WO2014181765A1 - Organic thin film solar cell and method for manufacturing same - Google Patents

Organic thin film solar cell and method for manufacturing same Download PDF

Info

Publication number
WO2014181765A1
WO2014181765A1 PCT/JP2014/062140 JP2014062140W WO2014181765A1 WO 2014181765 A1 WO2014181765 A1 WO 2014181765A1 JP 2014062140 W JP2014062140 W JP 2014062140W WO 2014181765 A1 WO2014181765 A1 WO 2014181765A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
solar cell
film solar
organic
organic thin
Prior art date
Application number
PCT/JP2014/062140
Other languages
French (fr)
Japanese (ja)
Inventor
陽一 青木
Original Assignee
ローム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ローム株式会社 filed Critical ローム株式会社
Publication of WO2014181765A1 publication Critical patent/WO2014181765A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/20Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising organic-organic junctions, e.g. donor-acceptor junctions
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/30Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising bulk heterojunctions, e.g. interpenetrating networks of donor and acceptor material domains
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K39/00Integrated devices, or assemblies of multiple devices, comprising at least one organic radiation-sensitive element covered by group H10K30/00
    • H10K39/10Organic photovoltaic [PV] modules; Arrays of single organic PV cells
    • H10K39/12Electrical configurations of PV cells, e.g. series connections or parallel connections
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/80Constructional details
    • H10K30/88Passivation; Containers; Encapsulations
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to an organic thin film solar cell and a method for manufacturing the same, and more particularly to an organic thin film solar cell that can improve power generation characteristics, reduce manufacturing costs, and improve reliability, and a method for manufacturing the same.
  • Organic thin-film solar cells featuring ultra-thin, light weight, and flexibility are manufactured by printing methods such as the ink-jet method at room temperature and atmospheric pressure, realizing a high degree of freedom in shape and excellent design. It is possible (for example, refer to Patent Document 1).
  • an organic thin-film solar cell that is disposed in contact with the metal electrode on the cathode side and includes a coating-type buffer layer for obtaining an ohmic contact with the metal electrode (see, for example, Patent Document 2).
  • an electrode is formed on an end surface portion of a module composed of cells folded in a strip shape.
  • the organic layer becomes thin at the end face of the transparent electrode film and a leak current is likely to occur, and the transparent electrode film and the counter electrode are in contact with each other as desired.
  • the power generation characteristics may not be obtained.
  • an insulating material such as resin is coated on the end face of the transparent electrode film to prevent contact between the electrodes.
  • the part covering the end face becomes a non-power generation part, and there is a problem that the appearance is impaired.
  • a buffer layer and a power generation layer disposed on an ITO substrate are applied and formed in an air atmosphere, and finally, vacuum deposition is performed under vacuum and reduced pressure to form a metal electrode.
  • Silver or aluminum is formed by the method.
  • the vacuum deposition method has a problem of high apparatus and process costs.
  • the present inventor uses a coating formation method such as an inkjet method to form a thick organic layer as a power generation layer on the end surface portion of the transparent electrode film, thereby reducing non-power generation portions and covering without damaging the appearance. Found a way to do.
  • An object of the present invention is to provide an organic thin film solar cell in which non-power generation sites are reduced and power generation characteristics are improved, and a method for manufacturing the same.
  • An object of the present invention is to provide an organic thin-film solar cell that can suppress metal migration into the power generation layer, reduce manufacturing costs, and improve reliability, and a method for manufacturing the same.
  • a substrate, a first electrode layer disposed on the substrate, a hole transport layer disposed on the first electrode layer, and the positive electrode A first organic active layer disposed on a hole transport layer; a second organic active layer disposed at an end surface of the first organic active layer; and the first organic active layer and the second organic active layer A second electrode layer disposed on the substrate, facing the substrate, and comprising the first electrode layer, the hole transport layer, the first organic active layer, the second organic active layer, and the second electrode layer
  • an organic thin-film solar cell including a sealing glass for sealing a structure, and a sealing portion that is disposed between the sealing glass and the substrate and seals the laminated structure.
  • a step of forming a first electrode on a substrate, a step of forming a hole transport layer on the first electrode layer, and a first organic activity on the hole transport layer Forming a layer, forming a second organic active layer at an end surface portion on the first organic active layer, and forming a second electrode layer on the first organic active layer and the second organic active layer
  • Manufacturing an organic thin-film solar cell having a step of sealing a laminated structure including the first electrode layer, the hole transport layer, the first organic active layer, the second organic active layer, and the second electrode layer A method is provided.
  • a substrate a first electrode layer disposed on the substrate, a carrier emission buffer layer disposed on the first electrode layer, and the carrier emission buffer layer
  • An organic thin film solar comprising: a bulk heterojunction organic active layer disposed on the substrate; an organic conductive film disposed on the bulk heterojunction organic active layer; and a second electrode layer disposed on the organic conductive film.
  • a battery is provided.
  • a step of forming a first electrode on a substrate, a step of forming a carrier emission buffer layer on the first electrode layer, and a bulk on the carrier emission buffer layer An organic thin-film solar comprising a step of forming a terror junction organic active layer, a step of forming an organic conductive film on the bulk hetero junction organic active layer, and a step of forming a second electrode layer on the organic conductive film.
  • the present invention it is possible to provide an organic thin film solar cell in which non-power generation sites are reduced and power generation characteristics are improved, and a method for manufacturing the same.
  • an organic thin-film solar cell that can suppress metal migration into the power generation layer, reduce manufacturing costs, and improve reliability, and a method for manufacturing the same.
  • the typical section structure figure of the organic thin film solar cell concerning basic technology.
  • the typical cross-section figure of the organic thin-film solar cell concerning another basic technique.
  • the typical cross-section figure of the organic thin-film solar cell which concerns on another basic technique.
