WO2014182016A1 - Biological synthesis of 6-aminocaproic acid and transgenic microorganism therefor - Google Patents

Biological synthesis of 6-aminocaproic acid and transgenic microorganism therefor Download PDF

Info

Publication number
WO2014182016A1
WO2014182016A1 PCT/KR2014/003933 KR2014003933W WO2014182016A1 WO 2014182016 A1 WO2014182016 A1 WO 2014182016A1 KR 2014003933 W KR2014003933 W KR 2014003933W WO 2014182016 A1 WO2014182016 A1 WO 2014182016A1
Authority
WO
WIPO (PCT)
Prior art keywords
aminocaproic acid
gene
expression vector
producing
encoding
Prior art date
Application number
PCT/KR2014/003933
Other languages
French (fr)
Korean (ko)
Other versions
WO2014182016A9 (en
Inventor
이홍원
안정오
정준기
고희주
박선주
김천석
이혁원
이은교
이주환
Original Assignee
한국생명공학연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국생명공학연구원 filed Critical 한국생명공학연구원
Priority to US14/889,543 priority Critical patent/US10087472B2/en
Priority claimed from KR1020140053249A external-priority patent/KR101609448B1/en
Publication of WO2014182016A1 publication Critical patent/WO2014182016A1/en
Publication of WO2014182016A9 publication Critical patent/WO2014182016A9/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/52Genes encoding for enzymes or proenzymes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P13/00Preparation of nitrogen-containing organic compounds
    • C12P13/005Amino acids other than alpha- or beta amino acids, e.g. gamma amino acids
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P17/00Preparation of heterocyclic carbon compounds with only O, N, S, Se or Te as ring hetero atoms
    • C12P17/10Nitrogen as only ring hetero atom

Definitions

  • the present invention relates to a recombinant microorganism for biologically synthesizing 6-aminocaproic acid in a microorganism for synthesizing caprolactam.
  • Caprolactam is an organic compound that is a lactam of 6-aminohexanoic acid ( ⁇ -aminohexanoic acid, 6-aminocaproic acid). This may alternatively be considered a cyclic amide of caproic acid.
  • One use of caprolactam is as monomer in the production of nylon-6.
  • the most widely used raw materials for the production of caprolactam are aromatic compounds such as benzene, phenol, and toluene.
  • Caprolactam is an oximation reaction between cyclohexanone and hydroxylamine obtained from raw materials of aromatic compounds to prepare an oxime compound, and finally a Beckman displacement reaction using a sulfuric acid catalyst (Beckmann Through rearrangement.
  • caprolactam through this process makes it difficult to avoid the production of by-product ammonium sulfate. Since the yield of caprolactam decreases as more ammonium sulfate is produced in the caprolactam manufacturing process, caprolactam can be obtained with high yield only by suppressing the production of ammonium sulfate.
  • caprolactam manufacturing technology is divided into developing a process for reducing or eliminating the production of ammonium sulfate, a by-product of caprolactam manufacturing process, and developing alternative raw materials.
  • An example of process development to reduce the production of ammonium sulphate is the caprolactam production facility recently built by Sumitomo Japan. It uses gaseous Beckman displacement using a fluid bed gas-phase zeolite-catalyst and an ammoximation reaction with hydrogen peroxide catalyst from EniChem.
  • raw materials developed as substitutes for caprolactam include hexamethylene diamine (HMDA) and tetramethylenediamine (TMDA).
  • HMDA can be prepared from adiponitrile, propylene, acrylonitrile.
  • the manufacturing process of HMDA using adiponitril can be used only by BASF, Solutia, Butachimie, and DuPont.
  • Adiponitril is prepared by reacting butadiene with hydrogen cyanide.
  • Butadiene is also used as a raw material for adipic acid, a raw material of nylon 4,6.
  • the intermediates used in nylon production have their origin in butadiene, and this trend is becoming increasingly widespread.
  • the present inventors produced transgenic microorganisms capable of biosynthesizing 6-aminocaproic acid in microorganisms by expressing genes of enzymes used in the precursor 6-aminocaproic acid biosynthetic pathway for caprolactam.
  • HpaI 4-hydroxy-2-oxo-heptane-1,7-dioate aldolase ) -HpaH ( 2-oxo-hept-3-ene-1,7-dioate dehydratase) gene, nemA (N-ethylmaleimide reductase) Gene, KIVD (alpha-ketoisovalerate decarboxylase) gene; 6-aminocaproic acid biosynthesis, including and including any one or more of PdAT (beta-alanine-pyruvate transaminase) and BcAT (adenosylmethionine-8-amino-7-oxononaoate Aminotransferase) genes; It is to provide an expression vector for.
  • Another object of the present invention is to provide a transformant transformed with the expression vector.
  • another object of the present invention is to provide a caprolactam production method further comprising the step of converting the 6-aminocaproic acid produced by the 6-aminocaproic acid production method to caprolactam.
  • the present invention provides a 6-aminocaproic acid production method.
  • the present invention relates to HpaI (4-hydroxy-2-oxo-heptane-1,7-dioate aldolase ) -HpaH (2-oxo-hept-3-ene-1,7-dioate dehydratase) gene, nemA (N- ethylmaleimide reductase) Gene, KIVD (alpha-ketoisovalerate decarboxylase) gene; 6-aminocaproic acid biosynthesis, including and including any one or more of PdAT (beta-alanine-pyruvate transaminase) and BcAT (adenosylmethionine-8-amino-7-oxononaoate Aminotransferase) genes; Provide an expression vector.
  • the present invention also provides a transformant transformed with the expression vector.
  • the present invention provides a caprolactam production method further comprising converting the 6-aminocaproic acid produced by the 6-aminocaproic acid production method into caprolactam.
  • FIG. 1 is a schematic diagram showing the biosynthetic pathway of 6-aminocaproic acid and enzymes used in the biosynthetic pathway and genes encoding the same.
  • Figure 2 is Hpa I (4-hydroxy-2-oxo-heptane-1,7-dioate aldolase), HpaH (2-oxo-hept-3-ene-1,7-dioate dehydratase), nemA (N-ethylmaleimide reductase) , PIVYCWG vector containing KIVD (alpha-ketoisovalerate decarboxylase), PdAT (beta-alanine-pyruvate transaminase) and BcAT (adenosylmethionine-8-amino-7-oxononaoate Aminotransferase) genes.
  • HpaI-HpaH aldolase-dehydratase
  • Figure 4 is a standard curve confirming the concentration change of the product NADH in the reverse reaction to confirm the enzymatic activity of reductase ( nemA ).
  • FIG. 5 is a diagram confirming the production of 2-ketopimelic acid by Lc-ms / ms by coupling reaction of aldolase-dehydratase (HpaI-HpaHpaH) and reductase ( nemA );
  • FIG. 6 shows TLC conversion of 6-aminocaproic acid from 2-ketopimelic acid by coupling reaction of decarboxylase ( KIVD ) and transaminase ( PdAT and / or BcAT );
  • FIG. 7 shows LC-ms / ms conversion of 6-aminocaproic acid from 2-ketopimelic acid by coupling reaction of decarboxylase ( KIVD ) and transaminase ( PdAT and / or BcAT );
  • FIG. 8 is a diagram confirming 6-aminocaproic acid biosynthesis activity in E. coli transformed with a pACYCWG vector containing all the genes of the present invention
  • FIG. 9 is a diagram confirming 6-aminocaproic acid biosynthetic activity in Escherichia coli transformed with a pACYCWG vector containing all the genes of the present invention in LC-ms / ms;
  • L1 pACYCWG total protein
  • L2 pACYCWG soluble protein
  • L4 pACYCWG purified protein
  • aldolase-dehydratase HpaI - HpaH ) -58KD;
  • FIG. 11 is a diagram confirming 6-aminocaproic acid biosynthesis activity in Escherichia coli transformed with a pACYCWG vector containing all the genes of the present invention by LC-MS.
  • FIG. 12 is a fermentation graph of E. coli transformed with a pACYCWG vector in a fermentation medium experiment according to an embodiment of the present invention.
  • Figure 13 is a result of confirming 6-aminocaproic acid biosynthetic activity by LC-MS to obtain a supernatant after E. coli culture in the fermentation broth experiment according to an embodiment of the present invention.
  • FIG. 14 is a diagram confirming the expression of all the enzymes cloned in the vector in the fermentation broth experiment according to an embodiment of the present invention by Western blot.
  • 15 is a fermentation graph of E. coli transformed with a pACYCWG-BcAT vector in a strain improvement experiment according to an embodiment of the present invention.
  • 16 is a result of confirming 6-aminocaproic acid biosynthetic activity by LC-MS to obtain a supernatant after E. coli culture in the strain improvement experiment according to an embodiment of the present invention.
  • polynucleotide refers to nucleotide polymers of any length. This term also includes “oligonucleotide derivatives" or “polynucleotide derivatives".
  • An "oligonucleotide derivative” or “polynucleotide derivative” refers to an oligonucleotide or polynucleotide comprising a nucleotide derivative or having a lineage different from the general lineage between the nucleotides, which are used interchangeably.
  • polynucleotide as used herein is used interchangeably with nucleic acids, oligonucleotides and polynucleotides and includes cDNA, mRNA, genomic DNA and the like. As used herein, polynucleotides are encompassed by the term "gene”. Polynucleotides encoding gene sequences include “splicing variants”. Similarly, certain proteins encoded by nucleic acids include proteins encoded by splicing variants encoded thereby. As the name indicates, the term “splicing variant” refers to the product of an alternative splicing variant.
  • the first nucleic acid transcript after transcription is spliced to encode other polypeptides, such as other (obvious) nucleic acid splicing products. Although it is the generation mechanism of splicing variants, this includes exon selective splicing. Other polypeptides derived from the same nucleic acid by incorrect transcription include this definition.
  • the products of splicing reactions are also included in the definition.
  • the term "expression" of a gene product indicates that the gene is affected by a predetermined in vivo action and changed into another form.
  • the term “expression” indicates that the gene, polynucleotide, and the like are transcribed and translated into the polypeptide.
  • the gene is transcribed into mRNA. More preferably these polypeptides have post-translational processing modifications.
  • the "reduction" of the "expression” of the genes, polynucleotides, and polypeptides used herein indicates that the amount of expression when the agent of the invention acts is significantly reduced compared to when the agent is not active.
  • the decrease in expression comprises a decrease in the amount of polypeptide expression. More specifically, the reduction in the amount of expression is at least about 10% or more, preferably at least about 20% or more, more preferably at least about 30% or more, even more preferred when comparing the post-action and pre-action of the agent Preferably at least about 40% or more, even more preferably at least about 50% or more, even more preferably at least about 75% or more, even more preferably at least about 90% or more, even more preferably at least about 100% Abnormal expression decreases.
  • "increase" in the gene, polynucleotide, polypeptide "expression” indicates that the amount of expression when an agent of the present invention acts is significantly increased as compared to when the agent is not active.
  • the increase in expression comprises an increase in the amount of polypeptide expression. More specifically, the increase in the amount of expression is at least about 10% or more, preferably at least about 20% or more, more preferably at least about 30% or more, even more preferred when comparing the post-action and pre-action of the agent Preferably at least about 40% or more, even more preferably at least about 50% or more, even more preferably at least about 75% or more, even more preferably at least about 90% or more, even more preferably at least about 100% As such, even more preferably, a decrease in expression of 200% or an expression not expressed before the action of the agent occurs.
  • the present invention relates to 1) HpaI (4-hydroxy-2-oxo-heptane-1,7-dioate aldolase ) -HpaH ( 2-oxo-hept-3-ene-1,7-dioate dehydratase) gene, nemA (N- ethylmaleimide reductase) Gene, KIVD (alpha-ketoisovalerate decarboxylase) gene; Producing an expression vector comprising; and any one or more of PdAT (beta-alanine-pyruvate transaminase) and BcAT (adenosylmethionine-8-amino-7-oxononaoate Aminotransferase) gene; And
  • step 2) provides a 6-aminocaproic acid (6-aminocaproic acid) production method comprising the step of transforming the expression vector of step 1) to the microorganism.
  • the HpaI-HpaH gene converts aldolase-dehydratase to convert pyruvate and / or succinic semialdehyde (SSA) to 2-oxohept-3-enedioic acid. It is preferred to include a polynucleotide represented by SEQ ID NO: 3 encoding, but is not limited thereto.
  • the nemA gene preferably includes a polynucleotide represented by SEQ ID NO: 4 encoding a reductase for converting 2-oxohept-3-enedioic acid to 2-ketopimelic acid, but is not limited thereto.
  • the KIVD (alpha-ketoisovalerate decarboxylase) gene preferably includes a polynucleotide represented by SEQ ID NO: 5 encoding the enzyme decarboxylase, which converts 2-ketopimelic acid to adipate semialdehyde, but is not limited thereto.
  • the PdAT (beta-alanine-pyruvate transaminase) gene preferably includes a polynucleotide represented by SEQ ID NO: 6 encoding an enzyme transaminase that converts adipate semialdehyde to 6-aminocaproic acid, but is not limited thereto.
  • the BcAT (adenosylmethionine-8-amino-7-oxononaoate Aminotransferase) gene preferably includes a polynucleotide represented by SEQ ID NO: 7 encoding an enzyme transaminase that converts adipate semialdehyde to 6-aminocaproic acid, but is not limited thereto. .
  • the expression vector of step 1) is a nucleic acid encoding GST, MBP, NusA, thioredoxin, ubiquitin, FLAG, BAP, 6HIS, STREP, CBP, CBD, or S-tag affinity tag. It is preferred to further include a sequence, but is not limited thereto.
  • the expression vector of step 1) further comprises a nucleic acid sequence encoding a recognition sequence of kex2p of yeast, purine of mammal, Factor Xa, enterokinase, subtilisin, tobacco etching virus protease, thrombin or ubiquitin hydrolase Preferably, but not limited thereto.
  • the microorganism of step 2) is preferably bacteria, yeast or fungi, more preferably Escherichia coli, but is not limited thereto.
  • step 2) it is preferable to further include the step of producing and secreting 6-aminocaproic acid by fed-batch fermentation of the transformed microorganism of step 2), but is not limited thereto.
  • the polynucleotides of the present invention may comprise base sequences each having at least 70%, more preferably at least 80%, even more preferably at least 90%, most preferably at least 95% homology with each base sequence. Can be.
  • the "% sequence homology" for a polynucleotide is identified by comparing two optimally arranged sequences with a comparison region, wherein part of the polynucleotide sequence in the comparison region is the reference sequence (addition or deletion) for the optimal alignment of the two sequences. It may include the addition or deletion (ie, gap) compared to).
  • the present invention is HpaI-HpaH gene, nemA gene, KIVD (alpha-ketoisovalerate decarboxylase) gene; 6-aminocaproic acid biosynthesis, including and including any one or more of PdAT (beta-alanine-pyruvate transaminase) and BcAT (adenosylmethionine-8-amino-7-oxononaoate Aminotransferase) genes; Provide an expression vector.
  • the expression vector is preferably pACYCWG shown in FIG. 2, but is not limited thereto.
  • Recombinant vectors of the present invention are conventional cloning methods for the genes or fragments thereof for expression vectors (Sambrook et al, 2nd ed., Cold Spring Harbor Laboratory Press, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, 1989.) Can be obtained by inserting according to In particular, an appropriate adapter may be linked to the gene construct prior to insertion to facilitate cloning of the gene construct.
  • vector expression vector or “recombinant vector” is used to refer to a DNA fragment (s), a nucleic acid molecule, that is delivered into a cell.
  • Vectors can replicate DNA and be reproduced independently in host cells.
  • vector is meant a recombinant DNA molecule comprising a coding sequence of interest and an appropriate nucleic acid sequence necessary to express the coding sequence operably linked in a particular host organism. Promoters, enhancers, termination signals and polyadenylation signals available in microbial cells are known.
  • Vectors of the invention can typically be constructed as vectors for cloning or expression.
  • the vector of the present invention can be constructed using prokaryotic or eukaryotic cells as hosts.
  • a strong promoter for example, a pL ⁇ promoter, a trp promoter, a lac promoter, a T7 promoter, a tac promoter, etc.
  • ribosomal binding sites and transcription / detox termination sequences for initiation of translation.
  • vectors that can be used in the present invention are plasmids (eg, pSC101, ColE1, pBR322, pUC8 / 9, pHC79, pGEX series, pET series, pACYC184 and pUC19, etc.) often used in the art, phage (e.g. Can be produced by manipulating ⁇ B, ⁇ -Charon, ⁇ z1 and M13, etc.) or viruses (eg SV40, etc.).
  • plasmids eg, pSC101, ColE1, pBR322, pUC8 / 9, pHC79, pGEX series, pET series, pACYC184 and pUC19, etc.
  • phage e.g. Can be produced by manipulating ⁇ B, ⁇ -Charon, ⁇ z1 and M13, etc.
  • viruses eg SV40, etc.
  • the expression vector will preferably comprise one or more selectable markers.
  • the marker is typically a nucleic acid sequence having properties that can be selected by chemical methods, and all genes that can distinguish transformed cells from non-transformed cells. Examples include herbicide resistance genes such as glyphosate, glufosinate ammonium or phosphinothricin, kanamycin, G418, bleomycin, hygromycin ), But is not limited to antibiotic resistance genes such as chloramphenicol.
  • the promoter may be, but is not limited to, CaMV 35S, actin, ubiquitin, pEMU, MAS or histone promoter.
  • the term "promoter” refers to a region of DNA upstream from a structural gene and refers to a DNA molecule to which an RNA polymerase binds to initiate transcription.
  • a "constitutive promoter” is a promoter that is active under most environmental conditions and developmental conditions or cell differentiation. Constitutive promoters may be preferred in the present invention because selection of the transformants may be made by various tissues at various stages. Thus, the constitutive promoter does not limit the selection possibilities.
  • conventional terminators can be used, for example nopalin synthase (NOS), rice ⁇ -amylase RAmy1 A terminator, phaseoline terminator, Agrobacterium tumefaciens Terminator of the octopine gene, etc., but is not limited thereto.
  • NOS nopalin synthase
  • rice ⁇ -amylase RAmy1 A terminator for example, rice ⁇ -amylase RAmy1 A terminator, phaseoline terminator, Agrobacterium tumefaciens Terminator of the octopine gene, etc., but is not limited thereto.
  • the present invention provides a transformant with the recombinant vector.
  • the transformant is preferably selected from the group consisting of bacteria, yeast and fungi, more preferably bacteria, most preferably E. coli, but is not limited thereto.
  • the transformant preferably converts pyruvate and / or succinic semialdehyde (SSA) to 6-aminocaproic acid, but is not limited thereto.
  • SSA succinic semialdehyde
  • Methods for carrying vectors of the present invention into host cells include microinjection, calcium phosphate precipitation, electroporation, liposome-mediated transfection, Agrobacterium-mediated transfection, DEAE-dextran treatment, and gene balm.
  • the vector can be injected into a host cell by a body or the like.
  • the present invention provides a caprolactam production method further comprising the step of converting the 6-aminocaproic acid produced by the 6-aminocaproic acid production method according to the invention into caprolactam.
  • the inventors encode a gene HpaI , a gene encoding dehydratase, HpaH , a reductase, which encodes aldolase, an enzyme involved in the biosynthetic pathway (see FIG. 1) of 6-aminocaproic acid, a precursor of caprolactam.
  • Genes nemA , gene KIVD encoding decarboxylase and genes BcAT and PdAT encoding transaminase were isolated and introduced into the vector.
  • all of the genes from the vectors were linked and introduced into one vector (FIG. 2).
  • 6-aminocaproic acid which is a precursor of caprolactam
  • a transformant transformed with a vector into which the genes of the present invention are introduced and thus it can be used for biosynthesis of 6-aminocaproic acid.
  • Example 1 Gene cloning and vector construction encoding enzymes of 6-aminocaproic acid biosynthetic pathway
  • the gene HpaI (SEQ ID NO: 1) encoding the enzyme aldolase for converting pyruvate and / or succinic semialdehyde into 4-hydroxy-2-oxoheptanedioic acid from the E.
  • the gene HpaH (SEQ ID NO: 2) encoding the enzyme dehydratase, which converts 4-hydroxy-2-oxoheptanedioic acid to 2-oxohept-3-enedioic acid;
  • the gene nemA (SEQ ID NO: 4) encoding the enzyme reductase that converts 2-oxohept-3-enedioic acid to 2-ketopimelic acid;
  • the gene KIVD alpha-ketoisovalerate decarboxylase) (SEQ ID NO: 5), encoding the enzyme decarboxylase, which converts 2-ketopimelic acid to adipate semialdehyde;
  • PdAT beta-alanine-pyruvate transaminase
  • BcAT adenosylmethionine-8-amino-7-oxononaoate Aminotransferase
  • the amplified PCR product with the linker was introduced into a PET28 (b +) vector digested with restriction enzymes ( Nde I and BamH I) and the expression vectors introduced were named pETHpaI, pETHpaH, pETnemA, pETKIVD, pETBcAT and pETPdAT (Table) 4).
  • a vector was constructed that contains all of the genes Hpa I , HpaH , nemA , KIVD , PdAT and BcAT , which encode enzymes of the 6-aminocaproic acid biosynthesis pathway from Pyruvate.
  • HpaI encoding aldolase and HpaH encoding hydratase were linked to be expressed together using a linker, which was named pETHpaI-HpaH.
  • a linker which was named pETHpaI-HpaH.
  • each of the expression vectors prepared in Example ⁇ 1-1> was used as a template, and each of the primers (SEQ ID NOs 27 to 36) shown in Table 3 was used.
  • PCR was performed (95 ° C. 30 sec, [95 ° C. 30 sec, TM value for each primer 30 sec and 72 ° C. 60 sec, total 30 cycles], 72 degrees 5 min), and the underlined portion of the primer was in-fusion.
  • TM Advantage PCR cloning kit (Clontech, USA).
  • BcAT a linker-containing PCR product
  • pACYC184 digested with restriction enzyme sph I.
  • the vector into which the BcAT was introduced was digested with Hind III and a PdAT PCR product was introduced.
  • the vector introduced with BcAT and PdAT was digested with Sal I and a KIVD PCR product was introduced.
  • the vector introduced with BcAT , PdAT and KIVD was digested with BamH I and nemA PCR products were introduced.
  • the vector into which the enzymes were introduced was digested with Ahd I and then HpaI-HpaH PCR products were introduced.
  • 6-aminocaproic acid gene encoding the enzyme in the biosynthetic pathway HpaI-HpaH (connection HpaI and HpaH), nemA, KIVD, expression was the vector is produced that contains both the PdAT and BcAT, and named it as pACYCWG (Table 4 And FIG. 2).
  • Table 4 Plasmid Explanation source pETI-H PT7, His-tag, kanr; E. coli expression vector carrying aldolase pETnemA PT7, His-tag, kanr; E. coli expression vector carrying reductase pETKIVD PT7, His-tag, kanr; E. coli expression vector carrying decarboxylase pETBcAT PT7, His-tag, kanr; E. coli expression vector carrying transaminase pETPdAT PT7, His-tag, kanr; E. coli expression vector carrying transaminase pACYC184 E. coli cloning vector Mo-bi tec company pACYCWG E. coli cloning vector carrying whole genes contained PT7
  • the plasmids pETHpaI, pETHpaH, pETnemA, pETKIVD, pETBcAT, pETPdAT, pETHpaI-HpaH and pACYCWG prepared in ⁇ Example 1> were transformed into E. coli BL21 (DE3) by thermal shock.
  • HpaI SEQ ID NO: 8
  • HpaH SEQ ID NO: 9
  • Ni-NTA agarose Qiage, Germany
  • Econo Pac Choromatograpy Column Bio-Rad, USA
  • HpaI-HpaH SEQ ID NO: 10
  • nemA SEQ ID NO: 11
  • KIVD SEQ ID NO: 12
  • PdAT SEQ ID NO: 13
  • BcAT SEQ ID NO: 14
  • HpaI-H 0.216 mg / ml
  • Kivd 0.523 mg / ml
  • PdAT 0.176 mg / ml
  • BcAT 0.632 mg / ml
  • nemA 0.659 mg / ml
  • protein purity was as shown in Table 7 below.
  • Example ⁇ 2-1> Aldolase and aldolase-dehydratase expressed by connecting HpaI and HpaH were mixed, adjusted to 100 mM HEPES buffer (pH8.0) for pH balance, and the reaction was induced at 30 ° C. overnight. After the reaction, the absorbance was measured in A570 using a Pyruvate assay kit (Sigma, USA) to confirm the concentration change of the substrate pyruvate (Table 5).
  • TIC is a total separation of 50-300 m / z
  • SIM is a method to monitor peaks that are invisible in full scan (only 155 here)
  • SRM splits molecular ions at high energy. It is a method of generating ions.
  • the reaction since it is difficult to purchase adipate semialdehyde as a substrate, the reaction also proceeds in reverse reaction, so that 20 mM 6-aminocaproic acid is added as a substrate and 10 mM sodium alpha keto glutarate as an amino group is 0.2 mM PLP as a cofactor.
  • 20 mM 6-aminocaproic acid is added as a substrate and 10 mM sodium alpha keto glutarate as an amino group is 0.2 mM PLP as a cofactor.
  • the purified transaminase was added to adjust the volume with 100mM potassium phosphate buffer (pH7.0) for pH balance.
  • specific activity was calculated after measuring the production and concentration change of glutamate, a product of glutamate, in order to confirm the reaction.
  • 2-ketopimelic acid as a substrate, 20 mM glutamate as an amino group donor, 5 mM MgSO 4 and 0.1 mM PLP as cofactor, and KIVD -expressed and purified decarboxylase and BcAT and PdAT to confirm whether the two reactions occur together
  • KIVD -expressed and purified decarboxylase and BcAT and PdAT was added to adjust the volume with 100 mM potassium phosphate buffer (pH 7.0) for pH balance.
  • the product was obtained after inducing an enzymatic reaction at 30 ° C. overnight.
  • the bottom and bottom 1cm portions of both sides of the silica gel plate were lined with a pencil and marked with a pencil with a small dot on the bottom of the sample.
  • the plate was well dried and placed in a tank to seal the inlet and then developed for 1 hour.
  • the developing reagent was mixed well with 5: 1: 5 n-butanol: acetic acid: D.W. and only supernatant was used.
  • the plate was taken out, sprayed with 1% ninhydrin solution, baked at 80 ° C. for 5 minutes, and the color of the spot was checked.
  • Example ⁇ 1-2> biosynthesis of glucose and SSA to 6-aminocaproic acid by expression of a fusion protein (aldolase-dehydratase-reductase-decarboxylase-transaminase) in Escherichia coli transformed with pACYCWG was confirmed.
  • a fusion protein aldolase-dehydratase-reductase-decarboxylase-transaminase
  • Escherichia coli transformed with pACYCWG and 2 Escherichia coli transformed with an empty vector as a control in 2 L of the medium of the composition of Table 9 were incubated at 37 ° C. for 24 hours. After incubation, the cells were centrifuged to obtain pellets. The pellets were washed five times with distilled water and then suspended again in 50 ml of distilled water. 10 g glucose, 4 g / L succinic semialdehyde and 1 ml / L trace elements were added to the suspension, and the in vivo reaction was induced for 16 hours at 37 ° C.
  • TIC is a total separation of 50-300 m / z
  • SIM is a method to monitor peaks that are invisible in full scan (only 155 here)
  • SRM splits molecular ions at high energy. It is a method of generating ions.
  • 6-aminocaproic acid was formed because spots of the same line as 6-aminocaproic acid were seen in lane 3 inducing biosynthetic conversion with the cells cultured for 20 hours (FIG. 8).
  • the biosynthetic pathway into in vivo was confirmed by confirming the 6-aminocaproic acid peak in the results measured at Lc-ms and Lc-ms / ms (FIG. 9).
  • the amount of glucose used for the conversion of glucose to 6-aminocaproic acid (6-ACA) was measured using a glucose analyser, and the amount of 6-aminocaproic acid produced was determined from LC-MS.
  • the amount actually used by the strain was obtained by subtracting last glucose from initial glucose, and 6-ACA was formed as a quantitative value (No plasmid, Pacyc184, HpaIH-nemA, PdAT-Kivd: Negative control).
  • the conversion yield of glucose to 6-ACA was about 2.5% (Table 10).
  • Example ⁇ 4-1> The recombinant protein fused in cells cultured in Example ⁇ 4-1> was subjected to Western blot analysis using SDS-PAGE according to Laemmli's method (Laemmli, UK 1970, Nature 227: 680-685).
  • proteins separated by 10% SDS-PAGE gels were transferred to nitrocellulose membrane.
  • the nitrocellulose membrane was blocked with PBS (phosphate buffered saline) containing 5% skim milk powder, and washed three times with PBST (0.1% Tween20 in PBS).
  • the washed membrane was reacted with His-probe monoclonal antibody (Santa Cruz Biotechnology, USA) for 1 hour at room temperature.
  • Antigens that specifically react with IgG AP (alkaline phosphatase) antibodies were shown in the AP Binding Substrate Kit (Bio-rad, USA) (FIG. 10).
  • 6-aminocaproic acid was formed from the culture supernatant of Escherichia coli transformed with pACYCWG, the culture was analyzed by flask culture.
  • E. coli transformed with pACYCWG in 100 mL of the composition of Table 11 and E. coli transformed with the empty vector as a control were incubated at 28 ° C. for 24 hours. After the culture of E. coli, the supernatant was obtained and analyzed by LC-ms.
  • E. coli transformed with pACYCWG in 2.5L of the medium of the composition of Table 12 was incubated for 24 hours. After incubation, 15 g / L of lactose was added to induce the expression of enzymes at the time of initial sugar consumption and then fed 4 g / L of sugar per hour (FIG. 12). After E. coli culture, the supernatant was obtained and analyzed by LC-MS. As a result, it was confirmed that 6-aminocaproic acid was produced (FIG. 13). In addition, it was confirmed that the desired enzyme was expressed by fermentation culture through Western blot (FIG. 14).
  • a vector was constructed using only PdAT having high specific activity among PdAT and BcAT, and this vector was named pPKNI (pACYCWG-BcAT).
  • pPKNI was transformed into strain HMS174 (DE3) and fermentation induced 6-ACA production. Specifically, E. coli was incubated for 24 hours in a medium of 2.5L of Table 12. After 3 hours of incubation, 0.4 mM IPTG was added to induce the expression of enzymes and 5 g / L of sugar was fed per hour after initial sugar exhaustion (FIG. 15). After E. coli culture, the supernatant was obtained and analyzed by LC-MS / MS. As a result, it was confirmed that 6-aminocaproic acid was produced (FIG. 16).

