WO2015004827A1 - Dehydrogenation system - Google Patents

Dehydrogenation system Download PDF

Info

Publication number
WO2015004827A1
WO2015004827A1 PCT/JP2014/001612 JP2014001612W WO2015004827A1 WO 2015004827 A1 WO2015004827 A1 WO 2015004827A1 JP 2014001612 W JP2014001612 W JP 2014001612W WO 2015004827 A1 WO2015004827 A1 WO 2015004827A1
Authority
WO
WIPO (PCT)
Prior art keywords
hydrogen
dehydrogenation
tank
passage
hydrogen tank
Prior art date
Application number
PCT/JP2014/001612
Other languages
French (fr)
Japanese (ja)
Inventor
豊嗣 近藤
Original Assignee
株式会社辰巳菱機
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社辰巳菱機 filed Critical 株式会社辰巳菱機
Publication of WO2015004827A1 publication Critical patent/WO2015004827A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/22Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by decomposition of gaseous or liquid organic compounds
    • C01B3/24Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by decomposition of gaseous or liquid organic compounds of hydrocarbons
    • C01B3/26Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by decomposition of gaseous or liquid organic compounds of hydrocarbons using catalysts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0606Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
    • H01M8/065Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants by dissolution of metals or alloys; by dehydriding metallic substances
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0266Processes for making hydrogen or synthesis gas containing a decomposition step
    • C01B2203/0277Processes for making hydrogen or synthesis gas containing a decomposition step containing a catalytic decomposition step
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/06Integration with other chemical processes
    • C01B2203/066Integration with other chemical processes with fuel cells
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/12Feeding the process for making hydrogen or synthesis gas
    • C01B2203/1205Composition of the feed
    • C01B2203/1211Organic compounds or organic mixtures used in the process for making hydrogen or synthesis gas
    • C01B2203/1235Hydrocarbons
    • C01B2203/1252Cyclic or aromatic hydrocarbons
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to a dehydrogenation system that separates and extracts hydrogen from organic hydride.
  • Patent Document 1 a dehydrogenation reaction apparatus has been proposed.
  • an object of the present invention is to provide a dehydrogenation system capable of performing a dehydrogenation reaction without using external energy other than organic hydride.
  • a dehydrogenation system includes a raw material tank for storing organic hydride, an organic hydride, a fuel tank for storing at least one of aromatic compounds obtained by separating hydrogen from the organic hydride as fuel, an outside air intake device, A first passage provided with a first catalyst for promoting a dehydrogenation reaction of organic hydride supplied from a raw material tank, and fuel supplied from a fuel tank and air supplied from an outside air intake device adjacent to the first passage.
  • Hydrogen is discharged from the power supply device that generates power based on the hydrogen supplied from the elementary tank, the inlet for supplying hydrogen from the first passage in the first hydrogen tank and the second hydrogen tank, and the power supply device
  • a dehydrogenation system comprising a control device for controlling opening and closing of the outlet, wherein the first hydrogen tank is from when the dehydrogenation system is operated until the dehydrogenation reaction in the dehydrogenation reactor is activated
  • the second hydrogen tank has a larger capacity than the first hydrogen tank, and is used after storing the dehydrogenation reaction in the dehydrogenation reactor. Dehydrogenation reaction in dehydrogenation reactors that are used to store hydrogen used in the system and hydrogen used in external equipment other than the equipment that constitutes the dehydrogenation system.
  • At least one of the first heater that warms the outside air taken in by the outside air taking-in device and the second heater that warms the first passage is driven, and the power supply device moves from the raw material tank to the first passage.
  • the organic hydride is supplied, the fuel is supplied from the fuel tank to the second passage, and at least one of the first heater and the second heater is driven.
  • the inlet of the first hydrogen tank is closed and the outlet of the first hydrogen tank is opened.
  • the second hydrogen tank inlet is opened, the second hydrogen tank outlet is closed, and after the dehydrogenation system is activated and the dehydrogenation reaction in the dehydrogenation reactor is activated.
  • the inlet of the first hydrogen tank is opened, the outlet of the first hydrogen tank is closed, and the inlet of the second hydrogen tank is closed.
  • the second hydrogen tank outlet is opened, and after the first hydrogen tank is sufficiently filled with hydrogen, the first tank inlet and outlet are closed, the second tank inlet and The outlet is opened.
  • the first hydrogen tank is always filled with hydrogen for power supply required until the dehydrogenation reaction is activated, so dehydration is possible without receiving external energy supply. It is possible to perform a dehydrogenation reaction of the organic hydride supplied to the elementary reactor.
  • one of the inlets of the first hydrogen tank and the second hydrogen tank is always open and the other is closed.
  • the outlets of the first hydrogen tank and the second hydrogen tank are always Since one is opened and the other is closed, there is little risk of hydrogen flowing back.
  • the amount of hydrogen is less than a predetermined value, the inlet of the first hydrogen tank is closed and the inlet of the second hydrogen tank is opened.
  • the amount of hydrogen discharged from the dehydrogenation reactor per unit time is from the time when the dehydrogenation system is operated until the dehydrogenation reaction in the dehydrogenation reactor is activated.
  • the amount of hydrogen consumed by the power supply device per unit time is larger.
  • the determination as to whether or not the dehydrogenation reaction in the dehydrogenation reactor has been activated is based on the elapsed time from the operation of the dehydrogenation system, the temperature in the first passage or the second heater, Based on at least one of the flow rates of the gas supplied to the first hydrogen tank and the second hydrogen tank.
  • whether or not the first hydrogen tank is sufficiently filled with hydrogen is determined based on the pressure state in the first hydrogen tank or the inlet of the first hydrogen tank and flowing into the first hydrogen tank. This is based on at least one of the difference between the flow rate of hydrogen and the flow rate of hydrogen discharged from the first hydrogen tank through the outlet of the first hydrogen tank.
  • the power required for driving at least one of the first heater and the second heater from when the dehydrogenation system is operated to when the dehydrogenation reaction in the dehydrogenation reactor is activated is dehydrogenation. More than the electric power required for driving at least one of the first heater and the second heater after the system is operated and the dehydrogenation reaction in the dehydrogenation reactor is activated.
  • the fuel stored in the fuel tank is an organic hydride or an aromatic compound discharged from the first passage.
  • the dehydrogenation system has a raw material tank for storing organic hydride and a first passage provided with a first catalyst for promoting a dehydrogenation reaction of the organic hydride supplied from the raw material tank.
  • a dehydrogenation reactor in which the supplied organic hydride is separated into hydrogen and an aromatic compound, a first hydrogen tank and a second hydrogen tank for storing hydrogen discharged from the first passage, a first hydrogen tank and a second hydrogen tank Hydrogen is discharged to the power supply device that generates electric power based on the hydrogen supplied from the hydrogen tank, the inlet for supplying hydrogen from the first passage in the first hydrogen tank and the second hydrogen tank, and the power supply device
  • a dehydrogenation system comprising a control device for controlling opening and closing of the outlet, wherein the first hydrogen tank activates the dehydrogenation reaction in the dehydrogenation reactor after the dehydrogenation system is operated.
  • the second hydrogen tank is used to store hydrogen used in the power supply device, and the second hydrogen tank is used for the hydrogen used in the power supply device after the dehydrogenation reaction in the dehydrogenation reactor is activated. It is used to store hydrogen used in external equipment other than the equipment that constitutes the system, and the first passage is provided between the time when the dehydrogenation system is activated and the time when the dehydrogenation reaction in the dehydrogenation reactor is activated.
  • the heater for heating is driven, and the power supply device is used for supplying organic hydride from the raw material tank to the first passage and driving the heater.
  • a dehydrogenation system includes a raw material tank for storing organic hydride, an organic hydride, a fuel tank for storing at least one of aromatic compounds obtained by separating hydrogen from the organic hydride as fuel, an outside air intake device, A first passage provided with a first catalyst for promoting a dehydrogenation reaction of organic hydride supplied from a raw material tank, and fuel supplied from a fuel tank and air supplied from an outside air intake device adjacent to the first passage.
  • the third hydrogen tank Based on the hydrogen supplied from the third hydrogen tank, the third hydrogen tank for storing the hydrogen discharged from the first passage, And opening and closing control of a hydrogen discharge port separate from the power supply device for generating power and the inlet for supplying hydrogen from the first passage in the third hydrogen tank and the outlet for discharging hydrogen to the power supply device.
  • the third hydrogen tank is used for storing hydrogen used in the power supply device and hydrogen used in external equipment other than the devices constituting the dehydrogenation system.
  • the first heater for warming the outside air taken in by the outside air take-in device and the second heater for warming the first passage At least one is driven, and the power supply device is configured to supply organic hydride from the raw material tank to the first passage, supply fuel from the fuel tank to the second passage, the first heater and the second heater.
  • the controller uses the third hydrogen tank for the hydrogen used in the power supply device from when the dehydrogenation system is operated until the dehydrogenation reaction in the dehydrogenation reactor is activated. It is determined whether or not the gas is filled. If it is determined that the gas is not filled, the hydrogen discharge port is closed and the hydrogen supply to the external device is restricted.
  • the present invention besides the organic hydride, it is possible to provide a dehydrogenation system capable of performing a dehydrogenation reaction without using external energy.
  • the dehydrogenation system 1 in the first embodiment includes a raw material tank (MCH tank) 11, a raw material pump (MCH pump) 13, a fuel tank (TOL / MCH tank) 15, a fuel pump (TOL / MCH pump) 17, and an outside air intake device. 19, heat exchanger 21, controller 29, dehydrogenation reactor 30 (first passage 31a, second passage 31b, first catalyst (dehydrogenation catalyst) 33a, second catalyst (combustion catalyst) 33b, second heater 35) , A temperature sensor 36), a gas-liquid separator 41, a first hydrogen tank 43a, a second hydrogen tank 43b, and a power supply device 51.
  • the raw material tank 11 stores an organic hydride such as methylcyclohexane, and the organic hydride stored in the raw material tank 11 is supplied to the first passage 31a of the dehydrogenation reactor 30 via the raw material pump 13 for dehydration. In an elementary reaction, it is separated into aromatic compounds such as toluene and hydrogen.
  • the fuel tank 15 is a tank that stores fuel used to warm the organic hydride passing through the first passage 31a of the dehydrogenation reactor 30 and the first catalyst 33a that accelerates the dehydrogenation reaction of the organic hydride.
  • the fuel stored in the tank 15 is supplied to the second passage 31b of the dehydrogenation reactor 30 via the fuel pump 17 and burned.
  • Fuel is an organic hydride that is an object of dehydrogenation reaction or an aromatic compound after dehydrogenation reaction such as toluene, and is supplied from a gas-liquid separator 41 described later.
  • the outside air intake device 19 has a first heater 19a and a blower 19b, takes in air heated by the first heater 19a by the blower 19b, and supplies it to the heat exchanger 21.
  • the arrangement of the first heater 19a and the blower 19b may be reversed (a form in which outside air is taken in by the blower 19b and the taken-in air is warmed by the first heater 19a).
  • the heat exchanger 21 takes in the exhaust gas (carbon dioxide and water vapor) after combustion in the second passage 31b, warms the air supplied from the outside air intake device 19 using the high-temperature exhaust gas, and heats the heated air. It supplies to the 2nd channel
  • the fuel and air mixture in the second passage 31b of the dehydrogenation reactor 30 is not sufficiently combusted, so the temperature of the gas discharged from the outlet 31b2 becomes high.
  • the air from the outside air intake device 19 cannot be sufficiently heated by heat exchange by the heat exchanger 21. For this reason, it is necessary to operate the 1st heater 19a and to warm the air taken in with the blower 19b.
  • the temperature of the gas discharged from the outlet 31b2 is high.
  • the air from the outside air intake device 19 can be sufficiently warmed. In this case, it is not necessary to warm the air taken in by the blower 19b with the first heater 19a.
  • the exhaust gas is cooled by heat exchange with the air from the outside air intake device 19 and then discharged from the heat exchanger 21.
  • the control device 29 is a device for controlling each part of the dehydrogenation system 1 such as a CPU.
  • the control device 29 is in an operating state (dehydrogenation reaction activated state) of the dehydrogenation system 1 or a hydrogen filling state in the first hydrogen tank 43a. Based on this, the opening / closing control of the inlet 43a1 and the outlet 43a2 of the first hydrogen tank 43a and the opening / closing control of the inlet 43b1 and the outlet 43b2 of the second hydrogen tank 43b are performed.
  • the operation state of the dehydrogenation system 1 (activation state of the dehydrogenation reaction), that is, whether or not the dehydrogenation reaction in the dehydrogenation reactor 30 has been activated is determined after the operation of the dehydrogenation system 1. This is performed based on the time, the temperature in the first passage 31a or the second heater 35, the flow rate passing through the gas outlet 41a of the gas-liquid separator 41, or the like.
  • the first hydrogen tank 43a is filled with hydrogen, that is, whether or not the first hydrogen tank 43a is sufficiently filled with hydrogen is determined by the pressure state in the first hydrogen tank 43a or through the inlet 43a1. This is performed based on the difference between the flow rate of hydrogen flowing into the first hydrogen tank 43a and the flow rate of hydrogen discharged from the first hydrogen tank 43a through the outlet 43a2.
  • the first hydrogen tank 43a is provided with a pressure sensor 45, and the pressure sensor 45 is used to detect the pressure state in the first hydrogen tank 43a. Based on this, the hydrogen in the first hydrogen tank 43a is detected. An example of determining the filling state is shown.
  • the dehydrogenation reactor 30 has a substantially cylindrical shape and a triple pipe structure, and includes a first passage 31a, a second passage 31b, a first catalyst (dehydrogenation catalyst) 33a, a second catalyst (combustion catalyst) 33b, and a second heater. 35.
  • a temperature sensor 36 is provided.
  • the first passage 31a is a passage through which organic hydride to be dehydrogenated flows upward from the lower end inlet 31a1 along the outer wall and is discharged from the upper end outlet 31a2, and promotes the dehydrogenation reaction in the passage.
  • a first catalyst (dehydrogenation catalyst) 33a such as platinum is provided, and a second heater 35 for heating the organic hydride in the first passage 31a and the first catalyst 33a is provided on the outer wall surface.
  • a mixture of fuel and air to be combusted flows upward from the lower end inlet 31b1 to the inner side of the first passage 31a, folds back at the upper part, flows further downward at the inner side, and exits from the lower end outlet 31b2.
  • the exhaust passage is provided with a second catalyst (combustion catalyst) 33b such as platinum that promotes combustion of fuel.
  • the first catalyst 31a and the first catalyst 33a and the organic hydride inside the first passage 31a provided on the outer periphery are warmed.
  • the thick arrow in FIG. 3 indicates the heat transfer direction.
  • the boundary between the first passage 31a and the second passage 31b is made of a material having high thermal conductivity such as metal.
  • the first catalyst 33a has a pleat shape, a lattice shape, a honeycomb shape, a fin shape, etc., and is supported in the first passage 31a
  • the second catalyst 33b has a pleat shape, a lattice shape, a honeycomb shape, a fin shape, etc. It is carried in the two passages 31b.
  • the second heater 35 is used to warm the outer peripheral surface of the first passage 31a.
