WO2015012382A1 - Buried-pipeline measurement device and buried-pipeline measurement method - Google Patents

Buried-pipeline measurement device and buried-pipeline measurement method Download PDF

Info

Publication number
WO2015012382A1
WO2015012382A1 PCT/JP2014/069656 JP2014069656W WO2015012382A1 WO 2015012382 A1 WO2015012382 A1 WO 2015012382A1 JP 2014069656 W JP2014069656 W JP 2014069656W WO 2015012382 A1 WO2015012382 A1 WO 2015012382A1
Authority
WO
WIPO (PCT)
Prior art keywords
measurement
information
measuring
vehicle
pipeline
Prior art date
Application number
PCT/JP2014/069656
Other languages
French (fr)
Japanese (ja)
Inventor
宮崎 幸
上道 司
俊男 山根
健次 小阪
勝久 番上
正人 番上
諭 田所
和則 大野
Original Assignee
積水化学工業株式会社
株式会社アスコ
国立大学法人東北大学
特定非営利活動法人国際レスキューシステム研究機構
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 積水化学工業株式会社, 株式会社アスコ, 国立大学法人東北大学, 特定非営利活動法人国際レスキューシステム研究機構 filed Critical 積水化学工業株式会社
Publication of WO2015012382A1 publication Critical patent/WO2015012382A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/10Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration
    • G01C21/12Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning
    • G01C21/16Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning by integrating acceleration or speed, i.e. inertial navigation
    • G01C21/165Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning by integrating acceleration or speed, i.e. inertial navigation combined with non-inertial navigation instruments
    • G01C21/1656Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning by integrating acceleration or speed, i.e. inertial navigation combined with non-inertial navigation instruments with passive imaging devices, e.g. cameras
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C7/00Tracing profiles
    • G01C7/06Tracing profiles of cavities, e.g. tunnels