Abstract

The present invention relates to a method for preparing a recombinant microorganism simultaneously comprising genes encoding enzymes used for a biosynthesis pathway of 6-aminocaproic acid which is a precursor of caprolactam, biosynthesizing 6-aminocaproic acid from the microorganism, and producing same so as to synthesize caprolactam.

Description

6-아미노카프로산의 생물학적 합성 및 이를 위한 형질전환 미생물Biological Synthesis of 6-Aminocaproic Acid and Transgenic Microorganisms Therefor
본 발명은 카프로락탐을 합성하기 위한 6-아미노카프로산을 미생물 내에서 생물학적으로 합성하기 위한 재조합 미생물에 관한 것이다.The present invention relates to a recombinant microorganism for biologically synthesizing 6-aminocaproic acid in a microorganism for synthesizing caprolactam.
카프로락탐은 6-아미노헥산산(ε-아미노헥산산, 6-아미노카프로산)의 락탐인 유기 화합물이다. 이는 다르게는 카프로산의 환형 아미드로 고려될 수 있다. 카프로락탐의 한가지 용도는 나일론-6의 생산에서 단량체로서이다. 카프로락탐의 생산에 가장 범용적으로 사용되는 원료는 벤젠(benzene), 페놀(phenol), 톨루엔(toluene) 등의 방향족 화합물이다. 카프로락탐은 이들 방향족 화합물 원료에서 얻어진 싸이클로헥산온(cyclohexanone)과 히드록실아민(hydroxylamine)을 반응시키는 옥심화반응(oximation)으로 옥심화합물을 제조한 후 최종적으로 황산촉매를 이용한 베크만 자리옮김 반응(Beckmann Rearrangement)을 통해 합성된다. 이러한 공정을 통해 카프로락탐을 합성하면 부산물인 암모늄 설페이트의 생성을 피하기 어렵다. 카프로락탐 제조 공정에 있어 암모늄 설페이트가 많이 생성될수록 카프로락탐의 수율이 감소하기 때문에 암모늄 설페이트 생성을 억제해야만 고수율로 카프로락탐을 얻을 수 있다.Caprolactam is an organic compound that is a lactam of 6-aminohexanoic acid (ε-aminohexanoic acid, 6-aminocaproic acid). This may alternatively be considered a cyclic amide of caproic acid. One use of caprolactam is as monomer in the production of nylon-6. The most widely used raw materials for the production of caprolactam are aromatic compounds such as benzene, phenol, and toluene. Caprolactam is an oximation reaction between cyclohexanone and hydroxylamine obtained from raw materials of aromatic compounds to prepare an oxime compound, and finally a Beckman displacement reaction using a sulfuric acid catalyst (Beckmann Through rearrangement. Synthesizing caprolactam through this process makes it difficult to avoid the production of by-product ammonium sulfate. Since the yield of caprolactam decreases as more ammonium sulfate is produced in the caprolactam manufacturing process, caprolactam can be obtained with high yield only by suppressing the production of ammonium sulfate.
최근 카프로락탐(caprolactam) 제조기술의 최근 개발 동향은 카프로락탐 제조공정 부산물인 암모늄 설페이트(ammonium sulfate) 발생을 감소시키거나 제거하는 공정을 개발하기 위한 것과 대체 원료물질을 개발하기 위한 것으로 나눠진다. 암모늄 설페이트의 발생을 감소시키기 위한 공정 개발의 예는 일본 스미모토(Sumitomo)사가 최근 건설한 카프로락탐 생산시설이 있다. 이는 유동층 지올라이트 촉매(fluid bed gas-phase zeolite-catalyst)를 이용한 기체상 베크만 자리옮김반응과 에니켐(EniChem)사의 과산화수소 촉매(hydrogen peroxide catalyst)에 의한 암모니아 부가반응(ammoximation reaction)을 이용한다. 또한, 카프로락탐의 대체물질로서 개발된 원료물질로는 헥사메틸렌다이아민(hexamethylene diamine ; HMDA)과 테트라메틸렌다이아민(tetramethylene diamine ; TMDA)이 있다. HMDA는 아디포나이트릴(adiponitrile), 프로필렌(propylene), 아크릴로나이트릴(acrylonitrile)로부터 제조될 수 있다. 하지만 아디포나이트릴을 이용해서 HMDA를 제조하는 공정은 BASF, 솔루티아(Solutia), 부타키미(Butachimie), 듀폰(DuPont)사만이 사용할 수 있다. 아디포나이트릴은 부타디엔(butadiene)과 시안화수소(hydrogen cyanide)를 반응시켜 제조된다. 부타디엔은 나일론 4,6의 원료물질인 아디픽 산(adipic acid)의 원료물질로도 사용된다. 현재 나일론 생산에 사용되는 중간체들은 거의 부타디엔에 그 기원을 두고 있으며 이러한 추세는 점점 더 확산되고 있다.The recent development trend of caprolactam manufacturing technology is divided into developing a process for reducing or eliminating the production of ammonium sulfate, a by-product of caprolactam manufacturing process, and developing alternative raw materials. An example of process development to reduce the production of ammonium sulphate is the caprolactam production facility recently built by Sumitomo Japan. It uses gaseous Beckman displacement using a fluid bed gas-phase zeolite-catalyst and an ammoximation reaction with hydrogen peroxide catalyst from EniChem. In addition, raw materials developed as substitutes for caprolactam include hexamethylene diamine (HMDA) and tetramethylenediamine (TMDA). HMDA can be prepared from adiponitrile, propylene, acrylonitrile. However, the manufacturing process of HMDA using adiponitril can be used only by BASF, Solutia, Butachimie, and DuPont. Adiponitril is prepared by reacting butadiene with hydrogen cyanide. Butadiene is also used as a raw material for adipic acid, a raw material of nylon 4,6. Currently, the intermediates used in nylon production have their origin in butadiene, and this trend is becoming increasingly widespread.
이와 같이, 환경 문제와 화석 자원의 가용성에 대한 우려가 증가함에 따라 생물정제공정을 통해 재생 가능한 비식품 바이오매스로부터 이러한 화학물질과 재료를 생산하는 것에 많은 관심을 가지고 있다. 생물정제공정(biorefinery) 과정의 발달에 따라 미생물은 재생 가능 자원으로부터 성공적으로 화학물질, 플라스틱과 연료를 생산할 수 있는 핵심 생체촉매로 사용되었다. 그러나, 조작되지 않은 자연적 미생물은 그들의 낮은 물질대사 능력 때문에 산업 수준의 타깃 생산물을 효율적으로 생산하기에 적합하지 않다. 따라서, 원하는 생산물을 효율적으로 생산하기 위한 미생물의 물질대사 능력을 향상시키는 기술들이 연구되고 있다. 이러한 미생물의 최적화를 시스템 수준의 대사공학인 시스템 대사공학 (systems metabolic engineering)을 통해 해결하고자 많은 연구가 진행되고 있다.As such, as environmental concerns and concerns about the availability of fossil resources increase, there is a great deal of interest in producing these chemicals and materials from renewable nonfood biomass through bioremediation processes. With the development of biorefinery processes, microorganisms have been used as key biocatalysts to successfully produce chemicals, plastics and fuels from renewable resources. However, unmodified natural microorganisms are not suitable for the efficient production of industrial level target products because of their low metabolism capacity. Therefore, techniques for improving the metabolism ability of microorganisms to efficiently produce the desired product have been studied. Many studies have been conducted to solve such microbial optimization through systems metabolic engineering, a system-level metabolic engineering.
이에, 본 발명자들은 카프로락탐의 제조를 위해 그 전구체인 6-aminocaproic acid 생합성 경로에서 이용되는 효소들의 유전자들을 발현하여 미생물 내에서 6-aminocaproic acid을 생합성할 수 있는 형질전환 미생물을 제작하였다. Thus, the present inventors produced transgenic microorganisms capable of biosynthesizing 6-aminocaproic acid in microorganisms by expressing genes of enzymes used in the precursor 6-aminocaproic acid biosynthetic pathway for caprolactam.
본 발명의 목적은 6-아미노카프로산(6-aminocaproic acid) 생산방법을 제공하는 것이다.It is an object of the present invention to provide a 6-aminocaproic acid production method.
또한, 본 발명의 또 다른 목적은 HpaI(4-hydroxy-2-oxo-heptane-1,7-dioate aldolase)-HpaH(2-oxo-hept-3-ene-1,7-dioate dehydratase) 유전자, nemA(N-ethylmaleimide reductase) 유전자, KIVD(alpha-ketoisovalerate decarboxylase) 유전자; 를 포함하고, 그리고 PdAT(beta-alanine-pyruvate transaminase) 및 BcAT(adenosylmethionine-8-amino-7-oxononaoate Aminotransferase) 유전자 중 어느 하나 이상;을 모두 포함하는 6-아미노카프로산(6-aminocaproic acid) 생합성용 발현벡터를 제공하는 것이다.In addition, another object of the present invention is HpaI (4-hydroxy-2-oxo-heptane-1,7-dioate aldolase ) -HpaH ( 2-oxo-hept-3-ene-1,7-dioate dehydratase) gene, nemA (N-ethylmaleimide reductase) Gene, KIVD (alpha-ketoisovalerate decarboxylase) gene; 6-aminocaproic acid biosynthesis, including and including any one or more of PdAT (beta-alanine-pyruvate transaminase) and BcAT (adenosylmethionine-8-amino-7-oxononaoate Aminotransferase) genes; It is to provide an expression vector for.
또한, 본 발명의 또 다른 목적은 상기 발현벡터로 형질전환된 형질전환체를 제공하는 것이다.In addition, another object of the present invention is to provide a transformant transformed with the expression vector.
아울러, 본 발명의 또 다른 목적은 6-아미노카프로산 생산방법에 의해 생산된 6-아미노카프로산을 카프로락탐으로 전환시키는 단계를 추가로 포함하는 카프로락탐 생산방법을 제공하는 것이다.In addition, another object of the present invention is to provide a caprolactam production method further comprising the step of converting the 6-aminocaproic acid produced by the 6-aminocaproic acid production method to caprolactam.
상기 목적을 달성하기 위하여, 본 발명은 6-아미노카프로산(6-aminocaproic acid) 생산방법을 제공한다.In order to achieve the above object, the present invention provides a 6-aminocaproic acid production method.
또한, 본 발명은 HpaI(4-hydroxy-2-oxo-heptane-1,7-dioate aldolase)-HpaH(2-oxo-hept-3-ene-1,7-dioate dehydratase) 유전자, nemA(N-ethylmaleimide reductase) 유전자, KIVD(alpha-ketoisovalerate decarboxylase) 유전자; 를 포함하고, 그리고 PdAT(beta-alanine-pyruvate transaminase) 및 BcAT(adenosylmethionine-8-amino-7-oxononaoate Aminotransferase) 유전자 중 어느 하나 이상;을 모두 포함하는 6-아미노카프로산(6-aminocaproic acid) 생합성용 발현벡터를 제공한다.In addition, the present invention relates to HpaI (4-hydroxy-2-oxo-heptane-1,7-dioate aldolase ) -HpaH (2-oxo-hept-3-ene-1,7-dioate dehydratase) gene, nemA (N- ethylmaleimide reductase) Gene, KIVD (alpha-ketoisovalerate decarboxylase) gene; 6-aminocaproic acid biosynthesis, including and including any one or more of PdAT (beta-alanine-pyruvate transaminase) and BcAT (adenosylmethionine-8-amino-7-oxononaoate Aminotransferase) genes; Provide an expression vector.
또한, 본 발명은 상기 발현벡터로 형질전환된 형질전환체를 제공한다.The present invention also provides a transformant transformed with the expression vector.
아울러, 본 발명은 6-아미노카프로산 생산방법에 의해 생산된 6-아미노카프로산을 카프로락탐으로 전환시키는 단계를 추가로 포함하는 카프로락탐 생산방법을 제공한다.In addition, the present invention provides a caprolactam production method further comprising converting the 6-aminocaproic acid produced by the 6-aminocaproic acid production method into caprolactam.
본 발명의 6-아미노카프로산(6-aminocaproic acid) 생합성 경로에 이용되는 효소들을 암호화하는 유전자 HpaⅠ(4-hydroxy-2-oxo-heptane-1,7-dioate aldolase), HpaH(2-oxo-hept-3-ene-1,7-dioate dehydratase), nemA(N-ethylmaleimide reductase), KIVD(alpha-ketoisovalerate decarboxylase); 를 포함하고, 그리고 PdAT(beta-alanine-pyruvate transaminase) 및 BcAT(adenosylmethionine-8-amino-7-oxononaoate Aminotransferase) 유전자 중 어느 하나 이상;을 포함하는 벡터로 형질전환된 미생물은 세포 내에서 목적 물질인 6-아미노카프로산(6-aminocaproic acid)를 효율적으로 생합성하므로, 이를 카프로락탐의 합성을 위해 이용할 수 있다.Genes encoding the enzymes used in the 6-aminocaproic acid biosynthesis pathway of the present invention Hpa I (4-hydroxy-2-oxo-heptane-1,7-dioate aldolase), HpaH (2- oxo- hept-3-ene-1,7-dioate dehydratase), nemA (N-ethylmaleimide reductase), KIVD (alpha-ketoisovalerate decarboxylase); And a microorganism transformed with a vector comprising any one or more of PdAT (beta-alanine-pyruvate transaminase) and BcAT (adenosylmethionine-8-amino-7-oxononaoate Aminotransferase) gene; Since 6-aminocaproic acid is efficiently biosynthesized, it can be used for the synthesis of caprolactam.
도 1은 6-아미노카프로산(6-aminocaproic acid)의 생합성 경로와 생합성 경로에서 이용되는 효소 및 이를 암호화하는 유전자를 나타낸 도식이다.1 is a schematic diagram showing the biosynthetic pathway of 6-aminocaproic acid and enzymes used in the biosynthetic pathway and genes encoding the same.
도 2는 HpaⅠ(4-hydroxy-2-oxo-heptane-1,7-dioate aldolase), HpaH(2-oxo-hept-3-ene-1,7-dioate dehydratase), nemA(N-ethylmaleimide reductase), KIVD(alpha-ketoisovalerate decarboxylase), PdAT(beta-alanine-pyruvate transaminase) 및 BcAT(adenosylmethionine-8-amino-7-oxononaoate Aminotransferase) 유전자를 포함하는 pACYCWG 벡터의 맵이다.Figure 2 is Hpa I (4-hydroxy-2-oxo-heptane-1,7-dioate aldolase), HpaH (2-oxo-hept-3-ene-1,7-dioate dehydratase), nemA (N-ethylmaleimide reductase) , PIVYCWG vector containing KIVD (alpha-ketoisovalerate decarboxylase), PdAT (beta-alanine-pyruvate transaminase) and BcAT (adenosylmethionine-8-amino-7-oxononaoate Aminotransferase) genes.
도 3은 aldolase-dehydratase (HpaI-HpaH)의 효소 반응에 의한 기질인 pyruvate의 농도를 변화를 확인한 표준곡선(standard curve)이다.3 is a standard curve confirming the change of the concentration of pyruvate, a substrate by the enzymatic reaction of aldolase-dehydratase (HpaI-HpaH).
도 4는 reductase (nemA)의 효소 활성을 확인하기 위한 역반응에서 생성물인 NADH의 농도 변화를 확인한 표준곡선이다.Figure 4 is a standard curve confirming the concentration change of the product NADH in the reverse reaction to confirm the enzymatic activity of reductase ( nemA ).
도 5는 aldolase-dehydratase (HpaI-HpaHpaH) 및 reductase (nemA)의 커플링 반응에 의한 2-ketopimelic acid의 생성을 Lc-ms/ms로 확인한 도이다;5 is a diagram confirming the production of 2-ketopimelic acid by Lc-ms / ms by coupling reaction of aldolase-dehydratase (HpaI-HpaHpaH) and reductase ( nemA );
첫 번째 크로마토그램: total ion current plot (TIC);First chromatogram: total ion current plot (TIC);
두 번째 크로마토그램: Selected Ion Monitoring (SIM); 및Second chromatogram: Selected Ion Monitoring (SIM); And
세 번째 크로마토그램: Selected Reaction Monitoring (SRM).Third chromatogram: Selected Reaction Monitoring (SRM).
도 6은 decarboxylase (KIVD) 및 transaminase (PdAT 및/또는 BcAT)의 커플링 반응에 의한 2-ketopimelic acid로부터의 6-aminocaproic acid의 전환을 TLC로 확인한 도이다;FIG. 6 shows TLC conversion of 6-aminocaproic acid from 2-ketopimelic acid by coupling reaction of decarboxylase ( KIVD ) and transaminase ( PdAT and / or BcAT );
L1: 1M 6-aminocaproic acid;L1: 1M 6-aminocaproic acid;
L2: 음성대조군 (chemical blank);L2: chemical blank;
L3: 음성대조군 (biological blank-w/KIVD-his);L3: negative control (biological blank-w / KIVD- his);
L4: KIVD-PdAT; 및L4: KIVD - PdAT ; And
L5: KIVD-PdAT-BcAT.L5: KIVD - PdAT - BcAT .
도 7은 decarboxylase (KIVD) 및 transaminase (PdAT 및/또는 BcAT)의 커플링 반응에 의한 2-ketopimelic acid로부터의 6-aminocaproic acid의 전환을 LC-ms/ms로 확인한 도이다;FIG. 7 shows LC-ms / ms conversion of 6-aminocaproic acid from 2-ketopimelic acid by coupling reaction of decarboxylase ( KIVD ) and transaminase ( PdAT and / or BcAT );
첫 번째 크로마토그램: total ion current plot (TIC);First chromatogram: total ion current plot (TIC);
두 번째 크로마토그램: Selected Ion Monitoring (SIM); 및Second chromatogram: Selected Ion Monitoring (SIM); And
세 번째 크로마토그램: Selected Reaction Monitoring (SRM).Third chromatogram: Selected Reaction Monitoring (SRM).
도 8은 본 발명의 유전자들을 모두 포함하는 pACYCWG 벡터로 형질전환된 대장균에서의 6-aminocaproic acid 생합성 활성을 TLC로 확인한 도이다;8 is a diagram confirming 6-aminocaproic acid biosynthesis activity in E. coli transformed with a pACYCWG vector containing all the genes of the present invention;
SM: 6-aminocaproic acid;SM: 6-aminocaproic acid;
L1: 음성대조군 (pACYC184); 및L1: negative control (pACYC184); And
L2: 반응군 pACYCWG.L2: reaction group pACYCWG.
도 9는 본 발명의 유전자들을 모두 포함하는 pACYCWG 벡터로 형질전환된 대장균에서의 6-aminocaproic acid 생합성 활성을 LC-ms/ms로 확인한 도이다;9 is a diagram confirming 6-aminocaproic acid biosynthetic activity in Escherichia coli transformed with a pACYCWG vector containing all the genes of the present invention in LC-ms / ms;
첫 번째 크로마토그램: total ion current plot (TIC);First chromatogram: total ion current plot (TIC);
두 번째 크로마토그램: Selected Ion Monitoring (SIM); 및Second chromatogram: Selected Ion Monitoring (SIM); And
세 번째 크로마토그램: Selected Reaction Monitoring (SRM).Third chromatogram: Selected Reaction Monitoring (SRM).
도 10은 한 벡터에 클로닝 된 모든 효소들의 발현을 웨스턴 불랏으로 확인한 도이다;10 is a diagram confirming the expression of all the enzymes cloned into one vector by Western blot;
L1: pACYCWG 총 단백질;L1: pACYCWG total protein;
L2: pACYCWG 수용성 단백질;L2: pACYCWG soluble protein;
L3: pACYCWG 정제 단백질 1/5 희석;L3: 1/5 dilution of pACYCWG purified protein;
L4: pACYCWG 정제 단백질;L4: pACYCWG purified protein;
①: aldolase-dehydratase (HpaⅠ-HpaH)-58KD;①: aldolase-dehydratase ( HpaI - HpaH ) -58KD;