  • the typical cross-section figure of the basic structure (bulk heterojunction structure) of the organic thin-film solar cell concerning 1st Embodiment.
  • the another typical cross-section figure of the organic thin-film solar cell which concerns on 1st Embodiment.
  • FIG. 11 is an energy band structure diagram of various materials of the organic thin film solar cell shown in FIG. 10.
  • the chemical structural formula of a material used in vacuum vapor deposition includes (a) Pc: an example of phthalocyanine, (b) ZnPc: an example of zinc phthalocyanine, (c) Example of Me-Ptcdi, (d) Example of C 60 : fullerene.
  • 4B is a process diagram for patterning a second electrode layer on the first bulk heterojunction organic active layer and the second bulk heterojunction organic active layer. It is 1 process of the manufacturing method of the organic thin-film solar cell concerning 1st Embodiment, Comprising: (a) Process drawing which prepares sealing glass, (b) Process drawing which forms glass frit on sealing glass, (C) Process drawing which forms UV hardening resin in the front-end
  • FIG. 1 is a configuration of a sealing portion of an organic thin-film solar cell according to a first embodiment, and (a) a schematic cross-sectional structure diagram illustrating a configuration in which a glass frit is coated with a UV curable resin, and (b) a glass frit.
  • FIG. 3 is a schematic cross-sectional structure diagram showing a configuration of a sealing portion of the organic thin film solar cell according to the first embodiment, in which a porous glass frit is covered with a UV curable resin.
  • FIG. 1 is a schematic cross-sectional structure diagram showing a configuration of a sealing portion of an organic thin film solar cell according to a first embodiment, in which (a) two formed glass frits have a wedge shape; Schematic cross-sectional structure diagram showing a configuration in which the glass frit to be formed has a taper shape, (c) a spindle-shaped taper shape in which the cross-sectional shape of the two glass frit formed becomes smaller as the distance from the sealing glass increases The typical cross-section figure which shows the structure which has.
  • FIG. 1 is a configuration of a sealing portion of an organic thin film solar cell according to a first embodiment, and (a) a configuration in which two formed glass frit has a wedge shape and is covered with a UV curable resin.
  • Schematic cross-sectional structure diagram (b) Schematic cross-sectional structure diagram showing a configuration in which two formed glass frits have a tapered shape and are coated with a UV curable resin, and (c) Two formed glass frits.
  • FIG. 3 is a schematic cross-sectional structure diagram showing a configuration in which the cross-sectional shape has a spindle-shaped taper shape in which the cross-sectional area decreases as the distance from the sealing glass increases, and is covered with a UV curable resin.
  • FIG. 1B is a schematic plan pattern configuration diagram showing a state where a hole transport layer is formed on a transparent electrode layer, in one step of the method for manufacturing an organic thin film solar cell according to the first embodiment
  • FIG. 31 is a schematic sectional view taken along the line II-II in FIG.
  • FIG. 33 is a pattern configuration diagram
  • FIG. 33 is a pattern configuration diagram
  • FIG. 33 is a pattern configuration diagram
  • FIG. 4B is a schematic plane pattern configuration diagram showing (b) a schematic cross-sectional structure diagram along line IV-IV in FIG.
  • FIG. 1 is a schematic plan pattern configuration diagram showing a state of a process of manufacturing an organic thin-film solar cell according to a first embodiment, wherein (a) sealing is performed with sealing glass / glass frit and UV curable resin; b) A schematic sectional view taken along line VII-VII in FIG.
  • the flowchart which shows the preparation procedure of the organic thin film solar cell which concerns on 1st Embodiment.
  • the typical bird's-eye view structure figure which is one process of the mass production manufacturing process of the organic thin-film solar cell which concerns on 1st Embodiment, and shows the state which formed the stripe pattern of the transparent electrode layer on the board
  • FIG. 1 is a schematic bird's-eye view showing a state in which a hole transport layer is formed by spin coating on a stripe-shaped transparent electrode layer, which is a step in the mass production process of the organic thin-film solar cell according to the first embodiment.
  • Figure. It is one process of the mass production manufacturing process of the organic thin-film solar cell which concerns on 1st Embodiment, Comprising: A 1st bulk heterojunction organic active layer and a 2nd bulk heterojunction organic active layer are formed on a positive hole transport layer.
  • the typical bird's-eye view structure figure which shows the state formed into a film by spin coat.
  • the typical bird's-eye view block diagram which shows the state which orthogonally crossed the layer and formed the stripe pattern of the 2nd electrode layer.
  • the typical plane pattern block diagram which shows the example which has arrange
  • FIG. 1 A schematic cross-sectional structure diagram of a laminated structure portion of a forward structure type organic thin film solar cell according to a second embodiment, (b) a detailed structure of FIG. The typical cross-section figure of the structural example which has a metal particle penetration
  • FIG. 1 A schematic cross-sectional structure diagram of a laminated structure portion of a forward structure type organic thin film solar cell according to a second embodiment
  • FIG. The typical cross-section figure of the structural example which has a metal particle penetration
  • FIG. 6 is a schematic cross-sectional structure diagram for explaining how a metal particle intrusion layer is formed, (b) a process diagram for forming a passivation layer on the entire surface of the device, and (c) a process diagram for forming a colored barrier layer on the passivation layer.
  • FIG. 63 A schematic plane pattern block diagram which shows the state which formed the 2nd electrode layer on the organic electrically conductive film, (b) Typical sectional structure drawing which follows the XII-XII line
  • a schematic plane pattern configuration diagram showing a state in which a colored barrier layer is formed on a passivation layer (b) a schematic cross-sectional configuration diagram taken along line XV-XV in FIG. 67 (a).
