WO2014200189A1 - Laser device having wavelength stabilizer - Google Patents

Laser device having wavelength stabilizer Download PDF

Info

Publication number
WO2014200189A1
WO2014200189A1 PCT/KR2014/004203 KR2014004203W WO2014200189A1 WO 2014200189 A1 WO2014200189 A1 WO 2014200189A1 KR 2014004203 W KR2014004203 W KR 2014004203W WO 2014200189 A1 WO2014200189 A1 WO 2014200189A1
Authority
WO
WIPO (PCT)
Prior art keywords
wavelength
laser
diode chip
laser light
laser diode
Prior art date
Application number
PCT/KR2014/004203
Other languages
French (fr)
Korean (ko)
Inventor
김정수
Original Assignee
주식회사 포벨
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020140017299A external-priority patent/KR102237784B1/en
Application filed by 주식회사 포벨 filed Critical 주식회사 포벨
Priority to US14/399,676 priority Critical patent/US9515454B2/en
Priority to CN201480001197.9A priority patent/CN104350652B/en
Publication of WO2014200189A1 publication Critical patent/WO2014200189A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/06Arrangements for controlling the laser output parameters, e.g. by operating on the active medium
    • H01S5/068Stabilisation of laser output parameters
    • H01S5/0683Stabilisation of laser output parameters by monitoring the optical output parameters
    • H01S5/0687Stabilising the frequency of the laser
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/005Optical components external to the laser cavity, specially adapted therefor, e.g. for homogenisation or merging of the beams or for manipulating laser pulses, e.g. pulse shaping
    • H01S5/0078Optical components external to the laser cavity, specially adapted therefor, e.g. for homogenisation or merging of the beams or for manipulating laser pulses, e.g. pulse shaping for frequency filtering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/02208Mountings; Housings characterised by the shape of the housings
    • H01S5/02212Can-type, e.g. TO-CAN housings with emission along or parallel to symmetry axis
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/06Arrangements for controlling the laser output parameters, e.g. by operating on the active medium
    • H01S5/0607Arrangements for controlling the laser output parameters, e.g. by operating on the active medium by varying physical parameters other than the potential of the electrodes, e.g. by an electric or magnetic field, mechanical deformation, pressure, light, temperature
    • H01S5/0612Arrangements for controlling the laser output parameters, e.g. by operating on the active medium by varying physical parameters other than the potential of the electrodes, e.g. by an electric or magnetic field, mechanical deformation, pressure, light, temperature controlled by temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/06Structure, shape, material or disposition of the bonding areas prior to the connecting process of a plurality of bonding areas
    • H01L2224/0601Structure
    • H01L2224/0603Bonding areas having different sizes, e.g. different heights or widths
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45144Gold (Au) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/19Details of hybrid assemblies other than the semiconductor or other solid state devices to be connected
    • H01L2924/191Disposition
    • H01L2924/19101Disposition of discrete passive components
    • H01L2924/19107Disposition of discrete passive components off-chip wires
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/005Optical components external to the laser cavity, specially adapted therefor, e.g. for homogenisation or merging of the beams or for manipulating laser pulses, e.g. pulse shaping
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/005Optical components external to the laser cavity, specially adapted therefor, e.g. for homogenisation or merging of the beams or for manipulating laser pulses, e.g. pulse shaping
    • H01S5/0071Optical components external to the laser cavity, specially adapted therefor, e.g. for homogenisation or merging of the beams or for manipulating laser pulses, e.g. pulse shaping for beam steering, e.g. using a mirror outside the cavity to change the beam direction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/0225Out-coupling of light
    • H01S5/02253Out-coupling of light using lenses
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/023Mount members, e.g. sub-mount members
    • H01S5/02325Mechanically integrated components on mount members or optical micro-benches