  • the temperature sensor 36 detects information related to the temperature of the inside of the first passage 31 a or the second heater 35. The temperature information is transmitted to the control device 29 and used for opening / closing control of the first hydrogen tank 43a and the second hydrogen tank 43b.
  • the gas-liquid separator 41 separates the gas (hydrogen) discharged from the first passage 31a of the dehydrogenation reactor 30 and the liquid (aromatic compound or organic hydride), and the gas (hydrogen) is discharged from the gas outlet 41a.
  • the liquid (aromatic compound or organic hydride) is discharged from the liquid discharge port 41b to the fuel tank 15 as fuel.
  • the power supply device is connected to the front stage (pipe communicating with the dehydrogenation reactor 30) and the rear stage (pipe communicating with the first hydrogen tank 43a and the second hydrogen tank 43b and the pipe communicating with the fuel tank 15) of the gas-liquid separator 41.
  • a configuration may be employed in which a chiller driven by 51 is provided to cool the liquid or gas discharged from the dehydrogenation reactor 30.
  • the first hydrogen tank 43a and the second hydrogen tank 43b are tanks for storing hydrogen separated by the gas-liquid separator 41.
  • the first hydrogen tank 43a is an electric device (raw material pump) constituting the dehydrogenation system 1 during the first period T1 from when the dehydrogenation system 1 is operated until the dehydrogenation reaction in the dehydrogenation reactor 30 is activated. 13. Power supply device (hydrogen generator) for supplying power to the fuel pump 17, the first heater 19a and blower 19b of the outside air intake device 19, the control device 29, the second heater 35, the temperature sensor 36, and the gas-liquid separator 41) Alternatively, it is used for storing hydrogen used in the fuel cell 51.
  • Power supply device hydrogen generator
  • the second hydrogen tank 43b is used for the hydrogen used in the power supply device 51 and the dehydrogenation system 1. Used to store hydrogen for use in external equipment other than the equipment it constitutes.
  • the first hydrogen tank 43a operates after the dehydrogenation system 1 is operated until the temperature in the first passage 31a or the second heater 35 reaches a predetermined value (for example, 200 degrees) at which the dehydrogenation reaction is activated. Necessary for generating the electric power necessary for driving the electric devices constituting the dehydrogenation system 1 (electric power necessary for driving these electric devices during the first period T1) by the power supply device 51. Has the capacity to store fresh hydrogen.
  • a predetermined value for example, 200 degrees
  • a required time (30 minutes to 1 hour) from when the dehydrogenation system 1 is operated until the temperature in the first passage 31a or the second heater 35 reaches a predetermined value at which the dehydrogenation reaction is activated.
  • the length of the first period T1 is calculated, the electric power necessary for driving the electric equipment constituting the dehydrogenation system 1 is calculated for the required time, and the electric power supply device 51 generates the electric power. Therefore, the amount of hydrogen necessary for the calculation is calculated, and at least the capacity capable of storing the amount of hydrogen is defined as the capacity of the first hydrogen tank 43a.
  • the first hydrogen tank 43a has an inlet 43a1 that communicates with the gas discharge port 41a of the gas-liquid separator 41 and an outlet 43a2 that communicates with the hydrogen supply port of the power supply device 51.
  • the second hydrogen tank 43b includes an inlet 43b1 that communicates with the gas discharge port 41a of the gas-liquid separator 41, an outlet 43b2 that communicates with the hydrogen supply port of the power supply device 51, and a hydrogen exhaust that communicates with the hydrogen supply port of an external device.
  • An outlet 43b3 is provided. Since the second hydrogen tank 43b is used for supplying hydrogen to an external device, the second hydrogen tank 43b preferably has a larger capacity than the first hydrogen tank 43a.
  • the opening / closing control of the inlet 43a1 and the outlet 43a2 of the first hydrogen tank 43a and the opening / closing control of the inlet 43b1 and the outlet 43b2 of the second hydrogen tank 43b are performed in the operating state of the dehydrogenation system 1 (dehydrogenation reaction activation state), This is performed based on the hydrogen filling state in the first hydrogen tank 43a.
  • the opening / closing control of the hydrogen discharge port 43b3 of the second hydrogen tank 43b is arbitrarily performed according to the hydrogen supply demand to the external device.
  • the power supply device 51 is a device that supplies power to an external device based on hydrogen supplied from the first hydrogen tank 43a or the second hydrogen tank 43b, such as a hydrogen generator or a fuel cell. Power is supplied to the electric equipment (raw material pump 13, fuel pump 17, outside heater 19a and blower 19b, control device 29, second heater 35, temperature sensor 36, gas-liquid separator 41) To do.
  • the electric equipment raw material pump 13, fuel pump 17, outside heater 19a and blower 19b, control device 29, second heater 35, temperature sensor 36, gas-liquid separator 41
  • the raw material tank 11 stores an organic hydride as a raw material in advance, and the first hydrogen tank 43a is filled with hydrogen used to drive the power supply device 51 during the first period T1. .
  • the fuel tank 15 also stores in advance organic hydride and aromatic compounds that serve as fuel, the organic hydride and aromatic compounds are supplied to the fuel tank 15 via the gas-liquid separator 41 during operation. Therefore, the state where these are not stored beforehand may be sufficient.
  • the control device 29 drives the raw material pump 13 and the like, supplies the raw material (organic hydride) in the raw material tank 11 to the first passage 31 a using the raw material pump 13, and uses the fuel pump 17 to generate fuel.
  • the fuel (organic hydride or aromatic compound) in the tank 15 is supplied to the second passage 31b, the outside air is supplied to the second passage 31b after passing through the heat exchanger 21 using the outside air intake device 19, and the second heater 35 is supplied. Or the gas-liquid separator 41 is operated.
  • the control device 29 closes the inlet 43a1 of the first hydrogen tank 43a and opens the outlet 43a2.
  • the inlet 43b1 of the second hydrogen tank 43b is opened and the outlet 43b2 is closed (see step S11 in FIG. 4).
  • the controller 29 determines whether the dehydrogenation reaction has been activated based on whether or not the hydrogen flow rate per unit time passing through the gas discharge port 41a of the gas-liquid separator 41 exceeds a threshold value. Judge whether or not. (See step S12 in FIG. 4).
  • the inlet 43a1 of the first hydrogen tank 43a is kept open until the first hydrogen tank 43a is filled with hydrogen (second period T2).
  • the outlet 43a2 of the first hydrogen tank 43a is closed, the inlet 43b1 of the second hydrogen tank 43b is closed, and the outlet 43b2 of the second hydrogen tank 43b is opened (see step S13 in FIG. 4).
  • the hydrogen stored in the second hydrogen tank 43b is supplied to the power supply device 51, and the power supply device 51 generates power using the hydrogen supplied from the second hydrogen tank 43b. Then, electric power is supplied to the raw material pump 13 and the like. Further, during the second period T2, the first hydrogen tank 43a is filled with hydrogen.
  • the dehydrogenation reaction After the elapse of the first period T1 after the dehydrogenation system 1 is operated, the dehydrogenation reaction has already been activated, and the dehydrogenation reactor 30 is heated by the reaction heat of the dehydrogenation reaction or the combustion heat of the second passage 31b. Since the high temperature state can be maintained, the outputs of the first heater 19a and the second heater 35 can be lower than those in the first period T1, and the power consumption per unit time is higher in the second period T2 than in the first period T1. Less than.
  • the first hydrogen tank 43a has a smaller capacity than the second hydrogen tank 43b, the dehydrogenation reaction has already been activated, and the hydrogen flow rate per unit time passing through the gas discharge port 41a of the gas-liquid separator 41 is Considering that the amount of hydrogen per unit time required for the power supply device 51 for supplying power to the pump 13 and the like is larger, the second period T2 required for filling the first hydrogen tank 43a with hydrogen is compared. However, depending on the degree of hydrogen filling in the second hydrogen tank 43b and the open / close state of the hydrogen discharge port 43b3 immediately after the first period T1, the hydrogen in the second hydrogen tank 43b may enter the power supply device 51 during this time. It may happen that the amount supplied is lower.
  • the hydrogen filling state of the second hydrogen tank 43b is determined from the pressure state of the second hydrogen tank 43b, etc., and the degree of hydrogen filling is insufficient (the amount of hydrogen in the second hydrogen tank 43b). Is smaller than a predetermined value), the inlet 43a1 of the first hydrogen tank 43a is temporarily closed, the inlet 43b1 of the second hydrogen tank 43b is opened, and the second hydrogen tank 43b Hydrogen may be charged.
  • the second period T2 time for filling the first hydrogen tank 43a with hydrogen
  • hydrogen can be stably supplied to the power supply device 51 during this period.
  • control device 29 determines whether or not the first hydrogen tank 43a has been sufficiently charged with hydrogen (see step S14 in FIG. 4).
  • the inlet 43a1 and the outlet of the first hydrogen tank 43a are stopped until the operation of the dehydrogenation system 1 is terminated (third period T3).
  • 43a2 is closed, and the inlet 43b1 and outlet 43b2 of the second hydrogen tank 43b are opened (see step S15 in FIG. 4).
  • the dehydrogenation reaction has already been activated after the elapse of the first period T1 and the second period T2 after the dehydrogenation system 1 is operated, and dehydration is performed by the reaction heat of the dehydrogenation reaction or the combustion heat of the second passage 31b. Since the high temperature state of the elementary reactor 30 can be maintained, the output of the first heater 19a and the second heater 35 can be lower than that in the first period T1, and the power consumption per unit time is higher in the third period T3. Is less than the first period T1.
  • the dehydrogenation reaction is activated, and the hydrogen flow rate per unit time passing through the gas discharge port 41a of the gas-liquid separator 41 is necessary in the power supply device 51 for power supply to the raw material pump 13 and the like. Since the amount is larger than the amount of hydrogen per unit time, during the third period T3, hydrogen can be charged into the second hydrogen tank 43b or supplied to the power supply device 51 via the second hydrogen tank 43b. .
  • the dehydrogenation reactor can be used without receiving external energy supply. It becomes possible to activate the dehydrogenation reaction of the organic hydride supplied to 30.
  • the first hydrogen tank 43a is dehydrogenated except for the period from when the dehydrogenation system 1 is operated until the second period T2 elapses after the first period T1 elapses (the period during which hydrogen is charged). Since hydrogen for power supply necessary until the reaction is activated is always filled, the dehydration reaction of the organic hydride supplied to the dehydrogenation reactor 30 is performed without receiving external energy supply. Is possible.
  • the hydrogen can be obtained by the dehydrogenation reaction without receiving external energy supply other than the supply of the organic hydride as the raw material in the raw material tank 11, the hose for connecting the hydrogen discharge port 43b3 and the external device.
  • members constituting the dehydrogenation system 1 can be accommodated in a substantially rectangular parallelepiped frame as shown in FIG.
  • the hydrogen discharged from the dehydrogenation reactor 30 per unit time from when the dehydrogenation system 1 is operated until the dehydrogenation reaction in the dehydrogenation reactor 30 is activated (during the first period T1).
  • the amount of is less than the amount of hydrogen consumed by the power supply device 51 per unit time.
  • the dehydrogenation reactor 30 and the electric power are supplied so that the amount of hydrogen discharged by the dehydrogenation reactor 30 per unit time is larger than the amount of hydrogen consumed by the power supply device 51 per unit time.
  • the hydrogen corresponding to these differences is stored in the first hydrogen tank 43a and the second hydrogen tank 43b, or is connected to an external device via the hydrogen discharge port 43b3 of the second hydrogen tank 43b. Supply to It becomes possible to or.
  • a dehydrogenation reactor 30 with 3 Nm 3 / h of hydrogen obtained by the dehydrogenation reaction and a hydrogen fuel cell capable of generating 7 kWh with 420 g (4.704 Nm 3 ) of hydrogen are used as the power supply device 51.
  • the first hydrogen tank 43a stores about 5 Nm 3 of hydrogen. Any capacity that can be used is sufficient.
  • the amount of hydrogen obtained in the dehydrogenation reactor 30 ( 3 Nm 3 / h) is smaller than the amount of hydrogen consumed by the power supply device 51 (4.704 Nm 3 / h).
  • the amount of hydrogen obtained in the dehydrogenation reactor 30 is larger than the amount of hydrogen consumed by the power supply device 51 (1.344 Nm 3 / h), so the difference of about 2.6 Nm 3 /
  • the hydrogen of h can be stored in the first hydrogen tank 43a and the second hydrogen tank 43b, or can be supplied to an external device via the hydrogen discharge port 43b3 of the second hydrogen tank 43b.
  • the inlets of the first hydrogen tank 43a and the second hydrogen tank 43b are always open at one side and closed at the other, so that the first hydrogen tank 43a and the second hydrogen tank 43b are closed. Since one of the outlets is always open and the other is closed, there is little possibility of backflow of hydrogen.
  • the dehydrogenation reaction is terminated. Specifically, the supply of organic hydride to the first passage 31a is controlled by controlling the raw material pump 13, and the supply of air-fuel mixture to the second passage 31b is controlled by controlling the fuel pump 17 and the blower 19b. The driving of the first heater 19a and the second heater 35 may be stopped. Further, the dehydrogenation reactor 30 may be provided with a chiller driven by the power supply device 51, and the dehydrogenation reaction may be limited by cooling.
  • first hydrogen tank 43a and second hydrogen tank 43b are used to control the opening and closing of the respective hydrogen inlets and outlets.
  • the hydrogen inlet and outlet may be opened to control the opening and closing of the hydrogen discharge port communicating with the external device (see the second embodiment, FIG. 5).
  • the dehydrogenation system 1 includes a third hydrogen tank 43c instead of the first hydrogen tank 43a and the second hydrogen tank 43b.
  • the third hydrogen tank 43c includes an inlet 43c1, an outlet 43c2, and a hydrogen exhaust.
  • An outlet 43c3 is provided.
  • Other configurations are the same as those of the first embodiment.
  • the inlet 43c1 communicates with the gas discharge port 41a of the gas-liquid separator 41 and is not opened and closed while the dehydrogenation system 1 is in operation.
  • the outlet 43c2 communicates with the hydrogen supply port of the power supply device 51, and is not opened and closed while the dehydrogenation system 1 is in operation.
  • the hydrogen discharge port 43c3 communicates with the hydrogen supply port of the external device, and the opening / closing control of the hydrogen discharge port 43c3 is arbitrarily performed according to the hydrogen supply demand to the external device, but further inside the third hydrogen tank 43c. Opening / closing control is also performed according to the state of filling hydrogen to be stored.
  • the hydrogen filling state in the third hydrogen tank 43c is the pressure state in the third hydrogen tank 43c, or the flow rate of hydrogen flowing through the inlet 43c1 and flowing into the third hydrogen tank 43c, the outlet 43c2, and the hydrogen outlet 43c3. It is calculated based on a difference in the flow rate of hydrogen passing through and discharged from the third hydrogen tank 43c.
  • a pressure sensor 45 is provided in the third hydrogen tank 43c, the pressure state in the third hydrogen tank 43c is detected using the pressure sensor 45, and hydrogen in the third hydrogen tank 43c is detected based on the pressure state. An example of determining the filling state is shown.
  • the controller 29 Based on the calculation result (hydrogen filling state), the controller 29 operates the dehydrogenation system 1 and then the temperature in the first passage 31a or the second heater 35 is a predetermined value (the dehydrogenation reaction is activated). For example, the power necessary for driving the electrical devices constituting the dehydrogenation system 1 (power necessary for driving these electrical devices during the first period T1) by 200 degrees) It is determined whether or not the hydrogen necessary for generating by the power supply device 51 is filled in the third hydrogen tank 43c. If it is determined that the hydrogen is not filled, the hydrogen discharge port 43c3 is closed, Limit hydrogen supply to external equipment.
  • the raw material tank 11 can be used without receiving external energy supply. It becomes possible to carry out the dehydrogenation reaction of the organic hydride filled in.
  • the combustion of the fuel / air mixer is adjacent.
  • path 31b to perform was demonstrated, the form which warms the 1st channel

