면, 대응하는 PDCP SDU를 상위계층으로 전달한다. 단말의 PDCP 엔티티는 이후 매크로 기지국을 통하여 PDCP SN 18번의 PDCP PDU가 수신되면, 대응하는 PDCP SDU를 버퍼에 저장한다. 단말의 PDCP 엔티티는 이후 스몰 기지국을 통하여 PDCP SN 9번의 PDCP PDU가 수신되면, 대응하는 PDCP SDU를 상위계층으로 전달한다. 단말의 PDCP 엔티티는 이후 매크로 기지국을 통하여 PDCP SN 19번의 PDCP PDU가 수신되면, 대응하는 PDCP SDU를 버퍼에 저장한다. When the PDCP entity of the terminal receives the PDCP PDU of PDCP SN No. 12 through the macro base station, the PDCP entity stores the corresponding PDCP SDU in the buffer. After receiving the PDCP PDU of PDCP SN No. 6 through the small base station, the PDCP entity of the terminal transmits the corresponding PDCP SDU to the higher layer. After receiving the PDCP PDU of PDCP SN No. 13 through the macro base station, the PDCP entity of the terminal stores the corresponding PDCP SDU in the buffer. After receiving the PDCP PDU of PDCP SN No. 7 through the small base station, the PDCP entity of the terminal transfers the corresponding PDCP SDU to the higher layer. After receiving the PDCP PDU of PDCP SN 17 through the macro base station, the PDCP entity of the terminal stores the corresponding PDCP SDU in the buffer. After receiving the PDCP PDU of PDCP SN No. 8 through the small base station, the PDCP entity of the terminal transmits the corresponding PDCP SDU to the higher layer. After receiving the PDCP PDU of PDCP SN No. 18 through the macro base station, the PDCP entity of the terminal stores the corresponding PDCP SDU in the buffer. After receiving the PDCP PDU of PDCP SN No. 9 through the small base station, the PDCP entity of the terminal transmits the corresponding PDCP SDU to the upper layer. After receiving the PDCP PDU of PDCP SN 19 through the macro base station, the PDCP entity of the terminal stores the corresponding PDCP SDU in the buffer.
한편, 만약 PDCP SN 6번 내지 10번의 PDCP PDU들이 수신되지 않은 상황에서 PDCP SN 11번보다 큰 PDCP SN의 PDCP PDU가 스몰 기지국을 통하여 단말의 PDCP 엔티티로 수신된 경우, 단말의 PDCP 엔티티는 PDCP SN 6번 내지 10번의 PDCP PDU들은 더 이상 스몰 기지국을 통하여 전송되지 않는 것으로 볼 수 있다. 이 경우 단말의 PDCP 엔티티는 PDCP SN 11번의 PDCP SDU를 상위계층으로 전달할 수 있다. Meanwhile, if PDCP PDUs of PDCP SN greater than PDCP SN 11 are received as the PDCP entity of the terminal through the small base station in a situation where PDCP SNs 6 to 10 PDCP PDUs are not received, the PDCP entity of the terminal is the PDCP SN. 6 to 10 PDCP PDUs may no longer be transmitted through the small base station. In this case, the PDCP entity of the terminal may deliver the PDCP SDU of PDCP SN 11 to a higher layer.
도 14b는 도 14a 이후, 단말의 PDCP 엔티티가 PDCP SN 10번의 PDCP PDU를 수신한 경우를 가정한다.FIG. 14B assumes a case where the PDCP entity of the UE receives the PDCP PDU of PDCP SN 10 after FIG. 14A.
도 14b를 참조하면, 단말의 PDCP 엔티티는 PDCP SN 10번의 PDCP PDU를 수신하면, PDCP 10번부터 시작하여 연속적으로 연관된 PDCP SN 값의 모든 저장된 PDCP SDU들인 PDCP SN 10, 11, 12, 13번의 PDCP SDU들을 상위계층으로 전달한다.Referring to FIG. 14B, when a PDCP entity of a terminal receives a PDCP PDU of PDCP SN 10, PDCP SN 10, 11, 12, and 13 PDCPs, which are all stored PDCP SDUs of PDCP SN values consecutively associated with the PDCP 10 starting from PDCP 10, are received. Deliver SDUs to higher layers.
도 15는 본 발명의 일 예에 따른 PDCP SN 비교에 기반한 PDCP SDU 제거 확정을 수행하는 예를 나타낸다.15 illustrates an example of performing PDCP SDU removal determination based on a PDCP SN comparison according to an embodiment of the present invention.
도 15를 참조하면, PDCP SN 1, 2, 3, 4, 5, 11, 12, 13, 17, 18, 19, 20, 21, 22, 26번의 PDCP PDU는 매크로 기지국의 RLC 엔티티를 통하여 전송되고, PDCP SN 6, 7, 8, 9, 10, 14, 15, 16, 23번의 PDCP PDU는 스몰 기지국의 RLC 엔티티를 통하여 전송되는 경우를 가정한다. 이하 단말의 PDCP 엔티티는 수신된 PDCP PDU들이 매크로 기지국의 RLC 엔티티를 통하여 전송된 것인지, 또는 스몰 기지국의 RLC 엔티티를 통하여 전송된 것인지 구분할 수 있음을 가정한다. Referring to FIG. 15, PDCP PDUs of PDCP SNs 1, 2, 3, 4, 5, 11, 12, 13, 17, 18, 19, 20, 21, 22, and 26 are transmitted through an RLC entity of a macro base station. It is assumed that PDCP PDUs of PDCP SNs 6, 7, 8, 9, 10, 14, 15, 16, and 23 are transmitted through an RLC entity of a small base station. Hereinafter, it is assumed that a PDCP entity of a terminal can distinguish whether received PDCP PDUs are transmitted through an RLC entity of a macro base station or through an RLC entity of a small base station.
도 15a는 단말의 PDCP 엔티티가 PDCP SN 1, 2, 3, 4, 5, 11, 12번의 PDCP PDU들 수신 후, PDCP SN 6번의 PDCP PDU 수신 없이, PDCP SN 13, 7번의 PDCP PDU들를 수신한 경우이다.FIG. 15a illustrates that a PDCP entity of a UE receives PDCP SN 13 and PDCP PDUs without receiving PDCP PDUs of PDCP SN 6 after PDCP SN 1, 2, 3, 4, 5, 11, and 12 PDCP PDUs are received. If it is.
도 15a를 참조하면, 단말의 PDCP 엔티티는 PDCP SN 5번의 PDCP PDU 수신 이후에, PDCP SN 6번의 PDCP PDU 수신 없이 매크로 기지국을 통하여 PDCP SN 13번의 PDCP PDU, 스몰 기지국을 통하여 PDCP SN 7번의 PDCP PDU를 수신하였다. 이 경우, 단말의 PDCP 엔티티는 스몰 기지국을 통하여 PDCP SN 7번의 PDCP PDU를 수신하였으므로, 스몰 기지국을 통하여는 더 작은 PDCP SN인 PDCP SN 6번의 PDCP PDU를 전송되지 않을 것임을 알 수 있다. 단말의 PDCP 엔티티는 이 경우 매크로 기지국을 통한 PDCP PDU들 수신 상황을 확인한다. 만약, PDCP SN 6번보다 큰 PDCP SN 값의 PDCP PDU가 매크로 기지국을 통하여 단말의 PDCP 엔티티로 수신되었다면, 단말의 PDCP 엔티티는 더 이상 매크로 기지국을 통하여는 PDCP SN 6번의 PDCP PDU가 전송되지 않을 것임을 알 수 있다. 도 15a에서는 PDCP SN 6번보다 큰 PDCP SN 11, 12, 13번의 PDCP PDU들이 매크로 기지국을 통하여 수신되었으므로, 매크로 기지국을 통하여 PDCP SN 6번의 PDCP PDU가 전송되지 않을 것임을 알 수 있다. 따라서, 이 경우 더이상 PDCP SN 6번의 PDCP PDU는 제거된 것으로 보고, 이미 수신된 PDCP SN 7번의 PDCP PDU는 상위계층으로 전달한다. 이와 같이 PDCP SDU 재배열을 위하여 별도의 타이머를 운용하지 않고 PDCP SN의 비교를 기반하여 PDCP SDU 재배열을 수행하는 경우, 타이머 만료 이전에라도 PDCP PDU 제거 상황을 파악할 수 있고, 나머지 PDCP SDU의 상위계층으로 오름차순 전달을 수행할 수 있다.Referring to FIG. 15A, after a PDCP entity of PDCP SN 5 receives PDCP PDUs of PDCP SN 5, PDCP SN 13 of PDCP SN 13 through a macro base station without receiving PDCP PDUs of PDCP SN 6, and PDCP PDUs of PDCP SN 7 through a small base station Received. In this case, since the PDCP entity of the terminal receives the PDCP PDUs of PDCP SN No. 7 through the small base station, it can be seen that the PDCP PDUs of PDCP SN No. 6 which are smaller PDCP SNs will not be transmitted through the small base station. In this case, the PDCP entity of the terminal checks the reception status of PDCP PDUs through the macro base station. If a PDCP PDU having a PDCP SN value greater than PDCP SN 6 is received to the PDCP entity of the terminal through the macro base station, the PDCP entity of the terminal will no longer transmit the PDCP PDUs of PDCP SN 6 to the macro base station. Able to know. In FIG. 15A, since PDCP PDUs of PDCP SNs 11, 12, and 13 greater than PDCP SN 6 are received through the macro base station, it can be seen that PDCP PDUs of PDCP SN 6 are not transmitted through the macro base station. Therefore, in this case, the PDCP PDUs of PDCP SN 6 are no longer viewed as removed, and the PDCP PDUs of PDCP SN 7 already received are transferred to higher layers. As such, when PDCP SDU rearrangement is performed based on a comparison of PDCP SNs without a separate timer for PDCP SDU rearrangement, PDCP PDU removal can be grasped even before the timer expires, and the upper layer of the remaining PDCP SDUs can be identified. Ascending can be performed with
도 15b는 복수의 PDCP PDU들이 제거된 경우로, 15(a) 이후, 단말의 PDCP 엔티티가 PDCP SN 17, 18번의 PDCP PDU들을 수신하고, 이후 PDCP SN 8번의 PDCP PDU 수신 없이 PDCP SN 19, 9번의 PDCP PDU를 수신한 경우이다. FIG. 15B illustrates a case where a plurality of PDCP PDUs are removed. After 15 (a), the PDCP entity of the UE receives PDCP SN 17 and PDCP PDUs of 18 times, and then PDCP SN 19 and 9 without receiving PDCP PDUs of PDCP SN 8. It is the case that one PDCP PDU is received.
도 15b를 참조하면, 단말의 PDCP 엔티티는 PDCP SN 8번의 PDCP PDU 수신 없이, 스몰 기지국을 통하여 PDCP SN 9번의 PDCP PDU를 수신하였다. 따라서, PDCP SN 9번보다 작은 PDCP SN 8번의 PDCP PDU는 더 이상 스몰 기지국을 통하여는 수신되지 않는다. 따라서, 이 경우 PDCP SN 8번의 PDCP PDU가 매크로 기지국을 통하여 수신될 가능성이 있는지 검토되어야 한다. 이 경우 현재 단말의 PDCP 엔티티가 매크로 기지국을 통하여 PDCP SN 19번의 PDCP PDU를 수신하였으므로, PDCP SN 19번보다 작은 PDCP SN 8번의 PDCP PDU는 더 이상 매크로 기지국을 통하여 수신될 수 있다. 따라서, 이 경우 단말의 PDCP 엔티티는 PDCP SN 8번의 PDCP PDU는 제거된 것으로 확정하고, PDCP SN 9번에 연관된 PDCP SDU는 상위계층으로 전달한다.Referring to FIG. 15B, the PDCP entity of the terminal receives the PDCP PDU of the PDCP SN 9 through the small base station without receiving the PDCP PDU of the PDCP SN 8. Accordingly, PDCP PDUs of PDCP SN 8, which are smaller than PDCP SN 9, are no longer received via the small base station. Therefore, in this case, the PDCP PDU of PDCP SN No. 8 should be examined for the possibility of being received through the macro base station. In this case, since the PDCP entity of the current terminal has received PDCP PDUs of PDCP SN 19 through the macro base station, PDCP PDUs of PDCP SN 8 smaller than PDCP SN 19 may no longer be received through the macro base station. Therefore, in this case, the PDCP entity of the terminal determines that the PDCP PDUs of PDCP SN 8 are removed, and delivers the PDCP SDUs associated with PDCP SN 9 to a higher layer.
상기와 같이 PDCP SN만으로 재배열을 수행하는 경우, 단말의 PDCP 엔티티는 매크로 기지국(의 RLC 엔티티) 또는 스몰 기지국(의 RLC 엔티티)를 통하여(구체적으로 매크로 기지국의 RLC 엔티티에 대응하는 단말에 구성된 피어(peer) RLC 엔티티, 또는 스몰 기지국의 RLC 엔티티에 대응하는 단말에 구성된 피어 RLC 엔티티를 통하여) 수신된 PDCP PDU들을 구별하고, 어느 한 기지국을 통하여 수신된 PDCP PDU들의 PDCP SN들과 상기 이를 다른 기지국을 통하여 수신된 PDCP PDU들의 PDCP SN들을 비교하여, 누락된 PDCP SN의 PDCP PDU를 제거된 것으로 보고 재배열을 위하여 저장된 PDCP SDU들을 일정 규칙에 따라 상위계층으로 전달할지, 또는 누락된 PDCP SN의 PDCP PDU를 더 기다려야 하는지 결정할 수 있다. 다시 말해 누락된 PDCP SN의 PDCP PDU를 더 기다리지 않는다는 것은 해당 PDCP SN의 PDCP PDU(또는 PDCP SDU)가 제거된 것으로 확정함을 의미할 수 있다. 여기서 특정 SN의 PDCP PDU(또는 PDCP SDU)가 제거라 함은 특정 SN의 PDCP 제거라 불릴 수 있다. 또한 이하에서 단순히 PDCP 제거라 함은 특정 SN의 PDCP 제거를 의미할 수 있다.When the rearrangement is performed using only the PDCP SN as described above, the PDCP entity of the terminal is a peer configured in the terminal corresponding to the RLC entity of the macro base station through the macro base station (RLC entity of) or the small base station (RLC entity). (peer) distinguishes PDCP PDUs received through a RLC entity or a peer RLC entity configured in a terminal corresponding to an RLC entity of a small base station, and PDCP SNs of PDCP PDUs received through one base station and the other base station Compares PDCP SNs of PDCP PDUs received through the PDCP PDUs and reports the PDCP PDUs of the missing PDCP SNs as removed and forwards the stored PDCP SDUs to a higher layer according to certain rules, or PDCPs of the missing PDCP SNs. It may be decided whether to wait for more PDUs. In other words, not waiting for the PDCP PDU of the missing PDCP SN may mean that the PDCP PDU (or PDCP SDU) of the PDCP SN is removed. Here, the removal of a PDCP PDU (or PDCP SDU) of a specific SN may be referred to as PDCP removal of a specific SN. Also, hereinafter, simply PDCP removal may mean PDCP removal of a specific SN.
한편, 이중 연결 상황에서, 스몰 기지국은 단말이 매크로 기지국에 추가적으로 사용하는 자원으로 고려될 수 있다. 스몰 기지국의 셀의 반경도 메크로 기지국의 셀의 반경에 비하여 작다. 따라서, 단말 측면에서 보면 스몰 기지국은 추가(add) 구성되거나 제거(remove) 구성되는 등의 경우가 발생할 수 있다. 또한, 무선 상황에 따라서 스몰 기지국을 통한 전송이 수행되기 어려운 경우가 발생할 수도 있다. 다시 말해 멀티 플로우 상황에서 스몰 기지국을 통한 전송에 문제가 발생할 수 있다.Meanwhile, in a dual connectivity situation, the small base station may be considered as a resource additionally used by the terminal to the macro base station. The radius of the cell of the small base station is also smaller than the radius of the cell of the macro base station. Therefore, from the terminal side, a small base station may be added or removed. In addition, it may be difficult to perform transmission through the small base station according to a wireless situation. In other words, a problem may occur in transmission through the small base station in a multi-flow situation.
도 16은 단말에 매크로 기지국 및 스몰 기지국과 멀티 플로우가 구성된 상황에서, 스몰 기지국을 통한 PDCP PDU 전송에 문제가 생긴 경우이다. 도 16은 PDCP SN 1, 2, 3, 4, 5, 11, 12, 13, 17, 18, 19, 20, 21, 22, 26, 27, 33, 34, 35번의 PDCP PDU는 매크로 기지국(의 RLC 엔티티)을 통하여 전송되고, PDCP SN 6, 7, 8, 9, 10, 14, 15, 16, 23, 24, 25, 28, 29번의 PDCP PDU는 스몰 기지국(의 RLC 엔티티)을 통하여 전송되되, 스몰 기지국을 통한 PDCP SN 15, 16, 23, 24, 25, 28, 29번의 PDCP PDU 전송에 문제가 발생한 경우이다. 이는 단말의 이동 또는 무선구간 의 나쁜 상황 등으로 인하여 스몰기지국을 통하여 단말에서 PDCP PDU들이 전송되지 못하는 전송 실패(failure)가 지속되는 상황일 수 있다.FIG. 16 illustrates a case where a problem occurs in PDCP PDU transmission through a small base station in a situation in which a multi-flow is configured with a macro base station and a small base station in the terminal. 16 shows PDCP PDUs of PDCP SN 1, 2, 3, 4, 5, 11, 12, 13, 17, 18, 19, 20, 21, 22, 26, 27, 33, 34, and 35. PDCP PDUs of PDCP SN 6, 7, 8, 9, 10, 14, 15, 16, 23, 24, 25, 28, and 29 are transmitted through the small base station (the RLC entity). In this case, there is a problem in PDCP PDU transmission of PDCP SN 15, 16, 23, 24, 25, 28, 29 through a small base station. This may be a situation in which transmission failures in which PDCP PDUs are not transmitted from the UE through the small base station due to the movement of the UE or the bad situation of the radio section are continued.
도 16a는 단말의 PDCP 엔티티가 PDCP SN 1, 2, 3, 4, 5, 11, 12번의 PDCP PDU들 수신 후, PDCP SN 6번의 PDCP PDU 수신 없이, PDCP SN 13, 7번의 PDCP PDU들를 수신하고, PDCP SN 17번의 PDCP PDU 수신 없이, PDCP SN 18, 8번의 PDCP PDU를 수신한 경우이다.FIG. 16a illustrates a PDCP entity of a terminal receives PDCP PDUs 13 and 7 without receiving PDCP PDUs of PDCP SN 6 after PDCP SN 1, 2, 3, 4, 5, 11 and 12 PDCP PDUs are received. In this case, PDCP SN 18 and 8 PDCP PDUs are received without receiving PDCP PDUs of PDCP SN 17.
도 16a를 참조하면, 단말의 PDCP 엔티티는 PDCP SN 18번의 PDCP PDU는 PDCP SN 17번의 PDCP PDU 수신 없이 수신되었으나, 스몰 기지국에서의 수신 상황을 확인하였을때, PDCP SN 7번이 수신된 상황으로, PDCP SN 14, 15, 16, 17번의 PDCP PDU들이 스몰 기지국을 통하여 수신가능한 것으로 판단하여 , PDCP SN 18번에 연관된 PDCP SDU는 버퍼에 저장하고, PDCP SN 14, 15, 16, 17번의 PDCP PDU들이 스몰 기지국을 통하여 수신되거나, 이보다 큰 PDCP SN의 PDCP DPU가 스몰 기지국을 통하여 수신되어 제거를 확정할 수 있을 때까지 기다린다.Referring to FIG. 16A, the PDCP entity of the terminal receives PDCP PDUs of PDCP SN 18 without receiving PDCP PDUs of PDCP SN 17, but when the reception status is confirmed in the small base station, PDCP SN 7 is received. PDCP SN 14, 15, 16, 17 PDCP PDUs are determined to be received through the small base station, the PDCP SDU associated with PDCP SN 18 is stored in a buffer, PDCP PDUs of PDCP SN 14, 15, 16, 17 Wait until the PDCP DPU of the PDCP SN, which is received through the small base station or larger, is received through the small base station to confirm the removal.
도 16b는 16(a) 이후, 단말의 PDCP 엔티티가 PDCP SN 8, 19, 9, 20, 10, 21, 14번의 PDCP PDU들을 수신한 경우이다. FIG. 16B illustrates a case in which a PDCP entity of the UE receives PDCP SN 8, 19, 9, 20, 10, 21, and 14 PDCP PDUs after 16 (a).