  • FIG. 3 is a schematic bird's-eye view showing a state where a bulk heterojunction organic active layer is formed by spin coating on a carrier emission buffer layer.
  • FIG. In the manufacturing method of the organic thin-film solar cell which concerns on 2nd Embodiment, (a) Schematic which shows the spin coat method at the time of forming a buffer layer for carrier discharge
  • “transparent” is defined as having a transmittance of about 50% or more. Further, “transparent” is also used to mean colorless and transparent with respect to visible light in the organic thin film solar cell according to the embodiment. Visible light corresponds to a wavelength of about 360 nm to 830 nm and an energy of about 3.45 eV to 1.49 eV, and is transparent if the transmittance is 50% or more in this region.
  • an organic thin-film solar cell 1 ⁇ / b> A includes a substrate 10, a transparent electrode layer 11 disposed on the substrate 10, and a hole transport layer 12 disposed on the first electrode layer 11. And a bulk heterojunction organic active layer 14 disposed on the hole transport layer 12 and a cathode electrode layer 16 disposed on the bulk heterojunction organic active layer 14.
  • the corner portion 16C of the cathode electrode layer 16 has an ideal shape of approximately 90 degrees.
  • an organic thin film solar cell 1A has a stacked structure similar to that of FIG. 1, but in the structure of FIG. 2, the corner portion 11C of the patterned transparent electrode layer 11 is The corner portion 12R of the patterned hole transport layer 12, the corner portion 14R of the patterned bulk heterojunction organic active layer 14, and the corner portion 16R of the patterned cathode electrode layer 16 are curved. Prepare. For this reason, in the structure of FIG. 2, leakage current is likely to occur between the corner portion 11 ⁇ / b> C of the transparent electrode layer 11 and the cathode electrode layer 16, particularly in the corner portion. Power generation efficiency is also reduced.
  • the organic thin-film solar cell 1A has the same stacked structure as that of FIG. 1, but includes an insulating layer 44 at the corner portion of the patterned transparent electrode layer 11. That is, in the structure of FIG. 3, the occurrence of leakage current between the corner portion 11C of the transparent electrode layer 11 and the cathode electrode layer 16 can be suppressed by disposing the insulating layer 44 at the corner portion of the transparent electrode layer 11. is there. However, since the insulating layer 44 is interposed between the transparent electrode layer 11 and the organic layers (12, 14), the area portion in contact with the insulating layer 44 does not contribute to power generation. For this reason, the area efficiency which contributes to electric power generation falls.
  • the basic structure of the organic thin film solar cell according to the first embodiment is disposed on the substrate 10, the transparent electrode layer 11 disposed on the substrate 10, and the first electrode layer 11.
  • a bulk heterojunction organic active layer 14A and a cathode electrode layer 16 disposed on the first bulk heterojunction organic active layer 14 and the second bulk heterojunction organic active layer 14A are provided.
  • the second bulk heterojunction organic active layer is formed to have a relatively curved shape at the corner portions 12R, 14R, 16R, etc. through the step of forming the telojunction organic active layer 14A.
  • interposing 14A it is possible to suppress the occurrence of leakage current at the corner portion without impairing the power generation characteristics.
  • the organic thin film solar cell 1 includes a substrate 10, a transparent electrode layer (first electrode layer) 11 disposed on the substrate 10, and a first electrode layer 11.
  • the hole transport layer 12 disposed above, the first organic active layer 14 disposed on the hole transport layer 12, and the second organic active layer 14A disposed on the end surface portion on the first organic active layer 14
  • a cathode electrode layer (second electrode layer) 16 disposed on the first organic active layer 14 and the second organic active layer 14A, and the substrate 10, facing the first electrode layer 11, the hole transport layer 12,
  • a sealing glass 40 for sealing a laminated structure composed of the first organic active layer 14, the second organic active layer 14A, and the second electrode layer 16 is disposed between the glass 40 and the substrate 10. And a sealing portion for sealing.
  • the first organic active layer 14 and the second organic active layer 14A may be formed of a bulk heterojunction organic active layer.
  • first organic active layer 14 and the second organic active layer 14A may have a moss eye structure (FIG. 9) in which pn junctions are stacked.
  • the sealing part may be made of resin.
  • the resin can be formed of, for example, an epoxy resin, a light curable resin, or a thermosetting resin.
  • the sealing glass 40 may be comprised from the digging glass.
  • the sealing part may be comprised from the glass frit.
  • the organic thin-film solar cell 1 has an organic layer (12 ⁇ 14 ⁇ 14A) having a thickness of about several hundreds of nanometers serving as a power generation layer on a glass substrate 10 with ITO. ) And a metal layer such as LiF / aluminum is deposited as the second electrode layer 16. Since pure aluminum formed as the second electrode layer 16 is easily oxidized, a passive film may be formed or a passivation film such as SiN or SiON may be laminated for durability.
  • the glass frit 36 is disposed on the sealing glass 40.
  • organic layers such as the hole transport layer 12, the first bulk heterojunction organic active layer 14, and the second bulk heterojunction organic active layer 14 A are disposed, so that the glass frit is sintered at a high temperature. This is because these organic layers are not damaged.
  • a glass frit 36 can be formed by applying a glass frit paste that can be applied using a screen printing technique or a dispenser in an arbitrary pattern and baking at a high temperature.
  • the height of the glass frit 36 is, for example, about 1 ⁇ m to about 100 ⁇ m, and the width of the glass frit 36 is, for example, about 0.2 mm to about 2.0 mm.
  • a sealing glass 40 and a transparent glass frit 36 fired on the sealing glass 40 are used for sealing.
  • the sealing glass 40 for example, non-alkali tempered glass having a thickness of about 0.1 mm to 0.2 mm is applicable.