Definitions

  • the present invention relates to a technique for measuring the geographical coordinates of the inner surface of a buried pipe such as a sewage pipe, and more particularly to measurement of the buried position of the buried pipe and the technique for measuring the inner shape of the buried pipe. It is.
  • the investigation and diagnosis work includes the identification of the position where the aging pipe is buried, the quantification of the degree of deterioration of the aging pipe, and the accuracy measurement of the inner surface shape required for rehabilitation.
  • the accuracy measurement of the inner surface shape required for rehabilitation there is a case where there is not enough information in the official management ledger to specify the buried position, and the actual situation is that excavation and manual surveying are performed.
  • the diameter required for construction is determined using a dummy pipe insertion survey method, which is inserted over the entire pipe path and inferred the rough shape.
  • the dummy pipe insertion survey method does not know the details of the unevenness of the pipe, meandering, and steps, and may not be constructed as planned.
  • the vehicle As a method of measuring the three-dimensional position of a survey object with a moving object, the vehicle is equipped with an IMU (Inertial Measurement Unit), odometry (odometer), GPS receiver, and GPS information.
  • IMU Inertial Measurement Unit
  • odometry odometer
  • GPS receiver GPS information
  • GPS information GPS information.
  • Patent Document 1 Japanese Patent Laid-Open No. 2013-113702
  • Bayesian filter processing is performed on the obtained data (Kalman filtering) and the surveying method is performed while increasing the accuracy of the self-location.
  • Graph-SLAM is a kind of three-dimensional SLAM (Simultaneous Localization And Mapping) algorithm.
  • the three-dimensional SLAM is an algorithm for simultaneously estimating the position / posture of a measuring device and a surrounding map in a three-dimensional space
  • the Graph-SLAM algorithm is one of three-dimensional SLAM solutions.
  • Graph in the Graph-SLAM algorithm means a graph of a figure.
  • the measuring device is a node (bundling) and the link is made between them.
  • a graph is created in which the link connection is an estimation error regarding the position.
  • a subgraph is added to the previous graph, with the measurement device and the landmark as a node (cohesion), the observation between them as a link, and the strength of the link connection as an observation error.
  • This is a method of constructing a map of the position / posture of the measuring device and its surroundings by estimating the shape of the most applicable graph when the positions of some nodes in the completed graph are known. (See Non-Patent Document 1)
  • the present invention has been made for the purpose of providing a technique that enables accurate estimation and further enables the geographical coordinate positioning of an embedded pipe.
  • the buried pipe measuring device is Travel distance measurement means for measuring travel distance and outputting travel distance information, attitude measurement means or inertia measurement means for measuring the attitude of a measuring vehicle and outputting posture information, and measuring the inner surface shape of a pipe to measure the inner surface
  • a measuring vehicle capable of traveling in a pipeline with an inner surface shape measuring means for outputting shape information;
  • Start position specifying means for specifying the position and orientation of the measurement vehicle at the measurement start position and outputting measurement start position information;
  • An end position specifying means for specifying the position and orientation of the measurement vehicle at the measurement end position and outputting the measurement end position information;
  • While traveling in the pipeline using the travel distance information by the travel distance measurement means and the attitude information by the attitude measurement means or the inertia measurement means, the sequential position information of the measurement vehicle based on the measurement start position is obtained.
  • Sequential position estimation calculation means for performing sequential estimation calculation; Based on the inner surface shape information of the pipeline by the inner surface shape measuring means, sequential position correction calculating means for sequentially correcting and calculating the sequential position information of the measuring vehicle while traveling in the pipeline; After reaching the measurement end position, a three-dimensional SLAM that performs position estimation and map creation in parallel on the basis of the measurement start position information and the measurement end position information based on the sequential position information that has been subjected to the successive correction calculation. And a total correction calculation means for performing total correction calculation processing by a (Simultaneous Localization And Mapping) algorithm and specifying overall position estimation information of a route traveled by the measurement vehicle.
  • a total correction calculation means for performing total correction calculation processing by a (Simultaneous Localization And Mapping) algorithm and specifying overall position estimation information of a route traveled by the measurement vehicle.
  • the present invention is characterized by comprising a pipeline geographical coordinate estimating means for estimating the position of the inner surface of the pipeline and estimating the geographic coordinates of the pipeline.
  • a pipeline geographical coordinate estimating means for estimating the position of the inner surface of the pipeline and estimating the geographic coordinates of the pipeline.
  • the inner surface shape measuring means a laser measuring device for scanning the inner surface of the pipe line is used.
  • the inner surface shape measuring means is configured to obtain information on the inner surface shape of the pipeline by scanning in three non-parallel planes.
  • the inner surface shape measuring means is configured to scan at least a cross-sectional shape of the pipe line by scanning in a plane perpendicular to the pipe axis.
  • the inner surface shape measuring means scans a plane specified by a tube axis direction component and a horizontal direction component orthogonal to the tube axis, and measures at least the cross-sectional shape of the pipe in the tube axis direction. It is configured.
  • the inner surface shape measuring means is configured to scan a vertical plane including a component in the tube axis direction and measure at least a longitudinal sectional shape in the tube axis direction of the conduit.
  • An elevating mechanism is provided for elevating and lowering the gantry on which the inner surface shape measuring means is disposed.
  • the sequential position estimation calculation unit uses the travel distance information by the travel distance measurement unit and the posture information by the posture measurement unit or the inertial measurement unit at the predetermined time for each predetermined time interval.
  • the sequential position information of the measurement vehicle with respect to the vehicle is sequentially updated.
  • the sequential position correction calculation means includes estimated inner surface shape information based on the sequential position information of the measurement vehicle by the sequential position estimation calculation means and the inner surface shape information by the inner surface shape measurement means at predetermined time intervals. Based on this, the sequential position information is subjected to sequential correction calculation processing.
  • the total correction calculation process by the three-dimensional SLAM algorithm is as follows: In the three-dimensional space, the sequential position information that has been subjected to the sequential correction calculation is subjected to all correction calculation processing based on the measurement start position information and the measurement end position information, so that position estimation in the three-dimensional space and map creation are performed in parallel. It is characterized by being executed.
  • the sequential position information of the measurement vehicle between the measurement start position and the specified measurement end position is a link and a node between them, Create a graph with measurement error of link strength, It is characterized by using a Graph-SLAM algorithm that executes the map creation in parallel with the position / posture of the measurement vehicle by estimating the most applicable shape of the graph.
  • the buried pipe measuring method is: Travel distance measurement means for measuring travel distance and outputting travel distance information, attitude measurement means or inertia measurement means for measuring the attitude of a measuring vehicle and outputting posture information, and measuring the inner surface shape of a pipe to measure the inner surface
  • Travel distance measurement means for measuring travel distance and outputting travel distance information
  • attitude measurement means or inertia measurement means for measuring the attitude of a measuring vehicle and outputting posture information
  • a second step of performing successive estimation operations includes a fifth step of performing all correction calculation processing and specifying the overall position estimation information of the route traveled by the measurement vehicle.
  • the measurement start position coordinates of the pipe to be measured are specified, the travel distance measuring means, the posture measuring means or the inertia measuring means, and the inner surface shape measuring means for measuring the inner surface shape of the pipe.
  • Move the equipped measuring vehicle in the pipeline Using the travel distance by the travel distance measurement means and the posture information by the posture measurement means or the inertia measurement means, the sequential position information of the measurement vehicle with respect to the measurement start position is sequentially obtained while traveling in the pipeline.
  • the sequential position information of the measurement vehicle while traveling in the pipeline is corrected and calculated.
  • the inner surface shape measuring unit Based on the overall position estimation information of the route traveled by the measuring vehicle and the inner surface shape information of the pipe line by the inner surface shape measuring unit obtained by the all correction calculation unit, Since it includes a pipeline geographic coordinate estimation means for estimating the position of the inner surface of the pipeline and estimating the geographic coordinates of the pipeline, It is possible to accurately estimate the position of the pipeline based on the travel route.
  • the inner surface shape measuring means since the inner surface shape measuring means uses a laser measuring device that scans the inner surface of the pipeline, it is possible to configure a measuring device for the buried pipeline at a small size and at a low cost.
  • the inner surface shape measuring means scans the three non-parallel planes to obtain the inner surface shape information of the pipe line, so that the inner surface shape information of the pipe line can be obtained in more detail. It is possible to more accurately grasp the situation such as unevenness of the pipeline, meandering and the like.
  • the inner surface shape measuring means since the inner surface shape measuring means scans in a plane perpendicular to the tube axis, it is easy to measure the cross-sectional shape of the pipe line perpendicular to the tube axis. According to the sixth aspect, the inner surface shape measuring means scans the plane specified by the tube axis direction component and the horizontal direction component orthogonal to the tube axis, so the shape of the side surface portion of the inner surface of the pipe line Easy to measure.
  • the inner surface shape measuring means scans the vertical plane including the component in the tube axis direction, it is easy to measure the shapes of the ceiling and the floor on the inner surface of the pipe.
  • the elevating mechanism for elevating the gantry on which the inner surface shape measuring means is disposed is provided, the height of the inner surface shape measuring means coincides with the tube axis even in different pipes. It is easy to arrange and make it easy to grasp the shape of the inner surface of the pipe.
  • the successive position estimation calculation means obtains the travel distance information by the travel distance measurement means and the posture information by the posture measurement means or the inertia measurement means at the predetermined time for each predetermined time interval. Since the sequential position information of the measurement vehicle with respect to the measurement start position is sequentially updated, the sequential position of the measurement vehicle in the actual buried pipeline can be estimated. According to the tenth aspect, the successive inner surface shape measuring means and the inner surface shape measuring means based on the successive position information of the measuring vehicle by the successive position estimation computing means by the successive position correction computing means. Since the sequential position information is sequentially corrected and calculated based on the inner surface shape information according to the above, the sequential position of the measuring vehicle in the actual buried pipeline can be estimated more accurately.
  • the buried pipe measuring method is: While traveling in the pipeline, using the travel distance information by the travel distance measurement means and the attitude information by the attitude measurement means or the inertia measurement means, the sequential position information of the measurement vehicle based on the measurement start position is obtained.
  • a second step of performing successive estimation operations includes a fifth step of performing all correction calculation processing and specifying the overall position estimation information of the route traveled by the measurement vehicle. It is possible to accurately estimate the travel route in the buried pipeline where GPS cannot be directly used, and it is possible to accurately estimate the position of the pipeline based on the travel route.
  • FIG. 1 It is a schematic diagram which shows the one part cross section of the pipe line with which measurement object was embedded in this invention. It is a side view of the measuring vehicle in this invention. It is a front view of the measurement vehicle. It is drawing of the mount frame of the said measuring vehicle, (A) is a top view, (B) is a side view. It is explanatory drawing for demonstrating the scanning plane of each laser measuring device. It is a flowchart of the measurement calculation process in this invention. It is explanatory drawing for demonstrating the component of Roll, Pitch, and Yaw of the said measurement vehicle. It is explanatory drawing for demonstrating Graph-SLAM in this invention.
  • FIG. 1 is a schematic diagram showing an outline of a cross section of a buried pipeline to be measured
  • m1 is a manhole at the measurement start position
  • m2 is a manhole at the measurement end position
  • 1 is a measurement vehicle arranged in the pipe P to be measured.
  • the measurement vehicle 1 moves while measuring the inside of the pipeline P from the manhole m1 at the measurement start position to the manhole m2 at the measurement end position.
  • the inner diameter of the pipe P is sufficiently large, the operator can push it and move it.
  • a rope or the like is connected to the hook of the measuring wheel 1 to complete the measurement. It is moved by pulling from the manhole m2 at the position.
  • the measuring vehicle 1 includes, for example, a vehicle body 2 having two front wheels and two rear wheels, and a horizontal base 3 disposed on the upper portion of the vehicle body 2.
  • FIG. 2 shows a state in which the measuring vehicle 1 is arranged in a horizontal pipeline.
  • the rear part of the vehicle body 2 is provided with an odometry 4 as a travel distance measuring means for measuring travel distance and outputting travel distance information.
  • an IMU 5 as an inertia measurement unit that measures the posture of the measuring vehicle 1 and outputs posture information
  • First, second, and third three laser measuring devices 6, 7, and 8 are fixed as inner surface shape measuring means for measuring the inner surface shape of the pipe and outputting inner surface shape information.
  • the three laser measuring devices 6, 7, and 8 are configured to measure the inner surface shape information of the pipeline by scanning in three planes that are not parallel to each other (specifically, orthogonal to each other). .
  • other posture measuring means can be used instead of the IMU 5 as the inertial measuring means.
  • the odometry 4 includes a mechanism that supports the device in an oblique manner while swinging the support boom 41 so as to be able to contact the inner surface of the tube at a position slightly swung from the tube bottom position just below. Since there is a high probability that sewage flows or deposits exist near the bottom of the tube, the mechanism that supports it diagonally avoids such sewage and deposits and makes contact with the inner surface of the tube, making it more accurate. Distance measurement is possible.
  • the IMU 5 includes a three-axis gyro and a three-direction accelerometer, and requires a three-dimensional angular velocity and acceleration.
  • the direction (posture) of the measurement vehicle can be obtained, and the direction of gravity can be obtained based on the acceleration information.
  • the IMU 5 By accumulating the travel distance by the odometry 4 and the travel direction by the IMU 5, it is possible to sequentially obtain the self-position information of the measurement vehicle based on the measurement start position, and further obtain a travel locus from the measurement start position. . This process is referred to as sequential position estimation calculation (A). Details of the sequential position estimation calculation (A) will be described later.
  • the odometry 4 and the IMU 5 constitute a self-position measuring means for the measuring vehicle.
  • the three laser measuring devices 6, 7, and 8 and the IMU 5 are fixed to the gantry 3 disposed on the measuring vehicle 1 together with the camera 9 for taking an in-tube image.
  • the gantry 3 can be adjusted horizontally so that the scanning axis of the first laser measuring device 6 and the tube axis substantially coincide with each other by moving up and down horizontally by a pantograph mechanism 31 by a handle operation. (See FIGS. 2 and 3.)
  • the first laser measuring device 6 scans the plane perpendicular to the pipe axis direction (plane B, XZ plane in FIG. 5) and measures the sequential position of each point on the inner surface of the pipe in the cross section of the pipe. Is configured to do.
  • the said tube axis direction is a scanning-axis direction of the laser beam in the 1st laser measuring device 6 in an Example.
  • Measurement data obtained from the first laser measurement device 6 is referred to as cross-section measurement sensor data.
  • the second laser measuring device 7 scans a plane (plane A, XY plane in FIG. 5) defined by a tube axis direction component and a horizontal direction component orthogonal to the tube axis direction component, A sequential position of each point on the inner surface of the pipe in a cross section in the pipe axis direction of the pipe is measured. Measurement data obtained from the second laser measurement device 7 is referred to as horizontal measurement sensor data.
  • the third laser measuring device 8 scans the vertical plane (plane C, YZ plane in FIG. 5) including the component in the tube axis direction, and each of the inner surface of the tube in the longitudinal section in the tube axis direction of the tube. It is comprised so that the sequential position of a point may be measured. Measurement data obtained from the third laser measurement device 8 is referred to as vertical measurement sensor data.
  • the gantry 3 has a notch 61 for ensuring a wide scanning range of the first laser measuring device 6 and a wide scanning range of the third laser measuring device 8.
  • a notch 81 for securing is provided.
  • the scanning planes of the three laser measuring devices 6, 7, and 8 are three planes that are orthogonal to each other. However, if the planes are not parallel to each other and intersect, the calculation is complicated. Although it does, it does not need to be orthogonal.
  • the first to third laser measuring devices 6, 7, 8 measure the sequential position of each point on the inner surface of the pipe with reference to a specific reference point of the measuring vehicle 1, thereby 3 Measure the dimensional shape.
  • the initial position and orientation (direction) of the measuring vehicle 1 arranged at the bottom of the manhole m1 that is the measurement start point are measured. This is determined by measuring using a position specifying means such as a GPS device or a total station installed on the ground surface. In such an initial position determination operation, the measuring vehicle 1 is present at the bottom of the manhole or underground such as in a pipe, so it is difficult to directly determine the initial position with a GPS device using GPS radio waves. It is also necessary to determine the posture (direction, direction) of the measurement vehicle in the initial state. Various specific procedures are conceivable as in Examples 1 to 4 described later.
  • the measurement vehicle 1 After determining the initial position and posture of the measurement vehicle 1 by any procedure, the measurement vehicle 1 is moved and measurement of the pipeline P is started. While moving in the pipeline, by accumulating the travel distance by the odometry 4 and the travel direction by the IMU 5, the self-position information of the measurement vehicle 1 based on the measurement start position is calculated as a sequential position estimation calculation (A ). Further, self-position information obtained by sequential position estimation calculation (A) using cross-sectional measurement sensor data, horizontal measurement sensor data, and vertical measurement sensor data obtained by the three laser measurement devices 6, 7, and 8. Are sequentially corrected by a sequential position correction calculation (B) described later to obtain corrected self-position information.
  • the self-position information based on the measurement start position is sequentially measured in the sequential position estimation calculation (A) while moving the measurement vehicle 1 from the measurement start position in the pipeline embedded therein, and further, Then, it goes to the measurement end position while sequentially correcting by the sequential position correction calculation (B).
  • the end position and end posture (direction) of the measurement vehicle 1 are measured using a position specifying means such as a GPS device or a total station installed on the ground.
  • a position specifying means such as a GPS device or a total station installed on the ground.
  • all the self-position information and orientation information obtained by the sequential position correction calculation (B) are corrected using the Graph-SLAM algorithm. .
  • This correction calculation processing is referred to as full correction Graph-SLAM (C).
  • Graph in the Graph-SLAM algorithm means a graphic graph, and the Graph-SLAM algorithm is one of three-dimensional SLAM solutions.
  • a graph is created with the measurement device as a node (bundling), a link between them, and a link connection as an estimation error regarding the position.
  • the graph and the measurement device and the landmark are nodes (units), and the observation between them is a link. Add a subgraph whose link error is the observation error.
  • the landmark corresponds to the position coordinate (measurement start position information) of the carriage at the position of the manhole m1 and the position coordinate (measurement end position information) of the carriage at the position of the manhole m2.
  • the link and the node correspond to the sequential position information of the measuring device between the manholes m1 and m2.
  • step S1 shown in FIG. The initial position (X0, Y0, Z0) and the initial posture (R0, P0, Ya0) of the measuring vehicle 1 are obtained by using position specifying means such as a GPS device installed in the manhole m1 at the measurement start position.
  • X0, Y0, and Z0 indicate the X coordinate component, Y coordinate component, and Z coordinate component of the position information, respectively
  • R0, P0, and Ya0 indicate the Roll component, Pitch component, and Yaw component of the posture information, respectively.
  • step S2 sequential position estimation calculation (A) is performed based on the travel distance information (x, y, z) by odometry 4 and the attitude information (R, P, Ya) by IMU 5, and in step S3, the next Self-position information (Xt, Yt, Zt) and attitude information (Rt, Pt, Yat) are obtained at the position of.
  • step S4 the self-position information (Xt, Yt, Zt) and posture information (Rt, Pt, Yat) are sequentially used by using cross-sectional measurement sensor data, horizontal measurement sensor data, and vertical measurement sensor data.
  • Correction calculation (B) is performed, and in step S5, corrected self-position information (X′t, Y′t, Z′t) and posture information (R′t, P′t, Ya′t) are obtained.
  • the process from step S2 to step S5 is repeated at a predetermined time interval, and the process proceeds to the measurement end position.
  • step S6 the end position (Xe, Ye, Ze) and the end position (Re, Pe, Yae) of the measuring vehicle 1 are obtained using position specifying means such as a GPS device installed in the manhole m2 at the measurement end position. Thereafter, in step S7, all the corrected self-position information (X′t, Y′t, Z′t) and posture information (R′t, P ′) obtained in steps S1 to S5 are obtained.
  • step S7 all the corrected self-position information (X′t, Y′t, Z′t) and posture information (R′t, P ′) obtained in steps S1 to S5 are obtained.
  • (t, Ya't) is corrected based on the end position (Xe, Ye, Ze) and the end position (Re, Pe, Yae) of the measuring vehicle 1. This correction is the total correction Graph-SLAM (C).
  • step S8 all the corrected self-position information (X′t, Y′t, Z′t) and postures from the measurement start position to the measurement end position by the above-described all correction Graph-SLAM (C). All self-position information (X, Y, Z) and posture information (R, P, Ya) from the measurement start position to the measurement end position by correcting the information (R't, P't, Ya't) Confirm.
  • step S9 the self-position information (overall position estimation information) of the measurement vehicle 1 from the measurement start position to the measurement end position is determined over the entire route as described above. Based on the overall position estimation information of the route traveled by the measuring vehicle and the inner surface shape information of the pipe line by the inner surface shape measuring means, it is possible to estimate the position of the tube inner surface at the sequential position of the measuring vehicle 1, The geographical coordinates of the pipeline from the measurement start position to the measurement end position can be determined.
  • step S10 unevenness information in the pipe and meandering information of the pipe line can be obtained as follows.
  • a first laser measuring device 6 for measuring a tube cross section and a third laser measuring device 8 for measuring a vertical cross section parallel to the tube axis are used.
  • the measurement status of the tube cross section by the first laser measurement device 6 is indicated by an ellipse
  • the measurement status of the vertical cross section by the third laser measurement device 8 is indicated by an arrow line.
  • the ceiling and the floor are normally parallel as shown in the area A of FIG. 13, and therefore the inclination (posture) of the measuring wheel 1 and the third laser measuring device 8 as shown in the area B of FIG. 13.
  • the inclination of the ceiling in the pipe measured by (1) does not match, it can be determined that it is uneven. In this case, the inclination of the ceiling and floor does not match. Moreover, when the inclination of the measuring wheel 1 and the inclination of the ceiling and the floor coincide with each other as in the region C of FIG. 13, it can be determined that the pipe is meandering and not uneven.
  • step S1 is a first step described in the claims
  • steps S2 and S3 are the second steps described in the claims
  • steps S4 and S5 are the third step described in the claims
  • step S6 is a fourth step described in the claims
  • steps S7 and S8 correspond to the fifth step recited in the claims.
  • step S9 corresponds to the processing in the pipeline geographical coordinate estimation means described in the claims.
  • the geographical coordinates in the global coordinate system can be obtained at the measurement start position and the measurement end position using a position specifying means such as a GPS device or a total station, the buried pipe from the measurement start position to the measurement end position All the positions can be obtained. Furthermore, since meandering and unevenness can be separated in the middle of the pipeline, the geographical coordinates can be obtained sufficiently accurately even in buried pipelines such as sewage pipes that have actually been used for a long period of time. Therefore, it is possible to accurately determine the location of existing buried pipes such as sewage pipes without performing open-cut work and manual surveys, which can reduce the measurement costs, and future aging social infrastructure Stock development can be promoted without delay.
  • the sequential position estimation calculation (A), the sequential position correction calculation (B), and the total correction calculation (C) are performed by a personal computer (portable type) mounted on the measuring vehicle 1. It may be processed by a small computer.
  • a computer installed outside by transmitting a part or all of measurement information by the odometry 4, the IMU 5, and the three laser measuring devices 6, 7, 8 to the outside at any time via a wired or wireless communication means. May be used to handle accumulation and computation.
  • a wireless communication means using radio waves or infrared rays, or a wired communication means such as a protected communication cable or optical fiber can be used.
  • the protected communication cable or optical fiber may be laid along a lobe that pulls the measuring vehicle 1.
  • the personal computer mounted on the measuring vehicle 1 or the computer installed outside is the sequential position estimating means, sequential position correcting means, all correction calculating means, and pipeline geographical coordinate estimating means described in the claims. It corresponds to.
  • Position x t of the measuring vehicle at time t is obtained by the following equation.
  • x is the position of the measuring vehicle
  • is the posture of the measuring vehicle
  • u is the minute change amount.
  • ⁇ x t Measurement result of odometry 4 at time t
  • ⁇ r Rotation angle around roll axis
  • ⁇ p Rotation angle around pitch axis
  • ⁇ y Rotation angle around yaw axis
  • R is a rotation matrix around each axis as shown below.
  • the sequential position correction calculation (B) is performed by the cross-section measurement sensor data obtained by the first laser measurement device 6, the horizontal measurement sensor data obtained by the second laser measurement device 7, and the third laser measurement device 8.
  • the correction is performed using the obtained vertical measurement sensor data, and it is considered that the error is large only by the position estimation by the odometry 4. Therefore, the position is sequentially corrected by using the three laser measuring devices 6, 7, and 8. It is.
  • the position by the odometry 4 at time t is x t
  • the measured value of the tube shape by the laser measuring device is z t .
  • h (x t ) is an estimated value of the in-pipe shape at time t based on minute position movement measured by odometry and IMU from the position at the previous time. Since z t and h (x t ) do not match due to an error, the position x t is corrected by adding the difference multiplied by a constant K.
  • K is a Kalman gain, which is expressed as a ratio of covariance matrices ⁇ and ⁇ (position data error magnitude).
  • Graph-SLAM is used to correct the measurement end position at the manhole m2 position.
  • the x that minimizes J Graph-SLAM shown by the following equation is the most probable estimation result. Since g (u t , x tt ) is a function that estimates the current position from the previous position and the minute movement amount, x t -g (u t , x tt ) is the difference between the estimated positions. [X t -g (u t , x tt )] T R -1 [x t -g (u t , x tt )] Is a constraint of the motion model.
  • h (m c , x t ) is a measurement function when the position x of the measurement vehicle is measured from the manhole position m.
  • ⁇ [z t -h (m c , x t )] T Q -1 [z t -h] obtained by multiplying this and the actual measured value z by the covariance matrix Q (indicating the magnitude of the error) (m c , x t )] is a constraint condition of the measurement model. (See Figure 8.) The sum of these constraints is J Graph-SLAM shown below.
  • the vector having the largest tilt error is Yaw.
  • Roll and pitch can be corrected by detecting the direction of gravity with IMU.
  • Yaw needs to detect geomagnetism for error correction, but it cannot use Yaw's automatic error correction because geomagnetism cannot be used in buried pipes.
  • Yaw's automatic error correction can be performed by using the correction by the three laser measuring devices in combination and performing the sequential correction calculation (B) in the pipeline.
  • B sequential correction calculation
  • Yaw's automatic error correction can be performed by using the correction by the three laser measuring devices in combination and performing the sequential correction calculation (B) in the pipeline.
  • B sequential correction calculation
  • C total correction Graph-SLAM
  • the total station TS is disposed in the upper opening of the manhole m1 at the measurement start position, and the measurement vehicle 1 is disposed on the bottom surface of the manhole m1 directly below the total station TS.
  • the bottom of the manhole m1 is connected to the pipe P to be measured.
  • the grid plate 11 is installed in the measuring wheel 1, the laser centripetal device LC is attached to the total station TS, and the ground position of the total station TS is adjusted so that the centripetal laser is irradiated to the grid plate 11.
  • the ground coordinates are obtained by measurement at the total station TS at that position. Also, the position on the grid plate 11 where the centripetal laser is irradiated is recorded. The distance from the total station TS to the grid plate 11 is measured using a distance measuring means such as a measure. The above method is also performed at another position on the grid plate 11, and two different coordinate positions of the measuring wheel 1 are specified. The posture of the measuring vehicle 1 is specified from the two coordinate positions. As described above, the position and orientation of the measurement vehicle 1 at the measurement start position are determined. The same operation is performed in the manhole m2 at the measurement end position. In the above, the total station TS, the laser centripetal device LC, the distance measuring means, and the grid plate 11 correspond to the start position specifying means or the end position specifying means described in the claims.
  • the measuring vehicle 1 can be seen directly from the ground, but the manhole m1 may be just a space for connection to the pipe as shown in FIG. In that case, the following second specific method can be used.
  • a cube 12 is installed directly under the manhole. From the ground, the position of the cube 12 is measured using a total station or the like in the same manner as described above. Further, from the measuring wheel 1, the position shape of the cube 12 is measured using the laser measuring devices 7, 8 and 9. Thereby, the position and posture of the measurement vehicle 1 at the measurement start position are determined. The same operation is performed in the manhole m2 at the measurement end position.
  • the total station, the cube 12, and the laser measuring devices 7, 8, and 9 correspond to the start position specifying means or the end position specifying means described in the claims.
  • the LED lamps 13 are installed in four places on the measuring vehicle 1, and an appliance with a camera CM that can be installed instead of a manhole cover is installed.
  • the position of the camera CM is measured on the ground using a total station or the like.
  • the position and orientation of the measuring vehicle 1 are specified by photogrammetry.
  • the same operation is performed in the manhole m2 at the measurement end position.
  • the total station, the camera CM, and the LED lamp 13 correspond to the start position specifying means or the end position specifying means described in the claims.
  • the fourth specific method is to install the grid plate 14 on the measuring wheel 1 and specify the grid plate 14 with the handy measuring instruments H1, H2, and H3 from three locations on the ground. Measure the distance to the location.
  • the coordinate positions of the handy measuring instruments H1, H2, and H3 are measured on the ground using a total station or the like. Thereby, the position and orientation of the measurement vehicle 1 are specified.
  • the same operation is performed in the manhole m2 at the measurement end position.
  • the manhole m1 at the measurement start position and the manhole 2 at the measurement end position are not limited to the same method, and different methods may be used.
  • the total station, the handy measuring instruments H1, H2, H3, and the grid plate 14 correspond to the start position specifying means or the end position specifying means described in the claims.
  • the travel distance measuring means various distance measuring means can be used as long as the travel distance is measured instead of the odometry using the wheels.
  • attitude measurement means or the inertia measurement means a technique such as an attitude / direction reference apparatus (AHRS) using geomagnetism can be used instead of the inertia measurement apparatus (IMU).
  • An inertial measurement device (IMU) is preferred because geomagnetism may not be available in the buried pipeline.
  • the inner surface shape measuring unit is not limited to the laser measuring device, and various distance measuring devices that can measure the distance from the inner surface measuring unit to the inner wall surface of the tube in a non-contact manner can be used. For example, a distance measuring device using a sufficiently high-precision millimeter wave radar can be used.
  • Inner surface shape information is used using one or more laser measuring devices. It is possible to obtain If the number of laser measuring devices is increased, more accurate measurement can be performed. If the inner diameter of the tube is known to some extent, one laser measuring device can be used. It is also possible to use a three-dimensional measuring apparatus using a light cutting method that obtains a three-dimensional position of an object by projecting a thin sheet of light based on the principle of triangulation. Although it is expensive at the present time, it is also possible to configure the inner surface shape measuring means of the tube with a single three-dimensional scanner device using a three-dimensional scanner device.

