WO2014192488A1 - Photoacoustic measurement probe, and probe unit and photoacoustic measurement device provided therewith - Google Patents

Photoacoustic measurement probe, and probe unit and photoacoustic measurement device provided therewith Download PDF

Info

Publication number
WO2014192488A1
WO2014192488A1 PCT/JP2014/061951 JP2014061951W WO2014192488A1 WO 2014192488 A1 WO2014192488 A1 WO 2014192488A1 JP 2014061951 W JP2014061951 W JP 2014061951W WO 2014192488 A1 WO2014192488 A1 WO 2014192488A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
branched
probe
light emitting
light guide
Prior art date
Application number
PCT/JP2014/061951
Other languages
French (fr)
Japanese (ja)
Inventor
覚 入澤
辻田 和宏
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Publication of WO2014192488A1 publication Critical patent/WO2014192488A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0093Detecting, measuring or recording by applying one single type of energy and measuring its conversion into another type of energy
    • A61B5/0095Detecting, measuring or recording by applying one single type of energy and measuring its conversion into another type of energy by applying light and detecting acoustic waves, i.e. photoacoustic measurements
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2562/00Details of sensors; Constructional details of sensor housings or probes; Accessories for sensors
    • A61B2562/14Coupling media or elements to improve sensor contact with skin or tissue
    • A61B2562/146Coupling media or elements to improve sensor contact with skin or tissue for optical coupling