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Inorganic Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Hydrogen, Water And Hydrids (AREA)
  • Fuel Cell (AREA)

Abstract

The present invention is provided with: a dehydrogenation reaction container which has a path that has a catalyst for promoting dehydrogenation reaction and in which organic hydride supplied to the path is separated into hydrogen and an aromatic compound; a first tank and a second tank which store the discharged hydrogen; a power supply device which generates power from the hydrogen supplied from the first tank and the second tank; and a control device which opens and closes the inlet into which hydrogen is supplied and the outlet from which hydrogen is discharged of the first tank and the second tank. The first tank is used to store the hydrogen used by the power supply device until the dehydrogenation reaction becomes active. Meanwhile, the second tank is used to store the hydrogen used by the power supply device after the dehydrogenation reaction becomes active or the hydrogen used by an external apparatus other than the devices constituting the dehydrogenation system. Until the dehydrogenation reaction becomes active, a heater for warming up the path is activated, and the power supply device is used to supply the organic hydride and activate the heater.

Description

脱水素システムDehydrogenation system
 本発明は、有機ハイドライドから水素を分離して抽出する脱水素システムに関する。 The present invention relates to a dehydrogenation system that separates and extracts hydrogen from organic hydride.
 従来、特許文献1のように、脱水素反応装置が提案されている。 Conventionally, as in Patent Document 1, a dehydrogenation reaction apparatus has been proposed.
特開2007-238341号公報JP 2007-238341 A
 しかし、脱水素反応を行わせるために電力など外部のエネルギーを必要としている。 However, external energy such as electric power is required to perform the dehydrogenation reaction.
 したがって本発明の目的は、有機ハイドライド以外に、外部のエネルギーを用いずに脱水素反応を行わせることが可能な脱水素システムを提供することである。 Therefore, an object of the present invention is to provide a dehydrogenation system capable of performing a dehydrogenation reaction without using external energy other than organic hydride.
 本発明に係る脱水素システムは、有機ハイドライドを貯蔵する原料タンクと、有機ハイドライドと、有機ハイドライドから水素を分離させた芳香族化合物の少なくとも一方を燃料として貯蔵する燃料タンクと、外気取り込み装置と、原料タンクから供給された有機ハイドライドの脱水素反応を促進させる第1触媒を設けた第1通路と、第1通路と隣接し、燃料タンクから供給された燃料と外気取り込み装置から供給された空気の混合気の燃焼を促進させる第2触媒を設けた第2通路を有し、第2通路における燃焼による熱は第1通路に伝達され、第1通路に供給された有機ハイドライドが水素と芳香族化合物に分離される脱水素反応器と、第1通路から排出された水素を貯蔵する第1水素タンクと第2水素タンクと、第1水素タンクや第2水素タンクから供給された水素に基づいて電力を発生させる電力供給装置と、第1水素タンクと第2水素タンクにおける、第1通路からの水素が供給される入口や、電力供給装置へ水素が排出される出口の開閉制御を行う制御装置とを備えた脱水素システムであって、第1水素タンクは、脱水素システムを稼働させてから脱水素反応器における脱水素反応が活性化するまでの間、電力供給装置で使用する水素を貯蔵するために使用され、第2水素タンクは、第1水素タンクよりも大きい容量を有し、脱水素反応器における脱水素反応が活性化した後に電力供給装置で使用する水素や、脱水素システムを構成する装置以外の外部機器で使用する水素を貯蔵するために使用され、脱水素システムを稼働させてから脱水素反応器における脱水素反応が活性化するまでの間は、外気取り込み装置で取り込みされる外気を温める第1ヒーターと、第1通路を温める第2ヒーターの少なくとも一方が駆動され、電力供給装置は、原料タンクから第1通路への有機ハイドライドの供給、燃料タンクから第2通路への燃料の供給、第1ヒーターと第2ヒーターの少なくとも一方の駆動に使用される。 A dehydrogenation system according to the present invention includes a raw material tank for storing organic hydride, an organic hydride, a fuel tank for storing at least one of aromatic compounds obtained by separating hydrogen from the organic hydride as fuel, an outside air intake device, A first passage provided with a first catalyst for promoting a dehydrogenation reaction of organic hydride supplied from a raw material tank, and fuel supplied from a fuel tank and air supplied from an outside air intake device adjacent to the first passage. A second passage provided with a second catalyst for accelerating combustion of the air-fuel mixture, heat generated by combustion in the second passage is transmitted to the first passage, and the organic hydride supplied to the first passage is hydrogen and an aromatic compound; A dehydrogenation reactor separated into a first hydrogen tank, a second hydrogen tank for storing hydrogen discharged from the first passage, a first hydrogen tank and a second hydrogen tank. Hydrogen is discharged from the power supply device that generates power based on the hydrogen supplied from the elementary tank, the inlet for supplying hydrogen from the first passage in the first hydrogen tank and the second hydrogen tank, and the power supply device A dehydrogenation system comprising a control device for controlling opening and closing of the outlet, wherein the first hydrogen tank is from when the dehydrogenation system is operated until the dehydrogenation reaction in the dehydrogenation reactor is activated The second hydrogen tank has a larger capacity than the first hydrogen tank, and is used after storing the dehydrogenation reaction in the dehydrogenation reactor. Dehydrogenation reaction in dehydrogenation reactors that are used to store hydrogen used in the system and hydrogen used in external equipment other than the equipment that constitutes the dehydrogenation system. Until the activation, at least one of the first heater that warms the outside air taken in by the outside air taking-in device and the second heater that warms the first passage is driven, and the power supply device moves from the raw material tank to the first passage. The organic hydride is supplied, the fuel is supplied from the fuel tank to the second passage, and at least one of the first heater and the second heater is driven.
 第1水素タンクに脱水素反応が活性化するまでに必要な電力供給のための水素が充填されていれば、外部からのエネルギー供給を受けずとも、脱水素反応器に供給する有機ハイドライドの脱水素反応を活性化させることが可能になる。 Dehydration of the organic hydride supplied to the dehydrogenation reactor without receiving external energy supply if the first hydrogen tank is filled with hydrogen for power supply required until the dehydrogenation reaction is activated. It becomes possible to activate elementary reactions.
 好ましくは、脱水素システムを稼働させてから脱水素反応器における脱水素反応が活性化するまでの間は、第1水素タンクの入口は閉状態にされ、第1水素タンクの出口は開状態にされ、第2水素タンクの入口は開状態にされ、第2水素タンクの出口は閉状態にされ、脱水素システムを稼働させてから脱水素反応器における脱水素反応が活性化した後であって、第1水素タンクに水素が十分に充填されるまでの間は、第1水素タンクの入口は開状態にされ、第1水素タンクの出口は閉状態にされ、第2水素タンクの入口は閉状態にされ、第2水素タンクの出口は開状態にされ、第1水素タンクに水素が十分に充填された後は、第1タンクの入口と出口は閉状態にされ、第2タンクの入口と出口は開状態にされる。 Preferably, from the time when the dehydrogenation system is operated until the dehydrogenation reaction in the dehydrogenation reactor is activated, the inlet of the first hydrogen tank is closed and the outlet of the first hydrogen tank is opened. The second hydrogen tank inlet is opened, the second hydrogen tank outlet is closed, and after the dehydrogenation system is activated and the dehydrogenation reaction in the dehydrogenation reactor is activated. Until the first hydrogen tank is sufficiently filled with hydrogen, the inlet of the first hydrogen tank is opened, the outlet of the first hydrogen tank is closed, and the inlet of the second hydrogen tank is closed. The second hydrogen tank outlet is opened, and after the first hydrogen tank is sufficiently filled with hydrogen, the first tank inlet and outlet are closed, the second tank inlet and The outlet is opened.
 水素を充填させる期間を除けば、第1水素タンクに脱水素反応が活性化するまでに必要な電力供給のための水素が常に充填されているため、外部からのエネルギー供給を受けずとも、脱水素反応器に供給する有機ハイドライドの脱水素反応を行うことが可能になる。 Except for the period during which hydrogen is charged, the first hydrogen tank is always filled with hydrogen for power supply required until the dehydrogenation reaction is activated, so dehydration is possible without receiving external energy supply. It is possible to perform a dehydrogenation reaction of the organic hydride supplied to the elementary reactor.
 また、脱水素システムの稼働中は、第1水素タンクと第2水素タンクの入口は、常に一方が開状態で他方が閉状態にされ、第1水素タンクと第2水素タンクの出口は、常に一方が開状態で他方が閉状態にされるので、水素が逆流するおそれが少ない。 During the operation of the dehydrogenation system, one of the inlets of the first hydrogen tank and the second hydrogen tank is always open and the other is closed. The outlets of the first hydrogen tank and the second hydrogen tank are always Since one is opened and the other is closed, there is little risk of hydrogen flowing back.
 さらに好ましくは、脱水素システムを稼働させてから脱水素反応器における脱水素反応が活性化した後であって、第1水素タンクに水素が十分に充填されるまでの間で、第2水素タンクの水素が所定値よりも少ない場合は、第1水素タンクの入口が閉状態にされ、第2水素タンクの入口が開状態にされる。 More preferably, the second hydrogen tank after the dehydrogenation system is activated and after the dehydrogenation reaction in the dehydrogenation reactor is activated until the first hydrogen tank is sufficiently filled with hydrogen. When the amount of hydrogen is less than a predetermined value, the inlet of the first hydrogen tank is closed and the inlet of the second hydrogen tank is opened.
 第1水素タンクに水素を充填させるための時間が長くなるが、この間も電力供給装置へ水素を安定的に供給することが可能になる。 Although the time for filling the first hydrogen tank with hydrogen becomes longer, hydrogen can be stably supplied to the power supply apparatus during this time.
 また、好ましくは、脱水素システムを稼働させてから脱水素反応器における脱水素反応が活性化するまでの間は、単位時間あたりの脱水素反応器が排出する水素の量が、単位時間あたりの電力供給装置が消費する水素の量よりも少なく、脱水素システムを稼働させてから脱水素反応器における脱水素反応が活性化した後は、単位時間あたりの脱水素反応器が排出する水素の量が、単位時間あたりの電力供給装置が消費する水素の量よりも多い。 Preferably, the amount of hydrogen discharged from the dehydrogenation reactor per unit time is from the time when the dehydrogenation system is operated until the dehydrogenation reaction in the dehydrogenation reactor is activated. The amount of hydrogen discharged by the dehydrogenation reactor per unit time after the dehydrogenation reaction in the dehydrogenation reactor is activated after the dehydrogenation system is activated after the amount of hydrogen consumed by the power supply device However, the amount of hydrogen consumed by the power supply device per unit time is larger.
 これらの差異分の水素を、第1水素タンクや第2水素タンクに貯蔵したり、第2水素タンクの水素排出口を介して、外部機器へ供給したりすることが可能になる。 It is possible to store the hydrogen for these differences in the first hydrogen tank or the second hydrogen tank, or to supply the external equipment via the hydrogen discharge port of the second hydrogen tank.
 また、好ましくは、脱水素反応器における脱水素反応が活性化したか否かの判断は、脱水素システムの稼働してからの経過時間、第1通路内若しくは第2ヒーターの温度、若しくは、第1水素タンクや第2水素タンクへ供給される気体の流量の少なくとも1つに基づく。 Preferably, the determination as to whether or not the dehydrogenation reaction in the dehydrogenation reactor has been activated is based on the elapsed time from the operation of the dehydrogenation system, the temperature in the first passage or the second heater, Based on at least one of the flow rates of the gas supplied to the first hydrogen tank and the second hydrogen tank.
 また、好ましくは、第1水素タンクに水素が十分に充填されたか否かの判断は、第1水素タンク内の圧力状態、若しくは、第1水素タンクの入口を通過して第1水素タンクに流入する水素の流量と第1水素タンクの出口を通過して第1水素タンクから排出される水素の流量の差異の少なくとも一方に基づく。 Preferably, whether or not the first hydrogen tank is sufficiently filled with hydrogen is determined based on the pressure state in the first hydrogen tank or the inlet of the first hydrogen tank and flowing into the first hydrogen tank. This is based on at least one of the difference between the flow rate of hydrogen and the flow rate of hydrogen discharged from the first hydrogen tank through the outlet of the first hydrogen tank.
 また、好ましくは、脱水素システムを稼働させてから脱水素反応器における脱水素反応が活性化するまでの間における、第1ヒーターと第2ヒーターの少なくとも一方の駆動に必要な電力は、脱水素システムを稼働させてから脱水素反応器における脱水素反応が活性化した後における、第1ヒーターと第2ヒーターの少なくとも一方の駆動に必要な電力よりも多い。 Preferably, the power required for driving at least one of the first heater and the second heater from when the dehydrogenation system is operated to when the dehydrogenation reaction in the dehydrogenation reactor is activated is dehydrogenation. More than the electric power required for driving at least one of the first heater and the second heater after the system is operated and the dehydrogenation reaction in the dehydrogenation reactor is activated.
 また、好ましくは、燃料タンクに貯蔵される燃料は、第1通路から排出される有機ハイドライドや芳香族化合物である。 Also preferably, the fuel stored in the fuel tank is an organic hydride or an aromatic compound discharged from the first passage.
 本発明に係る脱水素システムは、有機ハイドライドを貯蔵する原料タンクと、原料タンクから供給された有機ハイドライドの脱水素反応を促進させる第1触媒を設けた第1通路を有し、第1通路に供給された有機ハイドライドが水素と芳香族化合物に分離される脱水素反応器と、第1通路から排出された水素を貯蔵する第1水素タンクと第2水素タンクと、第1水素タンクや第2水素タンクから供給された水素に基づいて電力を発生させる電力供給装置と、第1水素タンクと第2水素タンクにおける、第1通路からの水素が供給される入口や、電力供給装置へ水素が排出される出口の開閉制御を行う制御装置とを備えた脱水素システムであって、第1水素タンクは、脱水素システムを稼働させてから脱水素反応器における脱水素反応が活性化するまでの間、電力供給装置で使用する水素を貯蔵するために使用され、第2水素タンクは、脱水素反応器における脱水素反応が活性化した後に電力供給装置で使用する水素や、脱水素システムを構成する装置以外の外部機器で使用する水素を貯蔵するために使用され、脱水素システムを稼働させてから脱水素反応器における脱水素反応が活性化するまでの間は、第1通路を温めるヒーターが駆動され、電力供給装置は、原料タンクから第1通路への有機ハイドライドの供給、ヒーターの駆動に使用される。 The dehydrogenation system according to the present invention has a raw material tank for storing organic hydride and a first passage provided with a first catalyst for promoting a dehydrogenation reaction of the organic hydride supplied from the raw material tank. A dehydrogenation reactor in which the supplied organic hydride is separated into hydrogen and an aromatic compound, a first hydrogen tank and a second hydrogen tank for storing hydrogen discharged from the first passage, a first hydrogen tank and a second hydrogen tank Hydrogen is discharged to the power supply device that generates electric power based on the hydrogen supplied from the hydrogen tank, the inlet for supplying hydrogen from the first passage in the first hydrogen tank and the second hydrogen tank, and the power supply device A dehydrogenation system comprising a control device for controlling opening and closing of the outlet, wherein the first hydrogen tank activates the dehydrogenation reaction in the dehydrogenation reactor after the dehydrogenation system is operated. In the meantime, the second hydrogen tank is used to store hydrogen used in the power supply device, and the second hydrogen tank is used for the hydrogen used in the power supply device after the dehydrogenation reaction in the dehydrogenation reactor is activated. It is used to store hydrogen used in external equipment other than the equipment that constitutes the system, and the first passage is provided between the time when the dehydrogenation system is activated and the time when the dehydrogenation reaction in the dehydrogenation reactor is activated. The heater for heating is driven, and the power supply device is used for supplying organic hydride from the raw material tank to the first passage and driving the heater.