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Multimedia (AREA)
  • Sewage (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

 In order to make it possible to estimate the travel route of an instrumented vehicle and estimate the position of a buried pipeline even when the buried pipeline is devoid of characteristic landmarks, this buried-pipeline measurement device includes: an instrumented vehicle provided with an odometry means for measuring a travel distance, an IMU for measuring the orientation of the instrumented vehicle, and three laser measurement devices (6-8) for scanning in three mutually intersecting planes and obtaining internal-surface-shape information of the pipeline; a position specifying means for specifying a measurement start position, a measurement end position, and an orientation; a sequential position estimation calculation means for sequentially estimating and calculating sequential position information of the instrumented vehicle using the travel distance obtained by the odometry means and the orientation information obtained by the IMU; and a sequential position correction calculation means for performing a correction calculation on the sequential position information of the instrumented vehicle on the basis of the internal-surface-shape information of the pipeline obtained by the three laser measurement devices (6-8); an overall correction of the correction-calculated sequential position information being performed by a three-dimensional SLAM algorithm and overall position information in the travel route being specified after the measurement end position is reached.

Description

埋設管路の計測装置、及び、埋設管路の計測方法Buried pipe measuring device and buried pipe measuring method
 本発明は、下水管等の埋設管路の内面の地理座標を測位する技術に関するものであって、詳しくは前記埋設管路の埋設位置の測量、及び前記埋設管の内面形状の測定技術に関するものである。 The present invention relates to a technique for measuring the geographical coordinates of the inner surface of a buried pipe such as a sewage pipe, and more particularly to measurement of the buried position of the buried pipe and the technique for measuring the inner shape of the buried pipe. It is.
 近年、下水管路等インフラ設備の老朽化が進む中で、老朽管の更新に向けては様々な調査が必要となってきている。
 例えば老朽管の埋設位置の特定、及び老朽管の劣化度合いの定量化、また更生時に必要な内面形状の精度測量等が調査診断業務としてなされている。
 このうち、埋設位置の特定については、公的な管理台帳においても充分な情報が無い場合があり、開削及び人手による測量を行っているのが現状である。
 また、老朽管の復旧措置として、既設管内に別の管を敷設する更生工法があるが、更生前には内面形状の精度測量が必要であり、現状では既設管径よりやや小径のダミー管を全管経路に渡って挿入し、おおまかな形状を推察するダミー管挿入調査法を用いて、施工時に必要な口径を決定している。
In recent years, with the aging of infrastructure facilities such as sewage pipes, various investigations have become necessary for the replacement of aging pipes.
For example, the investigation and diagnosis work includes the identification of the position where the aging pipe is buried, the quantification of the degree of deterioration of the aging pipe, and the accuracy measurement of the inner surface shape required for rehabilitation.
Among these, there is a case where there is not enough information in the official management ledger to specify the buried position, and the actual situation is that excavation and manual surveying are performed.
In addition, there is a rehabilitation method for laying another pipe in the existing pipe as a measure to restore the old pipe, but before rehabilitation, an accurate survey of the inner surface shape is required. The diameter required for construction is determined using a dummy pipe insertion survey method, which is inserted over the entire pipe path and inferred the rough shape.
特開2013-113702号公報JP 2013-113702 特開2009-121945号公報JP 2009-121945
 下水管等埋設管の埋設位置の特定について、開削工事と人手による測量を行う場合、公共道路の封鎖や膨大な測量費用を必要とする。今後の老朽化した社会インフラは益々増大し、これらコストの課題を解決する事は老朽化したインフラストックの整備を遅滞なく進める上で急務となってくる。
 埋設管の内面形状の測量において、ダミー管挿入調査法においては、管路の不陸、蛇行、段差の詳細がわからず、計画設計通りに施工出来ない場合がある。
When excavation work and manual surveying are performed to identify the location of buried pipes such as sewage pipes, blocking public roads and enormous surveying costs are required. In the future, the aging social infrastructure will increase more and more, and solving these cost issues will be an urgent need to proceed with the development of the aging infrastructure stock without delay.
In surveying the inner shape of the buried pipe, the dummy pipe insertion survey method does not know the details of the unevenness of the pipe, meandering, and steps, and may not be constructed as planned.
 測量対象物の3次元位置を移動体により測量する方法としては、車両にIMU(Inertial Measurement Unitの略。慣性計測装置)とオドメトリ(odometry。走行距離計)、GPS受信装置を搭載し、GPS情報を元に逐次自己位置の補正をしながら測量する方法(特開2013-113702)がある(特許文献1参照)。
 また、上記同様の測量におけるIMUの累積誤差、及びGPS受信のバラツキより生じる誤差を補正するために、得られたデータにベイズフィルタ処理を行い(Kalmanフィルタリング)自己位置の精度を上げながら測量する方法がある(特開2009-121945)(特許文献2参照)。
As a method of measuring the three-dimensional position of a survey object with a moving object, the vehicle is equipped with an IMU (Inertial Measurement Unit), odometry (odometer), GPS receiver, and GPS information. There is a method (Japanese Patent Laid-Open No. 2013-113702) for performing surveying while successively correcting the self-position based on the above (see Patent Document 1).
In addition, in order to correct the accumulated error of IMU and the error caused by the variation in GPS reception in the same surveying as above, Bayesian filter processing is performed on the obtained data (Kalman filtering) and the surveying method is performed while increasing the accuracy of the self-location. (Japanese Patent Laid-Open No. 2009-121945) (see Patent Document 2).
 これら先行技術はいずれもオドメトリ及びIMUにより連続的な自己位置の移動を計測しながら、約1秒間隔で受信できるGPSによりその誤差を逐次補正し、自己位置を特定する方法である。
 しかしながら、これら技術的アルゴリズムを、埋設された管路の地理座標測位に適用する場合、逐次のGPS補正が出来ない。
Each of these prior arts is a method of identifying self-position by successively correcting the error by GPS which can be received at intervals of about 1 second while measuring continuous self-position movement by odometry and IMU.
However, when these technical algorithms are applied to the geographical coordinate positioning of buried pipes, sequential GPS correction cannot be performed.
 これに対し、IMU、オドメトリの誤差を最小化するアルゴリズムとして、近年、三次元SLAM(Simultaneous Localization And Mapping)アルゴリズムの一種であるGraph-SLAMアルゴリズムの活用が試みられている。前記三次元SLAMは、3次元空間で計測装置の位置・姿勢と周辺の地図を同時に推定するアルゴリズムであり、前記Graph-SLAMアルゴリズムは三次元SLAMの解法の1つである。
 Graph-SLAMアルゴリズムのGraphとは図形のグラフの意味であり、Graph-SLAMアルゴリズムにおいては、計測装置(台車・センサ)で周囲を計測するたびに、計測装置をノード(結束)とし、その間をリンクとし、リンクのつながりを位置に関する推定誤差とするグラフを作成する。また、ランドマークを観測するたびに、先ほどのグラフに、計測装置とランドマークをノード(結束)とし、その間の観測をリンクとし、リンクのつながりの強さを観測誤差とする部分グラフを追加する。できたグラフのいくつかのノードの位置が分かった際に、もっともよく当てはまるグラフの形を推定することで、計測装置の位置・姿勢と周辺の地図を構築する方法である。(非特許文献1参照)
On the other hand, as an algorithm for minimizing IMU and odometry errors, in recent years, an attempt has been made to use a Graph-SLAM algorithm which is a kind of three-dimensional SLAM (Simultaneous Localization And Mapping) algorithm. The three-dimensional SLAM is an algorithm for simultaneously estimating the position / posture of a measuring device and a surrounding map in a three-dimensional space, and the Graph-SLAM algorithm is one of three-dimensional SLAM solutions.
Graph in the Graph-SLAM algorithm means a graph of a figure. In the Graph-SLAM algorithm, every time the surroundings are measured with a measuring device (cart / sensor), the measuring device is a node (bundling) and the link is made between them. Then, a graph is created in which the link connection is an estimation error regarding the position. Each time a landmark is observed, a subgraph is added to the previous graph, with the measurement device and the landmark as a node (cohesion), the observation between them as a link, and the strength of the link connection as an observation error. . This is a method of constructing a map of the position / posture of the measuring device and its surroundings by estimating the shape of the most applicable graph when the positions of some nodes in the completed graph are known. (See Non-Patent Document 1)
 しかし、埋設管路内に特徴的なランドマークを設定する事は作業上困難、設置できたとしても管路全般に渡って設置するのは現実的で無い。
 そこで、埋設管路内に特徴的なランドマークがない場合であっても、最低限、計測開始位置と計測終了位置の座標を特定することができれば、埋設管路内における計測車の走行回路を正確に推定することを可能とし、さらには、埋設された管路の地理座標測位を可能とする技術を提供することを目的として本発明はなされたものである。
However, it is difficult to set a characteristic landmark in the buried pipeline, and even if it can be installed, it is not realistic to install it over the entire pipeline.
Therefore, even if there are no characteristic landmarks in the buried pipeline, if the coordinates of the measurement start position and measurement end position can be specified at least, the travel circuit of the measurement vehicle in the buried pipeline can be The present invention has been made for the purpose of providing a technique that enables accurate estimation and further enables the geographical coordinate positioning of an embedded pipe.
 本発明の請求項1に係る埋設管路の計測装置は、
走行距離を計測して走行距離情報を出力する走行距離計測手段、計測車の姿勢を計測して姿勢情報を出力する姿勢計測手段または慣性計測手段、および、管路の内面形状を計測して内面形状情報を出力する内面形状計測手段を備えて管路内を走行可能な計測車と、
計測開始位置における計測車の位置と姿勢を特定して計測開始位置情報を出力する開始位置特定手段と、
計測終了位置における計測車の位置と姿勢を特定して計測終了位置情報を出力する終了位置特定手段と、
前記管路内を走行中に、前記走行距離計測手段による走行距離情報と前記姿勢計測手段または慣性計測手段による姿勢情報を用いて、前記計測開始位置を基準とした前記計測車の逐次位置情報を逐次推定演算する逐次位置推定演算手段と、
前記内面形状計測手段による管路の内面形状情報に基づいて、前記管路内を走行中における前記計測車の逐次位置情報を逐次補正演算する逐次位置補正演算手段と、
前記計測終了位置に到達後において、前記逐次補正演算された前記逐次位置情報を、前記計測開始位置情報と前記計測終了位置情報に基づいて、位置推定と地図作製を並行して実行する三次元SLAM(Simultaneous Localization And Mapping)アルゴリズムによって全補正演算処理して、前記計測車が走行した経路の全体位置推定情報を特定する全補正演算手段と
を備えたことを特徴としている。
The buried pipe measuring device according to claim 1 of the present invention is
Travel distance measurement means for measuring travel distance and outputting travel distance information, attitude measurement means or inertia measurement means for measuring the attitude of a measuring vehicle and outputting posture information, and measuring the inner surface shape of a pipe to measure the inner surface A measuring vehicle capable of traveling in a pipeline with an inner surface shape measuring means for outputting shape information;
Start position specifying means for specifying the position and orientation of the measurement vehicle at the measurement start position and outputting measurement start position information;
An end position specifying means for specifying the position and orientation of the measurement vehicle at the measurement end position and outputting the measurement end position information;
While traveling in the pipeline, using the travel distance information by the travel distance measurement means and the attitude information by the attitude measurement means or the inertia measurement means, the sequential position information of the measurement vehicle based on the measurement start position is obtained. Sequential position estimation calculation means for performing sequential estimation calculation;
Based on the inner surface shape information of the pipeline by the inner surface shape measuring means, sequential position correction calculating means for sequentially correcting and calculating the sequential position information of the measuring vehicle while traveling in the pipeline;
After reaching the measurement end position, a three-dimensional SLAM that performs position estimation and map creation in parallel on the basis of the measurement start position information and the measurement end position information based on the sequential position information that has been subjected to the successive correction calculation. And a total correction calculation means for performing total correction calculation processing by a (Simultaneous Localization And Mapping) algorithm and specifying overall position estimation information of a route traveled by the measurement vehicle.
 請求項2では、さらに、
前記全補正演算手段にて得られた、前記計測車が走行した経路の全体位置推定情報と、前記内面形状計測手段による前記管路の内面形状情報に基づいて、
前記管路の内面の位置を推定し、前記管路の地理座標を推定する管路地理座標推定手段を備えたことを特徴としている。
 請求項3では、
前記内面形状計測手段は、管路の内面を走査するレーザー計測装置が用いられている。
 請求項4では、
前記内面形状計測手段は、互いに非平行な3つの平面内を走査して管路の内面形状情報を得るように構成されている。
In claim 2, further,
Based on the overall position estimation information of the route traveled by the measuring vehicle and the inner surface shape information of the pipe line by the inner surface shape measuring unit obtained by the all correction calculation unit,
The present invention is characterized by comprising a pipeline geographical coordinate estimating means for estimating the position of the inner surface of the pipeline and estimating the geographic coordinates of the pipeline.
In claim 3,
As the inner surface shape measuring means, a laser measuring device for scanning the inner surface of the pipe line is used.
In claim 4,
The inner surface shape measuring means is configured to obtain information on the inner surface shape of the pipeline by scanning in three non-parallel planes.
 請求項5では、
前記内面形状計測手段は、管軸に垂直な平面内を走査して、少なくとも管路の断面形状を計測するように構成されている。
 請求項6では、
前記内面形状計測手段は、管軸方向成分と、前記管軸に直交する水平方向成分とで特定される平面内を走査して、少なくとも管路の管軸方向の横断面形状を計測するように構成されている。
In claim 5,
The inner surface shape measuring means is configured to scan at least a cross-sectional shape of the pipe line by scanning in a plane perpendicular to the pipe axis.
In claim 6,
The inner surface shape measuring means scans a plane specified by a tube axis direction component and a horizontal direction component orthogonal to the tube axis, and measures at least the cross-sectional shape of the pipe in the tube axis direction. It is configured.
 請求項7では、
前記内面形状計測手段は、管軸方向成分を含む垂直平面内を走査して、少なくとも管路の管軸方向の縦断面形状を計測するように構成されている。
 請求項8では、
前記内面形状計測手段が配設された架台を昇降させる昇降機構を備えている。
In claim 7,
The inner surface shape measuring means is configured to scan a vertical plane including a component in the tube axis direction and measure at least a longitudinal sectional shape in the tube axis direction of the conduit.
In claim 8,
An elevating mechanism is provided for elevating and lowering the gantry on which the inner surface shape measuring means is disposed.
 請求項9では、
前記逐次位置推定演算手段は、所定の時間間隔ごとに、前記所定の時間での前記走行距離計測手段による走行距離情報と前記姿勢計測手段または慣性計測手段による姿勢情報を用いて、前記計測開始位置を基準とした前記計測車の逐次位置情報を逐次更新することを特徴としている。
 請求項10では、
前記逐次位置補正演算手段は、所定の時間間隔ごとに、前記逐次位置推定演算手段による前記計測車の逐次位置情報に基づいた推定内面形状情報と、前記内面形状計測手段による前記内面形状情報とに基づいて、前記逐次位置情報を逐次補正演算処理することを特徴としている。
In claim 9,
The sequential position estimation calculation unit uses the travel distance information by the travel distance measurement unit and the posture information by the posture measurement unit or the inertial measurement unit at the predetermined time for each predetermined time interval. The sequential position information of the measurement vehicle with respect to the vehicle is sequentially updated.
In claim 10,
The sequential position correction calculation means includes estimated inner surface shape information based on the sequential position information of the measurement vehicle by the sequential position estimation calculation means and the inner surface shape information by the inner surface shape measurement means at predetermined time intervals. Based on this, the sequential position information is subjected to sequential correction calculation processing.
 請求項11では、
前記三次元SLAMアルゴリズムによる全補正演算処理は、
三次元空間において、前記逐次補正演算された前記逐次位置情報を、前記計測開始位置情報と前記計測終了位置情報に基づいて全補正演算処理して、三次元空間における位置推定と地図作製を並行して実行することを特徴としている。
In claim 11,
The total correction calculation process by the three-dimensional SLAM algorithm is as follows:
In the three-dimensional space, the sequential position information that has been subjected to the sequential correction calculation is subjected to all correction calculation processing based on the measurement start position information and the measurement end position information, so that position estimation in the three-dimensional space and map creation are performed in parallel. It is characterized by being executed.
 請求項12では、
前記三次元SLAMアルゴリズムとしては、
特定された前記計測開始位置と特定された前記計測終了位置をランドマークとし、
前記計測開始位置と特定された前記計測終了位置の間における計測車の逐次位置情報をその間のリンクとノードとし、
リンクのつながりの強さを計測誤差とするグラフを作成して、
前記グラフが最も当てはまる形を推定することで、前記計測車の位置・姿勢と、地図作製を並行して実行するGraph-SLAMアルゴリズムを用いることを特徴としている。
In claim 12,
As the three-dimensional SLAM algorithm,
With the specified measurement start position and the specified measurement end position as landmarks,
The sequential position information of the measurement vehicle between the measurement start position and the specified measurement end position is a link and a node between them,
Create a graph with measurement error of link strength,
It is characterized by using a Graph-SLAM algorithm that executes the map creation in parallel with the position / posture of the measurement vehicle by estimating the most applicable shape of the graph.
 請求項13に係る埋設管路の計測方法は、
走行距離を計測して走行距離情報を出力する走行距離計測手段、計測車の姿勢を計測して姿勢情報を出力する姿勢計測手段または慣性計測手段、および、管路の内面形状を計測して内面形状情報を出力する内面形状計測手段を備えて管路内を走行可能な計測車を用いた埋設管路の計測方法であって、
計測開始位置における計測車の位置と姿勢を特定して計測開始位置情報を得る第1のステップと、
前記管路内を走行中に、前記走行距離計測手段による走行距離情報と前記姿勢計測手段または慣性計測手段による姿勢情報を用いて、前記計測開始位置を基準とした前記計測車の逐次位置情報を逐次推定演算する第2のステップと、
前記内面形状計測手段による管路の内面形状情報に基づいて、前記管路内を走行中における前記計測車の逐次位置情報を逐次補正演算する第3のステップと、
前記計測終了位置に到達後において、計測終了位置における計測車の位置と姿勢を特定して計測終了位置情報を得る第4のステップと、
前記計測終了位置に到達後において、前記逐次補正演算された前記逐次位置情報を、前記計測開始位置情報と前記計測終了位置情報に基づいて、位置推定と地図作製を並行して実行する三次元SLAM(Simultaneous Localization And Mapping)アルゴリズムによって全補正演算処理して、前記計測車が走行した経路の全体位置推定情報を特定する第5のステップと
を含んでいる。
The buried pipe measuring method according to claim 13 is:
Travel distance measurement means for measuring travel distance and outputting travel distance information, attitude measurement means or inertia measurement means for measuring the attitude of a measuring vehicle and outputting posture information, and measuring the inner surface shape of a pipe to measure the inner surface A method for measuring a buried pipeline using a measuring vehicle capable of traveling in a pipeline with an inner surface shape measuring means for outputting shape information,
