WO2015015561A1 - Control/monitor signal transmission system - Google Patents

Control/monitor signal transmission system Download PDF

Info

Publication number
WO2015015561A1
WO2015015561A1 PCT/JP2013/070555 JP2013070555W WO2015015561A1 WO 2015015561 A1 WO2015015561 A1 WO 2015015561A1 JP 2013070555 W JP2013070555 W JP 2013070555W WO 2015015561 A1 WO2015015561 A1 WO 2015015561A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
data
unit
slave station
input
Prior art date
Application number
PCT/JP2013/070555
Other languages
French (fr)
Japanese (ja)
Inventor
錦戸憲治
Original Assignee
株式会社エニイワイヤ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社エニイワイヤ filed Critical 株式会社エニイワイヤ
Priority to PCT/JP2013/070555 priority Critical patent/WO2015015561A1/en
Priority to JP2014545438A priority patent/JP5744341B1/en
Publication of WO2015015561A1 publication Critical patent/WO2015015561A1/en

Links

Images

Classifications

    • GPHYSICS
    • G08SIGNALLING
    • G08CTRANSMISSION SYSTEMS FOR MEASURED VALUES, CONTROL OR SIMILAR SIGNALS
    • G08C19/00Electric signal transmission systems

Definitions

  • the present invention reduces the number of signal lines between a master station connected to a control unit and a plurality of output units and input units, or a plurality of slave stations corresponding to a plurality of controlled devices, and connects them with a common data signal line.
  • the present invention relates to a control / monitor signal transmission system that transmits data by a transmission synchronization method such as synchronization by a transmission clock signal.
  • a parallel signal and a serial signal are used instead of a parallel connection that directly connects a plurality of output units and input units or signal lines extending from a controlled device to the control unit.
  • the master station and the plurality of slave stations having the conversion function are connected to the control unit, the plurality of output units and the input unit, or the plurality of controlled devices, respectively, and common data between the master station and the plurality of slave stations.
  • a method of exchanging data with a serial signal via a signal line is widely adopted.
  • a transmission synchronization method such as synchronization with a transmission clock is widely adopted as a method for transferring data using a serial signal, and studies for applying it to various situations have been made. For example, when bit data and word data are transmitted independently, it is necessary to perform transmission using a plurality of logically different transmission paths (channels), but a plurality of channels are also provided in the transmission synchronization method. Techniques for this are being considered.
  • the first control signal from the control unit to the controlled device is a binary signal having a predetermined pulse width (duty ratio).
  • the control signal is a signal of a predetermined level in a period of a level other than the level of the power supply voltage
  • the first monitoring signal from the input unit to the control unit is the presence or absence of a current signal
  • the second control signal is a frequency signal
  • the limit is to superimpose several kinds of multiplexed signals in one cycle of the transmission clock signal, and the number of channels that can be set is limited.
  • an object of the present invention is to provide a control / monitor signal transmission system capable of setting a desired number of channels in a transmission synchronization method.
  • a master station and a plurality of slave stations are connected by a common data signal line, and one cycle is controlled under the control of a timing signal generated by a timing generator included in the master station.
  • a transmission clock signal composed of a first state signal and a second state signal following the first state signal is transmitted to the common data signal line.
  • a plurality of consecutive cycles of the transmission clock signal are defined as a unit, and each cycle included in the unit is assigned to a predetermined channel.
  • the first state signal and the second state signal indicate that each is in a different state as a signal, and the type of the signal is not specified.
  • Any signal such as a voltage amplitude modulation signal, a current amplitude modulation signal, a voltage pulse width modulation signal, a current pulse width modulation signal, and a phase modulation signal may be used.
  • the high potential level is the first state signal and the low potential level is the second state signal.
  • the low potential level is the first state signal and the high potential level is the second state signal.
  • the presence of current is the first state signal (or second state signal), and the absence of current is the second state signal (or first state signal).
  • the first state signal or second state signal
  • the second state signal or first state signal
  • one of the periods of the pulse width signal divided by rising or falling at a timing shifted from the timing of dividing one period of the pulse into two equals is the first state signal, and the other is Second state signal.
  • At least one of the channels is a high-speed transmission channel
  • the slave station belonging to the high-speed transmission channel starts counting transmission addresses based on the transmission clock signal, starting from the end of the start signal of the transmission clock signal,
  • An address counter having a number smaller than an address count value corresponding to the number of periods of one frame cycle between the start signal of the transmission clock signal and the next start signal as a maximum address count value is shorter than the one frame cycle.
  • Data may be exchanged with the master station in a cycle.
  • one cycle of the transmission clock signal may include a control data signal in one of the first state signal and the second state signal and a monitoring signal in the other state signal. Good.
  • the terminal according to the present invention is connected to a master station and is in a second state in which one cycle follows the first state signal and the first state signal under the control of a timing signal generated by a timing generator included in the master station.
  • an address setting means for setting the address of the local station, connected to a common data signal line through which a transmission clock signal composed of the signal is transmitted.
  • a control data extraction process for counting the period of the transmission clock signal and extracting control data superimposed on the transmission clock signal at a timing coincident with the data of the local station address, and an input unit at the coincidence timing.
  • a slave station input / output unit that performs monitoring data transmission processing to superimpose monitoring data corresponding to an input signal from the transmission signal as a monitoring signal, or a slave station output unit that performs control data extraction processing and the monitoring data transmission Either one of the slave station input units for processing is provided.
  • the address setting means sets an address with a plurality of consecutive periods of the previous transmission clock signal as a unit.
  • a plurality of consecutive cycles of the transmission clock signal are defined as one unit, and each cycle included in one unit is assigned to a predetermined channel.
  • a number of channels can be provided.
  • the period between the start signal of the transmission clock signal and the next start signal is defined as one period of the maximum frame, and the frame period defined for the own channel is repeated for each channel within the range of one period of the maximum frame. If the station and the slave station exchange data of the channel to which the station belongs in a unit-by-unit period, the station and the slave station are predetermined in a time shorter than one frame cycle of the transmission clock signal (one period of the maximum frame). Can be scanned at high speed.
  • the terminal according to the present invention includes address setting means for setting an address with a plurality of consecutive periods of the transmission clock signal as a unit, it is possible to accurately obtain the arrival timing of the period assigned to the channel to which the station belongs. It becomes possible. Therefore, it can be used in the control / monitor signal transmission system according to the present invention.
  • 1 is a system configuration diagram showing a schematic configuration of a control / monitor signal transmission system according to the present invention. It is a system configuration
  • FIG. 5 is a schematic diagram of a transmission clock signal that shows data extracted from a transmission clock signal exchanged between a master station and a slave station, divided into first channel data, second channel data, and third channel data. It is a schematic diagram of the transmission clock signal which shows the period of each channel. It is a time chart of a transmission clock signal.
  • the control / monitor signal transmission system includes a single master station 2 connected to a control unit 1 and common data signal lines DP and DN (hereinafter also referred to as transmission lines), First CH I / O slave station 4a, first CH output slave station 6a, second CH output slave station 6b, third CH output slave station 6c, and first CH input slave station 7a, second CH connected to the common data signal lines DP and DN It is composed of a plurality of input slave stations 7b and a third CH input slave station 7c.
  • each slave station is shown one by one, but there is no limitation on the type and number of slave stations connected to the common data signal lines DP and DN.
  • First CH I / O slave station 4a, first CH output slave station 6a, second CH output slave station 6b, third CH output slave station 6c, first CH input slave station 7a, second CH input slave station 7b, third CH input slave station 7c Performs either or both of signal output processing for the output unit 8 that operates in response to an output instruction of the control unit 1 and input signal processing from the input unit 9 that incorporates input information to the control unit 1. And it is classified into three groups by the transmission data according to the purpose of use. Specifically, the first CH input / output slave station 4a, the first CH output slave station 6a, and the first CH input slave station 7a include a second CH output slave station 6b and a second CH input slave station.
  • the third CH output slave station 6c and the third CH input slave station 7c are classified into a word transmission group for transmitting multi-bit word data.
  • the periods of the transmission clock signals assigned to the low-speed transmission group, the high-speed transmission group, and the word transmission group are referred to as the first channel (first CH), the second channel (second CH), and the third channel (third CH), respectively.
  • first CH first CH
  • second CH second channel
  • third CH third channel
  • the output unit 8 is, for example, an actuator, a (stepping) motor, a solenoid, a solenoid valve, a relay, a thyristor, or a lamp.
  • the input unit 9 is, for example, a reed switch, a micro switch, a push button switch, a photoelectric switch, various sensors, or the like. It is.
  • the first CH input / output slave station 4a is connected to the controlled device 5 including the output unit 8 and the input unit 9, and the first CH output slave station 6a, the second CH output slave station 6b, and the third CH output slave station 6c are output.
  • the first CH input slave station 7 a, the second CH input slave station 7 b, and the third CH input slave station 7 c are connected only to the input unit 9.
  • the first CH output slave station 6a, the second CH output slave station 6b, and the third CH output slave station 6c may include the output unit 8 (output unit integrated slave station 80).
  • 7a, the second CH input slave station 7b, and the third CH input slave station 7c may include the input unit 9 (input unit integrated slave station 90).
  • the control unit 1 is, for example, a programmable controller, a computer, and the like, and includes a first CH output unit 11a, a second CH output unit 11b, a second CH output parallel data 13c, a second CH control parallel data 13b, and a third CH control parallel data 13c.
  • It has a first CH input unit 12a, a second CH input unit 12b, and a third CH input unit 12c that receive the 1CH monitoring parallel data 14a, the second CH monitoring parallel data 14b, and the third CH monitoring parallel data 14c.
  • the first CH output unit 11a, the second CH output unit 11b, the third CH output unit 11c, the first CH input unit 12a, the second CH input unit 12b, and the third CH input unit 12c are connected to the master station 2.
  • the master station 2 includes a first CH output data unit 21a, a second CH output data unit 21b, a third CH output data unit 21c, a timing generation unit 23, a master station output unit 24, a master station input unit 25, A first CH input data unit 26a, a second CH input data unit 26b, and a third CH input data unit 26c are provided.
  • a control signal which is connected to the common data signal lines DP and DN and is a series of pulse signals corresponding to the transmission clock signal of the present invention, is sent to the common data signal lines DP and DN, and the first CH input / output slave station 4a, first CH input slave station 7a, second CH input slave station 7b, first CH monitoring parallel data 14a, second CH monitoring parallel data 14b, third CH monitoring parallel extracted from the monitoring signal transmitted from the third CH input slave station 7c
  • the data 14c is sent to the first CH input unit 12a, the second CH input unit 12b, and the third CH input unit 12c of the control unit 1.
  • the first CH output data unit 21a delivers the first CH control parallel data 13a from the first CH output unit 11a of the control unit 1 to the master station output unit 24 as serial data.
  • the second CH output data unit 21b delivers the second CH control parallel data 13b from the second CH output unit 11b of the control unit 1 to the master station output unit 24 as serial data.
  • the third CH output data unit 21c delivers the third CH control parallel data 13c from the third CH output unit 11c of the control unit 1 to the master station output unit 24 as serial data.
  • the timing generation unit 23 includes an oscillation circuit (OSC) 31 and a timing generation unit 32.
  • the timing generation unit 32 generates a timing clock of the system based on the oscillation circuit (OSC) 31, and generates a master station output unit 24, Delivered to the station input unit 25.
  • OSC oscillation circuit
  • the master station output unit 24 includes control data generation means 33 and a line driver 34. Based on the data received from the first CH output data unit 21a, the second CH output data unit 21b, the third CH output data unit 21c, and the timing clock received from the timing generation unit 23, the control data generation means 33 passes through the line driver 34.
  • the transmission clock signal is sent as a series of pulse signals to the common data signal lines DP and DN.
  • the transmission clock signal has a control / monitor data area following the start signal ST.
  • the control / monitoring data area includes control signal data transmitted from the master station 2, the first CH input / output slave station 4a, the first CH input slave station 7a, the second CH input slave station 7b, and the third CH input slave station 7c. And monitoring signal data to be transmitted.
  • the pulse of the transmission clock signal (transmission clock) has a high potential level of the power supply voltage in the second half of one cycle (corresponding to the second state signal of the present invention, +24 V in this embodiment).
  • the first half of the pulse of the low potential level (corresponding to the first state signal of the present invention) that is not at the power supply voltage level is used as the data signal area.
  • the low potential level indicates whether the length of the pulse width represents the data of the control signal and the current superimposed thereon is larger or smaller than a predetermined value (in this embodiment, 10 mA, but the current value is not limited). It represents monitoring signal data.
  • a predetermined value in this embodiment, 10 mA, but the current value is not limited. It represents monitoring signal data.
  • the pulse width of the low potential level is extended from (1/4) t0 to (1/2) t0.
  • the first half of one cycle of the transmission clock signal may be the power supply voltage level, and the second half may be the low potential level.
  • the input slave station 7b, the third CH output slave station 6c, and the third CH input slave station 7c all generate internal circuit power from the transmission clock signal.
  • the number of pulses (transmission clock) in one frame cycle of the transmission clock signal is 192, and the absolute address is set to 191 because the start address is 0. ing.
  • the transmission clock signal cycle of the absolute addresses (# 0, # 3, # 6...) Of 3 intervals from 0 to 189 is set to the first channel, and the absolute addresses (# 1, # 4, #) of 3 intervals from 1 to 190 are set. 7) is assigned to the second channel, and transmission clock signal periods of absolute addresses (# 2, # 5, # 8,...) Of 3 intervals from 2 to 191 are assigned to the third channel.
  • a transmission clock signal cycle assigned to the first channel, a transmission clock signal cycle assigned to the second channel, and a plurality of consecutive cycles of the transmission clock signal cycle assigned to the third channel (three transmission clock signal cycles) Is a unit of the present invention.
  • the start signal ST is a signal having the same potential level as the high potential level of the transmission clock signal and longer than one cycle of the transmission clock signal.
  • the master station input unit 25 includes monitoring signal detection means 35, first CH monitoring data extraction means 36a, second CH monitoring data extraction means 36b, and third CH monitoring data extraction means 36c.
  • the monitoring signal detection means 35 is transmitted from the first CH input / output slave station 4a, the first CH input slave station 7a, the second CH input slave station 7b, and the third CH input slave station 7c via the common data signal lines DP and DN. Detect supervisory signals. As described above, the data of the monitoring signal is represented by whether the current superimposed on the low potential level is larger or smaller than 10 mA.
  • the first CH input / output slave station 4a After the start signal ST is transmitted, the first CH input / output slave station 4a, the first A monitoring signal is received from each of the 1CH input slave station 7a, the second CH input slave station 7b, and the third CH input slave station 7c. Then, the monitoring signal detected by the monitoring signal detection means 35 is delivered to the first CH monitoring data extraction means 36a, the second CH monitoring data extraction means 36b, and the third CH monitoring data extraction means 36c.
  • the first CH monitoring data extracting unit 36a extracts the first CH monitoring data in synchronization with the timing from the timing generating unit 32, and sends it to the first CH input data unit 26a as serial input data.
  • the second CH monitoring data extracting means 36b extracts the second CH monitoring data in synchronization with the timing from the timing generating means 32, and sends it to the second CH input data section 26b as serial input data.
  • the third CH monitoring data extracting unit 36c extracts the third CH monitoring data in synchronization with the timing from the timing generating unit 32, and sends it to the third CH input data unit 26c as serial input data.
  • the first CH input data unit 26a converts the serial input data received from the first CH monitoring data extraction unit 36a into parallel data, and sends it to the first CH input unit 12a of the control unit 1 as the first CH monitoring parallel data 14a.
  • the second CH input data unit 26b converts the serial input data received from the second CH monitoring data extracting unit 36b into parallel data, and the second CH input data 12b of the control unit 1 is converted into the second CH monitoring parallel data 14b.
  • the third CH input data unit 26c converts the serial input data received from the third CH monitoring data extracting unit 36c into parallel data, and the third CH input data 12c of the control unit 1 is converted into the third CH monitoring parallel data 14c. To send.