②: decarboxylase (KIVD)-55KD;②: decarboxylase ( KIVD ) -55KD;
③: aminotransferse 1 (PdAT)-46KD;③: aminotransferse 1 ( PdAT ) -46KD;
④: reductase (nemA)-40KD; 및④: reductase ( nemA ) -40KD; And
⑤: aminotransferase 1 (BcAT)-38KD.⑤: aminotransferase 1 ( BcAT ) -38KD.
도 11은 본 발명의 유전자들을 모두 포함하는 pACYCWG 벡터로 형질전환된 대장균에서의 6-aminocaproic acid 생합성 활성을 LC-MS로 확인한 도이다.FIG. 11 is a diagram confirming 6-aminocaproic acid biosynthesis activity in Escherichia coli transformed with a pACYCWG vector containing all the genes of the present invention by LC-MS.
도 12는 본 발명의 구체예에 따른 발효 배지 실험에서 pACYCWG 벡터로 형질전환된 대장균의 발효 그래프이다.12 is a fermentation graph of E. coli transformed with a pACYCWG vector in a fermentation medium experiment according to an embodiment of the present invention.
도 13은 본 발명의 구체예에 따른 발효 배지 실험에서 대장균 배양 후 상등액을 얻어 6-aminocaproic acid 생합성 활성을 LC-MS로 확인한 결과이다.Figure 13 is a result of confirming 6-aminocaproic acid biosynthetic activity by LC-MS to obtain a supernatant after E. coli culture in the fermentation broth experiment according to an embodiment of the present invention.
도 14는 본 발명의 구체예에 따른 발효 배지 실험에서 벡터에 클로닝된 모든 효소들의 발현을 웨스턴 블롯으로 확인한 도이다.14 is a diagram confirming the expression of all the enzymes cloned in the vector in the fermentation broth experiment according to an embodiment of the present invention by Western blot.
위에서부터, 첫번째 화살표: HpaI-H From the top, the first arrow: HpaI-H
두번째 화살표: Kivd Second Arrow: Kivd
세번째 화살표: PdAT Third arrow: PdAT
네번째 화살표: nemA Fourth arrow: nemA
도 15는 본 발명의 구체예에 따른 균주 개량 실험에서 pACYCWG-BcAT 벡터로 형질전환된 대장균의 발효 그래프이다.15 is a fermentation graph of E. coli transformed with a pACYCWG-BcAT vector in a strain improvement experiment according to an embodiment of the present invention.
도 16은 본 발명의 구체예에 따른 균주 개량 실험에서 대장균 배양 후 상등액을 얻어 6-aminocaproic acid 생합성 활성을 LC-MS로 확인한 결과이다.16 is a result of confirming 6-aminocaproic acid biosynthetic activity by LC-MS to obtain a supernatant after E. coli culture in the strain improvement experiment according to an embodiment of the present invention.
이하, 본 발명을 상세히 설명한다.Hereinafter, the present invention will be described in detail.
본 발명에서 사용된 용어 "폴리뉴클레오티드", "올리고뉴클레오티드" 및 "핵산"은 동일한 의미를 지니고, 어떠한 길이를 지닌 뉴클레오티드 폴리머를 나타낸다. 또한 이러한 용어는 "올리고뉴클레오티드 유도체" 또는 "폴리뉴클레오티드 유도체"도 포함한다. "올리고뉴클레오티드 유도체" 또는 "폴리뉴클레오티드 유도체"는 뉴클레오티드 유도체를 포함하거나 뉴클레오티드 사이에서 일반적인 계통과 다른 계통을 지닌 올리고뉴클레오티드 또는 폴리뉴클레오티드를 나타내고, 이는 상호교환가능하게 사용된다.The terms "polynucleotide", "oligonucleotide" and "nucleic acid" as used herein have the same meaning and refer to nucleotide polymers of any length. This term also includes "oligonucleotide derivatives" or "polynucleotide derivatives". An "oligonucleotide derivative" or "polynucleotide derivative" refers to an oligonucleotide or polynucleotide comprising a nucleotide derivative or having a lineage different from the general lineage between the nucleotides, which are used interchangeably.
본 발명에서 사용된 용어 "폴리뉴클레오티드"는 핵산, 올리고뉴클레오티드 및 폴리뉴클레오티드와 상호교환가능하게 사용되고, cDNA, mRNA, 게놈 DNA 등을 포함한다. 여기에 사용된 폴리뉴클레오티드는 용어 "유전자"에 의해 포함된다. 유전자 서열을 인코드하는 폴리뉴클레오티드는 "스플라이싱(splicing) 변이체"를 포함한다. 유사하게는, 핵산에 의해 인코드된 특정한 단백질은 그에 의해 인코드된 스플라이싱 변이체에 의해 인코드된 단백질을 포함한다. 명칭이 나타내는 바와 같이 용어 "스플라이싱 변이체"는 대안적인 스플라이싱 변이체의 생성물을 나타낸다. 전사 후 첫 번째 핵산 전사체는 다른(뚜렷한) 핵산 스플라이싱 생성물과 같은 다른 폴리펩타이드를 인코드하는 것으로 스플라이스된다. 스플라이싱 변이체의 생성 메카니즘이다르더라도 이는 엑손 선택적 스플라이싱을 포함한다. 부정확한 전사에 의한 동일한 핵산으로부터 유도된 다른 폴리펩타이드는 이러한 정의를 포함한다. 스플라이싱 반응의 생성물(재조합 형태의 스플라이싱 생성물 포함)도 상기 정의에 포함된다.The term "polynucleotide" as used herein is used interchangeably with nucleic acids, oligonucleotides and polynucleotides and includes cDNA, mRNA, genomic DNA and the like. As used herein, polynucleotides are encompassed by the term "gene". Polynucleotides encoding gene sequences include "splicing variants". Similarly, certain proteins encoded by nucleic acids include proteins encoded by splicing variants encoded thereby. As the name indicates, the term “splicing variant” refers to the product of an alternative splicing variant. The first nucleic acid transcript after transcription is spliced to encode other polypeptides, such as other (obvious) nucleic acid splicing products. Although it is the generation mechanism of splicing variants, this includes exon selective splicing. Other polypeptides derived from the same nucleic acid by incorrect transcription include this definition. The products of splicing reactions (including splicing products in recombinant form) are also included in the definition.
본 발명에서 사용된 바와 같이 유전자, 폴리뉴클레오티드, 폴리펩타이드 등과 같은 유전자 생성물의 "발현"이라는 용어는 유전자가 미리 결정된 생체 내 작용에 의해 영향을 받아 또 다른 형태로 변화되는 것을 나타낸다. 바람직하게는, 용어 "발현"은 유전자, 폴리뉴클레오티드 등이 전사되고 폴리펩타이드로 번역됨을 나타낸다. 본 발명의 하나의 실시태양에서 유전자는 mRNA로 전사된다. 더욱 바람직하게는 이들 폴리펩타이드는 후-번역적 처리 변형을 지닌다. 따라서 여기에 사용된 유전자, 폴리뉴클레오티드, 폴리펩타이드의 "발현"의 "감소"는 본 발명의 작용제가 작용할 때 발현량이 작용제가 작용하지 않을 때와 비교시 유의적으로 감소됨을 나타낸다. 바람직하게는, 발현의 감소는 폴리펩타이드 발현량의 감소를 포함한다. 더욱 상세하게는, 발현량의 감소는 작용제의 후-작용과 전-작용을 비교시 적어도 약 10% 이상, 바람직하게는 적어도 약 20% 이상, 더욱 바람직하게는 적어도 약 30% 이상, 더욱 더 바람직하게는 적어도 약 40% 이상, 더욱 더 바람직하게는 적어도 약 50% 이상, 더욱 더 바람직하게는 적어도 약 75% 이상, 더욱 더 바람직하게는 적어도 약 90% 이상, 더욱 더 바람직하게는 적어도 약 100% 이상의 발현 감소를 나타낸다. 여기에 사용된 유전자, 폴리뉴클레오티드, 폴리펩타이드 "발현"의 "증가"는 본 발명의 작용제가 작용시 발현량이 작용제가 작용하지 않을 때와 비교시 유의적으로 증가됨을 나타낸다. 바람직하게는, 발현 증가는 폴리펩타이드 발현량의 증가를 포함한다. 더욱 상세하게는, 발현량의 증가는 작용제의 후-작용과 전-작용을 비교시 적어도 약 10% 이상, 바람직하게는 적어도 약 20% 이상, 더욱 바람직하게는 적어도 약 30% 이상, 더욱 더 바람직하게는 적어도 약 40% 이상, 더욱 더 바람직하게는 적어도 약 50% 이상, 더욱 더 바람직하게는 적어도 약 75% 이상, 더욱 더 바람직하게는 적어도 약 90% 이상, 더욱 더 바람직하게는 적어도 약 100% 이상, 더욱 더 바람직하게는 200%의 발현 감소 또는 작용제의 작용 전에 발현하지 않은 발현이 발생하는 것을 나타낸다.As used herein, the term "expression" of a gene product, such as a gene, polynucleotide, polypeptide, and the like, indicates that the gene is affected by a predetermined in vivo action and changed into another form. Preferably, the term “expression” indicates that the gene, polynucleotide, and the like are transcribed and translated into the polypeptide. In one embodiment of the invention the gene is transcribed into mRNA. More preferably these polypeptides have post-translational processing modifications. Thus, the "reduction" of the "expression" of the genes, polynucleotides, and polypeptides used herein indicates that the amount of expression when the agent of the invention acts is significantly reduced compared to when the agent is not active. Preferably, the decrease in expression comprises a decrease in the amount of polypeptide expression. More specifically, the reduction in the amount of expression is at least about 10% or more, preferably at least about 20% or more, more preferably at least about 30% or more, even more preferred when comparing the post-action and pre-action of the agent Preferably at least about 40% or more, even more preferably at least about 50% or more, even more preferably at least about 75% or more, even more preferably at least about 90% or more, even more preferably at least about 100% Abnormal expression decreases. As used herein, "increase" in the gene, polynucleotide, polypeptide "expression" indicates that the amount of expression when an agent of the present invention acts is significantly increased as compared to when the agent is not active. Preferably, the increase in expression comprises an increase in the amount of polypeptide expression. More specifically, the increase in the amount of expression is at least about 10% or more, preferably at least about 20% or more, more preferably at least about 30% or more, even more preferred when comparing the post-action and pre-action of the agent Preferably at least about 40% or more, even more preferably at least about 50% or more, even more preferably at least about 75% or more, even more preferably at least about 90% or more, even more preferably at least about 100% As such, even more preferably, a decrease in expression of 200% or an expression not expressed before the action of the agent occurs.
본 발명은 1) HpaI(4-hydroxy-2-oxo-heptane-1,7-dioate aldolase)-HpaH(2-oxo-hept-3-ene-1,7-dioate dehydratase) 유전자, nemA(N-ethylmaleimide reductase) 유전자, KIVD(alpha-ketoisovalerate decarboxylase) 유전자; 를 포함하고, 그리고 PdAT(beta-alanine-pyruvate transaminase) 및 BcAT(adenosylmethionine-8-amino-7-oxononaoate Aminotransferase) 유전자 중 어느 하나 이상;을 포함하는 발현벡터를 제조하는 단계; 및The present invention relates to 1) HpaI (4-hydroxy-2-oxo-heptane-1,7-dioate aldolase ) -HpaH ( 2-oxo-hept-3-ene-1,7-dioate dehydratase) gene, nemA (N- ethylmaleimide reductase) Gene, KIVD (alpha-ketoisovalerate decarboxylase) gene; Producing an expression vector comprising; and any one or more of PdAT (beta-alanine-pyruvate transaminase) and BcAT (adenosylmethionine-8-amino-7-oxononaoate Aminotransferase) gene; And
2) 상기 단계 1)의 발현벡터를 미생물에 형질전환하는 단계를 포함하는 6-아미노카프로산(6-aminocaproic acid) 생산방법을 제공한다.2) provides a 6-aminocaproic acid (6-aminocaproic acid) production method comprising the step of transforming the expression vector of step 1) to the microorganism.
상기 HpaI-HpaH 유전자는 피루베이트(pyruvate) 및/또는 숙신산 세미알데히드(succinic semialdehyde, SSA)를 2-oxohept-3-enedioic acid로 전환하는 알돌라아제(aldolase)-디하이드라타제(dehydratase)를 암호화하는 서열번호 3으로 표시되는 폴리뉴클레오티드를 포함하는 것이 바람직하나, 이에 제한되지 않는다.The HpaI-HpaH gene converts aldolase-dehydratase to convert pyruvate and / or succinic semialdehyde (SSA) to 2-oxohept-3-enedioic acid. It is preferred to include a polynucleotide represented by SEQ ID NO: 3 encoding, but is not limited thereto.
상기 nemA 유전자는 2-oxohept-3-enedioic acid를 2-ketopimelic acid로 전환하는 reductase를 암호화하는 서열번호 4로 표시되는 폴리뉴클레오티드를 포함하는 것이 바람직하나, 이에 제한되지 않는다.The nemA gene preferably includes a polynucleotide represented by SEQ ID NO: 4 encoding a reductase for converting 2-oxohept-3-enedioic acid to 2-ketopimelic acid, but is not limited thereto.
상기 KIVD(alpha-ketoisovalerate decarboxylase) 유전자는 2-ketopimelic acid를 adipate semialdehyde로 전환하는 효소 decarboxylase를 암호화하는 서열번호 5로 표시되는 폴리뉴클레오티드를 포함하는 것이 바람직하나, 이에 제한되지 않는다.The KIVD (alpha-ketoisovalerate decarboxylase) gene preferably includes a polynucleotide represented by SEQ ID NO: 5 encoding the enzyme decarboxylase, which converts 2-ketopimelic acid to adipate semialdehyde, but is not limited thereto.
상기 PdAT(beta-alanine-pyruvate transaminase) 유전자는 adipate semialdehyde를 6-aminocaproic acid로 전환하는 효소 transaminase를 암호화하는 서열번호 6으로 표시되는 폴리뉴클레오티드를 포함하는 것이 바람직하나, 이에 제한되지 않는다.The PdAT (beta-alanine-pyruvate transaminase) gene preferably includes a polynucleotide represented by SEQ ID NO: 6 encoding an enzyme transaminase that converts adipate semialdehyde to 6-aminocaproic acid, but is not limited thereto.
상기 BcAT(adenosylmethionine-8-amino-7-oxononaoate Aminotransferase) 유전자는 adipate semialdehyde를 6-aminocaproic acid로 전환하는 효소 transaminase를 암호화하는 서열번호 7로 표시되는 폴리뉴클레오티드를 포함하는 것이 바람직하나, 이에 제한되지 않는다.The BcAT (adenosylmethionine-8-amino-7-oxononaoate Aminotransferase) gene preferably includes a polynucleotide represented by SEQ ID NO: 7 encoding an enzyme transaminase that converts adipate semialdehyde to 6-aminocaproic acid, but is not limited thereto. .
상기 단계 1)의 발현벡터는 GST, MBP, NusA, 티오레독신(thioredoxin), 유비퀴틴, FLAG, BAP, 6HIS, STREP, CBP, CBD, 또는 S-태그 친화성 태그(affinity tag)를 코딩하는 핵산서열을 추가로 포함하는 것이 바람직하나, 이에 제한되지 않는다.The expression vector of step 1) is a nucleic acid encoding GST, MBP, NusA, thioredoxin, ubiquitin, FLAG, BAP, 6HIS, STREP, CBP, CBD, or S-tag affinity tag. It is preferred to further include a sequence, but is not limited thereto.
상기 단계 1)의 발현벡터는 효모의 kex2p, 포유동물의 퓨린, Factor Xa, 엔테로키나아제, 서브틸리신, 담배식각바이러스 프로테아제, 트롬빈 또는 유비퀴틴 가수분해효소의 인식 서열을 코딩하는 핵산서열을 추가로 포함하는 것이 바람직하나, 이에 제한되지 않는다.The expression vector of step 1) further comprises a nucleic acid sequence encoding a recognition sequence of kex2p of yeast, purine of mammal, Factor Xa, enterokinase, subtilisin, tobacco etching virus protease, thrombin or ubiquitin hydrolase Preferably, but not limited thereto.
상기 단계 2)의 미생물은 박테리아, 효모 또는 진균류인 것이 바람직하고, 대장균인 것이 더욱 바람직하나, 이에 제한되지 않는다.The microorganism of step 2) is preferably bacteria, yeast or fungi, more preferably Escherichia coli, but is not limited thereto.
상기 단계 2)의 형질전환된 미생물을 유가식 발효 배양시켜 6-아미노카프로산을 생산 및 분비시키는 단계를 추가로 포함하는 것이 바람직하나, 이에 제한되지 않는다.It is preferable to further include the step of producing and secreting 6-aminocaproic acid by fed-batch fermentation of the transformed microorganism of step 2), but is not limited thereto.
상기 분비된 단백질을 정제하는 단계를 추가로 포함하는 것이 바람직하나, 이에 제한되지 않는다.It is preferred to further include the step of purifying the secreted protein, but is not limited thereto.
본 발명의 폴리뉴클레오티드들은 각각의 염기 서열과 각각 70% 이상, 더욱 바람직하게는 80% 이상, 더 더욱 바람직하게는 90% 이상, 가장 바람직하게는 95% 이상의 서열 상동성을 가지는 염기 서열을 포함할 수 있다. 폴리뉴클레오티드에 대한 "서열 상동성의 %"는 두 개의 최적으로 배열된 서열과 비교 영역을 비교함으로써 확인되며, 비교 영역에서의 폴리뉴클레오티드 서열의 일부는 두 서열의 최적 배열에 대한 참고 서열(추가 또는 삭제를 포함하지 않음)에 비해 추가 또는 삭제(즉, 갭)를 포함할 수 있다.The polynucleotides of the present invention may comprise base sequences each having at least 70%, more preferably at least 80%, even more preferably at least 90%, most preferably at least 95% homology with each base sequence. Can be. The "% sequence homology" for a polynucleotide is identified by comparing two optimally arranged sequences with a comparison region, wherein part of the polynucleotide sequence in the comparison region is the reference sequence (addition or deletion) for the optimal alignment of the two sequences. It may include the addition or deletion (ie, gap) compared to).
또한 본 발명은 HpaI-HpaH 유전자, nemA 유전자, KIVD(alpha-ketoisovalerate decarboxylase) 유전자; 를 포함하고, 그리고 PdAT(beta-alanine-pyruvate transaminase) 및 BcAT(adenosylmethionine-8-amino-7-oxononaoate Aminotransferase) 유전자 중 어느 하나 이상;을 모두 포함하는 6-아미노카프로산(6-aminocaproic acid) 생합성용 발현벡터를 제공한다.In addition, the present invention is HpaI-HpaH gene, nemA gene, KIVD (alpha-ketoisovalerate decarboxylase) gene; 6-aminocaproic acid biosynthesis, including and including any one or more of PdAT (beta-alanine-pyruvate transaminase) and BcAT (adenosylmethionine-8-amino-7-oxononaoate Aminotransferase) genes; Provide an expression vector.
상기 발현벡터는 도 2에 도시된 pACYCWG인 것이 바람직하나, 이에 한정되지 않는다.The expression vector is preferably pACYCWG shown in FIG. 2, but is not limited thereto.
본 발명의 재조합 벡터는 상기 유전자들 또는 이의 단편들을 발현용 벡터에 통상적인 클로닝 방법(Sambrook et al, 2nd ed., Cold Spring Harbor Laboratory, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y., 1989.)에 따라 삽입하여 얻을 수 있다. 특히 유전자 컨스트럭트의 클로닝을 용이하게 하기 위해 삽입 전에 적절한 어댑터를 유전자 컨스트럭트에 연결할 수도 있다.Recombinant vectors of the present invention are conventional cloning methods for the genes or fragments thereof for expression vectors (Sambrook et al, 2nd ed., Cold Spring Harbor Laboratory Press, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, 1989.) Can be obtained by inserting according to In particular, an appropriate adapter may be linked to the gene construct prior to insertion to facilitate cloning of the gene construct.