 本発明に係る脱水素システムは、有機ハイドライドを貯蔵する原料タンクと、有機ハイドライドと、有機ハイドライドから水素を分離させた芳香族化合物の少なくとも一方を燃料として貯蔵する燃料タンクと、外気取り込み装置と、原料タンクから供給された有機ハイドライドの脱水素反応を促進させる第1触媒を設けた第1通路と、第1通路と隣接し、燃料タンクから供給された燃料と外気取り込み装置から供給された空気の混合気の燃焼を促進させる第2触媒を設けた第2通路を有し、第2通路における燃焼による熱は第1通路に伝達され、第1通路に供給された有機ハイドライドが水素と芳香族化合物に分離される脱水素反応器と、第1通路から排出された水素を貯蔵する第3水素タンクと、第3水素タンクから供給された水素に基づいて電力を発生させる電力供給装置と、第3水素タンクにおける、第1通路からの水素が供給される入口や電力供給装置へ水素が排出される出口とは別の水素排出口の開閉制御を行う制御装置とを備えた脱水素システムであって、第3水素タンクは、電力供給装置で使用する水素や、脱水素システムを構成する装置以外の外部機器で使用する水素を貯蔵するために使用され、脱水素システムを稼働させてから脱水素反応器における脱水素反応が活性化するまでの間は、外気取り込み装置で取り込みされる外気を温める第1ヒーターと、第1通路を温める第2ヒーターの少なくとも一方が駆動され、電力供給装置は、原料タンクから第1通路への有機ハイドライドの供給、燃料タンクから第2通路への燃料の供給、第1ヒーターと第2ヒーターの少なくとも一方の駆動に使用され、制御装置は、脱水素システムを稼働させてから脱水素反応器における脱水素反応が活性化するまでの間、電力供給装置で使用する水素が、第3水素タンクに充填されているか否かを判断し、充填されていないと判断した場合には、水素排出口を閉状態にし、外部機器への水素供給を制限する。 A dehydrogenation system according to the present invention includes a raw material tank for storing organic hydride, an organic hydride, a fuel tank for storing at least one of aromatic compounds obtained by separating hydrogen from the organic hydride as fuel, an outside air intake device, A first passage provided with a first catalyst for promoting a dehydrogenation reaction of organic hydride supplied from a raw material tank, and fuel supplied from a fuel tank and air supplied from an outside air intake device adjacent to the first passage. A second passage provided with a second catalyst for accelerating combustion of the air-fuel mixture, heat generated by combustion in the second passage is transmitted to the first passage, and the organic hydride supplied to the first passage is hydrogen and an aromatic compound; Based on the hydrogen supplied from the third hydrogen tank, the third hydrogen tank for storing the hydrogen discharged from the first passage, And opening and closing control of a hydrogen discharge port separate from the power supply device for generating power and the inlet for supplying hydrogen from the first passage in the third hydrogen tank and the outlet for discharging hydrogen to the power supply device. The third hydrogen tank is used for storing hydrogen used in the power supply device and hydrogen used in external equipment other than the devices constituting the dehydrogenation system. Between the time when the dehydrogenation system is operated and the time when the dehydrogenation reaction in the dehydrogenation reactor is activated, the first heater for warming the outside air taken in by the outside air take-in device and the second heater for warming the first passage At least one is driven, and the power supply device is configured to supply organic hydride from the raw material tank to the first passage, supply fuel from the fuel tank to the second passage, the first heater and the second heater. The controller uses the third hydrogen tank for the hydrogen used in the power supply device from when the dehydrogenation system is operated until the dehydrogenation reaction in the dehydrogenation reactor is activated. It is determined whether or not the gas is filled. If it is determined that the gas is not filled, the hydrogen discharge port is closed and the hydrogen supply to the external device is restricted.
 以上のように本発明によれば、有機ハイドライド以外に、外部のエネルギーを用いずに脱水素反応を行わせることが可能な脱水素システムを提供することができる。 As described above, according to the present invention, besides the organic hydride, it is possible to provide a dehydrogenation system capable of performing a dehydrogenation reaction without using external energy.
第1実施形態における脱水素システムを構成する部材を略直方体形状の枠内に収めた例を示す構成図である。It is a block diagram which shows the example which accommodated the member which comprises the dehydrogenation system in 1st Embodiment in the substantially rectangular parallelepiped frame. 第1実施形態における脱水素システムの構成を示す模式図である。It is a schematic diagram which shows the structure of the dehydrogenation system in 1st Embodiment. 第1実施形態における脱水素反応器の一部(第1通路、第2通路)の構成を示す断面図である。It is sectional drawing which shows the structure of some dehydrogenation reactors (1st channel | path, 2nd channel | path) in 1st Embodiment. 第1実施形態における第1水素タンクや第2水素タンクの開閉制御手順を示すフローチャートである。It is a flowchart which shows the opening / closing control procedure of the 1st hydrogen tank and 2nd hydrogen tank in 1st Embodiment. 第2実施形態における脱水素システムの構成を示す模式図である。It is a schematic diagram which shows the structure of the dehydrogenation system in 2nd Embodiment.
 以下、第1実施形態について、図を用いて説明する(図1~図4参照)。第1実施形態における脱水素システム1は、原料タンク(MCHタンク)11、原料ポンプ(MCHポンプ)13、燃料タンク(TOL/MCHタンク)15、燃料ポンプ(TOL/MCHポンプ)17、外気取り込み装置19、熱交換器21、制御装置29、脱水素反応器30(第1通路31a、第2通路31b、第1触媒(脱水素触媒)33a、第2触媒(燃焼触媒)33b、第2ヒーター35、温度センサ36)、気液分離器41、第1水素タンク43a、第2水素タンク43b、電力供給装置51を備える。 Hereinafter, the first embodiment will be described with reference to the drawings (see FIGS. 1 to 4). The dehydrogenation system 1 in the first embodiment includes a raw material tank (MCH tank) 11, a raw material pump (MCH pump) 13, a fuel tank (TOL / MCH tank) 15, a fuel pump (TOL / MCH pump) 17, and an outside air intake device. 19, heat exchanger 21, controller 29, dehydrogenation reactor 30 (first passage 31a, second passage 31b, first catalyst (dehydrogenation catalyst) 33a, second catalyst (combustion catalyst) 33b, second heater 35) , A temperature sensor 36), a gas-liquid separator 41, a first hydrogen tank 43a, a second hydrogen tank 43b, and a power supply device 51.
 原料タンク11は、メチルシクロヘキサンなどの有機ハイドライドを貯蔵するタンクで、原料タンク11に貯蔵された有機ハイドライドは、原料ポンプ13を介して、脱水素反応器30の第1通路31aに供給され、脱水素反応で、トルエンなどの芳香族化合物と水素に分離される。 The raw material tank 11 stores an organic hydride such as methylcyclohexane, and the organic hydride stored in the raw material tank 11 is supplied to the first passage 31a of the dehydrogenation reactor 30 via the raw material pump 13 for dehydration. In an elementary reaction, it is separated into aromatic compounds such as toluene and hydrogen.
 燃料タンク15は、脱水素反応器30の第1通路31aを通過する有機ハイドライドや、当該有機ハイドライドの脱水素反応を早める第1触媒33aを温めるために使用される燃料を貯蔵するタンクで、燃料タンク15に貯蔵された燃料は、燃料ポンプ17を介して、脱水素反応器30の第2通路31bに供給され、燃焼する。 The fuel tank 15 is a tank that stores fuel used to warm the organic hydride passing through the first passage 31a of the dehydrogenation reactor 30 and the first catalyst 33a that accelerates the dehydrogenation reaction of the organic hydride. The fuel stored in the tank 15 is supplied to the second passage 31b of the dehydrogenation reactor 30 via the fuel pump 17 and burned.
 燃料は、脱水素反応の対象物である有機ハイドライドや、トルエンなど脱水素反応後の芳香族化合物で、後述する気液分離器41から供給される。 Fuel is an organic hydride that is an object of dehydrogenation reaction or an aromatic compound after dehydrogenation reaction such as toluene, and is supplied from a gas-liquid separator 41 described later.
 外気取り込み装置19は、第1ヒーター19aやブロア19bを有し、第1ヒーター19aで温めた空気をブロア19bで取り込み、熱交換器21に供給する。第1ヒーター19aとブロア19bの配置は逆であってもよい(ブロア19bで外気を取り込み、取り込んだ空気を第1ヒーター19aで温める形態)。 The outside air intake device 19 has a first heater 19a and a blower 19b, takes in air heated by the first heater 19a by the blower 19b, and supplies it to the heat exchanger 21. The arrangement of the first heater 19a and the blower 19b may be reversed (a form in which outside air is taken in by the blower 19b and the taken-in air is warmed by the first heater 19a).
 熱交換器21は、第2通路31b内の燃焼後の排ガス(二酸化炭素や水蒸気)を取り込み、当該高温の排ガスを使って、外気取り込み装置19から供給された空気を温め、温められた空気を第2通路31bに供給する。このため、第2通路31bには、燃料と空気の混合気が供給されることになる。 The heat exchanger 21 takes in the exhaust gas (carbon dioxide and water vapor) after combustion in the second passage 31b, warms the air supplied from the outside air intake device 19 using the high-temperature exhaust gas, and heats the heated air. It supplies to the 2nd channel | path 31b. For this reason, the mixture of fuel and air is supplied to the second passage 31b.
 脱水素システム1の稼働開始直後は、脱水素反応器30の第2通路31bにおける燃料と空気の混合気の燃焼が十分に行われないため、出口31b2から排出される気体の温度が高くなっておらず、熱交換器21による熱交換で外気取り込み装置19からの空気を十分に温めることが出来ない。このため、第1ヒーター19aを稼働させて、ブロア19bで取り入れる空気を温める必要がある。 Immediately after the start of operation of the dehydrogenation system 1, the fuel and air mixture in the second passage 31b of the dehydrogenation reactor 30 is not sufficiently combusted, so the temperature of the gas discharged from the outlet 31b2 becomes high. In addition, the air from the outside air intake device 19 cannot be sufficiently heated by heat exchange by the heat exchanger 21. For this reason, it is necessary to operate the 1st heater 19a and to warm the air taken in with the blower 19b.
 脱水素反応器30の第2通路31bにおける燃料と空気の混合気の燃焼が十分に行われると、出口31b2から排出される気体の温度が高くなっているため、熱交換器21による熱交換で外気取り込み装置19からの空気を十分に温めることが出来る。この場合、第1ヒーター19aで、ブロア19bで取り入れる空気を温める必要は無い。 When the fuel / air mixture in the second passage 31b of the dehydrogenation reactor 30 is sufficiently combusted, the temperature of the gas discharged from the outlet 31b2 is high. The air from the outside air intake device 19 can be sufficiently warmed. In this case, it is not necessary to warm the air taken in by the blower 19b with the first heater 19a.
 排ガスは、外気取り込み装置19からの空気との熱交換により冷やされた後、熱交換器21から排出される。 The exhaust gas is cooled by heat exchange with the air from the outside air intake device 19 and then discharged from the heat exchanger 21.
 制御装置29は、CPUなど脱水素システム1の各部を制御する装置で、特に、脱水素システム1の稼働状態(脱水素反応の活性化状態)や、第1水素タンク43aにおける水素の充填状態に基づいて、第1水素タンク43aの入口43a1と出口43a2の開閉制御、及び第2水素タンク43bの入口43b1と出口43b2の開閉制御を行う。 The control device 29 is a device for controlling each part of the dehydrogenation system 1 such as a CPU. In particular, the control device 29 is in an operating state (dehydrogenation reaction activated state) of the dehydrogenation system 1 or a hydrogen filling state in the first hydrogen tank 43a. Based on this, the opening / closing control of the inlet 43a1 and the outlet 43a2 of the first hydrogen tank 43a and the opening / closing control of the inlet 43b1 and the outlet 43b2 of the second hydrogen tank 43b are performed.
 脱水素システム1の稼働状態(脱水素反応の活性化状態)、すなわち、脱水素反応器30における脱水素反応が活性化したか否かの判断は、脱水素システム1の稼働してからの経過時間、第1通路31a内若しくは第2ヒーター35の温度、若しくは、気液分離器41の気体排出口41aを通過する流量などに基づいて行われる。 The operation state of the dehydrogenation system 1 (activation state of the dehydrogenation reaction), that is, whether or not the dehydrogenation reaction in the dehydrogenation reactor 30 has been activated is determined after the operation of the dehydrogenation system 1. This is performed based on the time, the temperature in the first passage 31a or the second heater 35, the flow rate passing through the gas outlet 41a of the gas-liquid separator 41, or the like.
 第1水素タンク43aにおける水素の充填状態、すなわち、第1水素タンク43aに水素が十分に充填されたか否かの判断は、第1水素タンク43a内の圧力状態、若しくは、入口43a1を通過して第1水素タンク43aに流入する水素の流量と出口43a2を通過して第1水素タンク43aから排出される水素の流量の差異などに基づいて行われる。第1実施形態では、第1水素タンク43aに圧力センサ45を設け、圧力センサ45を使って、第1水素タンク43a内の圧力状態を検出し、これに基づいて第1水素タンク43aにおける水素の充填状態を判断する例を示す。 Whether the first hydrogen tank 43a is filled with hydrogen, that is, whether or not the first hydrogen tank 43a is sufficiently filled with hydrogen is determined by the pressure state in the first hydrogen tank 43a or through the inlet 43a1. This is performed based on the difference between the flow rate of hydrogen flowing into the first hydrogen tank 43a and the flow rate of hydrogen discharged from the first hydrogen tank 43a through the outlet 43a2. In the first embodiment, the first hydrogen tank 43a is provided with a pressure sensor 45, and the pressure sensor 45 is used to detect the pressure state in the first hydrogen tank 43a. Based on this, the hydrogen in the first hydrogen tank 43a is detected. An example of determining the filling state is shown.
 脱水素反応器30は、略筒形状で三重管構造を有し、第1通路31a、第2通路31b、第1触媒(脱水素触媒)33a、第2触媒(燃焼触媒)33b、第2ヒーター35、温度センサ36を有する。 The dehydrogenation reactor 30 has a substantially cylindrical shape and a triple pipe structure, and includes a first passage 31a, a second passage 31b, a first catalyst (dehydrogenation catalyst) 33a, a second catalyst (combustion catalyst) 33b, and a second heater. 35. A temperature sensor 36 is provided.
 第1通路31aは、脱水素反応対象の有機ハイドライドが、下端の入口31a1から外壁に沿って上方に流れ、上端部の出口31a2から排出される通路で、通路内には脱水素反応を促進させる白金などの第1触媒(脱水素触媒)33aが設けられ、外壁面には、第1通路31a内の有機ハイドライドや第1触媒33aを温める第2ヒーター35が設けられる。 The first passage 31a is a passage through which organic hydride to be dehydrogenated flows upward from the lower end inlet 31a1 along the outer wall and is discharged from the upper end outlet 31a2, and promotes the dehydrogenation reaction in the passage. A first catalyst (dehydrogenation catalyst) 33a such as platinum is provided, and a second heater 35 for heating the organic hydride in the first passage 31a and the first catalyst 33a is provided on the outer wall surface.
 第1通路31aの内部を有機ハイドライドが通過する際に、第1触媒33aによって脱水素反応が促進され、有機ハイドライドから水素が分離し、上端部の出口31a2からは、脱水素反応で得られた水素と芳香族化合物、及び脱水素反応せずに残った有機ハイドライドが排出され、これらが気液分離器41に供給される。 When the organic hydride passes through the inside of the first passage 31a, the dehydrogenation reaction is promoted by the first catalyst 33a, hydrogen is separated from the organic hydride, and obtained from the outlet 31a2 at the upper end by the dehydrogenation reaction. Hydrogen, aromatic compounds, and organic hydride remaining without dehydrogenation are discharged, and these are supplied to the gas-liquid separator 41.
 第2通路31bは、燃焼対象の燃料と空気の混合気が、下端の入口31b1から第1通路31aよりも内側で上方に流れ、上部で折り返して更に内側で下方に流れ下端部の出口31b2から排出される通路で、通路内には燃料が燃焼するのを促進させる白金などの第2触媒(燃焼触媒)33bが設けられる。 In the second passage 31b, a mixture of fuel and air to be combusted flows upward from the lower end inlet 31b1 to the inner side of the first passage 31a, folds back at the upper part, flows further downward at the inner side, and exits from the lower end outlet 31b2. The exhaust passage is provided with a second catalyst (combustion catalyst) 33b such as platinum that promotes combustion of fuel.
 第2通路31bの内部で燃料と空気の混合気が燃焼することにより、外周に設けられた第1通路31aや第1通路31aの内部の第1触媒33aや有機ハイドライドが温められる。図3の太線矢印は、熱の伝達方向を示す。熱の伝達効率を高めるため、第1通路31aと第2通路31bの境界は、金属など熱伝導率が高い材料で構成されるのが望ましい。 When the fuel / air mixture burns inside the second passage 31b, the first catalyst 31a and the first catalyst 33a and the organic hydride inside the first passage 31a provided on the outer periphery are warmed. The thick arrow in FIG. 3 indicates the heat transfer direction. In order to improve heat transfer efficiency, it is desirable that the boundary between the first passage 31a and the second passage 31b is made of a material having high thermal conductivity such as metal.
 第1触媒33aは、ひだ状、格子状、ハニカム形状、フィン形状などで、第1通路31a内に担持され、第2触媒33bは、ひだ状、格子状、ハニカム形状、フィン形状などで、第2通路31b内に担持される。 The first catalyst 33a has a pleat shape, a lattice shape, a honeycomb shape, a fin shape, etc., and is supported in the first passage 31a, and the second catalyst 33b has a pleat shape, a lattice shape, a honeycomb shape, a fin shape, etc. It is carried in the two passages 31b.
 第2ヒーター35は、第1通路31aの外周面を温めるために使用される。温度センサ36は、第1通路31aの内部若しくは第2ヒーター35の温度に関する情報を検出する。当該温度情報は、制御装置29に送信され、第1水素タンク43aと第2水素タンク43bの開閉制御に使用される。 The second heater 35 is used to warm the outer peripheral surface of the first passage 31a. The temperature sensor 36 detects information related to the temperature of the inside of the first passage 31 a or the second heater 35. The temperature information is transmitted to the control device 29 and used for opening / closing control of the first hydrogen tank 43a and the second hydrogen tank 43b.
 気液分離器41は、脱水素反応器30の第1通路31aから排出された気体(水素)と液体(芳香族化合物や有機ハイドライド)とを分離し、気体(水素)は、気体排出口41aから、第1水素タンク43aや第2水素タンク43bに排出され、液体(芳香族化合物や有機ハイドライド)は、液体排出口41bから、燃料として、燃料タンク15に排出される。 The gas-liquid separator 41 separates the gas (hydrogen) discharged from the first passage 31a of the dehydrogenation reactor 30 and the liquid (aromatic compound or organic hydride), and the gas (hydrogen) is discharged from the gas outlet 41a. Are discharged to the first hydrogen tank 43a and the second hydrogen tank 43b, and the liquid (aromatic compound or organic hydride) is discharged from the liquid discharge port 41b to the fuel tank 15 as fuel.
