WO2014208388A1 - System for gauging road conditions, and device for gauging road conditions - Google Patents

System for gauging road conditions, and device for gauging road conditions Download PDF

Info

Publication number
WO2014208388A1
WO2014208388A1 PCT/JP2014/065934 JP2014065934W WO2014208388A1 WO 2014208388 A1 WO2014208388 A1 WO 2014208388A1 JP 2014065934 W JP2014065934 W JP 2014065934W WO 2014208388 A1 WO2014208388 A1 WO 2014208388A1
Authority
WO
WIPO (PCT)
Prior art keywords
vehicle
inter
road
distance
calculation unit
Prior art date
Application number
PCT/JP2014/065934
Other languages
French (fr)
Japanese (ja)
Inventor
横井 謙太朗
佐藤 俊雄
阿部 達朗
鈴木 美彦
Original Assignee
株式会社東芝
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社東芝 filed Critical 株式会社東芝
Priority to CN201480036002.4A priority Critical patent/CN105339992B/en
Publication of WO2014208388A1 publication Critical patent/WO2014208388A1/en

Links

Images

Classifications

    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/01Detecting movement of traffic to be counted or controlled
    • G08G1/0104Measuring and analyzing of parameters relative to traffic conditions
    • G08G1/0125Traffic data processing
    • G08G1/0133Traffic data processing for classifying traffic situation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V20/00Scenes; Scene-specific elements
    • G06V20/50Context or environment of the image
    • G06V20/52Surveillance or monitoring of activities, e.g. for recognising suspicious objects
    • G06V20/54Surveillance or monitoring of activities, e.g. for recognising suspicious objects of traffic, e.g. cars on the road, trains or boats
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/01Detecting movement of traffic to be counted or controlled
    • G08G1/0104Measuring and analyzing of parameters relative to traffic conditions
    • G08G1/0108Measuring and analyzing of parameters relative to traffic conditions based on the source of data
    • G08G1/0112Measuring and analyzing of parameters relative to traffic conditions based on the source of data from the vehicle, e.g. floating car data [FCD]