A first step of obtaining measurement start position information by specifying the position and orientation of the measurement vehicle at the measurement start position;
While traveling in the pipeline, using the travel distance information by the travel distance measurement means and the attitude information by the attitude measurement means or the inertia measurement means, the sequential position information of the measurement vehicle based on the measurement start position is obtained. A second step of performing successive estimation operations;
A third step of successively correcting and calculating the sequential position information of the measuring vehicle while traveling in the pipeline based on the inner surface shape information of the pipeline by the inner surface shape measuring means;
A fourth step of obtaining the measurement end position information by specifying the position and orientation of the measurement vehicle at the measurement end position after reaching the measurement end position;
After reaching the measurement end position, a three-dimensional SLAM that performs position estimation and map creation in parallel on the basis of the measurement start position information and the measurement end position information based on the sequential position information that has been subjected to the successive correction calculation. (Simultaneous Localization And Mapping) includes a fifth step of performing all correction calculation processing and specifying the overall position estimation information of the route traveled by the measurement vehicle.
 本発明によれば、計測対象の管路の計測開始位置座標を特定しておき、走行距離計測手段、姿勢計測手段または慣性計測手段、および、管路の内面形状を計測する内面形状計測手段を備えた計測車を管路内を移動させて、
前記走行距離計測手段による走行距離と前記姿勢計測手段または慣性計測手段による姿勢情報を用いて、前記管路内を走行中に、前記計測開始位置を基準とした前記計測車の逐次位置情報を逐次推定演算し、前記内面形状計測手段による管路の内面形状情報に基づいて、前記管路内を走行中における前記計測車の逐次位置情報を補正演算する。
 そして、前記計測終了位置に到達後においては、
計測終了位置座標を特定して、
前記補正演算された前記逐次位置情報を、前記計測開始位置情報と前記計測終了位置情報に基づいた三次元SLAMアルゴリズムによって全補正して、前記計測車が走行した経路の全体位置情報を特定するので、
GPSを直接利用できない埋設管路内の走行経路を正確に推定することができる。
According to the present invention, the measurement start position coordinates of the pipe to be measured are specified, the travel distance measuring means, the posture measuring means or the inertia measuring means, and the inner surface shape measuring means for measuring the inner surface shape of the pipe. Move the equipped measuring vehicle in the pipeline,
Using the travel distance by the travel distance measurement means and the posture information by the posture measurement means or the inertia measurement means, the sequential position information of the measurement vehicle with respect to the measurement start position is sequentially obtained while traveling in the pipeline. Based on the inner surface shape information of the pipeline by the inner surface shape measuring means, the sequential position information of the measurement vehicle while traveling in the pipeline is corrected and calculated.
And after reaching the measurement end position,
Specify the measurement end position coordinates,
Since the correction-calculated sequential position information is fully corrected by the three-dimensional SLAM algorithm based on the measurement start position information and the measurement end position information, the entire position information of the route traveled by the measurement vehicle is specified. ,
It is possible to accurately estimate the travel route in the buried pipeline that cannot use GPS directly.
 請求項2によれば、上記構成に加えて、さらに、
前記全補正演算手段にて得られた、前記計測車が走行した経路の全体位置推定情報と、前記内面形状計測手段による前記管路の内面形状情報に基づいて、
前記管路の内面の位置を推定し、前記管路の地理座標を推定する管路地理座標推定手段を備えているので、
前記走行経路に基づいて管路の位置を正確に推定することが可能となる。
 請求項3によれば、前記内面形状計測手段は、管路の内面を走査するレーザー計測装置が用いられているので、小型且つ低コストで埋設管路の計測装置を構成できる。
 請求項4によれば、前記内面形状計測手段は、互いに非平行な3つの平面内を走査して管路の内面形状情報を得るので、管路の内面形状情報を、より詳細に得ることができ、管路の不陸、蛇行等の状況をより正確に把握することができる。
According to claim 2, in addition to the above configuration,
Based on the overall position estimation information of the route traveled by the measuring vehicle and the inner surface shape information of the pipe line by the inner surface shape measuring unit obtained by the all correction calculation unit,
Since it includes a pipeline geographic coordinate estimation means for estimating the position of the inner surface of the pipeline and estimating the geographic coordinates of the pipeline,
It is possible to accurately estimate the position of the pipeline based on the travel route.
According to the third aspect of the present invention, since the inner surface shape measuring means uses a laser measuring device that scans the inner surface of the pipeline, it is possible to configure a measuring device for the buried pipeline at a small size and at a low cost.
According to the fourth aspect of the present invention, the inner surface shape measuring means scans the three non-parallel planes to obtain the inner surface shape information of the pipe line, so that the inner surface shape information of the pipe line can be obtained in more detail. It is possible to more accurately grasp the situation such as unevenness of the pipeline, meandering and the like.
 請求項5によれば、前記内面形状計測手段は、管軸に垂直な平面内を走査するので、管軸に垂直な管路の断面形状を計測しやすい。
 請求項6によれば、前記内面形状計測手段は、管軸方向成分と、前記管軸に直交する水平方向成分とで特定される平面内を走査するので、管路の内面の側面部分の形状を計測しやすい。
According to the fifth aspect, since the inner surface shape measuring means scans in a plane perpendicular to the tube axis, it is easy to measure the cross-sectional shape of the pipe line perpendicular to the tube axis.
According to the sixth aspect, the inner surface shape measuring means scans the plane specified by the tube axis direction component and the horizontal direction component orthogonal to the tube axis, so the shape of the side surface portion of the inner surface of the pipe line Easy to measure.
 請求項7によれば、前記内面形状計測手段は、管軸方向成分を含む垂直平面内を走査するので、管路の内面の天井と床の形状を計測しやすい。
 請求項8によれば、前記内面形状計測手段が配設された架台を昇降させる昇降機構を備えているので、異なる管の内部においても、前記内面形状計測手段の高さを前記管軸と一致させて配設しやすく、管内面の形状を把握しやすい。
According to the seventh aspect, since the inner surface shape measuring means scans the vertical plane including the component in the tube axis direction, it is easy to measure the shapes of the ceiling and the floor on the inner surface of the pipe.
According to the eighth aspect of the present invention, since the elevating mechanism for elevating the gantry on which the inner surface shape measuring means is disposed is provided, the height of the inner surface shape measuring means coincides with the tube axis even in different pipes. It is easy to arrange and make it easy to grasp the shape of the inner surface of the pipe.
 請求項9によれば、前記逐次位置推定演算手段によって、所定の時間間隔ごとに、前記所定の時間での前記走行距離計測手段による走行距離情報と前記姿勢計測手段または慣性計測手段による姿勢情報を用いて、前記計測開始位置を基準とした前記計測車の逐次位置情報を逐次更新するので、実際の埋設管路中における計測車の逐次位置を推定することができる。
 請求項10によれば、前記逐次位置補正演算手段によって、所定の時間間隔ごとに、前記逐次位置推定演算手段による前記計測車の逐次位置情報に基づいた推定内面形状情報と、前記内面形状計測手段による前記内面形状情報とに基づいて、前記逐次位置情報を逐次補正演算処理するので、実際の埋設管路中における計測車の逐次位置をより正確に推定することができる。
According to the ninth aspect, the successive position estimation calculation means obtains the travel distance information by the travel distance measurement means and the posture information by the posture measurement means or the inertia measurement means at the predetermined time for each predetermined time interval. Since the sequential position information of the measurement vehicle with respect to the measurement start position is sequentially updated, the sequential position of the measurement vehicle in the actual buried pipeline can be estimated.
According to the tenth aspect, the successive inner surface shape measuring means and the inner surface shape measuring means based on the successive position information of the measuring vehicle by the successive position estimation computing means by the successive position correction computing means. Since the sequential position information is sequentially corrected and calculated based on the inner surface shape information according to the above, the sequential position of the measuring vehicle in the actual buried pipeline can be estimated more accurately.
 請求項11では、
前記三次元空間におけるSLAMアルゴリズムによる全補正演算処理を行うので、実際の埋設管路の位置をより正確に推定することができる。
In claim 11,
Since all correction calculation processing by the SLAM algorithm in the three-dimensional space is performed, the actual position of the buried pipeline can be estimated more accurately.
 請求項12では、
前記三次元SLAMアルゴリズムとしては、特定された前記計測開始位置と特定された前記計測終了位置をランドマークとするGraph-SLAMアルゴリズムを用いるので、実際の埋設管路の位置をさらに正確に推定することができる。
In claim 12,
As the three-dimensional SLAM algorithm, since the Graph-SLAM algorithm using the specified measurement start position and the specified measurement end position as landmarks is used, it is possible to estimate the position of the actual buried pipeline more accurately. Can do.
 請求項13に係る埋設管路の計測方法は、
前記管路内を走行中に、前記走行距離計測手段による走行距離情報と前記姿勢計測手段または慣性計測手段による姿勢情報を用いて、前記計測開始位置を基準とした前記計測車の逐次位置情報を逐次推定演算する第2のステップと、
前記内面形状計測手段による管路の内面形状情報に基づいて、前記管路内を走行中における前記計測車の逐次位置情報を逐次補正演算する第3のステップと、
前記計測終了位置に到達後において、計測終了位置における計測車の位置と姿勢を特定して計測終了位置情報を得る第4のステップと、
前記計測終了位置に到達後において、前記逐次補正演算された前記逐次位置情報を、前記計測開始位置情報と前記計測終了位置情報に基づいて、位置推定と地図作製を並行して実行する三次元SLAM(Simultaneous Localization And Mapping)アルゴリズムによって全補正演算処理して、前記計測車が走行した経路の全体位置推定情報を特定する第5のステップとを含んでいるので、
GPSを直接利用できない埋設管路内の走行経路を正確に推定することができ、さらに、前記走行経路に基づいて管路の位置を正確に推定することが可能となる。
The buried pipe measuring method according to claim 13 is:
While traveling in the pipeline, using the travel distance information by the travel distance measurement means and the attitude information by the attitude measurement means or the inertia measurement means, the sequential position information of the measurement vehicle based on the measurement start position is obtained. A second step of performing successive estimation operations;
A third step of successively correcting and calculating the sequential position information of the measuring vehicle while traveling in the pipeline based on the inner surface shape information of the pipeline by the inner surface shape measuring means;
A fourth step of obtaining the measurement end position information by specifying the position and orientation of the measurement vehicle at the measurement end position after reaching the measurement end position;
After reaching the measurement end position, a three-dimensional SLAM that performs position estimation and map creation in parallel on the basis of the measurement start position information and the measurement end position information based on the sequential position information that has been subjected to the successive correction calculation. (Simultaneous Localization And Mapping) includes a fifth step of performing all correction calculation processing and specifying the overall position estimation information of the route traveled by the measurement vehicle.
It is possible to accurately estimate the travel route in the buried pipeline where GPS cannot be directly used, and it is possible to accurately estimate the position of the pipeline based on the travel route.
本発明における計測対象の埋設された管路の一部の断面を示す模式図である。It is a schematic diagram which shows the one part cross section of the pipe line with which measurement object was embedded in this invention. 本発明における計測車の側面図である。It is a side view of the measuring vehicle in this invention. 前記計測車の正面図である。It is a front view of the measurement vehicle. 前記計測車の架台の図面であり、(A)は平面図、(B)は側面図である。It is drawing of the mount frame of the said measuring vehicle, (A) is a top view, (B) is a side view. 各レーザー計測装置の走査平面を説明するための説明図である。It is explanatory drawing for demonstrating the scanning plane of each laser measuring device. 本発明における計測演算処理のフローチャートである。It is a flowchart of the measurement calculation process in this invention. 前記計測車のRoll、Pitch、Yawの成分を説明するための説明図である。It is explanatory drawing for demonstrating the component of Roll, Pitch, and Yaw of the said measurement vehicle. 本発明におけるGraph-SLAMを説明するための説明図である。It is explanatory drawing for demonstrating Graph-SLAM in this invention. 本発明における計測車の座標位置を特定するための第1の具体的な方法を説明するためのマンホールの側面断面図である。It is side surface sectional drawing of the manhole for demonstrating the 1st specific method for pinpointing the coordinate position of the measurement vehicle in this invention. 本発明における計測車の座標位置を特定するための第2の具体的な方法を説明するためのマンホールの平面断面図である。It is a plane sectional view of a manhole for explaining the 2nd concrete method for specifying the coordinate position of a measurement car in the present invention. 本発明における計測車の座標位置を特定するための第3の具体的な方法を説明するためのマンホールの側面断面図である。It is side surface sectional drawing of the manhole for demonstrating the 3rd specific method for pinpointing the coordinate position of the measurement vehicle in this invention. 本発明における計測車の座標位置を特定するための第4の具体的な方法を説明するためのマンホールの側面断面図である。It is side surface sectional drawing of the manhole for demonstrating the 4th specific method for pinpointing the coordinate position of the measurement vehicle in this invention. 本発明において管の蛇行と不陸を分離する技術を説明するための管路の側面断面図である。It is side surface sectional drawing of the pipe line for demonstrating the technique which isolate | separates meandering and unevenness of a pipe | tube in this invention.
 図1は、計測対象の埋設された管路の断面の概略を示した模式図であり、
m1は計測開始位置のマンホール、m2は計測終了位置のマンホール、1は計測対象の管路P内に配置された計測車である。計測車1は、計測開始位置のマンホールm1から計測終了位置のマンホールm2まで管路P内を計測しつつ移動する。なお、管路Pの内径が充分に大きい場合には、作業者が押して移動させることができるが、管路Pの内径が小さい場合には、計測車1のフックにロープ等を繋ぎ、計測終了位置のマンホールm2から牽引等して移動させる。
FIG. 1 is a schematic diagram showing an outline of a cross section of a buried pipeline to be measured,
m1 is a manhole at the measurement start position, m2 is a manhole at the measurement end position, and 1 is a measurement vehicle arranged in the pipe P to be measured. The measurement vehicle 1 moves while measuring the inside of the pipeline P from the manhole m1 at the measurement start position to the manhole m2 at the measurement end position. When the inner diameter of the pipe P is sufficiently large, the operator can push it and move it. However, when the inner diameter of the pipe P is small, a rope or the like is connected to the hook of the measuring wheel 1 to complete the measurement. It is moved by pulling from the manhole m2 at the position.
 次に、計測車1の構造を、図2、図3、図4を参照して説明する。
 計測車1は、例えば、2つの前輪と2つの後輪とを備えた車体2と、車体2の上部に配設された水平な架台3を備えている。なお、図2においては、計測車1を水平な管路内に配置した状態を示している。
 車体2の後部には、走行距離を計測して走行距離情報を出力する走行距離計測手段としてのオドメトリ4を備えている。
 前記架台3の上面には、計測車1の姿勢を計測して姿勢情報を出力する慣性計測手段としてのIMU5と、
管路の内面形状を計測して内面形状情報を出力する内面形状計測手段として、第1、第2、第3の3つのレーザー計測装置6、7、8が固定されている。
 前記3つのレーザー計測装置6、7、8は、互いに非平行な(具体的には、互いに直交する)3つの平面内を走査して管路の内面形状情報を計測するように構成されている。
 なお、慣性計測手段としてのIMU5に代えて、他の姿勢計測手段を用いることもできる。
Next, the structure of the measuring wheel 1 will be described with reference to FIGS.
The measuring vehicle 1 includes, for example, a vehicle body 2 having two front wheels and two rear wheels, and a horizontal base 3 disposed on the upper portion of the vehicle body 2. Note that FIG. 2 shows a state in which the measuring vehicle 1 is arranged in a horizontal pipeline.
The rear part of the vehicle body 2 is provided with an odometry 4 as a travel distance measuring means for measuring travel distance and outputting travel distance information.
On the upper surface of the gantry 3 is an IMU 5 as an inertia measurement unit that measures the posture of the measuring vehicle 1 and outputs posture information;
First, second, and third three laser measuring devices 6, 7, and 8 are fixed as inner surface shape measuring means for measuring the inner surface shape of the pipe and outputting inner surface shape information.
The three laser measuring devices 6, 7, and 8 are configured to measure the inner surface shape information of the pipeline by scanning in three planes that are not parallel to each other (specifically, orthogonal to each other). .
It should be noted that other posture measuring means can be used instead of the IMU 5 as the inertial measuring means.
 オドメトリ4は、図3に示したように、真下の管底位置から若干振った位置で、管の内面に接触できるように支持ブーム41を振った状態で斜めに支持する機構を備えている。
真下の管底近傍には下水が流れていたり、堆積物が存在する確立が高いため、斜めに支持する機構によって、これらの下水や堆積物などを避けて管の内面に接触し、より正確な距離測定が可能となる。
 IMU5は、3軸のジャイロと3方向の加速度計を備えており、3次元の角速度と加速度が求められる。3次元の角速度情報を積分することにより計測車の向き(姿勢)を求め、加速度情報に基づいて重力方向を求めることができる。
 オドメトリ4による走行距離とIMU5による走行方向とを蓄積処理することによって、計測開始位置を基準とした計測車の自己位置情報を逐次得て、さらに、計測開始位置からの走行軌跡を得ることができる。ここにおける処理を、逐次位置推定演算(A)と称する。この逐次位置推定演算(A)の詳細は後述する。
 オドメトリ4とIMU5によって計測車の自己位置計測手段を構成している。
As shown in FIG. 3, the odometry 4 includes a mechanism that supports the device in an oblique manner while swinging the support boom 41 so as to be able to contact the inner surface of the tube at a position slightly swung from the tube bottom position just below.
Since there is a high probability that sewage flows or deposits exist near the bottom of the tube, the mechanism that supports it diagonally avoids such sewage and deposits and makes contact with the inner surface of the tube, making it more accurate. Distance measurement is possible.
The IMU 5 includes a three-axis gyro and a three-direction accelerometer, and requires a three-dimensional angular velocity and acceleration. By integrating the three-dimensional angular velocity information, the direction (posture) of the measurement vehicle can be obtained, and the direction of gravity can be obtained based on the acceleration information.
By accumulating the travel distance by the odometry 4 and the travel direction by the IMU 5, it is possible to sequentially obtain the self-position information of the measurement vehicle based on the measurement start position, and further obtain a travel locus from the measurement start position. . This process is referred to as sequential position estimation calculation (A). Details of the sequential position estimation calculation (A) will be described later.