  • the first CH input slave station 7a includes transmission reception means 41, address extraction means 43, first CH monitoring data transmission means 45, CH number setting means 47, first CH address data storage means 51, first CH final address.
  • An address data storage unit 52 and a first CH slave station input unit 70 a having an input unit 71 are provided.
  • the input slave station 7a of this embodiment includes an MCU which is a microcomputer control unit as an internal circuit, and this MCU functions as the first CH slave station input unit 70a. Calculations and storages necessary for the processing are executed using the CPU, RAM, and ROM included in the MCU.
  • the relationship with the ROM is not shown for convenience of explanation.
  • the transmission receiving means 41 receives the transmission clock signal transmitted to the common data signal lines DP and DN and delivers it to the address extracting means 43.
  • the CH number setting means 47 designates the number of channels to be used, and the set channel number is delivered to the address extraction means 43.
  • the first CH address data storage means 51 designates the data of the logical address of the first channel (1 # 0, 1 # 1, etc. shown in FIG. 12).
  • the data of the set logical address of the first channel is It is delivered to the address extracting means 43.
  • the first CH final address data storage means 52 sets the maximum value of the logical address data of the first channel, and the set maximum value of the logical address data of the first channel is delivered to the address extracting means 43. .
  • the address extraction means 43 has an absolute address generation table 48 and is based on data obtained from the CH number setting means 47 at the time of system startup in this embodiment (in this embodiment, the number of channels is 3) as shown in FIG.
  • the address is developed in the 3CH column (S1 shown in FIG. 5).
  • the logical address is expanded from 1 # 0 to 1 # 63 (S2 in FIG. 5).
  • a predetermined absolute address corresponding to the logical address data matching the setting data (logical address data) in the first CH address data storage means 51 is obtained (S3 in FIG. 5).
  • the setting data (logical address data) of the first CH address data storage means 51 is 1 # 0, the data at three intervals up to the absolute addresses # 0, # 3, # 6, # 9 Get.
  • Data of a predetermined absolute address obtained in the absolute address generation table 48 is sequentially delivered to the absolute address counter 44.
  • the absolute address counter 44 counts transmission clock signal pulses starting from the end of the start signal ST indicating the start of the transmission clock signal.
  • the absolute address counter 44 is data of a predetermined absolute address (# 0, # 3, # 6, # in the embodiment shown in FIG. 5) corresponding to the setting data (logical address data) of the first CH address data storage means 51.
  • the transmission transmission signal of that period is transferred to the first CH monitoring data transmitting means 45, and the first CH monitoring data transmitting means 45 is made valid.
  • the data of a predetermined plurality of absolute addresses corresponding to 1 # 0 obtained in the absolute address generation table 48 is first the absolute address data handed over to the absolute address counter (# 0 in the embodiment shown in FIG. 5). Is the output timing that coincides with the data of the absolute address counter 44, the data of the next absolute address (# 3 in the embodiment shown in FIG. 5) is delivered to the absolute address counter 44, and the subsequent absolute address data is also sequentially sequentially. Delivered.
  • the first monitoring data transmission unit 45 sets the base current of the transistor TR to “on” or “off” based on the data delivered from the input unit 71 when it is validated by the address extraction unit 43.
  • the base current is “on”
  • the transistor TR is “on”
  • a current signal in units of 20 mA which is a monitoring signal, is output to the common data signal lines DP and DN.
  • the input unit 71 delivers the monitoring data to the first monitoring data transmission unit 45 based on the input data from the input unit 9.
  • the first CH output slave station 6a includes a transmission receiving means 41, an address extracting means 43, a first CH control data extracting means 46, a CH number setting means 47, a first CH address data storage means 51, and a first CH final data.
  • a first CH slave station output unit 60 a having address data storage means 52 and output means 61 is provided.
  • the first CH output slave station 6a also includes an MCU that is a microcomputer control unit as an internal circuit. This MCU functions as the first CH slave station output unit 60a. The calculations and storages required for the processing are executed using the CPU, RAM, and ROM included in the MCU.
  • the CPU, RAM, and processing in each processing of each of the above-described means constituting the first CH slave station output unit 60a constituting the first CH slave station output unit 60a.
  • the relationship with the ROM is not shown for convenience of explanation. Further, in FIG. 4, the same reference numerals are given to substantially the same parts as those of the first CH input slave station 7a, and the description thereof will be simplified or omitted.
  • the first CH control data extraction means 46 controls the transmission received signal delivered from the address extraction means 43 at the timing when the absolute address (# 0) obtained in the absolute address generation table 48 matches the count data of the absolute address counter 44. Extract data. Then, the data is delivered to the output means 61 as the first CH control data.
  • the output unit 61 converts the first CH control data delivered from the first CH control data extraction unit 46 into parallel data, outputs the parallel data to the output unit 8, and causes the output unit 8 to perform a predetermined operation.
  • the second CH input slave station 7b shown in FIG. 6 includes an MCU that is a microcomputer control unit as an internal circuit, and this MCU serves as a second CH slave station input unit 70b. It is supposed to function. As with the MCU of the first CH slave station input unit 70a, the calculations and storages required for the processing of the second CH input slave station 7b are executed using the CPU, RAM and ROM included in this MCU. It has become.
  • the functional configuration of the second CH slave station input unit 70b includes the first CH address data storage unit 51 and the first CH final address data storage unit 52 of the first CH slave station input unit 70a shown in FIG. These are replaced with the second CH address data storage means 53 and the second CH final address data storage means 54, respectively, and the others are the same as the first CH slave station input unit 70a. Therefore, in FIG. 6, the same reference numerals are given to substantially the same parts as the first CH slave station input unit 70a shown in FIG. 3, and the description thereof is simplified or omitted.
  • the second CH monitoring data transmitting unit 45 has the same function as the first CH monitoring data transmitting unit 45, and therefore the reference numerals are the same, but the names are different for convenience of explanation of the drawing.
  • the second CH address data storage means 53 designates the logical address (2 # 0, 2 # 1, 2 # 2, 2 # 3) of the second channel, and the set logical address of the second channel Is transferred to the address extracting means 43.
  • 2 # 3 is set as the maximum value of the logical address of the second channel.
  • the address extracting unit 43 of the second CH slave station input unit 70b has an absolute address generation table 48, and is based on data obtained from the CH number setting unit 47 when the system of the present invention is started (in this embodiment, the number of channels is 3). As shown in FIG. 8, the absolute address is developed in a 3CH column (S1 shown in FIG. 8). Next, the logical addresses 2 # 0 to 2 # 3 are repeatedly expanded based on the setting data 2 # 3 (maximum value of the logical address) in the second CH final address data storage means 54 (S2 in FIG. 8). Then, a predetermined absolute address corresponding to the logical address data matching the setting data (logical address data) in the second CH address data storage means 53 is obtained (S3 in FIG. 8).
  • the setting data (logical address data) of the second CH address data storage means 53 is 2 # 0, absolute addresses # 1, # 13, # 25, etc. Obtain predetermined data for the interval.
  • Data of a predetermined absolute address obtained in the absolute address generation table 48 is sequentially delivered to the absolute address counter 44.
  • the absolute address counter 44 counts transmission clock signal pulses starting from the end of the start signal ST indicating the start of the transmission clock signal.
  • the absolute address counter 44 has predetermined absolute address data corresponding to the setting data (logical address data) of the second CH address data storage means 53 (# 1, # 13, # 25, etc. in the embodiment shown in FIG.
  • the transmission transmission signal of that cycle is handed over to the second CH monitoring data transmitting means 45, and the second CH monitoring data transmitting means 45 is validated.
  • the data of a predetermined plurality of absolute addresses corresponding to 2 # 0 obtained in the absolute address generation table 48 is first the absolute address data handed over to the absolute address counter (# 1 in the embodiment shown in FIG. 8). Is the output timing that coincides with the data of the absolute address counter 44, the data of the next absolute address (# 13 in the embodiment shown in FIG. 8) is delivered to the absolute address counter 44, and the subsequent absolute address data is also sequentially sequentially. Delivered.
  • the third CH input slave station 7c shown in FIG. 9 includes an MCU that is a microcomputer control unit as an internal circuit, and this MCU serves as the third CH slave station input unit 70c. It is supposed to function. Similar to the MCU of the first CH slave station input unit 70a, the computation and storage necessary for the processing of the third CH input slave station 7c are executed using the CPU, RAM, and ROM provided in this MCU. It has become.
  • FIG. 9 also includes a first CH address data storage unit 51 and a first CH final address data storage unit 52 of the first CH slave station input unit 70a shown in FIG.
  • the third CH address data storage means 55 and the third CH final address data storage means 56 are replaced, and the others are the same as the first CH slave station input unit 70a. Therefore, in FIG. 9, parts that are substantially the same as those of the first CH slave station input unit 70a are denoted by the same reference numerals, and description thereof is simplified or omitted.
  • the third CH monitoring data transmission unit 45 has the same function as the first CH monitoring data transmission unit 45, and therefore the reference numerals are the same, but the names are different for convenience of explanation of the drawing.
  • the third CH address data storage means 55 designates the third channel logical address (3 # 0, 3 # 1, etc. shown in FIG. 12), and the set third channel logical address data is address extracted. Delivered to means 43. As shown in FIG. 12 and FIG. 13, the third channel is a word composed of 16 transmission clock signal periods as one unit, and four words with one frame cycle of the transmission clock signal as one period Twc. Is intended for transmission. Then, the third CH address data storage means 55 is set with the first logical address of the word to be exchanged, 3 # 0, 3 # 16, and the like.
  • the third CH final address data storage means 56 sets the maximum value of the logical address data of the third channel, and the set maximum value of the logical address data of the third channel is delivered to the address extraction means 43. .
  • the address extracting means 43 of the third CH slave station input unit 70c has an absolute address generation table 48, and is based on data obtained from the CH number setting means 47 when the system of the present invention is started (in this embodiment, the number of channels is 3). As shown in FIG. 11, the data of the absolute address is developed in the 3CH column (S1 shown in FIG. 11). Next, based on the setting data 3 # 63 (maximum value of the logical address) in the third CH final address data storage means 56, the logical addresses are expanded from 3 # 0 to 3 # 63 (S2 in FIG. 11). Then, a predetermined absolute address corresponding to the logical address that matches the setting data (logical address data) in the third CH address data storage means 55 is obtained (S3 in FIG. 11).
  • the setting data (logical address data) of the third CH address data storage means 55 is 3 # 0, data at intervals of 3 from # 2 to # 51, such as absolute addresses # 2, # 5, etc. Get.
  • Data of a predetermined absolute address obtained in the absolute address generation table 48 is delivered to the absolute address counter 44.
  • the absolute address counter 44 counts transmission clock signal pulses starting from the end of the start signal ST indicating the start of the transmission clock signal, and predetermined absolute address data corresponding to the setting data in the third CH address data storage means 55 (see FIG. In the embodiment shown in FIG.
  • the transmission transmission signal of that cycle is handed over to the third CH monitoring data transmitting means 45 at the timing that coincides with the data of three intervals from # 2 to # 51), and the third CH monitoring data transmitting means 45 Enable
  • the data of a predetermined plurality of absolute addresses corresponding to 3 # 0 obtained in the absolute address generation table 48 is first the absolute address data handed over to the absolute address counter (# 2 in the embodiment shown in FIG. 11). Is the output timing that coincides with the data of the absolute address counter 44, the data of the next absolute address (# 5 in the embodiment shown in FIG. 8) is delivered to the absolute address counter 44, and the subsequent absolute address data is also sequentially sequentially. Delivered.
  • Both the output unit 8 and the input unit 9 having a corresponding relationship are connected to the first CH input / output slave station 4a.
  • the first CH input / output slave station 4a also includes an MCU that is a microcomputer control unit as an internal circuit. It functions as the station input / output unit 40a. Similar to the MCU of the first CH slave station output unit 60a and the MCU of the first CH slave station input unit 70a, the computation and storage required in the processing of the first CH input / output slave station 4a are performed by the CPU and RAM of this MCU. And is executed using a ROM.
  • the first CH slave station input / output unit 40a has a configuration in which both the first CH slave station output unit 60a and the first CH slave station input unit 70a are combined, and each component includes the first CH slave station output unit 60a or the first CH slave unit. Since it is the same as the component of the station input part 70a, description is abbreviate
  • the second CH output slave station 6b and the third CH output slave station 6c include an MCU that is a microcomputer control unit as an internal circuit, and this MCU is the second CH slave station. It functions as the output unit 60b and the third CH slave station output unit 60c. Similar to the MCU of the first CH slave station output unit 60a, the computation and storage required in the processing of the second CH output slave station 6b and the third CH output slave station 6c are performed by the CPU, RAM and ROM provided in this MCU. It is meant to be used and executed.
  • the functional configurations of the second CH slave station output unit 60b and the third CH slave station output unit 60c are the same as the first CH address data storage means 51 of the first CH slave station output unit 60a shown in FIG.
  • the second CH address data storage means 53 and the third CH address data storage means 55 are replaced with the first CH final address data storage means 52 by the second CH final address data storage means 54 and the third CH final address data storage means 56.
  • the others are the same as the first CH slave station output unit 60a. Therefore, the description is omitted.
  • the first transmission clock signal period starting from the end of the start signal is the first channel
  • the second is the second channel
  • the third is the third channel.
  • the first CH logical addresses 1 # 0 to 1 # 63 are assigned to one unit (hereinafter referred to as a first CH unit) whose transmission clock signal period allocated to the first channel is the head.
  • the second CH logical addresses 2 # 0, 2 # 1, 2 # 2 and 2 # 3 are assigned to one unit (hereinafter referred to as a second CH unit) whose transmission clock signal period allocated to the second channel is the head. Is assigned.
  • the third CH logical addresses 3 # 0 to 3 # 63 are assigned as word addresses to one unit (hereinafter referred to as a third CH unit) whose transmission clock signal period allocated to the third channel is the head. .
  • any one of the first CH addresses 1 # 0 to 1 # 63 is assigned to the first CH input / output slave station 4a, the first CH output slave station 6a, and the first CH input slave station 7a belonging to the first channel. Data is exchanged in the first transmission clock signal period of one unit of the first CH to which the first CH address assigned to the own station is assigned.
  • the first CH control data is data received by the first CH input / output slave station 4a or the first CH output slave station 6a from the master station
  • the first CH monitoring data is the first CH input / output slave station 4a or the first CH. This is data received by the master station from the input slave station 7a.
  • any one of the second CH logical addresses 2 # 0, 2 # 1, 2 # 2, and 2 # 3 is assigned to the second CH output slave station 6b and the second CH input slave station 7b belonging to the second channel.
  • Data is exchanged in the first transmission clock signal period of one unit of the second CH to which the assigned second CH logical address is assigned.
  • the logical frame period Thc of the second channel is repeated 16 times within one frame period Tc (period from the start signal to the next start signal) of the transmission clock signal.
  • the logical frame period of the first channel is equal to the frame period Tc of the transmission clock signal. Therefore, the transmission response speed of the second channel is 16 times the transmission response speed of the first channel.
  • Any one of the third CH logical addresses 3 # 0 to 3 # 63 is assigned to the third CH output slave station 6c and the third CH input slave station 7c belonging to the third channel, and the third CH logical address assigned to the own channel is assigned.
  • Data is exchanged in the first transmission clock signal period of the allocated third CH unit.
  • the 1-word data transmitted in the third channel is composed of 16-bit data, and by specifying the head logical address (for example, 3 # 0) of the word data to be transmitted, a predetermined absolute value corresponding to it is designated. Data can be exchanged at each address, and word data can be exchanged.
  • the word data transmitted on the third channel may be obtained as a plurality of words in a plurality of transmission cycles.
  • the order of the transmission clock signal period of one unit starting from the end of the start signal assigned to each channel is set to a predetermined arbitrary order (for example, the third channel first, the first channel second , Third, second channel) may be allocated.
  • control data from the control unit side and monitor data from the slave station side can be transmitted simultaneously in one cycle of the transmission clock signal, and three channels are provided.
  • This is a transmission system in which data transmission and reception are performed at the same time, a so-called six-fold.
  • the number of channels is not limited, and a two-channel full-quad scheme may be used.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Selective Calling Equipment (AREA)
  • Programmable Controllers (AREA)
  • Time-Division Multiplex Systems (AREA)
  • Small-Scale Networks (AREA)
  • Arrangements For Transmission Of Measured Signals (AREA)