Definitions

  • the present invention relates to a laser device, and more particularly, to a laser device having a wavelength stabilization device and having a wavelength stabilization device which can be manufactured in a very small size and has a line width of laser light emitted from a package, thereby allowing long distance transmission.
  • WDM wavelength division multiplexing
  • the semiconductor laser diode modulates the light intensity by flowing the current corresponding to the "1" signal and the "0" signal, and interprets the signal according to the change of the light intensity as the “1” and “0” signals.
  • a chirp phenomenon occurs in which the wavelength of the laser light generated by the semiconductor laser diode chip changes depending on the magnitude of the injection current.
  • the signal "1” typically indicates a signal having a strong light intensity, and a signal having light with low light intensity is called a "0" signal.
  • the "1" signal described above corresponds to a case where a large current flows in the laser diode chip, and the "0" signal is a laser diode. This corresponds to the light output when a relatively small current flows through the chip. For example, at a modulation rate of 10 Gbps, a wavelength change of approximately 5 GHz to 10 GHz occurs between a "1" signal and a "0" signal, and the difference in wavelength is referred to as chirp. In a typical DFB-LD, the "1" signal has a frequency greater by 5 GHz to 10 GHz than the "0" signal.
  • the wavelength of the "1" signal has a shorter wavelength than the "0" signal.
  • dispersion speed causes light transmission speed to vary according to the wavelength of light. This dispersion phenomenon depends on the chirp characteristics generated when driving semiconductor lasers to "1" and "0". The transmission speed of the 0 "signal is changed. As a result, when the optical signal arrives at the optical receiver, the" 1 "signal and the” 0 “signal are mixed, which makes it difficult to separate the signal.
  • This phenomenon is particularly acute when the bit rate is high and when the transmission distance is too long.
  • optical signals generated at 1550 nm band semiconductor lasers running at 10 Gbps the transmission of more than 10 km is not only very difficult, even 5Km optical transmission is also difficult.
  • a bias current corresponding to a "0" signal and a modulation current corresponding to a "1" signal must be flowed.
  • a bias current is applied to the semiconductor laser diode chip.
  • a current is added to the bias current plus the modulation current.
  • the optical response of the semiconductor laser diode chip should have a fast response to the radio frequency (RF) frequency signal of 10Gbps, but to increase the optical response of the RF laser signal of the semiconductor laser diode chip, It is desirable to increase the current.
  • RF radio frequency
  • the magnitude of the modulation current is determined by the characteristics of the electronic circuit driving the semiconductor laser diode chip. In order for the electronic circuit to have a high frequency response characteristic, it is desirable to reduce the magnitude of the modulation current. Therefore, when the bias current flowing to the semiconductor laser diode chip is improved to improve the RF response characteristics of the semiconductor laser diode chip, and the modulation current magnitude of the low current is increased to improve the RF characteristics of the driving circuit of the semiconductor laser diode chip, the " 1 The difference between the intensity of the optical signal corresponding to "" and the intensity of the optical signal corresponding to "0” becomes small. The ratio of the intensity of the optical signal corresponding to "1" and the optical signal corresponding to "0" is called ER (extinction ratio).
  • the ER If the ER is low, the "1" and “0" signals are mixed at the optical receiver due to the chirp phenomenon of the semiconductor laser diode chip and the dispersion of the optical fiber, making it difficult to decode the optical signal at the optical receiver.
  • the occurrence of crosstalk of the optical signal due to the chirp phenomenon of the semiconductor laser diode chip and the dispersion of the optical fiber can be reduced by increasing the ER.
  • the bias current must be reduced and the modulation current must be increased.
  • the bias current if the bias current is reduced, the optical response speed of the electrical signal of the semiconductor laser diode chip is decreased, and if the modulation size is increased, the response speed of the driving circuit for driving the semiconductor laser diode chip is decreased.
  • Chang-Hee Lee et al. Optically filter the laser light output from a distributed feedback laser diode (DFB-LD) light source at CLEO '95 (CLEO 1995, CTuI10) to filter out a "0" signal.
  • DFB-LD distributed feedback laser diode
  • the "0" signal has a weaker strength than the "1" signal, which increases the ER, thereby facilitating the reception of the optical signal at the optical receiver, thereby allowing the optical signal to be sent over longer distances. Therefore, the line width of the transmission band of the optical filter should have a significant level of transmittance difference according to the wavelength difference between the "1" signal and the "0" signal, and this difference in transmittance can be adjusted to the transmission band line width of the optical filter. As described above, since the "1" signal and the "0" signal have a frequency difference of about 5 GHz to 10 GHz, the line width of the transmission wavelength band of the optical filter should be set to show a meaningful transmittance difference with respect to this wavelength difference. do.
  • the transmission bandwidth of the optical filter has an appropriate value at 5 GHz to 30 GHz. It is preferable to use.
  • the optical filter may use an optical filter having a transmission wavelength band peak in a wavelength band of at least 10 nm to 100 nm, but a filter having a plurality of transmission wavelength bands in the wavelength band may be used.
  • the aforementioned -3 dB bandwidth is defined as -3 dB bandwidth of any one transmission wavelength peak.
  • the frequency difference between the plurality of transmission wavelength bands should be at least larger than the -3 dB width of the transmission wavelength band.
  • the semiconductor laser diode chip has a wavelength change of about 12.5 nm according to the environmental temperature change of -40 ° C to 85 ° C. Therefore, when adjacent wavelengths are separated by about 20 nm, crosstalk of each wavelength can be eliminated without adjusting the temperature of the semiconductor laser diode chip. Therefore, in general, an optical signal having a wavelength interval of 20 nm or more is used without adjusting the temperature of the semiconductor laser diode chip. However, when the wavelength gap between adjacent wavelengths is within 10 nm, the semiconductor laser diode chip must maintain a constant temperature of the semiconductor laser diode chip using a thermoelectric element in order to suppress the temperature change.
  • the wavelength used for optical communication is required to transmit 10Gbps high speed optical communication over a long distance. Regardless of the wavelength gap between them, it is necessary to optically filter the optical signal output from the semiconductor laser diode chip.
  • a small form factor pluggable (SFP) type an optical communication module that is currently being standardized around the world, requires a miniaturized optical device because its internal size is very small.
  • packages equipped with semiconductor laser chips include TO (transistor outline) type, mini flat type, and butterfly type package housings.
  • TO type package is very small in volume and relatively low in price. It is actively used in optical communication networks for subscribers who need a lot.
  • Packages with built-in types have not been reported.
  • the semiconductor laser diode chip Since the oscillation wavelength varies depending on the operating temperature, the semiconductor laser diode chip transmits the "1" signal among the laser light signals emitted from the semiconductor laser diode chip effectively, and the "0" signal effectively blocks the change in the external environment temperature. A predetermined constant relationship must be maintained between the wavelength of the laser light emitted from the semiconductor laser diode chip and the wavelength of the transmission band of the optical filter. Otherwise, a signal of "1" to be transmitted is blocked and a problem of "0" signal to be blocked is transmitted well, which makes optical communication difficult.
  • Patent Document 1 Republic of Korea Patent Publication No. 10-1124171 (2012.02.29)
  • the present invention has been proposed to solve the problems of the prior art, and the present invention optically filters the laser light emitted from the DFB-LD chip to increase the ER, which is the relative intensity ratio of the "1" signal and the "0" signal. It is an object of the present invention to provide an ultra-compact and inexpensive TO type laser device that emits laser light having a reduced oscillation line width by reducing the line width of an optical signal.
  • the present invention uses a low-cost TO-type package, but can be manufactured in a small size compared to the conventional butterfly-type package through the arrangement of the laser diode package, it is easy to be mounted on a conventional standardized SFP transceiver case It is an object of the present invention to provide a tunable laser device that can be manufactured in a possible size.
  • the present invention provides a constant relative wavelength position between the wavelength of the laser light emitted from the semiconductor laser diode chip and the transmission wavelength band of the optical filter when performing high-speed optical communication using a distributed feedback laser diode (DFB-LD). It is an object of the present invention to provide a laser device incorporating a wavelength stabilization device for providing a method of fixing.
  • DFB-LD distributed feedback laser diode
  • adjacent optical communication wavelength channel spacing may be more than 20 nm, and optical communication wavelength channel spacing may be converted into frequency and have a wavelength gap of 50 GHz or 100 GHz.
  • the wavelength channel spacing of optical communication is 50 GHz or 100 GHz, it is a variable wavelength light source that uses one DFB-LD chip as a light source module corresponding to the optical wavelength of multiple DWDM-class optical communication by using the wavelength change according to the temperature of DFB-LD. Can be used.
  • a method of optically filtering the laser light emitted from the semiconductor laser diode chip in the process of packaging the DFB-LD using a TO-type package to provide long-term optical communication DFB -Optical filtering method in case that the operating temperature of LD does not need to be kept constant, and the temperature of DFB-LD is kept constant by using thermoelectric element regardless of temperature change of external environment.
  • optically filtering the laser light inside the TO-type package, and changing the wavelength of the DFB-LD by using a thermoelectric element, and using the DFB-LD as a wavelength tunable laser in DWDM-class optical communication we present an optical filter in a package that enables long-range communication.
  • the laser device includes a laser diode chip that emits laser light; Wavelength selective filters; A collimation lens disposed on an optical path between the laser diode chip and a wavelength selective filter to collimate the light emitted from the laser diode chip; 45 degree partial reflection mirror installed on the optical path between the laser diode chip and the wavelength selective filter to redirect the laser light traveling horizontally with respect to the package bottom surface to the laser light traveling perpendicular to the package bottom surface. ; And an optical wavelength monitoring photodiode disposed on an optical path through which the laser light emitted from the laser diode chip and reflected by the wavelength selective filter passes through the 45 degree partial reflection mirror.
  • an optical element is used only at a specific wavelength, or a wavelength tunable laser corresponding to various wavelengths at intervals of 50 GHz or 100 GHz by changing the temperature of the semiconductor laser diode chip.
  • the laser diode chip and the wavelength selective filter are preferably disposed on one thermoelectric element. Therefore, in the case of controlling the temperature of the laser diode chip using the thermoelectric element, the oscillation wavelength of the laser diode chip is controlled using the thermoelectric element so that the "1" signal is relatively transmitted through the wavelength selective filter, and "0". The signal is relatively poorly transmitted by the wavelength selective filter so that the ER of the laser light transmitted to the optical fiber is larger than the ER of the state emitted from the laser diode chip, thereby enabling long-distance transmission.
  • the temperature of the wavelength selective filter may be changed so that the wavelength band of the wavelength selective filter transmits the "1" signal better and the "0" signal is relatively more blocked, thereby increasing the ER. In this process, high-speed signals can be transmitted over long distances.
  • a method of maintaining a constant wavelength interval between the wavelength of the laser light and the transmission wavelength of the wavelength selective filter by controlling the temperature of the wavelength selective filter by using a heater is a thermoelectric element. Compared to the method of maintaining a constant relationship with the wavelength of the laser light and the wavelength band of the wavelength selective filter using the advantage that the electricity consumption is less.
  • thermoelectric element when the cooling mode is used, the electricity consumption increases, but when the temperature of the laser diode chip is kept constant and the predetermined wavelength is emitted, the temperature of the laser diode chip is changed to the heating mode or It should be used in the cooling mode, but the temperature of the wavelength selective filter does not change the wavelength of the laser light but only the relative intensity of the "1" and "0" signals can be controlled so that the temperature of the wavelength selective filter can always be controlled in the heating mode. have.
  • the wavelength selective filter is an FP type etalon filter.
  • the wavelength selective filter may be manufactured by stacking a dielectric film having a high refractive index and a low refractive index on a transparent substrate with respect to a wavelength of laser light to be considered.
  • the wavelength selective filter may be a filter having one transmission peak or several transmission peaks in the wavelength range of the temperature change of the laser diode chip.
  • the wavelength selective filter has several transmission wavelength peaks
  • the relationship between the several transmission peaks of the wavelength selective filter is variously applied according to the application form.
  • the transmission wavelength of the wavelength selective filter The peak may be any wavelength interval or singular or plural.
  • the wavelength selective filter has a transmission frequency interval determined by Equation 1 below.
  • Ff is the frequency interval of the transmission wavelength to be obtained
  • Ffilter is the transmission frequency mobility according to the temperature of the etalon filter
  • Flaser is the frequency mobility according to the temperature of laser light emitted from the laser diode chip.
  • a light diode for monitoring the light intensity is disposed on an optical path through which the laser light emitted from the laser diode chip passes through the 45 degree partial reflection mirror, or an optical path through which the laser light emitted from the rear surface of the laser diode chip proceeds. It is preferable that a photodiode for monitoring light intensity is disposed on the phase.
  • the 45-degree partial reflection mirror is coupled to the through-hole of the stand made of a rectangular parallelepiped silicon substrate formed by a dry etching method, the through-hole having an angle of 45 degrees with respect to one side, the angle of 45 degrees with respect to the floor It is preferable to be installed to have.
  • the temperature of the semiconductor laser diode chip is adjusted so that the wavelength of the laser light emitted from the semiconductor laser diode chip is constant, and the wavelength of the laser light emitted from the semiconductor diode chip is adjusted.
  • the heater temperature of the thermoelectric element or the wavelength selective filter is adjusted so that a value obtained by dividing the current flowing through the light wavelength monitoring photodiode by the current flowing through the light intensity monitoring photodiode is a constant value.
  • the oscillation wavelength of the laser has a constant relationship with the wavelength selective filter and the transmission wavelength band, so that the laser light emitted from the laser diode chip performs filtering having different transmittances for the "1" signal and the "0" signal.
  • the sub-mount for the photodiode may be formed in a shape in which a metal pattern is continuously applied to a silicon ⁇ 100 ⁇ plane and a ⁇ 111 ⁇ plane based on silicon.
  • thermoelectric element is measured temperature by the thermistor attached to the upper portion, the thermistor is preferably separated from the thermistor and electrically connected to the electrode pin via a thermistor connection submount attached to the thermoelectric element.
  • the thermistor may be coated with a nonconductive polymer material such as epoxy.
  • the 45 degree partial reflection mirror has a thickness of 0.1 mm to 0.25 mm.
  • optical wavelength monitoring photodiode may be directly attached on the thermoelectric element.
  • a signal corresponding to a "1" signal has a high transmittance
  • a laser light corresponding to a "0" signal is a signal corresponding to a "1" signal.
  • Manufacture of optical device for high speed long distance by inserting wavelength selective filter which selects small transmittance to enable high speed long distance communication, but effectively use low cost TO type package compared to butterfly type or mini flat package housing This lowers the cost.
  • the present invention does not control the temperature of the laser diode chip using the TO-type package, the case where the laser diode chip has a specific wavelength irrespective of the external environment temperature, and the laser diode regardless of the external environment. Regardless of the case where the wavelength of the laser light emitted from the chip is changed and controlled, there is an effect of transmitting a high speed optical signal to a long distance.
  • 1 is an external view showing a schematic view of a TO-type package.
  • Figure 2 is a conceptual diagram of a laser for emitting a laser light of a narrow line width to the optical fiber by reducing the transmittance of the "0" signal compared to the "1" signal according to the present invention.
  • FIG. 3 is a conceptual diagram illustrating the role of the wavelength selective filter in the narrow linewidth laser according to the present invention
  • FIG. 3 (a) shows an example of a transmittance curve of the wavelength selective filter
  • FIG. 3 (b) shows a reflectance of the wavelength selective filter
  • 3C is an example of the photocurrent generated by the light reflected by the wavelength selective filter and incident on the photodiode for optical wavelength monitoring.
  • FIG. 4 is a conceptual diagram of a narrow linewidth laser according to the present invention, a conceptual diagram of a structure having a light wavelength monitoring photodiode and a light intensity monitoring photodiode.
  • FIG. 5 is a conceptual diagram of a narrow linewidth laser according to the present invention, which is a conceptual diagram of another structure including a photodiode for light wavelength monitoring and a photodiode for light intensity monitoring.
  • FIG. 6 is a conceptual diagram illustrating an operating principle of a narrow linewidth laser according to the present invention, in which FIG. 6A is an example of the transmittance of the wavelength selective filter, and FIG. 6B is a laser when the laser diode chip is modulated at high speed.
  • FIG. 6A is an example of the transmittance of the wavelength selective filter
  • FIG. 6B is a laser when the laser diode chip is modulated at high speed.
  • Figure 6 (c) is the frequency characteristic of the laser light emitted from the laser diode chip multiplied by the transmittance of the wavelength selective filter Compared with the "1" signal of the laser light passing through the wavelength selective filter, the "0" signal is relatively reduced, thereby showing the frequency characteristic of the laser light with narrow line width.
  • FIG. 7 is a conceptual diagram showing how the frequency characteristic of the wavelength selective filter used in the present invention changes with temperature.
  • FIG. 8 is a view illustrating a laser device in which laser light emitted from a laser diode variably emits laser light corresponding to a plurality of ITU channels using an FP type etalon filter having periodic transmission characteristics according to an embodiment of the present invention.
  • 8A is an example in which the frequency characteristic through which the wavelength selective filter transmits varies according to the temperature of the thermoelectric element
  • FIG. 8B the emission wavelength characteristic of the laser diode chip which is modulated at high speed is shown.
  • FIG. 8C illustrates an example in which the wavelength characteristics of the laser light emitted through the wavelength selective filter vary depending on the temperature of the thermoelectric element.
  • FIG. 9 illustrates a case in which a thermoelectric element is not mounted in a TO-type package and a submount to which a laser diode chip is attached is directly disposed on a stem bottom surface according to another exemplary embodiment of the present invention.
  • FIG. 10 is a conceptual view illustrating the installation of a stand for easily fixing a 45 degree reflective mirror according to an exemplary embodiment of the present invention.
  • FIG. 11 is a conceptual diagram illustrating the installation of a photodiode for measuring the intensity of laser light emitted from a laser diode.
  • FIG. 12 is an example of a rectangular parallelepiped photodiode submount having a rectangular cross section.
  • 13 is an example of metal pattern deposition of a submount for a photodiode according to an embodiment of the present invention.
  • FIG. 15 shows an example of a thermistor placement method according to an embodiment of the present invention.
  • FIG. 1 is an external view showing a schematic view of a TO-type package applied to the present invention.
  • the TO-shaped package is largely composed of a stem 1 and a cap 2, in which parts are placed on the bottom of the stem 1 and sealed with a cap 2. Is produced.
  • the laser light is emitted outside the TO-type package through the through hole drilled in the upper portion of the cap (2).
  • a through-hole of the cap 2 is formed with a lens or sealed with a flat glass window.
  • arrow directions a horizontal direction and a vertical direction to be used in the following description of the present invention are defined as arrow directions.
  • optical device 2 is a wavelength selective filter mounted on the optical path of the laser light emitted from the semiconductor laser diode chip and the semiconductor laser diode chip in the TO-type package according to the present invention, for example, 10Gbps optical signal can be transmitted over a long distance
  • 10Gbps optical signal can be transmitted over a long distance
  • the wavelength selective filter is described as an FP type etalon filter having a plurality of transmission peaks to explain the characteristics of the present invention.
  • the wavelength selective filter has a line width of 0.5 instead of the FP type etalon filter.
  • Thin film filters of less than nm can also be used.
  • the thin film filter refers to a filter having only one transmission peak within a possible wavelength band of laser light generated from a laser diode chip, for example, a wavelength band of 10 nm to 50 nm.
  • such a thin film filter may also have a structure of an FP etalon filter.
  • the laser diode package includes a laser diode chip 100 installed in a submount 110 for a laser diode chip, and parallel light of laser light emitted from the laser diode chip 100.
  • a collimating lens 200 for collimating the light a 45 degree partial reflection mirror 300 reflecting only a predetermined ratio of light collimated through the collimation lens 200, and the 45 degree partial reflection mirror Among the laser beams reflecting the 300, the FP-type etalon filter 400, which is a wavelength selective filter for transmitting some laser light and reflecting the remaining light, is included.
  • the light reflected by the FP-type etalon filter 400 is returned to the 45-degree partial reflection mirror 300 again, and passes through the 45-degree partial reflection mirror 300 by a predetermined ratio to the 45-degree partial reflection mirror 300.
  • the light incident to the light wavelength monitoring photodiode 500 is disposed below.
  • the etalon filter 400 is attached to have a reflection angle of at least 1 degree with respect to the laser light incident to the etalon filter 400 and is reflected by the etalon filter 400. It is desirable to prevent light from returning to the laser diode chip 200.
  • the reflectivity of the 45 degree partial reflection mirror 300 when the reflectivity of the 45 degree partial reflection mirror 300 is high, the intensity of light incident on the optical wavelength monitoring photodiode 500 becomes weak, and thus it is difficult to perform the function of wavelength monitoring. Too low reflectivity decreases the intensity of the laser light emitted from the laser diode chip 100 and reaches the etalon filter 400. Therefore, the reflectance of the 45-degree partial mirror 300 should be adjusted to an appropriate level. According to a test result according to an embodiment of the present invention, the reflectivity of the 45-degree partial mirror 300 is about 80% to 97%. It is preferable.
  • Figure 3 (a) shows an example of the transmission characteristics according to the frequency of the FP-type etalon filter.
  • the etalon filter has a characteristic that the transmission and reflection characteristics are periodically repeated.
  • the fact that the FP-type etalon filter has periodic transmission characteristics means that it simultaneously has periodic reflection characteristics as shown in FIG. Therefore, among the laser light emitted from the laser diode chip in FIG. 2 and reaching the FP type etalon filter 400, the laser light reflecting the laser light has a specific reflection ratio according to the frequency of the laser light and passes through the 45 degree partial reflection mirror 300. To enter the light wavelength monitoring photodiode 500 under the 45-degree partial reflection mirror (300).
  • the reflectance of the light reflected by the FP-type etalon filter 400 has a specific reflection ratio according to the frequency of the laser light as shown in FIG. 3 (b)
  • the laser light incident on the photo-wavelength monitoring diode 500 The frequency dependence of the intensity is shown in (b) of FIG. 3, and thus the photocurrent in the optical wavelength monitoring photodiode 500 is shown in FIG. 3 (c) according to the frequency of the laser light. Accordingly, by measuring the photocurrent flowing in the optical wavelength monitoring photodiode 500 it is possible to determine the frequency characteristics of the laser light.
  • the intensity of the photocurrent flowing to the optical wavelength monitoring photodiode 500 changes with respect to the intensity of the laser light emitted from the laser diode chip 100 at a constant intensity, this is the center of the wavelength of the laser light and the etalon peak. It means that the relative wavelength of the wavelength is changing.
  • the wavelength of the laser light and the relative wavelength of the transmission wavelength band of the etalon filter 400 change by monitoring the change of the current flowing through the optical wavelength monitoring photodiode 500, and using this, the wavelength of the laser light May have a relatively constant wavelength spacing relationship with respect to the transmission wavelength of the etalon filter 400.
  • the glass etalon filter 400 has a temperature dependence of a wavelength as small as 10 pm / °C while DFB-LD has a temperature dependency of a wavelength as large as 100 pm / °C.
  • the peak of the etalon filter 400 is set to the frequency set by the ITU, the wavelength emitted from the laser diode chip 100 is set to the peak of the etalon filter 400, and then the laser diode chip.
  • the temperature of the laser diode chip 100 is adjusted in a direction to offset the change by grasping the change in the wavelength of the laser light emitted from the light wavelength monitoring photodiode 500 as a current flowing in the laser diode chip ( The oscillation wavelength of 100) is stabilized at the frequency set in the ITU.
  • the wavelength of the "1" signal of the laser light relatively passes through the etalon filter 400, and the "0" signal of the laser light is relatively poorly transmitted through the etalon filter 400.
  • the attenuation of the "0" signal is larger than that of the "1" signal, so that the light passing through the etalon filter 400 is emitted from the laser diode chip 100. Since the ER is larger than the signal of the laser light, it is easy to distinguish the signal from the optical receiver.
  • the photocurrent flowing to the optical wavelength monitoring photodiode 500 is changed not only by the difference between the reflectance wavelength band of the etalon filter 400 and the wavelength of the laser light, but also by the light emitted from the laser diode chip 100. Even when the intensity changes, the photocurrent flowing to the optical wavelength monitoring photodiode 500 is changed.
  • the change of the photocurrent in the optical wavelength monitoring photodiode 500 due to the change in the intensity of the laser light emitted from the laser diode chip 100 does not change the correlation between the wavelength of the laser beam and the etalon filter 400. The effect by the variation in the intensity of the laser light emitted from the laser diode chip 100 should be removed.
  • FIG. 4 illustrates a method of directly determining a change in light wavelength by directly measuring the intensity of laser light emitted from a laser diode chip in an embodiment of the present invention.
  • the laser light emitted from the laser diode chip 100 reaches the 45 degree partial reflection mirror 300 after being collimated by the collimation lens 200. Since the 45 degree partial reflection mirror 300 has a predetermined ratio of transmission / reflection ratio, the 45 degree partial reflection mirror of the laser light emitted from the laser diode chip 100 and reaching the 45 degree partial reflection mirror 300 is obtained.
  • the light component passing through 300 is incident on the light intensity monitoring photodiode 600 disposed on one side of the 45 degree partial reflection mirror 300. Therefore, the light intensity monitoring photodiode 600 can determine the intensity of the laser light emitted from the laser diode chip 100 by giving a photocurrent signal in proportion to the intensity of the laser light emitted from the laser diode chip 100.
  • the center frequency of the laser light is a wavelength selective filter.
  • the talon filter 400 is in a constant relationship with the center frequency of the transmission mode, thereby attenuating the " 0 " signal relatively more than the " 1 " signal to enable long distance communication.
  • the relationship between the transmission band center frequency of the etalon filter 400 and the center frequency of the laser light is obtained by comparing the photocurrent flowing through the optical wavelength monitoring photodiode 500 and the light intensity monitoring photodiode 600.
  • the laser light is transmitted to the transmission wavelength band of the etalon filter 400. It can be made to have a relatively constant wavelength for.
  • the center frequency of the transmission mode of the etalon filter 400 which is the wavelength selective filter, is set to be the ITU set frequency, and then the magnitude of the light current flowing through the optical wavelength monitoring photodiode 500 is measured by the light intensity monitoring photodiode 600
  • the temperature of the thermoelectric element 900 is changed so that the value divided by the current flowing in the constant state is constant, the center frequency of the oscillating laser light can be stabilized to be the ITU set frequency.
  • the thermoelectric element 900 whose temperature is controlled is disposed above the stem 1000.
  • the light intensity monitoring photodiode 600 may be implemented in other configurations.
  • the intensity of the laser light emitted from the laser diode chip 100 is emitted from the back of the laser diode chip 100 as shown in FIG. 5.
  • the measurement is possible by arranging the photodiode 700 for photo-sensing intensity to measure the intensity of the light.
  • 6A is a transmission characteristic according to the frequency of the FP type etalon filter.
  • 6B is a frequency characteristic of the laser light of the "1" signal and the "0" signal emitted from the laser diode chip.
  • the laser light of the " 1 " signal and the " 0 " signal emitted from the laser diode chip 100 passes through the FP-type etalon filter 400 and the frequency characteristics of the FP-type etalon filter 400 are multiplied.
  • laser light whose intensity of the “0” signal is reduced compared to the “1” signal is transmitted through the FP-type etalon filter 400 to be focused on the optical fiber.
  • the line width of the laser light transmitted through the optical fiber is less affected by the dispersion characteristics of the optical fiber because the "0" signal has a narrower line width than the "1" signal compared to the laser light emitted from the laser diode chip 100.
  • the FP-type etalon filter 400 it is possible to transmit a longer distance than the laser light does not narrow the line width.
  • the FP type etalon filter 400 is made of glass having a parallel plane.
  • the refractive index varies depending on the temperature. Accordingly, when the temperature of the FP-type etalon filter 400 is changed, the transmission frequency of the etalon filter 400 periodically changes as shown in FIG. 7. do.
  • the laser diode chip 100 typically produces a frequency shift on the order of 10-12 GHz / ° C.
  • the FP type etalon filter 400 brings about a frequency shift of 1 to 3 GHz / ° C.
  • the wavelength In the optical communication, communication must be made by using laser light of specific frequency specified in ITU-T. Therefore, in order to perform optical communication by changing the laser light, the wavelength should be changed only at the frequency set by ITU-T.
  • ITU-T laser light with 50 GHz and 100 GHz frequency intervals is set for communication. Accordingly, the laser light frequency should be changed in 50 GHz and 100 GHz intervals.
  • the laser diode chip 100 changes to 10 GHz / ° C.
  • the laser diode chip 100 and the FP-type etalon filter 400 may be thermoelectric elements.
  • the thermoelectric element 900 When it is adjusted to the same temperature by the 900, if the temperature of the thermoelectric element 900 is changed to control the wavelength of the laser light, the transmission wavelength band itself of the etalon filter 400 is also moved. Therefore, when the wavelength of the laser light 100 undergoes a temperature change of 50 GHz and 100 GHz, the etalon filter 400 must pass through this temperature change, and the transmission wavelength must match the ITU set frequency band.
  • the frequency mobility of the laser diode chip 100 is changed to Flaser GHz / ° C and the frequency of the etalon filter is changed to Ffilter GHz / ° C according to the temperature.
  • the frequency interval of the transmission wavelength band of the etalon filter 400 becomes the following Equation 1, the transmission mode of the laser diode chip 100 and the etalon filter 400 as shown in FIG.
  • the frequency matches the ITU set frequency at one temperature and then the frequency of the laser light emitted from the laser diode chip 100 at another temperature is changed to another ITU set frequency, the etalon filter 400 for this temperature change.
  • the light passing through the etalon filter 400 is set to the ITU set frequency in accordance with the ITU set frequency.
  • Ffilter is the transmission frequency mobility according to the temperature of the etalon filter
  • Flaser is the frequency mobility according to the temperature of the laser light emitted from the laser diode chip.
  • Equation 1 is the transmission mode frequency interval of the etalon filter 400 in the wavelength tunable laser using the ITU set frequency of 100GHz interval, if the communication using the frequency of 50GHz interval etalon filter 400
  • the transmission mode frequency interval of is to be implemented by the following equation (2).
  • the transmission mode interval of the etalon filter 400 may be arbitrarily determined, and may be changed to 25 GHz, 50 GHz, 100 GHz, 200 GHz, etc., but other arbitrary frequency intervals may also be adopted.
  • FIG. 2 to 9 illustrate a case where a wavelength selective filter having a relatively small change in transmission wavelength is used as compared with laser light oscillated by the laser diode chip 100 according to a change in temperature. That is, a method of changing the temperature of the laser diode chip 100 so that the wavelength of the laser light has a constant relationship with the transmission wavelength band of the wavelength selective filter is described. Accordingly, a method of arranging the laser diode chip 100 on the thermoelectric element 900 is required, and the etalon filter 400 is also attached to the thermoelectric element 900 to attach the laser diode chip 100 and the etalon filter 400. Shows a method of controlling the temperature of the same with the same thermoelectric element (900).
  • the method of using the thermoelectric element 900 is a method that consumes a lot of energy.
  • the method of controlling the wavelength of the laser light emitted from the laser diode chip 100 by adjusting the temperature of the laser diode chip 100 using the thermoelectric element 900 includes the wavelength of the laser light and the etalon filter 400.
  • the temperature of the laser diode chip 100 when it is not necessary to adjust the temperature of the laser diode chip 100, and adjust the temperature of the etalon filter 400 to filter the etalon filter. If the transmission wavelength band of 400 maintains a constant wavelength interval with the wavelength of the laser light, the "0" signal is attenuated more than the "1" t signal, thereby making the laser light having a narrow line width to enable long-distance transmission. can do. For this purpose, it is preferable to use an etalon filter coated with a heater as the etalon filter 400.
  • FIG. 9 illustrates a case in which the TO-type package is not equipped with a thermoelectric element and a submount to which a laser diode chip is attached is disposed directly on the stem bottom surface.
  • the temperature of the laser diode chip 100 is exposed to an external environmental temperature. Accordingly, when the external environmental temperature is changed, the temperature of the laser diode chip 100 is changed to change the wavelength of the laser light that is oscillated.
  • the etalon filter 450 is manufactured in a form with a heater, the transmission wavelength peak of the etalon filter 450 is adjusted in advance by adjusting the temperature of the etalon filter 450.
  • the "0" signal of the laser light passing through the etalon filter 450 is attenuated more strongly than the "1" signal, thereby transmitting a high-speed modulated optical signal over a longer distance.
  • the transmission wavelength of the etalon filter 450 is easily changed according to temperature.
  • the etalon filter 450 is made of Silicon or InP such that the wavelength of the transmission wavelength is changed to about 0.09 nm / ° C. It is suitable to be made of a semiconductor material such as GaAs.
  • a resistor of a metal thin film is attached to the surface of the etalon filter 450, and the etalon filter is generated by a current flowing through the metal thin film attached to the etalon filter 450. It is preferable that the temperature of 450 be adjusted. Attaching the metal thin film to the etalon filter 450 can be easily manufactured by the photolithography method and the metal deposition method.
  • the etalon filter 450 preferably has a plurality of transmission peaks, and the etalon filter 450 in consideration of the ease of manufacturing an optical device and the plurality of transmission peak wavelengths of the etalon filter 450. ), The thickness of about 200um to 500um is appropriate.
  • Figure 10 shows the appearance of a 45-degree reflective mirror stand for easily mounting a 45-degree reflective mirror in the TO-type package according to an embodiment of the present invention.
  • Stand 350 is made of a rectangular parallelepiped, has a through hole 351 at an angle of 45 degrees to the base, the through-hole 351 is a flat 45-degree partial mirror ( 300 is inserted and mounted on the thermoelectric element. This structure allows the 45 degree partial reflection mirror 300 to be easily attached onto the thermoelectric element 900.
  • the stand 350 may be a material having a good heat transfer rate, and a silicon substrate having a heat transfer rate of 170 W / m and an easy manufacturing of the through hole 351 by a dry etching process may be appropriate.
  • the flat partial reflection mirror 300 of the silicon-type stand 350 is only the through hole 351.
  • the flat plate reflection mirror 300 is placed at an angle of 45 degrees to facilitate the assembly process.
  • the external environment temperature of the TO-type package varies, heat exchange occurs between the outer circumferential surface of the TO-type package and the internal components of the TO-type package. Since the distance between each internal component of the TO package and the outer circumferential surface of the TO package can vary widely, a change in the external environmental temperature of the TO package can unevenly change the temperature of the internal component of the TO package. Since the independent temperature change of the resonator component material causes a non-uniform change in the effective optical length of the resonator, it is desirable to minimize heat exchange between the resonator component and the outer peripheral surface of the TO-type package. Therefore, it is preferable to keep the inside of the TO-type package in a vacuum, and in particular, the degree of vacuum is more preferably 0.2 atm or less.
  • the present invention can be modified in various forms.
  • the characteristics of the present invention can be driven by a laser driven at a specific wavelength without using a tunable laser.
  • the etalon filter 400 since the periodicity of the frequency interval of the etalon filter 400 is not necessary, the etalon filter 400 The periodicity of the frequency of does not need to follow the equation (1).
  • Any kind of filter having wavelength selectivity, such as a thin film filter manufactured by stacking a dielectric thin film, may be used.
  • the thickness of the flat 45 degree partial reflection mirror 300 is appropriately about 0.1 to 0.3mm, more preferably about 0.1 to 0.2mm to meet the standard of TO60.
  • FIG. 11 is a conceptual diagram illustrating a photodiode for measuring the intensity of laser light emitted from a laser diode chip.
  • FIG. 11 is a cross-sectional view typically used to measure the intensity of laser light emitted horizontally from the laser diode chip 100.
  • the photodiodes 700 and 710 are shown attached to the submounts 710 and 610 for the photodiode at right angles.
  • FIG. 12 shows an example of a rectangular parallelepiped submount for photodiodes having a rectangular cross section.
  • a metal pattern for electrical connection of a photodiode is to be deposited on a rectangular submount made of a ceramic substrate such as alumina to form a metal thin film pattern.
  • the metal pattern is formed on two consecutive surfaces curved at right angles. It is difficult to deposit all at once. Therefore, conventionally, there is a problem in that the cost is increased by depositing a metal pattern on each side of the metal pattern to be coated separately.
  • the present invention provides a method of depositing a metal pattern on a photodiode submount at a time, and FIG. 13 shows an example of metal pattern deposition on such a photodiode submount.
  • the silicon substrate is etched to expose the ⁇ 100 ⁇ plane and the ⁇ 111 ⁇ plane, and then an electrical insulating layer is deposited on the etched silicon substrate, and the ⁇ 100 ⁇ plane and ⁇
  • a method of fabricating the photodiode submounts 615 and 715 by simultaneously depositing a metal pattern on the surface 111 ⁇ is provided.
  • the photodiode submounts 615 and 715 are not only inexpensive to fabricate but also have a rectangular cross-section, whereas the photodiode submounts 610 and 710 have a flat 45 degree angle. Since the difference between the inclination angle and the placement angle of the partial reflection mirror 300 is small, it may be more closely disposed in the flat 45 degree partial reflection mirror 300, thereby helping to utilize the space inside the TO package.
  • the thermistor mounted on the thermoelectric element 900 inside the package and measuring the temperature should not be affected by temperature changes outside the TO package.
  • the thermistor 950 has an electrical connection with the electrode pin 1010 by Au wire 1020.
  • the electrode pin 1010 is not a temperature controlled portion by the thermoelectric element 900, the electrode fin 1010 has a temperature different from that of the thermoelectric element 900, and thus, the heat exchange between the electrode pin 1010 and the thermistor 950 is performed. This occurs, causing the thermistor 950 to be inaccurate in measuring the temperature of the thermoelectric element 900.
  • Figure 15 shows a thermistor placement method according to an embodiment of the present invention presented in accordance with this problem.
  • the submount 980 for connecting the thermistor between the electrode pin 1010 and the thermistor 950 to suppress heat exchange between the electrode pin 1010 and the thermistor 950 attach the electrode pin 1010 and thermistor connection submount 980 to the Au wire 1020 via the thermistor connection submount 980, and the Au wire 1030 to the submount for thermistor connection. 980 and the thermistor 950 are connected. Accordingly, since the heat flowing to the Au wire 1020 is absorbed by the thermistor connection submount 980 due to the temperature difference between the electrode pin 1010 and the thermoelectric element 900, the amount of heat flowing to the Au wire 1030 is minimized.
  • the temperature measurement of the thermistor 950 can be more accurate. As described above, the thermistor 950 and the electrode pin 1010 are separated from the thermal path between the thermoelectric element 900 and the thermistor 950 through the thermistor connection submount 980 independently attached to the upper portion of the thermoelectric element 900. ) Is electrically connected to each other, the inaccuracy due to the change of the external environment temperature during the temperature measurement of the thermoelectric element 900 through the thermistor 950 can be alleviated.
  • thermoelectric element 900 of the thermistor 950 increases the accuracy of the temperature measurement.
  • the 45-degree partial reflection mirror 300 was produced by various tests, and according to the results of the experiment, the 45-degree partial reflection mirror 300 had a thickness of about 0.1 mm to 0.25 mm.
  • the optical wavelength monitoring photodiode 500 disposed below the 45 degree partial reflection mirror 300 has been described as being fixedly arranged on one side of the upper portion of the optical wavelength monitoring photodiode submount 510, the optical wavelength The monitoring photodiode 500 may be disposed on the thermoelectric element 900. This is because the upper plate of the thermoelectric element 900 has a thermal expansion coefficient similar to that of the optical wavelength monitoring photodiode 500, thereby minimizing the mechanical stress applied to the optical wavelength monitoring photodiode 500 according to the temperature variation.
  • the monitoring photodiode 50 can be assembled in such a way that it is directly attached to the top of the thermoelectric element 900. In this case, there is an advantage that the lower space of the 45 degree partial reflection mirror 300 can be used as efficiently as possible.