 気液分離器41の前段(脱水素反応器30と連通する管)や後段(第1水素タンク43aや第2水素タンク43bと連通する管、燃料タンク15と連通する管)に、電力供給装置51で駆動するチラーを設けて、脱水素反応器30から排出される液体や気体を冷却する形態であってもよい。 The power supply device is connected to the front stage (pipe communicating with the dehydrogenation reactor 30) and the rear stage (pipe communicating with the first hydrogen tank 43a and the second hydrogen tank 43b and the pipe communicating with the fuel tank 15) of the gas-liquid separator 41. A configuration may be employed in which a chiller driven by 51 is provided to cool the liquid or gas discharged from the dehydrogenation reactor 30.
 第1水素タンク43a、第2水素タンク43bは、気液分離器41で分離された水素を貯蔵するタンクである。 The first hydrogen tank 43a and the second hydrogen tank 43b are tanks for storing hydrogen separated by the gas-liquid separator 41.
 第1水素タンク43aは、脱水素システム1を稼働させてから脱水素反応器30における脱水素反応が活性化するまでの第1期間T1の間、脱水素システム1を構成する電気機器(原料ポンプ13、燃料ポンプ17、外気取り込み装置19の第1ヒーター19aやブロア19b、制御装置29、第2ヒーター35、温度センサ36、気液分離器41)に電力を供給する電力供給装置(水素発電機若しくは燃料電池)51で使用する水素を貯蔵するために使用される。 The first hydrogen tank 43a is an electric device (raw material pump) constituting the dehydrogenation system 1 during the first period T1 from when the dehydrogenation system 1 is operated until the dehydrogenation reaction in the dehydrogenation reactor 30 is activated. 13. Power supply device (hydrogen generator) for supplying power to the fuel pump 17, the first heater 19a and blower 19b of the outside air intake device 19, the control device 29, the second heater 35, the temperature sensor 36, and the gas-liquid separator 41) Alternatively, it is used for storing hydrogen used in the fuel cell 51.
 第2水素タンク43bは、脱水素反応器30における脱水素反応が活性化した後(第2期間T2、第3期間T3の間)に電力供給装置51で使用する水素や、脱水素システム1を構成する装置以外の外部機器で使用する水素を貯蔵するために使用される。 After the dehydrogenation reaction in the dehydrogenation reactor 30 is activated (between the second period T2 and the third period T3), the second hydrogen tank 43b is used for the hydrogen used in the power supply device 51 and the dehydrogenation system 1. Used to store hydrogen for use in external equipment other than the equipment it constitutes.
 第1水素タンク43aは、脱水素システム1を稼働させてから第1通路31a内若しくは第2ヒーター35の温度が、脱水素反応が活性化する所定値(例えば、200度)になるまでに、脱水素システム1を構成する電気機器を駆動するために必要な電力(第1期間T1の間、これらの電気機器を駆動するために必要な電力)を、電力供給装置51で発生させるために必要な水素を、貯蔵する容量を有する。 The first hydrogen tank 43a operates after the dehydrogenation system 1 is operated until the temperature in the first passage 31a or the second heater 35 reaches a predetermined value (for example, 200 degrees) at which the dehydrogenation reaction is activated. Necessary for generating the electric power necessary for driving the electric devices constituting the dehydrogenation system 1 (electric power necessary for driving these electric devices during the first period T1) by the power supply device 51. Has the capacity to store fresh hydrogen.
 具体的には、脱水素システム1を稼働させてから第1通路31a内若しくは第2ヒーター35の温度が、脱水素反応が活性化する所定値になるまでの所要時間(30分~1時間)である第1期間T1の長さを算出し、当該所要時間の間、脱水素システム1を構成する電気機器を駆動するために必要な電力を算出し、当該電力を電力供給装置51で発生させるために必要な水素の量を算出し、少なくとも当該水素の量を貯蔵出来るだけの容量を第1水素タンク43aの容量とする。 Specifically, a required time (30 minutes to 1 hour) from when the dehydrogenation system 1 is operated until the temperature in the first passage 31a or the second heater 35 reaches a predetermined value at which the dehydrogenation reaction is activated. The length of the first period T1 is calculated, the electric power necessary for driving the electric equipment constituting the dehydrogenation system 1 is calculated for the required time, and the electric power supply device 51 generates the electric power. Therefore, the amount of hydrogen necessary for the calculation is calculated, and at least the capacity capable of storing the amount of hydrogen is defined as the capacity of the first hydrogen tank 43a.
 第1水素タンク43aは、気液分離器41の気体排出口41aと連通する入口43a1と、電力供給装置51の水素供給口に連通する出口43a2を有する。 The first hydrogen tank 43a has an inlet 43a1 that communicates with the gas discharge port 41a of the gas-liquid separator 41 and an outlet 43a2 that communicates with the hydrogen supply port of the power supply device 51.
 第2水素タンク43bは、気液分離器41の気体排出口41aと連通する入口43b1と、電力供給装置51の水素供給口に連通する出口43b2と、外部機器の水素供給口に連通する水素排出口43b3を有する。第2水素タンク43bは、外部機器への水素供給のために使用されるので、第1水素タンク43aよりも大きい容量を有するのが望ましい。 The second hydrogen tank 43b includes an inlet 43b1 that communicates with the gas discharge port 41a of the gas-liquid separator 41, an outlet 43b2 that communicates with the hydrogen supply port of the power supply device 51, and a hydrogen exhaust that communicates with the hydrogen supply port of an external device. An outlet 43b3 is provided. Since the second hydrogen tank 43b is used for supplying hydrogen to an external device, the second hydrogen tank 43b preferably has a larger capacity than the first hydrogen tank 43a.
 第1水素タンク43aの入口43a1と出口43a2の開閉制御、及び第2水素タンク43bの入口43b1と出口43b2の開閉制御は、脱水素システム1の稼働状態(脱水素反応の活性化状態)や、第1水素タンク43aにおける水素の充填状態に基づいて行われる。第2水素タンク43bの水素排出口43b3の開閉制御は、外部機器への水素供給需要に応じて任意に行われる。 The opening / closing control of the inlet 43a1 and the outlet 43a2 of the first hydrogen tank 43a and the opening / closing control of the inlet 43b1 and the outlet 43b2 of the second hydrogen tank 43b are performed in the operating state of the dehydrogenation system 1 (dehydrogenation reaction activation state), This is performed based on the hydrogen filling state in the first hydrogen tank 43a. The opening / closing control of the hydrogen discharge port 43b3 of the second hydrogen tank 43b is arbitrarily performed according to the hydrogen supply demand to the external device.
 電力供給装置51は、水素発電機や燃料電池など、第1水素タンク43aや第2水素タンク43bから供給された水素に基づいて電力を外部機器に供給する装置であり、特に、脱水素システム1を構成する電気機器(原料ポンプ13、燃料ポンプ17、外気取り込み装置19の第1ヒーター19aやブロア19b、制御装置29、第2ヒーター35、温度センサ36、気液分離器41)に電力を供給する。 The power supply device 51 is a device that supplies power to an external device based on hydrogen supplied from the first hydrogen tank 43a or the second hydrogen tank 43b, such as a hydrogen generator or a fuel cell. Power is supplied to the electric equipment (raw material pump 13, fuel pump 17, outside heater 19a and blower 19b, control device 29, second heater 35, temperature sensor 36, gas-liquid separator 41) To do.
 第1水素タンク43aや第2水素タンク43bの入口や出口の開閉制御手順について、図4のフローチャートを用いて説明する。 The opening / closing control procedure of the inlet and outlet of the first hydrogen tank 43a and the second hydrogen tank 43b will be described with reference to the flowchart of FIG.
 予め、原料タンク11には、原料となる有機ハイドライドが貯蔵され、第1水素タンク43aには、第1期間T1の間、電力供給装置51を駆動するのに使用される水素が充填されている。燃料タンク15にも、燃料となる有機ハイドライドや芳香族化合物が予め貯蔵されているのが望ましいが、稼働中に気液分離器41を介して燃料タンク15に有機ハイドライドや芳香族化合物が供給されるので、予めこれらが貯蔵されていない状態であってもよい。 The raw material tank 11 stores an organic hydride as a raw material in advance, and the first hydrogen tank 43a is filled with hydrogen used to drive the power supply device 51 during the first period T1. . Although it is desirable that the fuel tank 15 also stores in advance organic hydride and aromatic compounds that serve as fuel, the organic hydride and aromatic compounds are supplied to the fuel tank 15 via the gas-liquid separator 41 during operation. Therefore, the state where these are not stored beforehand may be sufficient.
 脱水素システム1を稼働させる。具体的には、制御装置29が、原料ポンプ13などを駆動し、原料ポンプ13を使って原料タンク11内の原料(有機ハイドライド)を第1通路31aに供給し、燃料ポンプ17を使って燃料タンク15内の燃料(有機ハイドライドや芳香族化合物)を第2通路31bに供給し、外気取り込み装置19を使って外気を熱交換器21の通過後に第2通路31bに供給し、第2ヒーター35や気液分離器41を作動させる。 稼 働 Operate the dehydrogenation system 1. Specifically, the control device 29 drives the raw material pump 13 and the like, supplies the raw material (organic hydride) in the raw material tank 11 to the first passage 31 a using the raw material pump 13, and uses the fuel pump 17 to generate fuel. The fuel (organic hydride or aromatic compound) in the tank 15 is supplied to the second passage 31b, the outside air is supplied to the second passage 31b after passing through the heat exchanger 21 using the outside air intake device 19, and the second heater 35 is supplied. Or the gas-liquid separator 41 is operated.
 脱水素システム1を稼働させてから、脱水素反応が活性化するまでの第1期間T1の間は、制御装置29は、第1水素タンク43aの入口43a1を閉状態にし、出口43a2を開状態にし、第2水素タンク43bの入口43b1を開状態にし、出口43b2を閉状態にする(図4のステップS11参照)。 During the first period T1 from when the dehydrogenation system 1 is operated until the dehydrogenation reaction is activated, the control device 29 closes the inlet 43a1 of the first hydrogen tank 43a and opens the outlet 43a2. The inlet 43b1 of the second hydrogen tank 43b is opened and the outlet 43b2 is closed (see step S11 in FIG. 4).
 従って、第1期間T1の間は、第1水素タンク43aに貯蔵された水素が、電力供給装置51に供給され、電力供給装置51は、第1水素タンク43aから供給された水素を使って発電し、電力を原料ポンプ13などに供給する。 Accordingly, during the first period T1, hydrogen stored in the first hydrogen tank 43a is supplied to the power supply device 51, and the power supply device 51 generates power using the hydrogen supplied from the first hydrogen tank 43a. Then, electric power is supplied to the raw material pump 13 and the like.
 第1期間T1の間は、第1触媒33aの温度が低く、脱水素反応が活性化されていないため、原料タンク11から供給された有機ハイドライドの殆どは、脱水素反応をせず、水素と芳香族化合物に分離しない。このため、第2水素タンク43bには、殆ど水素が加えられることはないが、予め第1水素タンク43aに貯蔵しておいた水素で、第1期間T1の間の電力供給をまかなうことが出来る。 During the first period T1, since the temperature of the first catalyst 33a is low and the dehydrogenation reaction is not activated, most of the organic hydride supplied from the raw material tank 11 does not undergo the dehydrogenation reaction, Does not separate into aromatic compounds. For this reason, almost no hydrogen is added to the second hydrogen tank 43b, but it is possible to cover the power supply during the first period T1 with the hydrogen stored in the first hydrogen tank 43a in advance. .
 脱水素システム1が稼働してから第1期間T1が経過したか否か、温度センサ36からの情報で第1通路31a内若しくは第2ヒーター35の温度が、脱水素反応が活性化する所定値になったか否か、気液分離器41の気体排出口41aを通過する単位時間当たりの水素流量が閾値を越えたか否かなどに基づいて、制御装置29は、脱水素反応が活性化したか否かを判断する。(図4のステップS12参照)。 Whether or not the first period T1 has elapsed since the dehydrogenation system 1 is operated, and the temperature from the temperature sensor 36, the temperature in the first passage 31a or the second heater 35 is a predetermined value that activates the dehydrogenation reaction. The controller 29 determines whether the dehydrogenation reaction has been activated based on whether or not the hydrogen flow rate per unit time passing through the gas discharge port 41a of the gas-liquid separator 41 exceeds a threshold value. Judge whether or not. (See step S12 in FIG. 4).
 脱水素反応が活性化したと判断した場合には、第1水素タンク43aに水素を充填するまでの間(第2期間T2)は、第1水素タンク43aの入口43a1は開状態にされ、第1水素タンク43aの出口43a2は閉状態にされ、第2水素タンク43bの入口43b1は閉状態にされ、第2水素タンク43bの出口43b2は開状態にされる(図4のステップS13参照)。 If it is determined that the dehydrogenation reaction has been activated, the inlet 43a1 of the first hydrogen tank 43a is kept open until the first hydrogen tank 43a is filled with hydrogen (second period T2). The outlet 43a2 of the first hydrogen tank 43a is closed, the inlet 43b1 of the second hydrogen tank 43b is closed, and the outlet 43b2 of the second hydrogen tank 43b is opened (see step S13 in FIG. 4).
 従って、第2期間T2の間は、第2水素タンク43bに貯蔵された水素が、電力供給装置51に供給され、電力供給装置51は、第2水素タンク43bから供給された水素を使って発電し、電力を原料ポンプ13などに供給する。また、第2期間T2の間に、第1水素タンク43aに水素が充填される。 Therefore, during the second period T2, the hydrogen stored in the second hydrogen tank 43b is supplied to the power supply device 51, and the power supply device 51 generates power using the hydrogen supplied from the second hydrogen tank 43b. Then, electric power is supplied to the raw material pump 13 and the like. Further, during the second period T2, the first hydrogen tank 43a is filled with hydrogen.
 脱水素システム1が稼働してから第1期間T1の経過後で、既に脱水素反応が活性化しており、脱水素反応の反応熱や第2通路31bの燃焼熱などで脱水素反応器30の高温状態は維持出来るので、第1ヒーター19aや第2ヒーター35の出力は第1期間T1の時に比べて低く出来、単位時間あたりの電力消費量は、第2期間T2の方が第1期間T1よりも少ない。 After the elapse of the first period T1 after the dehydrogenation system 1 is operated, the dehydrogenation reaction has already been activated, and the dehydrogenation reactor 30 is heated by the reaction heat of the dehydrogenation reaction or the combustion heat of the second passage 31b. Since the high temperature state can be maintained, the outputs of the first heater 19a and the second heater 35 can be lower than those in the first period T1, and the power consumption per unit time is higher in the second period T2 than in the first period T1. Less than.
 第1水素タンク43aが第2水素タンク43bよりも容量が小さいこと、既に脱水素反応が活性化していて、気液分離器41の気体排出口41aを通過する単位時間当たりの水素流量が、原料ポンプ13等への電力供給のために電力供給装置51で必要な水素の単位時間あたりの量よりも多いことを考えると、第1水素タンク43aへの水素充填に必要な第2期間T2は比較的短時間で済むが、第1期間T1経過直後における第2水素タンク43bの水素充填度合いや水素排出口43b3の開閉状態によっては、この間に、第2水素タンク43bの水素が電力供給装置51に供給する量を下回ることも起こりえる。 The first hydrogen tank 43a has a smaller capacity than the second hydrogen tank 43b, the dehydrogenation reaction has already been activated, and the hydrogen flow rate per unit time passing through the gas discharge port 41a of the gas-liquid separator 41 is Considering that the amount of hydrogen per unit time required for the power supply device 51 for supplying power to the pump 13 and the like is larger, the second period T2 required for filling the first hydrogen tank 43a with hydrogen is compared. However, depending on the degree of hydrogen filling in the second hydrogen tank 43b and the open / close state of the hydrogen discharge port 43b3 immediately after the first period T1, the hydrogen in the second hydrogen tank 43b may enter the power supply device 51 during this time. It may happen that the amount supplied is lower.
 このため、第2期間T2の間に、第2水素タンク43bの圧力状態などから第2水素タンク43bの水素充填状態を判断し、水素充填度合いが足りない(第2水素タンク43bの水素の量が所定値よりも少ない)と判断した場合には、一時的に第1水素タンク43aの入口43a1を閉状態にし、第2水素タンク43bの入口43b1を開状態にして、第2水素タンク43bに水素を充填させてもよい。第2期間T2(第1水素タンク43aに水素を充填させるための時間)が長くなるが、この間も電力供給装置51へ水素を安定的に供給することが可能になる。 Therefore, during the second period T2, the hydrogen filling state of the second hydrogen tank 43b is determined from the pressure state of the second hydrogen tank 43b, etc., and the degree of hydrogen filling is insufficient (the amount of hydrogen in the second hydrogen tank 43b). Is smaller than a predetermined value), the inlet 43a1 of the first hydrogen tank 43a is temporarily closed, the inlet 43b1 of the second hydrogen tank 43b is opened, and the second hydrogen tank 43b Hydrogen may be charged. Although the second period T2 (time for filling the first hydrogen tank 43a with hydrogen) becomes longer, hydrogen can be stably supplied to the power supply device 51 during this period.
 第1水素タンク43aの圧力状態などから、制御装置29は、第1水素タンク43aへの水素の充填が十分に行われたか否かを判断する(図4のステップS14参照)。 From the pressure state of the first hydrogen tank 43a and the like, the control device 29 determines whether or not the first hydrogen tank 43a has been sufficiently charged with hydrogen (see step S14 in FIG. 4).