Definitions

  • the present invention relates to a probe for measuring a photoacoustic signal generated in a subject, a probe unit including the probe, and a photoacoustic measuring apparatus.
  • This measurement method irradiates a subject with pulsed light having a predetermined wavelength (for example, wavelength band of visible light, near-infrared light, or mid-infrared light), and an absorbing substance in the subject is subjected to energy of the pulsed light.
  • the photoacoustic wave which is an elastic wave generated as a result of absorbing water, is detected, and the concentration of the absorbing substance is quantitatively measured.
  • the absorbing substance in the subject is, for example, glucose or hemoglobin contained in blood.
  • a technique for detecting such a photoacoustic wave and generating a photoacoustic image based on the detection signal is called photoacoustic imaging (PAI) or photoacoustic tomography (PAT).
  • an acoustic wave detection unit for example, an acoustic wave detection unit, a plurality of light emission units disposed around the acoustic wave detection unit, and light emitted from a laser light source are emitted from each light source.
  • a probe including a bundle fiber that guides light to a portion is used.
  • the energy intensity of the laser light incident on the bundle fiber has a Gaussian distribution in the first place. Even if the light beams are branched, the light amounts of the light guided to the respective light emitting portions do not necessarily match each other.
  • the deviation of the light amount of the light guided to each light emitting part by branching the bundle fiber may be allowed to some extent.
  • the light is irradiated to the subject.
  • the energy density will be non-uniform.
  • the present invention has been made in view of the above problems, and in a probe for photoacoustic measurement, even when the light amount of light guided to each light emitting portion by branching a bundle fiber is different, It is an object of the present invention to provide a photoacoustic measurement probe that can make the energy density uniform when irradiated on a subject, a probe unit including the probe, and a photoacoustic measurement apparatus.
  • the photoacoustic measurement probe of the present invention is An acoustic wave detection element; Bundle fiber, Two light emitting portions for emitting the measurement light guided by the bundle fiber toward the subject, One end of the bundle fiber is branched and connected to each of the two light emitting portions, The two light emitting portions are branched light that is measurement light branched by a bundle fiber, and light guides different from each other so that the energy density when branched lights having different amounts of light exit the light emitting portion are equal. It has a structure.
  • the “two light emitting portions” does not limit the number of light emitting portions of the probe to two.
  • the probe has three or more light emitting portions, it is sufficient to satisfy the requirements of the present invention in at least two light emitting portions selected from them.
  • each light emitting part has a light guide member connected to the bundle fiber at one end face, and a diffusion part for diffusing the branched light emitted from the other end face of the light guide member,
  • the diffusion angle of the diffusion part with the larger light amount is larger than the diffusion angle of the diffusion part with the smaller light amount.
  • the distance from the diffusion part with the larger light quantity to the emission end of the light emission part is longer than the distance from the diffusion part with a smaller light quantity to the emission end of the light emission part.
  • the length of the light guide member with the larger light amount in the light guide direction is longer than the length of the light guide member with the smaller light amount in the light guide direction.
  • each light emitting portion has a light guide member connected to the bundle fiber at one end surface, and only the light emitting portion with the larger light amount emitted from the other end surface of the light guide member. It is preferable to employ a configuration that further includes a diffusion part that diffuses the branched light.
  • the diffusing portion diffuses the light beam in an elliptical shape.
  • the bundle fiber includes a first fiber strand that forms the center portion of the bundle fiber on the non-branched side and a plurality of second fiber strands that form the outer peripheral portion around the center portion.
  • a configuration is adopted in which a part of the second fiber strand having a diameter smaller than the diameter of the first fiber strand and another part of the second fiber strand are branched. It is preferable.
  • the bundle fiber includes a first fiber strand constituting the center portion of the bundle fiber on the non-branched side and a plurality of second fiber strands constituting the outer peripheral portion around the center portion.
  • first fiber strand is branched by a second fiber strand having a diameter smaller than that of the first fiber strand.
  • the probe unit of the present invention is A light source unit having a light source that outputs measurement light, and a connection unit that optically connects the measurement light to the bundle fiber of the probe;
  • a probe for photoacoustic measurement connected to the connection part The probe includes an acoustic wave detection element, a bundle fiber, and two light emitting units that emit measurement light guided by the bundle fiber toward the subject.
  • the bundle fiber is branched at one end and connected to the two light emitting parts, respectively, and the measurement light is divided into two branched lights having different light amounts and guided to the two light emitting parts,
  • the two light emitting portions have different light guide structures, and the energy density when the branched light incident thereon is emitted from the light emitting portion is equal to each other.
  • each of the two light emitting portions includes a light guide member having one end face connected to the bundle fiber and a diffusion portion for diffusing the branched light emitted from the other end face of the light guide member. It is preferable that at least one of the design of the light guide member and the design of the diffusion portion is different from each other in the light guide structure of the two light emitting portions. In this case, it is preferable that the diffusion angle of the diffusion portion where the branched light having the larger light amount is incident is larger than the diffusion angle of the diffusion portion where the branched light having the smaller light amount is incident.
  • the distance from the diffuser where the branched light with the larger light amount enters to the exit end of the light exit unit is the distance from the diffuser with the smaller amount of light incident to the exit end of the light exit unit. Longer than that is preferred.
  • the length of the light guide member in which the branched light having the larger light amount is incident may be longer than the length of the light guide member in which the branched light having the smaller light amount is incident. preferable.
  • the photoacoustic measuring device of the present invention is A probe for photoacoustic measurement; A signal processing unit that generates a photoacoustic image based on the photoacoustic wave detected by the probe,
  • the probe includes an acoustic wave detection element, a bundle fiber, and two light emitting units that emit measurement light guided by the bundle fiber toward the subject.
  • One end of the bundle fiber is branched and connected to each of the two light emitting sections, and the measurement light is divided into two branched lights having different light amounts and guided to the two light emitting sections,
  • the two light emitting portions have different light guide structures, and are characterized in that energy densities are equal when branched light incident on each of the two light emitting portions is emitted from the light emitting portion.
  • the two light emitting parts include a light guide member having one end face connected to the bundle fiber, a diffusion part for diffusing the branched light emitted from the other end face of the light guide member, and Preferably, at least one of the light guide member design and the diffuser design is different from each other in the light guide structure of the two light emitting portions. In this case, it is preferable that the diffusion angle of the diffusion portion where the branched light having the larger light amount is incident is larger than the diffusion angle of the diffusion portion where the branched light having the smaller light amount is incident.
  • the distance from the diffuser where the branched light with the larger light amount enters to the exit end of the light exit unit is the distance from the diffuser with the smaller amount of light incident to the exit end of the light exit unit. Longer than that is preferred.
  • the length of the light guide member in which the branched light having the larger light amount is incident may be longer than the length of the light guide member in which the branched light having the smaller light amount is incident. preferable.
  • the signal processing unit generates a reflected acoustic image based on the reflected acoustic wave reflected in the subject.
  • the energy density of the two branched lights when the light emitting parts are emitted is
  • the two light emitting portions have different light guide structures so as to be equal to each other. That is, the light guide structure of each light emitting part is designed to equalize the energy density of the two branched lights when they exit the light emitting part by offsetting the difference in the light quantity of the two branched lights. Yes. As a result, it is possible to make the energy density uniform when light is irradiated onto the subject even when the amount of the light guided to each light emitting portion by branching the bundle fiber is different. .
  • FIG. 2A is a schematic diagram illustrating a configuration example in the longitudinal direction of the probe
  • FIG. 2B is a schematic diagram illustrating a configuration example in the short direction of the probe.
  • FIG. 3A is a diagram showing a bundle fiber composed of one thick fiber strand and a plurality of fiber strands arranged around it
  • FIG. 3B is a fusion process of the bundle fiber of FIG. 3A
  • FIG. 4A is a schematic cross-sectional view illustrating a configuration example of the light emitting portion
  • FIG. 4B is a schematic cross-sectional view illustrating another configuration example of the light emitting portion.
  • FIG. 5A is a schematic diagram illustrating how the branched light emitted from the light emitting unit is detected by the optical sensor
  • FIG. 5B is a schematic cross-sectional view illustrating the relationship between the light emitting unit and the light detection position.
  • 6A, 6 ⁇ / b> B, and 6 ⁇ / b> C are schematic diagrams illustrating a method for adjusting the energy density when the light exit part of the branched light is emitted.
  • 7A and 7B are schematic diagrams illustrating a method of adjusting the energy density when the number of branched fiber strands is different. It is a schematic sectional drawing which shows the other structural example of a light-projection part.
  • FIG. 1 is a schematic diagram showing a configuration of the photoacoustic measurement apparatus of the present embodiment
  • FIG. 2A is a schematic diagram showing a configuration example in the longitudinal direction of the probe
  • FIG. 2B is a schematic diagram illustrating a configuration example of the probe in the short direction.
  • the photoacoustic measurement device 10 of this embodiment has a photoacoustic image generation function that generates a photoacoustic image based on, for example, a photoacoustic signal.
  • the photoacoustic measurement apparatus 10 of the present embodiment includes an ultrasonic probe (probe) 11, an ultrasonic unit 12, a laser unit 13, and a display unit 14.
  • the probe 11 irradiates the subject with ultrasonic waves and detects the acoustic wave U propagating through the subject M. That is, the probe 11 can perform irradiation (transmission) of ultrasonic waves to the subject M and detection (reception) of reflected ultrasonic waves (reflected acoustic waves) that have been reflected back from the subject M. Furthermore, the probe 11 can also detect a photoacoustic wave generated in the subject M when the absorber 65 in the subject M absorbs the laser light.
  • acoustic wave means an ultrasonic wave and a photoacoustic wave.
  • ultrasonic wave means an elastic wave transmitted by the probe and its reflected wave
  • photoacoustic wave means an elastic wave generated in the subject M due to a photoacoustic effect caused by irradiation of measurement light. means.
  • absorber 65 a blood vessel, a metal member, etc. are mentioned, for example.
  • the probe 11 of the present embodiment is disposed so as to sandwich the transducer array 20, a bundle fiber 40 in which a plurality of optical fiber strands are bundled, and the transducer array 20.
  • two light emitting portions 42 and a casing 45 including them are provided.
  • the transducer array 20 is composed of, for example, a plurality of ultrasonic transducers 20a (acoustic wave detection elements) arranged one-dimensionally or two-dimensionally.
  • the ultrasonic transducer 20a is a piezoelectric element made of a polymer film such as piezoelectric ceramics or polyvinylidene fluoride (PVDF).
  • vibrator 20a has the function to convert the received signal into an electric signal, when the acoustic wave U is received. Further, the ultrasonic transducer 20a also generates an electrical signal when irradiated with measurement light. This electric signal is caused by the pyroelectric effect or the photoacoustic effect of the ultrasonic transducer 20a.
  • the contact state between the probe 11 and the subject M may be determined based on the electrical signal (photodetection signal) generated due to the irradiation of the measurement light to the ultrasonic transducer. .
  • These electric signals generated in the transducer array 20 are output to a receiving circuit 21 described later.
  • the probe 11 is selected according to the imaging region from among sector scanning, linear scanning, convex scanning, and the like.
  • the bundle fiber 40 guides the laser beam L from the laser unit 13 to the light emitting unit 42.
  • the bundle fiber 40 is not particularly limited, and a known fiber such as a quartz fiber can be used.
  • FIG. 3A shows a bundle fiber 40 composed of one thick fiber strand 41a and a plurality of fiber strands 41b arranged around it.
  • the optical fiber can be made of a material that is more resistant to light energy in the core portion than in the cladding portion. Therefore, in the bundle fiber as shown in FIG. 3A, since a thick fiber strand (for example, a diameter of 0.4 to 0.8 mm) is arranged in the center portion, the bundle fiber is locally in the center portion where the energy density becomes high. It can suppress that (especially end surface) is destroyed.
  • FIG. 3A shows a thick fiber strand 40 composed of one thick fiber strand 41a and a plurality of fiber strands 41b arranged around it.
  • the optical fiber can be made of a material that is more resistant to light energy in the core portion than
  • FIG. 3B is a diagram illustrating a case where the bundle fiber of FIG. 3A is fused.
  • the bundle fiber subjected to the fusion treatment the cladding of each fiber strand is fused while the outer edge shape of each fiber strand is changed.
  • an extra gap between fiber strands is reduced in a bundle fiber subjected to a fusion treatment.
  • the bundle fiber of FIG. 3A is fused, for example, the fiber element wire 41a and the fiber strand 41b change to a fiber strand 41c and a fiber strand 41d, respectively.
  • the bundle fiber 40 branches on the output side, and the ends of the branched portions are connected to different light output portions 42. Thereby, the bundle fiber 40 divides the laser beam emitted from the laser unit 13 into two and guides it to the light emitting unit 42.
  • the branch format is not particularly limited.
  • the bundle fiber 40 is branched into a combination of a fiber strand 41a constituting the central portion and a part of a plurality of fiber strands 41b constituting the outer peripheral portion and other fiber strands 41b. Also good. Or you may branch into the fiber strand 41a which comprises a center part, and the some fiber strand 41b which comprises an outer peripheral part.
  • FIG. 4A is a schematic cross-sectional view illustrating a configuration example of a light emitting unit.
  • the elevation direction of the transducer array 20 is such that the two light emitting sections 42 face each other with the transducer array 20 in between. In the direction perpendicular to the direction parallel to the detection surface).
  • the light emitting unit 42 may be inclined so that the light emitting axis of the light emitting unit faces the transducer array 20 side. In this case, it becomes easy to irradiate light to the region directly below the transducer array 20.
  • the light emitting unit 42 includes a first light guide member 46, a diffusion unit 47, and a second light guide member 48.
  • the first light guide member 46, the diffusing portion 47, and the second light guide member 48 are arranged in series with respect to the light traveling direction, for example, and are fixed by, for example, a fixed frame body (not shown). Is done.
  • the first light guide member 46 guides the measurement light (also referred to as branched light) divided and guided by the branched bundle fiber 40 to the diffusion unit 47.
  • the light exit end of the branched portion of the bundle fiber 40 is optically coupled to the light entrance end of the first light guide member 46.
  • a light guide plate can be used as the first light guide member.
  • the light guide plate is a plate that performs special processing on the surface of an acrylic plate or a quartz plate, for example, and uniformly emits light from one end surface from the other end surface.
  • the diffusing unit 47 diffuses the branched light emitted from the first light guide member 46. Thereby, the irradiation range of the branched light is further expanded.
  • a diffusion plate can be used.
  • a lens diffusion plate in which minute concave lenses or the like are randomly arranged on one surface of the substrate for example, a quartz plate in which diffusion fine particles are dispersed can be used.
  • the diffusion part 47 does not have to be a member independent of the first light guide member 46.
  • a diffusion layer may be provided at the light emitting end portion of the first light guide member 46, or a diffusion surface may be provided at the light emitting end surface.
  • the diffusing portion 47 is fixed to a fixing member (not shown) with an adhesive, but when adhering the lens diffusing plate, it is preferable to use an adhesive having high light diffusibility. This is because if the adhesive adheres to the lens diffusing surface, the light diffusibility of that portion is lost and strong light may be emitted locally.
  • an adhesive having light diffusibility is used, light can be diffused by the light diffusibility of the adhesive even when the adhesive adheres to the lens diffusion surface.
  • an adhesive such as silicone rubber containing a white pigment can be used.
  • An example of the white pigment is TiO 2 .
  • the content of TiO 2 is preferably 1 wt% to 20 wt%.
  • the silicone rubber for example, liquid rubber KE-45-W manufactured by Shin-Etsu Chemical Co., Ltd. can be used.
  • the second light guide member 48 emits the branched light diffused by the diffusion unit 47 toward the subject. Further, the emission end of the second light guide member 48 is fitted into the optical window portion (opening portion) of the housing 45 and fulfills the function of filling the gap. Thereby, it can prevent that a foreign material mixes in from the optical window part of the housing 45 to the inside of a housing at the time of use of a probe, or bacteria enter. Further, instead of providing the diffusion layer and the diffusion surface in the first light guide member 46, the light incident end portion and the light incident end surface of the second light guide member 48 may be provided, respectively.
  • the two light emitting portions have different light guide structures so that the energy densities when branched lights having different light amounts are emitted from the light emitting portions are equal.
  • a structure can be realized by changing at least one of the design of the light guide member and the design of the diffusion portion.
  • “Branched light with different amounts of light” means that the energy amount of each branched light differs by 5% or more of the maximum energy amount. A deviation of 5% or more of the maximum energy amount leads to, for example, image unevenness.
  • whether or not the energy densities of the branched lights having different light amounts is determined as follows.
  • FIG. 5A and FIG. 5B are schematic diagrams showing a method for measuring energy density.
  • FIG. 5A is a schematic diagram showing how the branched light (emitted light) emitted from the light emitting part 42a is detected by the optical sensor
  • FIG. 5B is a schematic diagram showing the relationship between the light emitting part and the light detection position. It is sectional drawing.
  • the light that has passed through the aperture is detected by the optical sensor 50 to which the measuring instrument 51 is connected.
  • Light detection is performed at a plurality of positions while moving the position of the center of the opening in the width direction (left-right direction in FIG. 5A) at intervals of 1 mm with the detection surface of the optical sensor 50 perpendicular to the optical axis AX. Is called.
  • the movement is performed from end to end within a range W corresponding to the emission end face 42s of the light emission part 42a, that is, within a range where the end of the opening does not exceed the range W.
  • the distance D and the diameter ⁇ are 3 mm and 3.5 mm, respectively.
  • the emission end face 42s of the light emission part 42a is the emission end face of the second light guide member 48a.
  • the energy density measured at each measurement position is divided by the opening area to calculate the energy density at each measurement position, and the average value L1ave thereof is calculated.
  • the average value L2ave of the energy density is calculated in the same manner for the emitted light L2 from the light emitting part 42b.
  • the design (shape, size, material, arrangement, etc.) of the first light guide member 46, the design (diffusion angle, structure, arrangement, etc.) of the diffusion portion 47, and the design of the second light guide member 48 are designed. (Shape, size, material, arrangement, etc.) are appropriately determined based on the amount of branched light guided to each light emitting section. The amount of the branched light can be calculated in advance based on the specification of the light source unit 13 to which the probe 11 is attached, for example. Alternatively, the laser light may actually be incident on the bundle fiber to measure the amount of each branched light, and then each member may be appropriately selected based on the measured value.
  • FIG. 6A, 6 ⁇ / b> B, and 6 ⁇ / b> C are schematic diagrams illustrating a method of adjusting the energy density of the branched light when the light exit portion is emitted.
  • FIG. 6A shows a state in which branched lights having different light amounts are emitted as emitted lights L1 and L2 having the same energy density as a result of being guided through the light emitting parts 42a and 42b, respectively.
  • 6B shows a state in which the branched light La having the larger light quantity is guided through the light emitting portion 42a and emitted as the outgoing light L1
  • FIG. 6C shows the branched light Lb having the smaller light quantity emitted from the light.
  • a state in which the light is guided through the portion 42b and emitted as the emitted light L2 is shown.
  • the amount of the branched light La is larger than the amount of the branched light Lb that guides the light emitting unit 42b, so that the diffusion angle of the diffusion unit 47a is set larger than the diffusion angle of the diffusion unit 47b.
  • the diffusion angle of the diffusion part 47a is 80 degrees
  • the diffusion angle of the diffusion part 47b is 40 degrees.
  • the irradiation range of the branched light La guided through the light emitting part 42a is expanded (FIGS. 6B and 6C). Therefore, the rate of decrease in energy density is greater in the light emitting portion 42a than in the light emitting portion 42b.
  • the energy densities of the branched light La and the branched light Lb are matched.
  • the light diffused beyond the range of the exit end face 42s of the light exit portion 42a that is, the light leaked from a portion other than the exit end face 42s of the light exit portion 42a
  • the laser unit 13 has, for example, a Q-switch solid-state laser light source that emits laser light L, and outputs the laser light L as light to be irradiated on the subject M.
  • the laser unit 13 corresponds to the light source unit in the present invention.
  • the laser unit 13 is configured to output a laser beam L in response to a trigger signal from the control unit 34 of the ultrasonic unit 12.
  • the laser unit 13 preferably outputs pulsed light having a pulse width of 1 to 100 nsec as laser light.
  • the light source of the laser unit 13 is a Q switch alexandrite laser.
  • the wavelength of the laser light is appropriately determined according to the light absorption characteristics of the absorber in the subject to be measured.
  • the wavelength belongs to the near-infrared wavelength region.
  • the near-infrared wavelength region means a wavelength region of about 700 to 850 nm.
  • the wavelength of the laser beam is not limited to this.
  • the laser beam L may be a single wavelength or may include a plurality of wavelengths (for example, 750 nm and 800 nm).
  • the laser light L includes a plurality of wavelengths
  • the light of these wavelengths may be irradiated to the subject M at the same time, or may be irradiated while being switched alternately.
  • the laser unit 13 may be a YAG-SHG-OPO laser or a Ti-Sapphire laser that can output laser light in the near-infrared wavelength region in addition to the alexandrite laser.
  • the ultrasonic unit 12 includes a reception circuit 21, an AD conversion unit 22, a reception memory 23, a photoacoustic image generation unit 24, a display control unit 30, and a control unit 34.
  • the ultrasonic unit 12 corresponds to the signal processing unit in the present invention.
  • the control unit 34 controls each unit of the photoacoustic measurement apparatus 10, and includes a trigger control circuit (not shown) in the present embodiment.
  • the trigger control circuit sends an optical trigger signal to the laser unit 13 when the photoacoustic measurement device is activated, for example.
  • the flash lamp is turned on and excitation of the laser rod is started. And the excitation state of a laser rod is maintained and the laser unit 13 will be in the state which can output a pulse laser beam.
  • the control unit 34 transmits a Qsw trigger signal from the trigger control circuit to the laser unit 13. That is, the control unit 34 controls the output timing of the pulsed laser light from the laser unit 13 by this Qsw trigger signal.
  • the control unit 34 transmits the sampling trigger signal to the AD conversion unit 22 simultaneously with the transmission of the Qsw trigger signal.
  • the sampling trigger signal is a cue for the start timing of the photoacoustic signal sampling in the AD converter 22. As described above, by using the sampling trigger signal, it is possible to sample the photoacoustic signal in synchronization with the output of the laser beam.
  • the receiving circuit 21 receives the photoacoustic signal detected by the probe 11.
  • the photoacoustic signal received by the receiving circuit 21 is transmitted to the AD converter 22.
  • the AD converter 22 samples the photoacoustic signal received by the receiving circuit 21 and converts it into a digital signal.
  • the AD converter 22 samples the photoacoustic signal received at a predetermined sampling period based on, for example, an AD clock signal having a predetermined frequency input from the outside.
  • the reception memory 23 stores the photoacoustic signal sampled by the AD conversion unit 22. Then, the reception memory 23 outputs the photoacoustic signal data detected by the probe 11 to the photoacoustic image generation unit 24.
  • the photoacoustic image generation unit 24 reconstructs data for one line by adding the photoacoustic data stored in the reception memory 23 to each other with a delay time corresponding to the position of the ultrasonic transducer.
  • the tomographic image (photoacoustic image) data is generated based on the photoacoustic data.
  • this photoacoustic image generation part 24 may replace with a delay addition method, and may perform a reconfiguration
  • the photoacoustic image generation unit 24 may perform reconstruction using a Hough transform method or a Fourier transform method.
  • the photoacoustic image generation unit 24 outputs the photoacoustic image data generated as described above to the display control unit 30.
  • the display control unit 30 displays the photoacoustic image on the display unit 14 such as a display device based on the photoacoustic image data acquired from the photoacoustic image generation unit 24.
  • the display control unit 30 obtains volume data based on the photoacoustic images. It is also possible to create and display the composite image on the display unit 14 as a three-dimensional image.
  • the two light emitting units have the same energy density when the branched lights having different light amounts are emitted from the light emitting unit. It has a different light guide structure.
  • the light guide structure of each light emitting part is designed to equalize the energy density of the two branched lights when emitted from the light emitting part by offsetting the difference in the light quantity of the two branched lights. Yes.
  • 7A and 7B are schematic diagrams illustrating a method of adjusting the energy density when the number of branched fiber strands is different. For example, as shown in FIGS. 7A and 7B, when the number of fiber strands 41e connected to the light emitting portion 42a side is smaller than the number of fiber strands 41f connected to the light emitting portion 42b side.
  • the diffusing unit 47a may be configured to diffuse the branched light in an elliptical shape so that the major axis of the ellipse is along the arrangement direction of the transducer array 20.
  • the diffusion angle in the major axis direction and the minor axis direction of the diffusion part 47a is 60 degrees and 1 degree, respectively, and the diffusion angle of the diffusion part 47b is 30 degrees.
  • the light irradiation range can be expanded in the arrangement direction of the transducer array 20.
  • it is effective when a bundle fiber as shown in FIG. 3A or 3B is used and the fiber strand is divided into a central portion and an outer peripheral portion.
  • the present invention is not limited to this.
  • the first light guide member 46 and the diffusing portion 47 are the same in both light emitting portions 42 with respect to the structure itself, but in the light guide direction of the second light guide member.
  • a configuration in which the length, that is, the distance from the diffusion portion 47 to the emission end of the light emission portion 42 is different can be employed.
  • the distance X1 (for example, 15 mm) from the diffusing portion 47 of the light emitting portion where the branched light La having the larger light amount is incident to the emitting end is the light emitting portion where the branched light Lb having the smaller light amount is incident.
  • the diffusion portion 47 and the second light guide member 48 are the same in both light emitting portions 42, but the length of the first light guide member in the light guide direction is the same.
  • the length Y1 (for example, 60 mm) of the first light guide member 46a of the light emitting portion where the branched light La having a larger amount of light is incident is the light emission where the branched light Lb having a smaller amount of light is incident. It is set longer than the length Y2 (for example, 20 mm) of the first light guide member 46b.
  • the branched light La traveling through the first light guide member 46a repeats more reflections within the light guide member than the branched light Lb traveling through the light guide member 46b, and the light guide member 46a is The range of the emission angle of the branched light La when emitted is wider than the range of the emission angle of the branched light Lb when emitted from the light guide member 46b. Therefore, even in this case, the irradiation range of the branched light La guided through the light emitting portion 42 is wider than the irradiation range of the branched light Lb. As a result, when the branched light La is emitted from the light emitting portion 42, the energy densities of the branched light La and the branched light Lb are matched.
  • the light emitting part into which the branched light having the larger light quantity is incident is composed of the first light guide member 46, the diffusing part 47, and the second light guiding member 48, and the light into which the branched light having the smaller light quantity is incident.
  • the emission part is composed of only one light guide member 49. Even in this case, the irradiation range of the branched light La having a larger amount of light guided through the light emitting section 42 is wider than the irradiation range of the branched light Lb. As a result, when the branched light La is emitted from the light emitting portion 42, the energy densities of the branched light La and the branched light Lb are matched.
  • FIG. 11 is a schematic diagram illustrating the configuration of the photoacoustic measurement apparatus according to the second embodiment.
  • This embodiment is different from the first embodiment in that an ultrasonic image is generated in addition to the photoacoustic image. Therefore, a detailed description of the same components as those in the first embodiment will be omitted unless particularly necessary.
  • the photoacoustic measurement apparatus 10 of this embodiment includes an ultrasonic probe (probe) 11, an ultrasonic unit 12, a laser unit 13, and a display unit 14.
  • the ultrasonic probe (probe) 11, the laser unit 13, and the display unit 14 are the same as those in the first embodiment.
  • the ultrasonic unit 12 of the present embodiment includes an ultrasonic image generation unit 29 and a transmission control circuit 33 in addition to the configuration of the photoacoustic measurement apparatus shown in FIG.
  • the probe 11 in addition to the detection of the photoacoustic signal, the probe 11 outputs (transmits) ultrasonic waves to the subject and detects reflected ultrasonic waves (reflected acoustic waves) from the subject with respect to the transmitted ultrasonic waves (reflected acoustic waves). Receive).
  • the ultrasonic transducer for transmitting and receiving ultrasonic waves the ultrasonic transducer according to the present invention may be used, or a new ultrasonic transducer separately provided in the probe 11 for transmitting and receiving ultrasonic waves is used. May be.
  • the control unit 34 sends an ultrasonic transmission trigger signal to the transmission control circuit 33 to instruct ultrasonic transmission.
  • the transmission control circuit 33 transmits an ultrasonic wave from the probe 11.
  • the probe 11 detects the reflected ultrasonic wave from the subject after transmitting the ultrasonic wave.
  • the reflected ultrasonic waves detected by the probe 11 are input to the AD conversion unit 22 via the reception circuit 21.
  • the control unit 34 sends a sampling trigger signal to the AD conversion unit 22 in synchronization with the timing of ultrasonic transmission to start sampling of reflected ultrasonic waves.
  • the AD converter 22 stores the reflected ultrasound sampling signal in the reception memory 23. Either sampling of the photoacoustic signal or sampling of the reflected ultrasonic wave may be performed first.
  • the ultrasonic image generation unit 29 performs signal processing such as reconstruction processing, detection processing, and logarithmic conversion processing based on the reflected ultrasonic waves (its sampling signals) detected by the plurality of ultrasonic transducers of the probe 11. Generate ultrasonic image data. For the generation of the image data, a delay addition method or the like can be used similarly to the generation of the image data in the photoacoustic image generation unit 24.
  • the display control unit 30 causes the display unit 14 to display, for example, a photoacoustic image and an ultrasonic image separately or a composite image thereof.
  • the display control unit 30 performs image composition by superimposing a photoacoustic image and an ultrasonic image, for example.
  • the photoacoustic measurement device generates an ultrasonic image in addition to the photoacoustic image. Therefore, in addition to the effects of the first embodiment, by referring to the ultrasonic image, a portion that cannot be imaged by the photoacoustic image can be observed.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Molecular Biology (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Acoustics & Sound (AREA)
  • Medical Informatics (AREA)
  • Biophysics (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Ultra Sonic Daignosis Equipment (AREA)
  • Transducers For Ultrasonic Waves (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

Provided is a photoacoustic measurement probe which is capable of achieving a uniform energy density when irradiating a subject with light even when a bundle fiber is branched and a different amount of light is guided into each of the emitting units; also provided are a photoacoustic measurement device and a probe unit provided with said photoacoustic measurement probe. This photoacoustic measurement probe (11) is provided with an acoustic wave detection element (20a), a bundle fiber (40), and two emitting units (42) which emit, towards the subject (M), a measurement optical beam (L) guided by means of the bundle fiber (40). One end of the bundle fiber (40) branches to connect to each of the two emitting units (42), and the two emitting units (42) have different optical guiding structures in order to equalize the energy density during emission through the emitting units (42a and 42b) of the branched optical beams (La and Lb, respectively) made up of different amounts of light.