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Semiconductor Lasers (AREA)

Abstract

The present invention relates to a TO-type laser device capable of long-distance transmission having reduced laser light line width. The laser device according to the present invention comprises: a laser diode chip (100) for emitting laser light; a wavelength-selective filter; a collimating lens (200) provided on an optical path between the laser diode chip (100) and the wavelength-selective filter to collimate the light emitted from the laser diode chip (100); a 45° partial reflective mirror (300) provided on the optical path between the laser diode chip (100) and the wavelength-selective filter to redirect laser light traveling horizontally with respect to a package bottom surface to laser light traveling vertically with respect to the package bottom surface; and an optical wavelength-monitoring photodiode (500) arranged on to an optical path on which a laser light reflected from the wavelength-selective filter after being emitted from the laser diode chip (100) penetrates the 45° partial reflective mirror (300). In addition, the temperature of a thermoelectric device having a laser diode chip attached thereto is adjusted or the temperature of an etalon filter is adjusted to maintain a constant relationship between the wavelength of laser light and the wavelength of the etalon filter, and a "0" signal of the laser light is reduced to more than a "1" signal of the laser light to reduce the line width of a laser signal, thereby allowing longer-distance transmission of a high-speed modulation optical signal. In the present invention, a laser device using a low-price TO-type package is provided wherein parts are arranged around the 45° partial reflective mirror to obtain a laser signal which can be modulated at a high speed and can be communicated at a long distance by using a low-price TO-type package, and laser light modulated at a high speed can be transmitted up to a long distance when the laser light wavelength is maintained at a constant value; when the laser light wavelength is changed to a desired wavelength; and when the laser light wavelength is not adjusted.