Definitions

  • Embodiments of the present invention relate to a road condition grasping system and a road condition grasping apparatus.
  • ITS Intelligent Transport Systems
  • road conditions such as traffic congestion and congestion have been grasped.
  • a roadside device such as a camera installed on the roadside.
  • a GPS (Global Positioning System) device is mounted on a vehicle and position information obtained from the GPS device and speed information obtained from a vehicle speedometer are used.
  • the road condition grasping system is a system including an in-vehicle device mounted on a vehicle and an information processing device that processes information transmitted from the in-vehicle device.
  • the in-vehicle device is a position detection unit that detects the position of the vehicle, an imaging unit that captures the surroundings of the vehicle, and an inter-vehicle distance calculation that calculates an inter-vehicle distance from another vehicle based on an image captured by the imaging unit.
  • a vehicle density calculation unit that calculates a density of a vehicle that travels at the position based on the calculated unit, the calculated inter-vehicle distance, and the detected vehicle position, the detected vehicle position, and the calculated vehicle
  • a transmission unit that transmits road information including the density of the information to the information processing apparatus.
  • the information processing apparatus includes a road condition calculation unit that calculates road conditions indicating the degree of congestion of the route by aggregating road information on a route traveled by the vehicle based on the transmitted road information.
  • the road condition grasping device includes an imaging unit that captures an image of the surroundings of the vehicle, a position detection unit that detects the position of the vehicle, and an inter-vehicle distance between other vehicles based on an image captured by the imaging unit.
  • An inter-vehicle distance calculating unit that calculates a distance; a vehicle density calculating unit that calculates a density of a vehicle that travels at the position based on the calculated inter-vehicle distance and the detected position of the vehicle; and
  • a road condition calculation unit that aggregates the calculated density of the vehicle on the route traveled by the vehicle based on the position, and calculates a road condition indicating the degree of congestion of the route.
  • FIG. 1 is a conceptual diagram showing an outline of a road condition grasping system according to the first embodiment.
  • FIG. 2 is a block diagram illustrating an example of a hardware configuration of the road condition grasping system according to the first embodiment.
  • FIG. 3 is a block diagram illustrating an example of a functional configuration of the road condition grasping system according to the first embodiment.
  • FIG. 4 is a conceptual diagram illustrating a processing flow of the road condition grasping system according to the first embodiment.
  • FIG. 5 is a block diagram illustrating details of an inter-vehicle distance calculation unit in the road condition grasping system according to the first embodiment.
  • FIG. 6 is a conceptual diagram illustrating the flow of processing of the inter-vehicle distance calculation unit in the road condition grasping system according to the first embodiment.
  • FIG. 7 is a conceptual diagram illustrating the calculation of the inter-vehicle distance from the preceding vehicle based on the distance based on the disparity information in the road condition grasping system according to the first embodiment.
  • FIG. 8 is a conceptual diagram illustrating the calculation of the inter-vehicle distance from the preceding vehicle based on the distance based on the parallax information in the road condition grasping system according to the first embodiment.
  • FIG. 9 is a block diagram illustrating an example of a functional configuration of the road condition grasping system according to the first modification of the first embodiment.
  • FIG. 10 is a block diagram illustrating an example of a functional configuration of the road condition grasping system according to the second modification of the first embodiment.
  • FIG. 11 is a conceptual diagram illustrating a processing flow of the road condition grasping system according to the second modification of the first embodiment.
  • FIG. 12 is a conceptual diagram illustrating the calculation of the inter-vehicle distance for each lane in the road condition grasping system according to the second modification of the first embodiment.
  • FIG. 13 is a block diagram illustrating an example of a functional configuration of the road condition grasping system according to the third modification of the first embodiment.
  • FIG. 14 is a conceptual diagram illustrating the flow of processing of the road condition grasping system according to the third modification of the first embodiment.
  • FIG. 15 is a conceptual diagram showing an outline of a road condition grasping system according to the second embodiment.
  • FIG. 16 is a block diagram illustrating an example of a functional configuration of the road condition grasping system according to the second embodiment.
  • FIG. 17 is a conceptual diagram illustrating a processing flow of the road condition grasping system according to the second embodiment.
  • FIG. 18 is a conceptual diagram illustrating the calculation of the inter-vehicle distance based on the position of the vehicle detected from the captured image in the road condition grasping system according to the second embodiment.
  • FIG. 1 is a conceptual diagram showing an outline of a road condition grasping system 1 according to the first embodiment.
  • the road condition grasping system 1 is configured to include an in-vehicle terminal 20 mounted on a vehicle V ⁇ b> 1 and a management apparatus 10 that processes road information transmitted from the in-vehicle terminal 20.
  • the vehicle V1 is provided with an in-vehicle terminal 20 having a stereo camera 21 and a GPS device 22.
  • the stereo camera 21 is a plurality of digital cameras that capture images of the periphery of the vehicle V ⁇ b> 1 from a plurality of different directions, and outputs the captured image data to the in-vehicle terminal 20.
  • a pair of left and right stereo cameras 21 are installed in the upper front part of the vehicle V1. Therefore, the in-vehicle terminal 20 can obtain an image (stereo image) obtained by imaging the front along the traveling direction of the vehicle V1 from the left and right by the stereo camera 21.
  • the installation position and the number of installations of the stereo camera 21 are not limited to the present embodiment.
  • the installation position of the stereo camera 21 may be the rear upper part of the vehicle V1.
  • the in-vehicle terminal 20 can obtain a rear stereo image along the traveling direction of the vehicle V1.
  • the in-vehicle terminal 20 is the distance between the vehicle V1 and the vehicle V1 that is around the vehicle V1 from the stereo image obtained by the stereo camera 21 and along the traveling direction of the vehicle V1, that is, the vehicle V2 on the road on which the vehicle V1 travels. calculate.
  • the in-vehicle terminal 20 calculates the density of the vehicles (V1, V2,%) On the road based on the calculated inter-vehicle distance, and the density of the vehicle and the current vehicle V1 detected by the GPS device 22 are calculated. Road information including the position is transmitted to the management device 10.
  • the vehicle V1 on which the in-vehicle terminal 20 is mounted may be any type of vehicle such as a taxi, a collection and delivery vehicle, and a general passenger car, in addition to a route bus that regularly operates on a predetermined route.
  • the in-vehicle terminal 20 is mounted on a route bus.
  • the route bus has a higher vehicle height than a taxi or a general passenger car, so that the stereo camera 21 can be installed at a higher position.
  • road information along a predetermined route can be collected periodically.
  • the management device 10 is a PC (Personal Computer) or the like, and aggregates road information transmitted from the in-vehicle terminal 20 to calculate a road condition indicating the degree of congestion of the route traveled by the management device 10.
  • PC Personal Computer
  • the road condition is the degree of crowded vehicles on the road, and does not include road conditions such as road surface conditions (rain wetness, snow accumulation, freezing, etc.).
  • the density of vehicles included in the road information corresponds to the degree of congestion on the road. That is, if the density of the vehicle is high, it is congested, and if the density of the vehicle is low, it is empty.
  • the management device 10 counts the density of vehicles that are sequentially sent together with the current position of the vehicle V1 along the route traveled by the vehicle V1 based on the position information of the vehicle V1, so that the roads on the route Calculate the situation.
  • the road condition calculated by the management apparatus 10 may be a numerical value of the degree of congestion corresponding to the density of the vehicle, or a congestion stage (the congestion level indicated by the density of the vehicle is divided by a predetermined threshold) ( For example, “congestion”, “congestion”, “normal”, etc.) may be used.
  • the management device 10 outputs the calculated road condition as a map indicating the location where the traffic jam occurs.
  • the management apparatus 10 superimposes road conditions G1, G2, and G3 calculated along the route traveled by the vehicle V1 equipped with the in-vehicle terminal 20 on the map information M1 in which the position of the road or the building is described.
  • the displayed map is displayed on the display to notify a user (operator or the like) who operates the management apparatus 10.
  • the road conditions G1, G2, and G3 displayed on the map are displayed in accordance with the congestion state (line type, color, thickness, etc. of lines superimposed on the road) so that the operator can easily recognize the congestion state. You may change it. For example, the operator can accurately grasp the location of occurrence of traffic jams by displaying the location of traffic jams in blinking display, highlighted colors such as red, and bold lines.
  • FIG. 2 is a block diagram illustrating an example of a hardware configuration of the road condition grasping system 1 according to the first embodiment.
  • the management device 10 includes a display unit 11, an input unit 12, a communication unit 13, and a control unit 14.
  • the display unit 11 is an LCD (Liquid Crystal Display) or the like, and displays the road conditions G1, G2, G3 and the like calculated under the control of the control unit 14.
  • the input unit 12 is an input device such as a keyboard or a pointing device, and receives an operation input from an operator and outputs it to the control unit 14.
  • the communication unit 13 is a communication device that communicates with the in-vehicle terminal 20 via the communication network N under the control of the control unit 14.
  • the communication network N is a communication infrastructure for communicating with the in-vehicle terminal 20, and may be a commercial radio or a mobile communication network used on a route bus or the like.
  • the control unit 14 includes a CPU (Central Processing Unit), a ROM (Read Only Memory), a RAM (Random Access Memory), and the like (all not shown), and controls the operation of the management device 10. Specifically, the operation of each unit in the management apparatus 10 is controlled by the CPU developing programs stored in the ROM or the like on the RAM and sequentially executing the programs.
  • CPU Central Processing Unit
  • ROM Read Only Memory
  • RAM Random Access Memory
  • the in-vehicle terminal 20 includes a control unit 23, a communication unit 24, an input unit 25, and a display unit 26 in addition to the stereo camera 21 and the GPS device 22.
  • the control unit 23 includes a CPU, a ROM, a RAM, and the like (all not shown) and controls the operation of the in-vehicle terminal 20. Specifically, the CPU stores the programs stored in the ROM or the like on the RAM and sequentially executes them, thereby controlling the operation of each unit in the in-vehicle terminal 20.
  • the communication unit 24 is a communication device that communicates with the management device 10 via the communication network N under the control of the control unit 23.
  • the communication unit 24 transmits road information including the vehicle density calculated from the stereo image by the stereo camera 21 and the current position by the GPS device 22 to the management device 10 under the control of the control unit 23.
  • the input unit 25 is an operation key or the like that receives an operation input from a user who operates the in-vehicle terminal 20, and outputs an operation signal when the operation key is pressed to the control unit 23.
  • the display unit 26 is an LED (Light Emitting Diode) indicator lamp, LCD, or the like, and performs various displays under the control of the control unit 14.
  • FIG. 3 is a block diagram illustrating an example of a functional configuration of the road condition grasping system 1 according to the first embodiment.
  • FIG. 4 is a conceptual diagram illustrating a processing flow of the road condition grasping system 1 according to the first embodiment.
  • the road situation grasping system 1 includes a stereo imaging unit 101, a distance calculation unit 102, an inter-vehicle distance calculation unit 103, a vehicle density calculation unit 104, and vehicle position information acquisition as functional configurations related to the calculation of the road situation.
  • Unit 105 road information calculation unit 106, and road information accumulation unit 107.
  • the control unit 14 of the management device 10 executes the program.
  • the road information accumulation unit 107 has a functional configuration that is realized when the control unit 23 of the in-vehicle terminal 20 executes a program.
  • the stereo image capturing unit 101 performs a stereo image capturing process (FIG. 4: S101) in which the left and right digital cameras in the stereo camera 21 capture images simultaneously to acquire a pair of left and right stereo images.
  • S101 stereo image capturing process
  • the distance calculation unit 102 performs a distance calculation process for calculating the distance between the object reflected in the stereo image and the vehicle V1 based on the stereo image captured by the stereo image capturing process (FIG. 4: S102).
  • the stereo image has a parallax corresponding to the distance of the object to be reflected between the image captured by the right digital camera and the image captured by the left digital camera.
  • the distance calculation unit 102 performs stereo processing (stereo matching processing) for calculating the positional shift (parallax) of similar points by comparing the left and right images described above.
  • stereo processing stereo matching processing
  • parallax information I1 having different parallax amounts from the near side closer to the vehicle V1 toward the far side far away is obtained.
  • the distance calculation unit 102 calculates the distance of the object reflected in the stereo image by triangulation based on the obtained parallax information I1.
  • the inter-vehicle distance calculation unit 103 calculates an inter-vehicle distance D1 with the vehicle V2 ahead along the traveling direction of the vehicle V1, based on the distance information indicating the distance obtained by the distance calculation process. (FIG. 4: S103).
  • FIG. 5 is a block diagram illustrating details of the inter-vehicle distance calculation unit 103.
  • FIG. 6 is a conceptual diagram illustrating the processing flow of the inter-vehicle distance calculation unit 103.
  • 7 and 8 are conceptual diagrams illustrating the calculation of the inter-vehicle distance from the preceding vehicle based on the distance based on the parallax information I1.
  • the inter-vehicle distance calculation unit 103 includes a corresponding road surface position calculation unit 1031, a corresponding road surface position totaling unit 1032, and a non-road surface determination unit 1033 as a functional configuration for performing the inter-vehicle distance calculation process.
  • the inter-vehicle distance information indicating the inter-vehicle distance from the preceding vehicle is output based on the distance information indicating the distance obtained by the above.
  • the corresponding road surface position calculation unit 1031 calculates a corresponding road surface position calculation process for calculating a position corresponding to a road surface indicating a stepwise distance from the front to the back in the stereo image captured by the stereo camera 21 (FIG. 6: S1031). I do.
  • the corresponding road surface position calculation unit 1031 is distance information (calculation result) obtained by imaging the road surface with the stereo camera 21 under the imaging conditions without a preceding vehicle as shown in FIG.
  • Corresponding road surface position information indicating the correspondence relationship between the reflected road surface and the distance between the road surface and the vehicle V1 is held in advance in a memory or the like.
  • the corresponding road surface position information indicates a correspondence relationship with which position on the stereo image the road surface located at a certain distance from the vehicle V1 corresponds.
  • the corresponding road surface position calculation unit 1031 calculates a road surface position corresponding to the distance information based on the corresponding road surface position information. Specifically, in the case of an imaging condition with a preceding vehicle as shown in FIG. 7, it is calculated that the region R1 of the object with a distance of 4 m corresponds to the position P1 with a distance of 4 m that exists below the object region.
  • the corresponding road surface position totaling unit 1032 performs a corresponding road surface position totaling process (FIG. 6: S1032) for totaling the total number of areas corresponding to the road surface position.
  • the total number of regions corresponding to the road surface position is, for example, the number of pixels in the region R1 corresponding to the position P1 (the count number “4” in FIG. 7), and corresponds to the area of the region R1.
  • the number of pixels in the region R1 corresponding to the position P1 at a distance of 4 m is totaled to obtain the area.
  • the non-road surface determination unit 1033 determines whether or not there is a non-road surface area above each position on the road surface based on the total number counted by the corresponding road surface position totaling unit 1032. (FIG. 6: S1033) is performed.
  • the inter-vehicle distance calculation unit 103 outputs the distance value (“4” in the example of FIG. 7) of the position P1 obtained by adding up the regions R1 determined by the non-road surface determination unit 1033 as having the preceding vehicle as inter-vehicle distance information.
  • a value obtained by totaling distance information (calculation result without preceding vehicle in FIG. 7) obtained by imaging only a road surface where no vehicle exists, that is, the total number of corresponding road surface position information is used. It's okay.
  • the above-mentioned total count + ⁇ ( ⁇ is a small value corresponding to noise) may be used as a threshold value. In this case, since the region corresponding to the vehicle becomes smaller as the distance increases, ⁇ may be reduced according to the distance.
  • the inter-vehicle distance calculation unit 103 outputs the distance value “6” of the position P1 corresponding to the non-road surface area R1 by the vehicle V2 as inter-vehicle distance information. To do.
  • the distance information of the preceding vehicle having a long hidden distance is not obtained.
  • the vehicle V2a reflected in the foreground in the imaging region R is determined to be present by counting the region R1, and the inter-vehicle distance with the distance value set to “2” Information is obtained.
  • the vehicle V2b that is partially hidden in the vehicle V2a may not be determined to exist only by counting the region R2. For this reason, the inter-vehicle distance information of the vehicle V2b may not be obtained.
  • the position totaling unit 1032 sets a region R2a in which the distance value “2” is replaced with the distance value “6” for a part of the region R1 adjacent to the region R2.
  • the size of the region R2a may be in accordance with the magnitude of the distance value. For example, when the distance value is large, that is, when the distance is far, the size of the region R2a is reduced.
  • the corresponding road surface position totaling unit 1032 counts the total number of areas R2 and R2a corresponding to the position P2.
  • the inter-vehicle distance calculation unit 103 can output inter-vehicle distance information of the distance value “6” assuming that the vehicle V2b is at the position P2. It is possible to improve the detectability of the vehicle V2b when a part of the vehicle V2b is hidden by the vehicle V2a.
  • the vehicle density calculation unit 104 performs a vehicle density calculation process for calculating the density of the vehicle at the current position of the vehicle V ⁇ b> 1 based on the inter-vehicle distance calculated by the inter-vehicle distance calculation process of the inter-vehicle distance calculation unit 103. Perform (FIG. 4: S104).
  • the density of the vehicle is obtained after obtaining the average inter-vehicle distance between the vehicles.
  • the vehicle position information acquisition unit 105 performs a vehicle position information acquisition process for acquiring vehicle position information indicating the current position of the vehicle V1 based on the output from the GPS device 22 (FIG. 4: S105).
  • the road information calculation unit 106 uses the vehicle position information obtained by the vehicle position information acquisition process and the vehicle density obtained by the vehicle density calculation process as the vehicle density at the current time at a position of the vehicle V1.
  • Road information creation processing for creating road information to be defined is performed (FIG. 4: S106).
  • the road information calculation unit 106 may calculate the traveling speed of the vehicle V1 based on the change in the vehicle position information of the vehicle V1 between different times, and include the traveling speed in the road information.
  • the road information obtained by the road information creation process is transmitted to the management device 10 by the communication unit 24 under the control of the control unit 23.
  • the road information accumulation unit 107 aggregates road information on the route traveled by the vehicle V1 based on the road information transmitted from the in-vehicle terminal 20, and calculates a road information accumulation process that indicates a road condition indicating the degree of congestion of the route. (FIG. 4: S107).
  • the management device 10 obtains road conditions G1, G2, and G3 on a route traveled by each vehicle equipped with the in-vehicle terminal 20 by road information accumulation processing, and displays it on the display as map information M1 indicating a traffic jam location and the like. This information can be used for various services such as traffic control, provision of traffic jam information, and bus operation management.
  • the road condition grasping system 1 calculates the inter-vehicle distance from the vehicle V2 along the traveling direction of the vehicle V1, based on the stereo image captured by the stereo camera 21 of the in-vehicle terminal 20, and Based on the distance, the density of the vehicle at the position of the vehicle V1 detected by the GPS device 22 is calculated. Then, the in-vehicle terminal 20 transmits road information including the position of the vehicle V1 and the density of the vehicle to the management device 10, and the management device 10 aggregates road information on the route on which the vehicle V1 traveled. A road condition indicating the degree of congestion is calculated.
  • the road condition grasping system 1 it is possible to reduce the cost of installing a roadside device along the route along which the vehicle V1 travels. Further, in the road condition grasping system 1, since the road density is determined based on the inter-vehicle distance based on the stereo image, rather than only grasping the road condition based on the speed and position of the vehicle traveling in the lane, the vehicle is overcrowded. It is possible to grasp a more accurate road condition such as whether or not the vehicle is in a state.
  • the function structure with which the management apparatus 10 of the road condition grasping system 1 and the in-vehicle terminal 20 are provided is an example, and is not limited to the above-described one.
  • the in-vehicle terminal 20 includes only the stereo imaging unit 101 and the vehicle position information acquisition unit 105, the stereo image captured by the stereo imaging unit 101, and the current position of the vehicle V ⁇ b> 1 acquired by the vehicle position information acquisition unit 105.
  • the management device 10 may include a distance calculation unit 102, an inter-vehicle distance calculation unit 103, a vehicle density calculation unit 104, a road information calculation unit 106, and a road information accumulation unit 107.
  • the in-vehicle terminal 20 includes a stereo imaging unit 101, a distance calculation unit 102, an inter-vehicle distance calculation unit 103, a vehicle density calculation unit 104, a vehicle position information acquisition unit 105, a road information calculation unit 106, and a road information accumulation unit 107. May be.
  • the history of road conditions for the route on which the vehicle V1 travels obtained by the in-vehicle terminal 20 is accumulated in a storage device (not shown) such as a HDD (Hard Disk Drive) recorder.
  • a navigation device (not shown) mounted on the vehicle V1 refers to a history of road conditions stored in the storage device when calculating a route between predetermined points, so that a route with less congestion can be obtained. I can guide you.
  • FIG. 9 is a block diagram illustrating an example of a functional configuration of the road condition grasping system 1a according to the first modification. As shown in FIG. 9, Modification 1 is different from the first embodiment described above in that it further includes a vehicle allocation control unit 108 realized by the control unit 14 of the management device 10.
  • the vehicle allocation control unit 108 performs vehicle allocation control for distributing the road conditions calculated by the road information accumulation unit 107 to vehicles such as buses / taxis, collection / delivery vehicles, and passenger cars traveling in a predetermined area.
  • the predetermined area here may be an area that can be distributed to the vehicle V1 via the communication network N, and may be, for example, an area managed by the operation command center.
  • the vehicle allocation control unit 108 distributes, for example, information indicating an area where traffic congestion has occurred to the vehicle via the communication network N based on the road condition calculated by the road information accumulation unit 107. Therefore, on the side of vehicles such as buses / taxis, pick-up / delivery vehicles, and passenger cars, for example, the navigation device avoids areas where traffic congestion occurs when calculating the route between predetermined points based on the distributed information. By selecting a route to be performed, it is possible to realize efficient traveling.
  • FIG. 10 is a block diagram illustrating an example of a functional configuration of the road condition grasping system 1b according to the second modification.
  • FIG. 11 is a conceptual diagram illustrating the processing flow of the road condition grasping system 1b according to the second modification.
  • FIG. 12 is a conceptual diagram illustrating the calculation of the inter-vehicle distance for each lane in the road condition grasping system 1b according to the second modification.
  • the second modification is different from the first embodiment described above in that it further includes a lane discrimination unit 109 realized by the control unit 23 of the in-vehicle terminal 20.
  • the lane discriminating unit 109 performs lane discrimination processing for discriminating the lane by performing image processing based on the image captured by the stereo camera 21 (FIG. 11: S109). Specifically, the lane discriminating unit 109 discriminates a lane (traveling area) by detecting white lines L1 and L2 indicating lane breaks from the image captured by the stereo camera 21.
  • a known method such as “Video Based Lane Estimation and Tracking for Driver Assistance: Survey, System, and Evaluation”, Joel C. McCall et al., IEEE Transactions on ITS, March 2006. May be used.
  • the inter-vehicle distance calculation unit 103 performs an inter-vehicle distance calculation process for calculating the inter-vehicle distance D1 with the vehicle V2 ahead along the traveling direction of the vehicle V1 for each lane determined by the lane determination unit 109 (FIG. 4: S103). Specifically, when the vehicle V1 is traveling in the lane between the white lines L1 and L2, the inter-vehicle distance D1 of the vehicle V2 traveling in the same lane is calculated (see FIG. 11).
  • the inter-vehicle distance (DL, DR below) is calculated from the right lane of the vehicle.
  • the inter-vehicle distances between the vehicle V1 and the vehicles V21, V22, and V23 are D21, D22, and D23, respectively.
  • DL D22 ⁇ D21 ⁇ C may be calculated.
  • the inter-vehicle distance D23 from the vehicle V1 is set as the inter-vehicle distance of the right lane of the white line L2 as an approximate value.
  • FIG. 13 is a block diagram illustrating an example of a functional configuration of a road condition grasping system 1c according to the third modification.
  • FIG. 14 is a conceptual diagram illustrating the processing flow of the road condition grasping system 1c according to the third modification.
  • Modification 3 is different from Modification 2 described above in that it further includes a vehicle speed calculation unit 110 realized by the control unit 23 of the in-vehicle terminal 20.
  • a vehicle speed calculation unit 110 for calculating the traveling speed of another lane different from the lane in which the vehicle V1 travels is provided.
  • the vehicle speed calculation unit 110 is different from the vehicle V1 based on the lane determined by the lane determination unit 109, the inter-vehicle distance calculated by the inter-vehicle distance calculation unit 103, and the traveling speed of the vehicle V1 that is the host vehicle.
  • a vehicle speed calculation process for calculating the traveling speed of the vehicle traveling in the lane is performed (FIG. 14: S110).
  • the road information calculation unit 106 can create road information including the travel speed of the host vehicle described above and the travel speed of the vehicle traveling in a lane different from the host vehicle calculated by the vehicle speed calculation unit 110. it can.
  • the vehicle speed calculation unit 110 calculates the traveling speed of a vehicle traveling in a lane different from the vehicle V1 as follows.
  • the inter-vehicle distance calculation unit 103 causes the inter-vehicle distance D (X, T1) between the vehicle (X) traveling in another lane at a certain time T1 and the vehicle V1, and the vehicle (X) and the vehicle V1 at time T2. It is assumed that the inter-vehicle distance D (X, T2) is calculated. Further, it is assumed that the vehicle (X) can track the same vehicle by sufficiently shortening the time interval between the time T1 and the time T2.
  • V_X_relative ⁇ D (X, T2) ⁇ D (X, T1) ⁇ / (T2 ⁇ T1).
  • FIG. 15 is a conceptual diagram showing an outline of a road condition grasping system 1d according to the second embodiment.
  • the road condition grasping system 1d is different from the first embodiment in that an in-vehicle terminal 20d that captures an image of the surroundings with a camera 21d that is a monocular digital camera is mounted on a vehicle V1.
  • FIG. 16 is a block diagram illustrating an example of a functional configuration of the road condition grasping system 1d according to the second embodiment.
  • FIG. 17 is a conceptual diagram illustrating the flow of processing of the road condition grasping system 1d according to the second embodiment.
  • FIG. 18 is a conceptual diagram illustrating the calculation of the inter-vehicle distance based on the position of the vehicle detected from the captured image in the road condition grasping system 1d according to the second embodiment.
  • the road condition grasping system 1d is an imaging unit 111 realized by the control unit 23 of the in-vehicle terminal 20d, instead of the stereo imaging unit 101, the distance calculation unit 102, and the inter-vehicle distance calculation unit 103 described above.
  • a vehicle detection unit 112 and an inter-vehicle distance calculation unit 113 are provided.
  • the imaging unit 111 performs an imaging process (FIG. 17: S111) for acquiring a captured image captured by the camera 21d.
  • the vehicle detection unit 112 performs a vehicle detection process for detecting a vehicle reflected in the captured image G10 based on the captured image G10 obtained by the imaging process (FIG. 17: S112).
  • a known vehicle detection technology such as ““ A Trainable System for Object Detection ”, Papageorgiou et al., IJCV-2000” may be used.
  • a region R10 corresponding to the vehicle reflected in the captured image G10 is obtained.
  • the inter-vehicle distance calculation unit 113 Based on the detection result of the vehicle detection process, the inter-vehicle distance calculation unit 113 performs an inter-vehicle distance calculation process that calculates an inter-vehicle distance from the vehicle based on the position of the vehicle in the captured image G10 (FIG. 17: S113). ). Specifically, the inter-vehicle distance calculation unit 113 holds detection position / distance conversion information T1 as shown in FIG. 18 on a memory such as a ROM. The detected position / distance conversion information T1 may be data in which the inter-vehicle distance for each position (pixel) in the captured image G10 of the camera 21d is shown in a matrix.
  • the inter-vehicle distance calculation unit 113 can obtain the inter-vehicle distance from the vehicle based on the position P1 where the region R10 of the vehicle reflected in the captured image G10 contacts the ground by referring to the detected position / distance conversion information T1. .
  • the inter-vehicle distance can be obtained, and the vehicle density is obtained based on the inter-vehicle distance. It is possible to grasp a more accurate road condition such as whether or not the vehicle is in an overcrowded state.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Theoretical Computer Science (AREA)
  • Traffic Control Systems (AREA)
  • Image Processing (AREA)
  • Image Analysis (AREA)