용어 "벡터", "발현벡터" 또는 "재조합 벡터"는 세포 내로 전달하는 DNA 단편(들), 핵산 분자를 지칭할 때 사용된다. 벡터는 DNA를 복제시키고, 숙주세포에서 독립적으로 재생산될 수 있다. 상기 벡터는 목적한 코딩 서열과, 특정 숙주 생물에서 작동가능하게 연결된 코딩 서열을 발현하는데 필수적인 적정 핵산 서열을 포함하는 재조합 DNA 분자를 의미한다. 미생물 세포에서 이용 가능한 프로모터, 인핸서, 종결신호 및 폴리아데닐레이션 신호는 공지되어 있다.The term “vector”, “expression vector” or “recombinant vector” is used to refer to a DNA fragment (s), a nucleic acid molecule, that is delivered into a cell. Vectors can replicate DNA and be reproduced independently in host cells. By vector is meant a recombinant DNA molecule comprising a coding sequence of interest and an appropriate nucleic acid sequence necessary to express the coding sequence operably linked in a particular host organism. Promoters, enhancers, termination signals and polyadenylation signals available in microbial cells are known.
본 발명의 벡터는 전형적으로 클로닝 또는 발현을 위한 벡터로서 구축될 수 있다. 또한, 본 발명의 벡터는 원핵 세포 또는 진핵 세포를 숙주로 하여 구축될 수 있다. 예를 들어, 본 발명의 재조합 벡터가 발현벡터이고, 원핵 세포를 숙주로 하는 경우에는, 전사를 진행시킬 수 있는 강력한 프로모터 (예컨대, pLλ프로모터, trp 프로모터, lac 프로모터, T7 프로모터, tac 프로모터 등), 해독의 개시를 위한 리보좀 결합 자리 및 전사/해독 종결 서열을 포함하는 것이 일반적이다.Vectors of the invention can typically be constructed as vectors for cloning or expression. In addition, the vector of the present invention can be constructed using prokaryotic or eukaryotic cells as hosts. For example, when the recombinant vector of the present invention is an expression vector and the prokaryotic cell is a host, a strong promoter (for example, a pLλ promoter, a trp promoter, a lac promoter, a T7 promoter, a tac promoter, etc.) capable of promoting transcription may be used. It is common to include ribosomal binding sites and transcription / detox termination sequences for initiation of translation.
한편, 본 발명에 이용될 수 있는 벡터는 당업계에서 종종 사용되는 플라스미드 (예: pSC101, ColE1, pBR322, pUC8/9, pHC79, pGEX 시리즈, pET 시리즈, pACYC184 및 pUC19 등), 파지 (예: λgt4·λB, λ-Charon, λΔz1 및 M13 등) 또는 바이러스 (예: SV40 등)를 조작하여 제작될 수 있다.On the other hand, vectors that can be used in the present invention are plasmids (eg, pSC101, ColE1, pBR322, pUC8 / 9, pHC79, pGEX series, pET series, pACYC184 and pUC19, etc.) often used in the art, phage (e.g. Can be produced by manipulating λB, λ-Charon, λΔz1 and M13, etc.) or viruses (eg SV40, etc.).
발현벡터는 바람직하게는 하나 이상의 선택성 마커를 포함할 것이다. 상기 마커는 통상적으로 화학적인 방법으로 선택될 수 있는 특성을 갖는 핵산 서열로, 형질전환된 세포를 비형질전환 세포로부터 구별할 수 있는 모든 유전자가 이에 해당된다. 그 예로는 글리포세이트(glyphosate), 글루포시네이트암모늄(glufosinate ammonium) 또는 포스피노트리신(phosphinothricin)과 같은 제초제 저항성 유전자, 카나마이신(kanamycin), G418, 블레오마이신(Bleomycin), 하이그로마이신(hygromycin), 클로람페니콜(chloramphenicol)과 같은 항생제 내성 유전자가 있으나, 이에 한정되는 것은 아니다.The expression vector will preferably comprise one or more selectable markers. The marker is typically a nucleic acid sequence having properties that can be selected by chemical methods, and all genes that can distinguish transformed cells from non-transformed cells. Examples include herbicide resistance genes such as glyphosate, glufosinate ammonium or phosphinothricin, kanamycin, G418, bleomycin, hygromycin ), But is not limited to antibiotic resistance genes such as chloramphenicol.
본 발명의 벡터에서, 프로모터는 CaMV 35S, 액틴, 유비퀴틴, pEMU, MAS 또는 히스톤 프로모터일 수 있으나, 이에 제한되지 않는다. "프로모터"란 용어는 구조 유전자로부터의 DNA 업스트림의 영역을 의미하며 전사를 개시하기 위하여 RNA 폴리머라아제가 결합하는 DNA 분자를 말한다. "구성적(constitutive) 프로모터"는 대부분의 환경 조건 및 발달 상태 또는 세포 분화하에서 활성이 있는 프로모터이다. 형질전환체의 선택이 각종 단계에서 각종 조직에 의해서 이루어질 수 있기 때문에 구성적 프로모터가 본 발명에서 바람직할 수 있다. 따라서, 구성적 프로모터는 선택 가능성을 제한하지 않는다.In the vector of the present invention, the promoter may be, but is not limited to, CaMV 35S, actin, ubiquitin, pEMU, MAS or histone promoter. The term "promoter" refers to a region of DNA upstream from a structural gene and refers to a DNA molecule to which an RNA polymerase binds to initiate transcription. A "constitutive promoter" is a promoter that is active under most environmental conditions and developmental conditions or cell differentiation. Constitutive promoters may be preferred in the present invention because selection of the transformants may be made by various tissues at various stages. Thus, the constitutive promoter does not limit the selection possibilities.
본 발명의 벡터에서, 통상의 터미네이터를 사용할 수 있으며, 그 예로는 노팔린 신타아제(NOS), 벼 α-아밀라아제 RAmy1 A 터미네이터, 파세올린(phaseoline) 터미네이터, 아그로박테리움 투메파시엔스(Agrobacterium tumefaciens)의 옥토파인(Octopine) 유전자의 터미네이터 등이 있으나, 이에 한정되는 것은 아니다.In the vectors of the present invention, conventional terminators can be used, for example nopalin synthase (NOS), rice α-amylase RAmy1 A terminator, phaseoline terminator, Agrobacterium tumefaciens Terminator of the octopine gene, etc., but is not limited thereto.
또한, 본 발명은 상기 재조합 벡터로 형질전환체를 제공한다.In addition, the present invention provides a transformant with the recombinant vector.
상기 형질전환체는 박테리아, 효모 및 진균류로 이루어진 군에서 선택되는 것이 바람직하며, 박테리아가 더욱 바람직하고, 대장균이 가장 바람직하나, 이에 한정되지 않는다. The transformant is preferably selected from the group consisting of bacteria, yeast and fungi, more preferably bacteria, most preferably E. coli, but is not limited thereto.
상기 형질전환체는 피루베이트(pyruvate) 및/또는 숙신산 세미알데히드(succinic semialdehyde, SSA)를 6-아미노카프로산(6-aminocaproic acid)으로 전환시키는 것이 바람직하나, 이에 한정되지 않는다.The transformant preferably converts pyruvate and / or succinic semialdehyde (SSA) to 6-aminocaproic acid, but is not limited thereto.
본 발명의 벡터를 숙주세포 내로 운반하는 방법은, 미세주입법, 칼슘포스페이트 침전법, 전기천공법, 리포좀-매개 형질감염법, 아그로박테리움-매개 형질 감염법, DEAE-덱스트란 처리법, 및 유전자 밤바드먼트 등에 의해 벡터를 숙주세포 내로 주입할 수 있다.Methods for carrying vectors of the present invention into host cells include microinjection, calcium phosphate precipitation, electroporation, liposome-mediated transfection, Agrobacterium-mediated transfection, DEAE-dextran treatment, and gene balm. The vector can be injected into a host cell by a body or the like.
아울러, 본 발명은 본 발명에 따른 6-아미노카프로산 생산방법에 의해 생산된 6-아미노카프로산을 카프로락탐으로 전환시키는 단계를 추가로 포함하는 카프로락탐 생산방법을 제공한다.In addition, the present invention provides a caprolactam production method further comprising the step of converting the 6-aminocaproic acid produced by the 6-aminocaproic acid production method according to the invention into caprolactam.
본 발명의 구체적인 실시예에서, 본 발명자들은 카프로락탐의 전구체인 6-aminocaproic acid의 생합성 경로 (도 1 참조)에 관련된 효소들인 aldolase를 암호화하는 유전자 HpaI, dehydratase를 암호화하는 유전자 HpaH, reductase를 암호화하는 유전자 nemA, decarboxylase를 암호화하는 유전자 KIVD 및 transaminase를 암호화하는 유전자 BcATPdAT들을 분리하여 벡터로 도입하였다. 또한, 상기 벡터들로부터 유전자들을 모두 연결하여 하나의 벡터에 도입하였다 (도 2). 또한, pyruvate 및/또는 succinic semialdehyde -> 2-oxohept-3-enedioic acid -> 2-ketopimelic acid -> adipate semialdehyde -> 6-aminocaproic acid의 반응 경로에서의 상기 유전자들로부터 발현된 효소들 각각 또는 효소들의 조합에 의한 반응을 확인하여 효소 활성을 확인하였다 (도 3 내지 도 8). 아울러, 상기 유전자들이 모두 함께 도입된 벡터를 형질도입한 대장균에서의 6-aminocaproic acid 생합성을 확인하였다 (도 9 및 도 10).In a specific embodiment of the present invention, the inventors encode a gene HpaI , a gene encoding dehydratase, HpaH , a reductase, which encodes aldolase, an enzyme involved in the biosynthetic pathway (see FIG. 1) of 6-aminocaproic acid, a precursor of caprolactam. Genes nemA , gene KIVD encoding decarboxylase and genes BcAT and PdAT encoding transaminase were isolated and introduced into the vector. In addition, all of the genes from the vectors were linked and introduced into one vector (FIG. 2). In addition, pyruvate and / or succinic semialdehyde-> 2-oxohept-3-enedioic acid -> 2-ketopimelic acid-> adipate semialdehyde-> 6-aminocaproic acid in the reaction pathway by the reaction of each of the enzymes expressed from the genes or a combination of enzymes was confirmed by confirming the enzyme activity (Fig. 3 to Fig. 8). In addition, 6-aminocaproic acid biosynthesis was confirmed in E. coli transfected with the vector introduced with the genes (Fig. 9 and Fig. 10).
따라서, 본 발명의 유전자들이 도입된 벡터로 형질전환된 형질전환체에서 카프로락탐의 전구체인 6-aminocaproic acid의 생합성이 가능하므로, 이를 6-aminocaproic acid의 생합성에 이용할 수 있다.Therefore, the biosynthesis of 6-aminocaproic acid, which is a precursor of caprolactam, is possible in a transformant transformed with a vector into which the genes of the present invention are introduced, and thus it can be used for biosynthesis of 6-aminocaproic acid.
이하, 본 발명의 이해를 돕기 위하여 실시예를 들어 상세하게 설명하기로 한다. 다만 하기의 실시예는 본 발명의 내용을 예시하는 것일 뿐 본 발명의 범위가 하기 실시예에 한정되는 것은 아니다. 본 발명의 실시예는 당업계에서 평균적인 지식을 가진 자에게 본 발명을 보다 완전하게 설명하기 위해 제공되는 것이다.Hereinafter, examples will be described in detail to help understand the present invention. However, the following examples are merely to illustrate the content of the present invention is not limited to the scope of the present invention. The embodiments of the present invention are provided to more completely explain the present invention to those skilled in the art.
<실시예 1> 6-aminocaproic acid 생합성 경로의 효소들을 암호화하는 유전자 클로닝 및 벡터 제작Example 1 Gene cloning and vector construction encoding enzymes of 6-aminocaproic acid biosynthetic pathway
<1-1> 각각의 효소 클로닝<1-1> individual enzyme cloning
Pyruvate로부터 6-aminocaproic acid를 생합성하는 경로의 효소들을 암호화하는 유전자들을 대장균으로부터 클로닝하였다.Genes encoding enzymes of the pathway that biosynthesize 6-aminocaproic acid from pyruvate were cloned from E. coli.
구체적으로, 하기 표 1에 기재된 대장균주들로부터 pyruvate 및/또는 succinic semialdehyde를 4-hydroxy-2-oxoheptanedioic acid로 전환하는 효소 aldolase를 암호화하는 유전자 HpaⅠ(서열번호 1); 4-hydroxy-2-oxoheptanedioic acid를 2-oxohept-3-enedioic acid로 전환하는 효소 dehydratase를 암호화하는 유전자 HpaH (서열번호 2); 2-oxohept-3-enedioic acid를 2-ketopimelic acid로 전환하는 효소 reductase를 암호화하는 유전자 nemA (서열번호 4); 2-ketopimelic acid를 adipate semialdehyde로 전환하는 효소 decarboxylase를 암호화하는 유전자 KIVD(alpha-ketoisovalerate decarboxylase) (서열번호 5); 및 adipate semialdehyde를 6-aminocaproic acid로 전환하는 효소 transaminase를 암호화하는 유전자 PdAT(beta-alanine-pyruvate transaminase) (서열번호 6) 및 BcAT(adenosylmethionine-8-amino-7-oxononaoate Aminotransferase) (서열번호 7)를 각각 표 2에 기재된 프라이머들 (서열번호 15 내지 26)을 이용하여 PCR (95℃ 30초, [95℃ 30초, 각 프라이머 별 TM 값 30초 및 72℃ 60초, 총 30 cycle], 72도 5분)을 통해 증폭하였다. 표 2의 프라이머 중에서 이탤릭체 부분은 제한효소 사이트를 의미하며, 밑줄 친 부분은 In-fusionTM Advantage PCR cloning kit (Clontech, USA)에 도입되었다. 증폭 후 HpaIHpaH를 링커를 이용하여 함께 발현되도록 연결하였고 이를 HpaI-HpaH (서열번호 3)로 명명하였다. 링커를 가지는 상기 증폭된 PCR 산물이 제한효소 (NdeI 및 BamHI)로 분해된 PET28(b+) 벡터에 도입되었으며 도입된 발현벡터를 pETHpaI, pETHpaH, pETnemA, pETKIVD, pETBcAT 및 pETPdAT로 명명하였다 (표 4).Specifically, the gene HpaI (SEQ ID NO: 1) encoding the enzyme aldolase for converting pyruvate and / or succinic semialdehyde into 4-hydroxy-2-oxoheptanedioic acid from the E. coli strains listed in Table 1; The gene HpaH (SEQ ID NO: 2) encoding the enzyme dehydratase, which converts 4-hydroxy-2-oxoheptanedioic acid to 2-oxohept-3-enedioic acid; The gene nemA (SEQ ID NO: 4) encoding the enzyme reductase that converts 2-oxohept-3-enedioic acid to 2-ketopimelic acid; The gene KIVD (alpha-ketoisovalerate decarboxylase) (SEQ ID NO: 5), encoding the enzyme decarboxylase, which converts 2-ketopimelic acid to adipate semialdehyde; And the genes PdAT (beta-alanine-pyruvate transaminase) (SEQ ID NO: 6) and BcAT (adenosylmethionine-8-amino-7-oxononaoate Aminotransferase) (SEQ ID NO: 7) encoding the enzyme transaminase to convert adipate semialdehyde to 6-aminocaproic acid. PCR (95 ℃ 30 seconds, [95 ℃ 30 seconds, TM value for each primer 30 seconds and 72 ℃ 60 seconds, 30 cycles in total], 72 using the primers (SEQ ID NOs. 15 to 26) described in Table 2, respectively. 5 minutes). The italic part of the primers in Table 2 means restriction enzyme sites, and the underlined parts were introduced in the In-fusion TM Advantage PCR cloning kit (Clontech, USA). After amplification, HpaI and HpaH were linked to be expressed together using a linker, which was named HpaI-HpaH (SEQ ID NO: 3). The amplified PCR product with the linker was introduced into a PET28 (b +) vector digested with restriction enzymes ( Nde I and BamH I) and the expression vectors introduced were named pETHpaI, pETHpaH, pETnemA, pETKIVD, pETBcAT and pETPdAT (Table) 4).
표 1
균주
DH5α E. coli strain used for standard cloning procedures
BL21(DE3) E. coli strain used for heterologous gene expression
MG1655(DE3) E. coli strain used for heterologous gene expression
Table 1
Strain
DH5α E. coli strain used for standard cloning procedures
BL21 (DE3) E. coli strain used for heterologous gene expression
MG1655 (DE3) E. coli strain used for heterologous gene expression
표 2
증폭유전자 방향성1 프라이머명 서열번호 서열 (5'-3') source
HpaI F hpaI_F 15 CGCGCGGCAGC CATATG ATGGAAAACAGTTTTAAAGCGGCGC Escherichia coliw3110
R hpaI_R 16 GGTGGTGGTG CTCGAG ATACACGCCGGGCTTAATCGCT
HpaH F hpaH_F 17 CGCGCGGCAGC CATATG ATGTTCGACAAACACACCCACACC Escherichia coliw3110
R hpaH_R 18 GGTGGTGGTG CTCGAG AACAAAGCGGCAGCTAATGGAGC
nemA F nemA_F 19 CGCGCGGCAGC CATATG ATGTCATCTGAAAAACTGTATTCCCC Escherichia coliw3110
R nemA_R 20 GGTGGTGGTG CTCGAG CAACGTCGGGTAATCGGTATAGC Escherichia coliw3110
KIVD F KIVD_F 21 CGCGCGGCAGCCATATG ATGTATACAGTAGGAGATTACCTATT Lactococcus lactis KCTC3115
R KIVD_R 22 GGTGGTGGTG CTCGAG TGATTTATTTTGTTCAGCAAATAGTTT Lactococcus lactisKCTC3115
BcAT F BcAT_F 23 CGCGCGGCAGC CATATG ATGATCTATTTTGATAATAGTGCG Bacillus cereusKCTC1012
R BcAT_R 24 GGTGGTGGTG CTCGAG CCTCATCACTTCATATAATTTTGG Bacillus cereusKCTC3115
PdAT F PdAT_F 25 CGCGCGGCAGC CATATG ATGAACCAACCGCAAAGC Paracoccus denificansKCTC2528
R PdAT_R 26 GGTGGTGGTG CTCGAG GGCCACCTCGGCAAA Paracoccus denificansKCTC2528
TABLE 2
Amplification gene Directionality 1 Primer Name SEQ ID NO: Sequence (5'-3 ') source
HpaI F hpaI_F 15 CGCGCGGCAGC CATATG ATGGAAAACAGTTTTAAAGCGGCGC Escherichia coliw3110
R hpaI_R 16 GGTGGTGGTG CTCGAG ATACACGCCGGGCTTAATCGCT
HpaH F hpaH_F 17 CGCGCGGCAGC CATATG ATGTTCGACAAACACACCCACACC Escherichia coliw3110
R hpaH_R 18 GGTGGTGGTG CTCGAG AACAAAGCGGCAGCTAATGGAGC
nemA F nemA_F 19 CGCGCGGCAGC CATATG ATGTCATCTGAAAAACTGTATTCCCC Escherichia coliw3110
R nemA_R 20 GGTGGTGGTG CTCGAG CAACGTCGGGTAATCGGTATAGC Escherichia coliw3110
KIVD F KIVD_F 21 CGCGCGGCAGCCATATG ATGTATACAGTAGGAGATTACCTATT Lactococcus lactis KCTC3115
R KIVD_R
22 GGTGGTGGTG CTCGAG TGATTTATTTTGTTCAGCAAATAGTTT Lactococcus lactisKCTC3115
BcAT F BcAT_F 23 CGCGCGGCAGC CATATG ATGATCTATTTTGATAATAGTGCG Bacillus cereusKCTC1012
R BcAT_R
24 GGTGGTGGTG CTCGAG CCTCATCACTTCATATAATTTTGG Bacillus cereusKCTC3115
PdAT F PdAT_F 25 CGCGCGGCAGC CATATG ATGAACCAACCGCAAAGC Paracoccus denificansKCTC2528
R PdAT_R 26 GGTGGTGGTG CTCGAG GGCCACCTCGGCAAA Paracoccus denificansKCTC2528
1F: forward primer, R: reverse primer 1 F: forward primer, R: reverse primer
<1-2> 각각의 효소를 암호화하는 유전자들의 연결 벡터 제작<1-2> Construction of Connection Vectors of Genes Encoding Each Enzyme