Abstract

[Problem] To provide a control/monitor signal transmission system that can establish a desired number of channels in a transmission synchronization scheme. [Solution] In a control/monitor signal transmission system of the present invention, a master station is connected to a plurality of slave stations via a common data signal line, and a transmission clock signal, one period of which comprises a first status signal and a second status signal following the first status signal, is transmitted to the common data signal line under the control of a timing signal generated by a timing generation means of the master station. A plurality of consecutive periods of the transmission clock signal are used as a unit, and each of the periods included in the unit is allocated to a respective predetermined channel.

Description

制御・監視信号伝送システムControl and monitoring signal transmission system
 本発明は、制御部に接続された親局と複数の出力部および入力部、或いは複数の被制御装置に対応する複数の子局との間の信号線を省配線化し共通データ信号線で接続し、伝送クロック信号で同期させるなどの伝送同期方式によりデータの伝送を行う制御・監視信号伝送システムに関する。 The present invention reduces the number of signal lines between a master station connected to a control unit and a plurality of output units and input units, or a plurality of slave stations corresponding to a plurality of controlled devices, and connects them with a common data signal line. In addition, the present invention relates to a control / monitor signal transmission system that transmits data by a transmission synchronization method such as synchronization by a transmission clock signal.
 制御部と、複数の出力部と入力部、或いは複数の被制御装置を備える制御システムにおいて、配線の数を減らす、所謂省配線化が広く実施されている。そして、その省配線化の一般的な手法として、複数の出力部と入力部、或いは被制御装置から延出される信号線の各々を制御部に直接繋ぐパラレル接続に代えて、パラレル信号とシリアル信号の変換機能を備えた親局と複数の子局を、制御部と複数の出力部と入力部、或いは複数の被制御装置にそれぞれ接続し、親局と複数の子局との間で共通データ信号線を介してシリアル信号によりデータ授受を行う方式が広く採用されている。 In a control system including a control unit, a plurality of output units and input units, or a plurality of controlled devices, so-called wiring saving, which reduces the number of wirings, is widely implemented. As a general technique for reducing the wiring, a parallel signal and a serial signal are used instead of a parallel connection that directly connects a plurality of output units and input units or signal lines extending from a controlled device to the control unit. The master station and the plurality of slave stations having the conversion function are connected to the control unit, the plurality of output units and the input unit, or the plurality of controlled devices, respectively, and common data between the master station and the plurality of slave stations. A method of exchanging data with a serial signal via a signal line is widely adopted.
 また、シリアル信号によりデータ授受を行う方法として、伝送クロックで同期させるなどの伝送同期方式が広く採用され、様々な状況に適用するための検討がなされている。例えば、ビットデータとワードデータをそれぞれ独立的に伝送する場合には、論理的に異なる伝送路(チャネル)を複数使用して伝送する必要があるが、伝送同期方式においても、複数のチャネルを設けるための手法が検討されている。 Also, a transmission synchronization method such as synchronization with a transmission clock is widely adopted as a method for transferring data using a serial signal, and studies for applying it to various situations have been made. For example, when bit data and word data are transmitted independently, it is necessary to perform transmission using a plurality of logically different transmission paths (channels), but a plurality of channels are also provided in the transmission synchronization method. Techniques for this are being considered.
 例えば、特開2002-271878号公報に開示されている制御・監視信号伝送システムでは、制御部から被制御装置への第1制御信号を所定のパルス幅(デューティ比)の2値信号とし、第2制御信号を電源電圧のレベル以外のレベルの期間における所定のレベルの信号として、また、入力部から制御部への第1監視信号を電流信号の有無とし、第2制御信号を周波数信号とすることにより、伝送同期方式において2チャネルを設けることができる。 For example, in the control / monitor signal transmission system disclosed in Japanese Patent Application Laid-Open No. 2002-271878, the first control signal from the control unit to the controlled device is a binary signal having a predetermined pulse width (duty ratio). 2 The control signal is a signal of a predetermined level in a period of a level other than the level of the power supply voltage, the first monitoring signal from the input unit to the control unit is the presence or absence of a current signal, and the second control signal is a frequency signal Thus, two channels can be provided in the transmission synchronization method.
特開2002-271878号公報JP 2002-271878 A
 しかしながら、上記制御・監視信号伝送システムをはじめとする従来技術では、伝送クロック信号の1周期に数種類程度の多重信号を重畳することが限度であり、設定できるチャネル数に限りがあった。 However, in the prior art including the control / monitor signal transmission system described above, the limit is to superimpose several kinds of multiplexed signals in one cycle of the transmission clock signal, and the number of channels that can be set is limited.
 そこで、本発明は、伝送同期方式において、所望の数のチャネルを設定することができる制御・監視信号伝送システムを提供することを目的とする。 Therefore, an object of the present invention is to provide a control / monitor signal transmission system capable of setting a desired number of channels in a transmission synchronization method.
 本発明に係る制御・監視信号伝送システムでは、親局と複数の子局が共通データ信号線で接続され、前記親局が有するタイミング発生手段で生成されるタイミング信号の制御下で、1周期が第1状態信号と前記第1状態信号に続く第2状態信号とからなる伝送クロック信号が、前記共通データ信号線に伝送される。そして、前記伝送クロック信号の連続する複数周期を一単位とし、前記一単位に含まれる周期の各々を所定のチャネルに割り当てる。 In the control / monitoring signal transmission system according to the present invention, a master station and a plurality of slave stations are connected by a common data signal line, and one cycle is controlled under the control of a timing signal generated by a timing generator included in the master station. A transmission clock signal composed of a first state signal and a second state signal following the first state signal is transmitted to the common data signal line. Then, a plurality of consecutive cycles of the transmission clock signal are defined as a unit, and each cycle included in the unit is assigned to a predetermined channel.
 本発明において、第1状態信号、第2状態信号とは、各々が、信号として異なる状態となっていることを区別して示すものであり、信号の種類は特定されない。電圧振幅変調信号、電流振幅変調信号、電圧パルス幅変調信号、電流パルス幅変調信号、位相変調信号など、いずれの信号でもよい。例えば、電圧振幅変調信号であれば、高電位レベルが第1状態信号、低電位レベルが第2状態信号である。或いは、低電位レベルが第1状態信号、高電位レベルが第2状態信号である。同様に、電流振幅変調信号であれば、電流有りが第1状態信号(或いは第2状態信号)、電流無しが第2状態信号(或いは第1状態信号)である。また、電圧パルス幅変調信号であれば、パルスの1周期を2等分するタイミングからずれたタイミングでの立上がりまたは立下りにより区分されるパルス幅信号の期間の一方が第1状態信号、他方が第2状態信号である。 In the present invention, the first state signal and the second state signal indicate that each is in a different state as a signal, and the type of the signal is not specified. Any signal such as a voltage amplitude modulation signal, a current amplitude modulation signal, a voltage pulse width modulation signal, a current pulse width modulation signal, and a phase modulation signal may be used. For example, in the case of a voltage amplitude modulation signal, the high potential level is the first state signal and the low potential level is the second state signal. Alternatively, the low potential level is the first state signal and the high potential level is the second state signal. Similarly, in the case of a current amplitude modulation signal, the presence of current is the first state signal (or second state signal), and the absence of current is the second state signal (or first state signal). In the case of a voltage pulse width modulation signal, one of the periods of the pulse width signal divided by rising or falling at a timing shifted from the timing of dividing one period of the pulse into two equals is the first state signal, and the other is Second state signal.
 前記チャネルの少なくとも一つを高速伝送チャネルとし、前記高速伝送チャネルに属する子局は、前記伝送クロック信号のスタート信号の終了を起点として、前記伝送クロック信号に基づいた伝送アドレスのカウントを開始し、前記伝送クロック信号のスタート信号と次のスタート信号の間の1フレームサイクルの周期の数に相当するアドレスカウント値より小さい数を最大アドレスカウント値とするアドレスカウンタを備え、前記1フレームサイクルよりも短いサイクルで、前記親局との間でデータの授受を行うものであってもよい。 At least one of the channels is a high-speed transmission channel, and the slave station belonging to the high-speed transmission channel starts counting transmission addresses based on the transmission clock signal, starting from the end of the start signal of the transmission clock signal, An address counter having a number smaller than an address count value corresponding to the number of periods of one frame cycle between the start signal of the transmission clock signal and the next start signal as a maximum address count value is shorter than the one frame cycle. Data may be exchanged with the master station in a cycle.
 また、前記伝送クロック信号の1周期には、前記第1状態信号と前記第2状態信号の何れか一方に制御データ信号が含まれ、他方の状態信号に監視信号が含まれるものであってもよい。 Further, one cycle of the transmission clock signal may include a control data signal in one of the first state signal and the second state signal and a monitoring signal in the other state signal. Good.
 本発明に係るターミナルは、親局が接続され、前記親局が有するタイミング発生手段で生成されるタイミング信号の制御下で、1周期が第1状態信号と前記第1状態信号に続く第2状態信号とからなる伝送クロック信号が伝送される共通データ信号線に接続され、自局のアドレスを設定するアドレス設定手段を備える。また、前記伝送クロック信号の周期をカウントし、前記自局アドレスのデータと一致するタイミングで、前記伝送クロック信号に重畳された制御データを抽出する制御データ抽出処理と、前記一致するタイミングで入力部からの入力信号に応じた監視データを監視信号として前記伝送クロック信号に重畳する監視データ送信処理を行う子局入出力部、あるいは、前記制御データ抽出処理を行う子局出力部と前記監視データ送信処理を行う子局入力部のいずれか一方を備える。そして、前記アドレス設定手段は、前前記伝送クロック信号の連続する複数周期を一単位としてアドレスを設定する。 The terminal according to the present invention is connected to a master station and is in a second state in which one cycle follows the first state signal and the first state signal under the control of a timing signal generated by a timing generator included in the master station. And an address setting means for setting the address of the local station, connected to a common data signal line through which a transmission clock signal composed of the signal is transmitted. And a control data extraction process for counting the period of the transmission clock signal and extracting control data superimposed on the transmission clock signal at a timing coincident with the data of the local station address, and an input unit at the coincidence timing. A slave station input / output unit that performs monitoring data transmission processing to superimpose monitoring data corresponding to an input signal from the transmission signal as a monitoring signal, or a slave station output unit that performs control data extraction processing and the monitoring data transmission Either one of the slave station input units for processing is provided. The address setting means sets an address with a plurality of consecutive periods of the previous transmission clock signal as a unit.
 本発明に係る制御・監視信号伝送システムでは、伝送クロック信号の連続する複数周期が一単位とされ、一単位に含まれる周期の各々が所定のチャネルに割り当てられるため、伝送同期方式において、所望の数のチャネルを設けることが可能となる。 In the control / monitoring signal transmission system according to the present invention, a plurality of consecutive cycles of the transmission clock signal are defined as one unit, and each cycle included in one unit is assigned to a predetermined channel. A number of channels can be provided.
 また、伝送クロック信号のスタート信号と次のスタート信号の間を最大フレームの1周期とし、チャネル毎に、前記最大フレームの1周期の範囲内で自チャネルに定義されたフレーム周期を繰り返し、前記親局と前記子局は、一単位毎の周期に、自局が属するチャネルのデータの授受を行うこととすれば、伝送クロック信号の1フレームサイクル(最大フレームの1周期)よりも短い時間で所定のデータを高速スキャンすることが可能となる。 Further, the period between the start signal of the transmission clock signal and the next start signal is defined as one period of the maximum frame, and the frame period defined for the own channel is repeated for each channel within the range of one period of the maximum frame. If the station and the slave station exchange data of the channel to which the station belongs in a unit-by-unit period, the station and the slave station are predetermined in a time shorter than one frame cycle of the transmission clock signal (one period of the maximum frame). Can be scanned at high speed.
 本発明に係るターミナルは、伝送クロック信号の連続する複数周期を一単位としてアドレスを設定するアドレス設定手段を備えるため、自局が属するチャネルに割り当てられた周期の到来するタイミングを正確に得ることが可能となる。従って、本発明に係る制御・監視信号伝送システムに利用することができる。 Since the terminal according to the present invention includes address setting means for setting an address with a plurality of consecutive periods of the transmission clock signal as a unit, it is possible to accurately obtain the arrival timing of the period assigned to the channel to which the station belongs. It becomes possible. Therefore, it can be used in the control / monitor signal transmission system according to the present invention.
本発明に係る制御・監視信号伝送システムの概略構成を示すシステム構成図である。1 is a system configuration diagram showing a schematic configuration of a control / monitor signal transmission system according to the present invention. 親局のシステム構成図である。It is a system configuration | structure figure of a master station. 第1チャネルに属する子局における子局入力部のブロック図である。It is a block diagram of a slave station input unit in a slave station belonging to the first channel. 第1チャネルに属する子局における子局出力部のブロック図である。It is a block diagram of a slave station output unit in a slave station belonging to the first channel. 第1チャネルの絶対アドレス生成テーブルを示す図である。It is a figure which shows the absolute address generation table of a 1st channel. 第2チャネルに属する子局における子局入力部のブロック図である。It is a block diagram of a slave station input unit in a slave station belonging to the second channel. 第2チャネルに属する子局における子局出力部のブロック図である。It is a block diagram of a slave station output unit in a slave station belonging to the second channel. 第2チャネルの絶対アドレス生成テーブルを示す図である。It is a figure which shows the absolute address generation table of a 2nd channel. 第3チャネルに属する子局における子局入力部のブロック図である。It is a block diagram of a slave station input unit in a slave station belonging to the third channel. 第3チャネルに属する子局における子局出力部のブロック図である。It is a block diagram of a slave station output unit in a slave station belonging to the third channel. 第3チャネルの絶対アドレス生成テーブルを示す図である。It is a figure which shows the absolute address generation table of a 3rd channel. 親局と子局との間で授受される伝送クロック信号から抽出されるデータを第1チャネルデータ、第2チャネルデータ、第3チャネルデータに分けて示す伝送クロック信号の模式図である。FIG. 5 is a schematic diagram of a transmission clock signal that shows data extracted from a transmission clock signal exchanged between a master station and a slave station, divided into first channel data, second channel data, and third channel data. 各チャネルの周期を示す伝送クロック信号の模式図である。It is a schematic diagram of the transmission clock signal which shows the period of each channel. 伝送クロック信号のタイムチャートである。It is a time chart of a transmission clock signal.
 図1~14を参照しながら、本発明に係る制御・監視信号伝送システムの実施例を説明する。
 図1に示すように、この制御・監視信号伝送システムは、制御部1および共通データ信号線DP、DN(以下、伝送ラインということがある)に接続された単一の親局2と、前記共通データ信号線DP、DNに接続された第1CH入出力子局4a、第1CH出力子局6a、第2CH出力子局6b、第3CH出力子局6c、および第1CH入力子局7a、第2CH入力子局7b、第3CH入力子局7cの複数で構成される。なお、図1においては、図示の便宜上、各々の子局が一つずつ示されているが、共通データ信号線DP、DNに接続される子局の種類や数に制限は無い。
An embodiment of a control / monitor signal transmission system according to the present invention will be described with reference to FIGS.
As shown in FIG. 1, the control / monitor signal transmission system includes a single master station 2 connected to a control unit 1 and common data signal lines DP and DN (hereinafter also referred to as transmission lines), First CH I / O slave station 4a, first CH output slave station 6a, second CH output slave station 6b, third CH output slave station 6c, and first CH input slave station 7a, second CH connected to the common data signal lines DP and DN It is composed of a plurality of input slave stations 7b and a third CH input slave station 7c. In FIG. 1, for convenience of illustration, each slave station is shown one by one, but there is no limitation on the type and number of slave stations connected to the common data signal lines DP and DN.