Abstract

This system for gauging road conditions is a system provided with a vehicle on-board device, and an information processing device for processing information transmitted by the vehicle on-board device. The vehicle on-board device is provided with: a location detection unit for detecting the location of a vehicle; an image capture unit for capturing images of the vehicle surroundings; a inter-vehicle distance calculation unit for calculating inter-vehicle distances relative to other vehicles, on the basis of images captured by the image capture unit; a vehicle density calculation unit for calculating the density of vehicles traveling at the detected location of the vehicle, on the basis of the calculated inter-vehicle distances and the location in question; and a transmission unit for transmitting to the information processing device road information that includes the detected location of the vehicle and the calculated vehicle density. The information processing device is provided with a road condition calculation unit which, on the basis of the transmitted road information, performs aggregate calculations of road information on the route traveled by the vehicle, and calculates road conditions indicating the state of congestion on the route.

Description

道路状況把握システム、及び道路状況把握装置Road condition grasping system and road condition grasping device
 本発明の実施形態は、道路状況把握システム、及び道路状況把握装置に関する。 Embodiments of the present invention relate to a road condition grasping system and a road condition grasping apparatus.
 従来、高度交通システム(Intelligent Transport Systems:ITS)では、渋滞や混雑などの道路状況の把握が行われている。この道路状況の把握には、路側に設置したカメラなどの路側装置の検出結果を用いる方法がある。また、車両にGPS(Global Positioning System)装置を搭載し、GPS装置から得られる位置情報と、車両の速度計から得られる速度情報とを用いる方法がある。 Conventionally, in the Intelligent Transport Systems (ITS), road conditions such as traffic congestion and congestion have been grasped. For grasping the road condition, there is a method of using a detection result of a roadside device such as a camera installed on the roadside. In addition, there is a method in which a GPS (Global Positioning System) device is mounted on a vehicle and position information obtained from the GPS device and speed information obtained from a vehicle speedometer are used.
特開平8-106593号公報JP-A-8-106593
 しかしながら、上述した従来技術では、路側装置を設置した地点の道路状況が把握できるだけであり、数多くの地点の道路状況を把握するための設置コストが高かった。また、ある車線を走行する車両の速度と位置だけでは、車両が過密な状態であるか否かなどの、より正確な道路状況を把握することは困難であった。 However, with the above-described conventional technology, it is only possible to grasp the road conditions at the point where the roadside device is installed, and the installation cost for grasping the road conditions at many points is high. In addition, it is difficult to grasp a more accurate road condition such as whether the vehicle is overcrowded only by the speed and position of the vehicle traveling in a certain lane.
 実施形態の道路状況把握システムは、車両に搭載される車載装置と、当該車載装置から送信される情報を処理する情報処理装置とを備えるシステムである。車載装置は、車両の位置を検出する位置検出部と、車両の周囲を撮像する撮像部と、撮像部により撮像された画像をもとに、他の車両との車間距離を算出する車間距離算出部と、算出された車間距離と、検出された車両の位置とに基づいて、当該位置を走行する車両の密度を算出する車両密度算出部と、検出された車両の位置と、算出された車両の密度とを含む道路情報を前記情報処理装置へ送信する送信部と、を備える。情報処理装置は、送信された道路情報をもとに、車両が走行した経路における道路情報を集計して経路の混雑具合を示す道路状況を算出する道路状況算出部を備える。 The road condition grasping system according to the embodiment is a system including an in-vehicle device mounted on a vehicle and an information processing device that processes information transmitted from the in-vehicle device. The in-vehicle device is a position detection unit that detects the position of the vehicle, an imaging unit that captures the surroundings of the vehicle, and an inter-vehicle distance calculation that calculates an inter-vehicle distance from another vehicle based on an image captured by the imaging unit. A vehicle density calculation unit that calculates a density of a vehicle that travels at the position based on the calculated unit, the calculated inter-vehicle distance, and the detected vehicle position, the detected vehicle position, and the calculated vehicle A transmission unit that transmits road information including the density of the information to the information processing apparatus. The information processing apparatus includes a road condition calculation unit that calculates road conditions indicating the degree of congestion of the route by aggregating road information on a route traveled by the vehicle based on the transmitted road information.
 また、実施形態の道路状況把握装置は、車両の周囲を撮像する撮像部と、車両の位置を検出する位置検出部と、撮像部により撮像された画像をもとに、他の車両との車間距離を算出する車間距離算出部と、算出された車間距離と、検出された車両の位置とに基づいて、当該位置を走行する車両の密度を算出する車両密度算出部と、検出された車両の位置に基づいた車両が走行した経路における、算出された車両の密度を集計して、経路の混雑具合を示す道路状況を算出する道路状況算出部と、を備える。 The road condition grasping device according to the embodiment includes an imaging unit that captures an image of the surroundings of the vehicle, a position detection unit that detects the position of the vehicle, and an inter-vehicle distance between other vehicles based on an image captured by the imaging unit. An inter-vehicle distance calculating unit that calculates a distance; a vehicle density calculating unit that calculates a density of a vehicle that travels at the position based on the calculated inter-vehicle distance and the detected position of the vehicle; and A road condition calculation unit that aggregates the calculated density of the vehicle on the route traveled by the vehicle based on the position, and calculates a road condition indicating the degree of congestion of the route.
図1は、第1の実施形態にかかる道路状況把握システムの概要を示す概念図である。FIG. 1 is a conceptual diagram showing an outline of a road condition grasping system according to the first embodiment. 図2は、第1の実施形態にかかる道路状況把握システムのハードウエア構成の一例を示すブロック図である。FIG. 2 is a block diagram illustrating an example of a hardware configuration of the road condition grasping system according to the first embodiment. 図3は、第1の実施形態にかかる道路状況把握システムの機能構成の一例を示すブロック図である。FIG. 3 is a block diagram illustrating an example of a functional configuration of the road condition grasping system according to the first embodiment. 図4は、第1の実施形態にかかる道路状況把握システムの処理の流れを説明する概念図である。FIG. 4 is a conceptual diagram illustrating a processing flow of the road condition grasping system according to the first embodiment. 図5は、第1の実施形態にかかる道路状況把握システムにおける、車間距離算出部の詳細を例示するブロック図である。FIG. 5 is a block diagram illustrating details of an inter-vehicle distance calculation unit in the road condition grasping system according to the first embodiment. 図6は、第1の実施形態にかかる道路状況把握システムにおける、車間距離算出部の処理の流れを説明する概念図である。FIG. 6 is a conceptual diagram illustrating the flow of processing of the inter-vehicle distance calculation unit in the road condition grasping system according to the first embodiment. 図7は、第1の実施形態にかかる道路状況把握システムにおける、視差情報による距離をもとにした先行車両との車間距離の算出を例示する概念図である。FIG. 7 is a conceptual diagram illustrating the calculation of the inter-vehicle distance from the preceding vehicle based on the distance based on the disparity information in the road condition grasping system according to the first embodiment. 図8は、第1の実施形態にかかる道路状況把握システムにおける、視差情報による距離をもとにした先行車両との車間距離の算出を例示する概念図である。FIG. 8 is a conceptual diagram illustrating the calculation of the inter-vehicle distance from the preceding vehicle based on the distance based on the parallax information in the road condition grasping system according to the first embodiment. 図9は、第1の実施形態の変形例1にかかる道路状況把握システムの機能構成の一例を示すブロック図である。FIG. 9 is a block diagram illustrating an example of a functional configuration of the road condition grasping system according to the first modification of the first embodiment. 図10は、第1の実施形態の変形例2にかかる道路状況把握システムの機能構成の一例を示すブロック図である。FIG. 10 is a block diagram illustrating an example of a functional configuration of the road condition grasping system according to the second modification of the first embodiment. 図11は、第1の実施形態の変形例2にかかる道路状況把握システムの処理の流れを説明する概念図である。FIG. 11 is a conceptual diagram illustrating a processing flow of the road condition grasping system according to the second modification of the first embodiment. 図12は、第1の実施形態の変形例2にかかる道路状況把握システムにおける、車線ごとの車間距離の算出を例示する概念図である。FIG. 12 is a conceptual diagram illustrating the calculation of the inter-vehicle distance for each lane in the road condition grasping system according to the second modification of the first embodiment. 図13は、第1の実施形態の変形例3にかかる道路状況把握システムの機能構成の一例を示すブロック図である。FIG. 13 is a block diagram illustrating an example of a functional configuration of the road condition grasping system according to the third modification of the first embodiment. 図14は、第1の実施形態の変形例3にかかる道路状況把握システムの処理の流れを説明する概念図である。FIG. 14 is a conceptual diagram illustrating the flow of processing of the road condition grasping system according to the third modification of the first embodiment. 図15は、第2の実施形態にかかる道路状況把握システムの概要を示す概念図である。FIG. 15 is a conceptual diagram showing an outline of a road condition grasping system according to the second embodiment. 図16は、第2の実施形態にかかる道路状況把握システムの機能構成の一例を示すブロック図である。FIG. 16 is a block diagram illustrating an example of a functional configuration of the road condition grasping system according to the second embodiment. 図17は、第2の実施形態にかかる道路状況把握システムの処理の流れを説明する概念図である。FIG. 17 is a conceptual diagram illustrating a processing flow of the road condition grasping system according to the second embodiment. 図18は、第2の実施形態にかかる道路状況把握システムにおける、撮像画像から検出された車両の位置をもとにした車間距離の算出を例示する概念図である。FIG. 18 is a conceptual diagram illustrating the calculation of the inter-vehicle distance based on the position of the vehicle detected from the captured image in the road condition grasping system according to the second embodiment.
 以下、添付図面を参照して実施形態にかかる道路状況把握システム、及び道路状況把握装置を詳細に説明する。なお、以下で説明する実施形態及びその変形例において、同様の構成要素には共通の符号を付与するとともに、重複する説明を省略する。 Hereinafter, a road situation grasping system and a road situation grasping apparatus according to the embodiment will be described in detail with reference to the accompanying drawings. Note that, in the embodiment described below and its modifications, common constituent elements are given common reference numerals, and redundant description is omitted.
(第1の実施形態)
 図1は、第1の実施形態にかかる道路状況把握システム1の概要を示す概念図である。図1に示すように、道路状況把握システム1は、車両V1に搭載される車載端末20と、車載端末20から送信される道路情報を処理する管理装置10とを備える構成である。
(First embodiment)
FIG. 1 is a conceptual diagram showing an outline of a road condition grasping system 1 according to the first embodiment. As shown in FIG. 1, the road condition grasping system 1 is configured to include an in-vehicle terminal 20 mounted on a vehicle V <b> 1 and a management apparatus 10 that processes road information transmitted from the in-vehicle terminal 20.
 車両V1には、ステレオカメラ21と、GPS装置22とを有する車載端末20が設けられている。ステレオカメラ21は、車両V1の周囲を異なる複数の方向から撮像する複数のデジタルカメラであり、撮像した画像データを車載端末20へ出力する。本実施形態では、左右1対のステレオカメラ21が車両V1の前方上部に設置されているものとする。したがって、車載端末20は、ステレオカメラ21によって車両V1の進行方向に沿った前方を左右から撮像した画像(ステレオ画像)を得ることができる。なお、ステレオカメラ21の設置位置、設置数については、本実施形態の限りではない。例えば、ステレオカメラ21の設置位置を車両V1の後方上部としてもよい。ステレオカメラ21の設置位置が車両V1の後方上部である場合は、車載端末20は、車両V1の進行方向に沿った後方のステレオ画像を得ることができる。 The vehicle V1 is provided with an in-vehicle terminal 20 having a stereo camera 21 and a GPS device 22. The stereo camera 21 is a plurality of digital cameras that capture images of the periphery of the vehicle V <b> 1 from a plurality of different directions, and outputs the captured image data to the in-vehicle terminal 20. In the present embodiment, it is assumed that a pair of left and right stereo cameras 21 are installed in the upper front part of the vehicle V1. Therefore, the in-vehicle terminal 20 can obtain an image (stereo image) obtained by imaging the front along the traveling direction of the vehicle V1 from the left and right by the stereo camera 21. Note that the installation position and the number of installations of the stereo camera 21 are not limited to the present embodiment. For example, the installation position of the stereo camera 21 may be the rear upper part of the vehicle V1. When the installation position of the stereo camera 21 is the rear upper part of the vehicle V1, the in-vehicle terminal 20 can obtain a rear stereo image along the traveling direction of the vehicle V1.
 車載端末20は、ステレオカメラ21によるステレオ画像から車両V1の周囲にあり、車両V1の進行方向に沿った方向、すなわち車両V1が走行する道路上にある車両V2と、車両V1との車間距離を算出する。そして、車載端末20は、算出された車間距離をもとに、道路における車両(V1、V2、…)の密度を算出し、その車両の密度と、GPS装置22により検出される車両V1の現在位置とを含む道路情報を管理装置10へ送信する。 The in-vehicle terminal 20 is the distance between the vehicle V1 and the vehicle V1 that is around the vehicle V1 from the stereo image obtained by the stereo camera 21 and along the traveling direction of the vehicle V1, that is, the vehicle V2 on the road on which the vehicle V1 travels. calculate. The in-vehicle terminal 20 calculates the density of the vehicles (V1, V2,...) On the road based on the calculated inter-vehicle distance, and the density of the vehicle and the current vehicle V1 detected by the GPS device 22 are calculated. Road information including the position is transmitted to the management device 10.
 なお、車載端末20を搭載する車両V1は、決まった路線を定期的に運行する路線バスの他、タクシー、集配車、一般の乗用車などの何れの車種であってよい。本実施形態では、車載端末20は、路線バスに搭載されているものとする。車載端末20を路線バスに搭載する場合は、路線バスがタクシーや一般の乗用車などと比べて車高が高く、そのためステレオカメラ21をより高い位置に設置できることから、車載端末20がステレオカメラ21によるステレオ画像から車両V1の周囲を把握する上で有利である。また、この場合は、決まった路線に沿った道路情報を定期的に収集できる。また、この場合は、運行指令所等と通信を行う業務用無線を介した道路情報の収集を行うことが可能となり、車載端末20と管理装置10とを結ぶ通信インフラを新たに用意する必要がない。 Note that the vehicle V1 on which the in-vehicle terminal 20 is mounted may be any type of vehicle such as a taxi, a collection and delivery vehicle, and a general passenger car, in addition to a route bus that regularly operates on a predetermined route. In the present embodiment, it is assumed that the in-vehicle terminal 20 is mounted on a route bus. When the in-vehicle terminal 20 is mounted on a route bus, the route bus has a higher vehicle height than a taxi or a general passenger car, so that the stereo camera 21 can be installed at a higher position. This is advantageous in understanding the surroundings of the vehicle V1 from the stereo image. In this case, road information along a predetermined route can be collected periodically. Moreover, in this case, it becomes possible to collect road information via a commercial radio that communicates with the operation command center, and it is necessary to newly prepare a communication infrastructure that connects the in-vehicle terminal 20 and the management device 10. Absent.
 管理装置10は、PC(Personal Computer)などであり、車載端末20から送信された道路情報を集計して、管理装置10が移動した経路の混雑具合を示す道路状況を算出する。 The management device 10 is a PC (Personal Computer) or the like, and aggregates road information transmitted from the in-vehicle terminal 20 to calculate a road condition indicating the degree of congestion of the route traveled by the management device 10.