Description

光音響計測用プローブ並びにそれを備えたプローブユニットおよび光音響計測装置Photoacoustic measurement probe, probe unit including the same, and photoacoustic measurement apparatus
 本発明は、被検体内で発生した光音響信号の計測を行うためのプローブ並びにそれを備えたプローブユニットおよび光音響計測装置に関するものである。 The present invention relates to a probe for measuring a photoacoustic signal generated in a subject, a probe unit including the probe, and a photoacoustic measuring apparatus.
 近年、光音響効果を利用した非侵襲の計測法が注目されている。この計測法は、所定の波長(例えば、可視光、近赤外光又は中間赤外光の波長帯域)を有するパルス光を被検体に照射し、被検体内の吸収物質がこのパルス光のエネルギーを吸収した結果生じる弾性波である光音響波を検出して、その吸収物質の濃度を定量的に計測するものである。被検体内の吸収物質とは、例えば、血液中に含まれるグルコースやヘモグロビンなどである。また、このような光音響波を検出しその検出信号に基づいて光音響画像を生成する技術は、光音響イメージング(PAI:Photoacoustic Imaging)或いは光音響トモグラフィー(PAT:Photo Acoustic Tomography)と呼ばれる。 In recent years, non-invasive measurement methods using photoacoustic effects have attracted attention. This measurement method irradiates a subject with pulsed light having a predetermined wavelength (for example, wavelength band of visible light, near-infrared light, or mid-infrared light), and an absorbing substance in the subject is subjected to energy of the pulsed light. The photoacoustic wave, which is an elastic wave generated as a result of absorbing water, is detected, and the concentration of the absorbing substance is quantitatively measured. The absorbing substance in the subject is, for example, glucose or hemoglobin contained in blood. A technique for detecting such a photoacoustic wave and generating a photoacoustic image based on the detection signal is called photoacoustic imaging (PAI) or photoacoustic tomography (PAT).
 光音響イメージングでは、例えば特許文献1および2に示されるように、音響波検出部と、この音響波検出部の周囲に配置された複数の光出射部と、レーザ光源からの光を各光出射部まで導光するバンドルファイバとを備えたプローブが使用されることがある。 In photoacoustic imaging, as disclosed in Patent Documents 1 and 2, for example, an acoustic wave detection unit, a plurality of light emission units disposed around the acoustic wave detection unit, and light emitted from a laser light source are emitted from each light source. In some cases, a probe including a bundle fiber that guides light to a portion is used.
特開2012-166009号公報JP 2012-166209 A 特開2012-179350号公報JP 2012-179350 A
 ところで、上記のようなプローブにおいて、バンドルファイバを分岐させて各光出射部に光を導光する際、そもそもバンドルファイバに入射するレーザ光のエネルギー強度がガウス分布を有するから、バンドルファイバを任意に分岐させても各光出射部に導光された光の光量が必ずしも互いに一致するとは限らない。 By the way, in the probe as described above, when the bundle fiber is branched and the light is guided to each light emitting portion, the energy intensity of the laser light incident on the bundle fiber has a Gaussian distribution in the first place. Even if the light beams are branched, the light amounts of the light guided to the respective light emitting portions do not necessarily match each other.
 この光量のずれを解消するために、ファイバ素線の配置を変更することが考えられるが、これは煩雑な作業である。また、バンドルファイバの耐久性の観点から、1本の太いファイバ素線を中心にしてその周囲に細いファイバ素線を有するようなバンドルファイバを使用する場合には、太いファイバ素線に光の大部分が入射することになるため、光量のずれを解消すること自体が難しい。 In order to eliminate this deviation in the amount of light, it is conceivable to change the arrangement of the fiber strands, but this is a complicated operation. In addition, from the viewpoint of durability of the bundle fiber, when using a bundle fiber having a thin fiber strand around a single thick fiber strand, a large amount of light is applied to the thick fiber strand. Since the portion is incident, it is difficult to eliminate the deviation of the light amount.
 このように、バンドルファイバを分岐させて各光出射部に導光された光の光量のずれはある程度許容せざるを得ない場合があるが、そのような場合には、光が被検体に照射されたときのエネルギー密度が不均一となる恐れがある。 As described above, there is a case where the deviation of the light amount of the light guided to each light emitting part by branching the bundle fiber may be allowed to some extent. In such a case, the light is irradiated to the subject. There is a risk that the energy density will be non-uniform.
 本発明は上記問題に鑑みてなされたものであり、光音響計測用のプローブにおいて、バンドルファイバを分岐させて各光出射部に導光された光の光量が異なる場合であっても、光が被検体に照射されたときのエネルギー密度を均一化することを可能とする光音響計測用プローブ並びにそれを備えたプローブユニットおよび光音響計測装置を提供することを目的とするものである。 The present invention has been made in view of the above problems, and in a probe for photoacoustic measurement, even when the light amount of light guided to each light emitting portion by branching a bundle fiber is different, It is an object of the present invention to provide a photoacoustic measurement probe that can make the energy density uniform when irradiated on a subject, a probe unit including the probe, and a photoacoustic measurement apparatus.
 上記課題を解決するために、本発明の光音響計測用プローブは、
 音響波検出素子と、
 バンドルファイバと、
 バンドルファイバによって導光された測定光を被検体に向けて出射させる2つの光出射部とを備え、
 バンドルファイバの一端が、分岐して上記2つの光出射部にそれぞれ接続され、
 上記2つの光出射部が、バンドルファイバで分岐された測定光である分岐光であって互いに光量の異なる分岐光が光出射部を出射した際のエネルギー密度が等しくなるように、互いに異なる導光構造を有することを特徴とするものである。
In order to solve the above problems, the photoacoustic measurement probe of the present invention is
An acoustic wave detection element;
Bundle fiber,
Two light emitting portions for emitting the measurement light guided by the bundle fiber toward the subject,
One end of the bundle fiber is branched and connected to each of the two light emitting portions,
The two light emitting portions are branched light that is measurement light branched by a bundle fiber, and light guides different from each other so that the energy density when branched lights having different amounts of light exit the light emitting portion are equal. It has a structure.
 なお、「2つの光出射部」は、プローブが有する光出射部の数を2つに限定するものではない。プローブが3つ以上の光出射部を有する場合には、その中から選択された少なくとも2つの光出射部において本発明の要件を満たせば充分である。 Note that the “two light emitting portions” does not limit the number of light emitting portions of the probe to two. When the probe has three or more light emitting portions, it is sufficient to satisfy the requirements of the present invention in at least two light emitting portions selected from them.
 そして、本発明のプローブにおいて、各光出射部は、一端面でバンドルファイバに接続された導光部材と、導光部材の他端面から出射した分岐光を拡散させる拡散部とを有し、上記2つの光出射部の導光構造に関して、導光部材の設計および拡散部の設計の少なくともいずれかが異なることが好ましい。この場合において、光量が多い方の拡散部の拡散角は、光量が少ない方の拡散部の拡散角よりも大きいことが好ましい。また、光量が多い方の拡散部から光出射部の出射端までの距離が、光量が少ない方の拡散部から光出射部の出射端までの距離よりも長いことが好ましい。また、光量が多い方の導光部材の導光方向の長さが、光量が少ない方の導光部材の導光方向の長さよりも長いことが好ましい。 And in the probe of the present invention, each light emitting part has a light guide member connected to the bundle fiber at one end face, and a diffusion part for diffusing the branched light emitted from the other end face of the light guide member, Regarding the light guide structure of the two light emitting portions, it is preferable that at least one of the design of the light guide member and the design of the diffusion portion is different. In this case, it is preferable that the diffusion angle of the diffusion part with the larger light amount is larger than the diffusion angle of the diffusion part with the smaller light amount. Moreover, it is preferable that the distance from the diffusion part with the larger light quantity to the emission end of the light emission part is longer than the distance from the diffusion part with a smaller light quantity to the emission end of the light emission part. Moreover, it is preferable that the length of the light guide member with the larger light amount in the light guide direction is longer than the length of the light guide member with the smaller light amount in the light guide direction.
 或いは、本発明のプローブにおいて、各光出射部は、一端面でバンドルファイバに接続された導光部材を有し、光量が多い方の光出射部のみが、導光部材の他端面から出射した分岐光を拡散させる拡散部をさらに有する構成を採用することが好ましい。 Alternatively, in the probe of the present invention, each light emitting portion has a light guide member connected to the bundle fiber at one end surface, and only the light emitting portion with the larger light amount emitted from the other end surface of the light guide member. It is preferable to employ a configuration that further includes a diffusion part that diffuses the branched light.
 また、本発明のプローブにおいて、拡散部は、光ビームを楕円状に拡散させるものであることが好ましい。 In the probe of the present invention, it is preferable that the diffusing portion diffuses the light beam in an elliptical shape.
 また、本発明のプローブにおいて、バンドルファイバは、分岐していない側のバンドルファイバの中心部を構成する第1ファイバ素線および中心部の周囲の外周部を構成する複数の第2ファイバ素線であって第1ファイバ素線の径よりも径が細い第2ファイバ素線の一部の組と、第2ファイバ素線の他の一部の組で分岐しているものである構成を採用することが好ましい。 In the probe of the present invention, the bundle fiber includes a first fiber strand that forms the center portion of the bundle fiber on the non-branched side and a plurality of second fiber strands that form the outer peripheral portion around the center portion. A configuration is adopted in which a part of the second fiber strand having a diameter smaller than the diameter of the first fiber strand and another part of the second fiber strand are branched. It is preferable.
 或いは、本発明のプローブにおいて、バンドルファイバは、分岐していない側のバンドルファイバの中心部を構成する第1ファイバ素線と、中心部の周囲の外周部を構成する複数の第2ファイバ素線であって第1ファイバ素線の径よりも径が細い第2ファイバ素線とで分岐しているものである構成を採用することが好ましい。 Alternatively, in the probe of the present invention, the bundle fiber includes a first fiber strand constituting the center portion of the bundle fiber on the non-branched side and a plurality of second fiber strands constituting the outer peripheral portion around the center portion. However, it is preferable to employ a configuration in which the first fiber strand is branched by a second fiber strand having a diameter smaller than that of the first fiber strand.
 本発明のプローブユニットは、
 測定光を出力する光源と、測定光をプローブのバンドルファイバへ光学的に接続する接続部とを有する光源ユニットと、
 接続部に接続される光音響計測用のプローブとを備え、
 プローブが、音響波検出素子と、バンドルファイバと、バンドルファイバによって導光された測定光を被検体に向けて出射させる2つの光出射部とを有し、
 バンドルファイバは、一端が分岐して上記2つの光出射部にそれぞれ接続され、上記測定光を互いに光量の異なる2つの分岐光に分割して上記2つの光出射部にそれぞれ導光し、
 上記2つの光出射部は、互いに異なる導光構造を有し、それぞれに入射した上記分岐光が光出射部を出射した際のエネルギー密度が互いに等しいことを特徴とするものである。
The probe unit of the present invention is
A light source unit having a light source that outputs measurement light, and a connection unit that optically connects the measurement light to the bundle fiber of the probe;
A probe for photoacoustic measurement connected to the connection part,
The probe includes an acoustic wave detection element, a bundle fiber, and two light emitting units that emit measurement light guided by the bundle fiber toward the subject.
The bundle fiber is branched at one end and connected to the two light emitting parts, respectively, and the measurement light is divided into two branched lights having different light amounts and guided to the two light emitting parts,
The two light emitting portions have different light guide structures, and the energy density when the branched light incident thereon is emitted from the light emitting portion is equal to each other.
 そして、本発明のプローブユニットにおいて、上記2つの光出射部は、一端面がバンドルファイバに接続された導光部材と、導光部材の他端面から出射した分岐光を拡散させる拡散部とをそれぞれ有し、上記2つの光出射部の導光構造は、導光部材の設計および拡散部の設計の少なくともいずれかが互いに異なることが好ましい。この場合において、光量が多い方の上記分岐光が入射する拡散部の拡散角は、光量が少ない方の上記分岐光が入射する拡散部の拡散角よりも大きいことが好ましい。また、光量が多い方の上記分岐光が入射する拡散部から光出射部の出射端までの距離が、光量が少ない方の上記分岐光が入射する拡散部から光出射部の出射端までの距離よりも長いことが好ましい。また、光量が多い方の上記分岐光が入射する導光部材の導光方向の長さが、光量が少ない方の上記分岐光が入射する導光部材の導光方向の長さよりも長いことが好ましい。 In the probe unit of the present invention, each of the two light emitting portions includes a light guide member having one end face connected to the bundle fiber and a diffusion portion for diffusing the branched light emitted from the other end face of the light guide member. It is preferable that at least one of the design of the light guide member and the design of the diffusion portion is different from each other in the light guide structure of the two light emitting portions. In this case, it is preferable that the diffusion angle of the diffusion portion where the branched light having the larger light amount is incident is larger than the diffusion angle of the diffusion portion where the branched light having the smaller light amount is incident. In addition, the distance from the diffuser where the branched light with the larger light amount enters to the exit end of the light exit unit is the distance from the diffuser with the smaller amount of light incident to the exit end of the light exit unit. Longer than that is preferred. In addition, the length of the light guide member in which the branched light having the larger light amount is incident may be longer than the length of the light guide member in which the branched light having the smaller light amount is incident. preferable.
 本発明の光音響計測装置は、
 光音響計測用のプローブと、
 プローブによって検出された光音響波に基づいて光音響画像を生成する信号処理部とを備え、
 プローブが、音響波検出素子と、バンドルファイバと、バンドルファイバによって導光された測定光を被検体に向けて出射させる2つの光出射部とを有し、
 バンドルファイバの一端が、分岐して2つの光出射部にそれぞれ接続され、上記測定光を互いに光量の異なる2つの分岐光に分割して上記2つの光出射部にそれぞれ導光し、
 上記2つの光出射部は、互いに異なる導光構造を有し、それぞれに入射した分岐光が光出射部を出射した際のエネルギー密度が互いに等しいことを特徴とするものである。
The photoacoustic measuring device of the present invention is
A probe for photoacoustic measurement;
A signal processing unit that generates a photoacoustic image based on the photoacoustic wave detected by the probe,
The probe includes an acoustic wave detection element, a bundle fiber, and two light emitting units that emit measurement light guided by the bundle fiber toward the subject.
One end of the bundle fiber is branched and connected to each of the two light emitting sections, and the measurement light is divided into two branched lights having different light amounts and guided to the two light emitting sections,
The two light emitting portions have different light guide structures, and are characterized in that energy densities are equal when branched light incident on each of the two light emitting portions is emitted from the light emitting portion.
 そして、本発明の光音響計測装置において、上記2つの光出射部は、一端面がバンドルファイバに接続された導光部材と、導光部材の他端面から出射した分岐光を拡散させる拡散部とをそれぞれ有し、上記2つの光出射部の導光構造は、導光部材の設計および拡散部の設計の少なくともいずれかが互いに異なることが好ましい。この場合において、光量が多い方の上記分岐光が入射する拡散部の拡散角は、光量が少ない方の上記分岐光が入射する拡散部の拡散角よりも大きいことが好ましい。また、光量が多い方の上記分岐光が入射する拡散部から光出射部の出射端までの距離が、光量が少ない方の上記分岐光が入射する拡散部から光出射部の出射端までの距離よりも長いことが好ましい。また、光量が多い方の上記分岐光が入射する導光部材の導光方向の長さが、光量が少ない方の上記分岐光が入射する導光部材の導光方向の長さよりも長いことが好ましい。 And in the photoacoustic measuring device of the present invention, the two light emitting parts include a light guide member having one end face connected to the bundle fiber, a diffusion part for diffusing the branched light emitted from the other end face of the light guide member, and Preferably, at least one of the light guide member design and the diffuser design is different from each other in the light guide structure of the two light emitting portions. In this case, it is preferable that the diffusion angle of the diffusion portion where the branched light having the larger light amount is incident is larger than the diffusion angle of the diffusion portion where the branched light having the smaller light amount is incident. In addition, the distance from the diffuser where the branched light with the larger light amount enters to the exit end of the light exit unit is the distance from the diffuser with the smaller amount of light incident to the exit end of the light exit unit. Longer than that is preferred. In addition, the length of the light guide member in which the branched light having the larger light amount is incident may be longer than the length of the light guide member in which the branched light having the smaller light amount is incident. preferable.
 また、本発明の光音響計測装置において、信号処理部は、被検体内において反射した反射音響波に基づいて反射音響画像を生成することが好ましい。 In the photoacoustic measurement apparatus of the present invention, it is preferable that the signal processing unit generates a reflected acoustic image based on the reflected acoustic wave reflected in the subject.