Description

파장 안정화 장치가 구비된 레이저 장치Laser device with wavelength stabilization device
본 발명은 레이저 장치에 관한 것으로, 특히 파장 안정화 장치를 갖추고 초소형으로 제작 가능하며 패키지에서 발산되는 레이저 빛의 선폭이 줄어들어 장거리 전송이 가능한 파장 안정화 장치가 구비된 레이저 장치에 관한 것이다. BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a laser device, and more particularly, to a laser device having a wavelength stabilization device and having a wavelength stabilization device which can be manufactured in a very small size and has a line width of laser light emitted from a package, thereby allowing long distance transmission.
근래에 들어 스마트폰 등의 동영상 서비스를 비롯하여 통신 용량이 매우 큰 통신 서비스들이 출시되고 있다. 이에 따라 종래의 통신 용량을 대폭적으로 증가시킬 필요가 대두 되고 있는데, 이렇게 통신 용량을 대폭적으로 증가시키는 방법으로 광통신에 사용되는 bit rate를 늘리는 방법과, 하나의 광섬유에 여러 가지 파장의 광신호를 동시에 전송하는 방법인 WDM(wavelength division multiplexing) 방법이 사용되고 있다. WDM 방식도 종래에 널리 사용되던 1310um 대역 광신호와 1550um 대역 광신호의 두 가지 파장의 WDM 방식에서 현재는 주파수 간격이 100GHz, 50GHz인 매우 조밀한 WDM(DWDM;Dense WDM)이 채택되고 있다. 더 나아가 광통신 용량을 더 증가시키기 위해서 하나의 파장을 가지는 광신호의 bit rate를 올리는 방법과 여러 가지 파장의 빛을 하나의 광섬유로 통과시키는 WDM 방법이 동시에 적용되기 시작하고 있다. Recently, communication services with a large communication capacity, including video services such as smartphones, have been released. Accordingly, there is a need to greatly increase the conventional communication capacity. As a method of greatly increasing the communication capacity, a method of increasing the bit rate used for optical communication and simultaneously applying optical signals of various wavelengths to one optical fiber A wavelength division multiplexing (WDM) method is used. In the WDM method, two wavelengths of 1310 um band optical signal and 1550 um band optical signal, which are widely used in the past, a very dense WDM (Dense WDM) having a frequency interval of 100 GHz and 50 GHz is currently adopted. Furthermore, in order to further increase optical communication capacity, a method of increasing the bit rate of an optical signal having one wavelength and a WDM method for passing various wavelengths of light through one optical fiber are being applied simultaneously.
그러나 반도체 레이저 다이오드에서 레이저 빛을 "1" 신호와 "0" 신호에 해당하는 전류를 흘려주어 빛의 강도를 변조시키고 이러한 빛의 강도 변화에 따른 신호를 "1"과 "0" 신호로 해석하는 방식의 광통신에 있어서, 반도체 레이저 다이오드 칩에서 발생되는 레이저 빛의 파장이 주입 전류의 크기에 따라 파장이 변화하는 chirp 현상이 발생하게 된다. 여기서 "1" 신호는 통상적으로 광세기가 강한 bit의 신호를 나타내고, 광세기가 약한 빛의 신호는 "0" 신호라 한다. 반도체 레이저 다이오드 칩은 주입된 전류의 양이 클 경우 더 큰 광 출력이 발생하므로, 앞서 설명한 "1" 신호는 레이저 다이오드 칩에 상대적으로 큰 전류가 흐를 경우에 해당하며, "0" 신호는 레이저 다이오드 칩에 상대적으로 작은 전류가 흐를 때의 광출력에 해당한다. 예를 들어 10Gbps 급의 변조속도에 있어서 "1" 신호와 "0" 신호 사이에는 대략 5GHz 내지 10GHz의 파장 변화가 생기게 되며 이러한 파장의 차이를 chirp이라고 한다. 통상적인 DFB-LD 에 있어서 "1" 신호는 "0" 신호에 비해 주파수가 5GHz 내지 10GHz 정도 커지며, 이에 따라 "1" 신호의 파장은 "0" 신호에 비해 파장이 짧은 특성이 있다. 광섬유에서는 dispersion 현상에 의해 빛의 파장에 따라 빛의 전달 속도가 달라지게 되고, 이러한 dispersion 현상은 반도체 레이저를 "1"과 "0"으로 구동할 때 발생하는 chirp 특성에 따라 "1" 신호와 "0" 신호의 전송 속도를 달라지게 하며, 이에 따라 광수신기에 광신호가 도달할 무렵에는 "1" 신호와 "0" 신호가 섞이게 되어 신호 분리가 어려운 현상이 발생하게 된다. However, the semiconductor laser diode modulates the light intensity by flowing the current corresponding to the "1" signal and the "0" signal, and interprets the signal according to the change of the light intensity as the "1" and "0" signals. In the optical communication method, a chirp phenomenon occurs in which the wavelength of the laser light generated by the semiconductor laser diode chip changes depending on the magnitude of the injection current. Here, the signal "1" typically indicates a signal having a strong light intensity, and a signal having light with low light intensity is called a "0" signal. Since the semiconductor laser diode chip generates a larger light output when the amount of injected current is large, the "1" signal described above corresponds to a case where a large current flows in the laser diode chip, and the "0" signal is a laser diode. This corresponds to the light output when a relatively small current flows through the chip. For example, at a modulation rate of 10 Gbps, a wavelength change of approximately 5 GHz to 10 GHz occurs between a "1" signal and a "0" signal, and the difference in wavelength is referred to as chirp. In a typical DFB-LD, the "1" signal has a frequency greater by 5 GHz to 10 GHz than the "0" signal. Accordingly, the wavelength of the "1" signal has a shorter wavelength than the "0" signal. In optical fibers, dispersion speed causes light transmission speed to vary according to the wavelength of light. This dispersion phenomenon depends on the chirp characteristics generated when driving semiconductor lasers to "1" and "0". The transmission speed of the 0 "signal is changed. As a result, when the optical signal arrives at the optical receiver, the" 1 "signal and the" 0 "signal are mixed, which makes it difficult to separate the signal.
이러한 현상은 특히 bit rate가 높을 때, 그리고 전송 거리가 멀어질 때 더 심각하게 발생되게 되어, 10Gbps 급으로 구동되는 1550nm 대역의 반도체 레이저에서 발생하는 광신호의 경우 10Km 이상의 광전송은 매우 어려울 뿐만 아니라 심지어 5Km의 광전송도 어려운 경우가 있다. This phenomenon is particularly acute when the bit rate is high and when the transmission distance is too long. For optical signals generated at 1550 nm band semiconductor lasers running at 10 Gbps, the transmission of more than 10 km is not only very difficult, even 5Km optical transmission is also difficult.
반도체 레이저 다이오드 칩을 10Gbps 급의 고속으로 동작시키기 위해서는 "0" 신호에 해댕하는 bias 전류와 "1" 신호에 해당하는 modulation 전류를 흘려주어야 하는데, "0" 신호에서는 반도체 레이저 다이오드 칩으로 bias 전류가 흐르게 되고, "1" 신호에 대해서는 bias 전류에 modulation 전류가 더해진 전류가 흐르게 된다. 10Gbps 급의 고속 통신을 위해서는 반도체 레이저 다이오드 칩의 광반응이 10Gbps 급의 RF(radio frequency) 주파수의 신호에 대해 빠른 반응도를 가져야 하나, 반도체 레이저 다이오드 칩의 RF 전기 신호에 대한 광반응도를 높이기 위해서는 bias 전류를 높이는 것이 바람직하다. Modulation 전류의 크기는 반도체 레이저 다이오드 칩을 구동하는 전자회로의 특성에 의해 결정되는데, 전자회로가 높은 주파수 반응 특성을 가지게 하기 위해서는 modulation 전류의 크기를 낮추는 것이 바람직하다. 그러므로 반도체 레이저 다이오드 칩의 RF 반응 특성을 개선하기 위해서 반도체 레이저 다이오드 칩으로 흐르는 bias 전류를 높이고, 또한 반도체 레이저 다이오드 칩의 구동 회로의 RF 특성을 개선하기 위하여 낮은 전류의 modulation 전류 크기를 가질 경우 "1"에 해당하는 광신호의 세기와 "0"에 해당하는 광신호의 세기의 차이가 작아지게 된다. "1"에 해당하는 광신호와 "0"에 해당하는 광신호의 세기의 비율을 ER(extinction ratio)라 한다. 이 ER이 낮을 경우 반도체 레이저 다이오드 칩의 chirp 현상과 광섬유의 dispersion 현상에 의해 광수신단에서 "1"과 "0" 신호가 섞이게 되어 광수신단에서 광신호를 해독하기가 어려워진다. 이러한 반도체 레이저 다이오드 칩의 chirp 현상과 광섬유의 dispersion에 의해 광신호의 혼선이 발생하는 것은 ER을 크게 하여 줄일 수 있으나, ER을 크게 하기 위해서는 bias 전류를 줄여야 하고, modulation 전류는 키워야 한다. 그러나 bias 전류를 줄이면 반도체 레이저 다이오드 칩의 전기신호에 대한 광반응 속도가 떨어지게 되고, modulation의 크기를 증가시키면 반도체 레이저 다이오드 칩을 구동하기 위한 구동회로의 반응속도가 떨어지는 문제가 있다. In order to operate a semiconductor laser diode chip at a high speed of 10Gbps, a bias current corresponding to a "0" signal and a modulation current corresponding to a "1" signal must be flowed. In a "0" signal, a bias current is applied to the semiconductor laser diode chip. For the "1" signal, a current is added to the bias current plus the modulation current. For the high speed communication of 10Gbps, the optical response of the semiconductor laser diode chip should have a fast response to the radio frequency (RF) frequency signal of 10Gbps, but to increase the optical response of the RF laser signal of the semiconductor laser diode chip, It is desirable to increase the current. The magnitude of the modulation current is determined by the characteristics of the electronic circuit driving the semiconductor laser diode chip. In order for the electronic circuit to have a high frequency response characteristic, it is desirable to reduce the magnitude of the modulation current. Therefore, when the bias current flowing to the semiconductor laser diode chip is improved to improve the RF response characteristics of the semiconductor laser diode chip, and the modulation current magnitude of the low current is increased to improve the RF characteristics of the driving circuit of the semiconductor laser diode chip, the " 1 The difference between the intensity of the optical signal corresponding to "" and the intensity of the optical signal corresponding to "0" becomes small. The ratio of the intensity of the optical signal corresponding to "1" and the optical signal corresponding to "0" is called ER (extinction ratio). If the ER is low, the "1" and "0" signals are mixed at the optical receiver due to the chirp phenomenon of the semiconductor laser diode chip and the dispersion of the optical fiber, making it difficult to decode the optical signal at the optical receiver. The occurrence of crosstalk of the optical signal due to the chirp phenomenon of the semiconductor laser diode chip and the dispersion of the optical fiber can be reduced by increasing the ER. However, in order to increase the ER, the bias current must be reduced and the modulation current must be increased. However, if the bias current is reduced, the optical response speed of the electrical signal of the semiconductor laser diode chip is decreased, and if the modulation size is increased, the response speed of the driving circuit for driving the semiconductor laser diode chip is decreased.
이러한 문제를 해결하기 위해 Chang-Hee Lee 등은 CLEO' 95(CLEO 1995, CTuI10)에서 DFB-LD(Distributed feedback laser diode) 광원에서 출력된 레이저 빛을 광학적으로 필터링(filtering) 하여 "0" 신호를 제거하거나 또는 줄여주는 방법으로 ER을 개선하여, 반도체 레이저 다이오드 칩으로부터 출력된 레이저 빛을 광학적으로 필터링 하지 않았을 경우에 비해 더 장거리의 전송이 가능함을 보이고 있다. 이는 광학적 필터의 투과 대역 파장을 "1"에 맞추어 주면 이러한 "1" 신호에 비해 파장이 긴 "0" 신호는 광학적 필터에 의해 차단되므로, 광섬유로 전송되는To solve this problem, Chang-Hee Lee et al. Optically filter the laser light output from a distributed feedback laser diode (DFB-LD) light source at CLEO '95 (CLEO 1995, CTuI10) to filter out a "0" signal. By improving or eliminating the ER, it has been shown that longer transmissions can be achieved than without optically filtering the laser light output from the semiconductor laser diode chip. This is because when the transmission band wavelength of the optical filter is set to "1", the "0" signal, which is longer in wavelength than the "1" signal, is blocked by the optical filter, so it is transmitted to the optical fiber.
"0" 신호는 "1" 신호에 비해 상대적으로 강도가 약해지게 되어 ER이 증가하고 이에 따라 광수신기에서 광신호의 수신이 용이해지게 되어 더 장거리까지 광신호를 보낼 수 있게 된다. 그러므로 광학적 필터의 투과 대역의 선폭은 "1" 신호와 "0" 신호의 파장 차이에 따라 의미있는 수준의 투과율 차이를 가져야 하는데, 이러한 투과율의 차이는 광학적 필터의 투과 대역 선폭으로 조절될 수 있다. 앞서 설명한 바와 같이 "1" 신호와 "0" 신호는 5GHz 내지 10GHz 정도의 주파수 차이를 보이므로, 광학적 필터의 투과 파장 대역의 선폭은 이러한 정도의 파장 차이에 대해 의미있는 투과율 차이를 보이도록 설정되어야 한다. The "0" signal has a weaker strength than the "1" signal, which increases the ER, thereby facilitating the reception of the optical signal at the optical receiver, thereby allowing the optical signal to be sent over longer distances. Therefore, the line width of the transmission band of the optical filter should have a significant level of transmittance difference according to the wavelength difference between the "1" signal and the "0" signal, and this difference in transmittance can be adjusted to the transmission band line width of the optical filter. As described above, since the "1" signal and the "0" signal have a frequency difference of about 5 GHz to 10 GHz, the line width of the transmission wavelength band of the optical filter should be set to show a meaningful transmittance difference with respect to this wavelength difference. do.
전술한 Chang-Hee Lee 등의 CLEO' 95( CLEO 1995, CTuI10)의 참고문헌에는 이러한 광학적 필터의 투과 대역의 -3dB 대역폭을 12GHz로 설정하고 있으나 광학적 필터의 투과 대역폭은 5GH 내지 30GHz에서 적절한 값을 사용하는 것이 바람직하다. 상기 광학적 필터는 적어도 10nm 내지 100nm의 파장 대역에서 하나의 투과 파장 대역 피크를 가지는 형태의 광학적 필터를 사용할 수 있으나 이러한 파장 대역에서 복수개의 투과 파장 대역을 가지는 필터도 사용이 무방하다. 복수개의 투과 파장 대역을 가지는 광학적 필터의 경우 전술한 -3dB 대역폭은 어느 하나의 투과 파장 피크의 -3dB 대역폭으로 정의된다. 복수개의 투과 파장 대역을 가지는 경우 복수개의 투과 파장 대역 사이의 주파수 차이는 적어도 투과 파장 대역의 -3dB폭보다 커져야 한다.The aforementioned reference by Chang-Hee Lee et al. In CLEO '95 (CLEO 1995, CTuI10) sets the -3dB bandwidth of the transmission band of such an optical filter to 12 GHz. However, the transmission bandwidth of the optical filter has an appropriate value at 5 GHz to 30 GHz. It is preferable to use. The optical filter may use an optical filter having a transmission wavelength band peak in a wavelength band of at least 10 nm to 100 nm, but a filter having a plurality of transmission wavelength bands in the wavelength band may be used. In the case of an optical filter having a plurality of transmission wavelength bands, the aforementioned -3 dB bandwidth is defined as -3 dB bandwidth of any one transmission wavelength peak. In the case of having a plurality of transmission wavelength bands, the frequency difference between the plurality of transmission wavelength bands should be at least larger than the -3 dB width of the transmission wavelength band.
한편, DFB-LD 형태의 반도체 레이저의 경우 운용온도에 따라 파장이 달라지는데, 통상적으로 0.1nm/℃ 정도의 파장 변화율을 가진다. 그러므로 -40℃∼85℃의 환경 온도 변화에 따라 반도체 레이저 다이오드 칩은 약 12.5nm 정도의 파장 변화를 가지게 된다. 그러므로 인접하는 파장이 20nm 정도 떨어진 경우에는 반도체 레이저 다이오드 칩의 온도를 조절하지 않아도 각 파장의 혼선 현상을 없앨 수 있다. 그러므로 통상적으로 20nm 이상의 파장 간격을 가지는 광신호의 경우에는 반도체 레이저 다이오드 칩의 온도를 조절하지 않고 사용한다. 그러나 인접하는 파장과의 파장 간격이 10nm 이내일 경우 반도체 레이저 다이오드 칩은 온도 변화를 억제하기 위하여 열전소자를 사용하여 반도체 레이저 다이오드 칩의 온도를 일정하게 유지하여야 한다. On the other hand, in the case of the DFB-LD type of semiconductor laser wavelength varies depending on the operating temperature, typically has a wavelength change rate of about 0.1nm / ℃. Therefore, the semiconductor laser diode chip has a wavelength change of about 12.5 nm according to the environmental temperature change of -40 ° C to 85 ° C. Therefore, when adjacent wavelengths are separated by about 20 nm, crosstalk of each wavelength can be eliminated without adjusting the temperature of the semiconductor laser diode chip. Therefore, in general, an optical signal having a wavelength interval of 20 nm or more is used without adjusting the temperature of the semiconductor laser diode chip. However, when the wavelength gap between adjacent wavelengths is within 10 nm, the semiconductor laser diode chip must maintain a constant temperature of the semiconductor laser diode chip using a thermoelectric element in order to suppress the temperature change.
10Gbps 급의 고속 광통신의 경우 DFB-LD 칩의 chirp 현상과 광섬유의 dispersion 현상은 반도체 레이저 다이오드 칩의 운용 온도와 무관하게 발생하는 현상이므로, 10Gbps 급의 고속 광통신을 장거리 전송하기 위해서는 광통신에 사용되는 파장들간의 파장 간격과 무관하게 반도체 레이저 다이오드 칩에서 출력되는 광신호를 광학적으로 필터링 할 필요가 있다. In the case of 10Gbps high speed optical communication, the chirp phenomenon of the DFB-LD chip and dispersion of optical fiber occur regardless of the operating temperature of the semiconductor laser diode chip. Therefore, the wavelength used for optical communication is required to transmit 10Gbps high speed optical communication over a long distance. Regardless of the wavelength gap between them, it is necessary to optically filter the optical signal output from the semiconductor laser diode chip.
또한, 현재 세계적으로 표준화되고 있는 광통신 모듈인 SFP(small form factor pluggable)이라는 형태의 제품은 내부 규격이 매우 작아 소형화된 광소자가 필요하다. 현재 반도체 레이저 칩을 장착하는 패키지는 TO(transistor outline)형, 미니플랫형, 버터플라이형 등의 패키지 하우징이 있는데, 이 중에서 TO형 패키지의 경우 부피가 매우 작고 상대적으로 가격이 매우 저렴하여 수량이 많이 필요한 가입자용의 광통신망에 적극적으로 사용되고 있다. 그러나 기존의 TO형의 패키지에 DFB-LD 칩과 DFB-LD 칩에서 방출되는 레이저 빛을 광학적으로 필터링 하여 "1" 신호와 "0" 신호의 비율인 ER을 증가시키기 위한 광학 필터(optical filter)가 내장되는 형태의 패키지는 보고된 바가 없다. In addition, a small form factor pluggable (SFP) type, an optical communication module that is currently being standardized around the world, requires a miniaturized optical device because its internal size is very small. Currently, packages equipped with semiconductor laser chips include TO (transistor outline) type, mini flat type, and butterfly type package housings. Among them, the TO type package is very small in volume and relatively low in price. It is actively used in optical communication networks for subscribers who need a lot. However, an optical filter for optically filtering the laser light emitted from the DFB-LD chip and the DFB-LD chip in an existing TO type package to increase the ER which is the ratio of the "1" signal to the "0" signal. Packages with built-in types have not been reported.
반도체 레이저 다이오드 칩은 운용 온도에 따라 발진 파장이 달라지므로 반도체 레이저 다이오드 칩에서 방출되는 레이저 빛 신호 중 "1" 신호는 효과적으로 전송시키고, "0" 신호는 효과적으로 차단하기 위해서 외부 환경 온도의 변화에 따라 반도체 레이저 다이오드 칩에서 방출되는 레이저 빛의 파장과 광학적 필터의 투과 대역 파장 사이에 미리 정해진 일정한 관계를 유지하여야 한다. 그렇지 않으면 전송하여야 할 "1" 신호가 차단되고, 전송을 차단하여야 할 "0" 신호가 잘 전송되는 문제가 발생하여 광통신이 어려워지게 된다.Since the oscillation wavelength varies depending on the operating temperature, the semiconductor laser diode chip transmits the "1" signal among the laser light signals emitted from the semiconductor laser diode chip effectively, and the "0" signal effectively blocks the change in the external environment temperature. A predetermined constant relationship must be maintained between the wavelength of the laser light emitted from the semiconductor laser diode chip and the wavelength of the transmission band of the optical filter. Otherwise, a signal of "1" to be transmitted is blocked and a problem of "0" signal to be blocked is transmitted well, which makes optical communication difficult.
[선행기술문헌][Preceding technical literature]
[특허문헌][Patent Documents]
(특허문헌 1) 대한민국 등록특허공보 제10-1124171호 (2012.02.29)(Patent Document 1) Republic of Korea Patent Publication No. 10-1124171 (2012.02.29)
본 발명은 상기 종래 기술의 문제점을 해결하기 위하여 제안된 것으로서, 본 발명은 DFB-LD 칩에서 방출되는 레이저 빛을 광학적으로 필터링 하여 "1" 신호와 "0" 신호의 상대적 세기 비율인 ER을 증가시켜 광신호의 선폭을 줄임으로써, 발진 선폭이 줄어든 레이저 빛을 방출하는 초소형이며 저가형인 TO형 레이저 장치를 제공하는 데 그 목적이 있다. The present invention has been proposed to solve the problems of the prior art, and the present invention optically filters the laser light emitted from the DFB-LD chip to increase the ER, which is the relative intensity ratio of the "1" signal and the "0" signal. It is an object of the present invention to provide an ultra-compact and inexpensive TO type laser device that emits laser light having a reduced oscillation line width by reducing the line width of an optical signal.
특히, 본 발명은 저가의 TO형 패키지를 사용하되 레이저 다이오드 패키지의 배치를 통하여 TO형 패키지의 크기를 종래의 버터플라이형 패키지에 비해 소형으로 제작 가능하도록 하여, 종래 규격화된 SFP 트랜시버 케이스에 장착이 가능한 크기로 제작 가능한 파장 가변형 레이저 장치를 제공하는데 그 목적이 있다.In particular, the present invention uses a low-cost TO-type package, but can be manufactured in a small size compared to the conventional butterfly-type package through the arrangement of the laser diode package, it is easy to be mounted on a conventional standardized SFP transceiver case It is an object of the present invention to provide a tunable laser device that can be manufactured in a possible size.
또한, 본 발명은 DFB-LD(Distributed feedback laser diode)를 사용하여 고속의 광통신을 수행할 때, 반도체 레이저 다이오드 칩에서 방출되는 레이저 빛의 파장과 광학적 필터의 투과 파장 대역 사이에 일정한 상대 파장 위치를 고정하는 방법을 제공하기 위한 파장 안정화 장치를 내장하는 레이저 장치를 제공하는데 그 목적이 있다.In addition, the present invention provides a constant relative wavelength position between the wavelength of the laser light emitted from the semiconductor laser diode chip and the transmission wavelength band of the optical filter when performing high-speed optical communication using a distributed feedback laser diode (DFB-LD). It is an object of the present invention to provide a laser device incorporating a wavelength stabilization device for providing a method of fixing.
고속의 광통신에 사용되는 DFB-LD의 경우 인접한 광통신 파장 채널 간격이 20nm가 넘을 경우도 있으며, 광통신 파장 채널 간격이 주파수로 변환하여 50GHz 또는 100GHz의 파장 간격을 가지는 경우도 있다. 특히 광통신의 파장 채널 간격이 50GHz 또는 100GHz의 경우 DFB-LD의 온도에 따른 파장 변화를 이용하여 하나의 DFB-LD 칩을 다수의 DWDM급 광통신의 광파장에 해당하는 광원 모듈로 사용하는 파장 가변형 광원으로 사용할 수 있다. In the case of the DFB-LD used for high-speed optical communication, adjacent optical communication wavelength channel spacing may be more than 20 nm, and optical communication wavelength channel spacing may be converted into frequency and have a wavelength gap of 50 GHz or 100 GHz. In particular, when the wavelength channel spacing of optical communication is 50 GHz or 100 GHz, it is a variable wavelength light source that uses one DFB-LD chip as a light source module corresponding to the optical wavelength of multiple DWDM-class optical communication by using the wavelength change according to the temperature of DFB-LD. Can be used.
10Gbps 급의 고속, 장거리 광통신에 있어서 광모듈의 저가화를 위해서는 TO형의 패키지를 사용하는 것이 바람직하므로, 광통신의 파장 간격이 20nm 이상이어서 DFB-LD의 파장을 조절하지 않는 경우에도 광신호의 ER을 증가시키기 위해 레이저 광신호를 광학적으로 필터링 하는 방법이 필요하고, 인접하는 파장 채널이 DWDM 급의 파장 간격을 가져 DFB-LD의 온도를 일정하게 유지할 경우에도 광신호의 ER을 증가시키기 위해 레이저 광신호를 광학적으로 필터링 하는 방법이 필요하다. 또한, DWDM 급의 광통신에서 반도체 레이저 다이오드 칩의 온도를 가변하여 DFB-LD의 파장을 가변시킴으로써 하나의 광소자로 여러 채널의 파장에 적용시킬 수 있도록 하는 파장 가변 레이저형의 경우에도 광신호의 ER을 증가시키기 위해 레이저 광신호를 광학적으로 필터링 하는 방법이 필요하다.In order to reduce the cost of the optical module in the 10Gbps high-speed, long-distance optical communication, it is preferable to use a TO-type package. Therefore, even when the wavelength of the optical communication is 20 nm or more and the wavelength of the DFB-LD is not adjusted, It is necessary to optically filter the laser light signal in order to increase it, and to increase the ER of the optical signal even when adjacent wavelength channels have DWDM-level wavelength spacing to keep the temperature of the DFB-LD constant. There is a need for a method of filtering optically. In addition, in the case of a wavelength tunable laser type that can be applied to wavelengths of multiple channels with one optical element by varying the wavelength of the DFB-LD by varying the temperature of the semiconductor laser diode chip in DWDM-class optical communication, There is a need for a method of optically filtering a laser light signal to increase it.
본 발명에서는 고속 광통신에 있어서, TO형 패키지를 이용하여 DFB-LD를 패키지 하는 과정에 있어서 반도체 레이저 다이오드 칩에서 방출된 레이저 빛을 광학적으로 필터링 하여 장거릴 광통신이 가능하게 하는 방법을 제시하되, DFB-LD의 운용 온도를 일정하게 유지하지 않아도 되는 경우의 광학적 필터링 방법과, 외부 환경의 온도 변화에 무관하게 열전소자를 이용하여 DFB-LD의 온도를 일정하게 유지하여 DFB-LD를 일정한 파장을 가지게 조절하는 경우에 있어서 TO 형 패키지 내부에 레이저 빛을 광학적으로 필터링 하는 방법과, 열전소자를 이용하여 DFB-LD의 파장을 변화시켜 DWDM 급 광통신에서 DFB-LD를 파장 가변형 레이저로 사용할 경우에 TO형 패키지에 광학적 필터를 장착하여 장거리 통신을 이루게 하는 방법을 제시한다.  In the present invention, in the high-speed optical communication, a method of optically filtering the laser light emitted from the semiconductor laser diode chip in the process of packaging the DFB-LD using a TO-type package to provide long-term optical communication, DFB -Optical filtering method in case that the operating temperature of LD does not need to be kept constant, and the temperature of DFB-LD is kept constant by using thermoelectric element regardless of temperature change of external environment. In the case of adjustment, optically filtering the laser light inside the TO-type package, and changing the wavelength of the DFB-LD by using a thermoelectric element, and using the DFB-LD as a wavelength tunable laser in DWDM-class optical communication. We present an optical filter in a package that enables long-range communication.
이를 위하여 본 발명에 따른 레이저 장치는, 레이저 빛을 발산하는 레이저 다이오드 칩; 파장 선택성 필터; 상기 레이저 다이오드 칩과 파장 선택성 필터 사이의 광 경로 상에 설치되어, 레이저 다이오드 칩으로부터 발산된 빛을 시준화시키는 시준화 렌즈; 상기 레이저 다이오드 칩과 파장 선택성 필터 사이의 광 경로 상에 설치되어, 패키지 바닥면에 대해 수평으로 진행하는 레이저 빛을 패키지 바닥면에 대해 수직으로 진행하는 레이저 빛으로 방향을 전환하는 45도 부분반사거울; 상기 레이저 다이오드 칩에서 발산된 후 파장 선택성 필터에서 반사하는 레이저 빛이 45도 부분반사거울을 투과하는 광경로 상에 배치된 광파장 감시용 포토 다이오드;를 포함하여 이루어진다. To this end, the laser device according to the present invention includes a laser diode chip that emits laser light; Wavelength selective filters; A collimation lens disposed on an optical path between the laser diode chip and a wavelength selective filter to collimate the light emitted from the laser diode chip; 45 degree partial reflection mirror installed on the optical path between the laser diode chip and the wavelength selective filter to redirect the laser light traveling horizontally with respect to the package bottom surface to the laser light traveling perpendicular to the package bottom surface. ; And an optical wavelength monitoring photodiode disposed on an optical path through which the laser light emitted from the laser diode chip and reflected by the wavelength selective filter passes through the 45 degree partial reflection mirror.
DWDM급의 파장 안정도를 가지는 반도체 레이저 다이오드 칩을 사용하는 경우 광소자를 특정한 파장만에서 사용하는 경우와, 또는 반도체 레이저 다이오드 칩의 온도를 변화하여 50GHz 또는 100GHz 간격의 여러 파장에 대응하는 파장 가변형 레이저로 사용할 경우에는, 상기 레이저 다이오드 칩과 파장 선택성 필터는 하나의 열전소자 위에 배치되는 것이 바람직하다. 그러므로 열전소자를 이용하여 레이저 다이오드 칩의 온도를 조절하는 경우에는 열전소자를 이용하여 레이저 다이오드 칩의 발진 파장을 조절하여 "1" 신호가 파장 선택성 필터에서 상대적으로 잘 투과하도록 조절하고, "0" 신호는 파장 선택성 필터에서 상대적으로 잘 투과되지 않도록 하여 광섬유로 전송되는 레이저 빛의 ER이 레이저 다이오드 칩에서 방출되는 상태의 ER 보다 커지도록 하여 장거리 전송이 가능하게 한다. When using a semiconductor laser diode chip having a DWDM-class wavelength stability, an optical element is used only at a specific wavelength, or a wavelength tunable laser corresponding to various wavelengths at intervals of 50 GHz or 100 GHz by changing the temperature of the semiconductor laser diode chip. In use, the laser diode chip and the wavelength selective filter are preferably disposed on one thermoelectric element. Therefore, in the case of controlling the temperature of the laser diode chip using the thermoelectric element, the oscillation wavelength of the laser diode chip is controlled using the thermoelectric element so that the "1" signal is relatively transmitted through the wavelength selective filter, and "0". The signal is relatively poorly transmitted by the wavelength selective filter so that the ER of the laser light transmitted to the optical fiber is larger than the ER of the state emitted from the laser diode chip, thereby enabling long-distance transmission.
레이저 다이오드 칩의 온도를 조절하지 않는 경우에는 파장 선택성 필터의 온도를 변화시켜서 파장 선택성 필터의 투과 파장 대역이 "1" 신호를 더 잘 투과시키고 "0" 신호는 상대적으로 더 차단함으로서 ER을 증가시킬 수 있으며, 이러한 과정으로 고속 신호를 장거리까지 전송시킬 수 있다. 또한 레이저 다이오드 칩의 온도를 조절하지 않는 경우, 히터(heater)를 이용하여 파장 선택성 필터의 온도를 조절하여 레이저 빛의 파장과 파장 선택성 필터의 투과 파장과의 일정한 파장 간격을 유지하는 방법은 열전소자를 사용하여 레이저 빛의 파장과 파장 선택성 필터의 파장 대역과 일정한 관계를 유지시키는 방법에 비해 전기소모가 적게 드는 장점이 있다. 이는 열전소자의 경우 냉각모드로 작용할 때 전기 소모량이 커지나, 레이저 다이오드 칩의 온도를 일정하게 유지하여 미리 정하여진 파장을 방출하고자 하면, 레이저 다이오드 칩의 온도를 외부 환경 온도의 변화에 따라 가열 모드 또는 냉각모드로 사용하여야 하나, 파장 선택성 필터의 온도는 레이저 빛의 파장을 변화시키지 않고 단지 "1" 신호와 "0" 신호의 상대적 세기만을 조절하므로 항상 가열모드에서 파장 선택성 필터의 온도를 제어할 수 있다. If the temperature of the laser diode chip is not controlled, the temperature of the wavelength selective filter may be changed so that the wavelength band of the wavelength selective filter transmits the "1" signal better and the "0" signal is relatively more blocked, thereby increasing the ER. In this process, high-speed signals can be transmitted over long distances. In addition, when the temperature of the laser diode chip is not controlled, a method of maintaining a constant wavelength interval between the wavelength of the laser light and the transmission wavelength of the wavelength selective filter by controlling the temperature of the wavelength selective filter by using a heater is a thermoelectric element. Compared to the method of maintaining a constant relationship with the wavelength of the laser light and the wavelength band of the wavelength selective filter using the advantage that the electricity consumption is less. In the case of the thermoelectric element, when the cooling mode is used, the electricity consumption increases, but when the temperature of the laser diode chip is kept constant and the predetermined wavelength is emitted, the temperature of the laser diode chip is changed to the heating mode or It should be used in the cooling mode, but the temperature of the wavelength selective filter does not change the wavelength of the laser light but only the relative intensity of the "1" and "0" signals can be controlled so that the temperature of the wavelength selective filter can always be controlled in the heating mode. have.
또한, 상기 파장 선택성 필터는 FP형의 에탈론 필터인 것이 바람직한데, 상기 파장 선택성 필터는 고려되는 레이저 빛의 파장에 대해 투명한 기판 위에 굴절률이 높고 낮은 유전체 박막이 적층되어 제작될 수 있다. 상기 파장 선택성 필터는 레이저 다이오드 칩의 온도 변화의 파장 구간에서 하나의 투과 피크(peak) 또는 여러 개의 투과 피크(peak)를 가지는 필터일 수 있다. In addition, it is preferable that the wavelength selective filter is an FP type etalon filter. The wavelength selective filter may be manufactured by stacking a dielectric film having a high refractive index and a low refractive index on a transparent substrate with respect to a wavelength of laser light to be considered. The wavelength selective filter may be a filter having one transmission peak or several transmission peaks in the wavelength range of the temperature change of the laser diode chip.
앞서 설명하였듯이, 상기 파장 선택성 필터가 여러 개의 투과 파장 피크를 가지는 경우 상기 파장 선택성 필터의 여러 개의 투과 피크 사이의 관계는 적용 형태에 따라 다양한 관계가 적용된다. As described above, when the wavelength selective filter has several transmission wavelength peaks, the relationship between the several transmission peaks of the wavelength selective filter is variously applied according to the application form.
특히, 반도체 레이저 다이오드 칩의 온도를 조절하지 않아 반도체 레이저 다이오드 칩의 파장이 외부 환경 온도에 따라 달라지는 경우와 반도체 레이저 다이오드 칩을 미리 정해진 특정한 파장만으로 구동하는 경우에 있어서, 상기 파장 선택성 필터의 투과 파장 피크(peak)는 단수 또는 복수의 어떠한 파장 간격도 무방하다. Particularly, in the case where the wavelength of the semiconductor laser diode chip is changed according to the external environmental temperature because the temperature of the semiconductor laser diode chip is not controlled, and the semiconductor laser diode chip is driven only by a predetermined specific wavelength, the transmission wavelength of the wavelength selective filter The peak may be any wavelength interval or singular or plural.