도 16b를 참조하면, 단말의 PDCP 엔티티는 PDCP SN 18번의 PDCP PDU 수신 이후에 수신되는 PDCP SN 19, 20, 21번의 PDCP PDU들에 대응하는 PDCP SDU들을 상위계층으로 전달하지 못하고, 버퍼에 저장한다. 이 때, PDCP SN 15번부터의 PDCP PDU들은 스몰 기지국을 통한 전송에 문제가 발생하여 전송되지 않고 있는 상황이다. 이 경우 단말의 PDCP 엔티티는 더 이상 기다려도 PDCP SN 18번의 PDCP PDU를 상위계층으로 전달할 수 있는지 여부를 확정할 수 없다. 스몰 기지국 등이 문제가 발생하여 더 이상의 PDCP PDU가 전송되지 않는 경우와 같이, 스몰 기지국(또는 매크로 기지국)을 통하여 비교할 PDCP PDU가 수신되지 않는 상황에서는, 어느 PDCP PDU를 제거된 것으로 취급할지 여부를 판단하지 못하고 계속 유보(pending)되는 문제가 발생할 수 있다.Referring to FIG. 16B, the PDCP entity of the terminal does not transfer PDCP SDUs corresponding to PDCP PDUs of PDCP SN 19, 20, and 21 received after receiving PDCP PDUs of PDCP SN 18 to a higher layer and stores them in a buffer. . At this time, PDCP PDUs from PDCP SN 15 are not transmitted due to a problem in transmission through the small base station. In this case, even if the PDCP entity of the UE no longer waits, the PDCP entity cannot determine whether it can deliver the PDCP PDU of PDCP SN 18 to a higher layer. In a situation where a PDCP PDU to be compared is not received through a small base station (or a macro base station), such as when a small base station or the like causes a problem and no more PDCP PDUs are transmitted, it is determined whether to treat a PDCP PDU as removed. Problems that can't be judged and still pending can occur.
도 17은 본 발명의 다른 예에 따른 스몰 기지국을 통한 PDCP PDU들의 수신이 갑자기 이루어지지 않는 경우에 대기 타이머를 이용한 PDCP SDU 재배열 방안의 예를 나타낸다. 본 발명에서 대기 타이머는 재배열 타이머 또는 PDCP 재배열 타이머라고 불릴 수도 있다. 도 17은 PDCP SN 1, 2, 3, 4, 5, 11, 12, 13, 17, 18, 19, 20, 21, 22, 26, 27, 33, 34, 35번의 PDCP PDU는 매크로 기지국(의 RLC 엔티티)을 통하여 전송되고, PDCP SN 6, 7, 8, 9, 10, 14, 15, 16, 23, 24, 25, 28, 29번의 PDCP PDU는 스몰 기지국(의 RLC 엔티티)을 통하여 전송되되, 스몰 기지국을 통한 PDCP SN 15, 16, 23, 24, 25, 28, 29번의 PDCP PDU 전송에 문제가 발생한 경우이다. 17 illustrates an example of a PDCP SDU rearrangement scheme using a waiting timer when PDCP PDUs are not suddenly received through a small base station according to another embodiment of the present invention. In the present invention, the wait timer may be referred to as a rearrangement timer or a PDCP rearrangement timer. FIG. 17 shows PDCP PDUs of PDCP SN 1, 2, 3, 4, 5, 11, 12, 13, 17, 18, 19, 20, 21, 22, 26, 27, 33, 34, 35. PDCP PDUs of PDCP SN 6, 7, 8, 9, 10, 14, 15, 16, 23, 24, 25, 28, and 29 are transmitted through the small base station (the RLC entity). In this case, there is a problem in PDCP PDU transmission of PDCP SN 15, 16, 23, 24, 25, 28, 29 through a small base station.
도 17a는 단말의 PDCP 엔티티가 PDCP SN 1, 2, 3, 4, 5, 11, 12번의 PDCP PDU들 수신 후, PDCP SN 6번의 PDCP PDU 수신 없이, PDCP SN 13, 7번의 PDCP PDU들를 수신하고, PDCP SN 17번의 PDCP PDU 수신 없이, PDCP SN 18, 8, 19, 9, 20, 10, 21, 14번의 PDCP PDU를 수신하고, 스몰 기지국을 통한 전송 문제로 인하여, 매크로 기지국을 통하여 PDCP SN 22, 26, 27, 33, 34, 35번의 PDCP PDU들만을 수신한 경우이다.FIG. 17a illustrates a PDCP entity of a terminal receives PDCP SNs 13 and 7 without receiving PDCP PDUs of PDCP SN 6 after PDCP SN 1, 2, 3, 4, 5, 11 and 12 PDCP PDUs are received. Receives PDCP PDUs of PDCP SN 18, 8, 19, 9, 20, 10, 21, and 14 without receiving PDCP PDUs of PDCP SN 17, and transmits the PDCP SN 22 through the macro base station due to a transmission problem through the small base station. This is the case where only PDCP PDUs of Nos., 26, 27, 33, 34, and 35 are received.
도 17a를 참조하면, PDCP SN 18번의 PDCP PDU가 매크로 기지국을 통하여 단말의 PDCP 엔티티로 수신된 경우, PDCP SN 14, 15, 16, 17번의 PDCP PDU들이 스몰 기지국을 통하여 수신될 가능성이 있다. 이 때, 단말의 PDCP 엔티티는 PDCP SN 18번의 PDCP PDU에 대한 재배열 타이머를 구동시키고, PDCP SN 18번에 연관된 PDCP SDU를 버퍼에 저장한다. 이 때 상기 재배열 타이머가 구동되는 동안에 단말은 스몰 기지국을 통하여 수신되는 PDCP PDU를 체크한다.Referring to FIG. 17A, when the PDCP PDUs of PDCP SN 18 are received by the PDCP entity of the UE through the macro base station, PDCP PDUs of PDCP SNs 14, 15, 16, and 17 may be received through the small base station. At this time, the PDCP entity of the terminal drives the rearrangement timer for the PDCP PDU of PDCP SN 18, and stores the PDCP SDU associated with PDCP SN 18 in the buffer. At this time, while the rearrangement timer is running, the terminal checks the PDCP PDU received through the small base station.
재배열 타이머 구동 기간 동안에 단말의 PDCP 엔티티가 PDCP SN 18번보다 큰 PDCP SN의 PDCP PDU를 스몰 기지국을 통하여 수신하면, 단말의 PDCP 엔티티는 상기 재배열 타이머를 중단(stop)시킨다. 이 경우 단말의 PDCP 엔티티는 상기 PDCP SN 14 내지 17번의 PDCP PDU가 제거된 것으로 확정할 수 있고, PDCP SN 18번에 연관된 PDCP SDU를 상위계층으로 전달할 수 있다.If the PDCP entity of the terminal receives a PDCP PDU of the PDCP SN greater than PDCP SN # 18 through the small base station during the rearrangement timer driving period, the PDCP entity of the terminal stops the rearrangement timer. In this case, the PDCP entity of the terminal may determine that the PDCP PDUs of PDCP SN 14 to 17 have been removed and may deliver the PDCP SDU associated with PDCP SN 18 to a higher layer.
만약, 상기 재배열 타이머 구동 기간 동안에 단말의 PDCP 엔티티가 스몰 기지국을 통하여 PDCP PDU들을 수신하였으나, 상기 재배열 타이머가 만료되기까지 PDCP SN 18번보다 큰 PDCP SN의 스몰 기지국을 통하여 PDCP PDU를 수신하지 못한 경우, 단말의 PDCP 엔티티는 상기 재배열 타이머 만료 후 다시 상기 재배열 타이머를 구동시킨다. 이 경우 PDCP SN 18번보다 큰 PDCP SN에 연관되는 매크로 기지국을 통하여 수신된 PDCP SDU들은 버퍼에 저장된다. 따라서, 단말의 PDCP 엔티티는 PDCP SN 35번의 PDCP PDU를 수신하였을 경우, 버퍼에 PDCP SN 18, 19, 20, 21, 22, 26, 27, 33, 34, 35번에 연관된 PDCP SDU들을 저장한다.If the PDCP entity of the terminal receives PDCP PDUs through the small base station during the rearrangement timer driving period, PDCP PDUs are not received through the small base station of PDCP SN greater than PDCP SN 18 until the rearrangement timer expires. If not, the PDCP entity of the terminal drives the rearrangement timer again after the rearrangement timer expires. In this case, PDCP SDUs received through the macro base station associated with PDCP SN greater than PDCP SN 18 are stored in a buffer. Accordingly, when the PDCP entity of the terminal receives the PDCP PDUs of PDCP SN 35, the PDCP entities store PDCP SDUs associated with PDCP SNs 18, 19, 20, 21, 22, 26, 27, 33, 34, and 35 in a buffer.
만약, 상기 재배열 타이머 구동 기간 동안에 단말의 PDCP 엔티티가 스몰 기지국을 통하여 PDCP PDU들을 전혀 수신하고 있지 않은 경우, 단말의 PDCP 엔티티는 상기 재배열 타이머 만료 후, 저장된 PDCP SDU들을 상위계층으로 전달한다. If the PDCP entity of the terminal does not receive PDCP PDUs at all through the small base station during the rearrangement timer driving period, the PDCP entity of the terminal delivers the stored PDCP SDUs to a higher layer after the rearrangement timer expires.
도 17b는 도 17a 이후, 스몰 기지국을 통한 PDCP PDU의 수신 없이 재배열 타이머가 만료된 경우이다.FIG. 17B illustrates a case in which the rearrangement timer expires without receiving a PDCP PDU through the small base station after FIG. 17A.
도 17b를 참조하면, 단말의 PDCP 엔티티는 2번째 재배열 타이머가 만료되었고, 2번째 재배열 타이머 구동 기간 동안에 스몰 기지국을 통하여 수신되는 PDCP PDU가 전혀 없으므로, 스몰 기지국을 통하여 더 이상의 PDCP PDU들이 전송되지 않을 것으로 판단하고, 저장되어 있는 PDCP SDU들을 상위계층으로 전달할 수 있다.Referring to FIG. 17B, the PDCP entity of the terminal has no second PDCP PDU received through the small base station during the second rearrangement timer driving period, and thus no more PDCP PDUs are transmitted through the small base station. It may be determined that it will not be, and the stored PDCP SDUs may be delivered to a higher layer.
상기와 같이 재배열 타이머를 설정하여, 스몰 기지국을 통하여 전송되는 PDCP PDU들의 수신 상황을 판단할 수 있고, 스몰 기지국 등의 문제로 인하여 스몰 기지국을 통하여 전송된 PDCP PDU들이 단말의 PDCP 엔티티에 수신되지 않는 경우에도 단말의 PDCP 엔티티에 기 수신된 PDCP PDU들에 대응되는 PDCP SDU들을 상위계층으로 전달할 수 있다.By setting the rearrangement timer as described above, it is possible to determine the reception status of PDCP PDUs transmitted through the small base station, and the PDCP PDUs transmitted through the small base station are not received by the PDCP entity of the terminal due to a problem such as the small base station. If not, the PDCP SDUs corresponding to the PDCP PDUs previously received in the PDCP entity of the UE may be delivered to the upper layer.
또한, 상기 재배열 타이머 구동 기간 동안에 단말의 PDCP 엔티티가 스몰 기지국을 통하여 PDCP PDU들을 전혀 수신하고 있지 않은 경우에 한하여 상기기 재배열 타이머 만료 후, 저장된 PDCP SDU들을 상위계층으로 전달하는 것 예시이다. 따라서 그 외에도 상기 대 타이머의 반복 회수를 예를 들어 3회 등으로 설정하고, 상기 타이머가 3회 반복으로 동작하고, 이 때에도 순차 수신을 기대하는 PDCP SN의 PDCP PDU가 수신되지 않는다면, 단말의 PDCP 엔티티는 저장된 PDCP SDU들을 상위계층으로 전달할 수 있다. 또는 상기 재배열 타이머의 길이를 적절한 값으로 설정함으로써, 상기 재배열 타이머가 만료된 이후에는 단말의 PDCP 엔티티는 무조건 저장된 PDCP SDU들을 상위계층으로 전달할 수도 있다.In addition, the PDCP entity of the UE during the rearrangement timer driving period is an example of delivering the stored PDCP SDUs to the upper layer after the rearrangement timer expires, only when the PDCP entity has not received any PDCP PDUs through the small base station. Therefore, in addition, if the number of repetitions of the large timer is set to, for example, three times, and the timer operates in three repetitions, and at this time, the PDCP PDU of the PDCP SN, which is expected to receive sequentially, is not received, the PDCP of the UE The entity may deliver the stored PDCP SDUs to higher layers. Alternatively, by setting the length of the rearrangement timer to an appropriate value, after the rearrangement timer expires, the PDCP entity of the terminal may unconditionally deliver the stored PDCP SDUs to a higher layer.
도 18은 본 발명의 일 예에 따른 PDCP SN 비교에 기반한 PDCP SDU 재배열 방법의 흐름도이다.18 is a flowchart of a PDCP SDU rearrangement method based on PDCP SN comparison according to an embodiment of the present invention.
도 18을 참조하면, 단말의 PDCP 엔티티는 상기 단말과 멀티 플로우가 구성된 매크로 기지국 및 스몰 기지국을 통하여 PDCP PDU들을 수신한다(S1800). Referring to FIG. 18, a PDCP entity of a terminal receives PDCP PDUs through a macro base station and a small base station configured with multi-flow with the terminal (S1800).
단말의 PDCP 엔티티는 상기 매크로 기지국 및 상기 스몰 기지국 중 어느 하나의 기지국을 통하여 PDCP SN n번의 PDCP PDU가 수신되었을 경우, 다른 기지국을 통하여 수신된 PDCP PDU들의 최대 PDCP SN 값 k가 상기 n보다 큰지 확인한다(S1810).When the PDCP entity of the UE receives PDCP SN n PDCP PDUs through one of the macro base station and the small base station, the PDCP entity checks whether the maximum PDCP SN values k of PDCP PDUs received through the other base station are greater than n. (S1810).
만약 S1810에서 k>n인 경우, 단말의 PDCP 엔티티는 PDCP SN n보다 작은 PDCP SN 값에 연관된 아직 수신되지 않은 PDCP SDU들은 제거된 것으로 판단한다(S1820). 그리고 단말의 PDCP 엔티티는 PDCP SN n보다 작은 PDCP SN 값에 연관된 모든 저장된 PDCP SDU들은 상위계층으로 전달하고(S1830), PDCP SN n부터 시작하여(starting from) 연속적으로 연관된 PDCP SN 값의 모든 저장된 PDCP SDU들을 오름차순으로 상위계층으로 전달한다(S1840).If k> n in S1810, the PDCP entity of the terminal determines that the PDCP SDUs not yet received associated with a PDCP SN value smaller than PDCP SN n are removed (S1820). The PDCP entity of the UE delivers all stored PDCP SDUs associated with a PDCP SN value smaller than PDCP SN n to a higher layer (S1830), starting from PDCP SN n (starting from), and all stored PDCPs of consecutively related PDCP SN values. The SDUs are delivered to the upper layer in ascending order (S1840).
만약 S1810에서 k<n인 경우, 단말의 PDCP 엔티티는 상기 다른 기지국을 통하여 PDCP SN n번보다 큰 PDCP SN 값의 PDCP PDU를 수신하기를 기다리고, S1800 이하의 동작을 반복한다.If k <n in S1810, the PDCP entity of the terminal waits to receive a PDCP PDU of the PDCP SN value greater than PDCP SN n times through the other base station, and repeats the operation of S1800 or less.
한편, 상기 다른 기지국을 통한 PDCP PDU들 전송에 문제가 발생하여 PDCP PDU들이 전송되지 않는 상황을 대비하여, 단말의 PDCP 엔티티는 재배열 타이머를 운용할 수 있다. Meanwhile, in preparation for a situation in which PDCP PDUs are not transmitted due to a problem in transmitting PDCP PDUs through another base station, the PDCP entity of the UE may operate a rearrangement timer.
도 19는 본 발명의 다른 예에 따른 재배열 타이머 기반한 PDCP SDU 재배열 방법의 흐름도이다.19 is a flowchart illustrating a rearrangement timer based PDCP SDU rearrangement method according to another embodiment of the present invention.
도 19를 참조하면, 단말의 PDCP 엔티티는 상기 단말과 멀티 플로우가 구성된 매크로 기지국 및 스몰 기지국을 통하여 PDCP PDU들을 수신한다(S1900).Referring to FIG. 19, a PDCP entity of a terminal receives PDCP PDUs through a macro base station and a small base station configured with multi-flow with the terminal (S1900).
단말의 PDCP 엔티티는 상기 매크로 기지국 및 상기 스몰 기지국 중 어느 하나의 기지국을 통하여 PDCP SN n번의 PDCP PDU가 수신되었을 경우, 재배열 타이머를 구동시킨다(S1910). When the PDCP entity of the terminal receives a PDCP PDU of PDCP SN n through any one of the macro base station and the small base station, the PDCP entity drives the rearrangement timer (S1910).
단말의 PDCP 엔티티는 상기 재배열 타이머 구동 기간 동안에 다른(the other) 기지국을 통하여 적어도 하나의 PDCP PDU를 수신하는지 확인한다(S1920).The PDCP entity of the terminal checks whether at least one PDCP PDU is received through the other base station during the rearrangement timer driving period (S1920).
만약, S1920에서 상기 재배열 타이머 구동 기간 동안에 다른(the other) 기지국을 통하여 적어도 하나의 PDCP PDU를 수신하는 경우, 단말의 PDCP 엔티티는 상기 재배열 타이머 구동 기간 동안에 상기 다른 기지국을 통하여 수신된 적어도 하나의 PDCP PDU 중의 최대 PDCP SN 값 k가 상기 n보다 큰지 확인한다(S1930).If, at S1920, at least one PDCP PDU is received through the other base station during the rearrangement timer driving period, the PDCP entity of the terminal is at least one received through the other base station during the rearrangement timer driving period. It is checked whether the maximum PDCP SN value k in the PDCP PDU is greater than n (S1930).
만약, S1930에서 상기 다른 기지국을 통하여 수신된 적어도 하나의 PDCP PDU 중의 최대 PDCP SN 값 k가 상기 n보다 큰 경우, 즉, 상기 PDCP SN n번보다 큰 PDCP SN k의 PDCP PDU를 수신한 경우, 상기 재배열 타이머를 중단시킨다(S1940). 단말의 PDCP 엔티티는 PDCP SN n보다 작은 PDCP SN 값에 연관된 아직 수신되지 않은 PDCP SDU들은 제거된 것으로 판단한다(S1950). 그리고 단말의 PDCP 엔티티는 PDCP SN n보다 작은 PDCP SN 값에 연관된 모든 저장된 PDCP SDU들은 상위계층으로 전달하고(S1960), PDCP SN n부터 시작하여 연속적으로 연관된 PDCP SN 값의 모든 저장된 PDCP SDU들을 오름차순으로 상위계층으로 전달한다(S1970).If the maximum PDCP SN value k of at least one PDCP PDU received through the other base station in S1930 is greater than the n, that is, if a PDCP PDU of PDCP SN k greater than the PDCP SN n times is received, The rearrangement timer is stopped (S1940). The PDCP entity of the terminal determines that PDCP SDUs not yet received associated with a PDCP SN value smaller than PDCP SN n are removed (S1950). The PDCP entity of the UE transmits all stored PDCP SDUs associated with a PDCP SN value smaller than PDCP SN n to a higher layer (S1960), starting with PDCP SN n and sequentially storing all stored PDCP SDUs of associated PDCP SN values in ascending order. Transfer to the upper layer (S1970).
만약, S1930에서 상기 다른 기지국을 통하여 수신된 적어도 하나의 PDCP PDU 중의 최대 PDCP SN 값 k가 상기 n보다 크지 않은 경우, 단말의 PDCP 엔티티는 상기 재배열 타이머 만료 후 다시 상기 재배열 타이머를 구동시킨다(S1980). 이는 상기 재배열 타이머 구동 기간 동안에 단말의 PDCP 엔티티가 상기 다른 기지국을 통하여 PDCP PDU들을 수신하였으나, 상기 재배열 타이머가 만료되기까지 상기 다른 기지국을 통하여 PDCP SN n번보다 큰 PDCP SN 값의 PDCP PDU를 수신하지 못한 경우이다.If the maximum PDCP SN value k of at least one PDCP PDU received through the other base station is not greater than n in S1930, the PDCP entity of the terminal drives the rearrangement timer again after the rearrangement timer expires ( S1980). The PDCP entity of the terminal receives PDCP PDUs through the other base station during the rearrangement timer driving period, but the PDCP PDU having a PDCP SN value of PDCP SN greater than PDCP SN n times through the other base station until the rearrangement timer expires. If not received.