The odometry 4 and the IMU 5 constitute a self-position measuring means for the measuring vehicle.
 3つのレーザー計測装置6、7、8とIMU5は、図4に示したように、管内画像撮像用のカメラ9とともに、計測車1上に配設された架台3に固定されている。
 前記架台3は、ハンドル操作によるパンタグラフ機構31によって水平に昇降させて、第1のレーザー計測装置6の走査中心軸と、管軸とがほぼ一致するように調整することが可能である。(図2、図3参照。)
As shown in FIG. 4, the three laser measuring devices 6, 7, and 8 and the IMU 5 are fixed to the gantry 3 disposed on the measuring vehicle 1 together with the camera 9 for taking an in-tube image.
The gantry 3 can be adjusted horizontally so that the scanning axis of the first laser measuring device 6 and the tube axis substantially coincide with each other by moving up and down horizontally by a pantograph mechanism 31 by a handle operation. (See FIGS. 2 and 3.)
 次に、各レーザー計測装置6、7、8の配置を、図2~図5を参照して説明する。
 第1のレーザー計測装置6は、管軸方向に垂直な平面(図5の平面B、X-Z平面)内を走査して、管路の断面における管路内面の各点の逐次位置を計測するように構成されている。なお、前記管軸方向とは、実施例では、第1のレーザー計測装置6におけるレーザー光の走査軸方向である。
 第1のレーザー計測装置6から得られる計測データを、断面計測センサーデータと称する。
Next, the arrangement of the laser measuring devices 6, 7, and 8 will be described with reference to FIGS.
The first laser measuring device 6 scans the plane perpendicular to the pipe axis direction (plane B, XZ plane in FIG. 5) and measures the sequential position of each point on the inner surface of the pipe in the cross section of the pipe. Is configured to do. In addition, the said tube axis direction is a scanning-axis direction of the laser beam in the 1st laser measuring device 6 in an Example.
Measurement data obtained from the first laser measurement device 6 is referred to as cross-section measurement sensor data.
 第2のレーザー計測装置7は、管軸方向成分と、前記管軸方向成分に直交する水平方向成分とで規定される平面(図5の平面A、X-Y平面)内を走査して、管路の管軸方向の横断面における管路内面の各点の逐次位置を計測するように構成されている。
 第2のレーザー計測装置7から得られる計測データを、水平計測センサーデータと称する。
The second laser measuring device 7 scans a plane (plane A, XY plane in FIG. 5) defined by a tube axis direction component and a horizontal direction component orthogonal to the tube axis direction component, A sequential position of each point on the inner surface of the pipe in a cross section in the pipe axis direction of the pipe is measured.
Measurement data obtained from the second laser measurement device 7 is referred to as horizontal measurement sensor data.
 第3のレーザー計測装置8は、管軸方向成分を含む垂直平面(図5の平面C、Y-Z平面)内を走査して、管路の管軸方向の縦断面における管路内面の各点の逐次位置を計測するように構成されている。
 第3のレーザー計測装置8から得られる計測データを、垂直計測センサーデータと称する。
The third laser measuring device 8 scans the vertical plane (plane C, YZ plane in FIG. 5) including the component in the tube axis direction, and each of the inner surface of the tube in the longitudinal section in the tube axis direction of the tube. It is comprised so that the sequential position of a point may be measured.
Measurement data obtained from the third laser measurement device 8 is referred to as vertical measurement sensor data.
 図4の(A)に示したように、前記架台3には、第1のレーザー計測装置6の走査範囲を広く確保するための切り込み61と、第3のレーザー計測装置8の走査範囲を広く確保するための切り込み81とが設けられている。
 なお、3つのレーザー計測装置6、7、8の走査面は、図5に示したように、互いに直交する3つの平面としたが、互いに平行でなく交差する平面であれば、演算が複雑にはなるが直交しなくてもよい。
As shown in FIG. 4A, the gantry 3 has a notch 61 for ensuring a wide scanning range of the first laser measuring device 6 and a wide scanning range of the third laser measuring device 8. A notch 81 for securing is provided.
As shown in FIG. 5, the scanning planes of the three laser measuring devices 6, 7, and 8 are three planes that are orthogonal to each other. However, if the planes are not parallel to each other and intersect, the calculation is complicated. Although it does, it does not need to be orthogonal.
 第1~第3のレーザー計測装置6、7、8によって、計測車1の特定の基準点を基準として、管路の内面の各点の逐次位置を計測することによって、管路の内面の3次元形状を計測する。 The first to third laser measuring devices 6, 7, 8 measure the sequential position of each point on the inner surface of the pipe with reference to a specific reference point of the measuring vehicle 1, thereby 3 Measure the dimensional shape.
 次に、図1に例示した管路Pを、前記計測車1を用いて計測する手順を説明する。
 まず、計測開始地点となるマンホールm1の底部に配置された計測車1の初期位置と姿勢(方向)を計測する。これは、地表に設置した、GPS装置もしくはトータルステーション等の位置特定手段を用いて測定して決定する。
 このような初期位置の決定作業においては、計測車1はマンホールの底もしくは管路内等の地下に存在するため、GPS電波を利用するGPS装置で直接初期位置を決定することは困難である。また、初期状態での計測車の姿勢(向き、方向)を決定する必要もある。そのための具体的な手順は、後述する実施例1~4のように種々考えられる。
Next, a procedure for measuring the pipe line P illustrated in FIG. 1 using the measurement vehicle 1 will be described.
First, the initial position and orientation (direction) of the measuring vehicle 1 arranged at the bottom of the manhole m1 that is the measurement start point are measured. This is determined by measuring using a position specifying means such as a GPS device or a total station installed on the ground surface.
In such an initial position determination operation, the measuring vehicle 1 is present at the bottom of the manhole or underground such as in a pipe, so it is difficult to directly determine the initial position with a GPS device using GPS radio waves. It is also necessary to determine the posture (direction, direction) of the measurement vehicle in the initial state. Various specific procedures are conceivable as in Examples 1 to 4 described later.
 何れかの手順で計測車1の初期位置と姿勢を決定した後、計測車1を移動させて管路Pの計測を開始する。
 管路内を移動中は、オドメトリ4による走行距離とIMU5による走行方向とを蓄積処理することによって、計測開始位置を基準とした計測車1の自己位置情報を、後述する逐次位置推定演算(A)によって逐次得る。
 さらに、3つのレーザー計測装置6、7、8によって得られた断面計測センサーデータ、水平計測センサーデータ、および垂直計測センサーデータを用いて、逐次位置推定演算(A)にて得られた自己位置情報を、後述する逐次位置補正演算(B)によって逐次補正して、補正後の自己位置情報を得る。
After determining the initial position and posture of the measurement vehicle 1 by any procedure, the measurement vehicle 1 is moved and measurement of the pipeline P is started.
While moving in the pipeline, by accumulating the travel distance by the odometry 4 and the travel direction by the IMU 5, the self-position information of the measurement vehicle 1 based on the measurement start position is calculated as a sequential position estimation calculation (A ).
Further, self-position information obtained by sequential position estimation calculation (A) using cross-sectional measurement sensor data, horizontal measurement sensor data, and vertical measurement sensor data obtained by the three laser measurement devices 6, 7, and 8. Are sequentially corrected by a sequential position correction calculation (B) described later to obtain corrected self-position information.
 以上のようにして、計測車1を、計測開始位置から埋設された管路内を移動させながら、計測開始位置を基準とした自己位置情報を前記逐次位置推定演算(A)逐次計測し、さらに、前記逐次位置補正演算(B)によって逐次補正しつつ、計測終了位置へ向かう。
 計測終了位置となるマンホールm2の底部に到達すると、地上に設置したGPS装置もしくはトータルステーション等の位置特定手段を用いて計測車1の終焉位置と終焉姿勢(方向)を計測する。
 このようにして得られた計測車1の終焉位置と姿勢に基づいて、前記逐次位置補正演算(B)によって得られた全ての自己位置情報と姿勢情報を、Graph-SLAMアルゴリズムを用いて補正する。この補正演算処理を全補正Graph-SLAM(C)と称する。
As described above, the self-position information based on the measurement start position is sequentially measured in the sequential position estimation calculation (A) while moving the measurement vehicle 1 from the measurement start position in the pipeline embedded therein, and further, Then, it goes to the measurement end position while sequentially correcting by the sequential position correction calculation (B).
When reaching the bottom of the manhole m2, which is the measurement end position, the end position and end posture (direction) of the measurement vehicle 1 are measured using a position specifying means such as a GPS device or a total station installed on the ground.
Based on the end position and orientation of the measuring vehicle 1 obtained in this way, all the self-position information and orientation information obtained by the sequential position correction calculation (B) are corrected using the Graph-SLAM algorithm. . This correction calculation processing is referred to as full correction Graph-SLAM (C).
 前記Graph-SLAMアルゴリズムのGraphとは図形のグラフの意味であり、Graph-SLAMアルゴリズムは三次元SLAMの解法の1つである。
 Graph-SLAMアルゴリズムにおいては、計測装置(台車・センサ)で周囲を計測するたびに、計測装置をノード(結束)とし、その間をリンクとし、リンクのつながりを位置に関する推定誤差とするグラフを作成する。また、ランドマークを観測するたびに、先ほどのグラフに、計測装置とランドマークをノード(結束)とし、その間の観測をリンクとし、
リンクのつながりの強さを観測誤差とする部分グラフを追加する。できたグラフのいくつかのノードの位置が分かった際に、もっともよく当てはまるグラフの形を推定することで、計測装置の位置・姿勢と周辺の地図を構築する方法である。
 本発明の場合では、ランドマークは、マンホールm1の位置での台車の位置座標(計測開始位置情報)と、マンホールm2の位置での台車の位置座標(計測終了位置情報)に対応し、その間のリンクとノードは、マンホールm1,m2の間における計測装置の逐次位置情報に対応している。
Graph in the Graph-SLAM algorithm means a graphic graph, and the Graph-SLAM algorithm is one of three-dimensional SLAM solutions.
In the Graph-SLAM algorithm, every time the surroundings are measured with a measurement device (cart / sensor), a graph is created with the measurement device as a node (bundling), a link between them, and a link connection as an estimation error regarding the position. . Also, every time a landmark is observed, the graph and the measurement device and the landmark are nodes (units), and the observation between them is a link.
Add a subgraph whose link error is the observation error. This is a method of constructing a map of the position / posture of the measuring device and its surroundings by estimating the shape of the most applicable graph when the positions of some nodes in the completed graph are known.
In the case of the present invention, the landmark corresponds to the position coordinate (measurement start position information) of the carriage at the position of the manhole m1 and the position coordinate (measurement end position information) of the carriage at the position of the manhole m2. The link and the node correspond to the sequential position information of the measuring device between the manholes m1 and m2.
 以下においては、前記逐次位置推定演算(A)、前記逐次位置補正演算(B)、そして、前記全補正演算(C)について、図6を参照して詳細に説明する。
 図6に示したステップS1においては、
計測開始位置のマンホールm1に設置したGPS装置等の位置特定手段を用いて、計測車1の初期位置(X0,Y0,Z0)と初期姿勢(R0,P0,Ya0)を得る。
X0,Y0,Z0は、それぞれ位置情報のX座標成分、Y座標成分、Z座標成分を示し、R0,P0,Ya0は、それぞれ姿勢情報のRoll成分、Pitch成分、Yaw成分を示している。
Hereinafter, the sequential position estimation calculation (A), the sequential position correction calculation (B), and the total correction calculation (C) will be described in detail with reference to FIG.
In step S1 shown in FIG.
The initial position (X0, Y0, Z0) and the initial posture (R0, P0, Ya0) of the measuring vehicle 1 are obtained by using position specifying means such as a GPS device installed in the manhole m1 at the measurement start position.
X0, Y0, and Z0 indicate the X coordinate component, Y coordinate component, and Z coordinate component of the position information, respectively, and R0, P0, and Ya0 indicate the Roll component, Pitch component, and Yaw component of the posture information, respectively.
 ステップS2においては、オドメトリ4による走行距離情報(x,y,z)と、IMU5による姿勢情報(R,P,Ya)とに基づいて逐次位置推定演算(A)を行い、ステップS3において、次の位置における自己位置情報(Xt,Yt,Zt)と姿勢情報(Rt,Pt,Yat)を得る。
 ステップS4においては、前記自己位置情報(Xt,Yt,Zt)と姿勢情報(Rt,Pt,Yat)を、断面計測センサーデータと、水平計測センサーデータと、垂直計測センサーデータを用いて、逐次位置補正演算(B)を行い、ステップS5において、補正後の自己位置情報(X't,Y't,Z't)と姿勢情報(R't,P't,Ya't)を得る。
 以上のステップS2~ステップS5の処理を、所定時間間隔で繰り返しつつ、計測終了位置へ向かう。
In step S2, sequential position estimation calculation (A) is performed based on the travel distance information (x, y, z) by odometry 4 and the attitude information (R, P, Ya) by IMU 5, and in step S3, the next Self-position information (Xt, Yt, Zt) and attitude information (Rt, Pt, Yat) are obtained at the position of.
In step S4, the self-position information (Xt, Yt, Zt) and posture information (Rt, Pt, Yat) are sequentially used by using cross-sectional measurement sensor data, horizontal measurement sensor data, and vertical measurement sensor data. Correction calculation (B) is performed, and in step S5, corrected self-position information (X′t, Y′t, Z′t) and posture information (R′t, P′t, Ya′t) are obtained.
The process from step S2 to step S5 is repeated at a predetermined time interval, and the process proceeds to the measurement end position.
 計測終了位置のマンホールm2に到達すると、
ステップS6において、計測終了位置のマンホールm2に設置したGPS装置等の位置特定手段を用いて、計測車1の終焉位置(Xe,Ye,Ze)と終焉姿勢(Re,Pe,Yae)を得る。
 この後、ステップS7においては、ステップS1~ステップS5によって得られた、全ての前記補正後の自己位置情報(X't,Y't,Z't)と姿勢情報(R't,P't,Ya't)を、前記計測車1の終焉位置(Xe,Ye,Ze)と終焉姿勢(Re,Pe,Yae)に基づいて補正する。
 この補正が前記全補正Graph-SLAM(C)である。
When it reaches the manhole m2 at the measurement end position,
In step S6, the end position (Xe, Ye, Ze) and the end position (Re, Pe, Yae) of the measuring vehicle 1 are obtained using position specifying means such as a GPS device installed in the manhole m2 at the measurement end position.
Thereafter, in step S7, all the corrected self-position information (X′t, Y′t, Z′t) and posture information (R′t, P ′) obtained in steps S1 to S5 are obtained. (t, Ya't) is corrected based on the end position (Xe, Ye, Ze) and the end position (Re, Pe, Yae) of the measuring vehicle 1.
This correction is the total correction Graph-SLAM (C).
 ステップS8においては、以上の全補正Graph-SLAM(C)によって、計測開始位置から計測終了位置までの全ての前記補正後の自己位置情報(X't,Y't,Z't)と姿勢情報(R't,P't,Ya't)を補正して、計測開始位置から計測終了位置までの全ての自己位置情報(X,Y,Z)と姿勢情報(R,P,Ya)を確定する。 In step S8, all the corrected self-position information (X′t, Y′t, Z′t) and postures from the measurement start position to the measurement end position by the above-described all correction Graph-SLAM (C). All self-position information (X, Y, Z) and posture information (R, P, Ya) from the measurement start position to the measurement end position by correcting the information (R't, P't, Ya't) Confirm.
 ステップS9においては、以上において計測開始位置から計測終了位置までにおける計測車1の自己位置情報(全体位置推定情報)が全経路にわたって確定されたことにより、
前記計測車が走行した経路の全体位置推定情報と、前記内面形状計測手段による、前記管路の内面形状情報に基づいて、計測車1の逐次位置における管内面の位置を推定することができ、計測開始位置から計測終了位置までにおける管路の地理座標を確定することができる。
In step S9, the self-position information (overall position estimation information) of the measurement vehicle 1 from the measurement start position to the measurement end position is determined over the entire route as described above.
Based on the overall position estimation information of the route traveled by the measuring vehicle and the inner surface shape information of the pipe line by the inner surface shape measuring means, it is possible to estimate the position of the tube inner surface at the sequential position of the measuring vehicle 1, The geographical coordinates of the pipeline from the measurement start position to the measurement end position can be determined.
 さらに、ステップS10においては、以下のようにして、管内の不陸情報、および管路の蛇行情報を得ることができる。
 蛇行と不陸の分離のために、管断面を計測するための第1のレーザー計測装置6と、管軸に平行な垂直断面を計測するための第3のレーザー計測装置8とを用いる。図13においては、第1のレーザー計測装置6による管断面の計測状況を楕円で示し、第3のレーザー計測装置8による垂直断面の計測状況を矢線で示した。
 管内においては、図13の領域Aのように通常天井と床とは平行になっているため、図13の領域Bのように計測車1の傾き(姿勢)と、第3のレーザー計測装置8によって計測した管内の天井の傾きとが一致しない場合には、不陸と判断できる。この場合には、天井と床の傾きも一致しない。
 また、図13の領域Cのように計測車1の傾きと、天井および床の傾きとが一致している場合には、不陸ではなく、管の蛇行であると判断できる。
Furthermore, in step S10, unevenness information in the pipe and meandering information of the pipe line can be obtained as follows.
For separation of meandering and unevenness, a first laser measuring device 6 for measuring a tube cross section and a third laser measuring device 8 for measuring a vertical cross section parallel to the tube axis are used. In FIG. 13, the measurement status of the tube cross section by the first laser measurement device 6 is indicated by an ellipse, and the measurement status of the vertical cross section by the third laser measurement device 8 is indicated by an arrow line.
In the pipe, the ceiling and the floor are normally parallel as shown in the area A of FIG. 13, and therefore the inclination (posture) of the measuring wheel 1 and the third laser measuring device 8 as shown in the area B of FIG. 13. If the inclination of the ceiling in the pipe measured by (1) does not match, it can be determined that it is uneven. In this case, the inclination of the ceiling and floor does not match.
Moreover, when the inclination of the measuring wheel 1 and the inclination of the ceiling and the floor coincide with each other as in the region C of FIG. 13, it can be determined that the pipe is meandering and not uneven.
 なお、前記ステップS1は特許請求の範囲に記載された第1のステップに、
前記ステップS2、S3は特許請求の範囲に記載された第2のステップに、
前記ステップS4、S5は特許請求の範囲に記載された第3のステップに、
前記ステップS6は特許請求の範囲に記載された第4のステップに、
前記ステップS7、S8は特許請求の範囲に記載された第5のステップにそれぞれ対応している。
 なお、前記ステップS9は、特許請求の範囲に記載された管路地理座標推定手段においける処理に対応している。
In addition, the step S1 is a first step described in the claims,
The steps S2 and S3 are the second steps described in the claims,
The steps S4 and S5 are the third step described in the claims,
The step S6 is a fourth step described in the claims,
Steps S7 and S8 correspond to the fifth step recited in the claims.
The step S9 corresponds to the processing in the pipeline geographical coordinate estimation means described in the claims.
 以上のようにして、計測開始位置と計測終了位置において、GPS装置もしくはトータルステーション等の位置特定手段を用いてグローバル座標系における地理座標を得ることができれば、計測開始位置から計測終了位置までの埋設管の位置を全て得ることができる。
 さらには、管路の途中における蛇行と不陸の分離も可能であるので、実際に長期間使用された下水管等の埋設管路でも充分正確に地理座標を得ることができる。したがって、下水管等の既設の埋設管の埋設位置の特定が、開削工事と人手による測量を行うことなく、正確に行えるので、計測費用を低減することが可能となり、今後の老朽化した社会インフラストックの整備を遅滞なく進めることが可能となる。
As described above, if the geographical coordinates in the global coordinate system can be obtained at the measurement start position and the measurement end position using a position specifying means such as a GPS device or a total station, the buried pipe from the measurement start position to the measurement end position All the positions can be obtained.
Furthermore, since meandering and unevenness can be separated in the middle of the pipeline, the geographical coordinates can be obtained sufficiently accurately even in buried pipelines such as sewage pipes that have actually been used for a long period of time. Therefore, it is possible to accurately determine the location of existing buried pipes such as sewage pipes without performing open-cut work and manual surveys, which can reduce the measurement costs, and future aging social infrastructure Stock development can be promoted without delay.