 ここでいう道路状況とは、道路における車両の混み具合であり、路面状態(雨濡れ、積雪、凍結等)などの道路の態様は含まないものとする。また、道路情報に含まれる車両の密度は、道路における混雑具合に相当する。すなわち、車両の密度が高ければ混雑していることを示し、車両の密度が低ければ空いていることを示している。 Here, the road condition is the degree of crowded vehicles on the road, and does not include road conditions such as road surface conditions (rain wetness, snow accumulation, freezing, etc.). The density of vehicles included in the road information corresponds to the degree of congestion on the road. That is, if the density of the vehicle is high, it is congested, and if the density of the vehicle is low, it is empty.
 管理装置10では、車両V1の現在位置とともに逐次送られてくる車両の密度を、車両V1の位置情報をもとに車両V1が走行した経路に沿って集計していくことで、その経路における道路状況を算出する。なお、管理装置10が算出する道路状況は、車両の密度に対応した混雑具合を数値化したものであってもよいし、車両の密度が示す混雑具合を所定の閾値で区切った混雑の段階(例えば「渋滞」、「混雑」、「通常」等)であってもよい。 The management device 10 counts the density of vehicles that are sequentially sent together with the current position of the vehicle V1 along the route traveled by the vehicle V1 based on the position information of the vehicle V1, so that the roads on the route Calculate the situation. The road condition calculated by the management apparatus 10 may be a numerical value of the degree of congestion corresponding to the density of the vehicle, or a congestion stage (the congestion level indicated by the density of the vehicle is divided by a predetermined threshold) ( For example, “congestion”, “congestion”, “normal”, etc.) may be used.
 管理装置10は、算出した道路状況を、渋滞の発生場所などを示す地図として出力する。具体的には、管理装置10は、道路や建物の位置が記述された地図情報M1に、車載端末20を搭載した車両V1が走行した経路に沿って算出した道路状況G1、G2、G3を重畳した地図をディスプレイに表示して管理装置10を操作するユーザ(オペレータ等)に通知する。この地図上に表示する道路状況G1、G2、G3は、オペレータが混雑具合を認識しやすいように、混雑具合に応じて表示態様(道路に重畳する線の線種、色、太さ等)を変えてもよい。例えば、渋滞の発生場所を点滅表示、赤などの強調色表示、太線表示などとすることで、オペレータは渋滞の発生場所を的確に把握できる。 The management device 10 outputs the calculated road condition as a map indicating the location where the traffic jam occurs. Specifically, the management apparatus 10 superimposes road conditions G1, G2, and G3 calculated along the route traveled by the vehicle V1 equipped with the in-vehicle terminal 20 on the map information M1 in which the position of the road or the building is described. The displayed map is displayed on the display to notify a user (operator or the like) who operates the management apparatus 10. The road conditions G1, G2, and G3 displayed on the map are displayed in accordance with the congestion state (line type, color, thickness, etc. of lines superimposed on the road) so that the operator can easily recognize the congestion state. You may change it. For example, the operator can accurately grasp the location of occurrence of traffic jams by displaying the location of traffic jams in blinking display, highlighted colors such as red, and bold lines.
 図2は、第1の実施形態にかかる道路状況把握システム1のハードウエア構成の一例を示すブロック図である。図2に示すように、管理装置10は、表示部11、入力部12、通信部13、制御部14を備える。 FIG. 2 is a block diagram illustrating an example of a hardware configuration of the road condition grasping system 1 according to the first embodiment. As illustrated in FIG. 2, the management device 10 includes a display unit 11, an input unit 12, a communication unit 13, and a control unit 14.
 表示部11は、LCD(Liquid Crystal Display)等であり、制御部14の制御のもと算出した道路状況G1、G2、G3などの表示を行う。入力部12は、キーボードやポインティングデバイスなどの入力装置であり、オペレータの操作入力を受け付けて制御部14へ出力する。 The display unit 11 is an LCD (Liquid Crystal Display) or the like, and displays the road conditions G1, G2, G3 and the like calculated under the control of the control unit 14. The input unit 12 is an input device such as a keyboard or a pointing device, and receives an operation input from an operator and outputs it to the control unit 14.
 通信部13は、制御部14の制御のもと、通信ネットワークNを介して車載端末20と通信する通信装置である。通信ネットワークNは、車載端末20と通信を行うための通信インフラであり、路線バス等で用いられる業務用無線や移動体通信網などであってよい。 The communication unit 13 is a communication device that communicates with the in-vehicle terminal 20 via the communication network N under the control of the control unit 14. The communication network N is a communication infrastructure for communicating with the in-vehicle terminal 20, and may be a commercial radio or a mobile communication network used on a route bus or the like.
 制御部14は、CPU(Central Processing Unit)、ROM(Read Only Memory)、RAM(Random Access Memory)などを備え(いずれも図示しない)、管理装置10の動作を制御する。具体的には、CPUがROM等に記憶されたプログラムをRAMに展開して順次実行することで、管理装置10における各部の動作が制御される。 The control unit 14 includes a CPU (Central Processing Unit), a ROM (Read Only Memory), a RAM (Random Access Memory), and the like (all not shown), and controls the operation of the management device 10. Specifically, the operation of each unit in the management apparatus 10 is controlled by the CPU developing programs stored in the ROM or the like on the RAM and sequentially executing the programs.
 車載端末20は、ステレオカメラ21、GPS装置22の他、制御部23、通信部24、入力部25、表示部26を備える。制御部23は、CPU、ROM、RAMなどを備え(いずれも図示しない)、車載端末20の動作を制御する。具体的には、CPUがROM等に記憶されたプログラムをRAMに展開して順次実行することで、車載端末20における各部の動作が制御される。 The in-vehicle terminal 20 includes a control unit 23, a communication unit 24, an input unit 25, and a display unit 26 in addition to the stereo camera 21 and the GPS device 22. The control unit 23 includes a CPU, a ROM, a RAM, and the like (all not shown) and controls the operation of the in-vehicle terminal 20. Specifically, the CPU stores the programs stored in the ROM or the like on the RAM and sequentially executes them, thereby controlling the operation of each unit in the in-vehicle terminal 20.
 通信部24は、制御部23の制御のもと、通信ネットワークNを介して管理装置10と通信する通信装置である。例えば、通信部24は、制御部23の制御のもと、ステレオカメラ21によるステレオ画像から算出された車両の密度と、GPS装置22による現在位置とを含む道路情報を管理装置10へ送信する。 The communication unit 24 is a communication device that communicates with the management device 10 via the communication network N under the control of the control unit 23. For example, the communication unit 24 transmits road information including the vehicle density calculated from the stereo image by the stereo camera 21 and the current position by the GPS device 22 to the management device 10 under the control of the control unit 23.
 入力部25は、車載端末20を操作するユーザからの操作入力を受け付ける操作キー等であり、操作キーの押下による操作信号を制御部23へ出力する。表示部26は、LED(Light Emitting Diode)の表示灯やLCD等であり、制御部14の制御のもとで各種表示を行う。 The input unit 25 is an operation key or the like that receives an operation input from a user who operates the in-vehicle terminal 20, and outputs an operation signal when the operation key is pressed to the control unit 23. The display unit 26 is an LED (Light Emitting Diode) indicator lamp, LCD, or the like, and performs various displays under the control of the control unit 14.
 次に、管理装置10の制御部14、車載端末20の制御部23により実現される道路状況把握システム1の機能構成と、その処理について説明する。図3は、第1の実施形態にかかる道路状況把握システム1の機能構成の一例を示すブロック図である。図4は、第1の実施形態にかかる道路状況把握システム1の処理の流れを説明する概念図である。 Next, the functional configuration of the road condition grasping system 1 realized by the control unit 14 of the management apparatus 10 and the control unit 23 of the in-vehicle terminal 20 and its processing will be described. FIG. 3 is a block diagram illustrating an example of a functional configuration of the road condition grasping system 1 according to the first embodiment. FIG. 4 is a conceptual diagram illustrating a processing flow of the road condition grasping system 1 according to the first embodiment.
 図3に示すように、道路状況把握システム1は、道路状況の算出にかかる機能構成として、ステレオ撮像部101、距離算出部102、車間距離算出部103、車両密度算出部104、車両位置情報取得部105、道路情報算出部106、道路情報集積部107を備える。ここで、ステレオ撮像部101、距離算出部102、車間距離算出部103、車両密度算出部104、車両位置情報取得部105、道路情報算出部106は、管理装置10の制御部14がプログラムを実行することで実現される機能構成である。また、道路情報集積部107は、車載端末20の制御部23がプログラムを実行することで実現される機能構成である。 As illustrated in FIG. 3, the road situation grasping system 1 includes a stereo imaging unit 101, a distance calculation unit 102, an inter-vehicle distance calculation unit 103, a vehicle density calculation unit 104, and vehicle position information acquisition as functional configurations related to the calculation of the road situation. Unit 105, road information calculation unit 106, and road information accumulation unit 107. Here, in the stereo imaging unit 101, the distance calculation unit 102, the inter-vehicle distance calculation unit 103, the vehicle density calculation unit 104, the vehicle position information acquisition unit 105, and the road information calculation unit 106, the control unit 14 of the management device 10 executes the program. This is a functional configuration realized by doing so. The road information accumulation unit 107 has a functional configuration that is realized when the control unit 23 of the in-vehicle terminal 20 executes a program.
 ステレオ撮像部101は、ステレオカメラ21における左右のデジタルカメラで同時に撮像して、左右1対のステレオ画像を取得するステレオ画像撮像処理(図4:S101)を行う。 The stereo image capturing unit 101 performs a stereo image capturing process (FIG. 4: S101) in which the left and right digital cameras in the stereo camera 21 capture images simultaneously to acquire a pair of left and right stereo images.
 距離算出部102は、ステレオ画像撮像処理によって撮像されたステレオ画像をもとに、そのステレオ画像に映り込む物体と車両V1との距離を算出する距離算出処理を行う(図4:S102)。 The distance calculation unit 102 performs a distance calculation process for calculating the distance between the object reflected in the stereo image and the vehicle V1 based on the stereo image captured by the stereo image capturing process (FIG. 4: S102).
 ステレオ画像には、右のデジタルカメラで撮像した画像と、左のデジタルカメラで撮像した画像とにおいて、映り込む物体の距離に応じた視差が生じている。距離算出部102では、上述した左右の画像を比較して類似点の位置ずれ(視差)を算出するステレオ処理(ステレオマッチング処理)を行う。このステレオ処理により、車両V1との距離の近い手前側から距離の遠い奥側に向かって視差量が異なる視差情報I1が得られる。距離算出部102は、得られた視差情報I1をもとに、三角測量によってステレオ画像に映り込む物体の距離を算出する。 The stereo image has a parallax corresponding to the distance of the object to be reflected between the image captured by the right digital camera and the image captured by the left digital camera. The distance calculation unit 102 performs stereo processing (stereo matching processing) for calculating the positional shift (parallax) of similar points by comparing the left and right images described above. By this stereo processing, parallax information I1 having different parallax amounts from the near side closer to the vehicle V1 toward the far side far away is obtained. The distance calculation unit 102 calculates the distance of the object reflected in the stereo image by triangulation based on the obtained parallax information I1.
 車間距離算出部103は、上記距離算出処理によって得られた距離を示す距離情報をもとに、車両V1の進行方向に沿った前方にある車両V2との車間距離D1を算出する車間距離算出処理を行う(図4:S103)。 The inter-vehicle distance calculation unit 103 calculates an inter-vehicle distance D1 with the vehicle V2 ahead along the traveling direction of the vehicle V1, based on the distance information indicating the distance obtained by the distance calculation process. (FIG. 4: S103).
 ここで、車間距離算出処理の詳細を、図5~図7を参照して説明する。図5は、車間距離算出部103の詳細を例示するブロック図である。図6は、車間距離算出部103の処理の流れを説明する概念図である。図7、8は、視差情報I1による距離をもとにした先行車両との車間距離の算出を例示する概念図である。 Here, the details of the inter-vehicle distance calculation process will be described with reference to FIGS. FIG. 5 is a block diagram illustrating details of the inter-vehicle distance calculation unit 103. FIG. 6 is a conceptual diagram illustrating the processing flow of the inter-vehicle distance calculation unit 103. 7 and 8 are conceptual diagrams illustrating the calculation of the inter-vehicle distance from the preceding vehicle based on the distance based on the parallax information I1.
 図5に示すように、車間距離算出部103は、車間距離算出処理を行う機能構成として、対応路面位置算出部1031、対応路面位置集計部1032、非路面判定部1033を備え、上記距離算出処理によって得られた距離を示す距離情報をもとに、先行車両との車間距離を示す車間距離情報を出力する。 As shown in FIG. 5, the inter-vehicle distance calculation unit 103 includes a corresponding road surface position calculation unit 1031, a corresponding road surface position totaling unit 1032, and a non-road surface determination unit 1033 as a functional configuration for performing the inter-vehicle distance calculation process. The inter-vehicle distance information indicating the inter-vehicle distance from the preceding vehicle is output based on the distance information indicating the distance obtained by the above.
 対応路面位置算出部1031は、ステレオカメラ21で撮像したステレオ画像において、手前から奥に向かって段階的な距離を示す路面と対応する位置の算出を行う対応路面位置算出処理(図6:S1031)を行う。 The corresponding road surface position calculation unit 1031 calculates a corresponding road surface position calculation process for calculating a position corresponding to a road surface indicating a stepwise distance from the front to the back in the stereo image captured by the stereo camera 21 (FIG. 6: S1031). I do.
 具体的には、対応路面位置算出部1031は、図7に示すような先行車両なしの撮像条件で、ステレオカメラ21により路面を撮像して得られる距離情報(算出結果)であり、ステレオ画像に映り込む路面と、その路面及び車両V1間の距離との対応関係を示す対応路面位置情報をメモリなどに予め保持している。この対応路面位置情報は、車両V1からある距離に離れた位置にある路面が、ステレオ画像上のどの位置に対応しているかという対応関係を示している。 Specifically, the corresponding road surface position calculation unit 1031 is distance information (calculation result) obtained by imaging the road surface with the stereo camera 21 under the imaging conditions without a preceding vehicle as shown in FIG. Corresponding road surface position information indicating the correspondence relationship between the reflected road surface and the distance between the road surface and the vehicle V1 is held in advance in a memory or the like. The corresponding road surface position information indicates a correspondence relationship with which position on the stereo image the road surface located at a certain distance from the vehicle V1 corresponds.
 そして、対応路面位置算出部1031は、距離算出処理によって得られた距離情報を受け取ると、上記対応路面位置情報をもとに、距離情報に対応する路面位置を算出する。具体的には、図7に示すような先行車両ありの撮像条件の場合、距離4mの物体の領域R1は、その下方に存在するような距離4mの位置P1に対応することが算出される。 Then, when the corresponding road surface position calculation unit 1031 receives the distance information obtained by the distance calculation process, the corresponding road surface position calculation unit 1031 calculates a road surface position corresponding to the distance information based on the corresponding road surface position information. Specifically, in the case of an imaging condition with a preceding vehicle as shown in FIG. 7, it is calculated that the region R1 of the object with a distance of 4 m corresponds to the position P1 with a distance of 4 m that exists below the object region.
 対応路面位置集計部1032は、上記路面位置に対応する領域の合計数を集計する対応路面位置集計処理(図6:S1032)を行う。ここで、路面位置に対応する領域の合計数とは、例えば位置P1に対応した領域R1の画素数(図7における「4」のカウント数)であり、領域R1の面積に対応している。具体的には、図7に示すような先行車両ありの撮像条件の場合、距離4mの位置P1に対応する領域R1の画素数を集計してその面積を求めることとなる。 The corresponding road surface position totaling unit 1032 performs a corresponding road surface position totaling process (FIG. 6: S1032) for totaling the total number of areas corresponding to the road surface position. Here, the total number of regions corresponding to the road surface position is, for example, the number of pixels in the region R1 corresponding to the position P1 (the count number “4” in FIG. 7), and corresponds to the area of the region R1. Specifically, in the case of an imaging condition with a preceding vehicle as shown in FIG. 7, the number of pixels in the region R1 corresponding to the position P1 at a distance of 4 m is totaled to obtain the area.