만약, S1920에서 상기 재배열 타이머 구동 기간 동안에 단말의 PDCP 엔티티가 상기 다른 기지국을 통하여 PDCP PDU들을 전혀 수신하고 있지 않은 경우, 단말의 PDCP 엔티티는 상기 재배열 타이머 만료 후, 저장된 모든 PDCP SDU들을 오름차순으로 상위계층으로 전달한다(S1990). If the PDCP entity of the terminal does not receive PDCP PDUs at all through the other base station during the rearrangement timer driving period in S1920, the PDCP entity of the terminal after the reordering timer expires, all stored PDCP SDUs in ascending order. Transfer to the upper layer (S1990).
상술한 바와 같이 단말과 이중 연결이 구성된 매크로 기지국 및 스몰 기지국에서 각각 전송되는 PDCP PDU들의 PDCP SN을 비교하여 단말의 PDCP 엔티티는 PDCP SDU 재배열을 수행할 수 있었고, 상기 매크로 기지국 및 스몰 기지국 중 적어도 하나의 기지국을 통하여 지속적으로 PDCP PDU들이 수신되지 않는 경우, 재배열 타이머를 기반하여 다른 기지국을 통해 수신된 PDCP PDU들의 처리를 수행할 수 있었다.As described above, the PDCP entity of the UE may perform PDCP SDU rearrangement by comparing PDCP SNs of PDCP PDUs transmitted from the macro base station and the small base station, each of which has dual connectivity with the terminal, and at least one of the macro base station and the small base station. When PDCP PDUs are not continuously received through one base station, the PDCP PDUs received through the other base station may be processed based on the rearrangement timer.
상기에서는 별도의 타이머를 운용하지 않고, SN만으로 PDCP 제거를 확정(또는 판단)하는 예와 재배열 타이머에 기반하여 PDCP 제거를 확정하는 예에 대하여 설명하였다. SN만으로 PDCP 제거를 확정하는 경우 타이머를 운용하여 PDCP 제거를 확정하는 경우보다 신속하게 PDCP 제거를 판단할 수 있고, 상위 계층으로 나머지 PDCP SDU를 전송할 수 있다. 즉, 이 경우 전송 효율 측면에서 이득을 볼 수 있는 장점이 있다. 그리고, 재배열 타이머에 기반하여 PDCP 제거를 확정하는 경우 SN만으로 PDCP 제거를 확정하는 경우보다 안정성을 확보할 수 있는 장점이 있다.In the above, an example of determining (or determining) PDCP removal using only SN and determining PDCP removal based on the rearrangement timer has been described. When the PDCP removal is determined by the SN alone, the PDCP removal may be determined more quickly than when the PDCP removal is determined by using a timer, and the remaining PDCP SDUs may be transmitted to a higher layer. That is, in this case, there is an advantage in that a gain can be obtained in terms of transmission efficiency. In addition, if the PDCP removal is determined based on the rearrangement timer, there is an advantage of securing stability than when determining the PDCP removal only with SN.
상기에서 설명한 PDCP 제거를 확정하고 PDCP 재배열을 수행하는 방식은 단말에 이중 연결이 구성된 상황에서, PDCP 계층에서의 순차 전달이 보장되지 않는 문제를 해결하기 위하여 사용될 수 있다. 상술한 예에서는 PDCP 계층에서 순차적(in-sequence) PDCP PDU 수신이 되지 않고, 비순차적(out-of-sequence) PDCP PDU 수신이 되었을 때 상기 재배열 타이머가 구동(start)될 수 있다. 상기 재배열 타이머는 단말에 이중 연결이 구성된 매크로 기지국과 스몰 기지국 간의 X2 인터페이스의 전송 지연시간(약 20~60ms, 다만 이는 예시로서 네트워크 배치 및 백홀망 환경 등에 따라 달라질 수 있다) 등을 고려하여 설정될 수 있다. The method of determining the PDCP removal and performing the PDCP rearrangement described above may be used to solve a problem in which sequential delivery in the PDCP layer is not guaranteed in a situation in which dual connectivity is configured in the terminal. In the above-described example, when the in-sequence PDCP PDU is not received at the PDCP layer, the rearrangement timer may be started when the out-of-sequence PDCP PDU is received. The rearrangement timer is set in consideration of the transmission delay time of the X2 interface between the macro base station and the small base station in which the dual connection is configured in the terminal (about 20 to 60 ms, but this may vary depending on the network layout and the backhaul network environment, for example). Can be.
정리하면, 이중 연결이 단말에 구성된 경우에, 매크로 기지국의 상위 계층에서 PDCP 계층으로 (매크로 셀을 통하여) 전달되는 패킷들은, 헤더 압축(header compression) 및 암호화(ciphering) 등의 과정을 거쳐서 상기 PDCP 계층에서 PDCP PDU들로 처리되고, 상기 PDCP PDU들은 일정 기준에 따라 구분되어 일부는 상기 매크로 기지국의 매크로 셀을 통하여 단말로 전송되고, 나머지 일부는 스몰 기지국의 스몰 셀을 통하여 단말로 전송된다. 상기 PDCP PDU들은 각각 SN으로 지시되며, 단말 단에서 SN 순서대로 PDCP PDU들이 수신되지 않는 비순차적(out-of-sequence) 수신이 발생하는 경우에도, 단말은 일단 상기 누락된 SN의 PDCP PDU(즉, 순차적 수신에 해당하는 PDCP PDU)가 제거된 것(PDCP 제거)으로 판단하지 않고, 상술한 전송 지연 등을 고려하여 설정된 재배열 타이머를 구동한다. 상기 재배열 타이머가 만료(expire)될 때까지 해당 SN의 PDCP PDU가 수신되지 않으면, 그 때에 해당 SN의 PDCP PDU는 제거된 것으로 결정(또는 판단)된다. 상기 누락된 SN의 PDCP PDU(순차적 수신에 해당하는 PDCP PDU)가 제거된 것으로 결정된 이후에 상기 누락된 SN보다 더 큰 SN의 PDCP PDU들을 (순차적으로) 상위계층으로 전달한다. In summary, when dual connectivity is configured in the terminal, packets transmitted from the upper layer of the macro base station to the PDCP layer (through the macro cell) are processed through header compression and ciphering. The PDCP PDUs are processed in a layer, and the PDCP PDUs are classified according to a predetermined criterion, and partly transmitted to the terminal through the macro cell of the macro base station, and the other part is transmitted to the terminal through the small cell of the small base station. Each of the PDCP PDUs is indicated by an SN, and even when an out-of-sequence reception occurs in which the PDCP PDUs are not received in the SN order at the terminal, the terminal once receives the PDCP PDU (ie, the missing SN). Instead of determining that the PDCP PDU corresponding to the sequential reception has been removed (PDCP removal), the rearrangement timer set in consideration of the above-described transmission delay is driven. If the PDCP PDU of the SN is not received until the rearrangement timer expires, then the PDCP PDU of the SN is determined (or determined) to be removed. After the PDCP PDU (PDCP PDU corresponding to sequential reception) of the missing SN is determined to be removed, the PDCP PDUs of the SN larger than the missing SN are transferred (sequentially) to higher layers.
도 20a 내지 도 20b는 본 발명의 다른 예에 따른 PDCP 제거 확정 방법을 나타낸다.20A to 20B illustrate a PDCP removal confirmation method according to another example of the present invention.
도 20a에서 단말은 SN5의 PDCP PDU 수신 이후에 SN6의 PDCP PDU의 수신을 기대한다. 상기 단말이 수신을 기대하는 SN6의 PDCP PDU는 순차적인(in-sequence) SN의 PDCP PDU라고 볼 수 있다. 하지만 이중 연결이 구성된 단말은 경우에 따라 바로 SN11의 PDCP PDU를 수신할 수도 있다. 본 발명에 따르면 단말은 SN11의 PDCP PDU 수신 시에 비순차적 SN의 PDCP PDU 수신으로 판단하고, 재배열 타이머(PDCP 재배열 타이머)를 구동시킨다. In FIG. 20A, the UE expects to receive a PDCP PDU of SN6 after receiving a PDCP PDU of SN5. The PDCP PDU of the SN6, which the UE expects to receive, may be regarded as a PDCP PDU of an in-sequence SN. However, the terminal configured with dual connectivity may receive the PDCP PDU of the SN11 in some cases. According to the present invention, upon receiving the PDCP PDU of the SN11, the UE determines that the PDCP PDU of the non-sequential SN is received and drives a rearrangement timer (PDCP rearrangement timer).
이후, 단말은 SN 12, 13, 7, 8, 9의 PDCP PDU들을 수신할 수 있다. 하지만 이 경우 재배열 타이머가 구동 중이고, 아직 SN6의 PDCP PDU가 수신되지 않은 상황이므로, 상기 수신된 PDCP PDU에 연관된 PDCP SDU들은 버퍼에 저장되고, 상위계층으로 전달되지 않는다. 예를 들어 상위 계층은 TCP(Transmission Control Protocol) 등의 전송 프로토콜에 해당할 수 있으며, 이를 통하여 어플리케이션 단에서 실제 서비스가 진행될 수 있다. 따라서 상위계층으로 일정 시간동안 전달되지 못하는 PDCP SDU들이 늘어나거나, PDCP SDU들이 빠르게 상위계층으로 못하면, 이는 전송률 저하로 이어지고, 서비스 품질 저하를 유발할 수 있다. 따라서 가능하면 신속하게 PDCP SDU들이 상위계층으로 전달되는 것이 바람직하다.Thereafter, the terminal may receive PDCP PDUs of SN 12, 13, 7, 8, and 9. However, in this case, since the rearrangement timer is running and the PDCP PDU of the SN6 has not been received yet, PDCP SDUs associated with the received PDCP PDU are stored in a buffer and are not delivered to the upper layer. For example, the upper layer may correspond to a transmission protocol such as TCP (Transmission Control Protocol), through which an actual service may be performed at an application stage. Therefore, if the PDCP SDUs that cannot be delivered to the upper layer for a certain time or the PDCP SDUs rapidly reach the upper layer, this may lead to a lowering of the transmission rate and may cause a deterioration of quality of service. Therefore, it is desirable that PDCP SDUs be delivered to the upper layer as soon as possible.
도 20b은 재배열 타이머가 만료되었을 경우에 단말의 PDCP 계층에서의 동작을 나타낸다. 단말은 재배열 타이머가 만료되는 시점에 SN6의 PDCP PDU가 제거된 것으로 확정(또는 판단)한다. 따라서 이 때 버퍼에 저장되어 있고, SN6보다 큰 SN의 PDCP PDU들에 연관된 PDCP SDU들을 상위계층으로 (오름차순으로) 전달할 수 있다. 여기서는 PDCP SN 7 내지 13의 PDCP PDU들에 연관된 PDCP SDU들이 상위계층으로 전달될 수 있다.20B illustrates an operation in the PDCP layer of the terminal when the rearrangement timer expires. The terminal determines (or determines) that the PDCP PDU of the SN6 has been removed at the time when the rearrangement timer expires. Therefore, PDCP SDUs stored in the buffer and associated with PDCP PDUs of SN larger than SN6 may be delivered (in ascending order) to a higher layer. Here, PDCP SDUs associated with PDCP PDUs of PDCP SN 7 to 13 may be delivered to a higher layer.
한편, 본 발명의 또 다른 예에 따르면 재배열 타이머 기반 방식 및 기지국 단위의 PDCP PDU의 SN 비교방식 둘 다를 기반으로 PDCP 제거 및 PDCP SDU들의 순차적 전달을 지원할 수 있다.Meanwhile, according to another example of the present invention, PDCP removal and sequential delivery of PDCP SDUs can be supported based on both a rearrangement timer-based scheme and a base station-based PDCP PDU SN comparison scheme.
도 21은 본 발명의 또 다른 예에 따른 기지국 단위의 PDCP SN 비교 및 재배열 타이머에 기반한 PDCP 제거 확정을 수행하는 예를 나타낸다.21 illustrates an example of performing PDCP removal determination based on a PDCP SN comparison and rearrangement timer for each base station according to another embodiment of the present invention.
도 21을 참조하면, PDCP SN 1, 2, 3, 4, 5, 11, 12, 13, 17, 18, 19, 20, 21, 22, 26번의 PDCP PDU는 매크로 기지국의 RLC 엔티티를 통하여 전송되고, PDCP SN 6, 7, 8, 9, 10, 14, 15, 16, 23번의 PDCP PDU는 스몰 기지국의 RLC 엔티티를 통하여 전송되는 경우를 가정한다. Referring to FIG. 21, PDCP PDUs of PDCP SNs 1, 2, 3, 4, 5, 11, 12, 13, 17, 18, 19, 20, 21, 22, and 26 are transmitted through an RLC entity of a macro base station. It is assumed that PDCP PDUs of PDCP SNs 6, 7, 8, 9, 10, 14, 15, 16, and 23 are transmitted through an RLC entity of a small base station.
도 21은 단말의 PDCP 엔티티가 PDCP SN 1, 2, 3, 4, 5, 11, 12번의 PDCP PDU들 수신 후, PDCP SN 6번의 PDCP PDU 수신 없이, PDCP SN 13, 7번의 PDCP PDU들를 수신한 경우이다.21 is a PDCP entity of the terminal after receiving PDCP PDUs of PDCP SN 1, 2, 3, 4, 5, 11, 12, without receiving PDCP PDUs of PDCP SN 6, PDCP SN 13, PDCP PDUs 7 received If it is.
도 21을 참조하면, 단말의 PDCP 엔티티는 PDCP SN 5의 PDCP PDU 수신 이후에, PDCP SN 6의 PDCP PDU 수신 없이 매크로 기지국을 통하여 PDCP SN 11의 PDCP PDU 수신 시에 재배열 타이머를 구동시킨다. 이후 단말의 PDCP 엔티티는 스몰 기지국을 통하여 PDCP SN 7의 PDCP PDU를 수신하였다. 이 때, 단말은 수신된 PDCP SN 7의 PDCP PDU가 스몰 기지국의 스몰 셀에 대응하는 RLC 엔티티로부터 전송됨을 알 수 있다. 개별 RLC 엔티티는 RLC AM 모드에서 오름차순(ascending order)으로 PDCP PDU를 PDCP 엔티티로 전달한다. 만약 재배열 타이머가 매크로 기지국(매크로 셀)으로부터의 비순차적 PDCP PDU 수신으로 구동되는 경우에는, 스몰 기지국(스몰 셀)으로부터 순차적 PDCP PDU를 수신할 수 있고, 이 경우 재배열 타이머 만료 전에라도 저장된 PDCP SDU들을 상위계층으로 전달할 수 있다.Referring to FIG. 21, after a PDCP entity of PDCP SN 5 receives a PDCP PDU of PDCP SN 5, a PDCP entity of the terminal drives a rearrangement timer when the PDCP PDU of PDCP SN 11 is received through a macro base station without receiving PDCP PDU of PDCP SN 6. Thereafter, the PDCP entity of the terminal receives the PDCP PDU of PDCP SN 7 through the small base station. In this case, the UE may know that the received PDCP PDU of PDCP SN 7 is transmitted from the RLC entity corresponding to the small cell of the small base station. The individual RLC entity delivers the PDCP PDUs to the PDCP entity in ascending order in RLC AM mode. If the rearrangement timer is driven by out-of-sequence PDCP PDU reception from the macro base station (macro cell), it is possible to receive sequential PDCP PDUs from the small base station (small cell), in which case the PDCP stored even before the rearrangement timer expires. SDUs can be delivered to higher layers.
PDCP 재배열 타이머와 기지국 단위의 SN 비교방식을 둘 다 사용하게 되면, 신속하게 PDCP 제거를 판단할 수 있고, 타이머 없이 기지국 단위의 SN 비교방식만을 사용하는 경우의 안정성(또는 신뢰성) 문제를 해결할 수도 있다.Using both the PDCP rearrangement timer and the base station SN comparison method can quickly determine PDCP removal and solve the stability (or reliability) problem of using only the base station SN comparison method without a timer. have.
보다 상세하게, 본 발명의 또 다른 예에 따른 기지국 단위의 PDCP SN 비교 및 재배열 타이머에 기반한 PDCP 제거 확정을 수행하는 방법을 설명하면 다음과 같다.In more detail, a method of performing PDCP removal determination based on PDCP SN comparison and rearrangement timer for each base station according to another embodiment of the present invention will be described.
도 22는 본 발명의 또 다른 예에 따른 기지국 단위의 PDCP SN 비교 및 재배열 타이머에 기반한 PDCP SDU 재배열 방법의 흐름도이다.22 is a flowchart of a PDCP SDU rearrangement method based on a PDCP SN comparison and rearrangement timer for each base station according to another embodiment of the present invention.
도 22를 참조하면, 단말의 PDCP 엔티티는 상기 단말과 멀티 플로우가 구성된 매크로 기지국 및 스몰 기지국을 통하여 PDCP PDU들을 수신한다(S2200). 예를 들어 단말의 PDCP 엔티티는 PDCP SN a번까지의 PDCP PDU들을 순차적으로 수신할 수 있다.Referring to FIG. 22, a PDCP entity of a terminal receives PDCP PDUs through a macro base station and a small base station configured with multi-flow with the terminal (S2200). For example, the PDCP entity of the terminal may sequentially receive PDCP PDUs up to PDCP SN a.
단말의 PDCP 엔티티는 상기 수신된 PDCP PDU들에 연관된 PDCP SDU들을 버퍼에 저장할 수 있다.The PDCP entity of the terminal may store PDCP SDUs associated with the received PDCP PDUs in a buffer.
단말의 PDCP 엔티티는 상기 매크로 기지국 및 상기 스몰 기지국 중 어느 한 기지국을 통하여 PDCP SN n번의 PDCP PDU가 수신되었을 경우, 상기 PDCP SN n번의 PDCP PDU 수신이 비순차적 SN의 PDCP PDU 수신인지 확인한다(S2210). 예를 들어, 단말은 a+1=n인지 여부를 기반으로 상기 비순차적 수신 여부를 확인할 수 있다. When the PDCP entity of the terminal receives the PDCP PDUs of PDCP SN n times through any one of the macro base station and the small base station, the PDCP entity checks whether the PDCP PDU reception of the PDCP SN n times is a PDCP PDU reception of a non-sequential SN (S2210). ). For example, the terminal may check whether the reception is non-sequential based on whether a + 1 = n.
S2210에서 비순차적 SN의 PDCP PDU가 수신된 경우, 단말의 PDCP 엔티티는 재배열 타이머를 구동시킨다(S2220). 즉, 본 실시에에서는 비순차적 SN의 PDCP PDU가 수신된 경우에 상기 재배열 타이머가 구동된다.When the PDCP PDU of the non-sequential SN is received in S2210, the PDCP entity of the terminal drives the rearrangement timer (S2220). In other words, in the present embodiment, when the PDCP PDU of the non-sequential SN is received, the rearrangement timer is driven.
단말의 PDCP 엔티티는 다른 기지국을 통하여 수신된 PDCP PDU의 PDCP SN 값 k보다 상기 n이 더 큰지 확인한다(S2230).The PDCP entity of the terminal determines whether n is greater than the PDCP SN value k of the PDCP PDU received through another base station (S2230).