  • the glass frit 36 can freely draw a pattern by using a dispenser coating technique, and can be formed on the sealing glass 40 without using dangerous chemicals. Moreover, by using a relatively thin cover glass (sealing glass 40), the module of the organic thin-film solar cell according to the first embodiment can be further reduced in weight and thickness.
  • a thermosetting resin or a UV curable resin can be applied.
  • a UV curable resin a transparent glass frit that transmits ultraviolet rays may be used.
  • a glass frit material having a high total ray transmittance (for example, 90% or more) with respect to UV light for example, a Zn-based glass can be applied.
  • the glass frit can also be composed of Bi—B—Si based oxide powder. This glass frit made of Bi—B—Si oxide has the property of absorbing infrared rays to generate heat and melt. Therefore, it is possible to fuse the sintered body of the paste containing the glass frit by irradiating it with an infrared laser (for example, wavelength 1064 nm).
  • the organic thin-film solar cell according to the first embodiment is provided with a gettering sheet desiccant 38GU on the inner wall surface of the sealing glass 40 to thereby obtain an oxygen (O 2 ) getter action. May be increased.
  • the gettering sheet desiccant for example, strontium oxide (SrO), calcium oxide (CaO), or the like can be used as an oxygen (O 2 ) -based getter agent.
  • a dug glass 40A may be applied for sealing.
  • the thickness of the outer shape of the digging glass 40A is, for example, about 0.7 mm, and the depth of the digging portion containing the element portion is, for example, about 0.3 mm.
  • a resin 36U for bonding is provided between the dug glass 40A and the ITO substrate 10.
  • the basic structure of the organic thin film solar cell 1 according to the first embodiment is a moth-eye structure as an organic active layer, instead of a bulk heterojunction structure. May be provided. Even in such a moth-eye structure, in order to avoid the leakage current due to the curvature of the end face part described above, it is preferable to form a relatively thick moth eye structure or bulk heterojunction organic active layer at the end face part of the moth-eye structure.
  • a p (13 1 ) n (15) junction is formed between the first p-type organic active layer 13 1 and the n-type organic active layer 15 disposed on the hole transport layer 12 on the side wall surface and the bottom surface of the groove 23.
  • a p (13 2 ) n (15) junction is formed on the side wall surface of the groove 23. Is formed.
  • a p (13 3 ) n (15) junction is formed on the side wall surface of the groove 23. Is formed.
  • the first p-type The organic active layer 13 1 , the second p-type organic active layer 13 2, and the third p-type organic active layer 13 3 have wavelength absorption characteristics corresponding to the respective light penetration depths. For this reason, it can have photoelectric conversion performance in a wide wavelength band.
  • the pn junction area can be substantially increased.
  • the electromotive force can be increased.
  • the 1p-type organic active layer 13 1 a blue wavelength absorption
  • the 2p-type organic active layer 13 2 for green wavelength absorbed may be formed first 3p-type organic active layer 13 3 for the red wavelength absorption.
  • the first p-type organic active layer 13 1 is formed for absorbing ultraviolet light
  • the second p-type organic active layer 13 2 is formed for absorbing visible light
  • the third p-type organic active layer 13 3 is formed for absorbing infrared light. Also good.
  • the polymer material has high absorption in the visible light region, but does not have an absorption band on the long wavelength side. Therefore, the first p-type organic active layer 13 1 , the second p-type organic active layer 13 2, and the third p-type organic activity the layer 13 3, by either or laminated doping dye having an absorption band in a long wavelength, it is possible to improve the conversion efficiency.
  • a material excellent in long wavelength absorption lead phthalocyanine (PbPc), silicon phthalocyanine (SiPc), copper phthalocyanine (CuPc), or the like can be used.
  • Soluble phthalocyanine (IR-14), soluble phthalocyanine (IR-915), and the like can also be applied.
  • the groove 23 for example, a nanoimprint technique, a dry etching technique, or the like can be applied.
  • the depth of the groove 23 is, for example, about 50 nm to about 100 nm, and the width of the groove 23 is, for example, about 5 nm to about 35 nm.
  • PC 60 BM can be applied to the electron transport layer 17.
  • an Ag layer or an Au layer can be used for the metal nanoparticle layer 18.
  • LiF / Al can be applied to the cathode electrode layer 16.
  • the end face part of the moth eye structure is relatively thick.
  • a moth-eye structure or a bulk heterojunction organic active layer similar to 14A in FIGS. 4 and 5
  • FIG. 10 A schematic diagram for explaining the operation principle of the organic thin-film solar cell 1 is expressed as shown in FIG. Moreover, the energy band structure of the various materials of the organic thin film solar cell 1A shown in FIG. 10 is expressed as shown in FIG. With reference to FIG. 10 and FIG. 11, the principle structure of the organic thin-film solar cell 1 which concerns on 1st Embodiment, and its operation
  • the first bulk heterojunction organic active layer 14 is shown. Although the end surface portion of the first bulk heterojunction organic active layer 14 includes the second bulk heterojunction organic active layer 14A, the illustration is omitted.
  • the bulk heterojunction organic active layer 14 includes a p-type organic active layer region and an n-type organic active layer region, thereby forming a complex bulk hetero pn junction.
  • the p-type organic active layer region is formed of, for example, P3HT (poly (3-hexylthiophene-2,5diyl)), and the n-type organic active layer region is, for example, PCBM (6,6-phenyl-C61-). butyric acid methyl ester).
  • P3HT poly (3-hexylthiophene-2,5diyl
  • PCBM 6,6-phenyl-C61-
  • butyric acid methyl ester butyric acid methyl ester
  • PEDOT PSS applied to the hole transport layer 12
  • the chemical structural formula of PEDOT is represented as shown in FIG. 12 (a)
  • the chemical structural formula of PSS is represented as shown in FIG. 12 (b). Is done.