 非路面判定部1033は、対応路面位置集計部1032により集計された合計数をもとに、路面の各位置において、その上方に非路面の領域が存在するか否かを判定する非路面判定処理(図6:S1033)を行う。 The non-road surface determination unit 1033 determines whether or not there is a non-road surface area above each position on the road surface based on the total number counted by the corresponding road surface position totaling unit 1032. (FIG. 6: S1033) is performed.
 図7に示すように、距離4mの位置に先行車両が存在すれば、距離4mとなる非路面の領域R1が広く存在するため、位置P1と対応する領域R1の合計数(距離4mの集計)が多くなる。一方、先行車両が存在しない段階的な距離を示す路面では、各段階の距離が個別に集計されるだけなので、距離4mの位置P1と対応する領域R1の合計数がなく、距離4mに集計が集中することはない。 As shown in FIG. 7, if there is a preceding vehicle at a distance of 4 m, a non-road surface area R1 having a distance of 4 m exists widely, so the total number of areas R1 corresponding to the position P1 (aggregation of distance of 4 m) Will increase. On the other hand, on the road surface indicating the stepped distance where there is no preceding vehicle, the distance of each step is only counted individually, so there is no total number of the region R1 corresponding to the position P1 of the distance 4m, and the distance 4m is counted. Don't concentrate.
 したがって、非路面判定部1033は、各距離の合計数が予め決められた閾値よりも大きければ、すなわち位置P1と対応する非路面の領域R1の面積が広ければ、非路面の領域R1に先行車両が存在するものと判定する。車間距離算出部103は、非路面判定部1033により先行車両が存在すると判定された領域R1を集計した位置P1の距離値(図7の例では「4」)を車間距離情報として出力する。 Therefore, if the total number of each distance is larger than a predetermined threshold value, that is, if the area of the non-road surface region R1 corresponding to the position P1 is large, the non-road surface determination unit 1033 leads the preceding vehicle to the non-road surface region R1. Is determined to exist. The inter-vehicle distance calculation unit 103 outputs the distance value (“4” in the example of FIG. 7) of the position P1 obtained by adding up the regions R1 determined by the non-road surface determination unit 1033 as having the preceding vehicle as inter-vehicle distance information.
 上述した車両の判定にかかる閾値は、車両が存在しない路面のみを撮像して得られる距離情報(図7の先行車両なしの算出結果)を集計した値、すなわち対応路面位置情報の集計数を用いてよい。もしくは、ノイズによる誤り集計が発生することを考慮して、上述した集計数+ε(εはノイズに相当する小値)を閾値としてもよい。この場合のεは、距離が遠くなるほど車両に対応した領域が小さくなることから、距離の遠さに応じて小さくしてもよい。 As the threshold for determining the vehicle described above, a value obtained by totaling distance information (calculation result without preceding vehicle in FIG. 7) obtained by imaging only a road surface where no vehicle exists, that is, the total number of corresponding road surface position information is used. It's okay. Alternatively, in consideration of the occurrence of error totalization due to noise, the above-mentioned total count + ε (ε is a small value corresponding to noise) may be used as a threshold value. In this case, since the region corresponding to the vehicle becomes smaller as the distance increases, ε may be reduced according to the distance.
 また、図8に示すように、先行車両の隠れがない場合は、車間距離算出部103は、車両V2による非路面の領域R1に対応した位置P1の距離値「6」を車間距離情報として出力する。これに対し、先行車両同士で隠れがある場合は、隠される側の距離が遠い先行車両の距離情報が得られない場合がある。 As shown in FIG. 8, when there is no hiding of the preceding vehicle, the inter-vehicle distance calculation unit 103 outputs the distance value “6” of the position P1 corresponding to the non-road surface area R1 by the vehicle V2 as inter-vehicle distance information. To do. On the other hand, when there is a hiding between the preceding vehicles, there may be a case where the distance information of the preceding vehicle having a long hidden distance is not obtained.
 図8の先行車両同士で隠れがある場合の例では、撮像領域Rにおいて手前に写り込んだ車両V2aについては、領域R1の集計によって存在ありと判定され、距離値を「2」とした車間距離情報が得られる。一方、撮像領域Rにおいて車両V2aに一部が隠される形で写り込んだ車両V2bについては、領域R2の集計だけでは存在ありと判定されない場合がある。このため、車両V2bの車間距離情報が得られない場合が生じる。 In the example where there is a hiding between the preceding vehicles in FIG. 8, the vehicle V2a reflected in the foreground in the imaging region R is determined to be present by counting the region R1, and the inter-vehicle distance with the distance value set to “2” Information is obtained. On the other hand, in the imaging region R, the vehicle V2b that is partially hidden in the vehicle V2a may not be determined to exist only by counting the region R2. For this reason, the inter-vehicle distance information of the vehicle V2b may not be obtained.
 対応路面位置集計部1032では、距離の異なる2つの非路面の領域R1、R2が隣接する場合、距離が近い非路面の領域R1にある物体で非路面の領域R1にある物体が隠されていると推定されることから、距離が近い非路面の領域R1の一部の領域R2aを、距離が遠い非路面の領域R2として距離値を置き換える。 In the corresponding road surface position totaling unit 1032, when two non-road surface regions R 1 and R 2 having different distances are adjacent to each other, an object in the non-road surface region R 1 with a close distance is hidden. Therefore, a part of the region R2a of the non-road surface region R1 with a short distance is replaced with a non-road surface region R2 with a long distance to replace the distance value.
 具体的には、領域R2の距離値「6」の下に、路面であった場合に本来得られる距離値「8」とは異なる距離値「2」の領域R1がある場合には、対応路面位置集計部1032は、領域R2と隣接する領域R1の一部について、距離値「2」を距離値「6」と置き換えた領域R2aとする。この領域R2aの大きさは、距離値の大小に応じたものであってよく、例えば距離値が大きい、すなわち距離が遠い場合には領域R2aの大きさを小さくする。また、距離「6」が得られている領域R2に基づき、路面であった場合、すなわち車両V2aが存在しなかった場合に距離「6」が得られる領域を推定し、この推定した領域を領域R2aとしてもよい。そして、対応路面位置集計部1032は、位置P2と対応する領域R2、R2aの合計数を集計する。 Specifically, when there is an area R1 having a distance value “2” different from the distance value “8” originally obtained when the road surface is below the distance value “6” of the area R2, the corresponding road surface The position totaling unit 1032 sets a region R2a in which the distance value “2” is replaced with the distance value “6” for a part of the region R1 adjacent to the region R2. The size of the region R2a may be in accordance with the magnitude of the distance value. For example, when the distance value is large, that is, when the distance is far, the size of the region R2a is reduced. Further, based on the region R2 where the distance “6” is obtained, the region where the distance “6” is obtained when the road surface is present, that is, when the vehicle V2a does not exist, is estimated. R2a may be used. Then, the corresponding road surface position totaling unit 1032 counts the total number of areas R2 and R2a corresponding to the position P2.
 これにより、車間距離算出部103は、位置P2に車両V2bがあるものとして距離値「6」の車間距離情報を出力できる。車両V2aにより車両V2bの一部が隠されるような場合における車両V2bの検出性を高めることが可能である。 Thereby, the inter-vehicle distance calculation unit 103 can output inter-vehicle distance information of the distance value “6” assuming that the vehicle V2b is at the position P2. It is possible to improve the detectability of the vehicle V2b when a part of the vehicle V2b is hidden by the vehicle V2a.
 図3に戻り、車両密度算出部104は、車間距離算出部103の車間距離算出処理により算出された車間距離をもとに、車両V1の現在位置における車両の密度を算出する車両密度算出処理を行う(図4:S104)。例えば、車両の密度(D)は、車間距離算出処理により車間距離D1が得られていた場合、D=1/(車間距離D1)として算出してよい。 Returning to FIG. 3, the vehicle density calculation unit 104 performs a vehicle density calculation process for calculating the density of the vehicle at the current position of the vehicle V <b> 1 based on the inter-vehicle distance calculated by the inter-vehicle distance calculation process of the inter-vehicle distance calculation unit 103. Perform (FIG. 4: S104). For example, the vehicle density (D) may be calculated as D = 1 / (inter-vehicle distance D1) when the inter-vehicle distance D1 is obtained by the inter-vehicle distance calculation process.
 なお、上述した車両V2aと車両V1の車間距離(D2a)、車両V2bと車両V1の車間距離(D2b)が得られていた場合には、車両間の平均の車間距離を求めた後に車両の密度(D)を求めてもよい。具体的には、(平均の車間距離)=(D2a+(D2b-D2a)/2=D2b/2として算出してよい。 In addition, when the inter-vehicle distance (D2a) between the vehicle V2a and the vehicle V1 and the inter-vehicle distance (D2b) between the vehicle V2b and the vehicle V1 are obtained, the density of the vehicle is obtained after obtaining the average inter-vehicle distance between the vehicles. (D) may be obtained. Specifically, it may be calculated as (average inter-vehicle distance) = (D2a + (D2b−D2a) / 2 = D2b / 2.
 車両位置情報取得部105は、GPS装置22からの出力をもとに、車両V1の現在位置を示す車両位置情報を取得する車両位置情報取得処理を行う(図4:S105)。 The vehicle position information acquisition unit 105 performs a vehicle position information acquisition process for acquiring vehicle position information indicating the current position of the vehicle V1 based on the output from the GPS device 22 (FIG. 4: S105).
 道路情報算出部106は、車両位置情報取得処理で得られた車両位置情報と、車両密度算出処理で得られた車両の密度とをもとに、車両V1のある位置の現在時刻における車両密度として定義される道路情報を作成する道路情報作成処理を行う(図4:S106)。この際に、道路情報算出部106は、異なる時刻間の車両V1の車両位置情報の変化をもとに、車両V1の走行速度を算出し、その走行速度を道路情報に含めてもよい。この道路情報作成処理で得られた道路情報は、制御部23の制御のもと、通信部24により管理装置10へ送信される。 The road information calculation unit 106 uses the vehicle position information obtained by the vehicle position information acquisition process and the vehicle density obtained by the vehicle density calculation process as the vehicle density at the current time at a position of the vehicle V1. Road information creation processing for creating road information to be defined is performed (FIG. 4: S106). At this time, the road information calculation unit 106 may calculate the traveling speed of the vehicle V1 based on the change in the vehicle position information of the vehicle V1 between different times, and include the traveling speed in the road information. The road information obtained by the road information creation process is transmitted to the management device 10 by the communication unit 24 under the control of the control unit 23.
 道路情報集積部107は、車載端末20より送信された道路情報をもとに、車両V1が走行した経路における道路情報を集計し、その経路の混雑具合を示す道路状況を算出する道路情報集積処理を行う(図4:S107)。管理装置10では、道路情報集積処理によって車載端末20を搭載した各車両が走行した経路における道路状況G1、G2、G3を求め、渋滞の発生場所などを示す地図情報M1としてディスプレイに表示してオペレータに通知することで、この情報を、交通管制、渋滞情報の提供、バスの運行管理などの各種サービスに利用できるようになる。 The road information accumulation unit 107 aggregates road information on the route traveled by the vehicle V1 based on the road information transmitted from the in-vehicle terminal 20, and calculates a road information accumulation process that indicates a road condition indicating the degree of congestion of the route. (FIG. 4: S107). The management device 10 obtains road conditions G1, G2, and G3 on a route traveled by each vehicle equipped with the in-vehicle terminal 20 by road information accumulation processing, and displays it on the display as map information M1 indicating a traffic jam location and the like. This information can be used for various services such as traffic control, provision of traffic jam information, and bus operation management.
 以上のように、道路状況把握システム1では、車載端末20のステレオカメラ21により撮像されたステレオ画像をもとに、車両V1の進行方向に沿った車両V2との車間距離を算出し、その車間距離をもとに、GPS装置22により検出された車両V1の位置における車両の密度を算出する。そして、車載端末20は車両V1の位置と、車両の密度とを含む道路情報を管理装置10へ送信し、管理装置10では、車両V1が走行した経路における道路情報を集計して、その経路の混雑具合を示す道路状況を算出する。 As described above, the road condition grasping system 1 calculates the inter-vehicle distance from the vehicle V2 along the traveling direction of the vehicle V1, based on the stereo image captured by the stereo camera 21 of the in-vehicle terminal 20, and Based on the distance, the density of the vehicle at the position of the vehicle V1 detected by the GPS device 22 is calculated. Then, the in-vehicle terminal 20 transmits road information including the position of the vehicle V1 and the density of the vehicle to the management device 10, and the management device 10 aggregates road information on the route on which the vehicle V1 traveled. A road condition indicating the degree of congestion is calculated.
 したがって、道路状況把握システム1では、車両V1が走行する経路に沿って路側装置を設置するなどのコストを抑えることができる。また、道路状況把握システム1では、車線を走行する車両の速度と位置だけで道路状況を把握するのではなく、ステレオ画像による車間距離をもとに車両の密度を求めることから、車両が過密な状態であるか否かなどの、より正確な道路状況を把握することが可能である。 Therefore, in the road condition grasping system 1, it is possible to reduce the cost of installing a roadside device along the route along which the vehicle V1 travels. Further, in the road condition grasping system 1, since the road density is determined based on the inter-vehicle distance based on the stereo image, rather than only grasping the road condition based on the speed and position of the vehicle traveling in the lane, the vehicle is overcrowded. It is possible to grasp a more accurate road condition such as whether or not the vehicle is in a state.
 なお、道路状況把握システム1の管理装置10、車載端末20が備える機能構成は、一例であり、上述したものに限定しない。例えば、車載端末20は、ステレオ撮像部101、車両位置情報取得部105のみを備え、ステレオ撮像部101により撮像されたステレオ画像と、車両位置情報取得部105により取得された車両V1の現在位置とを管理装置10へ通知し、管理装置10側は、距離算出部102、車間距離算出部103、車両密度算出部104、道路情報算出部106、道路情報集積部107を備える構成であってもよい。 In addition, the function structure with which the management apparatus 10 of the road condition grasping system 1 and the in-vehicle terminal 20 are provided is an example, and is not limited to the above-described one. For example, the in-vehicle terminal 20 includes only the stereo imaging unit 101 and the vehicle position information acquisition unit 105, the stereo image captured by the stereo imaging unit 101, and the current position of the vehicle V <b> 1 acquired by the vehicle position information acquisition unit 105. The management device 10 may include a distance calculation unit 102, an inter-vehicle distance calculation unit 103, a vehicle density calculation unit 104, a road information calculation unit 106, and a road information accumulation unit 107. .
 また、車載端末20がステレオ撮像部101、距離算出部102、車間距離算出部103、車両密度算出部104、車両位置情報取得部105、道路情報算出部106、道路情報集積部107の全てを備えてもよい。この場合は、車載端末20により得られた、車両V1が走行する経路についての道路状況の履歴を、HDD(Hard Disk Drive)レコーダーなどの記憶装置(図示しない)に蓄積する。そして、車両V1に搭載されたナビゲーション装置(図示しない)は、所定の地点間の経路を算出する際に、記憶装置に蓄積された道路状況の履歴を参照することで、より混雑の少ない経路を案内できる。 The in-vehicle terminal 20 includes a stereo imaging unit 101, a distance calculation unit 102, an inter-vehicle distance calculation unit 103, a vehicle density calculation unit 104, a vehicle position information acquisition unit 105, a road information calculation unit 106, and a road information accumulation unit 107. May be. In this case, the history of road conditions for the route on which the vehicle V1 travels obtained by the in-vehicle terminal 20 is accumulated in a storage device (not shown) such as a HDD (Hard Disk Drive) recorder. A navigation device (not shown) mounted on the vehicle V1 refers to a history of road conditions stored in the storage device when calculating a route between predetermined points, so that a route with less congestion can be obtained. I can guide you.
(変形例1)
 図9は、変形例1にかかる道路状況把握システム1aの機能構成の一例を示すブロック図である。図9に示すように、変形例1では、管理装置10の制御部14により実現される配車制御部108を更に備えている点が上述した第1の実施形態とは異なる。
(Modification 1)
FIG. 9 is a block diagram illustrating an example of a functional configuration of the road condition grasping system 1a according to the first modification. As shown in FIG. 9, Modification 1 is different from the first embodiment described above in that it further includes a vehicle allocation control unit 108 realized by the control unit 14 of the management device 10.