만약 S2230에서 n>k인 경우, 단말의 PDCP 엔티티는 PDCP SN (a+1)~(k-1)의 PDCP PDU들은 PDCP 제거된 것으로 판단한다(S2240). 그리고 단말의 PDCP 엔티티는 PDCP 제거로 판단된 SN을 제외하는 경우, 순차적인 것으로 판단되는, 수신된 PDCP PDU들에 연관된 PDCP SDU들을 오름차순으로 상위계층으로 전달한다(S2250).If n> k in S2230, the PDCP entity of the terminal determines that PDCP PDUs of PDCP SN (a + 1) to (k-1) are PDCP removed (S2240). When the PDCP entity of the terminal excludes the SN determined to remove the PDCP, the PDCP entity, which is determined to be sequential, transfers the PDCP SDUs related to the received PDCP PDUs to an upper layer in ascending order (S2250).
예를 들어, PDCP 엔티티는 a=5, n=11, k=7인 경우, n>k(11>7)이므로, a+1=6 에 해당하는 SN 의 PDCP PDU 는 제거된 것으로 판단한다. 이는 SN a=5까지의 PDCP PDU를 순차적으로 수신한 상태에서 매크로 셀을 통하여 SN n=11 인 PDCP PDU를 수신하여 PDCP 재배열 타이머가 구동되었고, 이후에 매크로 셀이 아닌 스몰 셀을 통하여 SN k=7에 해당하는 PDCP PDU를 수신한 경우일 수 있다. 따라서, 스몰 셀을 통하여는 더 이상 SN 6에 해당하는 PDCP PDU를 수신할 수 없고, 매크로 셀에서도 SN n=11의 PDCP PDU를 수신하였으므로 더 이상 SN6 에 해당하는 PDCP PDU는 수신할 수 없는 것으로 판단될 수 있다.For example, when the PDCP entity is a = 5, n = 11, and k = 7, since n> k (11> 7), the PDCP PDU of the SN corresponding to a + 1 = 6 is determined to be removed. The PDCP rearrangement timer was driven by receiving a PDCP PDU with SN n = 11 through a macro cell in a state of sequentially receiving PDCP PDUs up to SN a = 5, and then SN k through a small cell rather than a macro cell. It may be the case that a PDCP PDU corresponding to = 7 is received. Therefore, the PDCP PDU corresponding to SN 6 can no longer be received through the small cell, and since the PDCP PDU with SN n = 11 is received in the macro cell, it is determined that the PDCP PDU corresponding to SN6 can no longer be received. Can be.
따라서, 단말의 PDCP 엔티티는 SN7 (k=7)에 해당하는 PDCP PDU를 수신하였을 경우, SN6의 PDCP PDU는 PDCP 제거된 것으로 판단하고, 에 해당하는 PDCP PDU는 SN6의 PDCP PDU가 제거되었으므로, 제거된 것으로 판단된 SN의 PDCP PDU를 제외하면 순차적인 것으로 판단되는(ex. SN7 등) 수신된 PDCP PDU들에 연관된 PDCP SDU들을 오름차순으로 상위 계층으로 전달할 수 있다.Accordingly, when the PDCP entity of the UE receives a PDCP PDU corresponding to SN7 (k = 7), the PDCP PDU of SN6 determines that PDCP is removed, and the corresponding PDCP PDU is removed because the PDCP PDU of SN6 is removed. Except for the PDCP PDUs of the SN determined to be determined, the PDCP SDUs associated with the received PDCP PDUs determined to be sequential (eg, SN7) may be delivered to the upper layer in ascending order.
만약 S2240에서 n<k인 경우, 단말의 PDCP 엔티티는 PDCP SN (a+1)~(n-1)의 PDCP PDU들은 PDCP 제거된 것으로 판단한다(S2260). 그리고 단말의 PDCP 엔티티는 PDCP 제거로 판단된 SN을 제외하는 경우, 순차적인 것으로 판단되는, 수신된 PDCP PDU들에 연관된 PDCP SDU들을 오름차순으로 상위계층으로 전달한다(S2270). If n <k in S2240, the PDCP entity of the terminal determines that PDCP PDUs of PDCP SN (a + 1) to (n-1) are PDCP removed (S2260). When the PDCP entity of the terminal excludes the SN determined to remove the PDCP, the PDCP entity, which is determined to be sequential, transfers the PDCP SDUs associated with the received PDCP PDUs to an upper layer in ascending order (S2270).
예를 들어, PDCP 엔티티는 a=5, n=11, k=15인 경우, n<k(11>15)이므로, 6(a+1)부터 10(n-1)에 해당하는 SN 의 PDCP PDU들은 제거된 것으로 판단한다. 이는 SN a=5까지의 PDCP PDU를 순차적으로 수신한 상태에서 매크로 셀을 통하여 SN n=11 인 PDCP PDU를 수신하여 PDCP 재배열 타이머가 구동되었고, 이후에 매크로 셀이 아닌 스몰 셀을 통하여 SN k=15에 해당하는 PDCP PDU를 수신한 경우일 수 있다. 따라서, 스몰 셀을 통하여는 더 이상 6(a+1)부터 10(n-1)에 해당하는 SN 의 PDCP PDU들은 수신할 수 없고, 매크로 셀에서도 SN n=11의 PDCP PDU를 수신하였으므로, 더 이상 SN6부터 SN10에 해당하는 PDCP PDU들은 수신할 수 없는 것으로 판단될 수 있다.For example, if the PDCP entity is a = 5, n = 11, and k = 15, n <k (11> 15), so PDCP of SN corresponding to 6 (a + 1) to 10 (n-1) PDUs are determined to be removed. The PDCP rearrangement timer was driven by receiving a PDCP PDU with SN n = 11 through a macro cell in a state of sequentially receiving PDCP PDUs up to SN a = 5, and then SN k through a small cell rather than a macro cell. This may be the case when a PDCP PDU corresponding to = 15 is received. Therefore, the PDCP PDUs of SNs ranging from 6 (a + 1) to 10 (n-1) can no longer be received through the small cell, and since the PDCP PDUs of SN n = 11 are also received from the macro cell, It may be determined that PDCP PDUs corresponding to SN6 through SN10 cannot be received.
따라서, 단말의 PDCP 엔티티는 SN15 (k=15)에 해당하는 PDCP PDU를 수신하였을 경우, SN6~10의 PDCP PDU는 PDCP 제거된 것으로 판단하고, 제거된 것으로 판단된 SN의 PDCP PDU를 제외하면 순차적인 것으로 판단되는 수신된 PDCP PDU들에 연관된 PDCP SDU들을 오름차순으로 상위 계층으로 전달할 수 있다.Therefore, when the PDCP entity of the UE receives a PDCP PDU corresponding to SN15 (k = 15), the PDCP PDUs of SN6 to 10 are determined to be PDCP removed, except for PDCP PDUs of the SN determined to be removed. PDCP SDUs associated with the received PDCP PDUs determined to be may be delivered to the upper layer in ascending order.
단말의 PDCP 엔티티는 PDCP 재배열 타이머 동작 중에 수신되는 PDCP PDU 가 S2230을 만족하지 않는 경우 해당 수신된 SN k의 PDCP PDU에 연관된 PDCP SDU는 버퍼에 저장할 수 있다.When the PDCP entity received during the PDCP rearrangement timer operation does not satisfy S2230, the PDCP entity of the UE may store the PDCP SDU associated with the PDCP PDU of the received SN k in a buffer.
이후 재배열 타이머가 만료되는 경우 버퍼에 저장된 PDCP SDU들을 오름차순으로 상위계층으로 전달한다(S2280).When the rearrangement timer expires, the PDCP SDUs stored in the buffer are transferred to the upper layer in ascending order (S2280).
상술한 바와 같이 단말과 이중 연결이 구성된 매크로 기지국 및 스몰 기지국에서 각각 전송되는 PDCP PDU들의 PDCP SN을 비교하고, 또한 재배열 타이머를 기반하여 보다 효율적으로 PDCP 제거 판단 및 PDCP SDU 재배열을 수행할 수 있다.As described above, the PDCP SNs of the PDCP PDUs transmitted from the macro base station and the small base station configured with the dual connectivity with the terminal may be compared, and the PDCP removal determination and the PDCP SDU rearrangement may be performed more efficiently based on the rearrangement timer. have.
한편, 본 발명에서는 상술한 방법 뿐 아니라 고정 타이머(fixed timer)에 기반하여 PDCP SDU 재배열을 수행하고, PDCP SDU들의 오름차순 전달을 보장할 수 있다. 단말의 PDCP 계층에서 PDCP SDU 재배열을 진행하기 위하여는 단말의 PDCP 엔티티가 순차 수신을 기대한 PDCP SN에 해당하지 않는 PDCP PDU가 수신될 경우의 처리가 문제된다. 단말의 PDCP 엔티티는 일정한 시간을 기다린 후에 수신되는 PDCP PDU의 PDCP SN 값에 따라 PDCP SDU 재배열 후에 재배열된 PDCP SDU들을 오름차순으로 상위계층으로 전달할 수 있고, 또는 순차 수신을 기대한 PDCP SN에 해당하는 PDCP PDU(또는 SDU)는 이미 제거된 것으로 보고, 나머지 PDCP SDU들을 오름차순으로 상위계층으로 전달할 수 있다. 이를 위하여 특정한 상황에 타이머를 구동시키는 방법을 사용할 수 있을 것이나, 경우, 기존의 PDCP 계층의 동작에 특정 타이머를 구동시키는 조건이나 멈추는 조건, 또는 타이머의 값 등에 대한 설정 등이 수반되어야 하고 PDCP 계층 동작의 복잡도가 증가하는 문제가 발생한다. 따라서, 본 발명의 또 다른 예에서는 상기와 같은 문제점을 해결하기 위하여 고정 타이머에 기반한 PDCP SDU 재배열 방법을 제안한다. Meanwhile, in the present invention, PDCP SDU rearrangement may be performed based on a fixed timer as well as the above-described method, and the ascending order of PDCP SDUs may be guaranteed. In order to proceed with the PDCP SDU rearrangement in the PDCP layer of the UE, a process when a PDCP PDU is received that does not correspond to a PDCP SN that the PDCP entity of the UE expects to receive sequentially is problematic. The PDCP entity of the UE may deliver the rearranged PDCP SDUs to the upper layer in ascending order after PDCP SDU rearrangement according to the PDCP SN value of the PDCP PDU received after waiting a certain time, or correspond to the PDCP SN expected to be sequentially received. The PDCP PDU (or SDU) may be considered to have already been removed, and the remaining PDCP SDUs may be delivered to the upper layer in ascending order. For this purpose, a method of driving a timer in a specific situation may be used, but in this case, the operation of the existing PDCP layer must be accompanied by a condition for driving a specific timer, a stopping condition, or a timer value. The problem arises that the complexity of. Therefore, another example of the present invention proposes a PDCP SDU rearrangement method based on a fixed timer to solve the above problem.
본 발명의 또 다른 예에서 제안하는 고정된 재배열 타이머에 기반한 PDCP SDU 재배열 방법은 다음과 같다. 본 발명은 하향링크 데이터 전달 절차 및 상향링크 데이터 전달 절차 모두에 적용될 수 있으며, 이하 하향링크 데이터 전달 절차를 위주로 설명한다.The PDCP SDU rearrangement method based on the fixed rearrangement timer proposed in another example of the present invention is as follows. The present invention can be applied to both the downlink data transfer procedure and the uplink data transfer procedure, and will be described below with reference to the downlink data transfer procedure.
도 23은 본 발명의 또 다른 예에 따른 재배열 타이머에 기반한 PDCP SDU 재배열 방법을 나타낸다. 도 20은 PDCP SN 1, 2, 3, 4, 5, 11, 12, 13, 17, 18, 19, 20, 21, 22, 26, 27, 33번의 PDCP PDU는 매크로 기지국(의 RLC 엔티티)을 통하여 전송되고, PDCP SN 6, 7, 8, 9, 10, 14, 15, 16, 23, 24, 25번의 PDCP PDU는 스몰 기지국(의 RLC 엔티티)을 통하여 전송되는 경우이다. 23 illustrates a PDCP SDU rearrangement method based on a rearrangement timer according to another embodiment of the present invention. 20 shows that PDCP PDUs of PDCP SNs 1, 2, 3, 4, 5, 11, 12, 13, 17, 18, 19, 20, 21, 22, 26, 27, 33 represent a macro base station (the RLC entity of). PDCP PDUs of PDCP SN 6, 7, 8, 9, 10, 14, 15, 16, 23, 24, 25 are transmitted through a small base station (the RLC entity).
도 23a는 단말의 PDCP 엔티티가 PDCP SN 1, 2, 3, 4, 5, 11, 12, 6, 13, 7, 17번의 PDCP PDU들을 수신한 경우를 가정한다.FIG. 23A assumes a case where a PDCP entity of a terminal receives PDCP PDUs of PDCP SNs 1, 2, 3, 4, 5, 11, 12, 6, 13, 7, and 17. FIG.
도 23a를 참조하면, 단말의 PDCP 엔티티는 PDCP SN 1번의 PDCP PDU를 수신하면, 기존에 재배열 타이머가 동작하고 있지 않으므로, 재배열 타이머를 구동시킨다. 이 때 상기 재배열 타이머의 값은 미리 일정하게 정해진 값일 수 있다. 상기 재배열 타이머의 값은 매크로 기지국에서 단말로 전송될 수 있다. 매크로 기지국은 전용 시그널링 또는 브로드캐스팅(broadcasting) 방식으로 상기 재배열 타이머 값을 단말로 전송할 수 있다. 상기 재배열 타이머가 구동중인 경우에는 단말의 PDCP 엔티티는 특정한 상황에 따라 중단하지 않는다. 즉, 한번 재배열 타이머가 구동되면, 설정된 시간 동안은 유지된다.Referring to FIG. 23A, when the PDCP entity of the terminal receives the PDCP PDU of PDCP SN 1, the rearrangement timer does not operate previously, and thus, the rearrangement timer is driven. At this time, the value of the rearrangement timer may be a predetermined value. The value of the rearrangement timer may be transmitted from the macro base station to the terminal. The macro base station may transmit the rearrangement timer value to the terminal through dedicated signaling or broadcasting. When the rearrangement timer is running, the PDCP entity of the terminal does not stop according to a specific situation. That is, once the rearrangement timer is driven, it is maintained for a set time.
상기 재배열 타이머가 구동(또는 유지)되는 동안, 비순차적으로 수신된 PDCP SN의 PDCP PDU들에 대응하는 PDCP SDU들은 버퍼에 저장된다. 재배열 타이머가 구동되는 동안에 순차적 수신에 해당하는 PDCP SN의 PDCP PDU들에 대응하는 PDCP SDU들은 상위계층으로 전달된다. While the rearrangement timer is running (or maintained), PDCP SDUs corresponding to PDCP PDUs of the PDCP SN received out of order are stored in a buffer. While the rearrangement timer is running, PDCP SDUs corresponding to PDCP PDUs of the PDCP SN corresponding to sequential reception are delivered to a higher layer.
상기 비순차적 수신이라 함은 순차적 수신이 기대되는 PDCP SN의 PDCP PDU가 수신되지 않고 다른 PDCP SN의 PDCP PDU가 수신된 경우를 의미할 수 있다. 여기서 상기 순차적 수신이라 함은 예를 들어, 다음과 같은 기준에 따라 판단될 수 있다. 만약, 상위계층으로 마지막으로 전달한 PDCP SDU의 PDCP SN을 Last_Submitted_PDCP_RX_SN로 정의하고, 다음에 순차적으로 수신할 것으로 기대되는 PDCP SDU의 PDCP SN을 Next_PDCP_RX_SN이라 정의한다면, Next_PDCP_RX_SN은 다음 수학식 1 및 수학식 2 중 하나를 따를 수 있다.The non-sequential reception may mean a case where a PDCP PDU of another PDCP SN is received without receiving a PDCP PDU of a PDCP SN that is expected to be sequentially received. In this case, the sequential reception may be determined based on, for example, the following criteria. If the PDCP SN of the last PDCP SDU delivered to the upper layer is defined as Last_Submitted_PDCP_RX_SN, and the PDCP SN of the PDCP SDU expected to be sequentially received next is defined as Next_PDCP_RX_SN, Next_PDCP_RX_SN is represented by Equation 1 and Equation 2 below. You can follow one.
수학식 1
Figure PCTKR2014007457-appb-M000001
Equation 1
Figure PCTKR2014007457-appb-M000001
수학식 2
Figure PCTKR2014007457-appb-M000002
Equation 2
Figure PCTKR2014007457-appb-M000002
수학식 2에서 Maximum_PDCP_SN은 허용된 PDCP SN의 최대값을 나타낸다. 즉, 수학식 2는 PDCP SN의 최대값 이후에 번호가 0부터 다시 시작하는 것을 나타낸다.In Equation 2, Maximum_PDCP_SN represents the maximum value of the allowed PDCP SN. That is, Equation 2 indicates that the number starts again from 0 after the maximum value of the PDCP SN.
다시 도 23a를 참조하면, 상기 재배열 타이머는 단말의 PDCP 엔티티에 PDCP SN 5번의 PDCP PDU를 수신한 후에 만료되었고, 단말의 PDCP 엔티티가 다음 PDCP PDU인 PDCP SN 11번의 PDCP PDU 수신시 상기 재배열 타이머가 구동된다. Referring again to FIG. 23A, the rearrangement timer expires after receiving PDCP PDUs of PDCP SN # 5 from the PDCP entity of the UE, and when the PDCP entity of the UE receives PDCP PDUs of PDCP SN # 11 which is the next PDCP PDU The timer is running.
도 23b는 도 23a 이후, 단말의 PDCP 엔티티가 PDCP SN 8, 18, 9, 19, 10번의 PDCP PDU들을 수신한 경우를 가정한다.FIG. 23B assumes a case where the PDCP entity of the UE receives PDCP SN 8, 18, 9, 19, and 10 PDCP PDUs after FIG. 23A.
도 23b를 참조하면, 단말의 PDCP 엔티티가 PDCP SN 11번의 PDCP PDU 수신시 상기 재배열 타이머가 구동되고, 이후, 단말의 PDCP 엔티티가 비순차 수신한 PDCP SN 12, 13, 17, 18번의 PDCP PDU들에 대응하는 PDCP SDU들은 버퍼에 저장되고, 순차 수신한 PDCP SN 6, 7, 8번의 PDCP PDU들에 대응하는 PDCP SDU들은 상위계층으로 전달된다. 상기 재배열 타이머는 PDCP SN 18번의 PDCP PDU 수신 이후에 만료되었고, 상기 PDCP SN 11, 12, 13, 17, 18번의 PDCP PDU들에 대응하는 PDCP SDU들은 상기 재배열 타이머가 만료되더라도 상위계층으로 전달되지 않고, 버퍼에 저장된다. 상기 재배열 타이머가 만료된 이후, PDCP SN 9번의 PDCP PDU가 수신되면, 새로이 상기 재배열 타이머가 구동된다.Referring to FIG. 23B, when the PDCP entity of the terminal receives the PDCP PDU of PDCP SN 11, the rearrangement timer is started. Then, PDCP PDUs of PDCP SN 12, 13, 17, and 18 that are sequentially received by the PDCP entity of the terminal are operated. PDCP SDUs corresponding to the PDCP SDUs are stored in a buffer, and PDCP SDUs corresponding to the PDCP PDUs of PDCP SN 6, 7, 8, which are sequentially received are transferred to a higher layer. The rearrangement timer expires after receiving PDCP PDUs of PDCP SN 18, and PDCP SDUs corresponding to PDCP PDUs of PDCP SNs 11, 12, 13, 17, and 18 are delivered to a higher layer even if the rearrangement timer expires. It is stored in a buffer. After the rearrangement timer expires, if a PDCP PDU of PDCP SN 9 is received, the rearrangement timer is newly started.
이후, 단말의 PDCP 엔티티는 PDCP SN 19번의 PDCP PDU가 비순차 수신되면, 대응하는 PDCP SDU를 버퍼에 저장한다. 단말의 PDCP 엔티티는 PDCP SN 10번의 PDCP PDU가 수신되면, 이는 순차 수신으로 보고, 상기 순차 수신된 PDCP PDU의 PDCP SN 값부터 시작하여 연속적으로 연관되는 PDCP SN 값의 모든 저장된 PDCP SDU들을 상위계층으로 전달한다. 즉, 단말의 PDCP 엔티티는 PDCP SN 10, 11, 12, 13번의 PDCP SDU들을 상위계층으로 전달한다.Thereafter, when the PDCP entity of the PDCP SN 19 PDCP PDUs are received out of order, the PDCP entity stores the corresponding PDCP SDU in the buffer. When the PDCP entity of the terminal receives PDCP PDUs of PDCP SN 10, this is regarded as sequential reception, starting with the PDCP SN values of the sequentially received PDCP PDUs, and all stored PDCP SDUs of consecutively related PDCP SN values are transferred to a higher layer. To pass. That is, the PDCP entity of the terminal delivers PDCP SDUs of PDCP SN 10, 11, 12, and 13 to a higher layer.