  • the chemical structural formula of P3HT applied to the first bulk heterojunction organic active layer 14 (the same applies to the second bulk heterojunction organic active layer 14A) is expressed as shown in FIG.
  • the chemical structural formula of PCBM applied to the heterojunction organic active layer 14 (the same applies to the second bulk heterojunction organic active layer 14A) is represented as shown in FIG.
  • examples of chemical structural formulas of materials used for vacuum deposition are as follows. That is, an example of phthalocyanine (Pc) is represented as shown in FIG. 14A, and an example of zinc phthalocyanine (ZnPc: Zinc-phthalocyanine) is represented as shown in FIG.
  • An example of -Ptcdi N, N'-dimethyl perylene-3,4,9,10-dicarboximide) is represented as shown in FIG. 14 (c), and an example of fullerene (C 60 : Buckminster fullerene) 14 (d).
  • FIG. c An example of CN-MDMO-PPV (poly- [2-methoxy-5- (2'-ethylhexyloxy) -1,4- (1-cyanovinylene) -phenylene]) is shown in FIG. c) PFO-DBT (poly [2,7- (9,9-dioctyl-fluorene) -alt-5,5- (4,7'-di-2-thienyl-2 ') , 1 ′, 3′-benzothiadiazole)]) is represented as shown in FIG.
  • F8BT poly (9,9′-dioctyl fluoreneco-benzothiadiazole)
  • PCDTBT poly [N-9′-hepta-decanyl-2,7-
  • carbazole-alt-5,5- (4 ′, 7′-di-thienyl-2′1 ′, 3′-b3nzothiadizaole)]
  • PC 60 BM (6,6-phenyl-C61-butyric acid methyl ester) is represented as shown in FIG. 15 (g), and PC 70 BM (6,6-phenyl-C71-butyric acid methyl ester)
  • ester is represented as shown in FIG.
  • the organic thin-film solar cell 1B according to the comparative example has a configuration in which the stacked structure in FIG. 2 is sealed in the same manner as in FIGS. That is, as shown in FIG. 16, the organic thin-film solar cell 1B according to Comparative Example 1 has a structure in which the stacked structure of FIG. 2 is sealed using sealing glass 40, glass frit 36, and resin 36U. As shown in FIG. 17, the organic thin-film solar cell 1 ⁇ / b> B according to Comparative Example 2 has a structure in which a gettering sheet desiccant 38GU is disposed on the inner wall surface of the sealing glass 40. As shown in FIG.
  • the organic thin-film solar cell 1 ⁇ / b> B according to Comparative Example 3 has a structure in which a dug glass 40 ⁇ / b> A is applied for sealing.
  • a leak current is likely to occur between the transparent electrode layer 11 and the cathode electrode layer 16, particularly at the corner portion, and the relative power generation efficiency is likely to be lowered.
  • the photocurrent voltage characteristic of the organic thin-film solar cell according to the first embodiment is schematically represented as shown in FIG.
  • a curve DA indicates a photocurrent voltage characteristic in a state where light is not irradiated
  • a curve IL indicates a photocurrent voltage characteristic in a state where light is irradiated.
  • V OC represents an open circuit voltage
  • I SC represents a short circuit current.
  • the photocurrent voltage characteristics of the organic thin film solar cell according to the first embodiment and the organic thin film solar cell according to the comparative example are schematically represented as shown in FIG.
  • the first embodiment corresponds to the configuration of FIGS. 6 to 8, and the photocurrent voltage characteristic is indicated by a curve P.
  • the comparative example corresponds to the configurations of FIGS. 16 to 18, and the photocurrent-voltage characteristics are indicated by a curve C.
  • the maximum electromotive force P MAX and the fill factor FF are both large.
  • the organic thin film solar cell according to the first embodiment it is possible to reduce non-power generation sites and improve power generation characteristics.
  • the laminated structure portion of the organic thin film solar cell 1 according to the modification of the first embodiment further includes a passive film 24 disposed on the surface of the second electrode layer 16 as shown in FIG.
  • the passive film 24 is composed of an oxide film of the second electrode layer 16.
  • the oxide film of the second electrode layer 16 can be formed by performing oxygen plasma treatment on the surface of the second electrode layer 16.
  • the thickness of the passivation film 24 is, for example, about 10 angstroms to about 100 angstroms.
  • omitted you may provide the passivation film arrange
  • This passivation film can be composed of, for example, a SiN film or a SiON film.
  • the second electrode layer 16 may be made of any one of LiF / Al, W, Mo, Mn, and Mg.
  • the passive film 24 is an alumina (Al 2 O 3 ) film.
  • the organic thin-film solar cell 1 including the passive film 24 on the surface of the second electrode layer 16 includes the first bulk heterojunction organic active layer 14 and the second bulk heterojunction organic active layer 14A. Even when moisture or oxygen penetrates into the second electrode layer, it is possible to prevent the second electrode layer 16 from being oxidized by the moisture and oxygen. Thereby, deterioration of an organic solar cell can be suppressed and durability can be improved.
  • a process for preparing an ITO substrate in which the transparent electrode layer 11 is formed on the substrate 10 is a process of the method for manufacturing the organic thin-film solar cell according to the first embodiment.
  • the step of patterning the transparent electrode layer 11 and then patterning the hole transport layer 12 on the transparent electrode layer 11 is expressed as shown in FIG.
  • the step of patterning the bulk heterojunction organic active layer 14 is expressed as shown in FIG.
  • 23A the step of patterning the second electrode layer 16 on the first bulk heterojunction organic active layer 14 and the second bulk heterojunction organic active layer 14A is performed as shown in FIG. It is expressed as shown in (b).
  • the method for manufacturing the organic thin-film solar cell 1 according to the first embodiment includes a step of preparing the substrate 10 and a step of forming the first electrode layer 11 on the substrate 10 as shown in FIGS.