Pyruvate로부터 6-aminocaproic acid를 생합성하는 경로의 효소들을 암호화하는 유전자들 HpaⅠ, HpaH, nemA, KIVD, PdATBcAT를 모두 포함하는 벡터를 제작하였다.A vector was constructed that contains all of the genes Hpa I , HpaH , nemA , KIVD , PdAT and BcAT , which encode enzymes of the 6-aminocaproic acid biosynthesis pathway from Pyruvate.
구체적으로, aldolase를 암호화하는 HpaI와 hydratase를 암호화하는 HpaH를 링커를 이용하여 함께 발현되도록 연결하였고 이를 pETHpaI-HpaH로 명명하였다. 또한, 상기 효소들을 암호화하는 유전자들을 한 벡터에 도입하기 위하여 상기 실시예 <1-1>에서 제조한 발현벡터 각각을 주형으로 하고 표 3에 나온 각각의 프라이머들 (서열번호 27 내지 36)를 이용하여 PCR을 수행하였고(95℃ 30초, [95℃ 30초, 각 프라이머 별 TM 값 30초 및 72℃ 60초, 총 30 cycle], 72도 5분), 프라이머의 밑줄 친 부분은 In-fusionTM Advantage PCR cloning kit (Clontech, USA)에 도입되었다. 제일 먼저 링커를 가지는 PCR 산물인 BcAT가 제한효소 sphI로 분해된 pACYC184에 도입되었다. 그 후에 상기 BcAT가 도입된 벡터를 HindIII로 분해하고 PdAT PCR 산물을 도입하였다. 또한, BcATPdAT가 도입된 상기 벡터를 SalI로 분해하고 KIVD PCR 산물을 도입하였다. 또한, BcAT, PdATKIVD가 도입된 상기 벡터를 BamHI로 분해하고 nemA PCR 산물을 도입하였다. 아울러, 상기 효소들이 도입된 벡터를 AhdI로 분해한 다음 HpaI-HpaH PCR 산물을 도입하였다. Specifically, HpaI encoding aldolase and HpaH encoding hydratase were linked to be expressed together using a linker, which was named pETHpaI-HpaH. In addition, in order to introduce the genes encoding the enzymes into a vector, each of the expression vectors prepared in Example <1-1> was used as a template, and each of the primers (SEQ ID NOs 27 to 36) shown in Table 3 was used. PCR was performed (95 ° C. 30 sec, [95 ° C. 30 sec, TM value for each primer 30 sec and 72 ° C. 60 sec, total 30 cycles], 72 degrees 5 min), and the underlined portion of the primer was in-fusion. Introduced in TM Advantage PCR cloning kit (Clontech, USA). First, a linker-containing PCR product, BcAT , was introduced into pACYC184 digested with restriction enzyme sph I. Thereafter, the vector into which the BcAT was introduced was digested with Hind III and a PdAT PCR product was introduced. In addition, the vector introduced with BcAT and PdAT was digested with Sal I and a KIVD PCR product was introduced. In addition, the vector introduced with BcAT , PdAT and KIVD was digested with BamH I and nemA PCR products were introduced. In addition, the vector into which the enzymes were introduced was digested with Ahd I and then HpaI-HpaH PCR products were introduced.
그 결과, 6-aminocaproic acid 생합성 경로의 효소들을 암호화하는 유전자 HpaI-HpaH (HpaⅠHpaH 연결), nemA, KIVD, PdATBcAT를 모두 포함하는 발현벡터가 제작되었으며, 이를 pACYCWG로 명명하였다 (표 4 및 도 2).As a result, 6-aminocaproic acid gene encoding the enzyme in the biosynthetic pathway HpaI-HpaH (connection HpaⅠ and HpaH), nemA, KIVD, expression was the vector is produced that contains both the PdAT and BcAT, and named it as pACYCWG (Table 4 And FIG. 2).
표 3
증폭유전자 방향성1 프라이머명 서열번호 서열 (5'-3') source
pACYCHpaI-H F pACYChpaIH_F 27 CGATACTATGACTGATAATACGACTCACTATAGGGGAATTG pETI-H 벡터
R pACYChpaIH_R 28 CATGGCGTTGACTCTCAAAAAACCCCTCAAGACCC pETI-H 벡터
pACYCnemA F pACYCnemA_F 29 CCCGTCCTGTGGATGTAATACGACTCACTATAGGGGAATTG pETnemA 벡터
R pACYCnemA_R 30 CCGGCGTAGAGGATCCAAAAAACCCCTCAAGACCC pETnemA 벡터
pACYCkivd F pACYCKIVD_F 31 AAGGGAGAGCGTCGATAATACGACTCACTATAGGGGAATTG pETKIVD 벡터
R pACYCKIVD_R 32 AAGGGCATCGGTCGACAAAAAACCCCTCAAGACCC pETKIVD 벡터
pACYCBcAT F pACYCBcAT_F 33 CCATCTCCTTGCATGTAATACGACTCACTATAGGGGAATTG pETBcAT 벡터
R pACYCBcAT_R 34 AAGGAATGGTGCATGCAAAAAACCCCTCAAGACCC pETBcAT 벡터
pACYCPdAT F pACYCPdAT_F 35 TATCATCGATAAGCTTAATACGACTCACTATAGGGGAATTG pETPdAT 벡터
R pACYCPdAT_R 36 TACCGCATTAAAGCTCAAAAAACCCCTCAAGACCC pETPdAT 벡터
TABLE 3
Amplification gene Directionality 1 Primer Name SEQ ID NO: Sequence (5'-3 ') source
pACYCHpaI-H F pACYChpaIH_F 27 CGATACTATGACTGA TAATACGACTCACTATAGGGGAATTG pETI-H vector
R pACYChpaIH_R 28 CATGGCGTTGACTCT CAAAAAACCCCTCAAGACCC pETI-H vector
pACYCnemA F pACYCnemA_F 29 CCCGTCCTGTGGATG TAATACGACTCACTATAGGGGAATTG pETnemA vector
R pACYCnemA_R
30 CCGGCGTAGAGGATC CAAAAAACCCCTCAAGACCC pETnemA vector
pACYCkivd F pACYCKIVD_F 31 AAGGGAGAGCGTCGA TAATACGACTCACTATAGGGGAATTG pETKIVD vector
R pACYCKIVD_R 32 AAGGGCATCGGTCGA CAAAAAACCCCTCAAGACCC pETKIVD vector
pACYCBcAT F pACYCBcAT_F 33 CCATCTCCTTGCATG TAATACGACTCACTATAGGGGAATTG pETBcAT vector
R pACYCBcAT_R 34 AAGGAATGGTGCATG CAAAAAACCCCTCAAGACCC pETBcAT vector
pACYCPdAT F pACYCPdAT_F 35 TATCATCGATAAGCT TAATACGACTCACTATAGGGGAATTG pETPdAT vector
R pACYCPdAT_R 36 TACCGCATTAAAGCT CAAAAAACCCCTCAAGACCC pETPdAT vector
표 4
플라스미드 설명 source
pETI-H PT7,His-tag, kanr; E. coli expression vector carrying aldolase
pETnemA PT7,His-tag, kanr; E. coli expression vector carrying reductase
pETKIVD PT7,His-tag, kanr; E. coli expression vector carrying decarboxylase
pETBcAT PT7,His-tag, kanr; E. coli expression vector carrying transaminase
pETPdAT PT7,His-tag, kanr; E. coli expression vector carrying transaminase
pACYC184 E. coli cloning vector Mo-bi tec사
pACYCWG E. coli cloning vector carrying whole genes contained PT7
Table 4
Plasmid Explanation source
pETI-H PT7, His-tag, kanr; E. coli expression vector carrying aldolase
pETnemA PT7, His-tag, kanr; E. coli expression vector carrying reductase
pETKIVD PT7, His-tag, kanr; E. coli expression vector carrying decarboxylase
pETBcAT PT7, His-tag, kanr; E. coli expression vector carrying transaminase
pETPdAT PT7, His-tag, kanr; E. coli expression vector carrying transaminase
pACYC184 E. coli cloning vector Mo-bi tec company
pACYCWG E. coli cloning vector carrying whole genes contained PT7
<실시예 2> 각각의 효소 및 융합단백질 확인Example 2 Identification of Enzymes and Fusion Proteins
<2-1> 각각의 효소 및 융합단백질의 발현 및 정제<2-1> Expression and Purification of Each Enzyme and Fusion Protein
상기 <실시예 1>에서 제작한 플라스미드 pETHpaI, pETHpaH, pETnemA, pETKIVD, pETBcAT, pETPdAT, pETHpaI-HpaH 및 pACYCWG를 열충격법을 통해 E. coli BL21(DE3)에 형질전환하였다. 상기 형질전환체를 37 ℃에서 50 ug/ml의 항생제를 함유하는 LB배지에서 배양하였다. 형질전환체 배양액이 세포 농도 A600=0.5에 도달했을 때, 0.5 mM IPTG(isopropyl-β-thio-D-galactopyranoside)를 첨가하고 37 ℃에서 3시간 동안 추가 배양하였다. 배양한 세포들을 원심분리하여 모으고 생성된 펠릿을 소니케이션으로 파쇄하였다. 파쇄 후 상등액으로부터 Ni-NTA 아가로즈(agarose) (Qiage, Germany), Econo Pac Choromatograpy Column (Bio-Rad, USA)을 이용하여 제조자의 설명에 따라 HpaI (서열번호 8), HpaH (서열번호 9), HpaI-HpaH (서열번호 10), nemA (서열번호 11), KIVD (서열번호 12), PdAT (서열번호 13), BcAT (서열번호 14)를 정제하였다. 정제한 단백질의 농도는 BCA protein assay kit Pierce, USA)로 측정하였다. 그 결과, HpaI-H : 0.216mg/ml; Kivd : 0.523mg/ml; PdAT : 0.176mg/ml; BcAT : 0.632mg/ml; nemA : 0.659mg/ml;로 나타났으며, 단백질 purity는 하기 표 7에서와 같이 나타났다.The plasmids pETHpaI, pETHpaH, pETnemA, pETKIVD, pETBcAT, pETPdAT, pETHpaI-HpaH and pACYCWG prepared in <Example 1> were transformed into E. coli BL21 (DE3) by thermal shock. The transformants were incubated in LB medium containing 50 ug / ml of antibiotics at 37 ° C. When the transformant culture reached the cell concentration A600 = 0.5, 0.5 mM IPTG (isopropyl-β-thio-D-galactopyranoside) was added and further incubated at 37 ° C for 3 hours. Cultured cells were collected by centrifugation and the resulting pellet was crushed by sonication. From the supernatant after crushing, HpaI (SEQ ID NO: 8), HpaH (SEQ ID NO: 9) using Ni-NTA agarose (Qiage, Germany), Econo Pac Choromatograpy Column (Bio-Rad, USA) according to the manufacturer's instructions , HpaI-HpaH (SEQ ID NO: 10), nemA (SEQ ID NO: 11), KIVD (SEQ ID NO: 12), PdAT (SEQ ID NO: 13), and BcAT (SEQ ID NO: 14) were purified. Purified protein concentration was measured by BCA protein assay kit Pierce, USA. As a result, HpaI-H: 0.216 mg / ml; Kivd: 0.523 mg / ml; PdAT: 0.176 mg / ml; BcAT: 0.632 mg / ml; nemA: 0.659 mg / ml; and the protein purity was as shown in Table 7 below.
<실시예 3> 정제한 효소 활성 확인Example 3 Confirmation of Purified Enzyme Activity
<3-1> 정제한 aldolase-dehydratase (HpaI-HpaH)의 활성 확인<3-1> Confirmation of activity of purified aldolase-dehydratase (HpaI-HpaH)
상기 실시예 <2-1>에서 정제한 aldolase 및 aldolase-dehydratase (HpaI-HpaH) 효소 (pETHpaI-HpaH로 형질전환된 대장균을 이용하여 정제)에 의한 pyruvate 및/또는 succinic semialdehyde의 2-oxohept-3-enedioic acid로의 전환을 확인하기 위하여, 효소 반응을 진행하였다. 2-oxohept-3 of pyruvate and / or succinic semialdehyde by aldolase and aldolase-dehydratase (HpaI-HpaH) enzyme (purified using E. coli transformed with pETHpaI-HpaH) purified in Example <2-1> In order to confirm the conversion to -enedioic acid, an enzyme reaction was performed.
구체적으로, 기질인 pyruvate 4 g/L와 SSA(succinic semialdehyde) 4 g/L, 보조인자(cofactor)로 MnCl2 50 mM 및 상기 실시예 <2-1>에서 정제한 HpaI 발현 단백질인 aldolase 및 HpaIHpaH가 연결되어 발현된 aldolase-dehydratase를 각각 혼합하고 pH 발란스를 위하여 100 mM HEPES buffer (pH8.0)로 볼륨을 맞춘 뒤 30 ℃에서 하룻밤 동안 반응을 유도하였다. 반응 후 Pyruvate assay kit (Sigma, USA)로 A570에서 흡광도를 측정하여 기질인 pyruvate의 농도 변화를 확인하였다 (표 5).Specifically, 4 g / L of the substrate pyruvate and 4 g / L of SSA (succinic semialdehyde), MnCl 2 50 mM as a cofactor and the HpaI expression protein purified in Example <2-1> Aldolase and aldolase-dehydratase expressed by connecting HpaI and HpaH were mixed, adjusted to 100 mM HEPES buffer (pH8.0) for pH balance, and the reaction was induced at 30 ° C. overnight. After the reaction, the absorbance was measured in A570 using a Pyruvate assay kit (Sigma, USA) to confirm the concentration change of the substrate pyruvate (Table 5).
그 결과, aldolase-hydratase (HpaI-HpaH)에 의해 기질인 pyruvate의 농도가 감소함을 확인하여 pyruvate 및/또는 succinic semialdehyde의 2-oxohept-3-enedioic acid로의 전환 반응이 수행되었음을 알 수 있었다 (도 3). As a result, it was confirmed that the concentration of pyruvate, a substrate, was decreased by aldolase-hydratase (HpaI-HpaH), indicating that conversion of pyruvate and / or succinic semialdehyde to 2-oxohept-3-enedioic acid was performed (FIG. 3).
표 5
aldolase_hydratase pyruvate SSA A 570 (흡광도) Pyruvate[uM]
0 100 100 0.603 3.42
300 0 0 0.162 1.22
300 100 100 0.184 1.33
100 100 100 0.322 2.01
Table 5
aldolase_hydratase pyruvate SSA A 570 (absorbance) Pyruvate [uM]
0 100 100 0.603 3.42
300 0 0 0.162 1.22
300 100 100 0.184 1.33
100 100 100 0.322 2.01
<3-2> 정제한 reductase (nemA)의 활성 확인<3-2> Confirmation of activity of purified reductase (nemA)
상기 실시예 <2-1>에서 정제한 Reductase (nemA)에 의해 2-oxohept-3-enedioic acid가 2-ketopimeli acid로 전환되는지 확인하기 위하여 효소 반응을 진행하였다. In order to confirm whether 2-oxohept-3-enedioic acid is converted to 2-ketopimeli acid by Reductase ( nemA ) purified in Example <2-1>.
구체적으로, 기질인 2-oxohept-3-enedioic acid를 구매하기 어렵기 때문에 본 반응이 역 반응으로도 진행됨을 이용하여 2-ketopimeli acid를 기질로 이용하였다. 상기 기질에 보조인자로 4 mM NAD 와 0.4 mM FeSO4 및 nemA가 발현된 reductase를 첨가한 후 pH 발란스를 위하여 1 M potassium phosphate buffer (pH5.3)로 볼륨을 맞추어 30 ℃에서 반응을 유도하였다. 반응 후, 반응시 NAD에서 NADH로 전환되어 생성되는 NADH의 양을 NADH assay kit (abcam, USA)로 A450에서 흡광도를 측정하여 전환 효과를 확인하였다 (표 6).Specifically, since 2-oxohept-3-enedioic acid, which is a substrate, is difficult to purchase, the reaction proceeds as a reverse reaction, and 2-ketopimeli acid was used as a substrate. 4 mM NAD and 0.4 mM FeSO 4 and nemA-expressing reductase were added to the substrate, and then the reaction was induced at 30 ° C. by adjusting the volume with 1 M potassium phosphate buffer (pH5.3) for pH balance. After the reaction, the conversion effect was confirmed by measuring the absorbance at A450 with NADH assay kit (abcam, USA) by converting NADH to NADH during the reaction (Table 6).
그 결과, pETnemA에 의해 발현 및 정제된 reductase가 NADH를 생성함을 확인함으로써, 2-ketopimeli acid의 2-oxohept-3-enedioic acid로의 전환 효과를 확인할 수 있었다 (도 4). 상기 실시예 2 및 3의 결과를 표 7에서 정리하였다. As a result, by confirming that the reductase expressed and purified by pETnemA produced NADH, it was confirmed that the conversion effect of 2-ketopimeli acid to 2-oxohept-3-enedioic acid (FIG. 4). The results of Examples 2 and 3 are summarized in Table 7.
표 6
reductase 2-ketopimelic acid NAD FeSO 4 nemA
200 0 4mM 0.4mM 0.754
200 4mM 4mM 0.4mM 1.26
100 4mM 4mM 0.4mM 0.943
0 4mM 4mM 0.4mM 0.881
Table 6
reductase 2-ketopimelic acid NAD FeSO 4 nemA
200 0 4mM 0.4mM 0.754
200 4mM 4mM 0.4mM 1.26
100 4mM 4mM 0.4mM 0.943
0 4mM 4mM 0.4mM 0.881
표 7
발현특성 Purity(%) Specific activity(U/mg) Assay
HpaI-HpaH Soluble 22 13.41 Pyruvate
nemA Soluble 43 2.71 NADH
KivD Soluble 24 - No STD
PdAT Soluble 84 13.13 Glutamate
TABLE 7
Expression characteristics Purity (%) Specific activity (U / mg) Assay
HpaI-HpaH Soluble 22 13.41 Pyruvate
nemA Soluble 43 2.71 NADH
KivD Soluble 24 - No std
PdAT Soluble 84 13.13 Glutamate
<3-3> aldose-dehydratase 및 reductase 커플링(coupling) 반응 분석<3-3> Analysis of aldose-dehydratase and reductase coupling reaction
상기 실시예 <3-1>에서 pyruvate 및/또는 succinic semialdehyde의 2-oxohept-3-enedioic acid로의 전환을 확인하고, <3-2>에서 2-oxohept-3-enedioic acid의 2-ketopimeli acid로의 전환을 역반응으로 확인하였으므로, 상기 두 효소에 의해 두 반응이 함께 일어나는지 확인하였다. Confirmation of conversion of pyruvate and / or succinic semialdehyde to 2-oxohept-3-enedioic acid in Example <3-1>, and conversion of 2-oxohept-3-enedioic acid to 2-ketopimeli acid in <3-2> Since the conversion was confirmed by the reverse reaction, it was confirmed whether the two reactions occurred together by the two enzymes.
구체적으로, 기질로 4 g/L의 pyruvate, 4 g/L의 SSA 및 200 mM NADH를 넣어준 뒤 보조인자로 50 mM MnCl2를 첨가하고 HpaI-HpaH가 발현된 aldolase-hydratase 및 nemA가 발현된 reductase를 넣고 pH 발란스를 위하여 100 mM potassium phosphate buffer (pH8.0)로 볼륨을 맞추었다. 그 후 효소 반응을 유도하여 생성물인 2-ketopimelic acid를 LC-ms/ms로 확인하였다. TIC는 m/z의 50-300까지 전체적으로 분리한 것이며, SIM은 full scan에서는 보이지 않는 피크(peak)를 분자이온만(여기서는 155) 따로 모니터링 하는 방법이고, SRM은 분자 이온을 높은 에너지에서 쪼개 daughter ion을 생성하는 방법이다.Specifically, 4 g / L pyruvate, 4 g / L SSA, and 200 mM NADH were added to the substrate , followed by addition of 50 mM MnCl 2 as a cofactor, and reductase expressing aldolase-hydratase and nemA expressing HpaI - HpaH. The volume was adjusted to 100 mM potassium phosphate buffer (pH 8.0) for pH balance. After that, the enzyme reaction was induced to confirm the product 2-ketopimelic acid LC-ms / ms. TIC is a total separation of 50-300 m / z, SIM is a method to monitor peaks that are invisible in full scan (only 155 here), and SRM splits molecular ions at high energy. It is a method of generating ions.
그 결과, 대조군인 2-ketopimelic acid (Sigma Aldrich)와 유사한 시간 (RT)에 피크가 형성되었으며, 피크의 mass 값이 동일함을 확인하였다 (도 5). 따라서, 두 효소가 함께 발현되면 pyruvate 및/또는 succinic semialdehyde로부터 2-ketopimelic acid가 생성됨을 알 수 있었다.As a result, a peak was formed at a time (RT) similar to 2-ketopimelic acid (Sigma Aldrich) as a control, and the mass value of the peak was confirmed to be the same (FIG. 5). Therefore, when the two enzymes are expressed together, 2-ketopimelic acid was produced from pyruvate and / or succinic semialdehyde.
<3-4> 정제한 transaminase (BcAT 또는 PdAT)의 활성 확인<3-4> Confirmation of activity of purified transaminase (BcAT or PdAT)
상기 실시예 <2-1>에서 정제한 transaminase에 의해 adipate semialdehyde가 6-aminocaproic acid로 전환되는지 확인하기 위하여 효소 반응을 진행하였다. An enzymatic reaction was performed to confirm whether adipate semialdehyde is converted to 6-aminocaproic acid by the transaminase purified in Example <2-1>.