도 23c는 스몰 기지국을 통하여 전송되어야 할 PDCP SN 7, 10번에 연관된 PDCP SDU들이 제거된 경우이다. 도 23c는 단말의 PDCP 엔티티가 PDCP SN 1, 2, 3, 4, 5, 11, 12, 6, 13번의 PDCP PDU들을 수신하고, PDCP SN 7번의 PDCP PDU 수신 없이, PDCP SN 17, 8, 18, 9, 19번의 PDCP PDU들을 수신하고, PDCP SN 10번의 PDCP PDU 수신 없이, PDCP SN 20, 14번의 PDCP PDU들을 수신한 경우를 가정한다. 또한, 단말의 PDCP 엔티티가 PDCP SN 1, 11, 9번의 PDCP PDU를 수신한 경우, 재배열 타이머가 구동됨을 가정한다.FIG. 23C illustrates a case where PDCP SDUs associated with PDCP SN 7, 10 to be transmitted through the small base station are removed. FIG. 23C illustrates that a PDCP entity of a terminal receives PDCP PDUs of PDCP SNs 1, 2, 3, 4, 5, 11, 12, 6, and 13, and does not receive PDCP PDUs of PDCP SN 7 and does not receive PDCP SNs 17, 8, and 18. It is assumed that PDCP PDUs of Nos. 9 and 19 are received, and PDCP PDUs of PDCP 20 and 14 are received without receiving PDCP PDUs of PDCP SN 10 and 19. In addition, it is assumed that when the PDCP entity of the terminal receives PDCP PDUs of PDCP SNs 1, 11, and 9, the rearrangement timer is driven.
도 23c를 참조하면, 단말의 PDCP 엔티티는 PDCP SN 8번의 PDCP PDU를 수신하더라도, 순차적 수신이 기대되는 PDCP SN 7번의 PDCP PDU가 아직 수신되지 않았으므로, PDCP SN 7번에 연관된 PDCP SDU를 상위계층으로 전달하지 못한다. 재배열 타이머가 구동되고 있는 상황에서는 아직 PDCP SN 7번의 PDCP PDU가 수신가능한지 여부에 대하여 확정할 수 없다. 상기 재배열 타이머가 만료된 경우, 단말의 PDCP 엔티티는 PDCP PDU 7번은 제거된 것으로 판단한다. 이후, 단말은 PDCP SN 9번의 PDCP PDU를 수신하면, 다시 재배열 타이머를 구동시킨다. 이후, 단말의 PDCP 엔티티가 PDCP SN 19, 20, 14번의 PDCP PDU들을 수신하더라도 순차적 수신이 기대되는 PDCP SN 10번의 PDCP PDU가 아직 수신되지 않았으므로, PDCP SN 11, 12, 13, 14, 17, 18, 19, 20번에 연관된 PDCP SDU들을 버퍼에 저장한다.Referring to FIG. 23C, even if the PDCP entity of the UE receives the PDCP PDUs of PDCP SN 8, the PDCP PDUs of PDCP SN 7 that are expected to be sequentially received have not yet been received. Can't deliver. In the situation where the rearrangement timer is running, it is not yet possible to determine whether the PDCP PDU of PDCP SN 7 can be received. When the rearrangement timer expires, the PDCP entity of the terminal determines that the PDCP PDU 7 has been removed. Thereafter, when the terminal receives the PDCP PDU of PDCP SN 9, the terminal drives the rearrangement timer again. Subsequently, even if the PDCP entity of the terminal receives PDCP PDUs of PDCP SNs 19, 20, and 14, PDCP PDUs of PDCP SN 10, which are expected to be sequentially received, have not yet been received, so that PDCP SNs 11, 12, 13, 14, 17, Store the PDCP SDUs associated with 18, 19 and 20 in the buffer.
도 23d는 도 23c 이후, 단말의 PDCP 엔티티가 PDCP SN 14, 21, 15번의 PDCP PDU들을 수신한 경우를 가정한다. FIG. 23D illustrates a case in which a PDCP entity of the UE receives PDCP PDUs of PDCP SNs 14, 21, and 15 after FIG. 23C.
도 23d를 참조하면, 재배열 타이머 구동 중에 단말의 PDCP 엔티티는 PDCP SN 14, 21, 15번의 PDCP PDU들을 수신하였다. 상기 재배열 타이머가 만료되지 않았고, 순차 수신이 기대되는 PDCP SN 10번의 PDCP PDU를 아직 수신하지 못하였으므로, 단말의 PDCP 엔티티는 PDCP SN 21, 15번에 연관된 PDCP SDU들을 추가적으로 버퍼에 저장한다.Referring to FIG. 23D, the PDCP entity of the terminal receives PDCP PDUs of PDCP SN 14, 21, and 15 while the rearrangement timer is driven. Since the rearrangement timer has not expired and PDCP PDUs of PDCP SN # 10 that are expected to be sequentially received have not yet been received, the PDCP entity of the UE additionally stores PDCP SDUs associated with PDCP SNs 21 and 15 in a buffer.
도 23e는 도 23d 이후, 단말의 PDCP 엔티티가 PDCP SN 22, 16번의 PDCP PDU들을 수신하고, 이후 재배열 타이머가 만료된 경우를 가정한다.FIG. 23E assumes that the PDCP entity of the terminal receives PDCP PDUs of PDCP SN 22 and 16 after FIG. 23D and then the rearrangement timer expires.
도 23e를 참조하면, 단말의 PDCP 엔티티는 PDCP SN 16번의 PDCP PDU 수신 이후, 재배열 타이머가 만료되면, PDCP SN 10번의 PDCP PDU(및 SDU)을 제거된 것으로 확정한다. 이 때, 제거된 PDCP SN 10번에 연관된 PDCP SDU를 제외하고, 저장된 PDCP SDU들 중 순차적인 수신으로 볼 수 있는 부분까지 상위계층으로 오름차순으로 전달된다. 즉, PDCP SN 11부터 22번까지 연관된 PDCP SDU들은 상위계층으로 오름차순으로 전달된다. Referring to FIG. 23E, after the PDCP PDU of PDCP SN # 16 receives the PDCP PDU, the PDCP entity determines that the PDCP PDUs (and SDUs) of PDCP SN # 10 have been removed. At this time, except for the PDCP SDU associated with the removed PDCP SN 10, the portion of the stored PDCP SDUs, which can be viewed as sequential reception, is transferred to the upper layer in ascending order. That is, PDCP SDUs associated with PDCP SNs 11 to 22 are delivered to the upper layer in ascending order.
상술한 재배열 타이머를 이용하여, 수신되지 않은 PDCP PDU가 제거된 것인지 여부를 확정할 수 있다. 다만, 상기 재배열 타이머의 경우, PDCP PDU의 순차 수신 또는 비순차 수신 등의 특정 상황에 타이머를 구동하는 것이 아닌, 타이머가 구동 중이 아닌 경우에 임의의 PDCP PDU 수신시 타이머를 구동한다. 따라서, 상기 재배열 타이머를 이용한 경우, 정해진 시간간격 동안에 단말이 수신한 PDCP PDU들 간의 재배열을 수행할 수 있으나, 수신하지 못한 PDCP PDU들의 제거 여부를 타이머 만료 후에도 확정할 수 없을 수 있다.By using the rearrangement timer described above, it may be determined whether the PDCP PDU not received is removed. However, in the case of the rearrangement timer, the timer is driven when a certain PDCP PDU is received when the timer is not being driven, instead of driving the timer in a specific situation such as sequential reception or non-sequential reception of the PDCP PDU. Therefore, when the rearrangement timer is used, rearrangement between PDCP PDUs received by the UE may be performed during a predetermined time interval, but it may not be determined whether the PDCP PDUs not received are removed even after the timer expires.
도 24는 본 발명의 또 다른 예에 따른 재배열 타이머에 기반한 PDCP SDU 재배열 방법의 다른 예를 나타낸다. 도 24는 PDCP SN 1, 2, 3, 4, 5, 11, 12, 13, 17, 18, 19, 20, 21, 22, 26, 27, 33번의 PDCP PDU는 매크로 기지국(의 RLC 엔티티)을 통하여 전송되고, PDCP SN 6, 8, 9, 14, 15, 16, 23, 24, 25번의 PDCP PDU는 스몰 기지국(의 RLC 엔티티)을 통하여 전송되는 경우이다. 도 21에서 스몰 기지국을 통하여 전송되어야 할 PDCP SN 7, 10번의 PDCP PDU(또는 SDU)들이 제거된 경우이다.24 shows another example of a PDCP SDU rearrangement method based on a rearrangement timer according to another embodiment of the present invention. 24 shows that PDCP PDUs of PDCP SNs 1, 2, 3, 4, 5, 11, 12, 13, 17, 18, 19, 20, 21, 22, 26, 27, 33 represent a macro base station (the RLC entity of). PDCP PDUs of PDCP SN 6, 8, 9, 14, 15, 16, 23, 24, and 25 are transmitted through a small base station (an RLC entity). In FIG. 21, PDCP PDUs (or SDUs) of PDCP SN 7, 10 to be transmitted through the small base station are removed.
도 24a는 단말의 PDCP 엔티티가 PDCP SN 1, 2, 3, 4, 5, 11, 12, 6, 13번의 PDCP PDU들을 수신하고, PDCP SN 7번의 PDCP PDU 수신 없이, PDCP SN 17, 8, 18번의 PDCP PDU를 수신한 후, PDCP SN 11번의 PDCP PDU 수신시 구동된 재배열 타이머가 만료된 경우를 가정한다. FIG. 24a illustrates a PDCP entity of a terminal receiving PDCP PDUs of PDCP SNs 1, 2, 3, 4, 5, 11, 12, 6, and 13, and without receiving PDCP PDUs of PDCP SN 7, PDCP SNs 17, 8, and 18; After receiving PDCP PDUs, it is assumed that the rearrangement timer driven upon reception of PDCP PDUs of PDCP SN 11 expires.
도 24a를 참조하면, 단말의 PDCP 엔티티는 PDCP SN 8번의 PDCP PDU를 수신하고, 이후에 재배열 타이머가 만료된 경우에도 PDCP SN 7번의 PDCP PDU를 제거된 것으로 확정할 수 없다. 재배열 타이머를 구동시킬 때, 특정한 PDCP PDU의 수신 상황 등을 고려한 것이 아닌, 재배열 타이머가 구동 중이 아닌 경우에 임의의 PDCP PDU 수신 시부터 정해진 시간 동안 타이머를 구동시키고, 이후 타이머가 만료된 후에 임의의 PDCP PDU가 수신되면 다시 타이머를 구동시키는 방식이기 때문이다.Referring to FIG. 24A, the PDCP entity of the terminal may not determine that the PDCP PDU of PDCP SN 7 is removed even when the PDCP PDU of PDCP SN 8 is received and the rearrangement timer expires thereafter. When the rearrangement timer is driven, the timer is started for a predetermined time from the reception of any PDCP PDU when the rearrangement timer is not running, not considering the reception status of a specific PDCP PDU, and after the timer expires. This is because the timer is driven again when an arbitrary PDCP PDU is received.
예를 들어, 단말의 PDCP 엔티티에서 PDCP PDU들을 수신하는 순서대로 PDCP SN을 나열하면 1, 2, 3, 4, 5, 11, 12, 6, 13, 17, 8, 18과 같다. 여기서 재배열 타이머 만료 시에 아직 수신되지 않은 모든 PDCP SN 7, 9, 10, 14, 15, 16번의 PDCP PDU들에 대하여 제거로 판단할 수 없다. 따라서, 제안된 재배열 타이머를 기반으로 PDCP PDU(또는 SDU)들의 제거 여부를 확정하기 위하여 다음과 같은 동작을 더 수행할 수 있다.For example, when the PDCP SNs are listed in the order of receiving PDCP PDUs from the PDCP entity of the UE, 1, 2, 3, 4, 5, 11, 12, 6, 13, 17, 8, and 18 are the same. Here, when the rearrangement timer expires, all PDCP SN 7, 9, 10, 14, 15, and 16 PDCP PDUs that have not been received cannot be determined to be removed. Accordingly, the following operation may be further performed to determine whether to remove PDCP PDUs (or SDUs) based on the proposed rearrangement timer.
이하, 각 재배열 타이머가 구동되는 구간을 구간A/구간B/구간C/구간D로 구분한다. 도 24a에서 구간B에서 단말의 PDCP 엔티티에 수신되는 PDCP PDU들은 PDCP SN 12, 6, 13, 17, 8, 18번의 PDCP PDU들이다. 이 때 PDCP SN 7, 9, 10, 14, 15, 16번의 PDCP PDU들은 구간B에서 아직 수신되지 않은 상황이다. 이들 수신되지 않은 PDCP PDU들은 이후 구간C에서 수신될 수도 있다. 다만, 구간B에서 마지막으로 수신되는 PDCP PDU의 수신 이후에 수신될 것으로 기대되는 PDCP PDU는 적어도 한 번의 재배열 타이머가 더 지속되는 시간 내에는 수신되어야 할 것이다. 즉, 구간B에서 수신되지 않은 PDCP PDU들이 구간C에서도 수신되지 않으면 해당 PDCP PDU들은 제거된 것으로 확정될 수 있다. 즉 구간B의 재배열 타이머가 만료되는 시점까지 수신된 PDCP PDU들의 PDCP SN 값 중 가장 큰 PDCP SN 값보다 더 작은 PDCP SN 값에 연관된 아직 수신되지 않은 PDCP SDU들 중, 다음번 재배열 타이머가 만료되는 시점까지 수신되지 않은 PDCP SDU들은 제거된 것으로 확정된다. Hereinafter, the section in which each rearrangement timer is driven is divided into section A / section B / section C / section D. In FIG. 24A, PDCP PDUs received by the PDCP entity of the UE in interval B are PDCP PDUs of PDCP SN 12, 6, 13, 17, 8, and 18. At this time, PDCP PDUs of PDCP SN 7, 9, 10, 14, 15 and 16 have not been received in interval B yet. These unreceived PDCP PDUs may then be received in interval C. However, the PDCP PDU expected to be received after the reception of the last received PDCP PDU in the interval B should be received within a time duration of at least one rearrangement timer. That is, if PDCP PDUs not received in interval B are not received in interval C, the corresponding PDCP PDUs may be determined to be removed. That is, the next rearrangement timer expires among PDCP SDUs not yet received that are associated with a PDCP SN value that is smaller than the largest PDCP SN value among PDCP PDUs of PDCP PDUs received until the reordering timer of interval B expires. PDCP SDUs not received by the time point are determined to have been removed.
도 24b는 도 24a 이후, 단말의 PDCP 엔티티가 PDCP SN 9번의 PDCP PDU 수신시 재배열 타이머가 구동되고(즉, C구간 시작), 이후 PDCP SN 19, 20, 14, 21, 15, 22, 16번의 PDCP PDU들을 수신하고, 이후 상기 재배열 타이머가 만료된 경우이다.24B is a rearrangement timer is driven when the PDCP entity of the terminal receives the PDCP PDU of PDCP SN 9 (ie, start of section C) after FIG. 24A, and then PDCP SN 19, 20, 14, 21, 15, 22, and 16 When one PDCP PDU has been received and the rearrangement timer has expired.
도 24b를 참조하면, PDCP SN 7번에 연관되는 PDCP SDU는 PDCP SN 8번의 PDCP PDU 등이 수신되는 구간B가 만료되더라도, 제거된 것으로 확정할 수는 없다. 하지만 구간C까지 만료되기까지 PDCP SN 7번의 PDCP PDU가 수신되지 않는 경우, PDCP SN 7번에 연관된 PDCP SDU는 제거된 것으로 확정된다. 그리고, 단말의 PDCP 엔티티는 PDCP SN 8, 9번에 연관된 PDCP SDU들을 오름차순으로 상위계층으로 전달한다. Referring to FIG. 24B, the PDCP SDU associated with PDCP SN 7 may not be determined to be removed even if the interval B for receiving the PDCP PDU of PDCP SN 8, etc., expires. However, if the PDCP PDUs of PDCP SN 7 are not received until the interval C expires, the PDCP SDUs associated with PDCP SN 7 are determined to be removed. And, the PDCP entity of the terminal delivers the PDCP SDUs associated with PDCP SN 8, 9 to the upper layer in ascending order.
도 24c는 도 24b 이후, 단말의 PDCP 엔티티가 PDCP SN 26번의 PDCP PDU 수신시 재배열 타이머가 구동되고(즉, D구간 시작), 이후 PDCP SN 23, 27, 24, 33번의 PDCP PDU들이 수신된 경우를 가정한다.FIG. 24C illustrates a rearrangement timer when the PDCP entity of the UE receives PDCP PDUs of PDCP SN 26 (that is, start of segment D) after FIG. 24B, and then receives PDCP PDUs of PDCP SNs 23, 27, 24, and 33. Assume the case.
도 24c를 참조하면, 재배열 타이머가 구동중인 경우, 단말의 PDCP 엔티티는 구간C에서 수신되지 않은 PDCP SN 10번에 연관된 PDCP SDU의 제거 여부에 대하여 확정하지 못한다. 따라서 단말의 PDCP 엔티티는 PDCP SN 10번 이후의 PDCP PDU들이 수신되더라도, 대응하는 PDCP SDU들을 오름차순으로 상위계층으로 전달하지 못하고, 버퍼에 저장한다.Referring to FIG. 24C, when the rearrangement timer is running, the PDCP entity of the terminal may not determine whether the PDCP SDU associated with PDCP SN 10 that is not received in the interval C is removed. Therefore, even if PDCP PDUs after PDCP SN 10 are received, the PDCP entity of the UE does not deliver the corresponding PDCP SDUs to the upper layer in ascending order and stores them in the buffer.
도 24d는 도 24c 이후, 단말의 PCDP 엔티티는 PDCP SN 25번의 PDCP PDU를 수신하고, 이후 재배열 타이머가 만료된 경우를 가정한다.24D, it is assumed that after FIG. 24C, the PCDP entity of the terminal receives the PDCP PDU of PDCP SN 25 and the rearrangement timer expires.
도 24d를 참조하면, 단말의 PDCP 엔티티는 재배열 타이머가 만료되는 경우(즉, 구간D가 만료되는 경우) 아직 수신되지 않은 PDCP SN 10번에 연관된 PDCP SDU가 제거되었음을 확정한다. 따라서, PDCP SN 10번을 제외하고, 연속적으로 저장된 PDCP SDU들을 오름차순으로 상위계층으로 전달한다.Referring to FIG. 24D, when the rearrangement timer expires (that is, when the interval D expires), the PDCP entity of the terminal determines that the PDCP SDU associated with PDCP SN 10 that has not yet been received is removed. Therefore, except for PDCP SN 10, successively stored PDCP SDUs are delivered to the upper layer in ascending order.
도 25는 본 발명의 또 다른 예에 따른 재배열 타이머 기반한 PDCP SDU 재배열 방법의 흐름도이다.25 is a flowchart of a rearrangement timer based PDCP SDU rearrangement method according to another embodiment of the present invention.
도 25를 참조하면, 단말의 PDCP 엔티티는 상기 단말과 멀티 플로우가 구성된 매크로 기지국 및 스몰 기지국을 통하여 PDCP PDU들을 수신한다(S2500).Referring to FIG. 25, a PDCP entity of a terminal receives PDCP PDUs through a macro base station and a small base station configured with multi-flow with the terminal (S2500).
단말의 PDCP 엔티티는 재배열 타이머가 구동 중이 아닌 경우, 임의의 PDCP PDU가 수신되면 l(엘)차 재배열 타이머를 구동시킨다(S2510). When the rearrangement timer is not running, the PDCP entity of the terminal drives the l (L) order rearrangement timer when an arbitrary PDCP PDU is received (S2510).
단말의 PDCP 엔티티는 상기 l차 재배열 타이머가 만료되는 시점까지 수신된 PDCP PDU들의 최대 PDCP SN 값 k를 확인한다(S2520).The PDCP entity of the terminal checks the maximum PDCP SN value k of the received PDCP PDUs until the first order rearrangement timer expires (S2520).
단말의 PDCP 엔티티는 상기 l차 재배열 타이머가 만료된 후 처음으로 PDCP PDU가 수신되면 l+1차 재배열 타이머를 구동시킨다(S2530).When the PDCP entity of the terminal receives the PDCP PDU for the first time after the first rearrangement timer expires, the PDCP entity drives the l + 1st rearrangement timer (S2530).