 配車制御部108は、道路情報集積部107により算出された道路状況を、所定のエリアを走行するバス・タクシー、集配車、乗用車などの車両に配信する配車制御を行う。ここでいう、所定のエリアとは、通信ネットワークNを介して車両V1に配信可能なエリアであればよく、例えば運行指令所が管轄するエリアであってよい。 The vehicle allocation control unit 108 performs vehicle allocation control for distributing the road conditions calculated by the road information accumulation unit 107 to vehicles such as buses / taxis, collection / delivery vehicles, and passenger cars traveling in a predetermined area. The predetermined area here may be an area that can be distributed to the vehicle V1 via the communication network N, and may be, for example, an area managed by the operation command center.
 配車制御部108は、道路情報集積部107により算出された道路状況に基づいて、例えば渋滞が発生しているエリアを示す情報を、通信ネットワークNを介して車両に配信する。したがって、バス・タクシー、集配車、乗用車などの車両側では、配信された情報をもとに、例えばナビゲーション装置が所定の地点間の経路を算出する際に、渋滞が発生しているエリアを回避する経路を選択することで、効率的な走行を実現することができる。 The vehicle allocation control unit 108 distributes, for example, information indicating an area where traffic congestion has occurred to the vehicle via the communication network N based on the road condition calculated by the road information accumulation unit 107. Therefore, on the side of vehicles such as buses / taxis, pick-up / delivery vehicles, and passenger cars, for example, the navigation device avoids areas where traffic congestion occurs when calculating the route between predetermined points based on the distributed information. By selecting a route to be performed, it is possible to realize efficient traveling.
(変形例2)
 図10は、変形例2にかかる道路状況把握システム1bの機能構成の一例を示すブロック図である。図11は、変形例2にかかる道路状況把握システム1bの処理の流れを説明する概念図である。図12は、変形例2にかかる道路状況把握システム1bにおける、車線毎の車間距離の算出を例示する概念図である。
(Modification 2)
FIG. 10 is a block diagram illustrating an example of a functional configuration of the road condition grasping system 1b according to the second modification. FIG. 11 is a conceptual diagram illustrating the processing flow of the road condition grasping system 1b according to the second modification. FIG. 12 is a conceptual diagram illustrating the calculation of the inter-vehicle distance for each lane in the road condition grasping system 1b according to the second modification.
 図10に示すように、変形例2では、車載端末20の制御部23により実現される車線判別部109を更に備えている点が上述した第1の実施形態とは異なる。 As shown in FIG. 10, the second modification is different from the first embodiment described above in that it further includes a lane discrimination unit 109 realized by the control unit 23 of the in-vehicle terminal 20.
 車線判別部109は、ステレオカメラ21により撮像された画像をもとに、画像処理を行って車線を判別する車線判別処理を行う(図11:S109)。具体的には、車線判別部109は、ステレオカメラ21により撮像された画像から車線の区切りを示す白線L1、L2を検出することによって、車線(走行エリア)を判別する。この車線判別処理には、例えば「"Video Based Lane Estimation and Tracking for Driver Assistance:Survey, System, and Evaluation", Joel C. McCall et al., IEEE Transactions on ITS, March 2006」のような公知の手法を用いればよい。 The lane discriminating unit 109 performs lane discrimination processing for discriminating the lane by performing image processing based on the image captured by the stereo camera 21 (FIG. 11: S109). Specifically, the lane discriminating unit 109 discriminates a lane (traveling area) by detecting white lines L1 and L2 indicating lane breaks from the image captured by the stereo camera 21. For this lane discrimination processing, for example, a known method such as “Video Based Lane Estimation and Tracking for Driver Assistance: Survey, System, and Evaluation”, Joel C. McCall et al., IEEE Transactions on ITS, March 2006. May be used.
 車間距離算出部103は、車線判別部109により判別された車線ごとに、車両V1の進行方向に沿った前方にある車両V2との車間距離D1を算出する車間距離算出処理を行う(図4:S103)。具体的には、車両V1が白線L1、L2の間の車線を走行している場合には、同じ車線を走行している車両V2の車間距離D1を算出する(図11参照)。 The inter-vehicle distance calculation unit 103 performs an inter-vehicle distance calculation process for calculating the inter-vehicle distance D1 with the vehicle V2 ahead along the traveling direction of the vehicle V1 for each lane determined by the lane determination unit 109 (FIG. 4: S103). Specifically, when the vehicle V1 is traveling in the lane between the white lines L1 and L2, the inter-vehicle distance D1 of the vehicle V2 traveling in the same lane is calculated (see FIG. 11).
 また、図12に示すように、白線L1の左側車線に車両V21と車両V22とが走行し、白線L2の右側車線に車両V23が走行している場合には、白線L1の左側車線と白線L2の右側車線とで車間距離(下記のDL、DR)を算出する。ここでは、車両V1と、車両V21、V22、V23との車間距離がそれぞれD21、D22、D23であるものとする。 Also, as shown in FIG. 12, when the vehicle V21 and the vehicle V22 are traveling in the left lane of the white line L1, and the vehicle V23 is traveling in the right lane of the white line L2, the left lane and the white line L2 of the white line L1. The inter-vehicle distance (DL, DR below) is calculated from the right lane of the vehicle. Here, it is assumed that the inter-vehicle distances between the vehicle V1 and the vehicles V21, V22, and V23 are D21, D22, and D23, respectively.
 白線L1の左側車線のように、複数台の車両の車間距離が得られた車線の車間距離DLは、DL=D22-D21として算出する。もしくは、車両の長さをCとした場合、DL=D22-D21-Cと算出してもよい。 As in the left lane of the white line L1, the inter-vehicle distance DL of the lane from which the inter-vehicle distance of a plurality of vehicles is obtained is calculated as DL = D22-D21. Alternatively, when the length of the vehicle is C, DL = D22−D21−C may be calculated.
 一方、白線L2の右側車線のように1台の車両の車間距離しか得られていない場合には、車線における真の車間距離を算出できないことから、DR=D23とする。すなわち、近似値として車両V1との車間距離D23を白線L2の右側車線の車間距離とする。 On the other hand, if only the inter-vehicle distance of one vehicle is obtained as in the right lane of the white line L2, the true inter-vehicle distance in the lane cannot be calculated, so DR = D23. That is, the inter-vehicle distance D23 from the vehicle V1 is set as the inter-vehicle distance of the right lane of the white line L2 as an approximate value.
 以上のように、変形例2では、車線ごとの車間距離が得られることから、より精度の高い道路状況を把握することが可能となる。 As described above, in the second modification, since the inter-vehicle distance for each lane is obtained, it becomes possible to grasp the road condition with higher accuracy.
(変形例3)
 図13は、変形例3にかかる道路状況把握システム1cの機能構成の一例を示すブロック図である。図14は、変形例3にかかる道路状況把握システム1cの処理の流れを説明する概念図である。
(Modification 3)
FIG. 13 is a block diagram illustrating an example of a functional configuration of a road condition grasping system 1c according to the third modification. FIG. 14 is a conceptual diagram illustrating the processing flow of the road condition grasping system 1c according to the third modification.
 図13に示すように、変形例3では、車載端末20の制御部23により実現される車両速度算出部110を更に備えている点が上述した変形例2とは異なる。車両V1の走行速度を求めて道路情報に含める構成を前述したが、車両V1とは異なる車線の走行速度については求めることができない。そこで、変形例3では、車両V1が走行する車線とは異なる他の車線の走行速度を算出するための車両速度算出部110を備えている。 As shown in FIG. 13, Modification 3 is different from Modification 2 described above in that it further includes a vehicle speed calculation unit 110 realized by the control unit 23 of the in-vehicle terminal 20. Although the configuration in which the traveling speed of the vehicle V1 is obtained and included in the road information has been described above, the traveling speed of a lane different from the vehicle V1 cannot be obtained. Therefore, in the third modification, a vehicle speed calculation unit 110 for calculating the traveling speed of another lane different from the lane in which the vehicle V1 travels is provided.
 車両速度算出部110は、車線判別部109により判別された車線と、車間距離算出部103により算出された車間距離と、自車である車両V1の走行速度とをもとに、車両V1と異なる車線を走行する車両の走行速度を算出する車両速度算出処理を行う(図14:S110)。これにより、道路情報算出部106は、前述した自車の走行速度と、車両速度算出部110により算出された自車と異なる車線を走行する車両の走行速度を含めた道路情報を作成することができる。 The vehicle speed calculation unit 110 is different from the vehicle V1 based on the lane determined by the lane determination unit 109, the inter-vehicle distance calculated by the inter-vehicle distance calculation unit 103, and the traveling speed of the vehicle V1 that is the host vehicle. A vehicle speed calculation process for calculating the traveling speed of the vehicle traveling in the lane is performed (FIG. 14: S110). Thereby, the road information calculation unit 106 can create road information including the travel speed of the host vehicle described above and the travel speed of the vehicle traveling in a lane different from the host vehicle calculated by the vehicle speed calculation unit 110. it can.
 具体的には、車両速度算出部110は、次のようにして車両V1と異なる車線を走行する車両の走行速度を算出する。ここで、車間距離算出部103によって、ある時刻T1において他の車線を走行する車両(X)と車両V1との車間距離D(X,T1)と、時刻T2における車両(X)と車両V1との車間距離D(X,T2)とが算出されているものとする。また、時刻T1と時刻T2との時間間隔を充分短くすることで、車両(X)は同じ車両を追跡できているものとする。 Specifically, the vehicle speed calculation unit 110 calculates the traveling speed of a vehicle traveling in a lane different from the vehicle V1 as follows. Here, the inter-vehicle distance calculation unit 103 causes the inter-vehicle distance D (X, T1) between the vehicle (X) traveling in another lane at a certain time T1 and the vehicle V1, and the vehicle (X) and the vehicle V1 at time T2. It is assumed that the inter-vehicle distance D (X, T2) is calculated. Further, it is assumed that the vehicle (X) can track the same vehicle by sufficiently shortening the time interval between the time T1 and the time T2.
 車両V1に対する車両(X)の相対速度V_X_relativeは、V_X_relative={D(X,T2)-D(X,T1)}/(T2-T1)として算出できる。 The relative speed V_X_relative of the vehicle (X) with respect to the vehicle V1 can be calculated as V_X_relative = {D (X, T2) −D (X, T1)} / (T2−T1).
 ここで、前述した車両V1の走行速度をVとすると、車両(X)の絶対速度V_X、すなわち求めるべき走行速度は、V_X=V+V_X_relativeとして算出できる。 Here, when the travel speed of the vehicle V1 described above is V, the absolute speed V_X of the vehicle (X), that is, the travel speed to be obtained can be calculated as V_X = V + V_X_relative.
(第2の実施形態)
 図15は、第2の実施形態にかかる道路状況把握システム1dの概要を示す概念図である。図15に示すように、道路状況把握システム1dは、単眼のデジタルカメラであるカメラ21dで周囲を撮像する車載端末20dを車両V1に搭載する点が第1の実施形態とは異なっている。
(Second Embodiment)
FIG. 15 is a conceptual diagram showing an outline of a road condition grasping system 1d according to the second embodiment. As shown in FIG. 15, the road condition grasping system 1d is different from the first embodiment in that an in-vehicle terminal 20d that captures an image of the surroundings with a camera 21d that is a monocular digital camera is mounted on a vehicle V1.
 図16は、第2の実施形態にかかる道路状況把握システム1dの機能構成の一例を示すブロック図である。図17は、第2の実施形態にかかる道路状況把握システム1dの処理の流れを説明する概念図である。図18は、第2の実施形態にかかる道路状況把握システム1dにおける、撮像画像から検出された車両の位置をもとにした車間距離の算出を例示する概念図である。 FIG. 16 is a block diagram illustrating an example of a functional configuration of the road condition grasping system 1d according to the second embodiment. FIG. 17 is a conceptual diagram illustrating the flow of processing of the road condition grasping system 1d according to the second embodiment. FIG. 18 is a conceptual diagram illustrating the calculation of the inter-vehicle distance based on the position of the vehicle detected from the captured image in the road condition grasping system 1d according to the second embodiment.
 図16に示すように、道路状況把握システム1dは、前述したステレオ撮像部101、距離算出部102、車間距離算出部103に代わって、車載端末20dの制御部23により実現される撮像部111、車両検出部112、車間距離算出部113を備えている。 As shown in FIG. 16, the road condition grasping system 1d is an imaging unit 111 realized by the control unit 23 of the in-vehicle terminal 20d, instead of the stereo imaging unit 101, the distance calculation unit 102, and the inter-vehicle distance calculation unit 103 described above. A vehicle detection unit 112 and an inter-vehicle distance calculation unit 113 are provided.
 撮像部111は、カメラ21dで撮像した撮像画像を取得する撮像処理(図17:S111)を行う。車両検出部112は、撮像処理によって得られた撮像画像G10をもとに、その撮像画像G10に映り込む車両を検出する車両検出処理を行う(図17:S112)。この車両検出処理には、例えば「"A Trainable System for Object Detection", Papageorgiou et al., IJCV-2000」のような公知の車両検出技術を用いればよい。この車両検出処理によって撮像画像G10に映り込む車両に対応した領域R10が得られる。 The imaging unit 111 performs an imaging process (FIG. 17: S111) for acquiring a captured image captured by the camera 21d. The vehicle detection unit 112 performs a vehicle detection process for detecting a vehicle reflected in the captured image G10 based on the captured image G10 obtained by the imaging process (FIG. 17: S112). For this vehicle detection process, for example, a known vehicle detection technology such as ““ A Trainable System for Object Detection ”, Papageorgiou et al., IJCV-2000” may be used. By this vehicle detection process, a region R10 corresponding to the vehicle reflected in the captured image G10 is obtained.
 車間距離算出部113は、車両検出処理の検出結果をもとに、撮像画像G10内における車両の位置に基づいて、その車両との車間距離を算出する車間距離算出処理を行う(図17:S113)。具体的には、車間距離算出部113は、ROMなどのメモリ上に、図18に示すような検出位置・距離変換情報T1を保持している。検出位置・距離変換情報T1は、カメラ21dの撮像画像G10内の位置(画素)ごとの車間距離がマトリクス状に示されたデータであってよい。車間距離算出部113は、検出位置・距離変換情報T1を参照することで、撮像画像G10に映り込む車両の領域R10が接地する位置P1をもとに、車両との車間距離を得ることができる。 Based on the detection result of the vehicle detection process, the inter-vehicle distance calculation unit 113 performs an inter-vehicle distance calculation process that calculates an inter-vehicle distance from the vehicle based on the position of the vehicle in the captured image G10 (FIG. 17: S113). ). Specifically, the inter-vehicle distance calculation unit 113 holds detection position / distance conversion information T1 as shown in FIG. 18 on a memory such as a ROM. The detected position / distance conversion information T1 may be data in which the inter-vehicle distance for each position (pixel) in the captured image G10 of the camera 21d is shown in a matrix. The inter-vehicle distance calculation unit 113 can obtain the inter-vehicle distance from the vehicle based on the position P1 where the region R10 of the vehicle reflected in the captured image G10 contacts the ground by referring to the detected position / distance conversion information T1. .
 上述したように、単眼のカメラ21dで周囲を撮像する車載端末20dを車両V1に搭載する構成であっても車間距離を求めることができ、その車間距離をもとに車両の密度を求めることから、車両が過密な状態であるか否かなどの、より正確な道路状況を把握することが可能である。 As described above, even if the vehicle-mounted terminal 20d that captures the surroundings with the monocular camera 21d is mounted on the vehicle V1, the inter-vehicle distance can be obtained, and the vehicle density is obtained based on the inter-vehicle distance. It is possible to grasp a more accurate road condition such as whether or not the vehicle is in an overcrowded state.
 以上、本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。 Although several embodiments of the present invention have been described above, these embodiments are presented as examples and are not intended to limit the scope of the invention. These novel embodiments can be implemented in various other forms, and various omissions, replacements, and changes can be made without departing from the scope of the invention. These embodiments and modifications thereof are included in the scope and gist of the invention, and are included in the invention described in the claims and the equivalents thereof.