 本発明のプローブ、プローブユニットおよび光音響計測装置は、互いに光量の異なる2つの分岐光が2つの光出射部にそれぞれ入射した場合、光出射部を出射した際の2つの分岐光のエネルギー密度が等しくなるように、2つの光出射部が互いに異なる導光構造を有することを特徴とするものである。すなわち、各光出射部の導光構造が、2つの分岐光の光量の差異を相殺することにより、光出射部を出射した際の2つの分岐光のエネルギー密度を均一化するように設計されている。この結果、バンドルファイバを分岐させて各光出射部に導光された光の光量が異なる場合であっても、光が被検体に照射されたときのエネルギー密度を均一化することが可能となる。 In the probe, the probe unit, and the photoacoustic measuring device of the present invention, when two branched lights having different light amounts are incident on the two light emitting parts, the energy density of the two branched lights when the light emitting parts are emitted is The two light emitting portions have different light guide structures so as to be equal to each other. That is, the light guide structure of each light emitting part is designed to equalize the energy density of the two branched lights when they exit the light emitting part by offsetting the difference in the light quantity of the two branched lights. Yes. As a result, it is possible to make the energy density uniform when light is irradiated onto the subject even when the amount of the light guided to each light emitting portion by branching the bundle fiber is different. .
第1の実施形態の光音響計測装置の構成を示す概略図である。It is the schematic which shows the structure of the photoacoustic measuring device of 1st Embodiment. 図2Aは、プローブの長手方向の構成例を示す概略図であり、図2Bは、プローブの短手方向の構成例を示す概略図である。FIG. 2A is a schematic diagram illustrating a configuration example in the longitudinal direction of the probe, and FIG. 2B is a schematic diagram illustrating a configuration example in the short direction of the probe. 図3Aは、1本の太いファイバ素線と、その周囲に配置された複数のファイバ素線とから構成されるバンドルファイバを示す図であり、図3Bは、図3Aのバンドルファイバを融着処理した場合を示す図である。FIG. 3A is a diagram showing a bundle fiber composed of one thick fiber strand and a plurality of fiber strands arranged around it, and FIG. 3B is a fusion process of the bundle fiber of FIG. 3A FIG. 図4Aは、光出射部の構成例を示す概略断面図であり、図4Bは、光出射部の別の構成例を示す概略断面図である。FIG. 4A is a schematic cross-sectional view illustrating a configuration example of the light emitting portion, and FIG. 4B is a schematic cross-sectional view illustrating another configuration example of the light emitting portion. 図5Aは、光出射部から出射した分岐光を光センサによって検出する様子を示す概略図であり、図5Bは、光出射部と光の検出位置との関係を示す概略断面図である。FIG. 5A is a schematic diagram illustrating how the branched light emitted from the light emitting unit is detected by the optical sensor, and FIG. 5B is a schematic cross-sectional view illustrating the relationship between the light emitting unit and the light detection position. 図6A、図6B、および図6Cは、分岐光の光出射部を出射した際のエネルギー密度の調整方法を示す概略図である。6A, 6 </ b> B, and 6 </ b> C are schematic diagrams illustrating a method for adjusting the energy density when the light exit part of the branched light is emitted. 図7Aおよび図7Bは、分岐したファイバ素線の本数が異なる場合のエネルギー密度の調整方法を示す概略図である。7A and 7B are schematic diagrams illustrating a method of adjusting the energy density when the number of branched fiber strands is different. 光出射部の他の構成例を示す概略断面図である。It is a schematic sectional drawing which shows the other structural example of a light-projection part. 光出射部の他の構成例を示す概略断面図である。It is a schematic sectional drawing which shows the other structural example of a light-projection part. 光出射部の他の構成例を示す概略断面図である。It is a schematic sectional drawing which shows the other structural example of a light-projection part. 第2の実施形態の光音響計測装置の構成を示す概略図である。It is the schematic which shows the structure of the photoacoustic measuring device of 2nd Embodiment.
 以下、本発明の実施形態について図面を用いて説明するが、本発明はこれに限られるものではない。なお、視認しやすくするため、図面中の各構成要素の縮尺等は実際のものとは適宜異ならせてある。 Hereinafter, embodiments of the present invention will be described with reference to the drawings, but the present invention is not limited thereto. In addition, for easy visual recognition, the scale of each component in the drawings is appropriately changed from the actual one.
 「第1の実施形態」
 まず、第1の実施形態のプローブ、プローブユニットおよび光音響計測装置について説明する。図1は本実施形態の光音響計測装置の構成を示す概略図であり、図2Aはプローブの長手方向の構成例を示す概略図である。図2Bはプローブの短手方向の構成例を示す概略図である。
“First Embodiment”
First, the probe, the probe unit, and the photoacoustic measuring device of the first embodiment will be described. FIG. 1 is a schematic diagram showing a configuration of the photoacoustic measurement apparatus of the present embodiment, and FIG. 2A is a schematic diagram showing a configuration example in the longitudinal direction of the probe. FIG. 2B is a schematic diagram illustrating a configuration example of the probe in the short direction.
 本実施形態の光音響計測装置10は、例えば光音響信号に基づいて光音響画像を生成する光音響画像生成機能を有する。具体的には図1に示されるように、本実施形態の光音響計測装置10は、超音波探触子(プローブ)11、超音波ユニット12、レーザユニット13および表示部14を備えている。 The photoacoustic measurement device 10 of this embodiment has a photoacoustic image generation function that generates a photoacoustic image based on, for example, a photoacoustic signal. Specifically, as shown in FIG. 1, the photoacoustic measurement apparatus 10 of the present embodiment includes an ultrasonic probe (probe) 11, an ultrasonic unit 12, a laser unit 13, and a display unit 14.
 <プローブ>
 プローブ11は、被検体に向けて超音波を照射したり、被検体M内を伝搬する音響波Uを検出したりするものである。すなわち、プローブ11は、被検体Mに対する超音波の照射(送信)、および被検体Mから反射して戻って来た反射超音波(反射音響波)の検出(受信)を行うことができる。さらに、プローブ11は、被検体M内の吸収体65がレーザ光を吸収することにより被検体M内に発生した光音響波の検出も行うことができる。なお、本明細書において、「音響波」とは超音波および光音響波を含む意味である。ここで、「超音波」とはプローブにより送信された弾性波およびその反射波を意味し、「光音響波」とは測定光の照射による光音響効果により被検体M内に発生した弾性波を意味する。また吸収体65としては、例えば、血管、金属部材等が挙げられる。
<Probe>
The probe 11 irradiates the subject with ultrasonic waves and detects the acoustic wave U propagating through the subject M. That is, the probe 11 can perform irradiation (transmission) of ultrasonic waves to the subject M and detection (reception) of reflected ultrasonic waves (reflected acoustic waves) that have been reflected back from the subject M. Furthermore, the probe 11 can also detect a photoacoustic wave generated in the subject M when the absorber 65 in the subject M absorbs the laser light. In the present specification, “acoustic wave” means an ultrasonic wave and a photoacoustic wave. Here, “ultrasonic wave” means an elastic wave transmitted by the probe and its reflected wave, and “photoacoustic wave” means an elastic wave generated in the subject M due to a photoacoustic effect caused by irradiation of measurement light. means. Moreover, as the absorber 65, a blood vessel, a metal member, etc. are mentioned, for example.
 本実施形態のプローブ11は、例えば、図1および図2に示されるように、振動子アレイ20、複数の光ファイバ素線が束ねられたバンドルファイバ40、振動子アレイ20を挟むように配置された2つの光出射部42およびこれらを包含する筺体45を備える。 For example, as shown in FIGS. 1 and 2, the probe 11 of the present embodiment is disposed so as to sandwich the transducer array 20, a bundle fiber 40 in which a plurality of optical fiber strands are bundled, and the transducer array 20. In addition, two light emitting portions 42 and a casing 45 including them are provided.
 振動子アレイ20は、例えば、一次元または二次元に配列された複数の超音波振動子20a(音響波検出素子)から構成される。超音波振動子20aは、例えば、圧電セラミクス、またはポリフッ化ビニリデン(PVDF)のような高分子フィルムから構成される圧電素子である。超音波振動子20aは、音響波Uを受信した場合にその受信信号を電気信号に変換する機能を有している。また、超音波振動子20aは、測定光の照射によっても電気信号を発生する。この電気信号は、超音波振動子20aの焦電効果または光音響効果に起因する。本発明では、このように測定光の超音波振動子への照射に起因して発生する電気信号(光検出信号)に基づいて、プローブ11と被検体Mとの接触状態を判断してもよい。振動子アレイ20において発生したこれらの電気信号は後述する受信回路21に出力される。プローブ11は、セクタ走査対応、リニア走査対応、コンベックス走査対応等の中から撮像部位に応じて選択される。 The transducer array 20 is composed of, for example, a plurality of ultrasonic transducers 20a (acoustic wave detection elements) arranged one-dimensionally or two-dimensionally. The ultrasonic transducer 20a is a piezoelectric element made of a polymer film such as piezoelectric ceramics or polyvinylidene fluoride (PVDF). The ultrasonic transducer | vibrator 20a has the function to convert the received signal into an electric signal, when the acoustic wave U is received. Further, the ultrasonic transducer 20a also generates an electrical signal when irradiated with measurement light. This electric signal is caused by the pyroelectric effect or the photoacoustic effect of the ultrasonic transducer 20a. In the present invention, the contact state between the probe 11 and the subject M may be determined based on the electrical signal (photodetection signal) generated due to the irradiation of the measurement light to the ultrasonic transducer. . These electric signals generated in the transducer array 20 are output to a receiving circuit 21 described later. The probe 11 is selected according to the imaging region from among sector scanning, linear scanning, convex scanning, and the like.
 バンドルファイバ40は、レーザユニット13からのレーザ光Lを光出射部42にまで導く。バンドルファイバ40は、特に限定されず、石英ファイバ等の公知のものを使用することができる。例えば、図3Aは、1本の太いファイバ素線41aと、その周囲に配置された複数のファイバ素線41bとから構成されるバンドルファイバ40を示している。一般的に光ファイバは、コア部の方がクラッド部よりも光エネルギーに耐性のある材料を使用することができる。したがって、図3Aのようなバンドルファイバは、中心部に太いファイバ素線(例えば直径0.4~0.8mm)が配置されているために、局所的にエネルギー密度が高くなる中心部においてバンドルファイバ(特に端面)が破壊されることを抑制することができる。図3Bは、図3Aのバンドルファイバを融着処理した場合を示す図である。融着処理されたバンドルファイバでは、各ファイバ素線の外縁形状が変化しながら各ファイバ素線のクラッド同士が融着される。これにより、接着剤を使用したバンドルファイバと比較して、融着処理されたバンドルファイバでは、ファイバ素線間の余分な間隙が減少する。図3Aのバンドルファイバが融着処理されると、例えば、ファイバ素子線41aおよびファイバ素線41bはそれぞれファイバ素線41cおよびファイバ素線41dのように変化する。中心部を構成する太いファイバ素線は1本でもよいし複数本でもよい。バンドルファイバ40は、図1および図2に示されるように、出射側において分岐し、分岐した部分の末端はそれぞれ異なる光出射部42に接続される。これにより、バンドルファイバ40は、レーザユニット13から出射したレーザ光を2つに分割して光出射部42まで導光する。 The bundle fiber 40 guides the laser beam L from the laser unit 13 to the light emitting unit 42. The bundle fiber 40 is not particularly limited, and a known fiber such as a quartz fiber can be used. For example, FIG. 3A shows a bundle fiber 40 composed of one thick fiber strand 41a and a plurality of fiber strands 41b arranged around it. In general, the optical fiber can be made of a material that is more resistant to light energy in the core portion than in the cladding portion. Therefore, in the bundle fiber as shown in FIG. 3A, since a thick fiber strand (for example, a diameter of 0.4 to 0.8 mm) is arranged in the center portion, the bundle fiber is locally in the center portion where the energy density becomes high. It can suppress that (especially end surface) is destroyed. FIG. 3B is a diagram illustrating a case where the bundle fiber of FIG. 3A is fused. In the bundle fiber subjected to the fusion treatment, the cladding of each fiber strand is fused while the outer edge shape of each fiber strand is changed. As a result, compared with a bundle fiber using an adhesive, an extra gap between fiber strands is reduced in a bundle fiber subjected to a fusion treatment. When the bundle fiber of FIG. 3A is fused, for example, the fiber element wire 41a and the fiber strand 41b change to a fiber strand 41c and a fiber strand 41d, respectively. There may be one or more thick fiber strands constituting the central portion. As shown in FIG. 1 and FIG. 2, the bundle fiber 40 branches on the output side, and the ends of the branched portions are connected to different light output portions 42. Thereby, the bundle fiber 40 divides the laser beam emitted from the laser unit 13 into two and guides it to the light emitting unit 42.
 分岐の形式は特に限定されない。例えば、バンドルファイバ40は、中心部を構成するファイバ素線41aおよび外周部を構成する複数のファイバ素線41bの一部を組み合わせたものと、それ以外のファイバ素線41bとに分岐していてもよい。または、中心部を構成するファイバ素線41aと、外周部を構成する複数のファイバ素線41bとに分岐していてもよい。 The branch format is not particularly limited. For example, the bundle fiber 40 is branched into a combination of a fiber strand 41a constituting the central portion and a part of a plurality of fiber strands 41b constituting the outer peripheral portion and other fiber strands 41b. Also good. Or you may branch into the fiber strand 41a which comprises a center part, and the some fiber strand 41b which comprises an outer peripheral part.
 光出射部42は、バンドルファイバ40によって導光されたレーザ光を被検体に照射する部分である。図4Aは、光出射部の構成例を示す概略断面図である。図2および図4Aに示されるように、本実施形態では2つの光出射部42が、振動子アレイ20を挟んで対向するように、振動子アレイ20のエレベーション方向(振動子アレイのアレイ方向に垂直かつ検出面に平行な方向)の両側に配置されている。また、光出射部42は、図4Bに示されるように、光出射部の光出射軸が振動子アレイ20側に向くように傾いていてもよい。この場合には、振動子アレイ20の真下の領域に光を照射しやすくなる。 The light emitting part 42 is a part that irradiates the subject with the laser light guided by the bundle fiber 40. FIG. 4A is a schematic cross-sectional view illustrating a configuration example of a light emitting unit. As shown in FIG. 2 and FIG. 4A, in this embodiment, the elevation direction of the transducer array 20 (array direction of the transducer array) is such that the two light emitting sections 42 face each other with the transducer array 20 in between. In the direction perpendicular to the direction parallel to the detection surface). Further, as shown in FIG. 4B, the light emitting unit 42 may be inclined so that the light emitting axis of the light emitting unit faces the transducer array 20 side. In this case, it becomes easy to irradiate light to the region directly below the transducer array 20.
 例えば、本実施形態では、光出射部42は、第1の導光部材46、拡散部47および第2の導光部材48から構成される。第1の導光部材46、拡散部47および第2の導光部材48は、光の進行方向に対して、例えば、直列に並べられており、これらは、例えば、図示しない固定枠体によって固定される。 For example, in the present embodiment, the light emitting unit 42 includes a first light guide member 46, a diffusion unit 47, and a second light guide member 48. The first light guide member 46, the diffusing portion 47, and the second light guide member 48 are arranged in series with respect to the light traveling direction, for example, and are fixed by, for example, a fixed frame body (not shown). Is done.
 第1の導光部材46は、分岐したバンドルファイバ40によって分割して導光された測定光(分岐光とも言う)を拡散部47へ導光する。第1の導光部材46の光入射端にはバンドルファイバ40の分岐した部分の光出射端が光学的に結合される。第1の導光部材としては、例えば導光板を使用することができる。導光板は、例えばアクリル板や石英板の表面に特殊な加工を施して、一方の端面から入れた光を他方の端面から均一に面発光させる板である。 The first light guide member 46 guides the measurement light (also referred to as branched light) divided and guided by the branched bundle fiber 40 to the diffusion unit 47. The light exit end of the branched portion of the bundle fiber 40 is optically coupled to the light entrance end of the first light guide member 46. For example, a light guide plate can be used as the first light guide member. The light guide plate is a plate that performs special processing on the surface of an acrylic plate or a quartz plate, for example, and uniformly emits light from one end surface from the other end surface.
 拡散部47は、第1の導光部材46から出射した分岐光を拡散させるものである。これにより、分岐光の照射範囲がより拡大される。拡散部47としては、例えば拡散板を使用することができる。また拡散板としては、微小な凹レンズ等が基板の片面にランダムに配置されたレンズ拡散板や、例えば拡散微粒子が分散された石英板等を使用することができる。また、拡散部47は、第1の導光部材46と独立した部材である必要はない。例えば、第1の導光部材46の光出射端部に拡散層を設けてもよいし、その光出射端面に拡散面を設けてもよい。 The diffusing unit 47 diffuses the branched light emitted from the first light guide member 46. Thereby, the irradiation range of the branched light is further expanded. As the diffusion unit 47, for example, a diffusion plate can be used. Further, as the diffusion plate, a lens diffusion plate in which minute concave lenses or the like are randomly arranged on one surface of the substrate, for example, a quartz plate in which diffusion fine particles are dispersed can be used. Further, the diffusion part 47 does not have to be a member independent of the first light guide member 46. For example, a diffusion layer may be provided at the light emitting end portion of the first light guide member 46, or a diffusion surface may be provided at the light emitting end surface.
 例えば拡散部47は、接着剤によって固定部材(図示省略)に固定されるが、レンズ拡散板を接着する際には、光拡散性が強い接着剤を用いることが好ましい。これは、レンズ拡散面に接着剤が付着すると、その部分の光拡散性が失われ、局所的に強い光が出射する可能性があるためである。光拡散性を有する接着剤を用いた場合、レンズ拡散面に接着剤が付着した場合でも、接着剤の光拡散性によって光を拡散させることができる。接着剤としては、例えば白色顔料入りのシリコーンゴムなどの接着剤を用いることができる。白色顔料としては、例えばTiOが挙げられる。TiOの含有率は、1wt%~20wt%が好ましい。シリコーンゴムとしては、例えば信越化学社製の液状ゴムKE-45-Wを用いることができる。 For example, the diffusing portion 47 is fixed to a fixing member (not shown) with an adhesive, but when adhering the lens diffusing plate, it is preferable to use an adhesive having high light diffusibility. This is because if the adhesive adheres to the lens diffusing surface, the light diffusibility of that portion is lost and strong light may be emitted locally. When an adhesive having light diffusibility is used, light can be diffused by the light diffusibility of the adhesive even when the adhesive adheres to the lens diffusion surface. As the adhesive, for example, an adhesive such as silicone rubber containing a white pigment can be used. An example of the white pigment is TiO 2 . The content of TiO 2 is preferably 1 wt% to 20 wt%. As the silicone rubber, for example, liquid rubber KE-45-W manufactured by Shin-Etsu Chemical Co., Ltd. can be used.