그러나, 상기 반도체 레이저 다이오드 칩의 온도를 열전소자를 이용하여 온도를 조절함으로써 파장 가변형의 특성을 가지는 광소자에 있어서, 상기 파장 선택성 필터는 다음의 수학식 1에 의해 투과 주파수 간격이 결정된다. However, in the optical device having a wavelength tunable characteristic by controlling the temperature of the semiconductor laser diode chip by using a thermoelectric device, the wavelength selective filter has a transmission frequency interval determined by Equation 1 below.
[수학식 1][Equation 1]
에탈론 필터의 투과모드 주파수간격 = (Ff - Ff × Ffilter / Flsaser)GHz Transmission Mode Frequency Spacing of Etalon Filters = (Ff-Ff × Ffilter / Flsaser) GHz
(여기에서, Ff는 구하고자 하는 투과 파장의 주파수 간격, Ffilter는 에탈론 필터의 온도에 따른 투과 주파수 이동도, Flaser는 레이저 다이오드 칩에서 방출되는 레이저 빛의 온도에 따른 주파수 이동도)(Ff is the frequency interval of the transmission wavelength to be obtained, Ffilter is the transmission frequency mobility according to the temperature of the etalon filter, and Flaser is the frequency mobility according to the temperature of laser light emitted from the laser diode chip.)
한편, 상기 레이저 다이오드 칩에서 발산된 레이저 빛이 45도 부분반사거울을 투과하는 광 경로상에 광세기 감시용 포토 다이오드가 배치되거나, 상기 레이저 다이오드 칩의 후면에서 발산된 레이저 빛이 진행하는 광 경로 상에 광세기 감시용 포토 다이오드가 배치되는 것이 바람직하다.On the other hand, a light diode for monitoring the light intensity is disposed on an optical path through which the laser light emitted from the laser diode chip passes through the 45 degree partial reflection mirror, or an optical path through which the laser light emitted from the rear surface of the laser diode chip proceeds. It is preferable that a photodiode for monitoring light intensity is disposed on the phase.
또한, 상기 45도 부분반사거울은 어느 한 변에 대해 45도의 각도를 갖는 관통 구멍이 건식 식각 방법으로 형성된 직육면체 형태의 실리콘 기판으로 이루어진 스탠드의 관통 구멍에 결합 고정되어, 바닥에 대해 45도의 각도를 갖도록 설치되는 것이 바람직하다.In addition, the 45-degree partial reflection mirror is coupled to the through-hole of the stand made of a rectangular parallelepiped silicon substrate formed by a dry etching method, the through-hole having an angle of 45 degrees with respect to one side, the angle of 45 degrees with respect to the floor It is preferable to be installed to have.
반도체 레이저 다이오드 칩의 온도를 조절하지 않는 경우와, 반도체 레이저 다이오드 칩의 온도를 반도체 레이저 다이오드 칩에서 방출된 레이저 빛의 파장이 일정하도록 조절하는 경우와, 반도체 다이오드 칩에서 방출되는 레이저 빛의 파장을 가변하여 사용하는 경우와 무관하게, 상기 광파장 감시용 포토 다이오드로 흐르는 전류를 광세기 감시용 포토 다이오드로 흐르는 전류로 나눈 값이 일정한 값이 되도록 열전소자 또는 파장 선택성 필터의 히터(heater) 온도를 조절하여 레이저의 발진 파장을 파장 선택적 필터와 투과 파장 대역과 일정한 관계를 가지도록 함으로써 레이저 다이오드 칩에서 방출된 레이저 빛이 "1" 신호와 "0" 신호에 대해 상대적으로 투과율이 다른 필터링을 수행한다. When the temperature of the semiconductor laser diode chip is not controlled, the temperature of the semiconductor laser diode chip is adjusted so that the wavelength of the laser light emitted from the semiconductor laser diode chip is constant, and the wavelength of the laser light emitted from the semiconductor diode chip is adjusted. Irrespective of the variable use, the heater temperature of the thermoelectric element or the wavelength selective filter is adjusted so that a value obtained by dividing the current flowing through the light wavelength monitoring photodiode by the current flowing through the light intensity monitoring photodiode is a constant value. Thus, the oscillation wavelength of the laser has a constant relationship with the wavelength selective filter and the transmission wavelength band, so that the laser light emitted from the laser diode chip performs filtering having different transmittances for the "1" signal and the "0" signal.
한편, 상기 포토 다이오드용 서브마운트는 실리콘을 모재로 하여, 실리콘 {100}면과 {111}면에 연속하여 금속 패턴이 도포된 형상으로 이루어질 수 있다. On the other hand, the sub-mount for the photodiode may be formed in a shape in which a metal pattern is continuously applied to a silicon {100} plane and a {111} plane based on silicon.
또한, 상기 열전소자는 상부에 부착된 써미스터에 의해 온도가 측정되며, 상기 써미스터는 써미스터와 분리되어 열전소자 상부에 부착된 써미스터 연결용 서브마운트를 거쳐 전극핀과 전기적으로 연결되는 것이 바람직하다. In addition, the thermoelectric element is measured temperature by the thermistor attached to the upper portion, the thermistor is preferably separated from the thermistor and electrically connected to the electrode pin via a thermistor connection submount attached to the thermoelectric element.
여기에서, 상기 써미스터는 에폭시 등의 비전도성 고분자 물질로 도포될 수 있다. Here, the thermistor may be coated with a nonconductive polymer material such as epoxy.
상기 45도 부분반사거울은 두께가 0.1mm∼0.25mm 인 것이 바람직하다.Preferably, the 45 degree partial reflection mirror has a thickness of 0.1 mm to 0.25 mm.
또한, 상기 광파장 감시용 포토 다이오드는 열전소자 위에 직접 부착될 수 있다. In addition, the optical wavelength monitoring photodiode may be directly attached on the thermoelectric element.
본 발명은 예를 들어 2.5Gbps 급 이상 또는 10Gbps 급 이상의 고속의 변조 신호를 가지는 광통신용 레이저 빛에 있어서 "1" 신호에 해당하는 신호는 투과율이 크도록 하며, "0" 신호에 해당하는 레이저 빛은 투과율이 작도록 선택하는 파장 선택성 필터를 삽입하여 고속 장거리 통신을 가능하게 하되, 버터플라이형 또는 미니 플랫형 패키지 하우징에 비해 저가격인 TO 형의 패키지를 효과적으로 사용하게 함으로써 고속 장거리용의 광소자의 제조 비용을 낮추는 효과가 있다. In the present invention, for example, in a laser light for optical communication having a high speed modulation signal of 2.5 Gbps or more or 10 Gbps or more, a signal corresponding to a "1" signal has a high transmittance, and a laser light corresponding to a "0" signal. Manufacture of optical device for high speed long distance by inserting wavelength selective filter which selects small transmittance to enable high speed long distance communication, but effectively use low cost TO type package compared to butterfly type or mini flat package housing This lowers the cost.
또한, 본 발명은 TO형의 패키지를 이용하여 레이저 다이오드 칩의 온도를 조절하지 않는 경우와, 외부환경온도와 무관하게 레이저 다이오드 칩이 특정한 파장만을 가지도록 하는 경우와, 외부 환경과 무관하게 레이저 다이오드 칩에서 방출되는 레이저 빛의 파장을 가변하여 조절하는 경우를 막론하고, 고속의 광신호를 장거리까지 전송하도록 하는 효과가 있다. In addition, the present invention does not control the temperature of the laser diode chip using the TO-type package, the case where the laser diode chip has a specific wavelength irrespective of the external environment temperature, and the laser diode regardless of the external environment. Regardless of the case where the wavelength of the laser light emitted from the chip is changed and controlled, there is an effect of transmitting a high speed optical signal to a long distance.
도 1은 TO형 패키지의 개략적인 모습을 나타낸 외형도이다. 1 is an external view showing a schematic view of a TO-type package.
도 2는 본 발명에 따른 "1" 신호에 비해 "0" 신호의 투과율이 줄어들어 좁은 선폭의 레이저 빛을 광섬유로 출사하는 레이저의 개념도이다. Figure 2 is a conceptual diagram of a laser for emitting a laser light of a narrow line width to the optical fiber by reducing the transmittance of the "0" signal compared to the "1" signal according to the present invention.
도 3은 본 발명에 따른 좁은 선폭 레이저에서 파장 선택성 필터의 역할을 설명하는 개념도로써, 도 3의 (a)는 파장 선택성 필터의 투과도 곡선 일례이고, 도 3의 (b)는 파장 선택성 필터의 반사도 일례이며, 도 3의 (c)는 파장 선택성 필터에 의해 반사되어 광파장 감시용 포토 다이오드로 입사하는 빛에 의해 생성되는 광전류의 일례이다. 3 is a conceptual diagram illustrating the role of the wavelength selective filter in the narrow linewidth laser according to the present invention, and FIG. 3 (a) shows an example of a transmittance curve of the wavelength selective filter, and FIG. 3 (b) shows a reflectance of the wavelength selective filter. 3C is an example of the photocurrent generated by the light reflected by the wavelength selective filter and incident on the photodiode for optical wavelength monitoring.
도 4는 본 발명에 따른 좁은 선폭 레이저의 개념도로서 광파장 감시용 포토 다이오드와 광세기 감시용 포토 다이오드가 있는 구조의 개념도이다. 4 is a conceptual diagram of a narrow linewidth laser according to the present invention, a conceptual diagram of a structure having a light wavelength monitoring photodiode and a light intensity monitoring photodiode.
도 5는 본 발명에 따른 좁은 선폭 레이저의 개념도로서, 광파장 감시용 포토 다이오드와 광세기 감시용 포토 다이오드가 있는 또 다른 구조의 개념도이다. 5 is a conceptual diagram of a narrow linewidth laser according to the present invention, which is a conceptual diagram of another structure including a photodiode for light wavelength monitoring and a photodiode for light intensity monitoring.
도 6은 본 발명의 따른 좁은 선폭 레이저의 동작 원리를 나타내는 개념도로서, 도 6의 (a)는 파장 선택성 필터의 투과도 일례이고, 도 6의 (b)는 레이저 다이오드 칩을 고속으로 변조시킬 때 레이저 다이오드 칩에서 방출되는 "1" 신호와 "0" 신호의 레이저 빛의 주파수 특성 일례이며, 도 6의 (c)는 레이저 다이오드 칩에서 방출되는 레이저 빛의 주파수 특성과 파장 선택성 필터의 투과도가 곱하여져서 파장 선택성 필터를 투과하는 레이저 빛의 "1" 신호에 비해 "0" 신호가 상대적으로 줄어들어 선폭이 좁아진 레이저 빛의 주파수 특성을 보여주는 개념도이다.6 is a conceptual diagram illustrating an operating principle of a narrow linewidth laser according to the present invention, in which FIG. 6A is an example of the transmittance of the wavelength selective filter, and FIG. 6B is a laser when the laser diode chip is modulated at high speed. An example of the frequency characteristics of the laser light of the "1" signal and the "0" signal emitted from the diode chip, Figure 6 (c) is the frequency characteristic of the laser light emitted from the laser diode chip multiplied by the transmittance of the wavelength selective filter Compared with the "1" signal of the laser light passing through the wavelength selective filter, the "0" signal is relatively reduced, thereby showing the frequency characteristic of the laser light with narrow line width.
도 7은 본 발명에 사용되는 파장 선택성 필터의 주파수 특성이 온도에 따라 바뀌는 모습을 보여주는 개념도이다. 7 is a conceptual diagram showing how the frequency characteristic of the wavelength selective filter used in the present invention changes with temperature.
도 8은 본 발명의 일 실시예에 따라 주기적인 투과 특성을 가지는 FP형 에탈론 필터를 사용하여 레이저 다이오드에서 방출되는 레이저 빛이 복수의 ITU 채널에 해당하는 레이저 빛을 가변하여 방출하는 레이저 장치의 동작 설명도로서, 도 8의 (a)는 파장 선택성 필터가 열전소자의 온도에 따라 투과하는 주파수 특성이 달라지는 일례이고, 도 8의 (b)는 고속으로 변조되는 레이저 다이오드 칩의 방출 파장 특성이 열전 소자의 온도에 의해 달라지는 일례이며, 도 8의 (c)는 파장 선택성 필터를 투과하여 방출되는 레이저 빛의 파장 특성이 열전 소자의 온도에 따라 달라지는 일례를 나타낸 것이다. 8 is a view illustrating a laser device in which laser light emitted from a laser diode variably emits laser light corresponding to a plurality of ITU channels using an FP type etalon filter having periodic transmission characteristics according to an embodiment of the present invention. 8A is an example in which the frequency characteristic through which the wavelength selective filter transmits varies according to the temperature of the thermoelectric element, and in FIG. 8B, the emission wavelength characteristic of the laser diode chip which is modulated at high speed is shown. FIG. 8C illustrates an example in which the wavelength characteristics of the laser light emitted through the wavelength selective filter vary depending on the temperature of the thermoelectric element.
도 9는 본 발명의 다른 실시예에 따라 TO형 패키지에 열전소자가 장착되지 않고 레이저 다이오드 칩이 부착된 서브마운트가 직접 스템 바닥면에 배치된 경우를 나타낸 것이다.FIG. 9 illustrates a case in which a thermoelectric element is not mounted in a TO-type package and a submount to which a laser diode chip is attached is directly disposed on a stem bottom surface according to another exemplary embodiment of the present invention.
도 10은 본 발명의 실시예에 따른 45도 반사거울을 손쉽게 고정시키는 스탠드의 설치 개념도이다.10 is a conceptual view illustrating the installation of a stand for easily fixing a 45 degree reflective mirror according to an exemplary embodiment of the present invention.
도 11은 레이저 다오이드 칩으로부터 발산되는 레이저 빛의 세기를 측정하는 포토 다이오드의 설치 개념도이다.FIG. 11 is a conceptual diagram illustrating the installation of a photodiode for measuring the intensity of laser light emitted from a laser diode. FIG.
도 12는 단면이 직사각형 형태인 직육면체 형의 포토 다이오드용 서브마운트의 일례이다.12 is an example of a rectangular parallelepiped photodiode submount having a rectangular cross section.
도 13은 본 발명의 실시예에 따른 포토 다이오드용 서브마운트의 금속 패턴 증착 일례이다.13 is an example of metal pattern deposition of a submount for a photodiode according to an embodiment of the present invention.
도 14는 종래 일반적인 써미스터 배치 방법의 일례이다.14 is an example of a conventional general thermistor placement method.
도 15는 본 발명의 실시예에 따른 써미스터 배치 방법의 일례를 나타낸 것이다. 15 shows an example of a thermistor placement method according to an embodiment of the present invention.
이하 본 발명의 한정하지 않는 바람직한 실시예를 첨부된 도면과 함께 상세히 설명하기로 한다. Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings.
도 1은 본 발명에 적용되는 TO 형 패키지의 개략적인 모습을 나타낸 외형도이다. 1 is an external view showing a schematic view of a TO-type package applied to the present invention.
도 1에 도시된 바와 같이, TO형 패키지는 크게 스템(1)과 캡(cap)(2)으로 구성되며, 스템(1)의 바닥면에 부품들을 배치하고 캡(2)으로 밀봉하는 형태로 제작된다. 이러한 구조에서 레이저 빛은 캡(2)의 상부에 뚫려있는 관통공을 통하여 TO형 패키지 외부로 방출된다. 통상적으로 캡(2)의 관통공에는 렌즈가 형성되거나 평면형 유리창으로 밀봉되게 된다. 도 1에서 이후 본 발명의 설명에 사용될 수평 방향과 수직 방향을 화살표 방향으로 정의하였다. As shown in FIG. 1, the TO-shaped package is largely composed of a stem 1 and a cap 2, in which parts are placed on the bottom of the stem 1 and sealed with a cap 2. Is produced. In this structure, the laser light is emitted outside the TO-type package through the through hole drilled in the upper portion of the cap (2). Typically a through-hole of the cap 2 is formed with a lens or sealed with a flat glass window. In FIG. 1, a horizontal direction and a vertical direction to be used in the following description of the present invention are defined as arrow directions.
도 2는 본 발명에 따른 TO형 패키지 내에서 반도체 레이저 다이오드 칩과 반도체 레이저 다이오드 칩에서 방출된 레이저 빛의 광경로 상에 파장 선택성 필터를 장착하여, 예를 들어 10Gbps 급의 광신호가 장거리로 전송될 수 있는 광소자의 동작 원리를 보여주는 개념도이다. 2 is a wavelength selective filter mounted on the optical path of the laser light emitted from the semiconductor laser diode chip and the semiconductor laser diode chip in the TO-type package according to the present invention, for example, 10Gbps optical signal can be transmitted over a long distance It is a conceptual diagram showing the operation principle of the optical device.
이하, 본 설명에서는 설명의 편의를 위해 파장 선택성 필터를 복수의 투과 피크를 가지는 FP형 에탈론 필터로 예시하여 본 발명의 특성을 설명하지만, 이러한 파장 선택성 필터는 FP형 에탈론 필터 대신 선폭이 0.5nm 이하인 thin film filter를 사용할 수도 있다. 상기 Thin film filter 라는 것은 레이저 다이오드 칩에서 발생하는 레이저 빛의 가능한 파장 대역, 예를 들어 10nm 내지 50nm 파장 대역 내에 단지 하나의 투과 피크(peak)를 가지는 필터를 말한다. 통상적으로 이러한 thin film filter도 FP 에탈론 필터의 구조를 가질 수 있다. In the following description, for convenience of description, the wavelength selective filter is described as an FP type etalon filter having a plurality of transmission peaks to explain the characteristics of the present invention. However, the wavelength selective filter has a line width of 0.5 instead of the FP type etalon filter. Thin film filters of less than nm can also be used. The thin film filter refers to a filter having only one transmission peak within a possible wavelength band of laser light generated from a laser diode chip, for example, a wavelength band of 10 nm to 50 nm. Typically, such a thin film filter may also have a structure of an FP etalon filter.
도 2에 도시된 바와 같이, 본 발명에 따른 레이저 다이오드 패키지는 레이저 다이오드 칩용 서브마운트(110)에 설치되는 레이저 다이오드 칩(100)과, 상기 레이저 다이오드 칩(100)에서 방출되는 레이저 빛을 평행광으로 시준화하는 시준화 렌즈(200)와, 상기 시준화 렌즈(200)를 통하여 시준화된 레이저 빛 중 미리 정해진 비율의 빛만 반사시키는 45도 부분반사거울(300)과, 상기 45도 부분반사거울(300)을 반사한 레이저 빛 중 일부 레이저 빛은 투과하고 나머지 빛은 반사시키는 파장 선택성 필터인 FP형의 에탈론 필터(400)를 포함하여 이루어진다. 상기 FP형의 에탈론 필터(400)에서 반사한 빛은 다시 45도 부분반사거울(300)로 되돌아 와서 미리 정해진 비율만큼 45도 부분반사거울(300)을 투과하여 45도 부분반사거울(300) 하부에 배치된 광파장 감시용 포토 다이오드(500)로 입사하게 된다.As shown in FIG. 2, the laser diode package according to the present invention includes a laser diode chip 100 installed in a submount 110 for a laser diode chip, and parallel light of laser light emitted from the laser diode chip 100. A collimating lens 200 for collimating the light, a 45 degree partial reflection mirror 300 reflecting only a predetermined ratio of light collimated through the collimation lens 200, and the 45 degree partial reflection mirror Among the laser beams reflecting the 300, the FP-type etalon filter 400, which is a wavelength selective filter for transmitting some laser light and reflecting the remaining light, is included. The light reflected by the FP-type etalon filter 400 is returned to the 45-degree partial reflection mirror 300 again, and passes through the 45-degree partial reflection mirror 300 by a predetermined ratio to the 45-degree partial reflection mirror 300. The light incident to the light wavelength monitoring photodiode 500 is disposed below.
한편, 상기 에탈론 필터(400)에서 반사한 빛이 45도 부분반사거울(300)에서 다시 반사되어 레이저 다이오드 칩(200)으로 되돌아가게 되면 레이저 다이오드 칩(200)의 동작 특성이 불안하게 되는데, 이를 방지하기 위하여 도 2에서와 같이 상기 에탈론 필터(400)는 에탈론 필터(400)로 입사하는 레이저 빛에 대해 최소한 1도 이상의 반사 각도를 가지도록 부착되어 에탈론 필터(400)에서 반사되는 빛이 레이저 다이오드 칩(200)으로 되돌아가지 않도록 하는 것이 바람직하다. On the other hand, when the light reflected by the etalon filter 400 is reflected back from the 45-degree partial reflection mirror 300 and returned to the laser diode chip 200, the operating characteristics of the laser diode chip 200 becomes unstable. In order to prevent this, as shown in FIG. 2, the etalon filter 400 is attached to have a reflection angle of at least 1 degree with respect to the laser light incident to the etalon filter 400 and is reflected by the etalon filter 400. It is desirable to prevent light from returning to the laser diode chip 200.
또한, 도 2에서 45도 부분반사거울(300)의 반사도가 높으면 광파장 감시용 포토 다이오드(500)로 입사하는 빛의 세기가 약해져서 파장 감시의 기능을 수행하기 어렵고, 반대로 45도 부분반사거울(300)의 반사도가 너무 낮으면 레이저 다이오드 칩(100)에서 발산되어 에탈론 필터(400)에 도달하는 레이저 빛의 세기가 약해진다. 그러므로 상기 45도 부분반사거울(300)의 반사율은 적절한 수준으로 조정되어야하는데, 본 발명에 실시예에 따른 시험 결과에 의하면 상기 45도 부분반사거울(300)의 반사율은 80% 내지 97% 정도인 것이 바람직하다.In addition, in FIG. 2, when the reflectivity of the 45 degree partial reflection mirror 300 is high, the intensity of light incident on the optical wavelength monitoring photodiode 500 becomes weak, and thus it is difficult to perform the function of wavelength monitoring. Too low reflectivity decreases the intensity of the laser light emitted from the laser diode chip 100 and reaches the etalon filter 400. Therefore, the reflectance of the 45-degree partial mirror 300 should be adjusted to an appropriate level. According to a test result according to an embodiment of the present invention, the reflectivity of the 45-degree partial mirror 300 is about 80% to 97%. It is preferable.
도 3의 (a)는 FP형의 에탈론 필터의 주파수에 따른 투과 특성 일례를 나타낸 것이다 에탈론 필터는 주기적으로 투과 및 반사 특성이 반복되는 특성이 있다. FP형의 에탈론 필터가 주기적인 투과 특성을 가진다는 것은, 동시에 도 3의 (b)와 같이 주기적인 반사 특성을 가진다는 것을 의미한다. 그러므로 도 2에서 레이저 다이오드 칩에서 방출되어 FP형 에탈론 필터(400)에 도달한 레이저 빛 중에서 레이저 빛의 주파수에 따라 특정한 반사 비율을 가지며 반사하는 레이저 빛은 45도 부분반사거울(300)을 투과하여 45도 부분반사거울(300)의 하부에 있는 광파장 감시용 포토 다이오드(500)로 입사하게 된다. FP형의 에탈론 필터(400)에서 반사되는 빛의 반사율이 도 3의 (b)와 같이 레이저 빛의 주파수에 따라 특정한 반사 비율을 가지므로, 광파장 감시용 포토 다이오드(500)로 입사하는 레이저 빛세기의 주파수 의존도는 도 3의 (b)와 같고, 이에 따라 광파장 감시용 포토 다이오드(500)에서의 광전류는 레이저 빛의 주파수에 따라 도 3의 (c)와 같은 형태를 보이게 된다. 이에 따라 광파장 감시용 포토 다이오드(500)에서 흐르는 광전류를 측정함으로써 레이저 빛의 주파수 특성을 알아낼 수 있게 된다. 예를 들어 레이저 다이오드 칩(100)에서 일정한 세기로 방출되는 레이저 빛의 세기에 대해서 광파장 감시용 포토 다이오드(500)로 흐르는 광전류의 세기가 변화하게 되면, 이는 레이저 빛의 파장과 에탈론 피크의 중심 파장의 상대 파장이 변화하고 있음을 의미한다.Figure 3 (a) shows an example of the transmission characteristics according to the frequency of the FP-type etalon filter. The etalon filter has a characteristic that the transmission and reflection characteristics are periodically repeated. The fact that the FP-type etalon filter has periodic transmission characteristics means that it simultaneously has periodic reflection characteristics as shown in FIG. Therefore, among the laser light emitted from the laser diode chip in FIG. 2 and reaching the FP type etalon filter 400, the laser light reflecting the laser light has a specific reflection ratio according to the frequency of the laser light and passes through the 45 degree partial reflection mirror 300. To enter the light wavelength monitoring photodiode 500 under the 45-degree partial reflection mirror (300). Since the reflectance of the light reflected by the FP-type etalon filter 400 has a specific reflection ratio according to the frequency of the laser light as shown in FIG. 3 (b), the laser light incident on the photo-wavelength monitoring diode 500 The frequency dependence of the intensity is shown in (b) of FIG. 3, and thus the photocurrent in the optical wavelength monitoring photodiode 500 is shown in FIG. 3 (c) according to the frequency of the laser light. Accordingly, by measuring the photocurrent flowing in the optical wavelength monitoring photodiode 500 it is possible to determine the frequency characteristics of the laser light. For example, when the intensity of the photocurrent flowing to the optical wavelength monitoring photodiode 500 changes with respect to the intensity of the laser light emitted from the laser diode chip 100 at a constant intensity, this is the center of the wavelength of the laser light and the etalon peak. It means that the relative wavelength of the wavelength is changing.
그러므로 광파장 감시용 포토 다이오드(500)로 흐르는 전류의 변화를 감시하여 레이저 빛의 파장과 에탈론 필터(400)의 투과 파장 대역의 상대 파장이 변화함을 알 수 있고, 이를 이용하여 레이저 빛의 파장을 에탈론 필터(400)의 투과 파장에 대해 상대적으로 일정한 파장 간격 관계를 가지게 할 수 있다. 통상적으로 유리 재질의 에탈론 필터(400)는 10pm/℃ 정도로 작은 파장의 온도 의존성을 가지는데 비해 DFB-LD는 100pm/℃ 정도로 큰 파장의 온도의존성을 가진다. 그러므로 광소자를 조립할 경우 에탈론 필터(400)의 피크가 ITU에서 설정한 주파수로 설정하고, 레이저 다이오드 칩(100)에서 발산되는 파장을 에탈론 필터(400)의 피크에 설정 한 후, 레이저 다이오드 칩(100)에서 발산되는 레이저 빛의 파장의 변화를 광파장 감시용 포토 다이오드(500)를 흐르는 전류로 파악하여 이러한 변화를 상쇄하는 방향으로 레이저 다이오드 칩(100)의 온도를 조절할 경우에는 레이저 다이오드 칩(100)의 발진 파장이 ITU에서 설정한 주파수로 안정화되는 효과가 나타나게 된다. 또한 레이저 빛의 "1" 신호의 파장은 상대적으로 에탈론 필터(400)를 잘 통과하고, 레이저 빛의 "0" 신호는 상대적으로 에탈론 필터(400)를 잘 투과하지 못하는 파장으로 레이저 빛의 파장과 에탈론 필터(400)의 투과 파장 대역을 설정할 경우, "1" 신호에 비해 "0" 신호의 감쇄가 커서 에탈론 필터(400)를 투과하는 빛은 레이저 다이오드 칩(100)에서 방출된 레이저 빛의 신호보다 ER이 커서 광수신기에서 신호 판별이 쉽게 되는 장점이 있다.Therefore, it can be seen that the wavelength of the laser light and the relative wavelength of the transmission wavelength band of the etalon filter 400 change by monitoring the change of the current flowing through the optical wavelength monitoring photodiode 500, and using this, the wavelength of the laser light May have a relatively constant wavelength spacing relationship with respect to the transmission wavelength of the etalon filter 400. Typically, the glass etalon filter 400 has a temperature dependence of a wavelength as small as 10 pm / ℃ while DFB-LD has a temperature dependency of a wavelength as large as 100 pm / ℃. Therefore, when assembling the optical device, the peak of the etalon filter 400 is set to the frequency set by the ITU, the wavelength emitted from the laser diode chip 100 is set to the peak of the etalon filter 400, and then the laser diode chip. When the temperature of the laser diode chip 100 is adjusted in a direction to offset the change by grasping the change in the wavelength of the laser light emitted from the light wavelength monitoring photodiode 500 as a current flowing in the laser diode chip ( The oscillation wavelength of 100) is stabilized at the frequency set in the ITU. In addition, the wavelength of the "1" signal of the laser light relatively passes through the etalon filter 400, and the "0" signal of the laser light is relatively poorly transmitted through the etalon filter 400. When the wavelength and the transmission wavelength band of the etalon filter 400 are set, the attenuation of the "0" signal is larger than that of the "1" signal, so that the light passing through the etalon filter 400 is emitted from the laser diode chip 100. Since the ER is larger than the signal of the laser light, it is easy to distinguish the signal from the optical receiver.
상기 광파장 감시용 포토 다이오드(500)로 흐르는 광전류는 에탈론 필터(400)에서의 반사율 파장 대역과 레이저 빛의 파장과의 차이 변화에 의해서 변할 뿐만 아니라, 레이저 다이오드 칩(100)에서 방출된 빛의 세기가 변화할 때도 광파장 감시용 포토 다이오드(500)로 흐르는 광전류가 달라지게 된다. 레이저 다이오드 칩(100)에서 방출되는 레이저 빛의 세기 변화에 의한 광파장 감시용 포토 다이오드(500)에서의 광전류 변화는 실제 에탈론 필터(400)와 레이저 빛의 파장의 상관 관계를 변화시킨 것이 아니므로 이러한 레이저 다이오드 칩(100)에서 방출되는 레이저 빛의 세기 변동에 의한 효과는 제거되어야 한다.The photocurrent flowing to the optical wavelength monitoring photodiode 500 is changed not only by the difference between the reflectance wavelength band of the etalon filter 400 and the wavelength of the laser light, but also by the light emitted from the laser diode chip 100. Even when the intensity changes, the photocurrent flowing to the optical wavelength monitoring photodiode 500 is changed. The change of the photocurrent in the optical wavelength monitoring photodiode 500 due to the change in the intensity of the laser light emitted from the laser diode chip 100 does not change the correlation between the wavelength of the laser beam and the etalon filter 400. The effect by the variation in the intensity of the laser light emitted from the laser diode chip 100 should be removed.
도 4는 본 발명의 일 실시예에서 레이저 다이오드 칩에서 발산되는 레이저 빛의 세기를 직접 측정하여 광파장의 변화만을 알아낼 수 있는 방법을 나타낸 것이ㄷ다. 4 illustrates a method of directly determining a change in light wavelength by directly measuring the intensity of laser light emitted from a laser diode chip in an embodiment of the present invention.
도 4에 도시된 바와 같이, 레이저 다이오드 칩(100)에서 발산된 레이저 빛은 시준화 렌즈(200)에서 시준화된 후 45도 부분반사거울(300)에 도달하게 된다. 45도 부분반사거울(300)은 미리 정해진 일정한 비율의 투과/반사 비율을 가지므로, 레이저 다이오드 칩(100)에서 발산되어 45도 부분반사거울(300)에 도달한 레이저 빛 중 45도 부분 반사거울(300)을 투과하는 빛 성분은 45도 부분 반사거울(300)의 일 측면에 배치된 광세기 감시용 포토 다이오드(600)으로 입사하게 된다. 그러므로 광세기 감시용 포토 다이오드(600)에서는 레이저 다이오드 칩(100)에서 발산되는 레이저 빛의 세기에 비례한 광전류 신호를 줌으로써 레이저 다이오드 칩(100)에서 발산된 레이저 빛의 세기를 알아낼 수 있다. 그러므로 광파장 감시용 포토 다이오드(500)로 흐르는 광전류의 크기를 광세기 감시용 포토 다이오드(600)로 흐르는 전류로 나누어준 값이 일정한 값으로 유지될 때, 레이저 빛의 중심주파수는 파장 선택성 필터인 에탈론 필터(400)의 투과 모드의 중심주파수와 일정한 관계에 있게 되며, 이에 따라 "0" 신호를 "1" 신호에 비해 상대적으로 더 감쇄시켜 장거리 통신을 가능하게 한다. 도 4에서 광파장 감시용 포토 다이오드(500)와 광세기 감시용 포토 다이오드(600)로 흐르는 광전류를 비교하여 에탈론 필터(400)의 투과 대역 중심 주파수와 레이저 빛의 중심주파수 사이의 변화 관계를 알아낸 후, 에탈론 필터(400)의 투과 파장을 기준으로 레이저 빛의 광파장의 변화를 상쇄시키는 방향으로 열전소자(900)의 온도를 변화시키면 레이저 빛이 에탈론 필터(400)의 투과 파장 대역에 대해 상대적으로 일정한 파장을 가지도록 할 수 있다. As shown in FIG. 4, the laser light emitted from the laser diode chip 100 reaches the 45 degree partial reflection mirror 300 after being collimated by the collimation lens 200. Since the 45 degree partial reflection mirror 300 has a predetermined ratio of transmission / reflection ratio, the 45 degree partial reflection mirror of the laser light emitted from the laser diode chip 100 and reaching the 45 degree partial reflection mirror 300 is obtained. The light component passing through 300 is incident on the light intensity monitoring photodiode 600 disposed on one side of the 45 degree partial reflection mirror 300. Therefore, the light intensity monitoring photodiode 600 can determine the intensity of the laser light emitted from the laser diode chip 100 by giving a photocurrent signal in proportion to the intensity of the laser light emitted from the laser diode chip 100. Therefore, when the value obtained by dividing the magnitude of the photocurrent flowing through the optical wavelength monitoring photodiode 500 by the current flowing through the photodiode monitoring photodiode 600 is maintained at a constant value, the center frequency of the laser light is a wavelength selective filter. The talon filter 400 is in a constant relationship with the center frequency of the transmission mode, thereby attenuating the " 0 " signal relatively more than the " 1 " signal to enable long distance communication. In FIG. 4, the relationship between the transmission band center frequency of the etalon filter 400 and the center frequency of the laser light is obtained by comparing the photocurrent flowing through the optical wavelength monitoring photodiode 500 and the light intensity monitoring photodiode 600. When the temperature of the thermoelectric element 900 is changed in a direction that cancels the change in the optical wavelength of the laser light based on the transmission wavelength of the etalon filter 400, the laser light is transmitted to the transmission wavelength band of the etalon filter 400. It can be made to have a relatively constant wavelength for.
이때, 상기 파장 선택성 필터인 에탈론 필터(400)의 투과 모드의 중심 주파수가 ITU 설정 주파수가 되도록 설정한 후 광파장 감시용 포토 다이오드(500)로 흐르는 광전류의 크기를 광세기 감시용 포토 다이오드(600)로 흐르는 전류로 나누어준 값이 일정하게 되도록 열전소자(900)의 온도를 바꾸어 주면 발진하는 레이저 빛의 중심 주파수가 ITU 설정 주파수가 되도록 안정화시킬 수 있게 된다. 상기 온도가 조절되는 열전소자(900)는 스템(1000) 상부에 배치된다. At this time, the center frequency of the transmission mode of the etalon filter 400, which is the wavelength selective filter, is set to be the ITU set frequency, and then the magnitude of the light current flowing through the optical wavelength monitoring photodiode 500 is measured by the light intensity monitoring photodiode 600 When the temperature of the thermoelectric element 900 is changed so that the value divided by the current flowing in the constant state is constant, the center frequency of the oscillating laser light can be stabilized to be the ITU set frequency. The thermoelectric element 900 whose temperature is controlled is disposed above the stem 1000.
상기 광세기 감시용 포토 다이오드(600)는 다른 구성으로도 구현할 수 있는데, 레이저 다이오드 칩(100)에서 발산되는 레이저 빛의 세기는 도 5와 같이 레이저 다이오드 칩(100)의 후면에서 발산되는 레이저 빛의 세기를 측정하는 광감시 세기용 포토 다이오드(700)을 배치함으로써 측정이 가능하다. The light intensity monitoring photodiode 600 may be implemented in other configurations. The intensity of the laser light emitted from the laser diode chip 100 is emitted from the back of the laser diode chip 100 as shown in FIG. 5. The measurement is possible by arranging the photodiode 700 for photo-sensing intensity to measure the intensity of the light.