  • the step of forming the resin 36U at the tip of the frit 36, the sealing glass 40 and the substrate 10 are opposed to each other, and the first electrode layer 11, the hole transport layer 12, and the first organic active layer are formed by the glass frit 36 and the resin 36U.
  • the first organic active layer 14 and the second organic active layer 14A may be formed of a bulk heterojunction organic active layer.
  • the step of forming the first organic active layer 14 and the second organic active layer 14A may use an inkjet method.
  • the step of forming the hole transport layer 12 for example, PEDOT: PSS is formed by spin coating, and annealing is performed at 120 ° C. for about 10 minutes in order to remove moisture.
  • the first bulk heterojunction organic active layer 14 to be a power generation layer is patterned on the hole transport layer 12.
  • P3HT is formed by spin coating.
  • the organic solvent is dried at about 100 ° C. to about 120 ° C. for about 10 minutes to about Heat for 30 minutes.
  • the second bulk heterojunction organic active layer 14 ⁇ / b> A is formed in a pattern on the end surface portion on the first bulk heterojunction organic active layer 14.
  • the second bulk heterojunction organic active layer 14A also serves as a power generation layer.
  • P3HT is formed by spin coating.
  • it is formed at about 100 ° C. to about 120 ° C. for about 10 minutes to about Heat for 30 minutes.
  • the cathode electrode layer 16 on the first bulk heterojunction organic active layer 14 and the second bulk heterojunction organic active layer 14A is patterned.
  • a metal layer such as LiF / Al, W, Mo, Mn, and Mg can be formed by a vacuum heating deposition method. Further, screen printing technology may be applied.
  • the sealing glass 40 is prepared. As the sealing glass 40, for example, non-alkali tempered glass having a thickness of about 0.1 mm to about 0.2 mm can be applied.
  • a glass frit 36 is formed on the sealing glass 40.
  • the glass frit 36 is formed by applying a glass frit paste (organic solvent + glass frit) to the sealing glass 40 by screen printing, drying the organic solvent at about 100 ° C., and then at about 500 ° C. to about 590 ° C. It is formed by sintering for about 30 minutes.
  • the glass frit 36 has a thickness of about 5 ⁇ m to about 20 ⁇ m, for example.
  • the glass frit 36 can freely draw a pattern by using dispenser coating, and can be formed on the sealing glass 40 without using dangerous chemicals.
  • a resin 36 ⁇ / b> U for bonding the glass frit 36 and the substrate 10 is formed at the tip of the glass frit 36.
  • the thickness of the resin 36U is, for example, about 5 ⁇ m to about 20 ⁇ m.
  • the resin 36U may be formed of an ultraviolet curable resin.
  • the resin 36U may be formed of a thermosetting resin.
  • the thermosetting temperature is a temperature that does not damage the hole transport layer 12, the first bulk heterojunction organic active layer 14 and the second bulk heterojunction organic active layer 14A, for example, about 100 ° C. to about 120 ° C. It is desirable that the temperature is not higher than ° C.
  • the entire device is sealed with a sealing glass (cover glass) 40, a glass frit 36, and a resin 36U.
  • the glass frit 36 and the transparent electrode layer (ITO) 11 are bonded by the resin 36U.
  • the sealing step is preferably performed in a nitrogen atmosphere in order to prevent deterioration due to moisture and oxygen in the air.
  • the organic thin-film solar cell 1 according to the first embodiment can be obtained.
  • a gettering sheet desiccant 38GU may be provided on the inner wall surface of the sealing glass 40 to further eliminate the influence of moisture and oxygen.
  • an internal N 2 or vacuum depressurization, by UV irradiation, when curing the UV curable resin 36U, UV irradiation, may be carried out from the sealing glass 40 side . This is because the second electrode layer (aluminum) 16 becomes a reflective layer against UV irradiation, and thus the element portion can be protected.
  • the sealing part in the organic thin film solar cell according to the first embodiment may have a configuration in which a glass frit 36 is covered with a UV curable resin 36U as shown in FIG. Furthermore, as shown in FIG. 26B, the sealing portion in the organic thin film solar cell according to the first embodiment is such that the glass frit 36 is covered with the UV curable resin 36U, and the UV curable resin 36U and the substrate 10 are covered.
  • the contact area may be increased in comparison with the configuration shown in FIG.
  • the sealing part in the organic thin film solar cell according to the first embodiment may have a configuration in which a porous glass frit 36P is covered with a UV curable resin 36U as shown in FIG. . That is, a porous glass frit may be used. When the porous glass frit 36P is applied, the resin 36U penetrates into the glass frit 36P and the “anchor effect” works, so that stronger adhesion can be realized.
  • the glass frit 36 in the organic thin film solar cell according to the first embodiment may have a wedge-shaped shape, a tapered shape, or a spindle-shaped tapered shape in which the cross-sectional area decreases as the distance from the sealing glass 40 increases. .
  • a plurality of glass frit 36 may be formed.
  • FIG. 1 A configuration example of the organic thin-film solar cell sealing portion according to the first embodiment, in which two formed glass frits 36 have a wedge shape, is expressed as shown in FIG.
  • a configuration example in which the two glass frit 36 formed has a taper shape is represented as shown in FIG.
  • a configuration example in which the cross-sectional shape of the two glass frit 36 formed has a spindle-shaped taper shape in which the cross-sectional area decreases as the distance from the sealing glass 40 is expressed as shown in FIG.
  • a configuration example in which two formed glass frits 36 have a wedge shape and are covered with a UV curable resin 36U is as follows. It is expressed as shown in FIG.
  • a configuration example in which the two formed glass frits 36 have a tapered shape and are covered with the UV curable resin 36U is expressed as shown in FIG.