 第1水素タンク43aへの水素充填が十分であると判断した場合には、脱水素システム1の稼働を終了させるまでの間(第3期間T3)は、第1水素タンク43aの入口43a1と出口43a2は閉状態にされ、第2水素タンク43bの入口43b1と出口43b2は開状態にされる(図4のステップS15参照)。 When it is determined that the hydrogen filling into the first hydrogen tank 43a is sufficient, the inlet 43a1 and the outlet of the first hydrogen tank 43a are stopped until the operation of the dehydrogenation system 1 is terminated (third period T3). 43a2 is closed, and the inlet 43b1 and outlet 43b2 of the second hydrogen tank 43b are opened (see step S15 in FIG. 4).
 従って、第3期間T3の間は、第2水素タンク43bに貯蔵された水素や第2水素タンク43bに供給された水素が、電力供給装置51に供給され、電力供給装置51は、第2水素タンク43bから供給された水素を使って発電し、電力を原料ポンプ13などに供給する。 Accordingly, during the third period T3, hydrogen stored in the second hydrogen tank 43b and hydrogen supplied to the second hydrogen tank 43b are supplied to the power supply device 51, and the power supply device 51 is connected to the second hydrogen tank 43b. Electricity is generated using the hydrogen supplied from the tank 43b, and electric power is supplied to the raw material pump 13 and the like.
 脱水素システム1が稼働してから第1期間T1と第2期間T2の経過後で、既に脱水素反応が活性化しており、脱水素反応の反応熱や第2通路31bの燃焼熱などで脱水素反応器30の高温状態は維持出来るので、第1ヒーター19aや第2ヒーター35の出力は第1期間T1の時に比べて低く出来、単位時間あたりの電力消費量は、第3期間T3の方が第1期間T1よりも少ない。 The dehydrogenation reaction has already been activated after the elapse of the first period T1 and the second period T2 after the dehydrogenation system 1 is operated, and dehydration is performed by the reaction heat of the dehydrogenation reaction or the combustion heat of the second passage 31b. Since the high temperature state of the elementary reactor 30 can be maintained, the output of the first heater 19a and the second heater 35 can be lower than that in the first period T1, and the power consumption per unit time is higher in the third period T3. Is less than the first period T1.
 また、脱水素反応が活性化していて、気液分離器41の気体排出口41aを通過する単位時間当たりの水素流量が、原料ポンプ13等への電力供給のために電力供給装置51で必要な水素の単位時間あたりの量よりも多いので、第3期間T3の間、第2水素タンク43bへの水素充填や第2水素タンク43bを介した電力供給装置51への水素供給を行うことが出来る。 Further, the dehydrogenation reaction is activated, and the hydrogen flow rate per unit time passing through the gas discharge port 41a of the gas-liquid separator 41 is necessary in the power supply device 51 for power supply to the raw material pump 13 and the like. Since the amount is larger than the amount of hydrogen per unit time, during the third period T3, hydrogen can be charged into the second hydrogen tank 43b or supplied to the power supply device 51 via the second hydrogen tank 43b. .
 第1実施形態では、第1水素タンク43aに脱水素反応が活性化するまでに必要な電力供給のための水素が充填されていれば、外部からのエネルギー供給を受けずとも、脱水素反応器30に供給する有機ハイドライドの脱水素反応を活性化させることが可能になる。 In the first embodiment, if the first hydrogen tank 43a is filled with hydrogen for power supply required until the dehydrogenation reaction is activated, the dehydrogenation reactor can be used without receiving external energy supply. It becomes possible to activate the dehydrogenation reaction of the organic hydride supplied to 30.
 そして、脱水素システム1を稼働させて第1期間T1が経過してから、さらに第2期間T2が経過するまでの間(水素を充填させる期間)を除けば、第1水素タンク43aに脱水素反応が活性化するまでに必要な電力供給のための水素が常に充填されているため、外部からのエネルギー供給を受けずとも、脱水素反応器30に供給する有機ハイドライドの脱水素反応を行うことが可能になる。 Then, the first hydrogen tank 43a is dehydrogenated except for the period from when the dehydrogenation system 1 is operated until the second period T2 elapses after the first period T1 elapses (the period during which hydrogen is charged). Since hydrogen for power supply necessary until the reaction is activated is always filled, the dehydration reaction of the organic hydride supplied to the dehydrogenation reactor 30 is performed without receiving external energy supply. Is possible.
 原料タンク11で原料となる有機ハイドライドの供給を受けること以外に外部からのエネルギー供給を受けずに、脱水素反応で水素を得ることが出来るため、水素排出口43b3と外部機器とを連通させるホース以外は、図1のような略直方体形状の枠内に、脱水素システム1を構成する部材を収めることが出来る。 Since the hydrogen can be obtained by the dehydrogenation reaction without receiving external energy supply other than the supply of the organic hydride as the raw material in the raw material tank 11, the hose for connecting the hydrogen discharge port 43b3 and the external device. Other than the above, members constituting the dehydrogenation system 1 can be accommodated in a substantially rectangular parallelepiped frame as shown in FIG.
 また、脱水素システム1を稼働させてから脱水素反応器30における脱水素反応が活性化するまでの間(第1期間T1の間)は、単位時間あたりの脱水素反応器30が排出する水素の量が、単位時間あたりの電力供給装置51が消費する水素の量よりも少なく、脱水素システム1を稼働させてから脱水素反応器30における脱水素反応が活性化した後(第1期間T1経過後)は、単位時間あたりの脱水素反応器30が排出する水素の量が、単位時間あたりの電力供給装置51が消費する水素の量よりも多くなるように、脱水素反応器30や電力供給装置51の仕様を決定すれば、これらの差異分の水素を、第1水素タンク43aや第2水素タンク43bに貯蔵したり、第2水素タンク43bの水素排出口43b3を介して、外部機器へ供給したりすることが可能になる。 In addition, the hydrogen discharged from the dehydrogenation reactor 30 per unit time from when the dehydrogenation system 1 is operated until the dehydrogenation reaction in the dehydrogenation reactor 30 is activated (during the first period T1). After the dehydrogenation reaction in the dehydrogenation reactor 30 is activated after the dehydrogenation system 1 is operated (the first period T1), the amount of is less than the amount of hydrogen consumed by the power supply device 51 per unit time. After the elapse of time), the dehydrogenation reactor 30 and the electric power are supplied so that the amount of hydrogen discharged by the dehydrogenation reactor 30 per unit time is larger than the amount of hydrogen consumed by the power supply device 51 per unit time. If the specifications of the supply device 51 are determined, the hydrogen corresponding to these differences is stored in the first hydrogen tank 43a and the second hydrogen tank 43b, or is connected to an external device via the hydrogen discharge port 43b3 of the second hydrogen tank 43b. Supply to It becomes possible to or.
 例えば、脱水素反応で得られる水素が3Nm/hの脱水素反応器30と、420g(4.704Nm)の水素で7kWhの発電が可能な水素燃料電池を電力供給装置51として用い、脱水素システム1を構成する電気機器の消費電力が、脱水素反応の活性化までは7kWhで、活性化後は2kWhであった場合には、第1水素タンク43aは、約5Nmの水素が貯蔵出来る容量があれば良い。 For example, a dehydrogenation reactor 30 with 3 Nm 3 / h of hydrogen obtained by the dehydrogenation reaction and a hydrogen fuel cell capable of generating 7 kWh with 420 g (4.704 Nm 3 ) of hydrogen are used as the power supply device 51. When the power consumption of the electric equipment constituting the elementary system 1 is 7 kWh until the dehydrogenation reaction is activated and 2 kWh after the activation, the first hydrogen tank 43a stores about 5 Nm 3 of hydrogen. Any capacity that can be used is sufficient.
 脱水素反応の活性化前後での消費電力の差異の殆どは、第1ヒーター19a第2ヒーター35を運転状態の差異による。 Most of the difference in power consumption before and after the activation of the dehydrogenation reaction is due to the difference in operating state of the first heater 19a and the second heater 35.
 当該電力供給装置51で2kWhの電力を供給するためには、1.344Nm/hの水素が必要となる。 In order to supply 2 kWh of power with the power supply device 51, 1.344 Nm 3 / h of hydrogen is required.
 脱水素反応の活性化までは、脱水素反応器30で得られる水素の量(3Nm/h)が、電力供給装置51で消費する水素の量(4.704Nm/h)よりも少ないが、活性化後は、脱水素反応器30で得られる水素の量が、電力供給装置51で消費する水素の量(1.344Nm/h)よりも多いので、差異の約2.6Nm/hの水素を、第1水素タンク43aや第2水素タンク43bに貯蔵したり、第2水素タンク43bの水素排出口43b3を介して、外部機器へ供給したりすることが可能になる。 Until the dehydrogenation reaction is activated, the amount of hydrogen obtained in the dehydrogenation reactor 30 ( 3 Nm 3 / h) is smaller than the amount of hydrogen consumed by the power supply device 51 (4.704 Nm 3 / h). After activation, the amount of hydrogen obtained in the dehydrogenation reactor 30 is larger than the amount of hydrogen consumed by the power supply device 51 (1.344 Nm 3 / h), so the difference of about 2.6 Nm 3 / The hydrogen of h can be stored in the first hydrogen tank 43a and the second hydrogen tank 43b, or can be supplied to an external device via the hydrogen discharge port 43b3 of the second hydrogen tank 43b.
 また、脱水素システム1の稼働中は、第1水素タンク43aと第2水素タンク43bの入口は、常に一方が開状態で他方が閉状態にされ、第1水素タンク43aと第2水素タンク43bの出口は、常に一方が開状態で他方が閉状態にされるので、水素が逆流するおそれが少ない。 While the dehydrogenation system 1 is in operation, the inlets of the first hydrogen tank 43a and the second hydrogen tank 43b are always open at one side and closed at the other, so that the first hydrogen tank 43a and the second hydrogen tank 43b are closed. Since one of the outlets is always open and the other is closed, there is little possibility of backflow of hydrogen.
 第2水素タンク43bにも水素が十分に充填された場合には、脱水素反応を終了させる。具体的には、原料ポンプ13を制御して第1通路31aへの有機ハイドライドの供給を制限する、燃料ポンプ17やブロア19bを制御して第2通路31bへの混合気の供給を制限する、第1ヒーター19aや第2ヒーター35の駆動を止めるなどが考えられる。また、脱水素反応器30に、電力供給装置51で駆動するチラーを設けて、冷却によって、脱水素反応を制限する形態であってもよい。 When the second hydrogen tank 43b is sufficiently filled with hydrogen, the dehydrogenation reaction is terminated. Specifically, the supply of organic hydride to the first passage 31a is controlled by controlling the raw material pump 13, and the supply of air-fuel mixture to the second passage 31b is controlled by controlling the fuel pump 17 and the blower 19b. The driving of the first heater 19a and the second heater 35 may be stopped. Further, the dehydrogenation reactor 30 may be provided with a chiller driven by the power supply device 51, and the dehydrogenation reaction may be limited by cooling.
 第1実施形態では、2つの水素タンク(第1水素タンク43a、第2水素タンク43b)を用い、それぞれの水素の入口や出口の開閉制御を行う形態を説明したが、1つの水素タンク(第3水素タンク43c)で、水素の入口や出口は開放し、外部機器と連通する水素排出口の開閉制御を行う形態であってもよい(第2実施形態、図5参照)。 In the first embodiment, an embodiment has been described in which two hydrogen tanks (first hydrogen tank 43a and second hydrogen tank 43b) are used to control the opening and closing of the respective hydrogen inlets and outlets. In the 3 hydrogen tank 43c), the hydrogen inlet and outlet may be opened to control the opening and closing of the hydrogen discharge port communicating with the external device (see the second embodiment, FIG. 5).
 第2実施形態では、脱水素システム1は、第1水素タンク43aと第2水素タンク43bに代えて、第3水素タンク43cを備え、第3水素タンク43cは、入口43c1、出口43c2、水素排出口43c3を有する。その他の構成は、第1実施形態と同じである。 In the second embodiment, the dehydrogenation system 1 includes a third hydrogen tank 43c instead of the first hydrogen tank 43a and the second hydrogen tank 43b. The third hydrogen tank 43c includes an inlet 43c1, an outlet 43c2, and a hydrogen exhaust. An outlet 43c3 is provided. Other configurations are the same as those of the first embodiment.
 入口43c1は、気液分離器41の気体排出口41aと連通し、脱水素システム1の稼働中は開状態で閉制御は行わない。出口43c2は、電力供給装置51の水素供給口と連通し、脱水素システム1の稼働中は開状態で閉制御は行わない。ただし、入口43c1や出口43c2には、逆流防止弁が設けられるのが望ましい。 The inlet 43c1 communicates with the gas discharge port 41a of the gas-liquid separator 41 and is not opened and closed while the dehydrogenation system 1 is in operation. The outlet 43c2 communicates with the hydrogen supply port of the power supply device 51, and is not opened and closed while the dehydrogenation system 1 is in operation. However, it is desirable to provide a backflow prevention valve at the inlet 43c1 and the outlet 43c2.
 水素排出口43c3は、外部機器の水素供給口に連通し、水素排出口43c3の開閉制御は、外部機器への水素供給需要に応じて任意に行われるが、更に第3水素タンク43cの内部に貯蔵される水素の充填状態に応じた開閉制御も行われる。 The hydrogen discharge port 43c3 communicates with the hydrogen supply port of the external device, and the opening / closing control of the hydrogen discharge port 43c3 is arbitrarily performed according to the hydrogen supply demand to the external device, but further inside the third hydrogen tank 43c. Opening / closing control is also performed according to the state of filling hydrogen to be stored.
 第3水素タンク43cにおける水素の充填状態は、第3水素タンク43c内の圧力状態、若しくは、入口43c1を通過して第3水素タンク43cに流入する水素の流量と出口43c2や水素排出口43c3を通過して第3水素タンク43cから排出される水素の流量の差異などに基づいて算出される。第2実施形態では、第3水素タンク43cに圧力センサ45を設け、圧力センサ45を使って、第3水素タンク43c内の圧力状態を検出し、圧力状態に基づいて第3水素タンク43cにおける水素の充填状態を判断する例を示す。 The hydrogen filling state in the third hydrogen tank 43c is the pressure state in the third hydrogen tank 43c, or the flow rate of hydrogen flowing through the inlet 43c1 and flowing into the third hydrogen tank 43c, the outlet 43c2, and the hydrogen outlet 43c3. It is calculated based on a difference in the flow rate of hydrogen passing through and discharged from the third hydrogen tank 43c. In the second embodiment, a pressure sensor 45 is provided in the third hydrogen tank 43c, the pressure state in the third hydrogen tank 43c is detected using the pressure sensor 45, and hydrogen in the third hydrogen tank 43c is detected based on the pressure state. An example of determining the filling state is shown.
 制御装置29は、算出結果(水素の充填状態)に基づいて、脱水素システム1を稼働させてから第1通路31a内若しくは第2ヒーター35の温度が、脱水素反応が活性化する所定値(例えば、200度)になるまでに、脱水素システム1を構成する電気機器を駆動するために必要な電力(第1期間T1の間、これらの電気機器を駆動するために必要な電力)を、電力供給装置51で発生させるために必要な水素が、第3水素タンク43cに充填されているか否かを判断し、充填されていないと判断した場合には、水素排出口43c3を閉状態にし、外部機器への水素供給を制限する。 Based on the calculation result (hydrogen filling state), the controller 29 operates the dehydrogenation system 1 and then the temperature in the first passage 31a or the second heater 35 is a predetermined value (the dehydrogenation reaction is activated). For example, the power necessary for driving the electrical devices constituting the dehydrogenation system 1 (power necessary for driving these electrical devices during the first period T1) by 200 degrees) It is determined whether or not the hydrogen necessary for generating by the power supply device 51 is filled in the third hydrogen tank 43c. If it is determined that the hydrogen is not filled, the hydrogen discharge port 43c3 is closed, Limit hydrogen supply to external equipment.
 第2実施形態では、第3水素タンク43cに脱水素反応が活性化するまでに必要な電力供給のための水素が常に充填されているため、外部からのエネルギー供給を受けずとも、原料タンク11に充填する有機ハイドライドの脱水素反応を行うことが可能になる。 In the second embodiment, since the third hydrogen tank 43c is always filled with hydrogen for supplying electric power necessary until the dehydrogenation reaction is activated, the raw material tank 11 can be used without receiving external energy supply. It becomes possible to carry out the dehydrogenation reaction of the organic hydride filled in.
 第1実施形態、第2実施形態では、脱水素反応器30における第1通路31a(第1触媒33aや脱水素反応対象の有機ハイドライド)を温める手段として、燃料と空気の混合器の燃焼を隣接する第2通路31bで行わせる形態を説明したが、第2ヒーター35など他の手段で第1通路31aを温める形態であってもよい。 In the first and second embodiments, as a means for warming the first passage 31a (the first catalyst 33a and the organic hydride subject to dehydrogenation reaction) in the dehydrogenation reactor 30, the combustion of the fuel / air mixer is adjacent. Although the form performed by the 2nd channel | path 31b to perform was demonstrated, the form which warms the 1st channel | path 31a with other means, such as the 2nd heater 35, may be sufficient.
 1 脱水素システム
 11 原料タンク(MCHタンク)
 13 原料ポンプ(MCHポンプ)
 15 燃料タンク(TOL/MCHタンク)
 17 燃料ポンプ(TOL/MCHポンプ)
 19 外気取り込み装置
 19a 第1ヒーター
 19b ブロア
 21 熱交換器
 29 制御装置
 30 脱水素反応器
 31a 第1通路
 31a1 第1通路の入口
 31a2 第2通路の出口
 31b 第2通路
 31b1 第2通路の入口
 31b2 第2通路の出口
 33a 第1触媒(脱水素触媒)
 33b 第2触媒(燃焼触媒)
 35 第2ヒーター
 36 温度センサ
 41 気液分離器
 41a 気体排出口
 41b 液体排出口
 43a 第1水素タンク
 43a1 第1水素タンクの入口
 43a2 第1水素タンクの出口
 43b 第2水素タンク
 43b1 第2水素タンクの入口
 43b2 第2水素タンクの出口
 43b3 水素排出口
 43c 第3水素タンク
 43c1 第3水素タンクの入口
 43c2 第3水素タンクの出口
 43c3 第3水素タンクの水素排出口
 51 電力供給装置
 