도 6의 (a)는 FP형 에탈론 필터의 주파수에 따른 투과 특성이다. 또한, 도 6의 (b)는 레이저 다이오드 칩에서 발산되는 "1" 신호와 "0" 신호의 레이저 빛의 주파수 특성이다. 레이저 다이오드 칩(100)에서 발산된 "1" 신호와 "0" 신호의 레이저 빛은 FP형 에탈론 필터(400)를 투과하며 FP형의 에탈론 필터(400)의 주파수 특성이 곱해져서, 도 6의 (c)와 같이 "1" 신호에 비해 "0" 신호의 세기가 줄어든 레이저 빛이 FP형의 에탈론 필터(400)를 투과하여 광섬유로 집속되게 된다. 그러므로 광섬유를 통해서 전송되는 레이저 빛의 선폭은 레이저 다이오드 칩(100)에서 발산된 레이저 빛에 비해 "0" 신호가 "1" 신호에 비해 줄어든 좁아진 선폭을 가지므로 광섬유의 분산 특성에 덜 영향을 받아 FP형의 에탈론 필터(400)를 이용하여 선폭이 좁아지지 않은 레이저 빛에 비해 더 장거리 전송이 가능하게 된다. 6A is a transmission characteristic according to the frequency of the FP type etalon filter. 6B is a frequency characteristic of the laser light of the "1" signal and the "0" signal emitted from the laser diode chip. The laser light of the " 1 " signal and the " 0 " signal emitted from the laser diode chip 100 passes through the FP-type etalon filter 400 and the frequency characteristics of the FP-type etalon filter 400 are multiplied. As shown in (c) of FIG. 6, laser light whose intensity of the “0” signal is reduced compared to the “1” signal is transmitted through the FP-type etalon filter 400 to be focused on the optical fiber. Therefore, the line width of the laser light transmitted through the optical fiber is less affected by the dispersion characteristics of the optical fiber because the "0" signal has a narrower line width than the "1" signal compared to the laser light emitted from the laser diode chip 100. By using the FP-type etalon filter 400 it is possible to transmit a longer distance than the laser light does not narrow the line width.
통상적으로 FP형의 에탈론 필터(400)는 평행면을 가지는 유리로 제작된다. 이러한 유리 재질의 경우 온도에 따라 굴절률이 달라지며, 이에 따라 FP형 에탈론 필터(400)의 온도가 바뀌게 되면 도 7과 같이 주기적으로 변화하는 에탈론 필터(400)의 투과 주파수의 이동이 발생하게 된다. Typically, the FP type etalon filter 400 is made of glass having a parallel plane. In the case of such a glass material, the refractive index varies depending on the temperature. Accordingly, when the temperature of the FP-type etalon filter 400 is changed, the transmission frequency of the etalon filter 400 periodically changes as shown in FIG. 7. do.
레이저 다이오드 칩(100)은 통상적으로 10∼12 GHz/℃ 정도의 주파수 이동을 가져 온다. 이에 비해 FP형의 에탈론 필터(400)는 1∼3 GHz/℃의 주파수 이동을 가져온다. 광통신에서는 국제통신규약(ITU-T)에서 정해진 특정한 주파수의 레이저 빛을 이용하여 통신을 하여야 하므로 레이저 빛을 가변시켜 광통신을 하기 위해서는 ITU-T에서 설정한 주파수로만 파장을 가변시켜야 한다. ITU-T에서는 50GHz, 100GHz 주파수 간격을 가지는 레이저 빛을 통신용으로 설정하고 있으며, 이에 따라 레이저 빛의 주파수는 50GHz, 100GHz 간격으로 변화시켜야 한다. 레이저 다이오드 칩(100)이 10GHz/℃로 변화하고 FP형의 에탈론 필터(400)가 2GHz/℃로 변화하게 된다면, 레이저 다이오드 칩(100)과 FP형의 에탈론 필터(400)가 열전소자(900)에 의해 동일한 온도로 조절될 경우, 레이저 빛의 파장을 조절하기 위해 열전소자(900)의 온도를 바꾸어 주게 되면 에탈론 필터(400)의 투과 파장대역 자체도 이동하게 된다. 그러므로 레이저 빛(100)의 파장이 50GHz, 100GHz 바뀌는 온도 변화를 겪을 때, 에탈론 필터(400)는 이러한 온도 변화를 거친 후에 투과 파장이 ITU 설정 주파수 대역에 정합되어야 한다. The laser diode chip 100 typically produces a frequency shift on the order of 10-12 GHz / ° C. In contrast, the FP type etalon filter 400 brings about a frequency shift of 1 to 3 GHz / ° C. In the optical communication, communication must be made by using laser light of specific frequency specified in ITU-T. Therefore, in order to perform optical communication by changing the laser light, the wavelength should be changed only at the frequency set by ITU-T. In ITU-T, laser light with 50 GHz and 100 GHz frequency intervals is set for communication. Accordingly, the laser light frequency should be changed in 50 GHz and 100 GHz intervals. When the laser diode chip 100 changes to 10 GHz / ° C. and the FP-type etalon filter 400 changes to 2 GHz / ° C., the laser diode chip 100 and the FP-type etalon filter 400 may be thermoelectric elements. When it is adjusted to the same temperature by the 900, if the temperature of the thermoelectric element 900 is changed to control the wavelength of the laser light, the transmission wavelength band itself of the etalon filter 400 is also moved. Therefore, when the wavelength of the laser light 100 undergoes a temperature change of 50 GHz and 100 GHz, the etalon filter 400 must pass through this temperature change, and the transmission wavelength must match the ITU set frequency band.
레이저 다이오드 칩(100)의 온도에 따른 주파수 이동도를 Flaser GHz/℃로 변화하고 에탈론 필터의 주파수는 온도에 따라 Ffilter GHz/℃로 바뀐다고 가정하자. 이 경우 에탈론 필터(400)의 투과 파장 대역의 주파수 간격이 다음과 같은 수학식 1이 될 경우, 도 8의 (b)와 같이 레이저 다이오드 칩(100)과 에탈론 필터(400)의 투과 모드 주파수가 어느 한 온도에서 ITU 설정 주파수에 일치한 후, 다른 온도에서 레이저 다이오드 칩(100)에서 발산되는 레이저 빛의 주파수가 다른 ITU 설정 주파수로 변화될 때, 이러한 온도 변화에 대해 에탈론 필터(400)의 투과 주파수가 ITU 설정 주파수와 일치하여 에탈론 필터(400)를 투과하는 빛은 ITU 설정 주파수로 설정 되게 된다. Assume that the frequency mobility of the laser diode chip 100 is changed to Flaser GHz / ° C and the frequency of the etalon filter is changed to Ffilter GHz / ° C according to the temperature. In this case, when the frequency interval of the transmission wavelength band of the etalon filter 400 becomes the following Equation 1, the transmission mode of the laser diode chip 100 and the etalon filter 400 as shown in FIG. When the frequency matches the ITU set frequency at one temperature and then the frequency of the laser light emitted from the laser diode chip 100 at another temperature is changed to another ITU set frequency, the etalon filter 400 for this temperature change. ) And the light passing through the etalon filter 400 is set to the ITU set frequency in accordance with the ITU set frequency.
[수학식 1][Equation 1]
에탈론 필터의 투과모드 주파수간격 = (100 - 100 × Ffilter / Flsaser)GHzTransmission Mode Frequency Spacing of Etalon Filters = (100-100 × Ffilter / Flsaser) GHz
여기에서, Ffilter는 에탈론 필터의 온도에 따른 투과 주파수 이동도, Flaser는 레이저 다이오드 칩에서 방출되는 레이저 빛의 온도에 따른 주파수 이동도를 나타낸다.Here, Ffilter is the transmission frequency mobility according to the temperature of the etalon filter, Flaser is the frequency mobility according to the temperature of the laser light emitted from the laser diode chip.
상기 수학식 1은 100GHz 간격의 ITU 설정 주파수를 이용한 파장 가변 레이저에서의 에탈론 필터(400)의 투과모드 주파수 간격이며, 만약 50GHz 간격의 주파수를 이용하여 통신을 할 경우에 에탈론 필터(400)의 투과모드 주파수 간격은 다음의 수학식 2로 구현되어야 한다. Equation 1 is the transmission mode frequency interval of the etalon filter 400 in the wavelength tunable laser using the ITU set frequency of 100GHz interval, if the communication using the frequency of 50GHz interval etalon filter 400 The transmission mode frequency interval of is to be implemented by the following equation (2).
[수학식 2][Equation 2]
에탈론 필터의 투과모드 주파수간격 = (50 - 50 × Ffilter / Flsaser)GHzTransmission Mode Frequency Spacing of Etalon Filters = (50-50 × Ffilter / Flsaser) GHz
이와 같이, 에탈론 필터(400)의 투과모드 간격은 임의로 정해 질 수 있으며, 통상적으로는 25GHz, 50GHz, 100GHz, 200GHz 등으로 바뀔 수 있으나 다른 임의의 주파수 간격도 채택될 수 있다.As such, the transmission mode interval of the etalon filter 400 may be arbitrarily determined, and may be changed to 25 GHz, 50 GHz, 100 GHz, 200 GHz, etc., but other arbitrary frequency intervals may also be adopted.
상기 도 2 내지 도 9의 설명에서는 온도의 변화에 따라 레이저 다이오드 칩(100)에서 발진하는 레이저 빛에 비해 상대적으로 투과 파장 변화가 적은 파장 선택성 필터를 사용한 경우를 설명하고 있다. 즉, 레이저 다이오드 칩(100)의 온도를 변화시켜 레이저 빛의 파장을 파장 선택성 필터의 투과 파장 대역과 일정한 관계를 가지도록 하는 방법을 설명하고 있다. 이에 따라 레이저 다이오드 칩(100)을 열전소자(900) 상부에 배치하는 방법이 필요하며, 에탈론 필터(400) 또한 열전소자(900)에 부착하여 레이저 다이오드 칩(100)과 에탈론 필터(400)의 온도를 동일한 열전소자(900)로 조절하는 방법을 보여주고 있다. 그러나 이러한 열전소자(900)를 사용하는 방법은 에너지가 많이 소모되는 방법이다. 특히 열전소자(900)를 냉각모드에서 사용하게 될 경우에는 많은 에너지가 소요된다. 열전소자(900)를 이용하여 레이저 다이오드 칩(100)의 온도를 조절하여 레이저 다이오드 칩(100)에서 방출되는 레이저 빛의 파장을 조절하는 방법은, 레이저 빛의 파장과 에탈론 필터(400)의 파장과의 상관관계를 일정하게 하여 레이저 다이오드 칩(100)에서 방출되는 "1" 신호와 "0" 신호의 ER을 확대함으로써 고속 변조 광신호를 장거리 전송이 가능하게 할 뿐만 아니라, 레이저 빛의 파장이 고정되는 효과가 있으므로 DWDM의 방법에 적절한 방식이다. 2 to 9 illustrate a case where a wavelength selective filter having a relatively small change in transmission wavelength is used as compared with laser light oscillated by the laser diode chip 100 according to a change in temperature. That is, a method of changing the temperature of the laser diode chip 100 so that the wavelength of the laser light has a constant relationship with the transmission wavelength band of the wavelength selective filter is described. Accordingly, a method of arranging the laser diode chip 100 on the thermoelectric element 900 is required, and the etalon filter 400 is also attached to the thermoelectric element 900 to attach the laser diode chip 100 and the etalon filter 400. Shows a method of controlling the temperature of the same with the same thermoelectric element (900). However, the method of using the thermoelectric element 900 is a method that consumes a lot of energy. In particular, when the thermoelectric element 900 is used in the cooling mode, a lot of energy is consumed. The method of controlling the wavelength of the laser light emitted from the laser diode chip 100 by adjusting the temperature of the laser diode chip 100 using the thermoelectric element 900 includes the wavelength of the laser light and the etalon filter 400. By extending the ER of the "1" signal and the "0" signal emitted from the laser diode chip 100 by making the correlation with the wavelength constant, not only enables the long-distance transmission of the high speed modulated optical signal, but also the wavelength of the laser light. This is a fixed way, so it is a proper way of DWDM method.
그러나 레이저 빛의 파장을 조절할 필요가 없는 경우에 고속 변조 신호를 장거리 전송하고자 할 경우에는 레이저 다이오드 칩(100)의 온도를 조절할 필요가 없으며, 에탈론 필터(400)의 온도를 조절하여 에탈론 필터(400)의 투과 파장 대역이 레이저 빛의 파장과 일정한 파장 간격을 유지하도록 하면 상기한 "0" 신호를 "1" t신호에 비해 더 감쇄시키므로써 좁은 선폭의 레이저 빛을 만들어 장거리 전송이 가능하게 할 수 있다. 이를 위해서는 에탈론 필터(400)로서 히터가 코팅된 에탈론 필터를 사용하는 것이 바람직하다. However, when it is not necessary to adjust the wavelength of the laser light, if you want to transmit a high-speed modulation signal over a long distance, it is not necessary to adjust the temperature of the laser diode chip 100, and adjust the temperature of the etalon filter 400 to filter the etalon filter. If the transmission wavelength band of 400 maintains a constant wavelength interval with the wavelength of the laser light, the "0" signal is attenuated more than the "1" t signal, thereby making the laser light having a narrow line width to enable long-distance transmission. can do. For this purpose, it is preferable to use an etalon filter coated with a heater as the etalon filter 400.
도 9는 이러한 TO형 패키지에 열전소자가 장착되지 않고 레이저 다이오드 칩이 부착된 서브마운트가 직접 스템 바닥면에 배치된 경우를 보여주고 있다. 상기 레이저 다이오드 칩(100)의 온도는 외부 환경 온도에 노출되며 이에 따라 외부 환경 온도가 바뀌게 되면 레이저 다이오드 칩(100)의 온도가 바뀌게 되어 발진하는 레이저 빛의 파장이 바뀌게 된다. 이때, 에탈론 필터(450)를 히터가 부착된 형태로 제작하게 되면, 에탈론 필터(450)의 온도를 조절하여 에탈론 필터(450)의 투과 파장 피크(peak)가 레이저 빛의 파장과 미리 정해진 파장 간격이 되도록 할 수 있고, 이에 따라 에탈론 필터(450)를 통과하는 레이저 빛의 "0" 신호는 "1" 신호에 비해 더 강하게 감쇄되어 고속 변조 광신호를 더 장거리까지 전송할 수 있게 된다. 이러한 도 9의 구조에서, 에탈론 필터(450)의 투과 파장은 온도에 따라 용이하게 바뀌는 것이 바람직한데, 이를 위해 에탈론 필터(450)는 투과 파장의 파장이 0.09nm/℃ 정도로 바뀌는 Silicon 또는 InP, GaAs 등의 반도체 재질로 제작되는 것이 적당하다. 또한, 이러한 에탈론 필터(450)의 온도를 조절하기 위해 에탈론 필터(450) 표면에 금속 박막의 저항체가 부착되어, 에탈론 필터(450)에 부착된 금속 박막으로 흐르는 전류에 의해 에탈론 필터(450)의 온도가 조절되는 것이 바람직하다. 상기 에탈론 필터(450)에 금속 박막을 부착하는 것은 포토리소그라피법과 금속 증착법에 의해 손쉽게 제작될 수 있다. 또한, 상기 에탈론 필터(450)는 복수의 투과 피크를 가지는 것이 바람직하며, 광소자 제작상의 손쉬움과 에탈론 필터(450)의 복수의 투과 피크(peak) 파장 사이를 고려하여 에탈론 필터(450)의 두께는 200um 내지 500um 정도가 적당하다. FIG. 9 illustrates a case in which the TO-type package is not equipped with a thermoelectric element and a submount to which a laser diode chip is attached is disposed directly on the stem bottom surface. The temperature of the laser diode chip 100 is exposed to an external environmental temperature. Accordingly, when the external environmental temperature is changed, the temperature of the laser diode chip 100 is changed to change the wavelength of the laser light that is oscillated. In this case, when the etalon filter 450 is manufactured in a form with a heater, the transmission wavelength peak of the etalon filter 450 is adjusted in advance by adjusting the temperature of the etalon filter 450. In this case, the "0" signal of the laser light passing through the etalon filter 450 is attenuated more strongly than the "1" signal, thereby transmitting a high-speed modulated optical signal over a longer distance. . In the structure of FIG. 9, it is preferable that the transmission wavelength of the etalon filter 450 is easily changed according to temperature. For this purpose, the etalon filter 450 is made of Silicon or InP such that the wavelength of the transmission wavelength is changed to about 0.09 nm / ° C. It is suitable to be made of a semiconductor material such as GaAs. In addition, in order to adjust the temperature of the etalon filter 450, a resistor of a metal thin film is attached to the surface of the etalon filter 450, and the etalon filter is generated by a current flowing through the metal thin film attached to the etalon filter 450. It is preferable that the temperature of 450 be adjusted. Attaching the metal thin film to the etalon filter 450 can be easily manufactured by the photolithography method and the metal deposition method. In addition, the etalon filter 450 preferably has a plurality of transmission peaks, and the etalon filter 450 in consideration of the ease of manufacturing an optical device and the plurality of transmission peak wavelengths of the etalon filter 450. ), The thickness of about 200um to 500um is appropriate.
도 10은 본 발명의 실시예에 따른 TO형 패키지에 45도 반사거울을 손쉽게 장착하기 위한 45도 반사거울용 스탠드의 모습을 보여준다. Figure 10 shows the appearance of a 45-degree reflective mirror stand for easily mounting a 45-degree reflective mirror in the TO-type package according to an embodiment of the present invention.
본 발명의 실시예에 따른 스탠드(350)는 직육면체형으로 제작되는데, 밑변에 대해 45도의 각도로 관통 구멍(351)을 가지고 있으며, 이 관통 구멍(351)에 평판형의 45도 부분반사거울(300)이 삽입되어 열전소자 위에 장착된다. 이러한 구조는 45도 부분반사거울(300)을 열전소자(900) 위에 손쉽게 부착할 수 있도록 하여 준다. 상기 스탠드(350)는 열 전달률이 좋은 물질이 적절하며 이러한 물질로는 열전달률이 170W/m 이며 건식 식각 공정에 의해 관통 구멍(351)의 제작이 용이한 실리콘 기판이 적절하다. 특히 실리콘은 건식 식각 방법에 의해 관통 구멍(351)의 폭 조절이 매우 용이하고, 밑변에 대한 각도 조절이 용이하므로 평판형의 부분반사거울(300)을 단지 실리콘 스탠드(350)의 관통 구멍(351)에 삽입하는 것만으로 평판형 부분반사 거울(300)을 45도 각도로 배치하게 하여 조립 공정을 용이하게 하여준다. Stand 350 according to an embodiment of the present invention is made of a rectangular parallelepiped, has a through hole 351 at an angle of 45 degrees to the base, the through-hole 351 is a flat 45-degree partial mirror ( 300 is inserted and mounted on the thermoelectric element. This structure allows the 45 degree partial reflection mirror 300 to be easily attached onto the thermoelectric element 900. The stand 350 may be a material having a good heat transfer rate, and a silicon substrate having a heat transfer rate of 170 W / m and an easy manufacturing of the through hole 351 by a dry etching process may be appropriate. In particular, since the silicon is very easy to adjust the width of the through hole 351 by the dry etching method, and the angle to the base is easy to adjust, the flat partial reflection mirror 300 of the silicon-type stand 350 is only the through hole 351. By simply inserting into the) flat plate reflection mirror 300 is placed at an angle of 45 degrees to facilitate the assembly process.
일반적으로 TO형 패키지의 외부 환경 온도가 다양하게 변화하게 되면, TO형 패키지의 외주면과 TO형 패키지의 내부 부품들 사이에 열 교환이 일어나게 된다. TO형 패키지의 각각의 내부 부품과 TO형 패키지의 외주면 사이의 거리는 다양하게 변화할 수 있으므로, TO형 패키지의 외부 환경 온도 변화는 TO형 패키지의 내부 부품의 온도를 불균일하게 변화시킬 수 있다. 이러한 공진기 구성 물질의 독립적인 온도 변화는 공진기의 유효 광학적 길이에 불균일한 변화를 가져오게 되므로, 공진기 구성 부품과 TO형 패키지의 외주면 사이에 열 교환이 최소화되는 것이 바람직하다. 따라서 TO형 패키지의 내부를 진공으로 유지하는 것이 바람직한데, 특히 진공도는 0.2 기압 이하인 것이 더욱 바람직하다.In general, when the external environment temperature of the TO-type package varies, heat exchange occurs between the outer circumferential surface of the TO-type package and the internal components of the TO-type package. Since the distance between each internal component of the TO package and the outer circumferential surface of the TO package can vary widely, a change in the external environmental temperature of the TO package can unevenly change the temperature of the internal component of the TO package. Since the independent temperature change of the resonator component material causes a non-uniform change in the effective optical length of the resonator, it is desirable to minimize heat exchange between the resonator component and the outer peripheral surface of the TO-type package. Therefore, it is preferable to keep the inside of the TO-type package in a vacuum, and in particular, the degree of vacuum is more preferably 0.2 atm or less.
한편, 본 발명은 다양한 형태로의 변형이 가능하다. 예를 들면, 본 발명의 특성을 파장 가변 레이저로 사용하지 않고 특정한 파장으로 구동되는 레이저로 구동시킬 수 있는데, 이때는 에탈론 필터(400)의 주파수 간격의 주기성이 필요하지 않으므로 에탈론 필터(400)의 주파수의 주기성이 수학식 1을 따를 필요가 없게 된다. 또한, 본 발명의 특성을 특정한 파장에서만 동작하는 레이저를 사용하는 것으로 하는 경우, FP형의 에탈론 필터(400) 대신 유리 또는 쿼츠 등 고려되는 파장의 레이저 빛에 투명한 기판에 굴절률이 높고 낮은 복수의 유전체 박막을 적층하여 제작되는 thin film filter 등 파장 선택성을 가지는 어떠한 종류의 필터도 사용할 수 있다.On the other hand, the present invention can be modified in various forms. For example, the characteristics of the present invention can be driven by a laser driven at a specific wavelength without using a tunable laser. In this case, since the periodicity of the frequency interval of the etalon filter 400 is not necessary, the etalon filter 400 The periodicity of the frequency of does not need to follow the equation (1). In addition, when using the laser operating only at a specific wavelength of the characteristics of the present invention, instead of the FP type etalon filter 400, a plurality of high and low refractive index on the substrate transparent to the laser light of the wavelength considered, such as glass or quartz Any kind of filter having wavelength selectivity, such as a thin film filter manufactured by stacking a dielectric thin film, may be used.
또한, 평판형 45도 부분반사거울(300)의 경우, 두께가 너무 두꺼워지면 TO60의 제한된 규격에 삽입되기가 어려우며, 두께가 너무 얇아지면 기계적 강도가 약해지는 문제가 발생한다. 그러므로 평판형 45도 부분반사거울(300)의 두께는 TO60의 규격에 맞도록 0.1∼0.3mm 정도가 적절하며, 더욱 바람직하게는 0.1∼0.2mm 정도가 적절하다.Further, in the case of the flat 45 degree partial reflection mirror 300, if the thickness is too thick, it is difficult to be inserted into the limited standard of TO60, and if the thickness is too thin, there is a problem that the mechanical strength becomes weak. Therefore, the thickness of the flat 45 degree partial reflection mirror 300 is appropriately about 0.1 to 0.3mm, more preferably about 0.1 to 0.2mm to meet the standard of TO60.
도 11은 레이저 다오이드 칩으로부터 발산되는 레이저 빛의 세기를 측정하는 포토 다이오드의 설치 개념도로서, 레이저 다이오드 칩(100)으로부터 광축이 수평으로 발산되는 레이저 빛의 세기를 측정하기 위해 통상적으로 사용되는 단면이 직각인 형태의 포토 다이오드용 서브마운트(710)(610)에 부착되는 포토 다이오드(700)(710)를 보여주고 있다. FIG. 11 is a conceptual diagram illustrating a photodiode for measuring the intensity of laser light emitted from a laser diode chip. FIG. 11 is a cross-sectional view typically used to measure the intensity of laser light emitted horizontally from the laser diode chip 100. The photodiodes 700 and 710 are shown attached to the submounts 710 and 610 for the photodiode at right angles.
한편, 도 12는 단면이 직사각형 형태인 직육면체 형의 포토 다이오드용 서브마운트의 일례를 나타낸 것이다. 12 shows an example of a rectangular parallelepiped submount for photodiodes having a rectangular cross section.
도 12에서, 알루미나 등 세라믹 기판으로 이루어진 단면이 직사각형인 서브마운트에 포토 다이오드의 전기적 연결을 위한 금속 패턴이 증착되어 금속 박막 패턴이 형성되어야 하는데, 직각의 각도로 꺽어진 연속되는 두 면에 금속 패턴을 한꺼번에 증착하기 어려운 단점이 있다. 그러므로 기존에는 금속 패턴이 코팅되어야 하는 각면에 대해 따로 금속 패턴을 증착함으로써 비용이 증가하는 문제가 있었다. In FIG. 12, a metal pattern for electrical connection of a photodiode is to be deposited on a rectangular submount made of a ceramic substrate such as alumina to form a metal thin film pattern. The metal pattern is formed on two consecutive surfaces curved at right angles. It is difficult to deposit all at once. Therefore, conventionally, there is a problem in that the cost is increased by depositing a metal pattern on each side of the metal pattern to be coated separately.
이러한 문제점에 따라 본 발명에서는 포토 다이오드용 서브마운트에 금속 패턴을 한꺼번에 증착하는 방법을 제시하고 있는데, 도 13은 이러한 포토 다이오드용 서브마운트의 금속 패턴 증착 일례를 나타낸 것이다.In accordance with this problem, the present invention provides a method of depositing a metal pattern on a photodiode submount at a time, and FIG. 13 shows an example of metal pattern deposition on such a photodiode submount.
도 13에 도시된 바와 같이, 본 발명의 실시예에서는 실리콘 기판을 {100}면과 {111}면이 노출되도록 식각한 후, 식각된 실리콘 기판에 전기 절연막을 증착하고, {100}면과 {111}면에 동시에 금속 패턴을 증착하여 포토 다이오드용 서브마운트(615)(715)를 제작하는 방법을 제시하고 있다. 이렇게 제작된 포토 다이오드용 서브마운트(615)(715)는 제작 가격이 저렴할 뿐만 아니라 단면이 직사각형인 포토 다이오드 서브마운트(610)(710)와 달리 포토 다이오드(600)(700)가 평판형 45도 부분반사거울(300)의 기울어진 각도와 배치 각도 차이가 작아 평판형 45도 부분반사거울(300)에 더 밀접하게 배치할 수 있게 되어 TO 패키지 내부 공간 활용에 도움이 된다.As shown in FIG. 13, in the embodiment of the present invention, the silicon substrate is etched to expose the {100} plane and the {111} plane, and then an electrical insulating layer is deposited on the etched silicon substrate, and the {100} plane and { A method of fabricating the photodiode submounts 615 and 715 by simultaneously depositing a metal pattern on the surface 111} is provided. As described above, the photodiode submounts 615 and 715 are not only inexpensive to fabricate but also have a rectangular cross-section, whereas the photodiode submounts 610 and 710 have a flat 45 degree angle. Since the difference between the inclination angle and the placement angle of the partial reflection mirror 300 is small, it may be more closely disposed in the flat 45 degree partial reflection mirror 300, thereby helping to utilize the space inside the TO package.
한편, 레이저 장치의 파장 안정화를 위하여서는 패키지 내부에서 열전소자(900)의 상부에 장착되어 온도를 측정하는 써미스터가 TO 패키지 외부 온도 변화에 영향을 받지 않아야 한다. On the other hand, in order to stabilize the wavelength of the laser device, the thermistor mounted on the thermoelectric element 900 inside the package and measuring the temperature should not be affected by temperature changes outside the TO package.
도 14는 종래 일반적인 써미스터 배치 방법을 나타낸 것으로, 써미스터(950)는 Au wire(1020)로 전극핀(1010)과 전기적 연결을 가지게 된다. 이때, 전극핀(1010)은 열전소자(900)에 의해 온도 조절이 되는 부분이 아니므로 열전소자(900)와는 다른 온도를 갖게 되고, 이에 따라 전극핀(1010)과 써미스터(950) 사이에는 열교환이 발생하게 되어, 써미스터(950)가 열전소자(900)의 온도를 측정하는데 부정확함을 유발하게 된다. 14 illustrates a conventional general thermistor disposition method. The thermistor 950 has an electrical connection with the electrode pin 1010 by Au wire 1020. At this time, since the electrode pin 1010 is not a temperature controlled portion by the thermoelectric element 900, the electrode fin 1010 has a temperature different from that of the thermoelectric element 900, and thus, the heat exchange between the electrode pin 1010 and the thermistor 950 is performed. This occurs, causing the thermistor 950 to be inaccurate in measuring the temperature of the thermoelectric element 900.
도 15는 이러한 문제점에 따라 제시된 본 발명의 실시예에 따른 써미스터 배치 방법을 나타낸 것이다. Figure 15 shows a thermistor placement method according to an embodiment of the present invention presented in accordance with this problem.
도 15에 도시된 바와 같이, 본 발명의 실시예에서는 전극핀(1010)과 써미스터(950)의 열교환을 억제하기 위해서 전극핀(1010)과 써미스터(950) 사이에 써미스터 연결용 서브마운트(980)를 부착하여, 써미스터 연결용 서브마운트(980)를 거쳐 Au wire(1020)로 전극핀(1010)과 써미스터 연결용 서브마운트(980)를 연결하고, Au wire(1030)로 써미스터 연결용 서브마운트(980)와 써미스터(950)를 연결하게 된다. 이에 따라 전극핀(1010)과 열전소자(900)의 온도차에 의해 Au wire(1020)로 흐르는 열이 써미스터 연결용 서브마운트(980)에 의해 흡수되어 Au wire(1030)로 흐르는 열량이 최소화되기 때문에 써미스터(950)의 온도 측정이 보다 정확해질 수 있다. 이와 같이, 열전소자(900)와 써미스터(950) 사이의 열 경로와 분리되어 열전소자(900) 상부에 독립적으로 부착된 써미스터 연결용 서브마운트(980)를 통하여 써미스터(950)와 전극핀(1010)을 전기적으로 연결하는 경우, 써미스터(950)를 통한 열전소자(900)의 온도측정시 외부 환경 온도 변화에 따른 부정확도가 완화될 수 있다. As shown in FIG. 15, in the embodiment of the present invention, the submount 980 for connecting the thermistor between the electrode pin 1010 and the thermistor 950 to suppress heat exchange between the electrode pin 1010 and the thermistor 950. And attach the electrode pin 1010 and thermistor connection submount 980 to the Au wire 1020 via the thermistor connection submount 980, and the Au wire 1030 to the submount for thermistor connection. 980 and the thermistor 950 are connected. Accordingly, since the heat flowing to the Au wire 1020 is absorbed by the thermistor connection submount 980 due to the temperature difference between the electrode pin 1010 and the thermoelectric element 900, the amount of heat flowing to the Au wire 1030 is minimized. The temperature measurement of the thermistor 950 can be more accurate. As described above, the thermistor 950 and the electrode pin 1010 are separated from the thermal path between the thermoelectric element 900 and the thermistor 950 through the thermistor connection submount 980 independently attached to the upper portion of the thermoelectric element 900. ) Is electrically connected to each other, the inaccuracy due to the change of the external environment temperature during the temperature measurement of the thermoelectric element 900 through the thermistor 950 can be alleviated.
또한, 써미스터(950)와 TO 패키지 내부 공기와의 열교환도 써미스터(950)가 열전소자(900)의 온도를 측정하는데 부정확함을 야기하게 되므로, 써미스터(950)를 비전도성 에폭시 등으로 감싸주는 방법도 써미스터(950)의 열전소자(900) 온도 측정의 정밀도를 높여 주는 방법이 된다. In addition, the heat exchange between the thermistor 950 and the air inside the TO package also causes the thermistor 950 to be inaccurate in measuring the temperature of the thermoelectric element 900, so that the thermistor 950 is wrapped with non-conductive epoxy. In addition, the thermoelectric element 900 of the thermistor 950 increases the accuracy of the temperature measurement.
한편, 45도 부분반사거울(300)의 경우 너무 두꺼워지면 패키지 내의 공간이 줄어드는 단점이 있고, 너무 얇으면 진동에 흔들림이 발생할 우려가 있다. 본 발명에서는 상기 45도 부분반사거울(300)의 두께를 다양하게 제작하여 실험하였는데, 이러한 실험 결과에 따르면 상기 45도 부분반사거울(300)의 경우 두께가 0.1mm∼0.25mm 정도가 적절하다. On the other hand, in the case of the 45-degree partial reflection mirror 300 is too thick, there is a disadvantage that the space in the package is reduced, if too thin, there is a risk of shaking in the vibration. In the present invention, the 45-degree partial reflection mirror 300 was produced by various tests, and according to the results of the experiment, the 45-degree partial reflection mirror 300 had a thickness of about 0.1 mm to 0.25 mm.
또한, 45도 부분반사거울(300)의 하부에 배치되는 광파장 감시용 포토 다이오드(500)는 광파장 감시용 포토 다이오드용 서브마운트(510)의 상부 일측에 고정되어 배치되는 형태로 설명하였지만, 상기 광파장 감시용 포토 다이오드(500)는 열전소자(900) 위에 배치될 수 있다. 이는 상기 열전소자(900)의 상부판은 열팽창률이 광파장 감시용 포토 다이오드(500)와 유사하여 온도 편차에 따라 광파장 감시용 포토 다이오드(500)에 가해지는 역학적 스트레스가 최소화되기 때문으로, 상기 광파장 감시용 포토 다이오드(50)가 직접 열전소자(900)의 상부에 부착되는 방법으로 조립되는 것이 가능하다. 이렇게 할 경우 상기 45도 부분반사거울(300)의 하부 공간을 최대한 효율적으로 사용할 수 있는 장점이 있다. In addition, although the optical wavelength monitoring photodiode 500 disposed below the 45 degree partial reflection mirror 300 has been described as being fixedly arranged on one side of the upper portion of the optical wavelength monitoring photodiode submount 510, the optical wavelength The monitoring photodiode 500 may be disposed on the thermoelectric element 900. This is because the upper plate of the thermoelectric element 900 has a thermal expansion coefficient similar to that of the optical wavelength monitoring photodiode 500, thereby minimizing the mechanical stress applied to the optical wavelength monitoring photodiode 500 according to the temperature variation. The monitoring photodiode 50 can be assembled in such a way that it is directly attached to the top of the thermoelectric element 900. In this case, there is an advantage that the lower space of the 45 degree partial reflection mirror 300 can be used as efficiently as possible.
이와 같이, 본 발명은 다양한 형태로 변형될 수 있는 것으로, 본 발명은 상술한 실시예에 한정되는 것은 아니며 본 발명이 속하는 기술 분야에서 통상의 지식을 갖는 자에 의해 본 발명의 기술사상과 아래에 기재될 특허청구 범위의 균등범위 내에서 다양한 수정 및 변형이 이루어질 수 있음은 물론이다. As described above, the present invention may be modified in various forms, and the present invention is not limited to the above-described embodiments, and the technical spirit of the present invention and the following by those skilled in the art to which the present invention pertains. Of course, various modifications and variations can be made within the equivalent scope of the claims to be described.
[부호의 설명][Description of the code]
100 : 레이저 다이오드 칩100: laser diode chip
110 : 레이저 다이오드 칩용 서브마운트110: submount for laser diode chip
200 : 시준화 렌즈200: collimation lens
300 : 45도 부분반사거울300: 45 degree partial reflection mirror
350 : 45도 부분반사거울용 스탠드350: 45 degree partially reflective mirror stand
351 : 관통 구멍351: through hole
400 : FP형의 에탈론 필터400: FP type etalon filter
450 : 히터가 포함된 에탈로 필터450: etalo filter with heater
500 : 광파장 감시용 포토 다이오드 500: Photodiode for light wavelength monitoring
510 : 광파장 감시용 포토 다이오드용 서브마운트510: Submount for photodiode for light wavelength monitoring
600 : 광세기 감시용 포토 다이오드 600: Photodiode for light intensity monitoring
610 : 광세기 감시용 포토 다이오드용 서브마운트610: Submount for photodiode for light intensity monitoring
700 : 광세기 감시용 포토 다이오드 700: photodiode for light intensity monitoring
710 : 광세기 감시용 포토 다이오드용 서브마운트710: submount for photodiode for light intensity monitoring
615, 715 : 포토 다이오드용 서브마운트615, 715: submounts for photodiodes
900 : 열전소자900: thermoelectric element
950 : 써미스터950: Thermistor
960 : 써미스터용 서브마운트960: submount for thermistor
980 : 써미스터 연결용 서브마운트980: submount for thermistor connection
1000 : 스템1000: Stem
1010 : 전극핀1010: electrode pin
1020, 1030 : Au wire1020, 1030: Au wire