 第2の導光部材48は、拡散部47によって拡散された分岐光を被検体に向けて出射させるものである。また、第2の導光部材48の出射端は、筺体45の光窓部(開口部分)に嵌められており、その隙間を埋める機能を果たす。これにより、プローブ使用時に筺体45の光窓部から筺体内部へ異物が混入したり細菌が侵入したりすることなどを防止できる。また、上記の拡散層や拡散面を第1の導光部材46に設ける代わりに、それぞれ第2の導光部材48の光入射端部や光入射端面に設けてもよい。 The second light guide member 48 emits the branched light diffused by the diffusion unit 47 toward the subject. Further, the emission end of the second light guide member 48 is fitted into the optical window portion (opening portion) of the housing 45 and fulfills the function of filling the gap. Thereby, it can prevent that a foreign material mixes in from the optical window part of the housing 45 to the inside of a housing at the time of use of a probe, or bacteria enter. Further, instead of providing the diffusion layer and the diffusion surface in the first light guide member 46, the light incident end portion and the light incident end surface of the second light guide member 48 may be provided, respectively.
 そして本発明では、互いに光量の異なる分岐光が光出射部をそれぞれ出射した際のそのエネルギー密度が等しくなるように、2つの光出射部が、互いに異なる導光構造を有する。例えば、導光部材の設計および拡散部の設計の少なくともいずれかが異なることにより、そのような構造を実現できる。「互いに光量の異なる分岐光」とは、分岐光それぞれのエネルギー量が最大エネルギー量の5%以上異なることを意味する。最大エネルギー量の5%以上のずれは例えば画像ムラにつながってしまう。ここで、互いに光量の異なる分岐光(例えば光出射部42aおよび42bのそれぞれに入射した2つの分岐光)のエネルギー密度が等しいか否かは下記のようにして判断される。 In the present invention, the two light emitting portions have different light guide structures so that the energy densities when branched lights having different light amounts are emitted from the light emitting portions are equal. For example, such a structure can be realized by changing at least one of the design of the light guide member and the design of the diffusion portion. “Branched light with different amounts of light” means that the energy amount of each branched light differs by 5% or more of the maximum energy amount. A deviation of 5% or more of the maximum energy amount leads to, for example, image unevenness. Here, whether or not the energy densities of the branched lights having different light amounts (for example, two branched lights incident on the light emitting portions 42a and 42b) are equal is determined as follows.
 図5Aおよび図5Bは、エネルギー密度の測定方法を示す概略図である。特に図5Aは、光出射部42aから出射した分岐光(出射光)を光センサによって検出する様子を示す概略図であり、図5Bは、光出射部と光の検出位置との関係を示す概略断面図である。まず、図5Aおよび図5Bに示されるように光出射部42aの出射端面42s(すなわち出射端)から所定の距離Dだけ離れた場所において、光出射部42aから出射した出射光L1のうち直径φの開口を通過した光を、計測器51が接続された光センサ50によって検出する。光の検出は、光センサ50の検出面が光軸AXに垂直な状態で、上記開口の中心の位置を1mm間隔でその幅方向(図5Aにおける左右方向)に移動させながら複数の位置において行われる。上記移動は、光出射部42aの出射端面42sに対応する範囲W内の端から端まで、すなわち上記開口の端部が上記範囲Wを超えない範囲で行われる。また、上記距離Dおよび直径φはそれぞれ3mmおよび3.5mmとする。光出射部42aの出射端面42sは、本実施形態では第2の導光部材48aの出射端面であり、例えば第2の導光部材48aがない場合には拡散部47aの出射端面となる。そして、各測定位置において測定されたエネルギー量を開口面積によって割って各測定位置でのエネルギー密度を算出し、それらの平均値L1aveを算出する。次に、光出射部42bからの出射光L2についても同様にしてエネルギー密度の平均値L2aveを算出する。そして、測定位置ごとのエネルギー密度の最大値を、光出射部ごとにL1maxおよびL2maxとしたとき、L1ave×0.8≦L2ave≦L1ave×1.2とL1max×0.8≦L2max≦L1max×1.2の両方の関係式を満たす場合に、出射光L1およびL2それぞれの光出射部を出射した際のエネルギー密度が等しいとする。光センサ50としては、例えばOPHIR社製パイロエレクトリックセンサPE10BBを使用することができ、計測器51としては、例えばOPHIR社製ディスプレイNOVAIIを使用することができる。 FIG. 5A and FIG. 5B are schematic diagrams showing a method for measuring energy density. In particular, FIG. 5A is a schematic diagram showing how the branched light (emitted light) emitted from the light emitting part 42a is detected by the optical sensor, and FIG. 5B is a schematic diagram showing the relationship between the light emitting part and the light detection position. It is sectional drawing. First, as shown in FIGS. 5A and 5B, the diameter φ of the emitted light L1 emitted from the light emitting portion 42a at a position away from the emitting end face 42s (that is, the emitting end) of the light emitting portion 42a by a predetermined distance D. The light that has passed through the aperture is detected by the optical sensor 50 to which the measuring instrument 51 is connected. Light detection is performed at a plurality of positions while moving the position of the center of the opening in the width direction (left-right direction in FIG. 5A) at intervals of 1 mm with the detection surface of the optical sensor 50 perpendicular to the optical axis AX. Is called. The movement is performed from end to end within a range W corresponding to the emission end face 42s of the light emission part 42a, that is, within a range where the end of the opening does not exceed the range W. The distance D and the diameter φ are 3 mm and 3.5 mm, respectively. In the present embodiment, the emission end face 42s of the light emission part 42a is the emission end face of the second light guide member 48a. For example, when there is no second light guide member 48a, it becomes the emission end face of the diffusion part 47a. Then, the energy density measured at each measurement position is divided by the opening area to calculate the energy density at each measurement position, and the average value L1ave thereof is calculated. Next, the average value L2ave of the energy density is calculated in the same manner for the emitted light L2 from the light emitting part 42b. When the maximum value of the energy density for each measurement position is L1max and L2max for each light emitting part, L1ave × 0.8 ≦ L2ave ≦ L1ave × 1.2 and L1max × 0.8 ≦ L2max ≦ L1max × 1 .2 satisfying both of the relational expressions, it is assumed that the energy density when the light emitting portions of the emitted lights L1 and L2 are emitted is equal. For example, a pyroelectric sensor PE10BB manufactured by OPHIR can be used as the optical sensor 50, and a display NOVAII manufactured by OPHIR can be used as the measuring instrument 51, for example.
 本実施形態では、第1の導光部材46の設計(形状、大きさ、材料、配置等)、拡散部47の設計(拡散角度、構造、配置等)および第2の導光部材48の設計(形状、大きさ、材料、配置等)は、各光出射部に導光された分岐光の光量に基づいて、適宜決められる。分岐光の光量は、例えばプローブ11が装着される光源ユニット13の仕様に基づいて予め算出することができる。また、実際にレーザ光をバンドルファイバに入射して各分岐光の光量を計測し、その後その計測値に基づいて適宜各部材を選択するようにしてもよい。 In the present embodiment, the design (shape, size, material, arrangement, etc.) of the first light guide member 46, the design (diffusion angle, structure, arrangement, etc.) of the diffusion portion 47, and the design of the second light guide member 48 are designed. (Shape, size, material, arrangement, etc.) are appropriately determined based on the amount of branched light guided to each light emitting section. The amount of the branched light can be calculated in advance based on the specification of the light source unit 13 to which the probe 11 is attached, for example. Alternatively, the laser light may actually be incident on the bundle fiber to measure the amount of each branched light, and then each member may be appropriately selected based on the measured value.
 具体的には、以下のように上記エネルギー密度が調整される。図6A、図6B、および図6Cは、光出射部を出射した際の分岐光のエネルギー密度の調整方法を示す概略図である。図6Aは、光量が互いに異なる分岐光がそれぞれ光出射部42aおよび42b内を導光された結果、同等のエネルギー密度を有する出射光L1およびL2として出射される様子を表す。また、図6Bは、光量の多い方の分岐光Laが光出射部42a内を導光されて出射光L1として出射する様子を表し、図6Cは、光量の少ない方の分岐光Lbが光出射部42b内を導光されて出射光L2として出射する様子を表す。 Specifically, the energy density is adjusted as follows. 6A, 6 </ b> B, and 6 </ b> C are schematic diagrams illustrating a method of adjusting the energy density of the branched light when the light exit portion is emitted. FIG. 6A shows a state in which branched lights having different light amounts are emitted as emitted lights L1 and L2 having the same energy density as a result of being guided through the light emitting parts 42a and 42b, respectively. 6B shows a state in which the branched light La having the larger light quantity is guided through the light emitting portion 42a and emitted as the outgoing light L1, and FIG. 6C shows the branched light Lb having the smaller light quantity emitted from the light. A state in which the light is guided through the portion 42b and emitted as the emitted light L2 is shown.
 光出射部42aでは、分岐光Laの光量が光出射部42bを導光する分岐光Lbの光量より多いため、拡散部47aの拡散角度が拡散部47bの拡散角度よりも大きく設定されている。例えば、拡散部47aの拡散角度は80度であり、拡散部47bの拡散角度は40度である。これにより、光出射部42a内を導光してきた分岐光Laの照射範囲が広がる(図6Bおよび図6C)。したがって、光出射部42aでは光出射部42bよりも、エネルギー密度の低下率が大きい。この結果、分岐光Laが光出射部42aを出射したときには、分岐光Laおよび分岐光Lbのエネルギー密度が一致するようになる。なお、拡散した分岐光のうち光出射部42aの出射端面42sの範囲を超えて拡散した光(すなわち、光出射部42aの出射端面42s以外の部分から漏れ出た光)は、光窓部を通過することができず筺体45の内壁に遮断される。したがって、筺体内壁には光吸収のためのコーティング等を施しておくとよい。 In the light emitting unit 42a, the amount of the branched light La is larger than the amount of the branched light Lb that guides the light emitting unit 42b, so that the diffusion angle of the diffusion unit 47a is set larger than the diffusion angle of the diffusion unit 47b. For example, the diffusion angle of the diffusion part 47a is 80 degrees, and the diffusion angle of the diffusion part 47b is 40 degrees. Thereby, the irradiation range of the branched light La guided through the light emitting part 42a is expanded (FIGS. 6B and 6C). Therefore, the rate of decrease in energy density is greater in the light emitting portion 42a than in the light emitting portion 42b. As a result, when the branched light La is emitted from the light emitting part 42a, the energy densities of the branched light La and the branched light Lb are matched. Of the diffused branched light, the light diffused beyond the range of the exit end face 42s of the light exit portion 42a (that is, the light leaked from a portion other than the exit end face 42s of the light exit portion 42a) passes through the optical window portion. It cannot pass through and is blocked by the inner wall of the housing 45. Therefore, it is advisable to apply a coating or the like for light absorption on the housing wall.
 <レーザユニット>
 レーザユニット13は、例えばレーザ光Lを発するQスイッチ固体レーザ型の光源を有し、被検体Mに照射する光としてレーザ光Lを出力する。レーザユニット13が本発明における光源ユニットに相当する。レーザユニット13は、例えば、超音波ユニット12の制御部34からのトリガ信号を受けてレーザ光Lを出力するように構成されている。レーザユニット13は、レーザ光として1~100nsecのパルス幅を有するパルス光を出力するものであることが好ましい。例えば本実施形態では、レーザユニット13の光源はQスイッチアレキサンドライトレーザである。
<Laser unit>
The laser unit 13 has, for example, a Q-switch solid-state laser light source that emits laser light L, and outputs the laser light L as light to be irradiated on the subject M. The laser unit 13 corresponds to the light source unit in the present invention. For example, the laser unit 13 is configured to output a laser beam L in response to a trigger signal from the control unit 34 of the ultrasonic unit 12. The laser unit 13 preferably outputs pulsed light having a pulse width of 1 to 100 nsec as laser light. For example, in the present embodiment, the light source of the laser unit 13 is a Q switch alexandrite laser.
 レーザ光の波長は、計測の対象となる被検体内の吸収体の光吸収特性によって適宜決定される。例えば計測対象が生体内のヘモグロビンである場合(すなわち、血管を撮像する場合)には、一般的にはその波長は近赤外波長域に属する波長であることが好ましい。近赤外波長域とはおよそ700~850nmの波長域を意味する。しかしながら、レーザ光の波長は当然これに限られるものではない。また、レーザ光Lは、単波長でもよいし、複数の波長(例えば750nmおよび800nm)を含んでもよい。さらに、レーザ光Lが複数の波長を含む場合には、これらの波長の光は、同時に被検体Mに照射されてもよいし、交互に切り替えられながら照射されてもよい。レーザユニット13は、アレキサンドライトレーザの他、同様に近赤外波長域のレーザ光を出力可能なYAG-SHG-OPOレーザやTi-Sapphireレーザとすることもできる。 The wavelength of the laser light is appropriately determined according to the light absorption characteristics of the absorber in the subject to be measured. For example, when the measurement target is hemoglobin in a living body (that is, when imaging a blood vessel), it is generally preferable that the wavelength belongs to the near-infrared wavelength region. The near-infrared wavelength region means a wavelength region of about 700 to 850 nm. However, the wavelength of the laser beam is not limited to this. The laser beam L may be a single wavelength or may include a plurality of wavelengths (for example, 750 nm and 800 nm). Furthermore, when the laser light L includes a plurality of wavelengths, the light of these wavelengths may be irradiated to the subject M at the same time, or may be irradiated while being switched alternately. The laser unit 13 may be a YAG-SHG-OPO laser or a Ti-Sapphire laser that can output laser light in the near-infrared wavelength region in addition to the alexandrite laser.
 <超音波ユニット>
 超音波ユニット12は、受信回路21、AD変換部22、受信メモリ23、光音響画像生成部24、表示制御部30および制御部34を有する。超音波ユニット12が本発明における信号処理部に相当する。
<Ultrasonic unit>
The ultrasonic unit 12 includes a reception circuit 21, an AD conversion unit 22, a reception memory 23, a photoacoustic image generation unit 24, a display control unit 30, and a control unit 34. The ultrasonic unit 12 corresponds to the signal processing unit in the present invention.
 制御部34は、光音響計測装置10の各部を制御するものであり、本実施形態ではトリガ制御回路(図示省略)を備える。トリガ制御回路は、例えば光音響計測装置の起動の際に、レーザユニット13に光トリガ信号を送る。これによりレーザユニット13において、フラッシュランプが点灯し、レーザロッドの励起が開始される。そして、レーザロッドの励起状態は維持され、レーザユニット13はパルスレーザ光を出力可能な状態となる。 The control unit 34 controls each unit of the photoacoustic measurement apparatus 10, and includes a trigger control circuit (not shown) in the present embodiment. The trigger control circuit sends an optical trigger signal to the laser unit 13 when the photoacoustic measurement device is activated, for example. As a result, in the laser unit 13, the flash lamp is turned on and excitation of the laser rod is started. And the excitation state of a laser rod is maintained and the laser unit 13 will be in the state which can output a pulse laser beam.
 そして、制御部34は、その後トリガ制御回路からレーザユニット13へQswトリガ信号を送信する。すなわち、制御部34は、このQswトリガ信号によってレーザユニット13からのパルスレーザ光の出力タイミングを制御している。また本実施形態では、制御部34は、Qswトリガ信号の送信と同時にサンプリングトリガ信号をAD変換部22に送信する。サンプリングトリガ信号は、AD変換部22における光音響信号のサンプリングの開始タイミングの合図となる。このように、サンプリングトリガ信号を使用することにより、レーザ光の出力と同期して光音響信号をサンプリングすることが可能となる。 Then, the control unit 34 transmits a Qsw trigger signal from the trigger control circuit to the laser unit 13. That is, the control unit 34 controls the output timing of the pulsed laser light from the laser unit 13 by this Qsw trigger signal. In the present embodiment, the control unit 34 transmits the sampling trigger signal to the AD conversion unit 22 simultaneously with the transmission of the Qsw trigger signal. The sampling trigger signal is a cue for the start timing of the photoacoustic signal sampling in the AD converter 22. As described above, by using the sampling trigger signal, it is possible to sample the photoacoustic signal in synchronization with the output of the laser beam.
 受信回路21は、プローブ11によって検出された光音響信号を受信する。受信回路21によって受信された光音響信号はAD変換部22に送信される。 The receiving circuit 21 receives the photoacoustic signal detected by the probe 11. The photoacoustic signal received by the receiving circuit 21 is transmitted to the AD converter 22.
 AD変換部22は、受信回路21が受信した光音響信号をサンプリングしてデジタル信号に変換する。AD変換部22は、例えば外部から入力する所定周波数のADクロック信号に基づいて、所定のサンプリング周期で受信した光音響信号をサンプリングする。 The AD converter 22 samples the photoacoustic signal received by the receiving circuit 21 and converts it into a digital signal. The AD converter 22 samples the photoacoustic signal received at a predetermined sampling period based on, for example, an AD clock signal having a predetermined frequency input from the outside.
 受信メモリ23は、AD変換部22によってサンプリングされた光音響信号を記憶する。そして、受信メモリ23は、プローブ11によって検出された光音響信号のデータを光音響画像生成部24に出力する。 The reception memory 23 stores the photoacoustic signal sampled by the AD conversion unit 22. Then, the reception memory 23 outputs the photoacoustic signal data detected by the probe 11 to the photoacoustic image generation unit 24.