Claims (7)

  1.  車両に搭載される車載装置と、当該車載装置から送信される情報を処理する情報処理装置とを備える道路状況把握システムであって、
     前記車載装置は、
     前記車両の位置を検出する位置検出部と、
     前記車両の周囲を撮像する撮像部と、
     前記撮像部により撮像された画像をもとに、他の車両との車間距離を算出する車間距離算出部と、
     前記算出された車間距離と、前記検出された車両の位置とに基づいて、当該位置を走行する車両の密度を算出する車両密度算出部と、
     前記検出された車両の位置と、前記算出された車両の密度とを含む道路情報を前記情報処理装置へ送信する送信部と、を備え、
     前記情報処理装置は、
     前記送信された道路情報をもとに、前記車両が走行した経路における道路情報を集計して前記経路の混雑具合を示す道路状況を算出する道路状況算出部を備える、
     道路状況把握システム。
    A road condition grasping system comprising an in-vehicle device mounted on a vehicle and an information processing device that processes information transmitted from the in-vehicle device,
    The in-vehicle device is
    A position detector for detecting the position of the vehicle;
    An imaging unit for imaging the periphery of the vehicle;
    Based on the image captured by the imaging unit, an inter-vehicle distance calculation unit that calculates an inter-vehicle distance from another vehicle;
    Based on the calculated inter-vehicle distance and the detected position of the vehicle, a vehicle density calculation unit that calculates the density of a vehicle traveling at the position;
    A transmission unit that transmits road information including the detected position of the vehicle and the calculated density of the vehicle to the information processing apparatus,
    The information processing apparatus includes:
    Based on the transmitted road information, a road condition calculation unit that calculates road conditions indicating the degree of congestion of the route by aggregating road information on the route traveled by the vehicle,
    Road condition grasping system.
  2.  前記車間距離算出部は、前記撮像された画像において段階的な距離を示す路面とは異なる非路面の領域が、所定の幅で所定の面積以上である場合に前記非路面の領域を前記他の車両の領域として検出し、当該検出した他の車両の領域に基づいて前記車間距離を算出する、
     請求項1に記載の道路状況把握システム。
    The inter-vehicle distance calculation unit determines the non-road area when the non-road area different from the road surface indicating a stepwise distance in the captured image is a predetermined area with a predetermined width. Detecting as a vehicle region, and calculating the inter-vehicle distance based on the detected other vehicle region;
    The road condition grasping system according to claim 1.
  3.  前記車間距離算出部は、距離の異なる2つの前記非路面の領域が隣接する場合、距離が近い非路面の領域の一部を距離が遠い非路面の領域として前記他の車両の領域の検出を行う、
     請求項2に記載の道路状況把握システム。
    When the two non-road surface areas having different distances are adjacent to each other, the inter-vehicle distance calculation unit detects a region of the other vehicle by setting a part of the non-road surface area having a short distance as a non-road surface area having a long distance. Do,
    The road condition grasping system according to claim 2.
  4.  前記車載装置は、
     前記撮像された画像をもとに、前記車両が走行する車線を検出する車線検出部を更に備え、
     前記車間距離算出部は、前記検出された車線ごとの前記車間距離を算出する、
     請求項1に記載の道路状況把握システム。
    The in-vehicle device is
    Based on the captured image, further includes a lane detection unit that detects a lane in which the vehicle travels,
    The inter-vehicle distance calculation unit calculates the inter-vehicle distance for each detected lane.
    The road condition grasping system according to claim 1.
  5.  前記車載装置は、
     前記撮像された画像に含まれる車両を検出する車両検出部を更に備え、
     前記車間距離算出部は、前記撮像された画像内における前記検出された車両の位置に基づいて前記車間距離を算出する、
     請求項1に記載の道路状況把握システム。
    The in-vehicle device is
    A vehicle detection unit for detecting a vehicle included in the captured image;
    The inter-vehicle distance calculation unit calculates the inter-vehicle distance based on the detected position of the vehicle in the captured image.
    The road condition grasping system according to claim 1.
  6.  前記情報処理装置は、
     前記算出された道路状況を、所定のエリアを走行する車両に配信する配信部を更に備える、
     請求項1に記載の道路状況把握システム。
    The information processing apparatus includes:
    A distribution unit for distributing the calculated road condition to a vehicle traveling in a predetermined area;
    The road condition grasping system according to claim 1.
  7.  車両の周囲を撮像する撮像部と、
     前記車両の位置を検出する位置検出部と、
     前記撮像部により撮像された画像をもとに、他の車両との車間距離を算出する車間距離算出部と、
     前記算出された車間距離と、前記検出された車両の位置とに基づいて、当該位置を走行する車両の密度を算出する車両密度算出部と、
     前記検出された車両の位置に基づいた前記車両が走行した経路における、前記算出された車両の密度を集計して、前記経路の混雑具合を示す道路状況を算出する道路状況算出部と、
     を備える道路状況把握装置。
    An imaging unit for imaging the surroundings of the vehicle;
    A position detector for detecting the position of the vehicle;
    Based on the image captured by the imaging unit, an inter-vehicle distance calculation unit that calculates an inter-vehicle distance from another vehicle;
    Based on the calculated inter-vehicle distance and the detected position of the vehicle, a vehicle density calculation unit that calculates the density of a vehicle traveling at the position;
    A road condition calculation unit that calculates the road condition indicating the degree of congestion of the route by aggregating the calculated density of the vehicle in the route traveled by the vehicle based on the position of the detected vehicle;
    A road condition grasping device.
PCT/JP2014/065934 2013-06-25 2014-06-16 System for gauging road conditions, and device for gauging road conditions WO2014208388A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201480036002.4A CN105339992B (en) 2013-06-25 2014-06-16 Condition of road surface grasps system and condition of road surface grasps device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-132950 2013-06-25
JP2013132950A JP6173791B2 (en) 2013-06-25 2013-06-25 Road condition grasping system and road condition grasping device