 第1CH入出力子局4a、第1CH出力子局6a、第2CH出力子局6b、第3CH出力子局6c、および第1CH入力子局7a、第2CH入力子局7b、第3CH入力子局7cは、制御部1の出力指示に応じて動作する出力部8に対する信号出力処理と、制御部1への入力情報を取り入れる入力部9からの入力信号処理のいずれかまたは双方を行うものである。そして、使用目的に応じた伝送データにより3つの群に分類されている。具体的には、第1CH入出力子局4a、第1CH出力子局6a、第1CH入力子局7aが低速データの伝送を行う低速伝送群に、第2CH出力子局6b、第2CH入力子局7bが高速データの伝送を行う高速伝送群に、第3CH出力子局6c、第3CH入力子局7cが複数ビットのワードデータの伝送を行うワード伝送群に分類されている。なお、低速伝送群、高速伝送群、ワード伝送群に割り当てられる伝送クロック信号の周期を、それぞれ第1チャネル(第1CH)、第2チャネル(第2CH)、第3チャネル(第3CH)と称するものとし、以下、これらの群に対応する部分には、それぞれ「第1CH」「第2CH」「第3CH」の表記を付すものとする。 First CH I / O slave station 4a, first CH output slave station 6a, second CH output slave station 6b, third CH output slave station 6c, first CH input slave station 7a, second CH input slave station 7b, third CH input slave station 7c Performs either or both of signal output processing for the output unit 8 that operates in response to an output instruction of the control unit 1 and input signal processing from the input unit 9 that incorporates input information to the control unit 1. And it is classified into three groups by the transmission data according to the purpose of use. Specifically, the first CH input / output slave station 4a, the first CH output slave station 6a, and the first CH input slave station 7a include a second CH output slave station 6b and a second CH input slave station. 7b is classified into a high-speed transmission group for transmitting high-speed data, and the third CH output slave station 6c and the third CH input slave station 7c are classified into a word transmission group for transmitting multi-bit word data. The periods of the transmission clock signals assigned to the low-speed transmission group, the high-speed transmission group, and the word transmission group are referred to as the first channel (first CH), the second channel (second CH), and the third channel (third CH), respectively. In the following, the parts corresponding to these groups will be labeled “first CH”, “second CH”, and “third CH”, respectively.
 出力部8は、例えば、アクチュエータ、(ステッピング)モータ、ソレノイド、電磁弁、リレー、サイリスタ、ランプ等であり、入力部9は、例えば、リードスイッチ、マイクロスイッチ、押釦スイッチ、光電スイッチ、各種センサ等である。第1CH入出力子局4aは、出力部8と入力部9で構成される被制御装置5に接続され、第1CH出力子局6a、第2CH出力子局6b、第3CH出力子局6cは出力部8のみに接続され、第1CH入力子局7a、第2CH入力子局7b、第3CH入力子局7cは入力部9にのみ接続されている。また、第1CH出力子局6a、第2CH出力子局6b、第3CH出力子局6cは出力部8を内包するもの(出力部一体型子局80)であってもよく、第1CH入力子局7a、第2CH入力子局7b、第3CH入力子局7cは入力部9を内包するもの(入力部一体型子局90)であってもよい。 The output unit 8 is, for example, an actuator, a (stepping) motor, a solenoid, a solenoid valve, a relay, a thyristor, or a lamp. The input unit 9 is, for example, a reed switch, a micro switch, a push button switch, a photoelectric switch, various sensors, or the like. It is. The first CH input / output slave station 4a is connected to the controlled device 5 including the output unit 8 and the input unit 9, and the first CH output slave station 6a, the second CH output slave station 6b, and the third CH output slave station 6c are output. The first CH input slave station 7 a, the second CH input slave station 7 b, and the third CH input slave station 7 c are connected only to the input unit 9. The first CH output slave station 6a, the second CH output slave station 6b, and the third CH output slave station 6c may include the output unit 8 (output unit integrated slave station 80). 7a, the second CH input slave station 7b, and the third CH input slave station 7c may include the input unit 9 (input unit integrated slave station 90).
 制御部1は、例えばプログラマブルコントローラ、コンピュータ等であり、第1CH制御並列データ13a、第2CH制御並列データ13b、第3CH制御並列データ13cを送出する第1CH出力ユニット11a、第2CH出力ユニット11b、第3CH出力ユニット11cと、第1CH入出力子局4aおよび第1CH入力子局7a、第2CH入力子局7b、第3CH入力子局7cからの監視信号から抽出される監視データに基づき得られた第1CH監視並列データ14a、第2CH監視並列データ14b、第3CH監視並列データ14cを受け取る第1CH入力ユニット12a、第2CH入力ユニット12b、第3CH入力ユニット12cを有する。そして、これら第1CH出力ユニット11a、第2CH出力ユニット11b、第3CH出力ユニット11c、第1CH入力ユニット12a、第2CH入力ユニット12b、第3CH入力ユニット12cが親局2に接続されている。 The control unit 1 is, for example, a programmable controller, a computer, and the like, and includes a first CH output unit 11a, a second CH output unit 11b, a second CH output parallel data 13c, a second CH control parallel data 13b, and a third CH control parallel data 13c. The 3CH output unit 11c, the first CH input / output slave station 4a, the first CH input slave station 7a, the second CH input slave station 7b, and the first data obtained based on the monitoring data extracted from the monitoring signals from the third CH input slave station 7c. It has a first CH input unit 12a, a second CH input unit 12b, and a third CH input unit 12c that receive the 1CH monitoring parallel data 14a, the second CH monitoring parallel data 14b, and the third CH monitoring parallel data 14c. The first CH output unit 11a, the second CH output unit 11b, the third CH output unit 11c, the first CH input unit 12a, the second CH input unit 12b, and the third CH input unit 12c are connected to the master station 2.
 親局2は、図2に示すように、第1CH出力データ部21a、第2CH出力データ部21b、第3CH出力データ部21c、タイミング発生部23、親局出力部24、親局入力部25、第1CH入力データ部26a、第2CH入力データ部26b、第3CH入力データ部26cを備える。そして、共通データ信号線DP、DNに接続され、本発明の伝送クロック信号に相当する一連のパルス状信号である制御信号を共通データ信号線DP、DNに送出するとともに、第1CH入出力子局4a、第1CH入力子局7a、第2CH入力子局7b、第3CH入力子局7cから送出された監視信号から抽出された第1CH監視並列データ14a、第2CH監視並列データ14b、第3CH監視並列データ14cを制御部1の第1CH入力ユニット12a、第2CH入力ユニット12b、第3CH入力ユニット12cへ送出する。 As shown in FIG. 2, the master station 2 includes a first CH output data unit 21a, a second CH output data unit 21b, a third CH output data unit 21c, a timing generation unit 23, a master station output unit 24, a master station input unit 25, A first CH input data unit 26a, a second CH input data unit 26b, and a third CH input data unit 26c are provided. A control signal, which is connected to the common data signal lines DP and DN and is a series of pulse signals corresponding to the transmission clock signal of the present invention, is sent to the common data signal lines DP and DN, and the first CH input / output slave station 4a, first CH input slave station 7a, second CH input slave station 7b, first CH monitoring parallel data 14a, second CH monitoring parallel data 14b, third CH monitoring parallel extracted from the monitoring signal transmitted from the third CH input slave station 7c The data 14c is sent to the first CH input unit 12a, the second CH input unit 12b, and the third CH input unit 12c of the control unit 1.
 第1CH出力データ部21aは、制御部1の第1CH出力ユニット11aからの第1CH制御並列データ13aをシリアルデータとして親局出力部24へ引き渡す。第2CH出力データ部21bは、制御部1の第2CH出力ユニット11bからの第2CH制御並列データ13bをシリアルデータとして親局出力部24へ引き渡す。第3CH出力データ部21cは、制御部1の第3CH出力ユニット11cからの第3CH制御並列データ13cをシリアルデータとして親局出力部24へ引き渡す。 The first CH output data unit 21a delivers the first CH control parallel data 13a from the first CH output unit 11a of the control unit 1 to the master station output unit 24 as serial data. The second CH output data unit 21b delivers the second CH control parallel data 13b from the second CH output unit 11b of the control unit 1 to the master station output unit 24 as serial data. The third CH output data unit 21c delivers the third CH control parallel data 13c from the third CH output unit 11c of the control unit 1 to the master station output unit 24 as serial data.
 タイミング発生部23は、発振回路(OSC)31とタイミング発生手段32からなり、発振回路(OSC)31を基にタイミング発生手段32が、このシステムのタイミングクロックを生成し親局出力部24、親局入力部25に引き渡す。 The timing generation unit 23 includes an oscillation circuit (OSC) 31 and a timing generation unit 32. The timing generation unit 32 generates a timing clock of the system based on the oscillation circuit (OSC) 31, and generates a master station output unit 24, Delivered to the station input unit 25.
 親局出力部24は、制御データ発生手段33とラインドライバ34からなる。制御データ発生手段33が、第1CH出力データ部21a、第2CH出力データ部21b、第3CH出力データ部21cから受けたデータと、タイミング発生部23から受けたタイミングクロックに基づき、ラインドライバ34を介して共通データ信号線DP、DNに一連のパルス状信号として伝送クロック信号を送出する。 The master station output unit 24 includes control data generation means 33 and a line driver 34. Based on the data received from the first CH output data unit 21a, the second CH output data unit 21b, the third CH output data unit 21c, and the timing clock received from the timing generation unit 23, the control data generation means 33 passes through the line driver 34. The transmission clock signal is sent as a series of pulse signals to the common data signal lines DP and DN.
 伝送クロック信号は、スタート信号STに続く制御・監視データ領域を有するものとなっている。制御・監視データ領域は、親局2から送出される制御信号のデータと、第1CH入出力子局4a、第1CH入力子局7a、第2CH入力子局7b、および第3CH入力子局7cから送出される監視信号のデータとで構成される。そして、伝送クロック信号のパルス(伝送クロック)は、図14に示すように、1周期の後半が電源電圧の高電位レベル(本発明の第2状態信号に相当し、この実施例では+24V)とされ、電源電圧のレベルとなっていない低電位レベル(本発明の第1状態信号に相当)のパルス前半がデータ信号エリアとされている。低電位レベルは、そのパルス幅の長さが制御信号のデータを表すとともに、そこに重畳される電流が所定値(この実施例では10mA、ただし電流値に制限はない)より大きいか小さいかで監視信号のデータを表すものとなっている。この実施例では、伝送クロック信号の1周期をt0とした時、低電位レベルのパルス幅の長さは(1/4)t0から(1/2)t0まで拡張されるが、制御部1から入力される第1CH制御並列データ13a、第2CH制御並列データ13b、第3CH制御並列データ13cの各データの値に応じたものであれば、その長さに制限はなく適宜に決めればよい。更に、伝送クロック信号の1周期の前半を電源電圧のレベルとし、後半を低電位レベルとしてもよい。 The transmission clock signal has a control / monitor data area following the start signal ST. The control / monitoring data area includes control signal data transmitted from the master station 2, the first CH input / output slave station 4a, the first CH input slave station 7a, the second CH input slave station 7b, and the third CH input slave station 7c. And monitoring signal data to be transmitted. As shown in FIG. 14, the pulse of the transmission clock signal (transmission clock) has a high potential level of the power supply voltage in the second half of one cycle (corresponding to the second state signal of the present invention, +24 V in this embodiment). The first half of the pulse of the low potential level (corresponding to the first state signal of the present invention) that is not at the power supply voltage level is used as the data signal area. The low potential level indicates whether the length of the pulse width represents the data of the control signal and the current superimposed thereon is larger or smaller than a predetermined value (in this embodiment, 10 mA, but the current value is not limited). It represents monitoring signal data. In this embodiment, when one cycle of the transmission clock signal is t0, the pulse width of the low potential level is extended from (1/4) t0 to (1/2) t0. As long as it corresponds to the value of each data of the input first CH control parallel data 13a, second CH control parallel data 13b, and third CH control parallel data 13c, the length is not limited and may be determined appropriately. Furthermore, the first half of one cycle of the transmission clock signal may be the power supply voltage level, and the second half may be the low potential level.
 なお、伝送クロック信号の高電位レベルが電源電圧となっていることから、第1CH入出力子局4a、第1CH出力子局6a、第1CH入力子局7a、第2CH出力子局6b、第2CH入力子局7b、第3CH出力子局6c、第3CH入力子局7cは、いずれも、内部回路電源を伝送クロック信号から生成するものとなっている。 Since the high potential level of the transmission clock signal is the power supply voltage, the first CH input / output slave station 4a, the first CH output slave station 6a, the first CH input slave station 7a, the second CH output slave station 6b, and the second CH The input slave station 7b, the third CH output slave station 6c, and the third CH input slave station 7c all generate internal circuit power from the transmission clock signal.
 また、図12、図13に示すように、伝送クロック信号の1フレームサイクルのパルス(伝送クロック)の数は192であり、絶対アドレスは、開始アドレスが0であることから最終アドレスが191とされている。また、0から189まで3間隔の絶対アドレス(#0、#3、#6…)の伝送クロック信号周期が第1チャネルに、1から190まで3間隔の絶対アドレス(#1、#4、#7…)の伝送クロック信号周期が第2チャネルに、2から191まで3間隔の絶対アドレス(#2、#5、#8…)の伝送クロック信号周期が第3チャネルに、割り当てられている。そして、第1チャネルに割り当てられた伝送クロック信号周期、第2チャネルに割り当てられた伝送クロック信号周期、および第3チャネルに割り当てられた伝送クロック信号周期の連続する複数周期(3伝送クロック信号周期)が本発明の一単位とされている。 As shown in FIGS. 12 and 13, the number of pulses (transmission clock) in one frame cycle of the transmission clock signal is 192, and the absolute address is set to 191 because the start address is 0. ing. Also, the transmission clock signal cycle of the absolute addresses (# 0, # 3, # 6...) Of 3 intervals from 0 to 189 is set to the first channel, and the absolute addresses (# 1, # 4, #) of 3 intervals from 1 to 190 are set. 7) is assigned to the second channel, and transmission clock signal periods of absolute addresses (# 2, # 5, # 8,...) Of 3 intervals from 2 to 191 are assigned to the third channel. A transmission clock signal cycle assigned to the first channel, a transmission clock signal cycle assigned to the second channel, and a plurality of consecutive cycles of the transmission clock signal cycle assigned to the third channel (three transmission clock signal cycles) Is a unit of the present invention.
 スタート信号STは、伝送クロック信号の高電位レベルと同じ電位レベルであって、伝送クロック信号の1周期より長い信号となっている。 The start signal ST is a signal having the same potential level as the high potential level of the transmission clock signal and longer than one cycle of the transmission clock signal.
 親局入力部25は監視信号検出手段35、第1CH監視データ抽出手段36a、第2CH監視データ抽出手段36b、および第3CH監視データ抽出手段36cで構成される。監視信号検出手段35は、共通データ信号線DP、DNを経由して第1CH入出力子局4a、第1CH入力子局7a、第2CH入力子局7b、第3CH入力子局7cから送出された監視信号を検出する。監視信号のデータは、既述のように低電位レベルに重畳される電流が10mAより大きいか小さいかで表されており、スタート信号STが送信された後、第1CH入出力子局4a、第1CH入力子局7a、第2CH入力子局7b、第3CH入力子局7cの各々から監視信号を受け取るものとなっている。そして、監視信号検出手段35で検出された監視信号は、第1CH監視データ抽出手段36a、第2CH監視データ抽出手段36b、および第3CH監視データ抽出手段36cに引き渡される。 The master station input unit 25 includes monitoring signal detection means 35, first CH monitoring data extraction means 36a, second CH monitoring data extraction means 36b, and third CH monitoring data extraction means 36c. The monitoring signal detection means 35 is transmitted from the first CH input / output slave station 4a, the first CH input slave station 7a, the second CH input slave station 7b, and the third CH input slave station 7c via the common data signal lines DP and DN. Detect supervisory signals. As described above, the data of the monitoring signal is represented by whether the current superimposed on the low potential level is larger or smaller than 10 mA. After the start signal ST is transmitted, the first CH input / output slave station 4a, the first A monitoring signal is received from each of the 1CH input slave station 7a, the second CH input slave station 7b, and the third CH input slave station 7c. Then, the monitoring signal detected by the monitoring signal detection means 35 is delivered to the first CH monitoring data extraction means 36a, the second CH monitoring data extraction means 36b, and the third CH monitoring data extraction means 36c.
 第1CH監視データ抽出手段36aは、タイミング発生手段32からのタイミングに同期して、第1CH監視データを抽出し、直列の入力データとして第1CH入力データ部26aに送出する。 The first CH monitoring data extracting unit 36a extracts the first CH monitoring data in synchronization with the timing from the timing generating unit 32, and sends it to the first CH input data unit 26a as serial input data.
 第2CH監視データ抽出手段36bは、タイミング発生手段32からのタイミングに同期して、第2CH監視データを抽出し、直列の入力データとして第2CH入力データ部26bに送出する。 The second CH monitoring data extracting means 36b extracts the second CH monitoring data in synchronization with the timing from the timing generating means 32, and sends it to the second CH input data section 26b as serial input data.
 第3CH監視データ抽出手段36cは、タイミング発生手段32からのタイミングに同期して、第3CH監視データを抽出し、直列の入力データとして第3CH入力データ部26cに送出する。 The third CH monitoring data extracting unit 36c extracts the third CH monitoring data in synchronization with the timing from the timing generating unit 32, and sends it to the third CH input data unit 26c as serial input data.
 第1CH入力データ部26aは、第1CH監視データ抽出手段36aから受け取った直列の入力データを並列(パラレル)データに変換し、第1CH監視並列データ14aとして制御部1の第1CH入力ユニット12aへ送出する。また、第2CH入力データ部26bは、第2CH監視データ抽出手段36bから受け取った直列の入力データを並列(パラレル)データに変換し、第2CH監視並列データ14bとして制御部1の第2CH入力ユニット12bへ送出する。更に、第3CH入力データ部26cは、第3CH監視データ抽出手段36cから受け取った直列の入力データを並列(パラレル)データに変換し、第3CH監視並列データ14cとして制御部1の第3CH入力ユニット12cへ送出する。 The first CH input data unit 26a converts the serial input data received from the first CH monitoring data extraction unit 36a into parallel data, and sends it to the first CH input unit 12a of the control unit 1 as the first CH monitoring parallel data 14a. To do. Further, the second CH input data unit 26b converts the serial input data received from the second CH monitoring data extracting unit 36b into parallel data, and the second CH input data 12b of the control unit 1 is converted into the second CH monitoring parallel data 14b. To send. Further, the third CH input data unit 26c converts the serial input data received from the third CH monitoring data extracting unit 36c into parallel data, and the third CH input data 12c of the control unit 1 is converted into the third CH monitoring parallel data 14c. To send.