단말의 PDCP 엔티티는 상기 l+1차 재배열 타이머가 만료되는 시점까지 상기 PDCP SN k보다 낮은(less than) PDCP SN 값에 연관된 아직 수신되지 않은 PDCP SDU들은 제거된 것으로 판단하고(S2540), PDCP SN k부터 시작하여 연속적으로 연관되는 PDCP SN 값의 모든 저장된 PDCP SDU들을 오름차순으로 상위계층으로 전달한다(S2550).The PDCP entity of the terminal determines that the PDCP SDUs that are not yet received associated with the PDCP SN value less than the PDCP SN k have been removed until the l + 1st rearrangement timer expires (S2540), and PDCP Starting from SN k, all stored PDCP SDUs of PDCP SN values consecutively associated are transferred to the upper layer in ascending order (S2550).
도 26은 본 발명에 따른 매크로 기지국, 스몰 기지국 및 단말의 블록도이다.26 is a block diagram of a macro base station, a small base station and a terminal according to the present invention.
도 26을 참조하면, 본 발명에 따른 단말(2600)은 매크로 기지국(2630) 및 스몰 기지국(2660)과 이중 연결(daul connectivity)를 구성할 수 있다. 또한, 본 발명에 따른 단말(2600), 매크로 기지국(2630) 및 스몰 기지국(2660)은 상술한 멀티 플로우를 지원한다. Referring to FIG. 26, the terminal 2600 according to the present invention may configure a dual connectivity with the macro base station 2630 and the small base station 2660. In addition, the terminal 2600, the macro base station 2630, and the small base station 2660 according to the present invention support the above-described multiflow.
매크로 기지국(2630)은 매크로 전송부(2635), 매크로 수신부(2640) 및 매크로 프로세서(2650)를 포함한다.The macro base station 2630 includes a macro transmitter 2635, a macro receiver 2640, and a macro processor 2650.
매크로 수신부(2640)은 S-GW로부터 하나의 EPS 베어러에 대한 패킷을 수신한다. 매크로 프로세서(2650)는 매크로 기지국(2630)의 PDCP 엔티티를 제어하여 수신한 패킷에 대응하는 PDCP SDU들을 처리하고, PDCP PDU들을 생성한다. 매크로 프로세서(2650)는 상기 PDCP PDU들을 기준에 따라 분배하여 일부를 매크로 기지국(2640)의 RLC 엔티티로 전달(또는 전송)하고 매크로 전송부(2635)를 통하여 단말로 전송한다. 매크로 프로세서(2650)는 나머지 일부를 매크로 전송부(2635)를 통하여 스몰 기지국(2660)의 RLC 엔티티로 전송(또는 전달)한다. 이 경우 PDCP PDU들에 대응하는 PDCP SDU들은 PDCP SN으로 구분 및 지시될 수 있다.The macro receiver 2640 receives a packet for one EPS bearer from the S-GW. The macro processor 2650 controls the PDCP entity of the macro base station 2630 to process PDCP SDUs corresponding to the received packet and generate PDCP PDUs. The macro processor 2650 distributes the PDCP PDUs according to a reference, transfers (or transmits) a part of the PDCP PDUs to the RLC entity of the macro base station 2640, and transmits the PDCP PDUs to the terminal through the macro transmitter 2635. The macro processor 2650 transmits (or delivers) the remaining part to the RLC entity of the small base station 2660 through the macro transmitter 2635. In this case, PDCP SDUs corresponding to PDCP PDUs may be identified and indicated as PDCP SN.
또한, 매크로 프로세서(2650)는 PDCP 계층 타이머에 대한 정보를 생성하고 매크로 전송부(2635)를 통하여 단말로 전송한다. 상기 타이머에 대한 정보는 단말(2600)에 전용하게 시그널링될 수도 있고, 또는 브로드캐스트 방식으로 시그널링될 수도 있다. 매크로 전송부(2635)는 상기 타이머에 대한 정보를 RRC 메시지(예를 들어, RRC 연결 재구성 메시지)를 통하여 단말(2600)로 전송할 수 있다.In addition, the macro processor 2650 generates information on the PDCP layer timer and transmits the information to the terminal through the macro transmitter 2635. The information about the timer may be signaled exclusively to the terminal 2600 or may be signaled in a broadcast manner. The macro transmitter 2635 may transmit the information about the timer to the terminal 2600 through an RRC message (eg, an RRC connection reconfiguration message).
스몰 기지국(2660)은 스몰 전송부(2665), 스몰 수신부(2670) 및 스몰 프로세서(2680)을 포함한다.The small base station 2660 includes a small transmitter 2665, a small receiver 2670, and a small processor 2680.
스몰 수신부(2670)은 매크로 기지국(2630)으로부터 상기 나머지 일부의 PDCP PDU들을 수신한다. The small receiver 2670 receives the remaining PDCP PDUs from the macro base station 2630.
스몰 프로세서(2680)는 스몰 기지국(2660)의 RLC 엔티티, MAC 엔티티, 및 PHY 계층을 제어하여 상기 PDCP PDU를 처리하고, 스몰 전송부(2665)를 통하여 단말로 전송한다.The small processor 2680 processes the PDCP PDU by controlling the RLC entity, MAC entity, and PHY layer of the small base station 2660 and transmits the PDCP PDU to the terminal through the small transmitter 2665.
단말(2600)은 단말 수신부(2605), 단말 전송부(2610) 및 단말 프로세서(2620)을 포함한다. 단말 프로세서(2620)는 상술한 바와 같은 본 발명의 특징이 구현되도록 필요한 기능과 제어를 수행한다.The terminal 2600 includes a terminal receiver 2605, a terminal transmitter 2610, and a terminal processor 2620. The terminal processor 2620 performs functions and controls necessary for implementing the above-described features of the present invention.
단말 수신부(2605)는 매크로 기지국(2630)으로부터 PDCP 계층 타이머에 대한 정보를 수신한다. 상기 재배열 타이머에 대한 정보는 RRC 메시지(예를 들어, RRC 연결 재구성 메시지)에 포함되어 단말 수신부(2605)가 수신할 수 있다. 이 경우 단말 전송부(2610)는 매크로 기지국(2630)으로 RRC 연결 재구성 완료 메시지를 전송할 수도 있다.The terminal receiver 2605 receives information on a PDCP layer timer from the macro base station 2630. The rearrangement timer information may be included in an RRC message (eg, an RRC connection reconfiguration message) and received by the terminal receiver 2605. In this case, the terminal transmitter 2610 may transmit an RRC connection reconfiguration complete message to the macro base station 2630.
또한, 단말 수신부(2605)는 매크로 기지국(2630) 및 스몰 기지국(2660)으로부터 각각 PDCP PDU들에 대한 데이터를 수신한다. In addition, the terminal receiving unit 2605 receives data for PDCP PDUs from the macro base station 2630 and the small base station 2660, respectively.
단말 프로세서(2620)는 상기 데이터를 해석하고, 단말(2600)의 PHY 계층(s), MAC 엔티티(s), RLC 엔티티(s), 및 PDCP 엔티티를 제어하여 PDCP SDU들을 획득한다. The terminal processor 2620 interprets the data and controls the PHY layer (s), the MAC entity (s), the RLC entity (s), and the PDCP entity of the terminal 2600 to obtain PDCP SDUs.
단말 프로세서(2620)는 PDCP 엔티티를 제어하고 PDCP SDU들의 재배열을 수행하고, 재배열된 PDCP SDU들을 오름차순으로 PDCP 계층의 상위계층으로 전달한다. 여기서 단말 프로세서(2620)는 수신된 PDCP PDU의 PDCP SN을 기반으로 해당 PDCP PDU가 PDCP 엔티티에 순차적으로 수신되었는지 확인할 수 있다. 예를 들어 상술한 수학식 1 또는 2를 기반으로 순차적으로 수신되기를 기대하는 PDCP SDU(또는 PDU)의 PDCP SN 값을 판단할 수 있다.The terminal processor 2620 controls the PDCP entity, performs rearrangement of PDCP SDUs, and transfers the rearranged PDCP SDUs to an upper layer of the PDCP layer in ascending order. Here, the terminal processor 2620 may check whether the corresponding PDCP PDU is sequentially received by the PDCP entity based on the PDCP SN of the received PDCP PDU. For example, the PDCP SN value of the PDCP SDU (or PDU) which is expected to be sequentially received based on Equation 1 or 2 may be determined.
일 예로, 단말 프로세서(2620)는 상기 매크로 기지국(2630) 및 상기 스몰 기지국(2660)중 어느 하나의 기지국을 통하여 PDCP SN n번의 PDCP PDU가 수신되었을 경우, 다른 기지국을 통하여 수신된 PDCP PDU들의 최대 PDCP SN 값 k가 상기 n보다 큰지 확인한다. 만약 k>n인 경우, 단말 프로세서(2620)는 PDCP SN n보다 작은 PDCP SN 값에 연관된 아직 수신되지 않은 PDCP SDU들은 제거된 것으로 판단한다. 그리고 단말 프로세서(2620)는 PDCP SN n보다 작은 PDCP SN 값에 연관된 모든 저장된 PDCP SDU들은 상기 PDCP 계층의 상위계층으로 전달하고, PDCP SN n부터 시작하여 연속적으로 연관된 PDCP SN 값의 모든 저장된 PDCP SDU들을 상기 상위계층으로 전달한다.For example, when the PDCP PDU of PDCP SN n is received through one of the macro base station 2630 and the small base station 2660, the terminal processor 2620 may receive the maximum number of PDCP PDUs received through the other base station. Check if PDCP SN value k is greater than n. If k> n, the terminal processor 2620 determines that not yet received PDCP SDUs associated with a PDCP SN value smaller than PDCP SN n are removed. The terminal processor 2620 transfers all stored PDCP SDUs associated with a PDCP SN value smaller than PDCP SN n to a higher layer of the PDCP layer, and sequentially stores all stored PDCP SDUs of the associated PDCP SN values starting from PDCP SN n. Transfer to the upper layer.
다른 예로, 단말 프로세서(2620)는 매크로 기지국(2630) 및 스몰 기지국(2660) 중 어느 하나의 기지국을 통하여 PDCP SN n번의 PDCP PDU가 수신되었을 경우, 재배열 타이머를 구동시킨다. 단말 프로세서(2620)는 상기 재배열 타이머 구동 기간 동안에 다른(the other) 기지국을 통하여 적어도 하나의 PDCP PDU가 수신되는지 확인한다. 만약, 상기 재배열 타이머 구동 기간 동안에 다른(the other) 기지국을 통하여 적어도 하나의 PDCP PDU가 수신되는 경우, 단말 프로세서(2620)는 상기 재배열 타이머 구동 기간 동안에 상기 다른 기지국을 통하여 수신된 적어도 하나의 PDCP PDU 중의 최대 PDCP SN 값 k가 상기 n보다 큰지 확인한다. 만약, 상기 k가 상기 n보다 큰 경우, 상기 재배열 타이머를 중단시키고, PDCP SN n보다 작은 PDCP SN 값에 연관된 아직 수신되지 않은 PDCP SDU들은 제거된 것으로 판단한다. 그리고, 단말 프로세서(2620)는 PDCP SN n보다 작은 PDCP SN 값에 연관된 모든 저장된 PDCP SDU들은 PDCP 계층의 상위계층으로 전달하고, PDCP SN n부터 시작하여 연속적으로 연관된 PDCP SN 값의 모든 저장된 PDCP SDU들을 상기 상위계층으로 전달한다. 만약, 상기 k가 상기 n보다 크지 않은 경우, 단말 프로세서(2620)는 상기 재배열 타이머 만료 후 다시 상기 재배열 타이머를 구동시킨다. 그리고 만약, 상기 재배열 타이머 구동 기간 동안에 단말(2600)에 구성된 PDCP 엔티티가 상기 다른 기지국을 통하여 PDCP PDU들을 전혀 수신하고 있지 않은 경우, 단말 프로세서(2620)는 상기 재배열 타이머 만료 후, 저장된 모든 PDCP SDU들을 상기 상위계층으로 전달한다.As another example, the terminal processor 2620 drives the rearrangement timer when a PDCP PDU of PDCP SN n is received through one of the macro base station 2630 and the small base station 2660. The terminal processor 2620 confirms whether at least one PDCP PDU is received through the other base station during the rearrangement timer driving period. If at least one PDCP PDU is received through the other base station during the rearrangement timer driving period, the terminal processor 2620 receives at least one received through the other base station during the rearrangement timer driving period. It is checked whether the maximum PDCP SN value k in the PDCP PDU is greater than n. If k is greater than n, then the rearrangement timer is stopped and the PDCP SDUs not yet received associated with a PDCP SN value less than PDCP SN n are determined to have been removed. The terminal processor 2620 transfers all stored PDCP SDUs associated with a PDCP SN value smaller than PDCP SN n to a higher layer of the PDCP layer, and sequentially stores all stored PDCP SDUs of the associated PDCP SN values starting from PDCP SN n. Transfer to the upper layer. If k is not greater than n, the terminal processor 2620 drives the rearrangement timer again after the rearrangement timer expires. And, if the PDCP entity configured in the terminal 2600 is not receiving PDCP PDUs at all through the other base station during the rearrangement timer driving period, the terminal processor 2620 after all the PDCP stored after the rearrangement timer expires. Deliver SDUs to the upper layer.
또 다른 예로, 단말 프로세서(2620)는 기지국 단위의 PDCP SN 비교 및 재배열 타이머 기반 방법 둘 다를 기반으로 PDCP 제거 확정을 수행할 수도 있다. 상세하게는 단말 프로세서(2620)는 매크로 기지국 및 스몰 기지국을 통하여 SN a까지의 PDCP PDU 순차 수신하고, 상기 매크로 기지국 및 상기 스몰 기지국 중 어느 한 기지국을 통하여 PDCP SN n번의 PDCP PDU가 수신되었을 경우, 상기 PDCP SN n번의 PDCP PDU 수신이 비순차적 SN의 PDCP PDU 수신인지 확인하고, 비순차적 SN의 PDCP PDU가 수신된 경우, 단말의 PDCP 엔티티는 재배열 타이머를 구동시킨다. 단말 프로세서(2620)는 다른 기지국 통하여 PDCP PDU들을 수신하고, 상기 다른 기지국을 통하여 수신된 PDCP PDU의 PDCP SN 값 k보다 상기 n이 더 큰지 확인하고, n>k인 경우, 단말 프로세서(2620)는 PDCP SN (a+1)~(k-1)의 PDCP PDU들은 PDCP 제거된 것으로 판단하고, n<k인 경우, 단말 프로세서(2620)는 PDCP SN (a+1)~(n-1)의 PDCP PDU들은 PDCP 제거된 것으로 판단한다. 이후, 단말 프로세서(2620)는 PDCP 제거로 판단된 SN을 제외하는 경우, 순차적인 것으로 판단되는, 수신된 PDCP PDU들에 연관된 PDCP SDU들을 오름차순으로 상위계층으로 전달한다. 한편, 단말 프로세서(2620)는 상기 재배열 타이머가 만료되는 경우 버퍼에 저장된 PDCP SDU들을 오름차순으로 상위계층으로 전달한다.As another example, the terminal processor 2620 may perform PDCP removal determination based on both a PDCP SN comparison and a rearrangement timer based method for each base station. In detail, the terminal processor 2620 sequentially receives PDCP PDUs up to SN a through the macro base station and the small base station, and when PDCP PDUs of PDCP SN n are received through any one of the macro base station and the small base station, If the PDCP PDU reception of the PDCP SN n times the PDCP PDU reception of the non-sequential SN, and if the PDCP PDU of the non-sequential SN is received, the PDCP entity of the terminal drives the rearrangement timer. The terminal processor 2620 receives PDCP PDUs through another base station, checks whether n is greater than the PDCP SN value k of the PDCP PDU received through the other base station, and when n> k, the terminal processor 2620 PDCP PDUs of PDCP SN (a + 1) to (k-1) are determined to be PDCP removed, and if n <k, the terminal processor 2620 determines that PDCP SNs (a + 1) to (n-1) PDCP PDUs are determined to be PDCP removed. Subsequently, when the UE processor 2620 excludes the SN determined to remove the PDCP, the terminal processor 2620 transfers the PDCP SDUs associated with the received PDCP PDUs to the upper layer in ascending order. Meanwhile, when the rearrangement timer expires, the terminal processor 2620 transfers PDCP SDUs stored in a buffer to an upper layer in ascending order.
또 다른 예로, 단말 프로세서(2620)는 고정 재배열 타이머를 운용하되, 해당 재배열 타이머가 구동 중이 아닌 경우, 임의의 PDCP PDU가 수신되면 l(엘)차 재배열 타이머를 구동시키고, 상기 l차 재배열 타이머가 만료되는 시점까지 수신된 PDCP PDU들의 최대 PDCP SN 값 k를 확인한다. 단말 프로세서(2620)는 상기 l차 재배열 타이머가 만료된 후 처음으로 PDCP PDU가 수신되면 l차 재배열 타이머를 구동시키고, 상기 l+1차 재배열 타이머가 만료되는 시점까지 상기 PDCP SN k보다 낮은 PDCP SN 값에 연관된 아직 수신되지 않은 PDCP SDU들은 제거된 것으로 판단한다. 그리고, 단말 프로세서(2620)는 PDCP SN k부터 시작하여 연속적으로 연관되는 PDCP SN 값의 모든 저장된 PDCP SDU들을 오름차순으로 상기 PDCP 계층의 상위계층으로 전달한다.As another example, the terminal processor 2620 operates a fixed rearrangement timer. When the rearrangement timer is not running, the terminal processor 2620 drives the rearrangement timer l (L) when an arbitrary PDCP PDU is received. Check the maximum PDCP SN value k of PDCP PDUs received until the reordering timer expires. The terminal processor 2620 drives the first order rearrangement timer when the PDCP PDU is received for the first time after the first order rearrangement timer expires, and is greater than the PDCP SN k until the time of the l + 1st rearrangement timer expires. The PDCP SDUs that are not yet received associated with the low PDCP SN value are determined to have been removed. In addition, the terminal processor 2620 transfers all stored PDCP SDUs of PDCP SN values continuously associated with the PDCP SN k to the upper layer of the PDCP layer in ascending order.
이상의 설명은 본 발명의 기술 사상을 예시적으로 설명한 것에 불과한 것으로서, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자라면 본 발명의 본질적인 특성에서 벗어나지 않는 범위에서 다양한 수정 및 변형이 가능할 것이다. 따라서, 본 발명에 개시된 실시 예들은 본 발명의 기술 사상을 한정하기 위한 것이 아니라 설명하기 위한 것이고, 이러한 실시 예에 의하여 본 발명의 기술 사상의 범위가 한정되는 것은 아니다. 본 발명의 보호 범위는 아래의 청구범위에 의하여 해석되어야 하며, 그와 동등한 범위 내에 있는 모든 기술 사상은 본 발명의 권리범위에 포함되는 것으로 해석되어야 할 것이다.The above description is merely illustrative of the technical idea of the present invention, and those skilled in the art to which the present invention pertains may make various modifications and changes without departing from the essential characteristics of the present invention. Therefore, the embodiments disclosed in the present invention are not intended to limit the technical idea of the present invention but to describe the present invention, and the scope of the technical idea of the present invention is not limited by these embodiments. The protection scope of the present invention should be interpreted by the following claims, and all technical ideas within the equivalent scope should be interpreted as being included in the scope of the present invention.