  • a configuration example in which the cross-sectional shape of the two formed glass frits 36 has a spindle-shaped taper shape in which the cross-sectional area decreases as the distance from the sealing glass 40 increases, and is coated with the UV curable resin 36 is shown in FIG. It is expressed as shown in (c).
  • (Manufacturing method of serialized structure) 30 is a schematic plan pattern configuration showing a state in which the transparent electrode layer 11 is formed on the substrate 10 in one step of the method for manufacturing the serialized structure of the organic thin film solar cell according to the first embodiment.
  • a schematic cross-sectional structure expressed as shown in a) and taken along line II in FIG. 30A is expressed as shown in FIG.
  • FIG. 31A a schematic planar pattern configuration showing a state in which the hole transport layer 12 is formed on the transparent electrode layer 11 is expressed as shown in FIG. 31A, and is taken along line II-II in FIG.
  • the schematic cross-sectional structure along is represented as shown in FIG.
  • FIG. 32 (a) a schematic planar pattern configuration showing a state in which the first bulk heterojunction organic active layer 14 is formed on the hole transport layer 12 is expressed as shown in FIG. 32 (a), and FIG. A schematic cross-sectional structure taken along the line III-III is represented as shown in FIG.
  • FIG. 33A a schematic planar pattern configuration showing a state in which the second bulk heterojunction organic active layer 14A is formed on the end surface portion on the first bulk heterojunction organic active layer 14 is as shown in FIG.
  • the schematic cross-sectional structure shown along the line IV-IV in FIG. 33A is expressed as shown in FIG.
  • FIG. 34A A schematic cross-sectional structure taken along the line VV in FIG. 34A is expressed as shown in FIG.
  • a schematic plane pattern configuration showing a state in which a passive film (oxide film) 24 is formed on the surface of the second electrode layer 16 is expressed as shown in FIG.
  • a schematic cross-sectional structure along the line I is expressed as shown in FIG.
  • FIG. 36A a schematic plane pattern configuration showing a state of being sealed with the sealing glass 40, the glass frit 36, and the UV curable resin 36U is expressed as shown in FIG. 36A, and VI-VI in FIG.
  • FIG. 36A a schematic plane pattern configuration showing a state of being sealed with the sealing glass 40, the glass frit 36, and the UV curable resin 36U is expressed as shown in FIG. 36A, and VI-VI in FIG.
  • FIG. 36A a schematic plane pattern configuration showing a state of being sealed with the sealing glass 40, the glass frit 36, and the UV curable resin 36U is expressed as shown in FIG. 36A, and VI-VI in FIG.
  • FIG. 36A a schematic plane pattern configuration showing a state of being sealed with the sealing glass 40, the glass frit 36, and the UV curable resin 36U is expressed as shown in FIG. 36A, and VI-VI in FIG.
  • FIG. 36A a schematic plane pattern configuration showing a state of being sealed with the sealing glass 40, the glass frit 36, and
  • a method of manufacturing a structure in which a plurality (three in the example shown) of the organic thin-film solar cells according to the first embodiment are arranged in series will be described.
  • a glass substrate 10 for example, about 50 mm in length ⁇ about 50 mm in width ⁇ about 0.7 mm in thickness
  • pure water, acetone, and ethanol is placed in an ICP etcher, and the surface of the glass substrate 10 is obtained by O 2 plasma Remove deposits (glass substrate surface treatment).
  • O 2 plasma Remove deposits glass substrate surface treatment.
  • a transparent electrode layer 11 made of, for example, ITO is formed on the glass substrate 10.
  • a plurality of transparent electrode layers 11 are formed in a stripe pattern across the groove.
  • An oxygen plasma etching technique, a laser patterning technique, a nanoimprint technique, or the like can be applied to the formation of the groove.
  • the hole transport layer 12 is formed on each transparent electrode layer 11.
  • a spin coating technique, a spray technique, a screen printing technique, or the like can be applied.
  • the step of forming the hole transport layer 12 for example, PEDOT: PSS is formed by spin coating, and annealing is performed at about 120 ° C. for about 10 minutes in order to remove moisture.
  • An oxygen plasma etching technique, a laser patterning technique, a nanoimprint technique, or the like can be applied to the formation of the groove.
  • the first bulk heterojunction organic active layer 14 is formed on each hole transport layer 12.
  • P3HT is formed by spin coating.
  • the second bulk heterojunction organic active layer 14 ⁇ / b> A is formed at the end surface portion on the first bulk heterojunction organic active layer 14. .
  • P3HT is formed by spin coating.
  • a cathode electrode is formed on each first bulk heterojunction organic active layer 14 and each second bulk heterojunction organic active layer 14A.
  • Layer 16 is formed.
  • the cathode electrode layer 16 is formed, for example, by depositing a metal layer such as LiF / Al, W, Mo, Mn, and Mg by a vacuum heating vapor deposition method.
  • a screen printing technique may be applied instead of the vacuum heating deposition method.
  • the first bulk heterojunction organic active layer 14, the second bulk heterojunction organic active layer 14A, and the hole transport layer 12 are formed.
  • an oxide film (passive film) 24 is formed on the surface of the cathode electrode layer 16.
  • Each cell can be separated by etching the first bulk heterojunction organic active layer 14, the second bulk heterojunction organic active layer 14 A, and the hole transport layer 12.
  • the passive film 24 can be formed by subjecting the second electrode layer 16 to oxygen plasma treatment.
  • the passive film 24 can be formed using, for example, a high-density plasma etching apparatus.
  • the second electrode layer 16 is subjected to oxygen plasma treatment to form the passive film 24, and at the same time, the first bulk heterojunction organic active layer 14, the second bulk heterojunction organic active layer 14A, and the hole transport layer 12 are formed. It is also possible to perform etching.