 第1CH入力子局7aは、図3に示すように、伝送受信手段41、アドレス抽出手段43、第1CH監視データ送信手段45、CH数設定手段47、第1CHアドレスデータ記憶手段51、第1CH最終アドレスデータ記憶手段52、および入力手段71を有する第1CH子局入力部70aを備える。なお、この実施例の入力子局7aは、内部回路としてマイクロコンピュータ・コントロール・ユニットであるMCUを備えており、このMCUが第1CH子局入力部70aとして機能するものとなっている。処理において必要となる演算や記憶は、このMCUの備えるCPU、RAMおよびROMを使用して実行されるが、第1CH子局入力部70aを構成する上記各手段のそれぞれの処理におけるCPU、RAMおよびROMとの関係は、説明の便宜上、図示を省略するものとする。 As shown in FIG. 3, the first CH input slave station 7a includes transmission reception means 41, address extraction means 43, first CH monitoring data transmission means 45, CH number setting means 47, first CH address data storage means 51, first CH final address. An address data storage unit 52 and a first CH slave station input unit 70 a having an input unit 71 are provided. The input slave station 7a of this embodiment includes an MCU which is a microcomputer control unit as an internal circuit, and this MCU functions as the first CH slave station input unit 70a. Calculations and storages necessary for the processing are executed using the CPU, RAM, and ROM included in the MCU. The CPU, RAM, and processing in each processing of each of the above-described units constituting the first CH slave station input unit 70a. The relationship with the ROM is not shown for convenience of explanation.
 伝送受信手段41は、共通データ信号線DP、DNに伝送される伝送クロック信号を受けて、これをアドレス抽出手段43に引き渡す。 The transmission receiving means 41 receives the transmission clock signal transmitted to the common data signal lines DP and DN and delivers it to the address extracting means 43.
 CH数設定手段47は、使用するチャネルの数を指定するもので、設定されたチャネル数はアドレス抽出手段43に引き渡される。 The CH number setting means 47 designates the number of channels to be used, and the set channel number is delivered to the address extraction means 43.
 第1CHアドレスデータ記憶手段51は、第1チャネルの論理アドレスのデータ(図12に示す1#0、1#1など)を指定するもので、設定された第1チャネルの論理アドレスのデータは、アドレス抽出手段43に引き渡される。 The first CH address data storage means 51 designates the data of the logical address of the first channel (1 # 0, 1 # 1, etc. shown in FIG. 12). The data of the set logical address of the first channel is It is delivered to the address extracting means 43.
 第1CH最終アドレスデータ記憶手段52は、第1チャネルの論理アドレスのデータの最大値を設定するもので、設定された第1チャネルの論理アドレスのデータの最大値は、アドレス抽出手段43に引き渡される。 The first CH final address data storage means 52 sets the maximum value of the logical address data of the first channel, and the set maximum value of the logical address data of the first channel is delivered to the address extracting means 43. .
 アドレス抽出手段43は、絶対アドレス生成テーブル48を有し、本実施例のシステム起動時にCH数設定手段47から得たデータ(この実施例では、チャネル数3)に基づき図5に示すように絶対アドレスが3CH列に展開される(図5に示すS1)。次に、第1CH最終アドレスデータ記憶手段52の設定データ1#63(論理アドレスの最大値)に基づき、論理アドレスが1#0から1#63まで展開される(図5のS2)。そして、第1CHアドレスデータ記憶手段51の設定データ(論理アドレスのデータ)に一致する論理アドレスのデータに対応する所定の絶対アドレスを得る(図5のS3)。 The address extraction means 43 has an absolute address generation table 48 and is based on data obtained from the CH number setting means 47 at the time of system startup in this embodiment (in this embodiment, the number of channels is 3) as shown in FIG. The address is developed in the 3CH column (S1 shown in FIG. 5). Next, based on the setting data 1 # 63 (maximum value of the logical address) in the first CH final address data storage means 52, the logical address is expanded from 1 # 0 to 1 # 63 (S2 in FIG. 5). Then, a predetermined absolute address corresponding to the logical address data matching the setting data (logical address data) in the first CH address data storage means 51 is obtained (S3 in FIG. 5).
 例えば、図5に示す実施例では、第1CHアドレスデータ記憶手段51の設定データ(論理アドレスのデータ)が1#0なので絶対アドレス#0、#3、#6、#9までの3間隔のデータを得る。絶対アドレス生成テーブル48で得られた所定の絶対アドレスのデータは、絶対アドレスカウンタ44に順次に引き渡される。絶対アドレスカウンタ44は伝送クロック信号の始まりを示すスタート信号STの終了を起点として伝送クロック信号パルスをカウントする。そして、絶対アドレスカウンタ44は第1CHアドレスデータ記憶手段51の設定データ(論理アドレスのデータ)に対応する所定の絶対アドレスのデータ(図5に示す実施例では#0、#3、#6、#9までの3間隔のデータ)と一致するタイミングで、その都度、その周期の伝送送信信号を第1CH監視データ送信手段45に引き渡し、第1CH監視データ送信手段45を有効にする。なお、絶対アドレス生成テーブル48で得られた1#0に対応する所定の複数絶対アドレスのデータは、まず最初に絶対アドレスカウンタに引き渡される絶対アドレスのデータ(図5に示す実施例では#0)が絶対アドレスカウンタ44のデータと一致する出力タイミングで、次の絶対アドレスのデータ(図5に示す実施例では#3)が絶対アドレスカウンタ44に引き渡され、以降の絶対アドレスのデータも同様に順次引き渡される。 For example, in the embodiment shown in FIG. 5, since the setting data (logical address data) of the first CH address data storage means 51 is 1 # 0, the data at three intervals up to the absolute addresses # 0, # 3, # 6, # 9 Get. Data of a predetermined absolute address obtained in the absolute address generation table 48 is sequentially delivered to the absolute address counter 44. The absolute address counter 44 counts transmission clock signal pulses starting from the end of the start signal ST indicating the start of the transmission clock signal. The absolute address counter 44 is data of a predetermined absolute address (# 0, # 3, # 6, # in the embodiment shown in FIG. 5) corresponding to the setting data (logical address data) of the first CH address data storage means 51. Each time, the transmission transmission signal of that period is transferred to the first CH monitoring data transmitting means 45, and the first CH monitoring data transmitting means 45 is made valid. Note that the data of a predetermined plurality of absolute addresses corresponding to 1 # 0 obtained in the absolute address generation table 48 is first the absolute address data handed over to the absolute address counter (# 0 in the embodiment shown in FIG. 5). Is the output timing that coincides with the data of the absolute address counter 44, the data of the next absolute address (# 3 in the embodiment shown in FIG. 5) is delivered to the absolute address counter 44, and the subsequent absolute address data is also sequentially sequentially. Delivered.
 第一監視データ送信手段45は、アドレス抽出手段43により有効とされた場合に、入力手段71から引き渡されるデータに基づいて、トランジスタTRのベース電流を“on”または“off”とする。ベース電流が“on”の場合、トランジスタTRは”on”となり、共通データ信号線DP、DNに監視信号である20mA単位の電流信号が出力される。 The first monitoring data transmission unit 45 sets the base current of the transistor TR to “on” or “off” based on the data delivered from the input unit 71 when it is validated by the address extraction unit 43. When the base current is “on”, the transistor TR is “on”, and a current signal in units of 20 mA, which is a monitoring signal, is output to the common data signal lines DP and DN.
 入力手段71は、入力部9からの入力データに基づき、監視データを第一監視データ送信手段45に引き渡す。 The input unit 71 delivers the monitoring data to the first monitoring data transmission unit 45 based on the input data from the input unit 9.
 第1CH出力子局6aは、図4に示すように、伝送受信手段41、アドレス抽出手段43、第1CH制御データ抽出手段46、CH数設定手段47、第1CHアドレスデータ記憶手段51、第1CH最終アドレスデータ記憶手段52、および出力手段61を有する第1CH子局出力部60aを備える。第1CH出力子局6aも、第1CH入力子局7aと同様に内部回路としてマイクロコンピュータ・コントロール・ユニットであるMCUを備えている。そして、このMCUが第1CH子局出力部60aとして機能するものとなっている。処理において必要となる演算や記憶は、このMCUの備えるCPU、RAMおよびROMを使用して実行されるが、第1CH子局出力部60aを構成する上記各手段のそれぞれの処理におけるCPU、RAMおよびROMとの関係は、説明の便宜上、図示を省略するものとする。また、図4において、第1CH入力子局7aと実質的に同じ部分には同符号を付し、その説明を簡略化または省略する。 As shown in FIG. 4, the first CH output slave station 6a includes a transmission receiving means 41, an address extracting means 43, a first CH control data extracting means 46, a CH number setting means 47, a first CH address data storage means 51, and a first CH final data. A first CH slave station output unit 60 a having address data storage means 52 and output means 61 is provided. Similarly to the first CH input slave station 7a, the first CH output slave station 6a also includes an MCU that is a microcomputer control unit as an internal circuit. This MCU functions as the first CH slave station output unit 60a. The calculations and storages required for the processing are executed using the CPU, RAM, and ROM included in the MCU. The CPU, RAM, and processing in each processing of each of the above-described means constituting the first CH slave station output unit 60a. The relationship with the ROM is not shown for convenience of explanation. Further, in FIG. 4, the same reference numerals are given to substantially the same parts as those of the first CH input slave station 7a, and the description thereof will be simplified or omitted.
 第1CH制御データ抽出手段46は、絶対アドレス生成テーブル48で得られた絶対アドレス(#0)と絶対アドレスカウンタ44のカウントデータが一致するタイミングでアドレス抽出手段43から引き渡された伝送受信信号から制御データを抽出する。そして、そのデータを第1CH制御データとして出力手段61に引き渡す。 The first CH control data extraction means 46 controls the transmission received signal delivered from the address extraction means 43 at the timing when the absolute address (# 0) obtained in the absolute address generation table 48 matches the count data of the absolute address counter 44. Extract data. Then, the data is delivered to the output means 61 as the first CH control data.
 出力手段61は、第1CH制御データ抽出手段46から引き渡された第1CH制御データをパラレルデータに変換し、出力部8に出力し、出力部8に所定の動作をさせる。 The output unit 61 converts the first CH control data delivered from the first CH control data extraction unit 46 into parallel data, outputs the parallel data to the output unit 8, and causes the output unit 8 to perform a predetermined operation.
 図6に示す第2CH入力子局7bも、第1CH入力子局7aと同様に、内部回路としてマイクロコンピュータ・コントロール・ユニットであるMCUを備えており、このMCUが第2CH子局入力部70bとして機能するものとなっている。そして、第1CH子局入力部70aのMCUと同様に、第2CH入力子局7bの処理において必要となる演算や記憶は、このMCUの備えるCPU、RAMおよびROMを使用して実行されるものとなっている。 Similarly to the first CH input slave station 7a, the second CH input slave station 7b shown in FIG. 6 includes an MCU that is a microcomputer control unit as an internal circuit, and this MCU serves as a second CH slave station input unit 70b. It is supposed to function. As with the MCU of the first CH slave station input unit 70a, the calculations and storages required for the processing of the second CH input slave station 7b are executed using the CPU, RAM and ROM included in this MCU. It has become.
 図6に示すように、第2CH子局入力部70bの機能構成は、図3に示す第1CH子局入力部70aの第1CHアドレスデータ記憶手段51、および、第1CH最終アドレスデータ記憶手段52を、それぞれ、第2CHアドレスデータ記憶手段53、および、第2CH最終アドレスデータ記憶手段54に置き換えたものであり、その他は第1CH子局入力部70aと同じである。そこで、図6において、図3に示す第1CH子局入力部70aと実質的に同じ部位には同符号を付し、その説明を簡略化または省略する。なお、第2CH監視データ送信手段45は、第1CH監視データ送信手段45と同じ機能であるため符号は同一とするが、図の説明の便宜上、名称は異なるものとする。 As shown in FIG. 6, the functional configuration of the second CH slave station input unit 70b includes the first CH address data storage unit 51 and the first CH final address data storage unit 52 of the first CH slave station input unit 70a shown in FIG. These are replaced with the second CH address data storage means 53 and the second CH final address data storage means 54, respectively, and the others are the same as the first CH slave station input unit 70a. Therefore, in FIG. 6, the same reference numerals are given to substantially the same parts as the first CH slave station input unit 70a shown in FIG. 3, and the description thereof is simplified or omitted. The second CH monitoring data transmitting unit 45 has the same function as the first CH monitoring data transmitting unit 45, and therefore the reference numerals are the same, but the names are different for convenience of explanation of the drawing.
 第2CHアドレスデータ記憶手段53は、第2チャネルの論理アドレス(2#0、2#1、2#2、2#3のいずれか)を指定するもので、設定された第2チャネルの論理アドレスのデータは、アドレス抽出手段43に引き渡される。 The second CH address data storage means 53 designates the logical address (2 # 0, 2 # 1, 2 # 2, 2 # 3) of the second channel, and the set logical address of the second channel Is transferred to the address extracting means 43.
 第2CH最終アドレスデータ記憶手段54には、第2チャネルの論理アドレスの最大値として2#3が設定されている。 In the second CH final address data storage means 54, 2 # 3 is set as the maximum value of the logical address of the second channel.
 第2CH子局入力部70bのアドレス抽出手段43は、絶対アドレス生成テーブル48を有し、本発明のシステム起動時にCH数設定手段47から得たデータ(この実施例では、チャネル数3)に基づき図8に示すように絶対アドレスが3CH列に展開される(図8に示すS1)。次に、第2CH最終アドレスデータ記憶手段54の設定データ2#3(論理アドレスの最大値)に基づき、論理アドレスが2#0から2#3までが繰り返し展開される(図8のS2)。そして、第2CHアドレスデータ記憶手段53の設定データ(論理アドレスのデータ)に一致する論理アドレスのデータに対応する所定の絶対アドレスを得る(図8のS3)。 The address extracting unit 43 of the second CH slave station input unit 70b has an absolute address generation table 48, and is based on data obtained from the CH number setting unit 47 when the system of the present invention is started (in this embodiment, the number of channels is 3). As shown in FIG. 8, the absolute address is developed in a 3CH column (S1 shown in FIG. 8). Next, the logical addresses 2 # 0 to 2 # 3 are repeatedly expanded based on the setting data 2 # 3 (maximum value of the logical address) in the second CH final address data storage means 54 (S2 in FIG. 8). Then, a predetermined absolute address corresponding to the logical address data matching the setting data (logical address data) in the second CH address data storage means 53 is obtained (S3 in FIG. 8).
 例えば、図8に示す実施例では、第2CHアドレスデータ記憶手段53の設定データ(論理アドレスのデータ)が2#0なので絶対アドレス#1、#13、#25など、#1から#181まで12間隔の所定のデータを得る。絶対アドレス生成テーブル48で得られた所定の絶対アドレスのデータは、絶対アドレスカウンタ44に順次に引き渡される。絶対アドレスカウンタ44は伝送クロック信号の始まりを示すスタート信号STの終了を起点として伝送クロック信号パルスをカウントする。そして、絶対アドレスカウンタ44は第2CHアドレスデータ記憶手段53の設定データ(論理アドレスのデータ)に対応する所定の絶対アドレスデータ(図8に示す実施例では#1、#13、#25など、#1から#181まで12間隔のデータ)と一致するタイミングで、その都度、その周期の伝送送信信号を第2CH監視データ送信手段45に引き渡し、第2CH監視データ送信手段45を有効にする。なお、絶対アドレス生成テーブル48で得られた2#0に対応する所定の複数絶対アドレスのデータは、まず最初に絶対アドレスカウンタに引き渡される絶対アドレスのデータ(図8に示す実施例では#1)が絶対アドレスカウンタ44のデータと一致する出力タイミングで、次の絶対アドレスのデータ(図8に示す実施例では#13)が絶対アドレスカウンタ44に引き渡され、以降の絶対アドレスのデータも同様に順次引き渡される。 For example, in the embodiment shown in FIG. 8, since the setting data (logical address data) of the second CH address data storage means 53 is 2 # 0, absolute addresses # 1, # 13, # 25, etc. Obtain predetermined data for the interval. Data of a predetermined absolute address obtained in the absolute address generation table 48 is sequentially delivered to the absolute address counter 44. The absolute address counter 44 counts transmission clock signal pulses starting from the end of the start signal ST indicating the start of the transmission clock signal. The absolute address counter 44 has predetermined absolute address data corresponding to the setting data (logical address data) of the second CH address data storage means 53 (# 1, # 13, # 25, etc. in the embodiment shown in FIG. Each time, the transmission transmission signal of that cycle is handed over to the second CH monitoring data transmitting means 45, and the second CH monitoring data transmitting means 45 is validated. Note that the data of a predetermined plurality of absolute addresses corresponding to 2 # 0 obtained in the absolute address generation table 48 is first the absolute address data handed over to the absolute address counter (# 1 in the embodiment shown in FIG. 8). Is the output timing that coincides with the data of the absolute address counter 44, the data of the next absolute address (# 13 in the embodiment shown in FIG. 8) is delivered to the absolute address counter 44, and the subsequent absolute address data is also sequentially sequentially. Delivered.
 なお、第2CH最終アドレスデータ記憶手段54で設定される論理アドレスのデータが小さいほど、伝送応答は速いものとなる。 Note that the smaller the logical address data set in the second CH final address data storage means 54, the faster the transmission response.
 図9に示す第3CH入力子局7cも、第1CH入力子局7aと同様に、内部回路としてマイクロコンピュータ・コントロール・ユニットであるMCUを備えており、このMCUが第3CH子局入力部70cとして機能するものとなっている。そして、第1CH子局入力部70aのMCUと同様に、第3CH入力子局7cの処理において必要となる演算や記憶は、このMCUの備えるCPU、RAMおよびROMを使用して実行されるものとなっている。 Similarly to the first CH input slave station 7a, the third CH input slave station 7c shown in FIG. 9 includes an MCU that is a microcomputer control unit as an internal circuit, and this MCU serves as the third CH slave station input unit 70c. It is supposed to function. Similar to the MCU of the first CH slave station input unit 70a, the computation and storage necessary for the processing of the third CH input slave station 7c are executed using the CPU, RAM, and ROM provided in this MCU. It has become.