 光音響画像生成部24は、例えば受信メモリ23に格納された上記光音響データを、超音波振動子の位置に応じた遅延時間で互いに加算して1ライン分のデータを再構成し、各ラインの光音響データに基づいて断層画像(光音響画像)のデータを生成する。なお、この光音響画像生成部24は、遅延加算法に代えて、CBP法(Circular Back Projection)により再構成を行うものでもよい。あるいは光音響画像生成部24は、ハフ変換法又はフーリエ変換法を用いて再構成を行うものでもよい。光音響画像生成部24は、上記のようにして生成された光音響画像のデータを表示制御部30に出力する。 For example, the photoacoustic image generation unit 24 reconstructs data for one line by adding the photoacoustic data stored in the reception memory 23 to each other with a delay time corresponding to the position of the ultrasonic transducer. The tomographic image (photoacoustic image) data is generated based on the photoacoustic data. In addition, this photoacoustic image generation part 24 may replace with a delay addition method, and may perform a reconfiguration | reconstruction by CBP method (Circular BackBack Projection). Alternatively, the photoacoustic image generation unit 24 may perform reconstruction using a Hough transform method or a Fourier transform method. The photoacoustic image generation unit 24 outputs the photoacoustic image data generated as described above to the display control unit 30.
 表示制御部30は、光音響画像生成部24から取得した光音響画像データに基づいて、光音響画像をディスプレイ装置等の表示部14に表示させる。表示制御部30は、プローブ11が二次元配列した振動子アレイを有することまたはプローブ走査により、複数の光音響画像が取得された場合には、例えば、それらの光音響画像に基づいてボリュームデータを作成し、三次元画像として合成画像を表示部14に表示させることもできる。 The display control unit 30 displays the photoacoustic image on the display unit 14 such as a display device based on the photoacoustic image data acquired from the photoacoustic image generation unit 24. When a plurality of photoacoustic images are acquired by the probe 11 having a transducer array in which the probe 11 is arranged two-dimensionally or by probe scanning, for example, the display control unit 30 obtains volume data based on the photoacoustic images. It is also possible to create and display the composite image on the display unit 14 as a three-dimensional image.
 以上のように、本実施形態のプローブ、プローブユニットおよび光音響計測装置は、2つの光出射部が、互いに光量の異なる分岐光が光出射部を出射した際のエネルギー密度が等しくなるように、互いに異なる導光構造を有することを特徴とするものである。すなわち、各光出射部の導光構造は、2つの分岐光の光量の差異を相殺することにより、光出射部を出射した際の2つの分岐光のエネルギー密度を均一化するように設計されている。この結果、バンドルファイバを分岐させて各光出射部に導光された光の光量が異なる場合であっても、光が被検体に照射されたときのエネルギー密度を均一化することが可能となる。 As described above, in the probe, the probe unit, and the photoacoustic measurement device of the present embodiment, the two light emitting units have the same energy density when the branched lights having different light amounts are emitted from the light emitting unit. It has a different light guide structure. In other words, the light guide structure of each light emitting part is designed to equalize the energy density of the two branched lights when emitted from the light emitting part by offsetting the difference in the light quantity of the two branched lights. Yes. As a result, it is possible to make the energy density uniform when light is irradiated onto the subject even when the amount of the light guided to each light emitting portion by branching the bundle fiber is different. .
 <設計変更>
 上記の実施形態では、拡散部47aの拡散角度が一様に大きく設定されている場合について説明したが、本発明はこれに限られない。図7Aおよび図7Bは、分岐したファイバ素線の本数が異なる場合のエネルギー密度の調整方法を示す概略図である。例えば、図7Aおよび図7Bに示されるように、光出射部42a側に接続されたファイバ素線41eの本数が、光出射部42b側に接続されたファイバ素線41fの本数よりも少ない場合には、拡散部47aは、振動子アレイ20の配列方向に楕円の長軸が沿うように楕円状に分岐光を拡散させるものでもよい。例えば、拡散部47aの長軸方向および短軸方向の拡散角度はそれぞれ60度および1度であり、拡散部47bの拡散角度は30度である。この場合には、図7Aのように、光出射部に接続するファイバ素線の数が少ない場合に、光の照射範囲を振動子アレイ20の配列方向に広げられるという利点がある。例えば、図3Aまたは図3Bに示されるようなバンドルファイバを使用する場合であって、ファイバ素線を中心部と外周部とに分割する場合に有効である。
<Design changes>
In the above embodiment, the case where the diffusion angle of the diffusion unit 47a is set to be uniformly large has been described, but the present invention is not limited to this. 7A and 7B are schematic diagrams illustrating a method of adjusting the energy density when the number of branched fiber strands is different. For example, as shown in FIGS. 7A and 7B, when the number of fiber strands 41e connected to the light emitting portion 42a side is smaller than the number of fiber strands 41f connected to the light emitting portion 42b side. The diffusing unit 47a may be configured to diffuse the branched light in an elliptical shape so that the major axis of the ellipse is along the arrangement direction of the transducer array 20. For example, the diffusion angle in the major axis direction and the minor axis direction of the diffusion part 47a is 60 degrees and 1 degree, respectively, and the diffusion angle of the diffusion part 47b is 30 degrees. In this case, as shown in FIG. 7A, when the number of fiber strands connected to the light emitting portion is small, there is an advantage that the light irradiation range can be expanded in the arrangement direction of the transducer array 20. For example, it is effective when a bundle fiber as shown in FIG. 3A or 3B is used and the fiber strand is divided into a central portion and an outer peripheral portion.
 また上記の実施形態では、拡散部の拡散角度の違いによりエネルギー密度を調整する場合について説明したが、本発明はこれに限られない。例えば、図8に示されるように、第1の導光部材46および拡散部47は、構造自体に関しては両方の光出射部42において同一であるが、第2の導光部材の導光方向の長さ、すなわち拡散部47から光出射部42の出射端までの距離が異なる構成を採用できる。具体的には、光量が多い方の分岐光Laが入射する光出射部の拡散部47から出射端までの距離X1(例えば15mm)は、光量が少ない方の分岐光Lbが入射する光出射部の拡散部47から出射端までの距離X2(例えば2mm)よりも長く設定されている。このようにしても、光出射部42内を導光してきた分岐光Laの照射範囲が分岐光Lbの照射範囲よりも広がる(図8)。この結果、分岐光Laが光出射部42を出射したときには、分岐光Laおよび分岐光Lbのエネルギー密度が一致するようになる。 In the above embodiment, the case where the energy density is adjusted by the difference in the diffusion angle of the diffusion portion has been described, but the present invention is not limited to this. For example, as shown in FIG. 8, the first light guide member 46 and the diffusing portion 47 are the same in both light emitting portions 42 with respect to the structure itself, but in the light guide direction of the second light guide member. A configuration in which the length, that is, the distance from the diffusion portion 47 to the emission end of the light emission portion 42 is different can be employed. Specifically, the distance X1 (for example, 15 mm) from the diffusing portion 47 of the light emitting portion where the branched light La having the larger light amount is incident to the emitting end is the light emitting portion where the branched light Lb having the smaller light amount is incident. Is set to be longer than a distance X2 (for example, 2 mm) from the diffusion portion 47 to the emission end. Even in this case, the irradiation range of the branched light La guided through the light emitting portion 42 is wider than the irradiation range of the branched light Lb (FIG. 8). As a result, when the branched light La is emitted from the light emitting portion 42, the energy densities of the branched light La and the branched light Lb are matched.
 また、例えば図9に示されるように、拡散部47および第2の導光部材48は、両方の光出射部42において同一であるが、第1の導光部材の導光方向の長さが異なる構成を採用できる。具体的には、光量が多い方の分岐光Laが入射する光出射部の第1の導光部材46aの長さY1(例えば60mm)は、光量が少ない方の分岐光Lbが入射する光出射部の第1の導光部材46bの長さY2(例えば20mm)よりも長く設定されている。この場合には、第1の導光部材46aを進行する分岐光Laは、導光部材46bを進行する分岐光Lbと比べて導光部材内での反射をより多く繰り返し、導光部材46aを出射する際の分岐光Laの出射角度の範囲が、導光部材46bを出射する際の分岐光Lbの出射角度の範囲よりも広がる。したがって、このようにしても、光出射部42内を導光してきた分岐光Laの照射範囲が分岐光Lbの照射範囲よりも広がる。この結果、分岐光Laが光出射部42を出射したときには、分岐光Laおよび分岐光Lbのエネルギー密度が一致するようになる。 For example, as shown in FIG. 9, the diffusion portion 47 and the second light guide member 48 are the same in both light emitting portions 42, but the length of the first light guide member in the light guide direction is the same. Different configurations can be adopted. Specifically, the length Y1 (for example, 60 mm) of the first light guide member 46a of the light emitting portion where the branched light La having a larger amount of light is incident is the light emission where the branched light Lb having a smaller amount of light is incident. It is set longer than the length Y2 (for example, 20 mm) of the first light guide member 46b. In this case, the branched light La traveling through the first light guide member 46a repeats more reflections within the light guide member than the branched light Lb traveling through the light guide member 46b, and the light guide member 46a is The range of the emission angle of the branched light La when emitted is wider than the range of the emission angle of the branched light Lb when emitted from the light guide member 46b. Therefore, even in this case, the irradiation range of the branched light La guided through the light emitting portion 42 is wider than the irradiation range of the branched light Lb. As a result, when the branched light La is emitted from the light emitting portion 42, the energy densities of the branched light La and the branched light Lb are matched.
 また、例えば図10に示されるように、そもそも光量が少ない方の分岐光が入射する光出射部には、拡散部を設けない構成を採用することもできる。例えば光量が多い方の分岐光が入射する光出射部は、第1の導光部材46、拡散部47および第2の導光部材48から構成され、光量が少ない方の分岐光が入射する光出射部は1つの導光部材49のみから構成される。このようにしても、光出射部42内を導光してきた光量が多い方の分岐光Laの照射範囲が分岐光Lbの照射範囲よりも広がる。この結果、分岐光Laが光出射部42を出射したときには、分岐光Laおよび分岐光Lbのエネルギー密度が一致するようになる。 Further, for example, as shown in FIG. 10, it is also possible to adopt a configuration in which a diffusion part is not provided in the light emitting part where the branched light having the smaller light quantity is incident. For example, the light emitting part into which the branched light having the larger light quantity is incident is composed of the first light guide member 46, the diffusing part 47, and the second light guiding member 48, and the light into which the branched light having the smaller light quantity is incident. The emission part is composed of only one light guide member 49. Even in this case, the irradiation range of the branched light La having a larger amount of light guided through the light emitting section 42 is wider than the irradiation range of the branched light Lb. As a result, when the branched light La is emitted from the light emitting portion 42, the energy densities of the branched light La and the branched light Lb are matched.
 「第2の実施形態」
 次に、第2の実施形態のプローブ、プローブユニットおよび光音響計測装置について説明する。図11は、第2の実施形態の光音響計測装置の構成を示す概略図である。本実施形態は、光音響画像に加えて超音波画像も生成する点で、第1の実施形態と異なる。したがって、第1の実施形態と同様の構成要素についての詳細な説明は、特に必要がない限り省略する。
“Second Embodiment”
Next, a probe, a probe unit, and a photoacoustic measurement apparatus according to the second embodiment will be described. FIG. 11 is a schematic diagram illustrating the configuration of the photoacoustic measurement apparatus according to the second embodiment. This embodiment is different from the first embodiment in that an ultrasonic image is generated in addition to the photoacoustic image. Therefore, a detailed description of the same components as those in the first embodiment will be omitted unless particularly necessary.
 本実施形態の光音響計測装置10は、超音波探触子(プローブ)11、超音波ユニット12、レーザユニット13および表示部14を備える。超音波探触子(プローブ)11、レーザユニット13および表示部14については、第1の実施形態と同様である。 The photoacoustic measurement apparatus 10 of this embodiment includes an ultrasonic probe (probe) 11, an ultrasonic unit 12, a laser unit 13, and a display unit 14. The ultrasonic probe (probe) 11, the laser unit 13, and the display unit 14 are the same as those in the first embodiment.
 <超音波ユニット>
 本実施形態の超音波ユニット12は、図1に示す光音響計測装置の構成に加えて、超音波画像生成部29および送信制御回路33を備える。
<Ultrasonic unit>
The ultrasonic unit 12 of the present embodiment includes an ultrasonic image generation unit 29 and a transmission control circuit 33 in addition to the configuration of the photoacoustic measurement apparatus shown in FIG.
 本実施形態では、プローブ11は、光音響信号の検出に加えて、被検体に対する超音波の出力(送信)、及び送信した超音波に対する被検体からの反射超音波(反射音響波)の検出(受信)を行う。超音波の送受信を行う超音波振動子としては、本発明における超音波振動子を使用してもよいし、超音波の送受信用に別途プローブ11中に設けられた新たな超音波振動子を使用してもよい。また、超音波の送受信は分離した構成から行ってもよい。例えばプローブ11とは異なる位置から超音波の送信を行い、その送信された超音波に対する反射超音波をプローブ11によって受信してもよい。 In the present embodiment, in addition to the detection of the photoacoustic signal, the probe 11 outputs (transmits) ultrasonic waves to the subject and detects reflected ultrasonic waves (reflected acoustic waves) from the subject with respect to the transmitted ultrasonic waves (reflected acoustic waves). Receive). As the ultrasonic transducer for transmitting and receiving ultrasonic waves, the ultrasonic transducer according to the present invention may be used, or a new ultrasonic transducer separately provided in the probe 11 for transmitting and receiving ultrasonic waves is used. May be. Moreover, you may perform transmission / reception of an ultrasonic wave from the structure isolate | separated. For example, ultrasonic waves may be transmitted from a position different from the probe 11, and reflected ultrasonic waves with respect to the transmitted ultrasonic waves may be received by the probe 11.
 制御部34は、超音波画像の生成時は、送信制御回路33に超音波送信を指示する旨の超音波送信トリガ信号を送る。送信制御回路33は、このトリガ信号を受けると、プローブ11から超音波を送信させる。プローブ11は、超音波の送信後、被検体からの反射超音波を検出する。 When the ultrasonic image is generated, the control unit 34 sends an ultrasonic transmission trigger signal to the transmission control circuit 33 to instruct ultrasonic transmission. Upon receiving this trigger signal, the transmission control circuit 33 transmits an ultrasonic wave from the probe 11. The probe 11 detects the reflected ultrasonic wave from the subject after transmitting the ultrasonic wave.
 プローブ11が検出した反射超音波は、受信回路21を介してAD変換部22に入力される。制御部34は、超音波送信のタイミングに合わせてAD変換部22にサンプリグトリガ信号を送り、反射超音波のサンプリングを開始させる。AD変換部22は、反射超音波のサンプリング信号を受信メモリ23に格納する。光音響信号のサンプリングと、反射超音波のサンプリングとは、どちらを先に行ってもよい。 The reflected ultrasonic waves detected by the probe 11 are input to the AD conversion unit 22 via the reception circuit 21. The control unit 34 sends a sampling trigger signal to the AD conversion unit 22 in synchronization with the timing of ultrasonic transmission to start sampling of reflected ultrasonic waves. The AD converter 22 stores the reflected ultrasound sampling signal in the reception memory 23. Either sampling of the photoacoustic signal or sampling of the reflected ultrasonic wave may be performed first.
 超音波画像生成部29は、プローブ11の複数の超音波振動子によって検出された反射超音波(そのサンプリング信号)に基づいて、再構成処理、検波処理および対数変換処理等の信号処理を施して、超音波画像のデータを生成する。画像データの生成には、光音響画像生成部24における画像データの生成と同様に、遅延加算法などを用いることができる。 The ultrasonic image generation unit 29 performs signal processing such as reconstruction processing, detection processing, and logarithmic conversion processing based on the reflected ultrasonic waves (its sampling signals) detected by the plurality of ultrasonic transducers of the probe 11. Generate ultrasonic image data. For the generation of the image data, a delay addition method or the like can be used similarly to the generation of the image data in the photoacoustic image generation unit 24.
 表示制御部30は、例えば、光音響画像と超音波画像とを別々に、またはこれらの合成画像を表示部14に表示させる。表示制御部30は、例えば光音響画像と超音波画像とを重畳することにより画像合成を行う。 The display control unit 30 causes the display unit 14 to display, for example, a photoacoustic image and an ultrasonic image separately or a composite image thereof. The display control unit 30 performs image composition by superimposing a photoacoustic image and an ultrasonic image, for example.
 本実施形態では、光音響計測装置は、光音響画像に加えて超音波画像を生成する。したがって、第1の実施形態の効果に加えて、超音波画像を参照することにより、光音響画像では画像化することができない部分を観察することができる。 In the present embodiment, the photoacoustic measurement device generates an ultrasonic image in addition to the photoacoustic image. Therefore, in addition to the effects of the first embodiment, by referring to the ultrasonic image, a portion that cannot be imaged by the photoacoustic image can be observed.
10  光音響計測装置
11  プローブ
12  超音波ユニット
13  レーザユニット
14  表示部
20  振動子アレイ
20a 超音波振動子
21  受信回路
22  AD変換部
23  受信メモリ
24  光音響画像生成部
29  超音波画像生成部
30  表示制御部
33  送信制御回路
34  制御部
40  バンドルファイバ
41a~41f    ファイバ素線
42  光出射部
45  筺体
46  第1の導光部材
47  拡散部
48  第2の導光部材
L   レーザ光
La、Lb  分岐光
M   被検体
U   音響波
DESCRIPTION OF SYMBOLS 10 Photoacoustic measuring device 11 Probe 12 Ultrasonic unit 13 Laser unit 14 Display part 20 Transducer array 20a Ultrasonic vibrator 21 Reception circuit 22 AD conversion part 23 Reception memory 24 Photoacoustic image generation part 29 Ultrasonic image generation part 30 Display Control unit 33 Transmission control circuit 34 Control unit 40 Bundle fibers 41a to 41f Fiber strand 42 Light emitting unit 45 Housing 46 First light guide member 47 Diffusing unit 48 Second light guide member L Laser light La, Lb Branched light M Subject U Acoustic wave