Publications (1)

Publication Number Publication Date
WO2014208388A1 true WO2014208388A1 (en) 2014-12-31

Family

ID=52141730

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/065934 WO2014208388A1 (en) 2013-06-25 2014-06-16 System for gauging road conditions, and device for gauging road conditions

Country Status (3)

Country Link
JP (1) JP6173791B2 (en)
CN (1) CN105339992B (en)
WO (1) WO2014208388A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105241468A (en) * 2015-10-28 2016-01-13 东华大学 Vehicle route real-time selection system based on vehicle self-organizing network
WO2018006997A1 (en) * 2016-07-05 2018-01-11 Audi Ag Traffic density detection system and method, vehicle
CN108428356A (en) * 2018-03-21 2018-08-21 东南大学 A kind of displaying of road conditions figure and auxiliary driving application process based on fluid density field
CN109478336A (en) * 2016-07-21 2019-03-15 五十铃自动车株式会社 Image processing apparatus and image processing method
JP2020094959A (en) * 2018-12-14 2020-06-18 ヤフー株式会社 Route search device, method for searching for route, and route search program

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6523907B2 (en) * 2015-09-30 2019-06-05 株式会社東芝 Inter-vehicle distance detection system, inter-vehicle distance detection method, and program
CN105741545B (en) * 2016-03-16 2018-07-20 山东大学 A kind of device and method differentiating traffic behavior based on bus GNSS space-time trajectory datas
JP6896374B2 (en) * 2016-04-22 2021-06-30 株式会社東芝 Probe information processing server and probe information processing method
JP6662284B2 (en) * 2016-12-22 2020-03-11 株式会社オートネットワーク技術研究所 Driving support system and driving support device
JP6965735B2 (en) * 2017-12-26 2021-11-10 トヨタ自動車株式会社 Information processing equipment, in-vehicle equipment and information processing methods
US11443619B2 (en) 2018-05-15 2022-09-13 Kabushiki Kaisha Toshiba Vehicle recognition apparatus and vehicle recognition method
CN108922242A (en) * 2018-06-05 2018-11-30 宁波金洋化工物流有限公司 The preventative tracking of harmful influence haulage vehicle and control platform
JP7082538B2 (en) * 2018-07-10 2022-06-08 本田技研工業株式会社 Image processing equipment and programs
CN109410582B (en) * 2018-11-27 2021-11-16 易念科技(深圳)有限公司 Traffic condition analysis method and terminal equipment
CN109615874B (en) * 2018-12-28 2021-02-02 浙江大学 Road condition analysis method based on form tower psychological criterion
JP2021135692A (en) * 2020-02-26 2021-09-13 トヨタ自動車株式会社 Server, vehicle allocation method, vehicle allocation program, and vehicle allocation system
CN112668428A (en) * 2020-12-21 2021-04-16 北京百度网讯科技有限公司 Vehicle lane change detection method, roadside device, cloud control platform and program product

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006059188A (en) * 2004-08-20 2006-03-02 Matsushita Electric Ind Co Ltd Traffic information system and information analyzer
JP2008015847A (en) * 2006-07-07 2008-01-24 Hitachi Ltd Traffic information system
JP2012118916A (en) * 2010-12-03 2012-06-21 Fujitsu Ltd Lane change diagnostic device, lane change diagnostic method and lane change diagnostic program
JP2013109457A (en) * 2011-11-18 2013-06-06 Fuji Heavy Ind Ltd Device and method for recognizing vehicle exterior environment

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101710448B (en) * 2009-12-29 2011-08-10 浙江工业大学 Road traffic state detecting device based on omnibearing computer vision
CN102081842B (en) * 2010-11-03 2013-02-20 北京世纪高通科技有限公司 Method and device for evaluating video data source

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006059188A (en) * 2004-08-20 2006-03-02 Matsushita Electric Ind Co Ltd Traffic information system and information analyzer
JP2008015847A (en) * 2006-07-07 2008-01-24 Hitachi Ltd Traffic information system
JP2012118916A (en) * 2010-12-03 2012-06-21 Fujitsu Ltd Lane change diagnostic device, lane change diagnostic method and lane change diagnostic program
JP2013109457A (en) * 2011-11-18 2013-06-06 Fuji Heavy Ind Ltd Device and method for recognizing vehicle exterior environment

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105241468A (en) * 2015-10-28 2016-01-13 东华大学 Vehicle route real-time selection system based on vehicle self-organizing network
WO2018006997A1 (en) * 2016-07-05 2018-01-11 Audi Ag Traffic density detection system and method, vehicle
CN109478336A (en) * 2016-07-21 2019-03-15 五十铃自动车株式会社 Image processing apparatus and image processing method
CN108428356A (en) * 2018-03-21 2018-08-21 东南大学 A kind of displaying of road conditions figure and auxiliary driving application process based on fluid density field
JP2020094959A (en) * 2018-12-14 2020-06-18 ヤフー株式会社 Route search device, method for searching for route, and route search program

Also Published As

Publication number Publication date
JP2015007902A (en) 2015-01-15
CN105339992A (en) 2016-02-17
JP6173791B2 (en) 2017-08-02
CN105339992B (en) 2017-06-23

Similar Documents

Publication Publication Date Title
JP6173791B2 (en) Road condition grasping system and road condition grasping device
CN109074737B (en) Safe driving assistance system, server, vehicle, and program
US9727820B2 (en) Vehicle behavior prediction device and vehicle behavior prediction method, and driving assistance device
CN102889892B (en) The method of real scene navigation and navigation terminal
US10832575B2 (en) Network connected parking system
US20170248962A1 (en) Method and device for localizing a vehicle in its surroundings
US20210341303A1 (en) Clustering event information for vehicle navigation
US20120035848A1 (en) Route search device, route search method, and computer program
US10369995B2 (en) Information processing device, information processing method, control device for vehicle, and control method for vehicle
JP2015075398A (en) Vehicular lane guidance system and vehicular lane guidance method
US11636756B2 (en) Multi-modal traffic detection
JP2019032174A (en) Information processing system and information processing method
KR102330614B1 (en) Traffic signal control system and method thereof
US11332159B2 (en) Method for providing transportation service using autonomous vehicle
US20200124435A1 (en) Distributed route determination system
JP2021060773A (en) Congestion information system
WO2015009218A1 (en) Determination of lane position
WO2013136778A1 (en) Device for determining sensitivity to prediction of unexpected situations
US20230120095A1 (en) Obstacle information management device, obstacle information management method, and device for vehicle
JP3775394B2 (en) Travel link determination system and link travel time measurement system
CN113799782B (en) Vehicle control device and vehicle control method
WO2021261227A1 (en) Parking/stop point management device, parking/stop point management method, and device for vehicle
KR20150055278A (en) System and method for collecting traffic information using vehicle radar
KR102018582B1 (en) The apparatus and method for each lane collecting traffic information
CN115359671A (en) Intersection vehicle cooperative control method and related equipment

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480036002.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14818300

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14818300

Country of ref document: EP

Kind code of ref document: A1