구체적으로, 기질인 adipate semialdehyde의 구매가 어려우므로, 본 반응이 역반응으로도 진행됨을 이용하여 20 mM 6-aminocaproic acid를 기질로 첨가하고 아미노기 제공자로 10 mM sodium alpha keto glutarate를 보조인자로는 0.2 mM PLP를 첨가한 뒤 상기 실시예 <2-1>에서 각각의 BcAT 및 PdAT가 발현되고 정제된 transaminase를 넣고 pH 발란스를 위하여 100mM potassium phosphate buffer(pH7.0)로 볼륨을 맞추었다. 효소 반응을 30 ℃에서 하룻밤 동안 수행한 뒤 반응을 확인하기 위하여 생성물인 글루타메이트(glutamate)의 생성 여부 및 농도 변화를 글루타메이트 분석기로 측정한 후 specific activity를 계산하였다.Specifically, since it is difficult to purchase adipate semialdehyde as a substrate, the reaction also proceeds in reverse reaction, so that 20 mM 6-aminocaproic acid is added as a substrate and 10 mM sodium alpha keto glutarate as an amino group is 0.2 mM PLP as a cofactor. After the addition of each of the BcAT and PdAT expressed in Example <2-1> and the purified transaminase was added to adjust the volume with 100mM potassium phosphate buffer (pH7.0) for pH balance. After enzymatic reaction was performed overnight at 30 ° C., specific activity was calculated after measuring the production and concentration change of glutamate, a product of glutamate, in order to confirm the reaction.
그 결과, PdAT와 BcAT 모두 glutamate가 형성되었으며 pdAT에서 활성이 더 높은 것을 확인할 수 있었다(표 8). As a result, glutamate was formed in both PdAT and BcAT and it was confirmed that pdAT had higher activity (Table 8) .
표 8
  glutamate(mM) Specific activity (U/mg)
pETPdAT 1.40 13.13
pETcAT 0.56 3.55
Table 8
  glutamate (mM) Specific activity (U / mg)
pETPdAT 1.40 13.13
pETcAT 0.56 3.55
<3-5> transaminase (BcAT 및/또는 PdAT) 및 decarboxylase (KIVD)의 커플링(coupling) 반응 분석<3-5> Coupling analysis of transaminase (BcAT and / or PdAT) and decarboxylase (KIVD)
상기 실시예 <3-4>에서 확인한 transaminase (BcAT 및/또는 PdAT)와 본 발명의 decarboxylase (KIVD)에 의해 2-ketopomelic acid가 6-aminocaproic acid로 전환되는지 확인하였다. It was confirmed whether 2-ketopomelic acid is converted to 6-aminocaproic acid by the transaminase (BcAT and / or PdAT) and decarboxylase (KIVD) of the present invention.
구체적으로, 상기 두 반응이 함께 일어나는지 확인하기 위하여 기질로 2-ketopimelic acid, 아미노기 제공자로 20 mM glutamate, 보조인자로 5 mM MgSO4와 0.1 mM PLP를 첨가하고 KIVD가 발현되고 정제된 decarboxylase와 BcATPdAT가 발현되고 정제된 transaminase를 넣어준 뒤 pH 발란스를 위하여 100 mM potassium phosphate buffer (pH7.0)로 볼륨을 맞췄다. 30 ℃에서 하룻밤 동안 효소 반응을 유도한 뒤에 생성물을 얻었다. Specifically, 2-ketopimelic acid as a substrate, 20 mM glutamate as an amino group donor, 5 mM MgSO 4 and 0.1 mM PLP as cofactor, and KIVD -expressed and purified decarboxylase and BcAT and PdAT to confirm whether the two reactions occur together Was expressed and purified transaminase was added to adjust the volume with 100 mM potassium phosphate buffer (pH 7.0) for pH balance. The product was obtained after inducing an enzymatic reaction at 30 ° C. overnight.
상기 생성물을 TLC를 이용하여 확인하기 위하여, 실리카겔(silicagel)판의 아랫부분 양쪽 가로 세로 1cm부분을 연필로 줄을 그어서 표시하고 샘플을 점적할 부분을 연필로 아주 작게 점으로 표시한 뒤, 상기에서 얻은 생성물을 1ul씩 총 5회 점적한 후 판을 잘 말려 탱크(tank)에 넣고 입구를 봉한 후 1시간 전개하였다. 전개시약은 n-butanol: acetic acid: D.W.를 5:1:5로 잘 섞은 뒤 상등액만 사용하였다. 전개가 끝난 뒤 판을 꺼내어 1% ninhydrin solution을 스프레이로 뿌린 뒤 80℃에서 5분간 구운 뒤 스팟의 색을 확인하였다.In order to confirm the product using TLC, the bottom and bottom 1cm portions of both sides of the silica gel plate were lined with a pencil and marked with a pencil with a small dot on the bottom of the sample. After the obtained product was instilled 5 times in 1 ul each, the plate was well dried and placed in a tank to seal the inlet and then developed for 1 hour. The developing reagent was mixed well with 5: 1: 5 n-butanol: acetic acid: D.W. and only supernatant was used. After the development was completed, the plate was taken out, sprayed with 1% ninhydrin solution, baked at 80 ° C. for 5 minutes, and the color of the spot was checked.
또한, 상기 생성물을 Lc-ms/ms (컬럼: 250X4.6mm OptimaPak C18, (RS Tech, korea); 이동상: A-20% 아세토니트릴, B-80% 증류수; 유속: 300㎕/min; 주입량: 1㎕; Ionization: ESI(+)-MS, positivw scan mode; Source voltage=2.5kV; Capillary temperature=350℃; m/z=50-150; step size=0.1m/z; nebuliser pressure=100psi)으로 확인하였다.In addition, the product was Lc-ms / ms (column: 250X4.6mm OptimaPak C18, (RS Tech, Korea); mobile phase: A-20% acetonitrile, B-80% distilled water; flow rate: 300ul / min; injection volume: 1 μl; Ionization: ESI (+)-MS, positivw scan mode; Source voltage = 2.5 kV; Capillary temperature = 350 ° C .; m / z = 50-150; step size = 0.1 m / z; nebuliser pressure = 100 psi) Confirmed.
그 결과, 6-aminocaproic acid가 생성된 것을 TLC 및 Lc-ms/ms로 확인할 수 있었다 (도 6 및 도 7).As a result, it was confirmed that the 6-aminocaproic acid was produced by TLC and Lc-ms / ms (Fig. 6 and 7).
<실시예 4> 세포 내에서의 6-aminocaproic acid 생합성 및 효소 활성 확인Example 4 6-aminocaproic acid biosynthesis and enzyme activity in cells
<4-1> 6-aminocaproic acid 생합성 확인<4-1> Confirmation of 6-aminocaproic acid biosynthesis
상기 실시예 <1-2>에서 pACYCWG로 형질전환된 대장균 내에서의 융합 단백질 (aldolase-dehydratase-reductase-decarboxylase-transaminase) 발현에 의한 glucose 및 SSA의 6-aminocaproic acid로의 생합성을 확인하였다. In Example <1-2>, biosynthesis of glucose and SSA to 6-aminocaproic acid by expression of a fusion protein (aldolase-dehydratase-reductase-decarboxylase-transaminase) in Escherichia coli transformed with pACYCWG was confirmed.
구체적으로, 하기 표 9의 조성의 배지 2 L에서 pACYCWG로 형질전환한 대장균과 대조군으로 빈 벡터로 형질전환한 대장균을 24시간 동안 37℃에서 유가 배양하였다. 배양 후 세포를 원심분리하여 펠릿을 얻었으며, 상기 펠릿을 증류수로 5회 세척한 뒤 50 ml의 증류수에 다시 현탁하였다. 상기 현탁액에 10g glucose, 4g/L succinic semialdehyde 및 1ml/L trace elements를 넣은 후 37℃에서 16시간 동안 in vivo 반응을 유도하였다. 반응 후에 상등액만 얻어 TLC 및 LC-ms(컬럼: 250X4.6mm OptimaPak C18, (RS Tech, korea); 이동상: A-20% 아세토니트릴, B-80% 증류수; 유속: 300㎕/min; 주입량: 1㎕; Ionization: ESI(+)-MS, positive scan mode; Source voltage=2.5kV; Capillary temperature=350℃; m/z=50-150; step size=0.1m/z; nebuliser pressure=100psi)로 6-aminocaproic acid를 확인하였다. TIC는 m/z의 50-300까지 전체적으로 분리한 것이며, SIM은 full scan에서는 보이지 않는 피크(peak)를 분자이온만(여기서는 155) 따로 모니터링 하는 방법이고, SRM은 분자 이온을 높은 에너지에서 쪼개 daughter ion을 생성하는 방법이다.Specifically, Escherichia coli transformed with pACYCWG and 2 Escherichia coli transformed with an empty vector as a control in 2 L of the medium of the composition of Table 9 were incubated at 37 ° C. for 24 hours. After incubation, the cells were centrifuged to obtain pellets. The pellets were washed five times with distilled water and then suspended again in 50 ml of distilled water. 10 g glucose, 4 g / L succinic semialdehyde and 1 ml / L trace elements were added to the suspension, and the in vivo reaction was induced for 16 hours at 37 ° C. TLC and LC-ms (column: 250 × 4.6 mm OptimaPak C18, (RS Tech, Korea); mobile phase: A-20% acetonitrile, B-80% distilled water; flow rate: 300 μl / min; injection volume: 1 μl; Ionization: ESI (+)-MS, positive scan mode; Source voltage = 2.5kV; Capillary temperature = 350 ° C; m / z = 50-150; step size = 0.1m / z; nebuliser pressure = 100psi) 6-aminocaproic acid was identified. TIC is a total separation of 50-300 m / z, SIM is a method to monitor peaks that are invisible in full scan (only 155 here), and SRM splits molecular ions at high energy. It is a method of generating ions.
그 결과, 20시간 배양한 세포를 가지고 생합성 전환을 유도한 3번 레인에서 6-aminocaproic acid와 같은 라인의 spot이 보였으므로 6-aminocaproic acid가 형성됨을 확인할 수 있었다 (도 8). 또한, Lc- ms와 Lc-ms/ms에서 측정한 결과에서도 6-aminocaproic acid 피크를 확인함으로써 in vivo로의 생합성 경로를 확인하였다 (도 9).As a result, it was confirmed that 6-aminocaproic acid was formed because spots of the same line as 6-aminocaproic acid were seen in lane 3 inducing biosynthetic conversion with the cells cultured for 20 hours (FIG. 8). In addition, the biosynthetic pathway into in vivo was confirmed by confirming the 6-aminocaproic acid peak in the results measured at Lc-ms and Lc-ms / ms (FIG. 9).
표 9
component g/L
Glucose 15
MgSO4·7H2O 2
Yeast extract 5
(NH4) 2SO4 10
NaCl 0.5
Trace elements 1
KH2PO4 3
Na2HPO4·12H2O 3
chlorampenicol 0.01
lactose 5
Table 9
component g / L
Glucose
15
MgSO 4 7 H 2 O 2
Yeast extract 5
(NH 4 ) 2 SO 4 10
NaCl 0.5
Trace elements One
KH 2 PO 4 3
Na 2 HPO 4 · 12H 2 O 3
chlorampenicol 0.01
lactose 5
또한 글루코오스에서 6-aminocaproic acid(6-ACA)로의 전환 수율을 구하기 위하여 사용된 글루코오스양을 glucose analyser를 사용하여 측정하고 생성된 6-aminocaproic acid양을 LC-MS로부터 구하였다. 실제 반응 시 glucose 10g을 넣어주었으나 실제로 균주가 사용한 양은 initial glucose에서 last glucose 를 뺀 양으로 구하였으며, 6-ACA가 형성된 것을 정량 값으로 나타냈다 (No plasmid, Pacyc184, HpaIH-nemA, PdAT-Kivd: 음성대조군). 그 결과, 글루코오스에서 6-ACA로 약 2.5%의 전환 수율을 나타냄을 확인하였다 (표 10).In addition, the amount of glucose used for the conversion of glucose to 6-aminocaproic acid (6-ACA) was measured using a glucose analyser, and the amount of 6-aminocaproic acid produced was determined from LC-MS. During the actual reaction, 10g of glucose was added, but the amount actually used by the strain was obtained by subtracting last glucose from initial glucose, and 6-ACA was formed as a quantitative value (No plasmid, Pacyc184, HpaIH-nemA, PdAT-Kivd: Negative control). As a result, it was confirmed that the conversion yield of glucose to 6-ACA was about 2.5% (Table 10).
표 10
Initial glucose(g/L) LastGlucose(g/L) 6-ACA(g/L)
No plasmid 10 9.87 ND(not detected)
pACYC184 10 6.19 ND
HpaIH-nemA 10 6.23 ND
PdAT-Kivd 10 6.54 ND
pACYCWG 10 4.17 ≒0.3
Table 10
Initial glucose (g / L) LastGlucose (g / L) 6-ACA (g / L)
No plasmid 10 9.87 ND (not detected)
pACYC184 10 6.19 ND
HpaIH-nemA 10 6.23 ND
PdAT-Kivd 10 6.54 ND
pACYCWG
10 4.17 ≒ 0.3
<4-2> 세포내에서의 효소 발현 확인<4-2> Confirmation of Enzyme Expression in Cells
상기 실시예 <4-1>에서 배양된 세포 내 융합한 재조합 단백질을 Laemmli의 방법에 따라 SDS-PAGE를 이용하여 웨스턴 블롯 분석을 수행하였다 (Laemmli, U.K. 1970, Nature 227:680-685). The recombinant protein fused in cells cultured in Example <4-1> was subjected to Western blot analysis using SDS-PAGE according to Laemmli's method (Laemmli, UK 1970, Nature 227: 680-685).
구체적으로, 10% SDS-PAGE 겔로 분리된 단백질들을 니트로셀룰로오스 멤브레인으로 트랜스퍼하였다. 트랜스퍼 후 니트로셀룰로오스 멤브레인을 5% 탈지분유를 포함하는 PBS(phosphate buffered saline)로 블락킹하였으며, PBST (0.1% Tween20 in PBS)로 세 번 세척하였다. 세척한 상기 멤브레인을 His-probe 단일클론 항체 (Santa Cruz Biotechnology, USA)로 1시간 동안 실온에서 반응시켰다. 그 후 IgG AP (alkaline phosphatase) 항체 (sigma, USA)와 특이적으로 반응하는 항원이 AP 결합 기질 키트 (Bio-rad, USA)에 나타났다 (도 10). Specifically, proteins separated by 10% SDS-PAGE gels were transferred to nitrocellulose membrane. After transfer, the nitrocellulose membrane was blocked with PBS (phosphate buffered saline) containing 5% skim milk powder, and washed three times with PBST (0.1% Tween20 in PBS). The washed membrane was reacted with His-probe monoclonal antibody (Santa Cruz Biotechnology, USA) for 1 hour at room temperature. Antigens that specifically react with IgG AP (alkaline phosphatase) antibodies (sigma, USA) were shown in the AP Binding Substrate Kit (Bio-rad, USA) (FIG. 10).
<실시예 5> 높은 효소 활성을 나타내는 발효 조건 분석Example 5 Fermentation Condition Analysis Showing High Enzyme Activity
<5-1> 플라스크 배양<5-1> flask culture
pACYCWG로 형질전환한 대장균의 배양 상등액으로부터 6-aminocaproic acid가 형성됨을 확인하기 위하여 플라스크로 배양하여 배양액을 분석하였다. In order to confirm that 6-aminocaproic acid was formed from the culture supernatant of Escherichia coli transformed with pACYCWG, the culture was analyzed by flask culture.
구체적으로, 하기 표 11의 조성의 배지 100 mL에서 pACYCWG로 형질전환한 대장균 및 대조군으로 빈 벡터로 형질전환한 대장균을 24시간 동안 28℃에서 배양하였다. 대장균 배양 후 상등액을 얻어 LC-ms로 분석하였다. Specifically, E. coli transformed with pACYCWG in 100 mL of the composition of Table 11 and E. coli transformed with the empty vector as a control were incubated at 28 ° C. for 24 hours. After the culture of E. coli, the supernatant was obtained and analyzed by LC-ms.
그 결과, 생합성 전환이 유도된 것을 LC-ms의 스펙트럼으로 확인할 수 있었다 (도 11).As a result, it was confirmed that the biosynthetic conversion was induced by the spectrum of LC-ms (Fig. 11).
표 11
component g/L
Glucose 15
MgSO4·7H2O 2
Yeast extract 20
Casein peptone 10
(NH4)2SO4 10
NaCl 0.5
Trace elements 1
KH2PO4 3
Na2HPO4·2H2O 3
chlorampenicol 0.01
Table 11
component g / L
Glucose
15
MgSO4, 7H2O 2
Yeast extract 20
Casein peptone 10
(NH 4 ) 2 SO 4 10
NaCl 0.5
Trace elements One
KH 2 PO 4 3
Na 2 HPO 4 2H 2 O 3
chlorampenicol 0.01
<5-2> 발효 배양<5-2> fermentation culture
6-aminocaproic acid의 대량배양을 위하여 하기 표 12의 조성의 배지 2.5L에서 pACYCWG로 형질전환한 대장균을 24시간 동안 배양하였다. 배양 후 초기 당이 소진되는 시점에 15g/L의 lactose를 추가하여 효소들의 발현을 유도한 뒤 시간 당 4g/L의 당을 피딩(feeding)하였다 (도 12). 대장균 배양 후 상등액을 얻어 LC-MS로 분석하였다. 그 결과 6-aminocaproic acid가 생성됨을 확인하였다 (도 13). 또한 웨스턴 블롯을 통해 발효 배양으로 원하는 효소가 발현되었음을 확인하였다 (도 14).For mass culture of 6-aminocaproic acid, E. coli transformed with pACYCWG in 2.5L of the medium of the composition of Table 12 was incubated for 24 hours. After incubation, 15 g / L of lactose was added to induce the expression of enzymes at the time of initial sugar consumption and then fed 4 g / L of sugar per hour (FIG. 12). After E. coli culture, the supernatant was obtained and analyzed by LC-MS. As a result, it was confirmed that 6-aminocaproic acid was produced (FIG. 13). In addition, it was confirmed that the desired enzyme was expressed by fermentation culture through Western blot (FIG. 14).
표 12
component g/L
Glucose 15
MgSO4·7H2O 2
Yeast extract 5
(NH4)2SO4 10
NaCl 0.5
Trace elements 1
KH2PO4 1.6
Na2HPO4·2H2O 4.4
chlorampenicol 20ug/ml
Table 12
component g / L
Glucose
15
MgSO4, 7H2O 2
Yeast extract 5
(NH 4 ) 2 SO 4 10
NaCl 0.5
Trace elements One
KH 2 PO 4 1.6
Na 2 HPO 4 2H 2 O 4.4
chlorampenicol 20ug / ml
<5-3> 균주 개량(Strain improvement)<5-3> Strain improvement
지금까지 transaminase 두 종류를 사용하였으나, 효소들이 많아 발현이 잘 되지 않는 단점이 있어 하나만 선택 사용하고자 하였다. PdAT, BcAT 둘 중 specific activity가 높은 PdAT만을 사용하여 벡터를 제작하였고 이 벡터는 pPKNI (pACYCWG-BcAT) 로 명명하였다. So far, two types of transaminase have been used, but there are a lot of enzymes that do not express well. A vector was constructed using only PdAT having high specific activity among PdAT and BcAT, and this vector was named pPKNI (pACYCWG-BcAT).
벡터 사이즈가 크기 때문에 균주 내 recombination 가능성이 있어 recombinase를 인코딩하는 유전자 RecA가 mutation된 균주 HMS174(DE3)를 선별하여 사용하였다.Since the vector size is large, there is a possibility of recombination in the strain, and a strain HMS174 (DE3) mutated the gene RecA encoding the recombinase was used.
pPKNI를 균주 HMS174(DE3)에 형질 전환하였고 발효를 통해 6-ACA 생산을 유도하였다. 구체적으로 하기 표 12의 조성의 배지 2.5L로 대장균을 24시간 동안 배양하였다. 배양 후 3시간 후 0.4mM IPTG를 추가하여 효소들의 발현을 유도하였고 초기 당 소진 후 시간 당 5g/L의 당을 피딩(feeding)하였다 (도 15). 대장균 배양 후 상등액을 얻어 LC-MS/MS로 분석하였다. 그 결과 6-aminocaproic acid가 생성됨을 확인하였다 (도 16).pPKNI was transformed into strain HMS174 (DE3) and fermentation induced 6-ACA production. Specifically, E. coli was incubated for 24 hours in a medium of 2.5L of Table 12. After 3 hours of incubation, 0.4 mM IPTG was added to induce the expression of enzymes and 5 g / L of sugar was fed per hour after initial sugar exhaustion (FIG. 15). After E. coli culture, the supernatant was obtained and analyzed by LC-MS / MS. As a result, it was confirmed that 6-aminocaproic acid was produced (FIG. 16).