Claims (20)

  1.  音響波検出素子と、
     バンドルファイバと、
     該バンドルファイバによって導光された測定光を被検体に向けて出射させる2つの光出射部とを備え、
     前記バンドルファイバは、一端が分岐して前記2つの光出射部にそれぞれ接続され、前記測定光を互いに光量の異なる2つの分岐光に分割して前記2つの光出射部にそれぞれ導光し、
     前記2つの光出射部は、互いに異なる導光構造を有し、それぞれに入射した前記分岐光が前記光出射部を出射した際のエネルギー密度が互いに等しいことを特徴とする光音響計測用のプローブ。
    An acoustic wave detection element;
    Bundle fiber,
    Two light emitting portions for emitting the measurement light guided by the bundle fiber toward the subject,
    The bundle fiber is branched at one end and connected to the two light emitting parts, respectively, and the measurement light is divided into two branched lights having different light amounts and guided to the two light emitting parts, respectively.
    The probe for photoacoustic measurement, wherein the two light emitting portions have different light guide structures, and energy density when the branched light incident on each of the two light emitting portions is emitted from the light emitting portion is equal to each other .
  2.  前記2つの光出射部は、一端面が前記バンドルファイバに接続された導光部材と、該導光部材の他端面から出射した前記分岐光を拡散させる拡散部とをそれぞれ有し、
     前記2つの光出射部の導光構造は、前記導光部材の設計および前記拡散部の設計の少なくともいずれかが互いに異なる請求項1に記載のプローブ。
    The two light emitting parts each have a light guide member having one end face connected to the bundle fiber, and a diffusion part for diffusing the branched light emitted from the other end face of the light guide member,
    2. The probe according to claim 1, wherein the light guide structures of the two light emitting portions are different from each other in at least one of a design of the light guide member and a design of the diffusion portion.
  3.  光量が多い方の前記分岐光が入射する前記拡散部の拡散角が、光量が少ない方の分岐光が入射する前記拡散部の拡散角よりも大きい請求項2に記載のプローブ。 3. The probe according to claim 2, wherein a diffusion angle of the diffusion portion where the branched light having a larger light amount is incident is larger than a diffusion angle of the diffusion portion where the branched light having a smaller light amount is incident.
  4.  光量が多い方の前記分岐光が入射する前記拡散部から前記光出射部の出射端までの距離が、光量が少ない方の前記分岐光が入射する前記拡散部から前記光出射部の出射端までの距離よりも長い請求項2または3に記載のプローブ。 The distance from the diffuser where the branched light with the larger light quantity enters to the exit end of the light exit part is from the diffuser where the branched light with the smaller light quantity enters to the exit end of the light exit part. The probe according to claim 2 or 3, which is longer than the distance of.
  5.  光量が多い方の前記分岐光が入射する前記導光部材の導光方向の長さが、前記光量が少ない方の前記分岐光が入射する前記導光部材の導光方向の長さよりも長い請求項2から4いずれか1項に記載のプローブ。 The length in the light guide direction of the light guide member on which the branched light having the larger light amount is incident is longer than the length in the light guide direction of the light guide member on which the branched light having the smaller light amount is incident. Item 5. The probe according to any one of Items 2 to 4.
  6.  前記2つの光出射部は、一端面が前記バンドルファイバに接続された導光部材を各々有し、
     光量が多い方の前記分岐光が入射する前記光出射部のみが、前記導光部材の他端面から出射した前記分岐光を拡散させる拡散部をさらに有する請求項1に記載のプローブ。
    The two light emitting portions each have a light guide member having one end face connected to the bundle fiber,
    2. The probe according to claim 1, wherein only the light emitting portion into which the branched light having a larger amount of light enters further has a diffusion portion that diffuses the branched light emitted from the other end surface of the light guide member.
  7.  前記拡散部は、光ビームを楕円状に拡散可能である請求項2から6いずれか1項に記載のプローブ。 The probe according to any one of claims 2 to 6, wherein the diffusion unit is capable of diffusing a light beam in an elliptical shape.
  8.  前記バンドルファイバは、分岐していない側の前記バンドルファイバの中心部を構成する第1ファイバ素線および前記中心部の周囲の外周部を構成する複数の第2ファイバ素線であって前記第1ファイバ素線の径よりも径が細い第2ファイバ素線の一部の組と、第2ファイバ素線の他の一部の組とに分岐している請求項1から7いずれか1項に記載のプローブ。 The bundle fiber is a first fiber strand constituting a center portion of the bundle fiber on the non-branched side and a plurality of second fiber strands constituting an outer peripheral portion around the center portion, and 8. The method according to any one of claims 1 to 7, wherein the branching is made into a part of a set of second fiber strands whose diameter is smaller than a diameter of the fiber strand and another part of a pair of second fiber strands. The probe as described.
  9.  前記バンドルファイバは、分岐していない側の前記バンドルファイバの中心部を構成する第1ファイバ素線と、前記中心部の周囲の外周部を構成する複数の第2ファイバ素線であって前記第1ファイバ素線の径よりも径が細い第2ファイバ素線とに分岐している請求項1から7いずれか1項に記載のプローブ。 The bundle fiber includes a first fiber strand that forms a center portion of the bundle fiber on a non-branched side, and a plurality of second fiber strands that form an outer peripheral portion around the center portion. The probe according to any one of claims 1 to 7, wherein the probe branches off into a second fiber strand having a diameter smaller than that of the one fiber strand.
  10.  測定光を出力する光源と、前記測定光をプローブのバンドルファイバへ光学的に接続する接続部とを有する光源ユニットと、
     前記接続部に接続される光音響計測用のプローブとを備え、
     前記プローブは、音響波検出素子と、バンドルファイバと、該バンドルファイバによって導光された前記測定光を被検体に向けて出射させる2つの光出射部とを有し、
     前記バンドルファイバは、一端が分岐して前記2つの光出射部にそれぞれ接続され、前記測定光を互いに光量の異なる2つの分岐光に分割して前記2つの光出射部にそれぞれ導光し、
     前記2つの光出射部は、互いに異なる導光構造を有し、それぞれに入射した前記分岐光が前記光出射部を出射した際のエネルギー密度が互いに等しいことを特徴とするプローブユニット。
    A light source unit having a light source that outputs measurement light, and a connection unit that optically connects the measurement light to a bundle fiber of the probe;
    A probe for photoacoustic measurement connected to the connection part,
    The probe includes an acoustic wave detection element, a bundle fiber, and two light emitting units that emit the measurement light guided by the bundle fiber toward a subject,
    The bundle fiber is branched at one end and connected to the two light emitting parts, respectively, and the measurement light is divided into two branched lights having different light amounts and guided to the two light emitting parts, respectively.
    The probe unit characterized in that the two light emitting parts have different light guide structures, and the energy density when the branched light incident on each of the two light emitting parts is emitted from the light emitting part is equal to each other.
  11.  前記2つの光出射部は、一端面が前記バンドルファイバに接続された導光部材と、該導光部材の他端面から出射した前記分岐光を拡散させる拡散部とをそれぞれ有し、
     前記2つの光出射部の導光構造は、前記導光部材の設計および前記拡散部の設計の少なくともいずれかが互いに異なる請求項10に記載のプローブユニット。
    The two light emitting parts each have a light guide member having one end face connected to the bundle fiber, and a diffusion part for diffusing the branched light emitted from the other end face of the light guide member,
    The probe unit according to claim 10, wherein the light guide structures of the two light emitting portions are different from each other in at least one of a design of the light guide member and a design of the diffusion portion.
  12.  光量が多い方の前記分岐光が入射する前記拡散部の拡散角が、前記光量が少ない方の前記分岐光が入射する前記拡散部の拡散角よりも大きい請求項11に記載のプローブユニット。 The probe unit according to claim 11, wherein a diffusion angle of the diffusing portion where the branched light having a larger light amount is incident is larger than a diffusion angle of the diffusing portion where the branched light having a smaller light amount is incident.
  13.  光量が多い方の前記分岐光が入射する前記拡散部から前記光出射部の出射端までの距離が、光量が少ない方の前記分岐光が入射する前記拡散部から前記光出射部の出射端までの距離よりも長い請求項11または12に記載のプローブユニット。 The distance from the diffuser where the branched light with the larger light quantity enters to the exit end of the light exit part is from the diffuser where the branched light with the smaller light quantity enters to the exit end of the light exit part. The probe unit according to claim 11 or 12, which is longer than the distance.
  14.  光量が多い方の前記分岐光が入射する前記導光部材の導光方向の長さが、光量が少ない方の前記分岐光が入射する前記導光部材の導光方向の長さよりも長い請求項11から13いずれか1項に記載のプローブユニット。 The length in the light guide direction of the light guide member on which the branched light having the larger light amount is incident is longer than the length in the light guide direction of the light guide member on which the branched light having the smaller light amount is incident. The probe unit according to any one of 11 to 13.
  15.  光音響計測用のプローブと、
     前記プローブによって検出された光音響波に基づいて光音響画像を生成する信号処理部とを備え、
     前記プローブは、音響波検出素子と、バンドルファイバと、該バンドルファイバによって導光された測定光を被検体に向けて出射させる2つの光出射部とを有し、
     前記バンドルファイバは、一端が分岐して前記2つの光出射部にそれぞれ接続され、前記測定光を互いに光量の異なる2つの分岐光に分割して前記2つの光出射部にそれぞれ導光し、
     前記2つの光出射部は、互いに異なる導光構造を有し、それぞれに入射した前記分岐光が前記光出射部を出射した際のエネルギー密度が互いに等しい、ことを特徴とする光音響計測装置。
    A probe for photoacoustic measurement;
    A signal processing unit that generates a photoacoustic image based on the photoacoustic wave detected by the probe,
    The probe includes an acoustic wave detection element, a bundle fiber, and two light emitting units that emit measurement light guided by the bundle fiber toward a subject.
    The bundle fiber is branched at one end and connected to the two light emitting parts, respectively, and the measurement light is divided into two branched lights having different light amounts and guided to the two light emitting parts, respectively.
    The two light emitting units have different light guide structures, and the energy density when the branched light incident on each of the two light emitting units is emitted from the light emitting unit is equal to each other.
  16.  前記2つの光出射部は、一端面が前記バンドルファイバに接続された導光部材と、該導光部材の他端面から出射した前記分岐光を拡散させる拡散部とをそれぞれ有し、
     前記2つの光出射部の導光構造は、前記導光部材の設計および前記拡散部の設計の少なくともいずれかが互いに異なる請求項15に記載の光音響計測装置。
    The two light emitting parts each have a light guide member having one end face connected to the bundle fiber, and a diffusion part for diffusing the branched light emitted from the other end face of the light guide member,
    The photoacoustic measuring device according to claim 15, wherein the light guide structures of the two light emitting units are different from each other in at least one of a design of the light guide member and a design of the diffusion unit.
  17.  前記光量が多い方の前記分岐光が入射する前記拡散部の拡散角が、前記光量が少ない方の前記分岐光が入射する前記拡散部の拡散角よりも大きい請求項16に記載の光音響計測装置。 17. The photoacoustic measurement according to claim 16, wherein a diffusion angle of the diffusing portion where the branched light having the larger light amount is incident is larger than a diffusion angle of the diffusing portion where the branched light having the smaller light amount is incident. apparatus.
  18.  前記光量が多い方の前記分岐光が入射する前記拡散部から前記光出射部の出射端までの距離が、前記光量が少ない方の前記分岐光が入射する前記拡散部から前記光出射部の出射端までの距離よりも長い請求項16または17に記載の光音響計測装置。 The distance from the diffuser where the branched light having the larger light quantity enters to the exit end of the light emitting part is the exit of the light emitting part from the diffuser where the branched light having the smaller light quantity is incident. The photoacoustic measuring device of Claim 16 or 17 longer than the distance to an end.
  19.  前記光量が多い方の前記分岐光が入射する前記導光部材の導光方向の長さが、前記光量が少ない方の前記分岐光が入射する前記導光部材の導光方向の長さよりも長い請求項16から18いずれか1項に記載の光音響計測装置。 The length in the light guide direction of the light guide member into which the branched light having the larger light amount is incident is longer than the length in the light guide direction of the light guide member in which the branched light having the smaller light amount is incident. The photoacoustic measuring device of any one of Claims 16-18.
  20.  前記信号処理部が、被検体内において反射した反射音響波に基づいて反射音響画像を生成する請求項15から19いずれか1項に記載の光音響計測装置。 The photoacoustic measuring device according to any one of claims 15 to 19, wherein the signal processing unit generates a reflected acoustic image based on a reflected acoustic wave reflected in the subject.
PCT/JP2014/061951 2013-05-29 2014-04-30 Photoacoustic measurement probe, and probe unit and photoacoustic measurement device provided therewith WO2014192488A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-112626 2013-05-29
JP2013112626A JP2014230631A (en) 2013-05-29 2013-05-29 Probe for photoacoustic measurement, and probe unit and photoacoustic measurement apparatus therewith