 図9に示す第3CH子局入力部70cの機能構成も、図3に示す第1CH子局入力部70aの、第1CHアドレスデータ記憶手段51、および、第1CH最終アドレスデータ記憶手段52を、それぞれ、第3CHアドレスデータ記憶手段55、および、第3CH最終アドレスデータ記憶手段56に置き換えたものであり、その他は第1CH子局入力部70aと同じである。そこで、図9において、第1CH子局入力部70aと実質的に同じ部位には同符号を付し、その説明を簡略化または省略する。なお、第3CH監視データ送信手段45も、第1CH監視データ送信手段45と同じ機能であるため符号は同一とするが、図の説明の便宜上、名称は異なるものとする。 9 also includes a first CH address data storage unit 51 and a first CH final address data storage unit 52 of the first CH slave station input unit 70a shown in FIG. The third CH address data storage means 55 and the third CH final address data storage means 56 are replaced, and the others are the same as the first CH slave station input unit 70a. Therefore, in FIG. 9, parts that are substantially the same as those of the first CH slave station input unit 70a are denoted by the same reference numerals, and description thereof is simplified or omitted. Note that the third CH monitoring data transmission unit 45 has the same function as the first CH monitoring data transmission unit 45, and therefore the reference numerals are the same, but the names are different for convenience of explanation of the drawing.
 第3CHアドレスデータ記憶手段55は、第3チャネルの論理アドレス(図12に示す3#0、3#1など)を指定するもので、設定された第3チャネルの論理アドレスのデータは、アドレス抽出手段43に引き渡される。第3チャネルは、図12、図13に示すように、3伝送クロック信号周期を一単位として、その16単位分で構成されるワードが、伝送クロック信号の1フレームサイクルを1周期Twcとして4ワードを伝送するためのものとなっている。そして、第3CHアドレスデータ記憶手段55には、授受するワードの先頭の論理アドレス、3#0、3#16などが設定される。 The third CH address data storage means 55 designates the third channel logical address (3 # 0, 3 # 1, etc. shown in FIG. 12), and the set third channel logical address data is address extracted. Delivered to means 43. As shown in FIG. 12 and FIG. 13, the third channel is a word composed of 16 transmission clock signal periods as one unit, and four words with one frame cycle of the transmission clock signal as one period Twc. Is intended for transmission. Then, the third CH address data storage means 55 is set with the first logical address of the word to be exchanged, 3 # 0, 3 # 16, and the like.
 第3CH最終アドレスデータ記憶手段56は、第3チャネルの論理アドレスのデータの最大値を設定するもので、設定された第3チャネルの論理アドレスのデータの最大値は、アドレス抽出手段43に引き渡される。 The third CH final address data storage means 56 sets the maximum value of the logical address data of the third channel, and the set maximum value of the logical address data of the third channel is delivered to the address extraction means 43. .
 第3CH子局入力部70cのアドレス抽出手段43は、絶対アドレス生成テーブル48を有し、本発明のシステム起動時にCH数設定手段47から得たデータ(この実施例では、チャネル数3)に基づき図11に示すように絶対アドレスのデータが3CH列に展開される(図11に示すS1)。次に、第3CH最終アドレスデータ記憶手段56の設定データ3#63(論理アドレスの最大値)に基づき、論理アドレスが3#0から3#63まで展開される(図11のS2)。そして、第3CHアドレスデータ記憶手段55の設定データ(論理アドレスのデータ)に一致する論理アドレスに対応する所定の絶対アドレスを得る(図11のS3)。 The address extracting means 43 of the third CH slave station input unit 70c has an absolute address generation table 48, and is based on data obtained from the CH number setting means 47 when the system of the present invention is started (in this embodiment, the number of channels is 3). As shown in FIG. 11, the data of the absolute address is developed in the 3CH column (S1 shown in FIG. 11). Next, based on the setting data 3 # 63 (maximum value of the logical address) in the third CH final address data storage means 56, the logical addresses are expanded from 3 # 0 to 3 # 63 (S2 in FIG. 11). Then, a predetermined absolute address corresponding to the logical address that matches the setting data (logical address data) in the third CH address data storage means 55 is obtained (S3 in FIG. 11).
 例えば、図11に示す実施例では、第3CHアドレスデータ記憶手段55の設定データ(論理アドレスのデータ)が3#0なので絶対アドレス#2、#5など、#2から#51まで3間隔のデータを得る。絶対アドレス生成テーブル48で得られた所定の絶対アドレスのデータは、絶対アドレスカウンタ44に引き渡される。絶対アドレスカウンタ44は、伝送クロック信号の始まりを示すスタート信号STの終了を起点として伝送クロック信号パルスをカウントし、第3CH用アドレスデータ記憶手段55の設定データに対応する所定の絶対アドレスデータ(図11に示す実施例では#2から#51まで3間隔のデータ)と一致するタイミングで、その都度、その周期の伝送送信信号を第3CH監視データ送信手段45に引き渡し、第3CH監視データ送信手段45を有効にする。なお、絶対アドレス生成テーブル48で得られた3#0に対応する所定の複数絶対アドレスのデータは、まず最初に絶対アドレスカウンタに引き渡される絶対アドレスのデータ(図11に示す実施例では#2)が絶対アドレスカウンタ44のデータと一致する出力タイミングで、次の絶対アドレスのデータ(図8に示す実施例では#5)が絶対アドレスカウンタ44に引き渡され、以降の絶対アドレスのデータも同様に順次引き渡される。 For example, in the embodiment shown in FIG. 11, since the setting data (logical address data) of the third CH address data storage means 55 is 3 # 0, data at intervals of 3 from # 2 to # 51, such as absolute addresses # 2, # 5, etc. Get. Data of a predetermined absolute address obtained in the absolute address generation table 48 is delivered to the absolute address counter 44. The absolute address counter 44 counts transmission clock signal pulses starting from the end of the start signal ST indicating the start of the transmission clock signal, and predetermined absolute address data corresponding to the setting data in the third CH address data storage means 55 (see FIG. In the embodiment shown in FIG. 11, the transmission transmission signal of that cycle is handed over to the third CH monitoring data transmitting means 45 at the timing that coincides with the data of three intervals from # 2 to # 51), and the third CH monitoring data transmitting means 45 Enable The data of a predetermined plurality of absolute addresses corresponding to 3 # 0 obtained in the absolute address generation table 48 is first the absolute address data handed over to the absolute address counter (# 2 in the embodiment shown in FIG. 11). Is the output timing that coincides with the data of the absolute address counter 44, the data of the next absolute address (# 5 in the embodiment shown in FIG. 8) is delivered to the absolute address counter 44, and the subsequent absolute address data is also sequentially sequentially. Delivered.
 第1CH入出力子局4aには、対応関係にある出力部8と入力部9の双方が接続されている。そして、第1CH入出力子局4aも、第1CH出力子局6aおよび第1CH入力子局7aと同様、内部回路としてマイクロコンピュータ・コントロール・ユニットであるMCUを備えており、このMCUが第1CH子局入出力部40aとして機能するものとなっている。そして、第1CH子局出力部60aのMCUおよび第1CH子局入力部70aのMCUと同様に、第1CH入出力子局4aの処理において必要となる演算や記憶は、このMCUの備えるCPU、RAMおよびROMを使用して実行されるものとなっている。第1CH子局入出力部40aは、第1CH子局出力部60aと第1CH子局入力部70aの双方をあわせた構成であり、各構成要素は、第1CH子局出力部60aまたは第1CH子局入力部70aの構成要素と同じであるため、説明を省略する。 Both the output unit 8 and the input unit 9 having a corresponding relationship are connected to the first CH input / output slave station 4a. Similarly to the first CH output slave station 6a and the first CH input slave station 7a, the first CH input / output slave station 4a also includes an MCU that is a microcomputer control unit as an internal circuit. It functions as the station input / output unit 40a. Similar to the MCU of the first CH slave station output unit 60a and the MCU of the first CH slave station input unit 70a, the computation and storage required in the processing of the first CH input / output slave station 4a are performed by the CPU and RAM of this MCU. And is executed using a ROM. The first CH slave station input / output unit 40a has a configuration in which both the first CH slave station output unit 60a and the first CH slave station input unit 70a are combined, and each component includes the first CH slave station output unit 60a or the first CH slave unit. Since it is the same as the component of the station input part 70a, description is abbreviate | omitted.
 第2CH出力子局6b、および第3CH出力子局6cも、第1出力子局6aと同様に、内部回路としてマイクロコンピュータ・コントロール・ユニットであるMCUを備えており、このMCUが第2CH子局出力部60b、および第3CH子局出力部60cとして機能するものとなっている。そして、第1CH子局出力部60aのMCUと同様に、第2CH出力子局6b、および第3CH出力子局6cの処理において必要となる演算や記憶は、このMCUの備えるCPU、RAMおよびROMを使用して実行されるものとなっている。 Similarly to the first output slave station 6a, the second CH output slave station 6b and the third CH output slave station 6c include an MCU that is a microcomputer control unit as an internal circuit, and this MCU is the second CH slave station. It functions as the output unit 60b and the third CH slave station output unit 60c. Similar to the MCU of the first CH slave station output unit 60a, the computation and storage required in the processing of the second CH output slave station 6b and the third CH output slave station 6c are performed by the CPU, RAM and ROM provided in this MCU. It is meant to be used and executed.
 図7、図10に示すように、第2CH子局出力部60bおよび第3CH子局出力部60cの機能構成は、図3に示す第1CH子局出力部60aの第1CHアドレスデータ記憶手段51を、第2CHアドレスデータ記憶手段53および第3CHアドレスデータ記憶手段55に、第1CH最終アドレスデータ記憶手段52を、第2CH最終アドレスデータ記憶手段54および第3CH最終アドレスデータ記憶手段56に置き換えたものであり、その他は第1CH子局出力部60aと同じである。従って、説明は省略する。 As shown in FIGS. 7 and 10, the functional configurations of the second CH slave station output unit 60b and the third CH slave station output unit 60c are the same as the first CH address data storage means 51 of the first CH slave station output unit 60a shown in FIG. The second CH address data storage means 53 and the third CH address data storage means 55 are replaced with the first CH final address data storage means 52 by the second CH final address data storage means 54 and the third CH final address data storage means 56. Yes, the others are the same as the first CH slave station output unit 60a. Therefore, the description is omitted.
 この制御・監視信号伝送システムでは、スタート信号の終了を起点とした一単位の伝送クロック信号周期の第一番目が第1チャネルに、第二番目が第2チャネルに、第三番目が第3チャネル割り振られている。また、第1チャネルに割り振られた伝送クロック信号周期が先頭となる一単位(以下、第1CH一単位とする)に、第1CH論理アドレス1#0から1#63が割り当てられる。更に、第2チャネルに割り振られた伝送クロック信号周期が先頭となる一単位(以下、第2CH一単位とする)に、第2CH論理アドレス2#0、2#1,2#2および2#3が割り当てられる。更にまた、第3チャネルに割り振られた伝送クロック信号周期が先頭となる一単位(以下、第3CH一単位とする)に、第3CH論理アドレス3#0から3#63が、ワードアドレスとして割り当てられる。 In this control / monitor signal transmission system, the first transmission clock signal period starting from the end of the start signal is the first channel, the second is the second channel, and the third is the third channel. Allocated. Also, the first CH logical addresses 1 # 0 to 1 # 63 are assigned to one unit (hereinafter referred to as a first CH unit) whose transmission clock signal period allocated to the first channel is the head. Furthermore, the second CH logical addresses 2 # 0, 2 # 1, 2 # 2 and 2 # 3 are assigned to one unit (hereinafter referred to as a second CH unit) whose transmission clock signal period allocated to the second channel is the head. Is assigned. Furthermore, the third CH logical addresses 3 # 0 to 3 # 63 are assigned as word addresses to one unit (hereinafter referred to as a third CH unit) whose transmission clock signal period allocated to the third channel is the head. .
 第1チャネルに属する第1CH入出力子局4a、第1CH出力子局6a、および第1CH入力子局7aに、第1CHアドレス1#0から1#63のいずれかが付与される。自局に付与された第1CHアドレスが割り振られた第1CH一単位の最初の伝送クロック信号周期において、データを授受する。なお、図12において、第1CH制御データは第1CH入出力子局4aまたは第1CH出力子局6aが親局から受けるデータであり、第1CH監視データは、第1CH入出力子局4aまたは第1CH入力子局7aから親局が受けるデータである。 Any one of the first CH addresses 1 # 0 to 1 # 63 is assigned to the first CH input / output slave station 4a, the first CH output slave station 6a, and the first CH input slave station 7a belonging to the first channel. Data is exchanged in the first transmission clock signal period of one unit of the first CH to which the first CH address assigned to the own station is assigned. In FIG. 12, the first CH control data is data received by the first CH input / output slave station 4a or the first CH output slave station 6a from the master station, and the first CH monitoring data is the first CH input / output slave station 4a or the first CH. This is data received by the master station from the input slave station 7a.
 第2チャネルに属する第2CH出力子局6bおよび第2CH入力子局7bには、第2CH論理アドレス2#0,2#1、2#2、2#3のいずれかが付与され、自局に付与された第2CH論理アドレスが割り振られた第2CH一単位の最初の伝送クロック信号周期において、データを授受する。なお、第2チャネルの論理的なフレーム周期Thcは、伝送クロック信号の1フレーム周期Tc(スタート信号から次のスタート信号までの周期)の中で16回繰り返される。これに対し、第1チャネルの論理的なフレーム周期は伝送クロック信号のフレーム周期Tcと等しくなっている。従って、第2チャネルの伝送応答速度は第1チャネルの伝送応答速度の16倍となる。 Any one of the second CH logical addresses 2 # 0, 2 # 1, 2 # 2, and 2 # 3 is assigned to the second CH output slave station 6b and the second CH input slave station 7b belonging to the second channel. Data is exchanged in the first transmission clock signal period of one unit of the second CH to which the assigned second CH logical address is assigned. The logical frame period Thc of the second channel is repeated 16 times within one frame period Tc (period from the start signal to the next start signal) of the transmission clock signal. On the other hand, the logical frame period of the first channel is equal to the frame period Tc of the transmission clock signal. Therefore, the transmission response speed of the second channel is 16 times the transmission response speed of the first channel.
 第3チャネルに属する第3CH出力子局6cおよび第3CH入力子局7cには、第3CH論理アドレス3#0から3#63のいずれかが付与され、自局に付与された第3CH論理アドレスが割り振られた第3CH一単位の最初の伝送クロック信号周期において、データを授受する。なお、第3チャネルで伝送される1ワードデータは、16ビットデータで構成され、伝送目的となるワードデータの先頭論理アドレス(例えば、3#0)を指定することにより、それに対応する所定の絶対アドレスの各々においてデータを授受し、ワードデータの授受を行うことができる。 Any one of the third CH logical addresses 3 # 0 to 3 # 63 is assigned to the third CH output slave station 6c and the third CH input slave station 7c belonging to the third channel, and the third CH logical address assigned to the own channel is assigned. Data is exchanged in the first transmission clock signal period of the allocated third CH unit. The 1-word data transmitted in the third channel is composed of 16-bit data, and by specifying the head logical address (for example, 3 # 0) of the word data to be transmitted, a predetermined absolute value corresponding to it is designated. Data can be exchanged at each address, and word data can be exchanged.
 第3チャネルで伝送されるワードデータは、複数の伝送サイクルで複数ワードを得るものとしてもよい。 The word data transmitted on the third channel may be obtained as a plurality of words in a plurality of transmission cycles.
 なお、各チャネルに割り当てられるスタート信号の終了を起点とした一単位の伝送クロック信号周期の順位は、所定の任意の順位に(例えば、第一番目に第3チャネル、第二番目に第1チャネル、第三番目に第2チャネル)割り振られても良い。 The order of the transmission clock signal period of one unit starting from the end of the start signal assigned to each channel is set to a predetermined arbitrary order (for example, the third channel first, the first channel second , Third, second channel) may be allocated.
 この制御・監視信号伝送システムでは、伝送クロック信号の1周期において制御部側からの制御データと、子局側からの監視データを同時に伝送でき、しかも、3つのチャネルを設けたことから、3種類のデータの送信と受信が同時に行われる伝送方式、いわゆる全6重となっている。ただし、チャネル数に制限はなく、2チャネルの全4重方式としてもよい。 In this control / monitor signal transmission system, control data from the control unit side and monitor data from the slave station side can be transmitted simultaneously in one cycle of the transmission clock signal, and three channels are provided. This is a transmission system in which data transmission and reception are performed at the same time, a so-called six-fold. However, the number of channels is not limited, and a two-channel full-quad scheme may be used.
1  制御部
2  親局
4a 第1CH入出力子局
5  被制御装置
6a 第1CH出力子局
6b 第2CH出力子局
6c 第3CH出力子局
7a 第1CH入力子局
7b 第2CH入力子局
7c 第3CH入力子局
8  出力部
9  入力部
11a 第1CH出力ユニット
11b 第2CH出力ユニット
11c 第3CH出力ユニット
12a 第1CH入力ユニット
12b 第2CH入力ユニット
12c 第3CH入力ユニット
13a 第1CH制御並列データ
13b 第2CH制御並列データ
13c 第3CH制御並列データ
14a 第1CH監視並列データ
14b 第2CH監視並列データ
14c 第3CH監視並列データ
21a 第1CH出力データ部
21b 第2CH出力データ部
21c 第3CH出力データ部
23 タイミング発生部
24 親局出力部
25 親局入力部
26a 第1CH入力データ部
26b 第2CH入力データ部
26c 第3CH入力データ部
31 OSC(発振回路)
32 タイミング発生手段
33 制御データ発生手段
34 ラインドライバ
35 監視信号検出手段
36a 第1CH監視データ抽出手段
36b 第2CH監視データ抽出手段
36c 第3CH監視データ抽出手段
40a 第1CH子局入出力部
41 伝送受信手段
43 アドレス抽出手段
44 絶対アドレスカウンタ
45 監視データ送信手段
46 制御データ抽出手段
47 CH数設定手段
48 絶対アドレス生成テーブル
51 第1CHアドレスデータ記憶手段
52 第1CH最終アドレスデータ記憶手段
53 第2CHアドレスデータ記憶手段
54 第2CH最終アドレスデータ記憶手段
55 第3CHアドレスデータ記憶手段
56 第3CH最終アドレスデータ記憶手段
60a 第1CH子局出力部
60b 第2CH子局出力部
60c 第3CH子局出力部
61 出力手段
70a 第1CH子局入力部
70b 第2CH子局入力部
70c 第3CH子局入力部
71 入力手段
80 出力部一体型子局
90 入力部一体型子局
TR トランジスタ
 