 なお、前記逐次位置推定演算(A)、前記逐次位置補正演算(B)、および、前記全補正演算(C)の一部もしくは全ての演算は、計測車1に搭載したパーソナルコンピュータ(可搬型の小型コンピュータ)で処理してもよい。また、オドメトリ4、IMU5、および3つのレーザー計測装置6、7、8による計測情報の一部もしくは全てを、有線もしくは無線の通信手段を介して、随時外部へ送信して外部に設置したコンピュータを用いて蓄積および演算を処理してもよい。そのための通信手段として、電波や赤外線等を利用した無線通信手段や、保護された通信ケーブルや光ファイバ等の有線通信手段を利用することができる。そして、保護された通信ケーブルや光ファイバは、計測車1を牽引するローブに沿わせて敷設してもよい。以上において、計測車1に搭載したパーソナルコンピュータもしくは外部に設置したコンピュータは、特許請求の範囲に記載された逐次位置推定手段、逐次位置補正手段、全補正演算手段、及び、管路地理座標推定手段に対応している。 Note that some or all of the sequential position estimation calculation (A), the sequential position correction calculation (B), and the total correction calculation (C) are performed by a personal computer (portable type) mounted on the measuring vehicle 1. It may be processed by a small computer. In addition, a computer installed outside by transmitting a part or all of measurement information by the odometry 4, the IMU 5, and the three laser measuring devices 6, 7, 8 to the outside at any time via a wired or wireless communication means. May be used to handle accumulation and computation. As a communication means for that purpose, a wireless communication means using radio waves or infrared rays, or a wired communication means such as a protected communication cable or optical fiber can be used. The protected communication cable or optical fiber may be laid along a lobe that pulls the measuring vehicle 1. In the above, the personal computer mounted on the measuring vehicle 1 or the computer installed outside is the sequential position estimating means, sequential position correcting means, all correction calculating means, and pipeline geographical coordinate estimating means described in the claims. It corresponds to.
 次に、前記逐次位置推定演算(A)の詳細を説明する。
 時刻tでの計測車の位置xtは、下記の式で求める。
Figure JPOXMLDOC01-appb-M000001
 xは計測車の位置、θは計測車の姿勢、uは微小変化量。
Next, details of the sequential position estimation calculation (A) will be described.
Position x t of the measuring vehicle at time t is obtained by the following equation.
Figure JPOXMLDOC01-appb-M000001
x is the position of the measuring vehicle, θ is the posture of the measuring vehicle, and u is the minute change amount.
Figure JPOXMLDOC01-appb-M000002
Δxt:時刻tのオドメトリ4の計測結果
θr :ロール軸周りの回転角
θp :ピッチ軸周りの回転角
θy :ヨー軸周りの回転角
Figure JPOXMLDOC01-appb-M000002
Δx t : Measurement result of odometry 4 at time t θ r : Rotation angle around roll axis θ p : Rotation angle around pitch axis θ y : Rotation angle around yaw axis
角度の更新式を以下に示す。
Figure JPOXMLDOC01-appb-M000003
The angle update formula is shown below.
Figure JPOXMLDOC01-appb-M000003
位置の更新式を以下に示す。
Figure JPOXMLDOC01-appb-M000004
Rは、以下に示すように、それぞれの軸周りでの回転行列である。
The position update formula is shown below.
Figure JPOXMLDOC01-appb-M000004
R is a rotation matrix around each axis as shown below.
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000005
 次に、前記逐次位置補正演算(B)の詳細を説明する。
前記逐次位置補正演算(B)は、第1のレーザー計測装置6によって得られる断面計測センサーデータと、第2のレーザー計測装置7によって得られる水平計測センサーデータと、第3のレーザー計測装置8によって得られる垂直計測センサーデータとを用いた補正であり、オドメトリ4による位置推定だけでは誤差が大きいと考えられるので、前記3つのレーザー計測装置6、7、8を用いて逐次位置の補正を行うものである。
Next, details of the sequential position correction calculation (B) will be described.
The sequential position correction calculation (B) is performed by the cross-section measurement sensor data obtained by the first laser measurement device 6, the horizontal measurement sensor data obtained by the second laser measurement device 7, and the third laser measurement device 8. The correction is performed using the obtained vertical measurement sensor data, and it is considered that the error is large only by the position estimation by the odometry 4. Therefore, the position is sequentially corrected by using the three laser measuring devices 6, 7, and 8. It is.
 時刻tにおけるオドメトリ4による位置をxt、レーザー計測装置による管内形状の計測値をztとする。h(xt)は、1つ前の時刻の位置から、オドメトリ、IMUで計測した微小位置移動に基づいた時刻tの管内形状の推定値である。
 誤差のためztとh(xt)は一致しないので、その差に定数Kを乗じたものと加算して位置xtを補正する。
Figure JPOXMLDOC01-appb-M000006
Kはカルマンゲインであり、共分散行列Σ、Ο(位置データの誤差の大きさ)の比であらわされる。
The position by the odometry 4 at time t is x t , and the measured value of the tube shape by the laser measuring device is z t . h (x t ) is an estimated value of the in-pipe shape at time t based on minute position movement measured by odometry and IMU from the position at the previous time.
Since z t and h (x t ) do not match due to an error, the position x t is corrected by adding the difference multiplied by a constant K.
Figure JPOXMLDOC01-appb-M000006
K is a Kalman gain, which is expressed as a ratio of covariance matrices Σ and Ο (position data error magnitude).
Figure JPOXMLDOC01-appb-M000007
z   :レーザー計測装置による計測値
h(x):計測の予測値
H   :ヤコビ行列
Σ  :運動モデルの共分散行列
Ο  :計測の共分散行列
Figure JPOXMLDOC01-appb-M000007
z: Value measured by laser measuring device
h (x): Predicted value of measurement H: Jacobian matrix Σ: Covariance matrix of motion model Ο: Covariance matrix of measurement
 次に、前記全補正Graph-SLAM(C)の詳細を説明する。
 計測終了位置のマンホールm2位置での修正にGraph-SLAMを用いる。
 下記の式で示したJGraph-SLAMを最小化するxが最も確からしい推定結果となる。
 g(ut,xt-t)はひとつ前の位置と、微小移動量から現在位置を推定する関数であるから、xt-g(ut,xt-t)は推定位置の差分となる。これに共分散行列R(誤差の大きさを示す)の逆行列をかけた[xt-g(ut,xt-t)]TR-1 [xt-g(ut,xt-t)]は運動モデルの拘束条件となる。
 h(mc,xt)はマンホール位置mから計測車の位置xを計測したときの計測関数である。これと実際の計測値zの差にこれに共分散行列Q(誤差の大きさを示す)をかけたΣ[zt-h(mc,xt)]TQ-1 [zt-h(mc,xt)] は計測モデルの拘束条件となる。(図8参照。)
 これらの拘束条件の和が以下に示すJGraph-SLAMである。
Next, details of the total correction Graph-SLAM (C) will be described.
Graph-SLAM is used to correct the measurement end position at the manhole m2 position.
The x that minimizes J Graph-SLAM shown by the following equation is the most probable estimation result.
Since g (u t , x tt ) is a function that estimates the current position from the previous position and the minute movement amount, x t -g (u t , x tt ) is the difference between the estimated positions. [X t -g (u t , x tt )] T R -1 [x t -g (u t , x tt )] Is a constraint of the motion model.
h (m c , x t ) is a measurement function when the position x of the measurement vehicle is measured from the manhole position m. Σ [z t -h (m c , x t )] T Q -1 [z t -h] obtained by multiplying this and the actual measured value z by the covariance matrix Q (indicating the magnitude of the error) (m c , x t )] is a constraint condition of the measurement model. (See Figure 8.)
The sum of these constraints is J Graph-SLAM shown below.
Figure JPOXMLDOC01-appb-M000008
Figure JPOXMLDOC01-appb-M000008
 IMUを用いた計測において、傾き誤差が最も大きくなるベクトルはYawである。
 Roll、Pitch は重力方向をIMUで検知して誤差補正できる。
 Yawは誤差補正に地磁気の検出を要するが、埋設管路内では地磁気は使用できないため、Yawの自動的な誤差補正は望めない。しかし、本発明によれば、3つのレーザー計測装置による補正を併用して、管路内での逐次補正演算(B)を行うことにより、Yawの自動的な誤差補正も可能となった。さらに、計測終了位置におけるGPS等による位置情報によって、全補正Graph-SLAM(C)により、全地理座標を補正することにより、さらに正確な管路の地理座標の特定が可能となった。
In measurement using the IMU, the vector having the largest tilt error is Yaw.
Roll and pitch can be corrected by detecting the direction of gravity with IMU.
Yaw needs to detect geomagnetism for error correction, but it cannot use Yaw's automatic error correction because geomagnetism cannot be used in buried pipes. However, according to the present invention, Yaw's automatic error correction can be performed by using the correction by the three laser measuring devices in combination and performing the sequential correction calculation (B) in the pipeline. Furthermore, by correcting all the geographical coordinates by the total correction Graph-SLAM (C) based on the position information by GPS or the like at the measurement end position, it becomes possible to specify the geographical coordinates of the pipeline more accurately.
 以下においては、計測開始位置と計測終了位置のマンホールm1,m2での位置計測方法の実施例を説明する。
 GPS等の全地球測位システムもしくはトータルステーション等により計測された計測車1の異なる2箇所の座標位置(Xm0,Ym0,Zm0)及び(Xm1,Ym1,Zm1)から、1つの座標位置及び方角(X0,Y0,Z0,Ya0)を演算により取得し、またIMU5により方角以外の姿勢(R0,P0)を取得し、それらより計測車1の1つの座標位置及び姿勢X0,Y0,Z0,R0,P0,Ya0)を特定する。
Below, the Example of the position measurement method in the manhole m1, m2 of a measurement start position and a measurement end position is described.
From two different coordinate positions (Xm0, Ym0, Zm0) and (Xm1, Ym1, Zm1) of the measuring vehicle 1 measured by a global positioning system such as GPS or a total station, one coordinate position and direction (X0, Y0, Z0, Ya0) is obtained by calculation, and the orientation (R0, P0) other than the direction is obtained by the IMU 5, and one coordinate position and orientation X0, Y0, Z0, R0, P0, Identify Ya0).
 まず、計測開始位置と計測終了位置における計測車1の座標位置を特定するための第1の具体的な方法を、図9を参照して説明する。
 図9に示したように、計測開始位置のマンホールm1の上部開口部にはトータルステーションTSを配し、トータルステーションTSの真下のマンホールm1の底面に計測車1を配置する。マンホールm1の底部は計測対象の管路Pとつながっている。
 計測車1に方眼プレート11を設置し、トータルステーションTSにレーザ求心装置LCを取り付け、方眼プレート11に求心レーザが照射されるように、トータルステーションTSの地上位置を調節する。
First, a first specific method for specifying the coordinate position of the measurement vehicle 1 at the measurement start position and the measurement end position will be described with reference to FIG.
As shown in FIG. 9, the total station TS is disposed in the upper opening of the manhole m1 at the measurement start position, and the measurement vehicle 1 is disposed on the bottom surface of the manhole m1 directly below the total station TS. The bottom of the manhole m1 is connected to the pipe P to be measured.
The grid plate 11 is installed in the measuring wheel 1, the laser centripetal device LC is attached to the total station TS, and the ground position of the total station TS is adjusted so that the centripetal laser is irradiated to the grid plate 11.
 その位置でのトータルステーションTSでの計測により、地上座標を求める。また方眼プレート11のどの位置に求心レーザが照射されているかを記録する。
 トータルステーションTSから方眼プレート11までの距離は別途メジャー等の距離計測手段を用いて計測する。
 上記方法を方眼プレート11の別の位置でも行い、計測車1の異なる2箇所の座標位置の特定を行う。2箇所の座標位置から計測車1の姿勢を特定する。
 以上のようにして、計測開始位置における計測車1の位置と姿勢を決定する。
 計測終了位置のマンホールm2においても同様の作業を行う。
 以上においては、前記トータルステーションTS、前記レーザ求心装置LC、前記距離計測手段、及び前記方眼プレート11が、特許請求の範囲に記載された開始位置特定手段、または終了位置特定手段に対応している。
The ground coordinates are obtained by measurement at the total station TS at that position. Also, the position on the grid plate 11 where the centripetal laser is irradiated is recorded.
The distance from the total station TS to the grid plate 11 is measured using a distance measuring means such as a measure.
The above method is also performed at another position on the grid plate 11, and two different coordinate positions of the measuring wheel 1 are specified. The posture of the measuring vehicle 1 is specified from the two coordinate positions.
As described above, the position and orientation of the measurement vehicle 1 at the measurement start position are determined.
The same operation is performed in the manhole m2 at the measurement end position.
In the above, the total station TS, the laser centripetal device LC, the distance measuring means, and the grid plate 11 correspond to the start position specifying means or the end position specifying means described in the claims.
 上記の場合は地上から計測車1が真下に見える場合であるが、図10のようにマンホールm1の真下は管への接続するための空間となっているだけの場合もある。
 その場合には、以下の第2の具体的な方法を用いることができる。
 マンホールの真下に立方体12を設置する。
 地上からは上記方法と同様に、トータルステーション等を用いて立方体12の位置測定を行う。
 また計測車1からは、レーザー計測装置7、8、9を用いて立方体12の位置形状を計測する。
 これにより、計測開始位置における計測車1の位置と姿勢を決定する。
 計測終了位置のマンホールm2においても同様の作業を行う。
 以上においては、トータルステーション、前記立方体12、及び前記レーザー計測装置7、8、9が、特許請求の範囲に記載された開始位置特定手段、または終了位置特定手段に対応している。
In the above case, the measuring vehicle 1 can be seen directly from the ground, but the manhole m1 may be just a space for connection to the pipe as shown in FIG.
In that case, the following second specific method can be used.
A cube 12 is installed directly under the manhole.
From the ground, the position of the cube 12 is measured using a total station or the like in the same manner as described above.
Further, from the measuring wheel 1, the position shape of the cube 12 is measured using the laser measuring devices 7, 8 and 9.
Thereby, the position and posture of the measurement vehicle 1 at the measurement start position are determined.
The same operation is performed in the manhole m2 at the measurement end position.
In the above, the total station, the cube 12, and the laser measuring devices 7, 8, and 9 correspond to the start position specifying means or the end position specifying means described in the claims.
 第3の具体的な方法は、図11に示したように、計測車1にLEDランプ13を4箇所に設置し、マンホールの蓋の代わりに設置できるカメラCMを取り付けた器具を設置する。
 カメラCMの位置は地上にてトータルステーション等を用いて座標位置計測を行う。
 写真測量により、計測車1の位置と姿勢の特定を行う。
 計測終了位置のマンホールm2においても同様の作業を行う。
 以上においては、トータルステーション、前記カメラCM、及び前記LEDランプ13が、特許請求の範囲に記載された開始位置特定手段、または終了位置特定手段に対応している。
In the third specific method, as shown in FIG. 11, the LED lamps 13 are installed in four places on the measuring vehicle 1, and an appliance with a camera CM that can be installed instead of a manhole cover is installed.
The position of the camera CM is measured on the ground using a total station or the like.
The position and orientation of the measuring vehicle 1 are specified by photogrammetry.
The same operation is performed in the manhole m2 at the measurement end position.
In the above, the total station, the camera CM, and the LED lamp 13 correspond to the start position specifying means or the end position specifying means described in the claims.
 第4の具体的な方法は、図12に示したように、計測車1に方眼プレート14を設置し、地上の3箇所からハンディ計測器H1、H2、H3にて方眼プレート14の特定の2箇所への距離を計測する。
 各ハンディ計測器H1、H2、H3の座標位置は地上にてトータルステーション等を用いて座標位置計測を行う。
 これにより、計測車1の位置と姿勢の特定を行う。
 計測終了位置のマンホールm2においても同様の作業を行う。
 計測車1の位置を特定する方法は種々あるが、以上の4つの具体的な方法を例示した。
 計測開始位置のマンホールm1と、計測終了位置のマンホール2とでは、同じ方法に限らず異なる方法を用いてもよい。
 以上においては、前記トータルステーション、前記ハンディ計測器H1、H2、H3、及び前記方眼プレート14が、特許請求の範囲に記載された開始位置特定手段、または終了位置特定手段に対応している。
As shown in FIG. 12, the fourth specific method is to install the grid plate 14 on the measuring wheel 1 and specify the grid plate 14 with the handy measuring instruments H1, H2, and H3 from three locations on the ground. Measure the distance to the location.
The coordinate positions of the handy measuring instruments H1, H2, and H3 are measured on the ground using a total station or the like.
Thereby, the position and orientation of the measurement vehicle 1 are specified.
The same operation is performed in the manhole m2 at the measurement end position.
Although there are various methods for specifying the position of the measuring vehicle 1, the above four specific methods are exemplified.
The manhole m1 at the measurement start position and the manhole 2 at the measurement end position are not limited to the same method, and different methods may be used.
In the above, the total station, the handy measuring instruments H1, H2, H3, and the grid plate 14 correspond to the start position specifying means or the end position specifying means described in the claims.
 走行距離計測手段としては、車輪を用いたオドメトリに代えて、走行距離を計測するものであれば種々の距離計測手段を利用することができる。
 姿勢計測手段または慣性計測手段としては、慣性計測装置(IMU)に代えて、地磁気を利用した姿勢方位基準装置(AHRS)等の技術を利用することができる。
 埋設管路中では、地磁気が利用できない場合もあるため、慣性計測装置(IMU)が好ましい。
 内面形状計測手段としては、レーザー計測装置に限らず、内面計測手段から管の内壁面までの距離を非接触で計測可能な種々の距離計測装置を利用することができる。
 例えば、充分に高精度のミリ波レーダーを用いた距離計測装置等を利用することができる。
As the travel distance measuring means, various distance measuring means can be used as long as the travel distance is measured instead of the odometry using the wheels.
As the attitude measurement means or the inertia measurement means, a technique such as an attitude / direction reference apparatus (AHRS) using geomagnetism can be used instead of the inertia measurement apparatus (IMU).
An inertial measurement device (IMU) is preferred because geomagnetism may not be available in the buried pipeline.
The inner surface shape measuring unit is not limited to the laser measuring device, and various distance measuring devices that can measure the distance from the inner surface measuring unit to the inner wall surface of the tube in a non-contact manner can be used.
For example, a distance measuring device using a sufficiently high-precision millimeter wave radar can be used.
 また、内面形状計測手段として、3つのレーザー計測装置6、7、8を搭載した例を説明したが、3つに限定されるものではなく、1つ以上のレーザー計測装置を用いて内面形状情報を得ることが可能である。
 レーザー計測装置の数を多くすれば、さらに高精度の計測が可能となる。
 管の内径がある程度既知であれば、1つのレーザー計測装置を用いることが可能である。
 また、三角測量の原理に基づいて薄いシート状の光を投影することで対象物の3次元位置を得る光切断法を用いた3次元計測装置を利用することも可能である。
 また、現時点では高価であるが、3次元スキャナー装置を利用して、1台の三次元スキャナー装置で管の内面形状計測手段を構成することも可能である。
Moreover, although the example which mounted the three laser measuring devices 6, 7, and 8 was demonstrated as an inner surface shape measurement means, it is not limited to three, Inner surface shape information is used using one or more laser measuring devices. It is possible to obtain
If the number of laser measuring devices is increased, more accurate measurement can be performed.
If the inner diameter of the tube is known to some extent, one laser measuring device can be used.
It is also possible to use a three-dimensional measuring apparatus using a light cutting method that obtains a three-dimensional position of an object by projecting a thin sheet of light based on the principle of triangulation.
Although it is expensive at the present time, it is also possible to configure the inner surface shape measuring means of the tube with a single three-dimensional scanner device using a three-dimensional scanner device.
m1 計測開始位置のマンホール
m2 計測終了位置のマンホール
P  計測対象の管路
1 計測車
2 車体
3 架台
31 パンタグラフ機構
4 オドメトリ、走行距離計測手段
5 IMU、慣性計測手段
6 第1のレーザー計測装置、内面形状計測手段
61 切り込み
7 第2のレーザー計測装置、内面形状計測手段
8 第3のレーザー計測装置、内面形状計測手段
81 切り込み
9 カメラ
11 方眼プレート
12 立方体
13 LEDランプ
14 方眼プレート
TS トータルステーション、開始位置特定手段、終了位置特定手段
CM カメラ
H1,H2,H3 ハンディ計測器
m1 Manhole at the measurement start position m2 Manhole at the measurement end position Pipe 1 to be measured 1 Measurement vehicle 2 Car body 3 Mount 31 Pantograph mechanism 4 Odometry, mileage measurement means 5 IMU, inertia measurement means 6 First laser measurement device, inner surface Shape measuring means 61 Incision 7 Second laser measuring device, inner surface shape measuring means 8 Third laser measuring device, inner surface shape measuring means 81 Notch 9 Camera 11 Square plate 12 Cube 13 LED lamp 14 Square plate TS Total station, start position specification Means, end position specifying means CM camera H1, H2, H3 Handy measuring instrument