Claims (17)

1) HpaI(4-hydroxy-2-oxo-heptane-1,7-dioate aldolase)-HpaH(2-oxo-hept-3-ene-1,7-dioate dehydratase) 유전자, nemA(N-ethylmaleimide reductase) 유전자, KIVD(alpha-ketoisovalerate decarboxylase) 유전자; 를 포함하고, 그리고 PdAT(beta-alanine-pyruvate transaminase) 및 BcAT(adenosylmethionine-8-amino-7-oxononaoate Aminotransferase) 유전자 중 어느 하나 이상;을 포함하는 발현벡터를 제조하는 단계; 및1) HpaI (4-hydroxy-2-oxo-heptane-1,7-dioate aldolase ) -HpaH ( 2-oxo-hept-3-ene-1,7-dioate dehydratase) gene, nemA (N-ethylmaleimide reductase) Gene, KIVD (alpha-ketoisovalerate decarboxylase) gene; Producing an expression vector comprising; and any one or more of PdAT (beta-alanine-pyruvate transaminase) and BcAT (adenosylmethionine-8-amino-7-oxononaoate Aminotransferase) gene; And
2) 상기 단계 1)의 발현벡터를 미생물에 형질전환하는 단계를 포함하는 6-아미노카프로산(6-aminocaproic acid) 생산방법.2) 6-aminocaproic acid (6-aminocaproic acid) production method comprising the step of transforming the expression vector of step 1) to the microorganism.
제 1항에 있어서, 상기 HpaI-HpaH 유전자는 알돌라아제(aldolase)-디하이드라타제(dehydratase)를 암호화하는 서열번호 3으로 표시되는 폴리뉴클레오티드를 포함하는 것을 특징으로 하는 6-아미노카프로산의 생산방법.The 6-aminocaproic acid of claim 1, wherein the HpaI-HpaH gene comprises a polynucleotide represented by SEQ ID NO: 3 encoding an aldolase-dehydratase. Production method.
제 1항에 있어서, 상기 nemA 유전자는 리덕타아제(reductase)를 암호화하는 서열번호 4로 표시되는 폴리뉴클레오티드를 포함하는 것을 특징으로 하는 6-아미노카프로산의 생산방법.The method for producing 6-aminocaproic acid according to claim 1, wherein the nemA gene comprises a polynucleotide represented by SEQ ID NO: 4 encoding a reductase.
제 1항에 있어서, 상기 KIVD(alpha-ketoisovalerate decarboxylase) 유전자는 디카르복실라아제(decarboxylase)를 암호화하는 서열번호 5로 표시되는 폴리뉴클레오티드를 포함하는 것을 특징으로 하는 6-아미노카프로산의 생산방법.The method of claim 1, wherein the KIVD (alpha-ketoisovalerate decarboxylase) gene comprises a polynucleotide represented by SEQ ID NO: 5 encoding a decarboxylase. .
제 1항에 있어서, 상기 PdAT(beta-alanine-pyruvate transaminase) 유전자는 트랜스아미나아제(transaminase)를 암호화하는 서열번호 6으로 표시되는 폴리뉴클레오티드를 포함하는 것을 특징으로 하는 6-아미노카프로산의 생산방법.The method of claim 1, wherein the beta-alanine-pyruvate transaminase ( PdAT ) gene comprises a polynucleotide represented by SEQ ID NO: 6 encoding a transaminase. .
제 1항에 있어서, 상기 BcAT(adenosylmethionine-8-amino-7-oxononaoate Aminotransferase) 유전자는 트랜스아미나아제(transaminase)를 암호화하는 서열번호 7로 표시되는 폴리뉴클레오티드를 포함하는 것을 특징으로 하는 6-아미노카프로산의 생산방법.The 6- aminocapro according to claim 1, wherein the adenosylmethionine-8-amino-7-oxononaoate Aminotransferase (BcAT) gene comprises a polynucleotide represented by SEQ ID NO: 7 encoding a transaminase. Acid production method.
제1항에 있어서, 상기 단계 1)의 발현벡터는 GST, MBP, NusA, 티오레독신(thioredoxin), 유비퀴틴, FLAG, BAP, 6HIS, STREP, CBP, CBD, 또는 S-태그 친화성 태그(affinity tag)를 코딩하는 핵산서열을 추가로 포함하는 것을 특징으로 하는 6-아미노카프로산의 생산방법.According to claim 1, wherein the expression vector of step 1) is GST, MBP, NusA, thioredoxin (thioredoxin), ubiquitin, FLAG, BAP, 6HIS, STREP, CBP, CBD, or S-tag affinity tag (affinity) The method for producing 6-aminocaproic acid further comprising a nucleic acid sequence encoding the tag).
제1항에 있어서, 상기 단계 1)의 발현벡터는 효모의 kex2p, 포유동물의 퓨린, Factor Xa, 엔테로키나아제, 서브틸리신, 담배식각바이러스 프로테아제, 트롬빈 또는 유비퀴틴 가수분해효소의 인식 서열을 코딩하는 핵산서열을 추가로 포함하는 것을 특징으로 하는 6-아미노카프로산의 생산방법.The method of claim 1, wherein the expression vector of step 1) encodes a recognition sequence of kex2p of yeast, purine of mammal, Factor Xa, enterokinase, subtilisin, tobacco etch virus protease, thrombin or ubiquitin hydrolase. 6-aminocaproic acid production method characterized in that it further comprises a nucleic acid sequence.
제1항에 있어서, 상기 단계 2)의 미생물은 박테리아, 효모 또는 진균류인 것을 특징으로 하는 6-아미노카프로산의 생산방법.The method for producing 6-aminocaproic acid according to claim 1, wherein the microorganism of step 2) is bacteria, yeast or fungi.
제1항에 있어서, 상기 단계 2)의 형질전환된 미생물을 유가식 발효 배양시켜 6-아미노카프로산을 생산 및 분비시키는 단계를 추가로 포함하는 것을 특징으로 하는 6-아미노카프로산의 생산방법.The method for producing 6-aminocaproic acid according to claim 1, further comprising producing and secreting 6-aminocaproic acid by fed-batch fermentation of the transformed microorganism of step 2).
제10항에 있어서, 상기 분비된 단백질을 정제하는 단계를 추가로 포함하는 것을 특징으로 하는 6-아미노카프로산의 생산방법.The method for producing 6-aminocaproic acid according to claim 10, further comprising purifying the secreted protein.
HpaI-HpaH 유전자, nemA 유전자, KIVD(alpha-ketoisovalerate decarboxylase) 유전자; 를 포함하고, 그리고 PdAT(beta-alanine-pyruvate transaminase) 및 BcAT(adenosylmethionine-8-amino-7-oxononaoate Aminotransferase) 유전자 중 어느 하나 이상;을 모두 포함하는 6-아미노카프로산(6-aminocaproic acid) 생합성용 발현벡터.HpaI-HpaH gene, nemA gene, KIVD (alpha-ketoisovalerate decarboxylase) gene; 6-aminocaproic acid biosynthesis, including and including any one or more of PdAT (beta-alanine-pyruvate transaminase) and BcAT (adenosylmethionine-8-amino-7-oxononaoate Aminotransferase) genes; Dragon expression vector.
제 12항에 있어서, 상기 발현벡터는 도 2에 도시된 pACYCWG인 것을 특징으로 하는 6-아미노카프로산(6-aminocaproic acid) 생합성용 발현벡터.The expression vector for 6-aminocaproic acid (6-aminocaproic acid) biosynthesis according to claim 12, wherein the expression vector is pACYCWG shown in FIG.
제 12항의 발현벡터로 형질전환된 형질전환체.A transformant transformed with the expression vector of claim 12.
제 14항에 있어서, 상기 형질전환체는 박테리아, 효모 또는 진균류인 것을 특징으로 하는 형질전환체.The transformant of claim 14, wherein the transformant is a bacterium, yeast or fungus.
제 14항에 있어서, 상기 형질전환체는 피루베이트(pyruvate) 및/또는 숙신산 세미알데히드(succinic semialdehyde, SSA)를 6-아미노카프로산(6-aminocaproic acid)으로 전환시키는 것을 특징으로 하는 형질전환체.15. The transformant of claim 14, wherein the transformant converts pyruvate and / or succinic semialdehyde (SSA) to 6-aminocaproic acid. .
제 1항 내지 제 11항 중 어느 한 항의 6-아미노카프로산 생산방법에 의해 생산된 6-아미노카프로산을 카프로락탐으로 전환시키는 단계를 추가로 포함하는 카프로락탐 생산방법.A method for producing caprolactam, further comprising converting the 6-aminocaproic acid produced by the method of producing 6-aminocaproic acid according to any one of claims 1 to 11 to caprolactam.
PCT/KR2014/003933 2013-05-06 2014-05-02 Biological synthesis of 6-aminocaproic acid and transgenic microorganism therefor WO2014182016A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/889,543 US10087472B2 (en) 2013-05-06 2014-05-02 Biological synthesis of 6-aminocaproic acid and transgenic microorganism therefor