1 Control Unit 2 Master Station 4a First CH I / O Slave Station 5 Controlled Device 6a First CH Output Slave Station 6b Second CH Output Slave Station 6c Third CH Output Slave Station 7a First CH Input Slave Station 7b Second CH Input Slave Station 7c Third CH Input slave station 8 Output unit 9 Input unit 11a First CH output unit 11b Second CH output unit 11c Third CH output unit 12a First CH input unit 12b Second CH input unit 12c Third CH input unit 13a First CH control parallel data 13b Second CH control parallel Data 13c Third CH control parallel data 14a First CH monitoring parallel data 14b Second CH monitoring parallel data 14c Third CH monitoring parallel data 21a First CH output data unit 21b Second CH output data unit 21c Third CH output data unit 23 Timing generating unit 24 Master station Output unit 25 Master station input unit 26a CH input data section 26b first 2CH input data section 26c first 3CH input data unit 31 OSC (oscillation circuit)
32 Timing generating means 33 Control data generating means 34 Line driver 35 Monitoring signal detecting means 36a First CH monitoring data extracting means 36b Second CH monitoring data extracting means 36c Third CH monitoring data extracting means 40a First CH slave station input / output unit 41 Transmission receiving means 43 Address extraction means 44 Absolute address counter 45 Monitoring data transmission means 46 Control data extraction means 47 CH number setting means 48 Absolute address generation table 51 First CH address data storage means 52 First CH final address data storage means 53 Second CH address data storage means 54 Second CH final address data storage means 55 Third CH address data storage means 56 Third CH final address data storage means 60a First CH slave station output section 60b Second CH slave station output section 60c Third CH slave station output section 61 Output Means 70a First CH slave station input section 70b Second CH slave station input section 70c Third CH slave station input section 71 Input means 80 Output section integrated slave station 90 Input section integrated slave station TR Transistor