1 Dehydrogenation system 11 Raw material tank (MCH tank)
13 Raw material pump (MCH pump)
15 Fuel tank (TOL / MCH tank)
17 Fuel pump (TOL / MCH pump)
19 Outside air intake device 19a First heater 19b Blower 21 Heat exchanger 29 Control device 30 Dehydrogenation reactor 31a First passage 31a1 First passage inlet 31a2 Second passage outlet 31b Second passage 31b1 Second passage inlet 31b2 Second 2 passage outlet 33a First catalyst (dehydrogenation catalyst)
33b Second catalyst (combustion catalyst)
35 Second heater 36 Temperature sensor 41 Gas / liquid separator 41a Gas discharge port 41b Liquid discharge port 43a First hydrogen tank 43a1 First hydrogen tank inlet 43a2 First hydrogen tank outlet 43b Second hydrogen tank 43b1 Second hydrogen tank Inlet 43b2 Second hydrogen tank outlet 43b3 Hydrogen outlet 43c Third hydrogen tank 43c1 Third hydrogen tank inlet 43c2 Third hydrogen tank outlet 43c3 Third hydrogen tank hydrogen outlet 51 Power supply device

Claims (10)

  1.  有機ハイドライドを貯蔵する原料タンクと、
     有機ハイドライドと、前記有機ハイドライドから水素を分離させた芳香族化合物の少なくとも一方を燃料として貯蔵する燃料タンクと、
     外気取り込み装置と、
     前記原料タンクから供給された有機ハイドライドの脱水素反応を促進させる第1触媒を設けた第1通路と、前記第1通路と隣接し、前記燃料タンクから供給された前記燃料と前記外気取り込み装置から供給された空気の混合気の燃焼を促進させる第2触媒を設けた第2通路を有し、前記第2通路における燃焼による熱は前記第1通路に伝達され、前記第1通路に供給された有機ハイドライドが水素と芳香族化合物に分離される脱水素反応器と、
     前記第1通路から排出された水素を貯蔵する第1水素タンクと第2水素タンクと、
     前記第1水素タンクや前記第2水素タンクから供給された水素に基づいて電力を発生させる電力供給装置と、
     前記第1水素タンクと前記第2水素タンクにおける、前記第1通路からの水素が供給される入口や、前記電力供給装置へ水素が排出される出口の開閉制御を行う制御装置とを備えた脱水素システムであって、
     前記第1水素タンクは、前記脱水素システムを稼働させてから前記脱水素反応器における脱水素反応が活性化するまでの間、前記電力供給装置で使用する水素を貯蔵するために使用され、
     前記第2水素タンクは、前記第1水素タンクよりも大きい容量を有し、前記脱水素反応器における脱水素反応が活性化した後に前記電力供給装置で使用する水素や、前記脱水素システムを構成する装置以外の外部機器で使用する水素を貯蔵するために使用され、
     前記脱水素システムを稼働させてから前記脱水素反応器における脱水素反応が活性化するまでの間は、前記外気取り込み装置で取り込みされる外気を温める第1ヒーターと、前記第1通路を温める第2ヒーターの少なくとも一方が駆動され、
     前記電力供給装置は、前記原料タンクから前記第1通路への有機ハイドライドの供給、前記燃料タンクから前記第2通路への燃料の供給、前記第1ヒーターと前記第2ヒーターの少なくとも一方の駆動に使用されることを特徴とする脱水素システム。
    A raw material tank for storing organic hydride,
    An organic hydride and a fuel tank for storing at least one of aromatic compounds obtained by separating hydrogen from the organic hydride as fuel;
    An outside air intake device;
    A first passage provided with a first catalyst for promoting a dehydrogenation reaction of the organic hydride supplied from the raw material tank; and the fuel supplied from the fuel tank and the outside air intake device adjacent to the first passage. A second passage provided with a second catalyst for accelerating combustion of the supplied air-fuel mixture, and heat generated by combustion in the second passage is transmitted to the first passage and supplied to the first passage; A dehydrogenation reactor in which organic hydride is separated into hydrogen and aromatic compounds;
    A first hydrogen tank and a second hydrogen tank for storing hydrogen discharged from the first passage;
    An electric power supply device that generates electric power based on hydrogen supplied from the first hydrogen tank or the second hydrogen tank;
    Dehydration provided with an inlet for supplying hydrogen from the first passage in the first hydrogen tank and the second hydrogen tank and a controller for controlling opening and closing of an outlet from which hydrogen is discharged to the power supply device An elementary system,
    The first hydrogen tank is used for storing hydrogen to be used in the power supply device from when the dehydrogenation system is operated until a dehydrogenation reaction in the dehydrogenation reactor is activated,
    The second hydrogen tank has a larger capacity than the first hydrogen tank, and constitutes the hydrogen used in the power supply apparatus after the dehydrogenation reaction in the dehydrogenation reactor is activated and the dehydrogenation system. Used to store hydrogen for use in external equipment other than
    Between the time when the dehydrogenation system is operated and the time when the dehydrogenation reaction in the dehydrogenation reactor is activated, a first heater that warms the outside air taken in by the outside air taking-in device, and a first heater that warms the first passage. At least one of the two heaters is driven,
    The power supply device is configured to supply organic hydride from the raw material tank to the first passage, supply fuel from the fuel tank to the second passage, and drive at least one of the first heater and the second heater. A dehydrogenation system characterized by being used.
  2.  前記脱水素システムを稼働させてから前記脱水素反応器における脱水素反応が活性化するまでの間は、前記第1水素タンクの入口は閉状態にされ、前記第1水素タンクの出口は開状態にされ、前記第2水素タンクの入口は開状態にされ、前記第2水素タンクの出口は閉状態にされ、
     前記脱水素システムを稼働させてから前記脱水素反応器における脱水素反応が活性化した後であって、前記第1水素タンクに水素が十分に充填されるまでの間は、前記第1水素タンクの入口は開状態にされ、前記第1水素タンクの出口は閉状態にされ、前記第2水素タンクの入口は閉状態にされ、前記第2水素タンクの出口は開状態にされ、
     前記第1水素タンクに水素が十分に充填された後は、前記第1タンクの入口と出口は閉状態にされ、前記第2タンクの入口と出口は開状態にされることを特徴とする請求項1に記載の脱水素システム。
    Between the time when the dehydrogenation system is operated and the time when the dehydrogenation reaction in the dehydrogenation reactor is activated, the inlet of the first hydrogen tank is closed and the outlet of the first hydrogen tank is open. The inlet of the second hydrogen tank is opened, the outlet of the second hydrogen tank is closed,
    After the dehydrogenation reaction in the dehydrogenation reactor is activated after the dehydrogenation system is operated, until the first hydrogen tank is sufficiently filled with hydrogen, the first hydrogen tank The first hydrogen tank outlet is closed, the second hydrogen tank inlet is closed, the second hydrogen tank outlet is open,
    After the first hydrogen tank is sufficiently filled with hydrogen, the inlet and outlet of the first tank are closed, and the inlet and outlet of the second tank are opened. Item 2. The dehydrogenation system according to Item 1.
  3.  前記脱水素システムを稼働させてから前記脱水素反応器における脱水素反応が活性化した後であって、前記第1水素タンクに水素が十分に充填されるまでの間で、前記第2水素タンクの水素が所定値よりも少ない場合は、前記第1水素タンクの入口が閉状態にされ、前記第2水素タンクの入口が開状態にされることを特徴とする請求項2に記載の脱水素システム。 The second hydrogen tank after the dehydrogenation system is activated and after the dehydrogenation reaction in the dehydrogenation reactor is activated until the first hydrogen tank is sufficiently filled with hydrogen. 3. The dehydrogenation according to claim 2, wherein when the amount of hydrogen is less than a predetermined value, the inlet of the first hydrogen tank is closed and the inlet of the second hydrogen tank is opened. system.
  4.  前記脱水素システムを稼働させてから前記脱水素反応器における脱水素反応が活性化するまでの間は、単位時間あたりの前記脱水素反応器が排出する水素の量が、単位時間あたりの前記電力供給装置が消費する水素の量よりも少なく、
     前記脱水素システムを稼働させてから前記脱水素反応器における脱水素反応が活性化した後は、単位時間あたりの前記脱水素反応器が排出する水素の量が、単位時間あたりの前記電力供給装置が消費する水素の量よりも多いことを特徴とする請求項1に記載の脱水素システム。
    Between the time when the dehydrogenation system is operated and the time when the dehydrogenation reaction in the dehydrogenation reactor is activated, the amount of hydrogen discharged by the dehydrogenation reactor per unit time is the power per unit time. Less than the amount of hydrogen consumed by the feeder,
    After the dehydrogenation reaction in the dehydrogenation reactor is activated after the dehydrogenation system is operated, the amount of hydrogen discharged by the dehydrogenation reactor per unit time is the power supply device per unit time. The dehydrogenation system according to claim 1, wherein the amount of hydrogen consumed is greater than the amount of hydrogen consumed.
  5.  前記脱水素反応器における脱水素反応が活性化したか否かの判断は、前記脱水素システムの稼働してからの経過時間、前記第1通路内若しくは前記第2ヒーターの温度、若しくは、前記第1水素タンクや前記第2水素タンクへ供給される気体の流量の少なくとも1つに基づくことを特徴とする請求項1に記載の脱水素システム。 Whether or not the dehydrogenation reaction in the dehydrogenation reactor has been activated is determined based on the elapsed time from the operation of the dehydrogenation system, the temperature of the first passage or the second heater, or the first 2. The dehydrogenation system according to claim 1, wherein the dehydrogenation system is based on at least one of flow rates of gas supplied to one hydrogen tank and the second hydrogen tank.
  6.  前記第1水素タンクに水素が十分に充填されたか否かの判断は、前記第1水素タンク内の圧力状態、若しくは、前記第1水素タンクの入口を通過して前記第1水素タンクに流入する水素の流量と前記第1水素タンクの出口を通過して前記第1水素タンクから排出される水素の流量の差異の少なくとも一方に基づくことを特徴とする請求項1に記載の脱水素システム。 Whether or not the first hydrogen tank is sufficiently filled with hydrogen is determined based on the pressure state in the first hydrogen tank or the inlet of the first hydrogen tank and flowing into the first hydrogen tank. 2. The dehydrogenation system according to claim 1, wherein the dehydrogenation system is based on at least one of a difference between a flow rate of hydrogen and a flow rate of hydrogen discharged from the first hydrogen tank through an outlet of the first hydrogen tank.
  7.  前記脱水素システムを稼働させてから前記脱水素反応器における脱水素反応が活性化するまでの間における、前記第1ヒーターと前記第2ヒーターの少なくとも一方の駆動に必要な電力は、前記脱水素システムを稼働させてから前記脱水素反応器における脱水素反応が活性化した後における、前記第1ヒーターと前記第2ヒーターの少なくとも一方の駆動に必要な電力よりも多いことを特徴とする請求項1に記載の脱水素システム。 The power required for driving at least one of the first heater and the second heater during the period from when the dehydrogenation system is operated to when the dehydrogenation reaction in the dehydrogenation reactor is activated is the dehydrogenation The electric power required for driving at least one of the first heater and the second heater after the system is operated and the dehydrogenation reaction in the dehydrogenation reactor is activated is more than the electric power required. 2. The dehydrogenation system according to 1.
  8.  前記燃料タンクに貯蔵される燃料は、前記第1通路から排出される有機ハイドライドや芳香族化合物であることを特徴とする請求項1に記載の脱水素システム。 The dehydrogenation system according to claim 1, wherein the fuel stored in the fuel tank is an organic hydride or an aromatic compound discharged from the first passage.
  9.  有機ハイドライドを貯蔵する原料タンクと、
     前記原料タンクから供給された有機ハイドライドの脱水素反応を促進させる第1触媒を設けた第1通路を有し、前記第1通路に供給された有機ハイドライドが水素と芳香族化合物に分離される脱水素反応器と、
     前記第1通路から排出された水素を貯蔵する第1水素タンクと第2水素タンクと、
     前記第1水素タンクや前記第2水素タンクから供給された水素に基づいて電力を発生させる電力供給装置と、
     前記第1水素タンクと前記第2水素タンクにおける、前記第1通路からの水素が供給される入口や、前記電力供給装置へ水素が排出される出口の開閉制御を行う制御装置とを備えた脱水素システムであって、
     前記第1水素タンクは、前記脱水素システムを稼働させてから前記脱水素反応器における脱水素反応が活性化するまでの間、前記電力供給装置で使用する水素を貯蔵するために使用され、
     前記第2水素タンクは、前記脱水素反応器における脱水素反応が活性化した後に前記電力供給装置で使用する水素や、前記脱水素システムを構成する装置以外の外部機器で使用する水素を貯蔵するために使用され、
     前記脱水素システムを稼働させてから前記脱水素反応器における脱水素反応が活性化するまでの間は、前記第1通路を温めるヒーターが駆動され、
     前記電力供給装置は、前記原料タンクから前記第1通路への有機ハイドライドの供給、前記ヒーターの駆動に使用されることを特徴とする脱水素システム。