Claims (22)

  1. 반도체 레이저 장치에 있어서, In a semiconductor laser device,
    레이저 빛을 발산하는 레이저 다이오드 칩(100); A laser diode chip 100 for emitting laser light;
    파장 선택성 필터; Wavelength selective filters;
    상기 레이저 다이오드 칩(100)과 파장 선택성 필터 사이의 광 경로 상에 설치되어, 레이저 다이오드 칩(100)으로부터 발산된 빛을 시준화시키는 시준화 렌즈(200);A collimation lens (200) installed on an optical path between the laser diode chip (100) and a wavelength selective filter, for collimating light emitted from the laser diode chip (100);
    상기 레이저 다이오드 칩(100)과 파장 선택성 필터 사이의 광 경로 상에 설치되어, 패키지 바닥면에 대해 수평으로 진행하는 레이저 빛을 패키지 바닥면에 대해 수직으로 진행하는 레이저 빛으로 방향을 전환하는 45도 부분반사거울(300); Is installed on the optical path between the laser diode chip 100 and the wavelength selective filter, 45 degrees to redirect the laser light traveling horizontally with respect to the package bottom surface to the laser light traveling perpendicular to the package bottom surface Partial reflection mirror 300;
    상기 레이저 다이오드 칩(100)에서 발산된 후 파장 선택성 필터에서 반사하는 레이저 빛이 45도 부분반사거울(300)을 투과하는 광경로 상에 배치된 광파장 감시용 포토 다이오드(500);를 포함하여 이루어지는 것을 특징으로 하는 레이저 장치.And a light wavelength monitoring photodiode 500 disposed on an optical path through which the laser light emitted from the laser diode chip 100 and reflected by the wavelength selective filter pass through the 45 degree partial reflection mirror 300. Laser device, characterized in that.
  2. 제 1항에 있어서,The method of claim 1,
    상기 레이저 다이오드 칩(100)과 파장 선택성 필터는 하나의 열전소자(900) 위에 배치되는 것을 특징으로 하는 레이저 장치.The laser diode chip (100) and the wavelength selective filter is a laser device, characterized in that disposed on one thermoelectric element (900).
  3. 제 1항에 있어서, The method of claim 1,
    상기 파장 선택성 필터는 FP형의 에탈론 필터(400)인 것을 특징으로 하는 레이저 장치.The wavelength selective filter is a laser device, characterized in that the FP type etalon filter (400).
  4. 제 1항에 있어서, The method of claim 1,
    상기 파장 선택성 필터는 굴절률이 높고 낮은 유전체 박막이 적층되어 제작된 것을 특징으로 하는 레이저 장치.The wavelength selective filter is a laser device, characterized in that the dielectric film is laminated with a high refractive index and low.
  5. 제 1항에 있어서, The method of claim 1,
    상기 레이저 다이오드 칩(100)에서 발산된 레이저 빛이 45도 부분반사거울(300)을 투과하는 광 경로상에 광세기 감시용 포토 다이오드(600)가 배치되는 것을 특징으로 하는 레이저 장치.Laser device, characterized in that the light intensity monitoring photodiode (600) is disposed on the optical path through which the laser light emitted from the laser diode chip (100) passes through the 45 degree partial reflection mirror (300).
  6. 제 1항에 있어서, The method of claim 1,
    상기 레이저 다이오드 칩(100)의 후면에서 발산된 레이저 빛이 진행하는 광 경로 상에 광세기 감시용 포토 다이오드(700)가 배치되는 것을 특징으로 하는 선폭이 줄어든 파장 안정화 장치가 구비된 레이저 장치.Laser device having a line width reduced wavelength stabilization device, characterized in that the light intensity monitoring photodiode 700 is disposed on the optical path through which the laser light emitted from the back of the laser diode chip (100).
  7. 제 3항에 있어서,The method of claim 3, wherein
    상기 FP형의 에탈론 필터(400)는 다음의 수학식 1에 의해 투과 주파수 간격이 결정되는 것을 특징으로 하는 레이저 장치.The FP type etalon filter 400 is a laser device, characterized in that the transmission frequency interval is determined by the following equation (1).
    [수학식 1][Equation 1]
    에탈론 필터의 투과모드 주파수간격 = (Ff - Ff × Ffilter / Flsaser)GHz Transmission Mode Frequency Spacing of Etalon Filters = (Ff-Ff × Ffilter / Flsaser) GHz
    (여기에서, Ff는 구하고자 하는 투과 파장의 주파수 간격, Ffilter는 에탈론 필터의 온도에 따른 투과 주파수 이동도, Flaser는 레이저 다이오드 칩에서 방출되는 레이저 빛의 온도에 따른 주파수 이동도)(Ff is the frequency interval of the transmission wavelength to be obtained, Ffilter is the transmission frequency mobility according to the temperature of the etalon filter, and Flaser is the frequency mobility according to the temperature of laser light emitted from the laser diode chip.)
  8. 제 7항에 있어서, The method of claim 7, wherein
    상기 Ff는 25, 50, 100, 200 중 어느 하나인 것을 특징으로 하는 레이저 장치.The Ff is a laser device, characterized in that any one of 25, 50, 100, 200.
  9. 제 1항에 있어서,The method of claim 1,
    상기 파장 선택성 필터는 투과 파장 대역의 선폭이 0.5nm 이하인 것을 특징으로 하는 레이저 장치.The wavelength selective filter is a laser device, characterized in that the line width of the transmission wavelength band is 0.5nm or less.
  10. 제 1항에 있어서, The method of claim 1,
    상기 45도 부분반사거울(300)은The 45 degree partial reflection mirror 300
    어느 한 변에 대해 45도의 각도를 갖는 관통 구멍(351)이 건식 식각 방법으로 형성된 직육면체 형태의 실리콘 기판으로 이루어진 스탠드(350)의 관통 구멍(351)에 결합 고정되어, 바닥에 대해 45도의 각도를 갖도록 설치되는 것을 특징으로 하는 레이저 장치.A through hole 351 having an angle of 45 degrees with respect to one side is fixedly coupled to the through hole 351 of the stand 350 made of a rectangular parallelepiped silicon substrate formed by a dry etching method, thereby providing an angle of 45 degrees with respect to the floor. It is installed to have a laser device.
  11. 제 5항 또는 제 6항에 있어서 , The method of claim 5 or 6,
    상기 광파장 감시용 포토 다이오드(500)로 흐르는 전류를 광세기 감시용 포토 다이오드(600)(700)로 흐르는 전류로 나눈 값이 최소가 되도록 열전소자(900)의 온도를 조절하여 레이저의 발진 파장을 안정화시키는 것을 특징으로 하는 레이저 장치.The oscillation wavelength of the laser is adjusted by adjusting the temperature of the thermoelectric element 900 such that a value obtained by dividing the current flowing through the optical wavelength monitoring photodiode 500 by the current flowing through the light intensity monitoring photodiode 600 and 700 is minimized. Stabilizing a laser device characterized in that.
  12. 제 5항 또는 제 6항에 있어서, The method according to claim 5 or 6,
    상기 포토 다이오드용 서브마운트(610)(710)는 실리콘을 모재로 하여, 실리콘 {100}면과 {111}면에 연속하여 금속 패턴이 도포된 형상으로 이루어지는 것을 특징으로 하는 레이저 장치.The photodiode submount (610) (710) is a laser device, characterized in that the metal pattern is applied to the silicon {100} plane and {111} plane in succession of silicon as a base material.
  13. 제 2항에 있어서, The method of claim 2,
    상기 열전소자(900)는 상부에 부착된 써미스터(950)에 의해 온도가 측정되며, 상기 써미스터(950)는 써미스터(950)와 분리되어 열전소자(900) 상부에 부착된 써미스터 연결용 서브마운트(980)를 거쳐 전극핀(1010)과 전기적으로 연결되는 것을 특징으로 하는 레이저 장치.The thermoelectric element 900 has a temperature measured by a thermistor 950 attached to an upper portion thereof, and the thermistor 950 is separated from a thermistor 950 so as to attach a thermistor connection submount attached to an upper portion of the thermoelectric element 900 ( Laser device, characterized in that electrically connected to the electrode pin 1010 via 980.
  14. 제 13항에 있어서, The method of claim 13,
    상기 써미스터(950)는 비전도성 고분자 물질로 도포된 것을 특징으로 하는 레이저 장치.The thermistor 950 is a laser device, characterized in that the coating with a non-conductive polymer material.
  15. 제 1항에 있어서, The method of claim 1,
    상기 45도 부분반사거울(300)은 두께가 0.1mm∼0.25mm 인 것을 특징으로 하는 레이저 장치.The 45 degree partial reflection mirror 300 is a laser device, characterized in that the thickness of 0.1mm ~ 0.25mm.
  16. 제 1항에 있어서, The method of claim 1,
    상기 광파장 감시용 포토 다이오드(500)는 열전소자(900) 위에 부착되는 것을 특징으로 하는 레이저 장치.The optical wavelength monitoring photodiode 500 is a laser device, characterized in that attached to the thermoelectric element (900).
  17. 제 1항에 있어서, The method of claim 1,
    상기 파장 선택성 필터는 유리 또는 쿼츠(quartz) 기판에 굴절률이 높고 낮은 유전체 박막이 적층되어 제작된 것을 특징으로 하는 레이저 장치.The wavelength selective filter is a laser device, characterized in that the dielectric film is formed by laminating a high refractive index and a low refractive index on a glass or quartz substrate.
  18. 제 1항에 있어서, The method of claim 1,
    상기 파장 선택성 필터는 Silicon, InP, GaAs 중 어느 하나를 포함하는 반도체 기판에 굴절률이 높고 낮은 유전체 박막이 적층되어 제작된 것을 특징으로 하는 레이저 장치.The wavelength selective filter is a laser device, characterized in that the high refractive index and low dielectric film is laminated on a semiconductor substrate including any one of Silicon, InP, GaAs.
  19. 제 18항에 있어서, The method of claim 18,
    상기 파장 선택성 필터에는 박막 히터(heater)가 더 부착되는 것을 특징으로 하는 레이저 장치.And a thin film heater is further attached to the wavelength selective filter.
  20. 제 5항 또는 제 6항에 있어서, The method according to claim 5 or 6,
    상기 레이저 다이오드 칩(100)과 파장 선택성 필터는 하나의 열전소자(900) 위에 배치되며, The laser diode chip 100 and the wavelength selective filter are disposed on one thermoelectric element 900.
    상기 열전소자(900)의 온도는 광파장 감시용 포토 다이오드(500)로 흐르는 광전류와 광세기 감시용 포토 다이오드(600)(700)를 흐르는 광전류의 값이 일정하도록 조절되는 것을 특징으로 하는 레이저 장치.The temperature of the thermoelectric element (900) is a laser device, characterized in that the value of the photocurrent flowing through the optical wavelength monitoring photodiode (500) and the photocurrent flowing through the light intensity monitoring photodiode (600) (700) is adjusted to be constant.
  21. 제 5항 또는 6항에 있어서, The method of claim 5 or 6,
    상기 파장 선택성 필터는 Silicon, InP, GaAs 중 어느 하나를 포함하는 반도체 기판에 굴절률이 높고 낮은 유전체 박막이 적층되어 제작되며, The wavelength selective filter is manufactured by stacking a dielectric film having a high refractive index and a low refractive index on a semiconductor substrate including any one of silicon, inP, and GaAs.
    상기 파장 선택성 필터의 온도는 광파장 감시용 포토 다이오드(500)로 흐르는 광전류와 광세기 감시용 포토 다이오드(600)(700)를 흐르는 광전류의 값이 일정하도록 조절되는 것을 특징으로 하는 레이저 장치.The temperature of the wavelength selective filter is a laser device, characterized in that the value of the photocurrent flowing through the optical wavelength monitoring photodiode (500) and the photocurrent flowing through the light intensity monitoring photodiode (600) (700) is adjusted to be constant.
  22. 제 21항에 있어서, The method of claim 21,
    상기 파장 선택성 필터에는 금속 박막 패턴으로 형성된 저항체가 부착되어, 상기 금속 박막으로 흐르는 전류에 의해 온도가 조절되는 것을 특징으로 하는 레이저 장치.The wavelength selective filter is attached to a resistor formed in a metal thin film pattern, the laser device, characterized in that the temperature is controlled by the current flowing through the metal thin film.
PCT/KR2014/004203 2013-06-10 2014-05-12 Laser device having wavelength stabilizer WO2014200189A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US14/399,676 US9515454B2 (en) 2013-06-10 2014-05-12 Narrow bandwidth laser device with wavelength stabilizer
CN201480001197.9A CN104350652B (en) 2013-06-10 2014-05-12 Laser device with wavelength stabilizing device