Claims (13)

  1. 走行距離を計測して走行距離情報を出力する走行距離計測手段、計測車の姿勢を計測して姿勢情報を出力する姿勢計測手段または慣性計測手段、および、管路の内面形状を計測して内面形状情報を出力する内面形状計測手段を備えて管路内を走行可能な計測車と、
    計測開始位置における計測車の位置と姿勢を特定して計測開始位置情報を出力する開始位置特定手段と、
    計測終了位置における計測車の位置と姿勢を特定して計測終了位置情報を出力する終了位置特定手段と、
    前記管路内を走行中に、前記走行距離計測手段による走行距離情報と前記姿勢計測手段または慣性計測手段による姿勢情報を用いて、前記計測開始位置を基準とした前記計測車の逐次位置情報を逐次推定演算する逐次位置推定演算手段と、
    前記内面形状計測手段による管路の内面形状情報に基づいて、前記管路内を走行中における前記計測車の逐次位置情報を逐次補正演算する逐次位置補正演算手段と、
    前記計測終了位置に到達後において、前記逐次補正演算された前記逐次位置情報を、前記計測開始位置情報と前記計測終了位置情報に基づいて、位置推定と地図作製を並行して実行する三次元SLAM(Simultaneous Localization And Mapping)アルゴリズムによって全補正演算処理して、前記計測車が走行した経路の全体位置推定情報を特定する全補正演算手段と
    を備えたことを特徴とする埋設管路の計測装置。
    Travel distance measurement means for measuring travel distance and outputting travel distance information, attitude measurement means or inertia measurement means for measuring the attitude of a measuring vehicle and outputting posture information, and measuring the inner surface shape of a pipe to measure the inner surface A measuring vehicle capable of traveling in a pipeline with an inner surface shape measuring means for outputting shape information;
    Start position specifying means for specifying the position and orientation of the measurement vehicle at the measurement start position and outputting measurement start position information;
    An end position specifying means for specifying the position and orientation of the measurement vehicle at the measurement end position and outputting the measurement end position information;
    While traveling in the pipeline, using the travel distance information by the travel distance measurement means and the attitude information by the attitude measurement means or the inertia measurement means, the sequential position information of the measurement vehicle based on the measurement start position is obtained. Sequential position estimation calculation means for performing sequential estimation calculation;
    Based on the inner surface shape information of the pipeline by the inner surface shape measuring means, sequential position correction calculating means for sequentially correcting and calculating the sequential position information of the measuring vehicle while traveling in the pipeline;
    After reaching the measurement end position, a three-dimensional SLAM that performs position estimation and map creation in parallel on the basis of the measurement start position information and the measurement end position information based on the sequential position information that has been subjected to the successive correction calculation. A buried pipe measuring device comprising: all correction calculation means for performing total correction calculation processing by a (Simultaneous Localization And Mapping) algorithm and specifying overall position estimation information of a route traveled by the measurement vehicle.
  2. 前記全補正演算手段にて得られた、前記計測車が走行した経路の全体位置推定情報と、前記内面形状計測手段による、前記管路の内面形状情報に基づいて、
    前記管路の内面の位置を推定し、前記管路の地理座標を推定する管路地理座標推定手段を備えたことを特徴とする請求項1に記載の埋設管路の計測装置。
    Based on the overall position estimation information of the route traveled by the measurement vehicle obtained by the all correction calculation means, and the inner surface shape information of the pipeline by the inner surface shape measurement means,
    The buried pipe measuring device according to claim 1, further comprising pipe geographical coordinate estimating means for estimating a position of an inner surface of the pipe and estimating geographical coordinates of the pipe.
  3. 前記内面形状計測手段は、管路の内面を走査するレーザー計測装置が用いられていることを特徴とする請求項1、2の何れか1項に記載の埋設管路の計測装置。 The buried pipe measuring device according to any one of claims 1 and 2, wherein the inner surface shape measuring means uses a laser measuring device that scans the inner surface of the pipe.
  4. 前記内面形状計測手段は、
    互いに非平行な3つの平面内を走査して管路の内面形状情報を得るように構成されていることを特徴とする請求項1~3の何れか1項に記載の埋設管路の計測装置。
    The inner surface shape measuring means includes
    The buried pipe measuring device according to any one of claims 1 to 3, wherein the inner pipe shape information is obtained by scanning in three non-parallel planes. .
  5. 前記内面形状計測手段は、
    管軸に垂直な平面内を走査して、少なくとも管路の断面形状を計測するように構成されていることを特徴とする請求項1~4の何れか1項に記載の埋設管路の計測装置。
    The inner surface shape measuring means includes
    The buried pipeline measurement according to any one of claims 1 to 4, wherein the measurement is at least a cross-sectional shape of the pipeline by scanning in a plane perpendicular to the tube axis. apparatus.
  6. 前記内面形状計測手段は、
    管軸方向成分と、前記管軸に直交する水平方向成分とで特定される平面内を走査して、少なくとも管路の管軸方向の横断面形状を計測するように構成されていることを特徴とする請求項1~5の何れか1項に記載の埋設管路の計測装置。
    The inner surface shape measuring means includes
    It is configured to scan a plane specified by a tube axis direction component and a horizontal direction component orthogonal to the tube axis, and measure at least the cross-sectional shape of the pipe in the tube axis direction. The buried pipe measuring device according to any one of claims 1 to 5.
  7. 前記内面形状計測手段は、
    管軸方向成分を含む垂直平面内を走査して、少なくとも管路の管軸方向の縦断面形状を計測するように構成されていることを特徴とする請求項1~6の何れか1項に記載の埋設管路の計測装置。
    The inner surface shape measuring means includes
    7. The apparatus according to claim 1, wherein a vertical plane including a component in the tube axis direction is scanned to measure at least a longitudinal sectional shape of the tube in the tube axis direction. The buried pipe measuring device described.
  8. 前記内面形状計測手段が配設された架台を昇降させる昇降機構を備えていることを特徴とする請求項1~7の何れか1項に記載の埋設管路の計測装置。 The buried pipe measuring device according to any one of claims 1 to 7, further comprising an elevating mechanism for elevating and lowering a gantry on which the inner surface shape measuring means is disposed.
  9. 前記逐次位置推定演算手段は、
    所定の時間間隔ごとに、前記所定の時間での前記走行距離計測手段による走行距離情報と前記姿勢計測手段または慣性計測手段による姿勢情報を用いて、前記計測開始位置を基準とした前記計測車の逐次位置情報を逐次更新することを特徴とする請求項1~8の何れか1項に記載の埋設管路の計測装置。
    The sequential position estimation calculation means includes
    At each predetermined time interval, using the travel distance information by the travel distance measurement means and the posture information by the attitude measurement means or the inertia measurement means at the predetermined time, the measurement vehicle based on the measurement start position is used. The buried pipe measuring device according to any one of claims 1 to 8, wherein the position information is sequentially updated.
  10. 前記逐次位置補正演算手段は、
    所定の時間間隔ごとに、前記逐次位置推定演算手段による前記計測車の逐次位置情報に基づいた推定内面形状情報と、前記内面形状計測手段による前記内面形状情報とに基づいて、前記逐次位置情報を逐次補正演算処理することを特徴とする請求項1~9の何れか1項に記載の埋設管路の計測装置。
    The sequential position correction calculation means includes:
    Based on the estimated inner surface shape information based on the sequential position information of the measuring vehicle by the sequential position estimation calculation means and the inner surface shape information by the inner surface shape measurement means, at each predetermined time interval, The buried pipe measuring device according to any one of claims 1 to 9, characterized in that a sequential correction calculation process is performed.
  11. 前記三次元SLAMアルゴリズムによる全補正演算処理は、
    三次元空間において、前記逐次補正演算された前記逐次位置情報を、前記計測開始位置情報と前記計測終了位置情報に基づいて全補正演算処理して、三次元空間における位置推定と地図作製を並行して実行することを特徴とする請求項1~10の何れか1項に記載の埋設管路の計測装置。
    The total correction calculation process by the three-dimensional SLAM algorithm is as follows:
    In the three-dimensional space, the sequential position information that has been subjected to the sequential correction calculation is subjected to all correction calculation processing based on the measurement start position information and the measurement end position information, so that position estimation in the three-dimensional space and map creation are performed in parallel. The buried pipe measuring device according to any one of claims 1 to 10, wherein the measuring device is executed.
  12. 前記三次元SLAMアルゴリズムとしては、
    特定された前記計測開始位置と特定された前記計測終了位置をランドマークとし、
    前記計測開始位置と特定された前記計測終了位置の間における計測車の逐次位置情報を、
    その間のリンクとノードとし、
    リンクのつながりの強さを計測誤差とするグラフを作成して、
    前記グラフが最も当てはまる形を推定することで、前記計測車の位置・姿勢と、地図作製を並行して実行するGraph-SLAMアルゴリズムを用いることを特徴とする請求項11に記載の埋設管路の計測装置。
    As the three-dimensional SLAM algorithm,
    With the specified measurement start position and the specified measurement end position as landmarks,
    The sequential position information of the measurement vehicle between the measurement start position and the specified measurement end position,
    With links and nodes between them,
    Create a graph with measurement error of link strength,
    12. The embedded pipeline according to claim 11, wherein a graph-SLAM algorithm that executes map creation in parallel with a position / posture of the measurement vehicle is used by estimating a shape most applicable to the graph. Measuring device.
  13. 走行距離を計測して走行距離情報を出力する走行距離計測手段、計測車の姿勢を計測して姿勢情報を出力する姿勢計測手段または慣性計測手段、および、管路の内面形状を計測して内面形状情報を出力する内面形状計測手段を備えて管路内を走行可能な計測車を用いた埋設管路の計測方法であって、
    計測開始位置における計測車の位置と姿勢を特定して計測開始位置情報を得る第1のステップと、
    前記管路内を走行中に、前記走行距離計測手段による走行距離情報と前記姿勢計測手段または慣性計測手段による姿勢情報を用いて、前記計測開始位置を基準とした前記計測車の逐次位置情報を逐次推定演算する第2のステップと、
    前記内面形状計測手段による管路の内面形状情報に基づいて、前記管路内を走行中における前記計測車の逐次位置情報を逐次補正演算する第3のステップと、
    前記計測終了位置に到達後において、計測終了位置における計測車の位置と姿勢を特定して計測終了位置情報を得る第4のステップと、
    前記計測終了位置に到達後において、前記逐次補正演算された前記逐次位置情報を、前記計測開始位置情報と前記計測終了位置情報に基づいて、位置推定と地図作製を並行して実行する三次元SLAM(Simultaneous Localization And Mapping)アルゴリズムによって全補正演算処理して、前記計測車が走行した経路の全体位置推定情報を特定する第5のステップと
    を含んでいることを特徴とする埋設管路の計測方法。
    Travel distance measurement means for measuring travel distance and outputting travel distance information, attitude measurement means or inertia measurement means for measuring the attitude of a measuring vehicle and outputting posture information, and measuring the inner surface shape of a pipe to measure the inner surface A method for measuring a buried pipeline using a measuring vehicle capable of traveling in a pipeline with an inner surface shape measuring means for outputting shape information,
    A first step of obtaining measurement start position information by specifying the position and orientation of the measurement vehicle at the measurement start position;
    While traveling in the pipeline, using the travel distance information by the travel distance measurement means and the attitude information by the attitude measurement means or the inertia measurement means, the sequential position information of the measurement vehicle based on the measurement start position is obtained. A second step of performing successive estimation operations;
    A third step of successively correcting and calculating the sequential position information of the measuring vehicle while traveling in the pipeline based on the inner surface shape information of the pipeline by the inner surface shape measuring means;
    A fourth step of obtaining the measurement end position information by specifying the position and orientation of the measurement vehicle at the measurement end position after reaching the measurement end position;
    After reaching the measurement end position, a three-dimensional SLAM that performs position estimation and map creation in parallel on the basis of the measurement start position information and the measurement end position information based on the sequential position information that has been subjected to the successive correction calculation. And a fifth step of identifying all position estimation information of a route traveled by the measurement vehicle by performing a total correction calculation process using a (Simultaneous Localization And Mapping) algorithm. .
PCT/JP2014/069656 2013-07-26 2014-07-25 Buried-pipeline measurement device and buried-pipeline measurement method WO2015012382A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013156041A JP6202559B2 (en) 2013-07-26 2013-07-26 Buried pipe measuring device and buried pipe measuring method
JP2013-156041 2013-07-26