Claims (14)

  1. 매크로 기지국(Macro eNB) 및 스몰 기지국(small eNB)와 이중 연결(dual connectivity)이 구성된 단말(UE)의 PDCP(Packet Data Convergence Protocol) 엔티티(entity)에서, 멀티 플로우(multi-flow)를 고려한 PDCP SDU(Service Data Unit)들 재배열(reordering) 방법으로, PDCP considering multi-flow in the Packet Data Convergence Protocol (PDCP) entity of a UE configured for dual connectivity with a macro eNB and a small eNB By reordering service data units (SDUs),
    상기 매크로 기지국 및 상기 스몰 기지국을 통하여 PDCP PDU들을 수신하는 단계; 및Receiving PDCP PDUs through the macro base station and the small base station; And
    상기 매크로 기지국 및 상기 스몰 기지국 중 어느 하나의 기지국을 통하여 PDCP SN n번의 PDCP PDU가 수신된 경우, 재배열 타이머를 구동시키는 단계를 포함함을 특징으로 하는, PDCP SDU 재배열 방법.And if a PDCP PDU of PDCP SN n has been received through any one of the macro base station and the small base station, driving a rearrangement timer.
  2. 제 1항에 있어서,The method of claim 1,
    상기 재배열 타이머 구동 기간 동안에, 다른(the other) 기지국을 통하여 적어도 하나의 PDCP PDU를 수신하는지 확인하는 단계를 포함함을 특징으로 하는, PDCP SDU 재배열 방법.During the rearrangement timer driving period, confirming whether at least one PDCP PDU is received through the other base station.
  3. 제 2항에 있어서,The method of claim 2,
    상기 재배열 타이머 구동 기간 동안에, 다른 기지국을 통하여 적어도 하나의 PDCP PDU를 수신한 경우, 상기 다른 기지국을 통하여 수신된 적어도 하나의 PDCP PDU 중의 최대 PDCP SN 값 k가 상기 n보다 큰지 확인하는 단계를 포함함을 특징으로 하는, PDCP SDU 재배열 방법.During the rearrangement timer driving period, if at least one PDCP PDU is received through another base station, checking whether a maximum PDCP SN value k of at least one PDCP PDU received through the other base station is greater than n; PDCP SDU rearrangement method, characterized in that.
  4. 제 3항에 있어서,The method of claim 3, wherein
    상기 k가 상기 n보다 큰 경우, 상기 PDCP SN n보다 작은 PDCP SN 값에 연관된 아직 수신되지 않은 PDCP PDU들은 제거된 것으로 판단하는 단계를 포함함을 특징으로 하는, PDCP SDU 재배열 방법.And if k is greater than n, determining that not yet received PDCP PDUs associated with a PDCP SN value less than PDCP SN n are removed.
  5. 제 4항에 있어서,The method of claim 4, wherein
    상기 k가 상기 n보다 큰 경우, 상기 PDCP SN n보다 작은 PDCP SN 값에 연관된 모든 저장된 PDCP SDU들을 오름차순으로 상위계층으로 전달하는 단계를 포함함을 특징으로 하는, PDCP SDU 재배열 방법.If k is greater than n, transferring all stored PDCP SDUs associated with a PDCP SN value less than PDCP SN n to an upper layer in ascending order.
  6. 제 3항에 있어서,The method of claim 3, wherein
    상기 k가 상기 n보다 크지 않은 경우, 상기 재배열 타이머 만료 후 다시 상기 재배열 타이머를 구동시키는 단계를 포함함을 특징으로 하는, PDCP SDU 재배열 방법.And if k is not greater than n, driving the rearrangement timer again after expiration of the rearrangement timer.
  7. 제 2항에 있어서,The method of claim 2,
    상기 재배열 타이머 구동 기간 동안에, 다른 기지국을 통하여 적어도 하나의 PDCP PDU를 수신한 경우, 상기 재배열 타이머 만료 후, 저장된 모든 PDCP SDU들을 오름차순으로 상위계층으로 전달하는 단계를 포함함을 특징으로 하는, PDCP SDU 재배열 방법.During the rearrangement timer driving period, when at least one PDCP PDU is received through another base station, after the rearrangement timer expires, transferring all stored PDCP SDUs to an upper layer in ascending order. How to rearrange PDCP SDUs.
  8. 매크로 기지국(Macro eNB) 및 스몰 기지국(small eNB)와 이중 연결(dual connectivity)을 지원하는 무선 통신 시스템에서, 멀티 플로우(multi-flow)를 고려한 PDCP SDU(Service Data Unit)들 재배열(reordering)을 수행하는 단말(UE)로, In a wireless communication system supporting dual connectivity with a macro eNB and a small eNB, reordering PDCP Service Data Units (SDUs) in consideration of multi-flow UE to perform,
    상기 매크로 기지국 및 상기 스몰 기지국을 통하여 PDCP PDU들을 수신하는 수신부; 및A receiver configured to receive PDCP PDUs through the macro base station and the small base station; And
    상기 매크로 기지국 및 상기 스몰 기지국 중 어느 하나의 기지국을 통하여 PDCP SN n번의 PDCP PDU가 수신된 경우, 재배열 타이머를 구동시키는 프로세서를 포함함을 특징으로 하는, 단말.And a processor for driving a rearrangement timer when a PDCP PDU of PDCP SN n is received through any one of the macro base station and the small base station.
  9. 제 8항에 있어서,The method of claim 8,
    상기 프로세서는 상기 재배열 타이머 구동 기간 동안에, 상기 수신부가 다른(the other) 기지국을 통하여 적어도 하나의 PDCP PDU를 수신하는지 확인하는 것을 특징으로 하는, 단말.The processor, during the rearrangement timer driving period, characterized in that the receiver receives at least one PDCP PDU via the other base station, the terminal.
  10. 제 9항에 있어서,The method of claim 9,
    상기 프로세서는 상기 재배열 타이머 구동 기간 동안에, 상기 수신부가 다른 기지국을 통하여 적어도 하나의 PDCP PDU를 수신한 경우, 상기 다른 기지국을 통하여 수신된 적어도 하나의 PDCP PDU 중의 최대 PDCP SN 값 k가 상기 n보다 큰지 확인하는 것을 특징으로 하는, 단말.When the receiver receives at least one PDCP PDU through another base station during the rearrangement timer driving period, the processor has a maximum PDCP SN value k of at least one PDCP PDU received through the other base station than n. The terminal, characterized in that a large check.
  11. 제 10항에 있어서,The method of claim 10,
    상기 프로세서는 상기 k가 상기 n보다 큰 경우, 상기 PDCP SN n보다 작은 PDCP SN 값에 연관된 아직 수신되지 않은 PDCP PDU들은 제거된 것으로 판단하는 것을 특징으로 하는, 단말.And wherein if k is greater than n, the processor determines that not yet received PDCP PDUs associated with PDCP SN value less than PDCP SN n are removed.
  12. 제 11항에 있어서,The method of claim 11,
    상기 프로세서는 상기 k가 상기 n보다 큰 경우, 상기 PDCP SN n보다 작은 PDCP SN 값에 연관된 모든 저장된 PDCP SDU들을 오름차순으로 상위계층으로 전달하는 것을 포함함을 특징으로 하는, 단말.And the processor transfers all stored PDCP SDUs associated with a PDCP SN value less than the PDCP SN n to an upper layer when k is greater than n, in ascending order.
  13. 제 10항에 있어서,The method of claim 10,
    상기 프로세서는 상기 k가 상기 n보다 크지 않은 경우, 상기 재배열 타이머 만료 후 다시 상기 재배열 타이머를 구동시키는 것을 특징으로 하는, 단말.The processor, if the k is not greater than the n, characterized in that for driving the rearrangement timer again after the rearrangement timer expires.
  14. 제 9항에 있어서,The method of claim 9,
    상기 프로세서는 상기 재배열 타이머 구동 기간 동안에, 상기 수신부가 다른 기지국을 통하여 적어도 하나의 PDCP PDU를 수신한 경우, 상기 재배열 타이머 만료 후, 저장된 모든 PDCP SDU들을 오름차순으로 상위계층으로 전달하는 것을 특징으로 하는, 단말.During the rearrangement timer driving period, when the receiver receives at least one PDCP PDU through another base station, after the rearrangement timer expires, the processor transfers all stored PDCP SDUs to an upper layer in ascending order. Terminal.
PCT/KR2014/007457 2013-08-09 2014-08-11 Method and apparatus for reordering pdcp while considering multi-flow in dual connectivity system WO2015020508A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20130094917 2013-08-09
KR10-2013-0094917 2013-08-09
KR1020140102074A KR102211469B1 (en) 2013-08-09 2014-08-08 Method and apparatus of pdcp reordering considering multi-flow in dual connectivity system
KR10-2014-0102074 2014-08-08