Publications (1)

Publication Number Publication Date
WO2014192488A1 true WO2014192488A1 (en) 2014-12-04

Family

ID=51988526

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/061951 WO2014192488A1 (en) 2013-05-29 2014-04-30 Photoacoustic measurement probe, and probe unit and photoacoustic measurement device provided therewith

Country Status (2)

Country Link
JP (1) JP2014230631A (en)
WO (1) WO2014192488A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6135644B2 (en) 2014-11-13 2017-05-31 トヨタ自動車株式会社 Membrane electrode assembly and fuel cell
JP6845182B2 (en) * 2018-05-01 2021-03-17 日本電信電話株式会社 Component concentration measuring device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010125260A (en) * 2008-12-01 2010-06-10 Canon Inc Biological testing apparatus
JP2011255028A (en) * 2010-06-10 2011-12-22 Canon Inc Photoacoustic measurement apparatus
JP2012135610A (en) * 2010-12-10 2012-07-19 Fujifilm Corp Probe for photoacoustic inspection and photoacoustic inspection device
JP2012173136A (en) * 2011-02-22 2012-09-10 Fujifilm Corp Optoacoustic imaging device, probe unit used therefor, and operation method of optoacoustic imaging device
JP2012179350A (en) * 2011-02-07 2012-09-20 Fujifilm Corp Ultrasonic probe

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010125260A (en) * 2008-12-01 2010-06-10 Canon Inc Biological testing apparatus
JP2011255028A (en) * 2010-06-10 2011-12-22 Canon Inc Photoacoustic measurement apparatus
JP2012135610A (en) * 2010-12-10 2012-07-19 Fujifilm Corp Probe for photoacoustic inspection and photoacoustic inspection device
JP2012179350A (en) * 2011-02-07 2012-09-20 Fujifilm Corp Ultrasonic probe
JP2012173136A (en) * 2011-02-22 2012-09-10 Fujifilm Corp Optoacoustic imaging device, probe unit used therefor, and operation method of optoacoustic imaging device

Also Published As

Publication number Publication date
JP2014230631A (en) 2014-12-11

Similar Documents

Publication Publication Date Title
JP5647941B2 (en) Photoacoustic imaging apparatus, probe unit used therefor, and endoscope
JP5647942B2 (en) Photoacoustic imaging apparatus, probe unit used therefor, and endoscope
US10098547B2 (en) Photoacoustic measurement device, photoacoustic measurement method, and probe contact determination method
WO2013128922A1 (en) Acoustic wave detection probe and photoacoustic measurement device
JP2010088873A (en) Biological information imaging apparatus
EP2706905B1 (en) Subject information obtaining apparatus and subject information obtaining method
WO2015198548A1 (en) Photoacoustic measuing device and photoacoustic measuring probe
JP6061571B2 (en) Subject information acquisition device
JP6172912B2 (en) Subject information acquisition apparatus and photoacoustic probe
US11399719B2 (en) Probe for photoacoustic measurement and photoacoustic measurement apparatus including same
WO2014192488A1 (en) Photoacoustic measurement probe, and probe unit and photoacoustic measurement device provided therewith
JP6250132B2 (en) Subject information acquisition device
US20180242849A1 (en) Ultrasound receiving apparatus
KR20150051131A (en) Method and apparatus for excitation pulse scanning in photoacoustic tomography
US11344204B2 (en) Photoacoustic measurement probe and probe unit and photoacoustic measurement apparatus including the same
JP6143390B2 (en) Photoacoustic measuring device
WO2015015893A1 (en) Acoustic wave-detecting probe and photoacoustic measurement device
JP6463414B2 (en) Acoustic wave probe and acoustic wave device
JP6188843B2 (en) Biopsy device
JP2012090862A (en) Probe for photoacoustic inspection and photoacoustic inspection device
JP2015116254A (en) Subject information acquisition device and acoustic wave receiver
EP3243443A1 (en) Probe for photoacoustic measurement, probe unit comprising same, and photoacoustic measuring device
JP2015047430A (en) Probe for photoacoustic measurement and photoacoustic measurement device including the same
JP2017192841A (en) Biological examination apparatus
JP2015211708A (en) Object information acquisition device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14804340

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14804340

Country of ref document: EP

Kind code of ref document: A1