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20130050676 2013-05-06
KR10-2013-0050676 2013-05-06
KR10-2014-0053249 2014-05-02
KR1020140053249A KR101609448B1 (en) 2013-05-06 2014-05-02 Biosynthesis of 6-aminocaproic acid and Microorganism for the same

Publications (2)

Publication Number Publication Date
WO2014182016A1 true WO2014182016A1 (en) 2014-11-13
WO2014182016A9 WO2014182016A9 (en) 2015-09-24

Family

ID=51867448

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2014/003933 WO2014182016A1 (en) 2013-05-06 2014-05-02 Biological synthesis of 6-aminocaproic acid and transgenic microorganism therefor

Country Status (1)

Country Link
WO (1) WO2014182016A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011515111A (en) * 2008-03-27 2011-05-19 ジェノマティカ, インコーポレイテッド Microorganisms to produce adipic acid and other compounds
US20110171699A1 (en) * 2008-03-11 2011-07-14 Petronella Catharina Raemakers-Franken Preparation of 6-aminocaproic acid from 5 -formyl valeri c acid
KR20120034640A (en) * 2009-05-07 2012-04-12 게노마티카 인코포레이티드 Microorganisms and methods for the biosynthesis of adipate, hexamethylenediamine and 6-aminocaproic acid
WO2012177721A1 (en) * 2011-06-22 2012-12-27 Genomatica, Inc. Microorganisms for producing 6-aminocaproic acid
US20130017593A1 (en) * 2009-03-11 2013-01-17 Celexion, Llc Biological Synthesis of Difunctional Hexanes and Pentanes from Carbohydrate Feedstocks
JP2013515050A (en) * 2009-12-22 2013-05-02 ディーエスエム アイピー アセッツ ビー.ブイ. Preparation of caprolactam from 6-aminocaproic acid obtained by fermentation process

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110171699A1 (en) * 2008-03-11 2011-07-14 Petronella Catharina Raemakers-Franken Preparation of 6-aminocaproic acid from 5 -formyl valeri c acid
JP2011515111A (en) * 2008-03-27 2011-05-19 ジェノマティカ, インコーポレイテッド Microorganisms to produce adipic acid and other compounds
US20130017593A1 (en) * 2009-03-11 2013-01-17 Celexion, Llc Biological Synthesis of Difunctional Hexanes and Pentanes from Carbohydrate Feedstocks
KR20120034640A (en) * 2009-05-07 2012-04-12 게노마티카 인코포레이티드 Microorganisms and methods for the biosynthesis of adipate, hexamethylenediamine and 6-aminocaproic acid
JP2013515050A (en) * 2009-12-22 2013-05-02 ディーエスエム アイピー アセッツ ビー.ブイ. Preparation of caprolactam from 6-aminocaproic acid obtained by fermentation process
WO2012177721A1 (en) * 2011-06-22 2012-12-27 Genomatica, Inc. Microorganisms for producing 6-aminocaproic acid

Also Published As

Publication number Publication date
WO2014182016A9 (en) 2015-09-24

Similar Documents

Publication Publication Date Title
EP1706501B1 (en) Biochemical synthesis of 6-amino caproic acid
KR101609448B1 (en) Biosynthesis of 6-aminocaproic acid and Microorganism for the same
WO2009125924A2 (en) Mutant microorganism with high ability of producing putrescine and preparation of putrescine using same
WO2012018226A2 (en) Mutant microorganism having high production of cadaverine, and preparation method of cadaverine using same
US11326190B2 (en) Conversion of biomass to useful intermediates
WO2012030068A2 (en) Polypeptide associated with the synthesis of 1-deoxynojirimycin, and a use therefor
Christie et al. Mutational analysis of Bacillus megaterium QM B1551 cortex-lytic enzymes
US20200165646A1 (en) Novel method for purifying 3,6-anhydro-l-galactose by using microorganisms
CN112673108A (en) Process for producing 3-hydroxy-4-aminobenzoic acids
WO2015009074A2 (en) Novel mutant ornithine decarboxylase protein and use thereof
CN112063572A (en) Recombinant escherichia coli for high yield of O-acetyl-L-homoserine and application thereof
WO2014182016A1 (en) Biological synthesis of 6-aminocaproic acid and transgenic microorganism therefor
CN116515869B (en) 2, 4-diaminobutyrate transferase mutant gene and application thereof
CA2337843A1 (en) Process for preparing clavam derivatives by using polypeptides having beta-lactam synthetase activity
Anderson et al. Cleavage of the precursor of pea chloroplast cytochrome ƒ by leader peptidase from Escherichia coli
WO2019066446A9 (en) Composition for producing 3-hydroxy phloretin
WO2019004780A2 (en) Novel o-succinyl homoserine transferase mutant and method for producing o-succinyl homoserine using same
WO2015046978A1 (en) Recombinant microorganism having enhanced ability to produce 2,3-butanediol and method for producing 2,3-butanediol using same
KR101951557B1 (en) Microorganism expressing an active D-proline reductase and Method for producing active D-proline reductase using the same
WO2017126861A1 (en) Recombinant mutant microorganisms having acrylic acid productivity and method for producing acrylic acid using same
WO2023140687A1 (en) Microorganism for producing 1,4-butanediol and method for producing 1,4-butanediol by using same
WO2016167519A1 (en) Method for producing lactam
WO2022240071A1 (en) Recombinant microorganism for producing carnosine, histidine and beta-alanine and method for producing carnosine, histidine and beta-alanine by using same
CN113249352B (en) N-glycosyltransferase mutant P1 and application thereof
WO2022149651A1 (en) Method for producing formic acid by using carbon monoxide dehydrogenase and formate dehydrogenase

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14794696

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 14889543

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 14794696

Country of ref document: EP

Kind code of ref document: A1