Applications Claiming Priority (10)

Application Number Priority Date Filing Date Title
KR20130065649 2013-06-10
KR10-2013-0065649 2013-06-10
KR10-2013-0070571 2013-06-19
KR20130070571 2013-06-19
KR20130071344 2013-06-21
KR10-2013-0071344 2013-06-21
KR10-2013-0084198 2013-07-17
KR20130084198 2013-07-17
KR10-2014-0017299 2014-02-14
KR1020140017299A KR102237784B1 (en) 2013-06-10 2014-02-14 Laser Device with wavelength stabilizer

Publications (1)

Publication Number Publication Date
WO2014200189A1 true WO2014200189A1 (en) 2014-12-18

Family

ID=52022447

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2014/004203 WO2014200189A1 (en) 2013-06-10 2014-05-12 Laser device having wavelength stabilizer

Country Status (2)

Country Link
CN (1) CN104350652B (en)
WO (1) WO2014200189A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11033982B2 (en) * 2016-01-30 2021-06-15 Electro Scientific Industries, Inc. System isolation and optics bay sealing
JP6928839B2 (en) * 2016-02-03 2021-09-01 古河電気工業株式会社 Laser device
CN108777430A (en) * 2018-08-22 2018-11-09 苏州易锐光电科技有限公司 Coaxial packaging optical assembly and coaxial packaging laser
CN110596847B (en) * 2019-09-20 2022-08-16 武汉光迅科技股份有限公司 Etalon packaging structure and wavelength locking device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002237651A (en) * 2000-12-06 2002-08-23 Mitsubishi Electric Corp Wavelength monitor device and semiconductor laser
JP2006165598A (en) * 2006-03-16 2006-06-22 Eudyna Devices Inc Optical semiconductor device
KR100871011B1 (en) * 2008-01-23 2008-11-27 김정수 Transistor outline type laser diode package with wavelength locking, and method for manufacturing the tilt filter
KR20100030486A (en) * 2008-09-10 2010-03-18 김정수 Tunable wavelength filter
KR20110094376A (en) * 2010-02-16 2011-08-24 주식회사 포벨 Laser diode package

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4071917B2 (en) * 2000-04-21 2008-04-02 ユーディナデバイス株式会社 Optical semiconductor device
US6965622B1 (en) * 2002-01-28 2005-11-15 Ciena Corporation Wavelength locking scheme and algorithm for ultra-high density WDM system
CN101689746B (en) * 2007-03-19 2012-02-29 金定洙 Self-standing parallel plate beam splitter, method for manufacturing the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002237651A (en) * 2000-12-06 2002-08-23 Mitsubishi Electric Corp Wavelength monitor device and semiconductor laser
JP2006165598A (en) * 2006-03-16 2006-06-22 Eudyna Devices Inc Optical semiconductor device
KR100871011B1 (en) * 2008-01-23 2008-11-27 김정수 Transistor outline type laser diode package with wavelength locking, and method for manufacturing the tilt filter
KR20100030486A (en) * 2008-09-10 2010-03-18 김정수 Tunable wavelength filter
KR20110094376A (en) * 2010-02-16 2011-08-24 주식회사 포벨 Laser diode package

Also Published As

Publication number Publication date
CN104350652B (en) 2021-01-05
CN104350652A (en) 2015-02-11

Similar Documents

Publication Publication Date Title
KR102237784B1 (en) Laser Device with wavelength stabilizer
JP5031561B2 (en) Thermally tunable external cavity laser
WO2010143763A1 (en) External cavity tunable laser module
JP2001339118A (en) Light emitting module
US20050138934A1 (en) Optoelectronic component with a peltier cooler
KR101024820B1 (en) Thermally tunable optical dispersion compensation devices
EP1615304B1 (en) Optical module with simplified electrical wiring desing
WO2014157916A1 (en) Variable wavelength laser apparatus made to be small
WO2014200189A1 (en) Laser device having wavelength stabilizer
US6724799B2 (en) Wavelength tunable laser light source
WO2015016468A1 (en) External-cavity type laser with built-in wavemeter
WO2013137592A1 (en) External oscillator-type laser apparatus capable of being manufactured so as to be ultra-small
KR101024719B1 (en) Thermally tunable optical dispersion compensation devices
KR101140493B1 (en) Wavelength stabilization device for optical communication
US20130163993A1 (en) Directly-coupled wavelength-tunable external cavity laser
KR20150137780A (en) Semiconductor laser with external cavity having non-straight waveguide
WO2018236167A1 (en) Laser device including filter and operation method therefor
KR20190058442A (en) Laser with optical filter and operating method thereof
CN114647038A (en) Optical module
WO2014208892A1 (en) Optical receiver using wavelength tunable filter
WO2020196957A1 (en) Optical device capable of long-range communication and having wide wavelength variable range
US6724784B2 (en) Optical wavelength locker module having a high thermal conductive material
EP1265325A1 (en) Optical device with temperature insensitive etalon
WO2014163449A1 (en) Wavelength-tunable laser
CN118054299A (en) Ultra-small packaged tunable laser assembly

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 14399676

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14810388

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14810388

Country of ref document: EP

Kind code of ref document: A1