    A raw material tank for storing organic hydride,
    Dehydration having a first passage provided with a first catalyst for promoting dehydrogenation reaction of organic hydride supplied from the raw material tank, wherein the organic hydride supplied to the first passage is separated into hydrogen and an aromatic compound An elementary reactor,
    A first hydrogen tank and a second hydrogen tank for storing hydrogen discharged from the first passage;
    An electric power supply device that generates electric power based on hydrogen supplied from the first hydrogen tank or the second hydrogen tank;
    Dehydration provided with an inlet for supplying hydrogen from the first passage in the first hydrogen tank and the second hydrogen tank and a controller for controlling opening and closing of an outlet from which hydrogen is discharged to the power supply device An elementary system,
    The first hydrogen tank is used for storing hydrogen to be used in the power supply device from when the dehydrogenation system is operated until a dehydrogenation reaction in the dehydrogenation reactor is activated,
    The second hydrogen tank stores hydrogen used in the power supply apparatus after dehydrogenation reaction in the dehydrogenation reactor is activated and hydrogen used in external equipment other than the apparatus constituting the dehydrogenation system. Used for and
    Between the time when the dehydrogenation system is operated and the time when the dehydrogenation reaction in the dehydrogenation reactor is activated, a heater for driving the first passage is driven,
    The power supply device is used for supplying organic hydride from the raw material tank to the first passage and driving the heater.
  10.  有機ハイドライドを貯蔵する原料タンクと、
     有機ハイドライドと、前記有機ハイドライドから水素を分離させた芳香族化合物の少なくとも一方を燃料として貯蔵する燃料タンクと、
     外気取り込み装置と、
     前記原料タンクから供給された有機ハイドライドの脱水素反応を促進させる第1触媒を設けた第1通路と、前記第1通路と隣接し、前記燃料タンクから供給された前記燃料と前記外気取り込み装置から供給された空気の混合気の燃焼を促進させる第2触媒を設けた第2通路を有し、前記第2通路における燃焼による熱は前記第1通路に伝達され、前記第1通路に供給された有機ハイドライドが水素と芳香族化合物に分離される脱水素反応器と、
     前記第1通路から排出された水素を貯蔵する第3水素タンクと、
     前記第3水素タンクから供給された水素に基づいて電力を発生させる電力供給装置と、
     前記第3水素タンクにおける、前記第1通路からの水素が供給される入口や前記電力供給装置へ水素が排出される出口とは別の水素排出口の開閉制御を行う制御装置とを備えた脱水素システムであって、
     前記第3水素タンクは、前記電力供給装置で使用する水素や、前記脱水素システムを構成する装置以外の外部機器で使用する水素を貯蔵するために使用され、
     前記脱水素システムを稼働させてから前記脱水素反応器における脱水素反応が活性化するまでの間は、前記外気取り込み装置で取り込みされる外気を温める第1ヒーターと、前記第1通路を温める第2ヒーターの少なくとも一方が駆動され、
     前記電力供給装置は、前記原料タンクから前記第1通路への有機ハイドライドの供給、前記燃料タンクから前記第2通路への燃料の供給、前記第1ヒーターと前記第2ヒーターの少なくとも一方の駆動に使用され、
     前記制御装置は、前記脱水素システムを稼働させてから前記脱水素反応器における脱水素反応が活性化するまでの間、前記電力供給装置で使用する水素が、前記第3水素タンクに充填されているか否かを判断し、充填されていないと判断した場合には、前記水素排出口を閉状態にし、前記外部機器への水素供給を制限することを特徴とする脱水素システム。
    A raw material tank for storing organic hydride,
    An organic hydride and a fuel tank for storing at least one of aromatic compounds obtained by separating hydrogen from the organic hydride as fuel;
    An outside air intake device;
    A first passage provided with a first catalyst for promoting a dehydrogenation reaction of the organic hydride supplied from the raw material tank; and the fuel supplied from the fuel tank and the outside air intake device adjacent to the first passage. A second passage provided with a second catalyst for accelerating combustion of the supplied air-fuel mixture, and heat generated by combustion in the second passage is transmitted to the first passage and supplied to the first passage; A dehydrogenation reactor in which organic hydride is separated into hydrogen and aromatic compounds;
    A third hydrogen tank for storing hydrogen discharged from the first passage;
    A power supply device that generates electric power based on hydrogen supplied from the third hydrogen tank;
    The dehydration provided with a control device for controlling opening / closing of a hydrogen discharge port different from an inlet for supplying hydrogen from the first passage and an outlet for discharging hydrogen to the power supply device in the third hydrogen tank An elementary system,
    The third hydrogen tank is used to store hydrogen used in the power supply device and hydrogen used in external equipment other than the device constituting the dehydrogenation system,
    Between the time when the dehydrogenation system is operated and the time when the dehydrogenation reaction in the dehydrogenation reactor is activated, a first heater that warms the outside air taken in by the outside air taking-in device, and a first heater that warms the first passage. At least one of the two heaters is driven,
    The power supply device is configured to supply organic hydride from the raw material tank to the first passage, supply fuel from the fuel tank to the second passage, and drive at least one of the first heater and the second heater. Used,
    The control device is configured such that hydrogen used in the power supply device is charged in the third hydrogen tank until the dehydrogenation reaction in the dehydrogenation reactor is activated after the dehydrogenation system is operated. The dehydrogenation system is characterized in that if it is determined whether or not it is not filled, the hydrogen discharge port is closed to restrict hydrogen supply to the external device.
PCT/JP2014/001612 2013-07-12 2014-03-20 Dehydrogenation system WO2015004827A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-146259 2013-07-12
JP2013146259A JP5632050B1 (en) 2013-07-12 2013-07-12 Dehydrogenation system

Publications (1)

Publication Number Publication Date
WO2015004827A1 true WO2015004827A1 (en) 2015-01-15

Family

ID=52145009

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/001612 WO2015004827A1 (en) 2013-07-12 2014-03-20 Dehydrogenation system

Country Status (3)

Country Link
JP (1) JP5632050B1 (en)
TW (1) TWI507356B (en)
WO (1) WO2015004827A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019098067A1 (en) * 2017-11-16 2019-05-23 株式会社辰巳菱機 Electric vehicle
CN109850846A (en) * 2019-01-29 2019-06-07 武汉船用电力推进装置研究所(中国船舶重工集团公司第七一二研究所) A kind of self-heating organic liquid dehydrogenation hydrogen-feeding system and its application
JP6816911B1 (en) * 2019-08-01 2021-01-20 株式会社辰巳菱機 Load test equipment
WO2021020044A1 (en) * 2019-08-01 2021-02-04 株式会社辰巳菱機 Load testing device
WO2023247626A1 (en) * 2022-06-23 2023-12-28 Hydrogenious Lohc Technologies Gmbh Device and method for providing electrical energy by means of a hydrogen carrier medium, and mobile platform having such a device

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6998054B2 (en) * 2018-11-05 2022-01-18 株式会社辰巳菱機 Power generation system
CN110953481B (en) * 2019-12-25 2021-12-03 扬州大学 Low-cost multichannel thermal coupling energy-saving metal hydride hydrogen storage bottle activation system and process flow thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007102278A1 (en) * 2006-03-06 2007-09-13 Hrein Energy, Inc. Hydrogen generator and hydrogenation apparatus
JP2012054385A (en) * 2010-09-01 2012-03-15 Tatsumi Ryoki:Kk Load device using liquid
JP2013009548A (en) * 2011-06-27 2013-01-10 Nippon Acp Kk Uninterruptible power supply system
WO2013054851A1 (en) * 2011-10-14 2013-04-18 Jx日鉱日石エネルギー株式会社 Hydrogen station
WO2013103060A1 (en) * 2012-01-06 2013-07-11 株式会社 日立製作所 Power conversion system

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5369126B2 (en) * 2010-04-28 2013-12-18 日本精線株式会社 Wire catalyst molded products for hydrogenation / dehydrogenation reactions

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007102278A1 (en) * 2006-03-06 2007-09-13 Hrein Energy, Inc. Hydrogen generator and hydrogenation apparatus
JP2012054385A (en) * 2010-09-01 2012-03-15 Tatsumi Ryoki:Kk Load device using liquid
JP2013009548A (en) * 2011-06-27 2013-01-10 Nippon Acp Kk Uninterruptible power supply system
WO2013054851A1 (en) * 2011-10-14 2013-04-18 Jx日鉱日石エネルギー株式会社 Hydrogen station
WO2013103060A1 (en) * 2012-01-06 2013-07-11 株式会社 日立製作所 Power conversion system

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019098067A1 (en) * 2017-11-16 2019-05-23 株式会社辰巳菱機 Electric vehicle
US10793000B2 (en) 2017-11-16 2020-10-06 Tatsumi Ryoki Co., Ltd Electric vehicle
CN109850846A (en) * 2019-01-29 2019-06-07 武汉船用电力推进装置研究所(中国船舶重工集团公司第七一二研究所) A kind of self-heating organic liquid dehydrogenation hydrogen-feeding system and its application
JP6816911B1 (en) * 2019-08-01 2021-01-20 株式会社辰巳菱機 Load test equipment
WO2021020044A1 (en) * 2019-08-01 2021-02-04 株式会社辰巳菱機 Load testing device
US11555861B2 (en) 2019-08-01 2023-01-17 Tatsumi Ryoki Co., Ltd Load testing device
WO2023247626A1 (en) * 2022-06-23 2023-12-28 Hydrogenious Lohc Technologies Gmbh Device and method for providing electrical energy by means of a hydrogen carrier medium, and mobile platform having such a device

Also Published As

Publication number Publication date
JP2015017020A (en) 2015-01-29
TW201512085A (en) 2015-04-01
TWI507356B (en) 2015-11-11
JP5632050B1 (en) 2014-11-26

Similar Documents

Publication Publication Date Title
JP5632050B1 (en) Dehydrogenation system
JP5129452B2 (en) Fuel cell power generation system
US9620793B2 (en) Hybrid system
EP3051228A1 (en) Cooling and heating device
JP6205282B2 (en) Fuel cell system
RU2013103766A (en) POWER GENERATION SYSTEM AND METHOD OF ITS OPERATION
JP2013105612A (en) Fuel cell system and method for controlling fuel cell system
JP5591249B2 (en) Fuel cell device
RU2009116940A (en) FUEL ELEMENT SYSTEM
KR100664089B1 (en) Fuel cell system and method for heating the stack unit of the same
JP4073118B2 (en) Catalytic combustion heating device
JP5725851B2 (en) Fuel cell device
JP2017150738A (en) Cogeneration system
JP2004111209A (en) Fuel cell power generation system
JP2007248008A (en) Cogeneration system and its operation method
JP5245290B2 (en) Fuel cell power generator
KR101457909B1 (en) Fuel cell system for improving efficiency of fuel cell
JP2018527699A (en) Fuel cell system
KR101200689B1 (en) Heat recovery apparatus of fuel cell
JP2019175640A (en) Fuel cell system
JP5920066B2 (en) Fuel cell system
JP2018160429A (en) Fuel cell system
JP7190945B2 (en) fuel cell system
JP6114061B2 (en) Fuel cell device
JP2008004371A (en) Fuel cell system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14822100

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14822100

Country of ref document: EP

Kind code of ref document: A1