Publications (1)

Publication Number Publication Date
WO2015020508A1 true WO2015020508A1 (en) 2015-02-12

Family

ID=52461719

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2014/007457 WO2015020508A1 (en) 2013-08-09 2014-08-11 Method and apparatus for reordering pdcp while considering multi-flow in dual connectivity system

Country Status (1)

Country Link
WO (1) WO2015020508A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016159634A1 (en) * 2015-04-02 2016-10-06 주식회사 케이티 Method for reconfiguring wireless bearer and device thereof
KR20160119426A (en) * 2015-04-02 2016-10-13 주식회사 케이티 Methods for reconfiguring radio bearer and Apparatuses thereof
US10694446B2 (en) 2015-11-06 2020-06-23 Samsung Electronics Co., Ltd. Method and apparatus for transmitting and receiving data in communication system
CN113169984A (en) * 2019-02-13 2021-07-23 联发科技(新加坡)私人有限公司 Transport protocol selection between user equipment and distributed location function
EP3962162A3 (en) * 2020-08-27 2022-06-15 Samsung Electronics Co., Ltd. Apparatus and method for improving or optimizing buffer size in dual connectivity

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090190554A1 (en) * 2008-01-25 2009-07-30 Cho Yoon Jung Method for performing handover procedure and creating data
US20100274915A1 (en) * 2009-04-27 2010-10-28 Qualcomm Incorporated Relay node user plane support
EP2369795A2 (en) * 2006-10-19 2011-09-28 Samsung Electronics Co., Ltd. Method and apparatus for performing handover using packet data convergence protocol (pdcp) reordering in mobile communication system
US20120082096A1 (en) * 2010-10-01 2012-04-05 Interdigital Patent Holdings, Inc. Mac and rlc architecture and procedures to enable reception from multiple transmission points
US20120307741A1 (en) * 2008-06-23 2012-12-06 Chih-Hsiang Wu Method for Synchronizing PDCP Operations after RRC Connection Re-establishment in a Wireless Communication System and Related Apparatus Thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2369795A2 (en) * 2006-10-19 2011-09-28 Samsung Electronics Co., Ltd. Method and apparatus for performing handover using packet data convergence protocol (pdcp) reordering in mobile communication system
US20090190554A1 (en) * 2008-01-25 2009-07-30 Cho Yoon Jung Method for performing handover procedure and creating data
US20120307741A1 (en) * 2008-06-23 2012-12-06 Chih-Hsiang Wu Method for Synchronizing PDCP Operations after RRC Connection Re-establishment in a Wireless Communication System and Related Apparatus Thereof
US20100274915A1 (en) * 2009-04-27 2010-10-28 Qualcomm Incorporated Relay node user plane support
US20120082096A1 (en) * 2010-10-01 2012-04-05 Interdigital Patent Holdings, Inc. Mac and rlc architecture and procedures to enable reception from multiple transmission points

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016159634A1 (en) * 2015-04-02 2016-10-06 주식회사 케이티 Method for reconfiguring wireless bearer and device thereof
KR20160119426A (en) * 2015-04-02 2016-10-13 주식회사 케이티 Methods for reconfiguring radio bearer and Apparatuses thereof
KR101870022B1 (en) 2015-04-02 2018-06-22 주식회사 케이티 Methods for reconfiguring radio bearer and Apparatuses thereof
US10485042B2 (en) 2015-04-02 2019-11-19 Kt Corporation Method for reconfiguring wireless bearer and device thereof
US10694446B2 (en) 2015-11-06 2020-06-23 Samsung Electronics Co., Ltd. Method and apparatus for transmitting and receiving data in communication system
US11743801B2 (en) 2015-11-06 2023-08-29 Samsung Electronics Co., Ltd. Method and apparatus for transmitting and receiving data in communication system
CN113169984A (en) * 2019-02-13 2021-07-23 联发科技(新加坡)私人有限公司 Transport protocol selection between user equipment and distributed location function
CN113169984B (en) * 2019-02-13 2023-06-23 联发科技(新加坡)私人有限公司 Transmission protocol selection method and user equipment
EP3962162A3 (en) * 2020-08-27 2022-06-15 Samsung Electronics Co., Ltd. Apparatus and method for improving or optimizing buffer size in dual connectivity

Similar Documents

Publication Publication Date Title
WO2019098663A1 (en) Method and apparatus for deprioritizing duplicated packet transmission in wireless communication system
WO2014025141A1 (en) A method for transferring a status report and a communication device thereof in a wireless communication system
WO2015046976A1 (en) Method and apparatus for transmitting and receiving data using plurality of carriers in mobile communication system
WO2019160342A1 (en) Method and apparatus for supporting rach-less mobility with pre-allocated beams in wireless communication system
WO2018012874A1 (en) Uplink signal transmission method and user equipment
WO2014014260A1 (en) Method and apparatus for measuring a packet throughput in wireless communication system
WO2017188698A1 (en) Method and device for receiving data unit
WO2015115854A1 (en) Method and apparatus for transmitting and receiving data using a plurality of carriers in mobile communication system
WO2014163287A1 (en) Method for reporting buffer status and communication device thereof
WO2016108680A1 (en) Method for performing d2d operation in wireless communication system, and terminal using same
WO2013176473A1 (en) Method and device for transmitting and receiving data in mobile communication system
WO2016047904A1 (en) Method for handling of data transmission and reception for senb related bearer release at a user equipment in a dual connectivity system and device therefor
WO2013022318A2 (en) Method and apparatus for transmitting data using a multi-carrier in a mobile communication system
WO2019135626A1 (en) Communication device, processing device and method for transmitting data unit
WO2016153130A1 (en) Method and device for transmitting or receiving data by terminal in wireless communication system
WO2014182134A1 (en) Method and apparatus for sequential forwarding considering multi-flow in dual connectivity system
WO2019194563A1 (en) Method and apparatus for controlling data receiving rate in mobile communication system
WO2013168917A1 (en) Method and apparatus for transmitting and receiving data using plurality of carriers in mobile communication system
WO2013169048A2 (en) Method and apparatus for transceiving data using plurality of carriers in mobile communication system
WO2018203622A1 (en) Method and device for receiving data unit
WO2019135647A1 (en) Communication device, processing device and method for transmitting data unit
WO2017191952A1 (en) Method for transmitting and receiving data in wireless communication system, and device for supporting same
EP3100376A1 (en) Method and apparatus for transmitting and receiving data using a plurality of carriers in mobile communication system
WO2015020507A1 (en) Method and apparatus for reordering pdcp in dual connectivity system
WO2019160281A1 (en) Method and apparatus for performing dc based handover

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14834619

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14834619

Country of ref document: EP

Kind code of ref document: A1