Claims (4)

  1.  親局と複数の子局が共通データ信号線で接続され、
     前記親局が有するタイミング発生手段で生成されるタイミング信号の制御下で、1周期が第1状態信号と前記第1状態信号に続く第2状態信号とからなる伝送クロック信号が、前記共通データ信号線に伝送され、
     前記伝送クロック信号の連続する複数周期を一単位とし、前記一単位に含まれる周期の各々を所定のチャネルに割り当てることを特徴とする制御・監視信号伝送システム。
    The master station and multiple slave stations are connected by a common data signal line.
    Under the control of the timing signal generated by the timing generator included in the master station, a transmission clock signal consisting of a first state signal and a second state signal following the first state signal is one cycle. Transmitted to the line
    A control / monitoring signal transmission system characterized in that a plurality of consecutive periods of the transmission clock signal are defined as one unit, and each period included in the unit is assigned to a predetermined channel.
  2.  前記チャネルの少なくとも一つを高速伝送チャネルとし、前記高速伝送チャネルに属する子局は、前記伝送信号のスタート信号の終了を起点として、前記伝送クロック信号に基づいた伝送アドレスのカウントを開始し、前記伝送クロック信号のスタート信号と次のスタート信号の間の1フレームサイクルの周期の数に相当するアドレスカウント値より小さい数を最大アドレスカウント値とするアドレスカウンタを備え、前記1フレームサイクルよりも短いサイクルで、前記親局との間でデータの授受を行う請求項1に記載の制御・監視信号伝送システム。 At least one of the channels is a high-speed transmission channel, and a slave station belonging to the high-speed transmission channel starts counting transmission addresses based on the transmission clock signal, starting from the end of the start signal of the transmission signal, A cycle shorter than the one frame cycle, comprising an address counter having a maximum address count value smaller than the address count value corresponding to the number of periods of one frame cycle between the start signal of the transmission clock signal and the next start signal 2. The control / monitor signal transmission system according to claim 1, wherein data is exchanged with the master station.
  3.  前記伝送クロック信号の1周期には、前記第1状態信号と前記第2状態信号の何れか一方に制御信号が含まれ、他方の状態信号に監視信号が含まれる請求項1に記載の制御・監視信号伝送システム。 The control / control circuit according to claim 1, wherein one cycle of the transmission clock signal includes a control signal in one of the first state signal and the second state signal, and a monitoring signal in the other state signal. Monitoring signal transmission system.
  4.  親局が接続され、前記親局が有するタイミング発生手段で生成されるタイミング信号の制御下で、1周期が第1状態信号と前記第1状態信号に続く第2状態信号とからなる伝送クロック信号が伝送される共通データ信号線に接続され、
     自局のアドレスを設定するアドレス設定手段と、
     前記伝送クロック信号の周期をカウントし、前記自局アドレスのデータと一致するタイミングで、前記伝送クロック信号に重畳された制御データを抽出する制御データ抽出処理と、前記一致するタイミングで入力部からの入力信号に応じた監視データを監視信号として前記伝送クロック信号に重畳する監視データ送信処理を行う子局入出力部、あるいは、前記制御データ抽出処理を行う子局出力部と前記監視データ送信処理を行う子局入力部のいずれか一方を備え、
     前記アドレス設定手段は、前記伝送クロック信号の連続する複数周期を一単位としてアドレスを設定することを特徴とするターミナル。
    A transmission clock signal comprising a first state signal and a second state signal following the first state signal under the control of a timing signal generated by a timing generating means of the parent station connected to the parent station Is connected to the common data signal line to be transmitted,
    Address setting means for setting the address of the own station;
    Control data extraction processing that counts the cycle of the transmission clock signal and extracts control data superimposed on the transmission clock signal at a timing that matches the data of the local station address, and from the input unit at the timing that matches. A slave station input / output unit that performs monitoring data transmission processing that superimposes monitoring data corresponding to an input signal as a monitoring signal on the transmission clock signal, or a slave station output unit that performs control data extraction processing and the monitoring data transmission processing One of the slave station input parts to perform
    The terminal according to claim 1, wherein the address setting means sets an address with a plurality of consecutive periods of the transmission clock signal as a unit.
PCT/JP2013/070555 2013-07-30 2013-07-30 Control/monitor signal transmission system WO2015015561A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2013/070555 WO2015015561A1 (en) 2013-07-30 2013-07-30 Control/monitor signal transmission system
JP2014545438A JP5744341B1 (en) 2013-07-30 2013-07-30 Control and monitoring signal transmission system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/070555 WO2015015561A1 (en) 2013-07-30 2013-07-30 Control/monitor signal transmission system

Publications (1)

Publication Number Publication Date
WO2015015561A1 true WO2015015561A1 (en) 2015-02-05

Family

ID=52431142

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/070555 WO2015015561A1 (en) 2013-07-30 2013-07-30 Control/monitor signal transmission system

Country Status (2)

Country Link
JP (1) JP5744341B1 (en)
WO (1) WO2015015561A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002271878A (en) * 2000-06-30 2002-09-20 Haamorinku:Kk Control/monitor signal transmission system
JP2003199178A (en) * 2001-12-28 2003-07-11 Anywire:Kk Control/monitor signal transmission system
JP2013085098A (en) * 2011-10-07 2013-05-09 Kyoto Institute Of Technology Communication system, communication device and communication method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002271878A (en) * 2000-06-30 2002-09-20 Haamorinku:Kk Control/monitor signal transmission system
JP2003199178A (en) * 2001-12-28 2003-07-11 Anywire:Kk Control/monitor signal transmission system
JP2013085098A (en) * 2011-10-07 2013-05-09 Kyoto Institute Of Technology Communication system, communication device and communication method

Also Published As

Publication number Publication date
JPWO2015015561A1 (en) 2017-03-02
JP5744341B1 (en) 2015-07-08

Similar Documents

Publication Publication Date Title
CN103414547B (en) A kind of main website controls method, main website and the system of many slave stations
CN111030909B (en) Method for time synchronization among CAN bus multi-master device communication
KR20110025782A (en) Serial-peripheral interface with reduced number of connection lines
JP5562502B1 (en) Control and monitoring signal transmission system
EP3231670B1 (en) Electronic control device
US20170257019A1 (en) Power Electronic System And Method For Synchronizing Power Modules
JP6741497B2 (en) Signal conversion device, processing device, communication system, and signal conversion method
JP5208327B1 (en) Transmission line address duplication detection method and slave station terminal used for the method
EP2782356B1 (en) Fault detection method and substation terminal used for said method
JP5744341B1 (en) Control and monitoring signal transmission system
JP2001352318A (en) Transmission circuit and its method, reception circuit and its method, and data communication equipment
WO2020228433A1 (en) Synchronization method and device
WO2015056291A1 (en) Control and monitoring signal transmission system
CN101221461A (en) Reset circuit and reset method for embedded system
JP5599533B1 (en) Control and monitoring signal transmission system
CN114342311B (en) Apparatus and method for synchronous serial data transmission
CN102325032B (en) Power supply real-time communication method
WO2013108392A1 (en) Transfer clock signal fault detection scheme, and slave terminal used therein
CN113672540B (en) Two-bus system
JP6655768B2 (en) Control / monitoring signal transmission system
JP6171247B2 (en) Communication system and communication terminal
JP2004227261A (en) Numerical control system
CN101795217A (en) Two diagnosis that communication network is synchronous of the data handling system of electronics
JP5132844B1 (en) Fault detection method and slave station terminal used for that method
JP4987090B2 (en) Signal transmission method in control / monitor signal transmission system

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2014545438

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13890285

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13890285

Country of ref document: EP

Kind code of ref document: A1