Publications (1)

Publication Number Publication Date
WO2015012382A1 true WO2015012382A1 (en) 2015-01-29

Family

ID=52393414

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/069656 WO2015012382A1 (en) 2013-07-26 2014-07-25 Buried-pipeline measurement device and buried-pipeline measurement method

Country Status (2)

Country Link
JP (1) JP6202559B2 (en)
WO (1) WO2015012382A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230194035A1 (en) * 2020-05-21 2023-06-22 Shi-En Shiau Crawler for Conduit Line and Grade Inspection
JP7346682B1 (en) 2022-08-30 2023-09-19 東芝プラントシステム株式会社 Embedded pipe shape measuring device and method

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6272269B2 (en) * 2015-04-28 2018-01-31 三菱電機株式会社 Cross scan data correction apparatus and cross scan data correction program
KR101742487B1 (en) 2015-09-23 2017-06-02 전자부품연구원 Position recognizing device and method in pipeline
KR102147661B1 (en) 2016-03-15 2020-08-26 한국전자기술연구원 Position Recognizing System and Method
JP6874343B2 (en) * 2016-11-24 2021-05-19 株式会社豊田中央研究所 Map making device
KR101956447B1 (en) * 2017-04-20 2019-03-12 한국과학기술원 Method and apparatus for position estimation of unmanned vehicle based on graph structure
KR102030612B1 (en) * 2018-08-23 2019-10-10 한국지질자원연구원 Navigation system using map which position is defined as spatial shape information
JP7290885B2 (en) * 2018-10-16 2023-06-14 株式会社弘栄ドリームワークス Piping measuring device
JP7261439B2 (en) * 2018-10-16 2023-04-20 株式会社弘栄ドリームワークス Pipe measurement system, pipe measurement device, information processing device and program
JP2020197467A (en) * 2019-06-04 2020-12-10 俊雄 小泉 Inspection method for structure using unmanned machine with autonomous flying function by slam

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0487465A1 (en) * 1990-11-13 1992-05-27 Ente Per Le Nuove Tecnologie, L'energia E L'ambiente ( Enea) An automatic system for the detection of the internal contour of railway tunnels and the like
JP2001012947A (en) * 1999-06-28 2001-01-19 Yuji Imazaki System for displaying laid state of underground pipeline
JP2007212264A (en) * 2006-02-09 2007-08-23 Taisei Corp Scanning method of three-dimensional laser scanner
WO2011144408A1 (en) * 2010-05-17 2011-11-24 Commissariat A L'energie Atomique Et Aux Energies Alternatives Method and system for fusing data arising from image sensors and from motion or position sensors
WO2012040644A1 (en) * 2010-09-24 2012-03-29 Evolution Robotics, Inc. Systems and methods for vslam optimization
JP2012251774A (en) * 2011-05-31 2012-12-20 Tokyu Construction Co Ltd Three-dimensional shape information acquisition device

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61130593A (en) * 1984-11-30 1986-06-18 古河鉱業株式会社 Drilling measuring system

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0487465A1 (en) * 1990-11-13 1992-05-27 Ente Per Le Nuove Tecnologie, L'energia E L'ambiente ( Enea) An automatic system for the detection of the internal contour of railway tunnels and the like
JP2001012947A (en) * 1999-06-28 2001-01-19 Yuji Imazaki System for displaying laid state of underground pipeline
JP2007212264A (en) * 2006-02-09 2007-08-23 Taisei Corp Scanning method of three-dimensional laser scanner
WO2011144408A1 (en) * 2010-05-17 2011-11-24 Commissariat A L'energie Atomique Et Aux Energies Alternatives Method and system for fusing data arising from image sensors and from motion or position sensors
WO2012040644A1 (en) * 2010-09-24 2012-03-29 Evolution Robotics, Inc. Systems and methods for vslam optimization
JP2012251774A (en) * 2011-05-31 2012-12-20 Tokyu Construction Co Ltd Three-dimensional shape information acquisition device

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
EIJIRO TAKEUCHI ET AL.: "Localization in Outdoor Environments using Multi-Sensor Localization Framework", JOURNAL OF THE ROBOTICS SOCIETY OF JAPAN, vol. 30, no. 3, 15 April 2012 (2012-04-15), pages 296 - 304 *
THE ROBOTICS SOCIETY OF JAPAN: "Robotics Handbook-2nd ed.", 23 June 2005, CORONA PUBLISHING CO., LTD.,, pages: 604 - 625 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230194035A1 (en) * 2020-05-21 2023-06-22 Shi-En Shiau Crawler for Conduit Line and Grade Inspection
US11781699B2 (en) * 2020-05-21 2023-10-10 Shi-En Shiau Crawler for conduit line and grade inspection
JP7346682B1 (en) 2022-08-30 2023-09-19 東芝プラントシステム株式会社 Embedded pipe shape measuring device and method

Also Published As

Publication number Publication date
JP6202559B2 (en) 2017-09-27
JP2015025753A (en) 2015-02-05

Similar Documents

Publication Publication Date Title
JP6202559B2 (en) Buried pipe measuring device and buried pipe measuring method
CN105066917B (en) A kind of small pipeline GIS-Geographic Information System measuring device and its measurement method
JP5927735B2 (en) Map data creation device, autonomous mobile system and autonomous mobile control device
JP2019074532A (en) Method for giving real dimensions to slam data and position measurement using the same
US10539956B2 (en) Subsurface robotic mapping system and method
JP2022113746A (en) Determination device
US20150071493A1 (en) Information processing apparatus, control method of the information processing apparatus, and storage medium
JP2015025753A5 (en)
JP5610870B2 (en) Unmanned traveling vehicle guidance device and unmanned traveling vehicle guidance method
CN107709926B (en) Automated mobile geotechnical surveying and mapping
CN108759815B (en) Information fusion integrated navigation method used in global visual positioning method
JP3746283B2 (en) Continuous cable position search device, continuous cable position search method, and continuous cable position search program
JP2022553750A (en) Method for detecting infrastructure elements of an underground network and its mobile detector
KR101860262B1 (en) Location and depth measuring method of a underground objects
JP3753833B2 (en) Road linear automatic surveying equipment
JP6478578B2 (en) Exploration equipment
JP2006119144A (en) Road linearity automatic survey device
CN101581583B (en) Navigation positioning system for moving object
JP7162208B2 (en) Water content ratio mapping method and water content ratio mapping device
JP2000338865A (en) Data gathering device for digital road map
KR101821652B1 (en) The measurement system and method of underground conduit line
EA039284B1 (en) Combined metrology method for computing distance, roll and pitch attitudes and relative orientations between two underwater points of interest
JP5060382B2 (en) Pipe burial position measurement system, pipe burial position measurement method
KR20160141574A (en) A route detection equipment for underground utilities and server for providing location information
CN113959417A (en) Method for acquiring accurate three-dimensional coordinate data of underground trenchless traction pipe

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14829130

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14829130

Country of ref document: EP

Kind code of ref document: A1