  • sealing with a nitride film is performed using a CVD method in order to suppress deterioration due to moisture and oxygen in the atmosphere. Further, in order to eliminate defects such as spots on the nitride film and to smooth the back surface of the organic thin film solar cell module, a resin material is applied by a spin coat method or the like and cured by ultraviolet (UV) irradiation.
  • UV ultraviolet
  • the above-described steps may be repeated to form a multi-layer protective film.
  • a sealing glass (cover glass) 40 covers glass 40, a glass frit 36, and a UV curable resin 36U.
  • the glass frit 36 and the transparent electrode layer (ITO) 11 are bonded by the UV curable resin 36U.
  • the sealing step is preferably performed in a nitrogen atmosphere in order to prevent deterioration due to moisture and oxygen in the air.
  • a gettering sheet desiccant 38GU may be provided on the inner wall surface of the sealing glass 40 to further eliminate the influence of moisture and oxygen.
  • the organic thin-film solar cell 1 according to the first embodiment can be obtained.
  • step S (Procedure for making organic thin-film solar cells) Based on the flowchart shown in FIG. 37, the preparation procedure of the organic thin-film solar cell 1 which concerns on 1st Embodiment is demonstrated.
  • step S ⁇ b> 1 PEDOT: PSS is applied on the ITO substrate 10 for forming the hole transport layer 12.
  • the PEDOT: PSS aqueous solution is filtered with a PTFE membrane filter of about 0.45 ⁇ m to remove undissolved residues and impurities, and the PEDOT: PSS aqueous solution is applied onto the ITO substrate 10 and spin-coated (for example, about 4000 rpm, about 30 sec) To do.
  • step S2 PEDOT: PSS is sintered.
  • step S3 P3HT: PCBM is applied for forming the first bulk heterojunction organic active layer. Specifically, for example, P3HT: about 16 mg and PCBM: about 16 mg are dissolved in dichlorobenzene (o-dichlorobenzen). The solution is stirred overnight at about 50 ° C. in a nitrogen atmosphere and then sonicated at about 50 ° C. for about 1 minute.
  • step S4 pre-annealing is performed. That is, after the application in step S3, heating is performed at about 120 ° C. for about 10 minutes. In addition, it is good to cover the petri dish previously warmed with the hot plate so that heat may be transmitted to the whole substrate 10.
  • step S5 P3HT: PCBM is applied for forming the second bulk heterojunction organic active layer 14A. The formation conditions are the same as in step S3.
  • step S6 pre-annealing is performed. That is, after the application in step S5, heating is performed at about 20 ° C. for about 10 minutes as in step S4.
  • step S7 LiF vacuum deposition is performed. Specifically, LiF (purity: 99.98%) is subjected to vacuum heating deposition with a degree of vacuum: 1.1 ⁇ 10 ⁇ 6 torr ⁇ deposition rate of 0.1 ⁇ / sec.
  • step S8 the second electrode layer 16 is formed by performing Al vacuum deposition. Specifically, Al (purity: 99.999%) is subjected to vacuum heating deposition with a degree of vacuum: 1.1 ⁇ 10 ⁇ 6 torr and a deposition rate of ⁇ 2 ⁇ / sec.
  • step S9 an electrode oxide film treatment is performed on the second electrode layer 16.
  • the oxide film 24 is formed by oxidizing the surface of the second electrode layer 16 with oxygen plasma using a high-density plasma etching apparatus.
  • step S10 sealing is performed. Specifically, using a sealing glass on which a glass frit is formed, a UV curable resin is formed on the tip of the glass frit, facing the substrate, and exposed for about 10 minutes in a UV oven, for example. Seal.
  • the organic thin-film solar cell according to the first embodiment can be manufactured in a mass production process by arranging a plurality of cells in a matrix.
  • a glass substrate 10 washed with pure water, acetone, and ethanol is placed in an ICP etcher, and surface deposits are removed by O 2 plasma (glass substrate surface treatment). In order to efficiently guide light to the organic active layer, an antireflection treatment may be performed on the surface of the glass substrate 10.
  • a transparent electrode layer 11 made of, for example, ITO is formed on the substrate 10.
  • the transparent electrode layer 11 is formed in two stripe patterns with a gap therebetween. For forming the gap, an oxygen plasma etching technique, a laser patterning technique, a nanoimprint technique, or the like can be applied.
  • the hole transport layer 12 is formed on the substrate 10 and the transparent electrode layer 11.
  • a spin coating technique, a spray technique, a screen printing technique, or the like can be applied.
  • PEDOT: PSS is formed by spin coating, and annealing is performed at about 120 ° C. for about 10 minutes in order to remove moisture.
  • FIG. 40 the first bulk heterojunction organic active layer 14 and the second bulk heterojunction organic active layer 14 ⁇ / b> A are formed on the hole transport layer 12.
  • first bulk heterojunction organic active layer 14 and the second bulk heterojunction organic active layer 14A for example, P3HT: PCBM is formed by spin coating.
  • the thicknesses of the first bulk heterojunction organic active layer 14 and the second bulk heterojunction organic active layer 14A are, for example, about 100 nm to about 200 nm.
  • the second bulk heterojunction organic active layer 14A is patterned on the end face portion of each cell on the first bulk heterojunction organic active layer 14, but is not shown in FIG. (E)
  • two striped cathode electrode layers 16 are formed on the first bulk heterojunction organic active layer 14 and the second bulk heterojunction organic active layer 14A as transparent electrodes. It is formed perpendicular to the layer 11.
  • the organic thin-film solar cell 1 according to the first embodiment can be mass-produced.
  • FIG. 1 a schematic planar pattern configuration example in which a plurality of cells C ij are arranged in a matrix is expressed as shown in FIG.
  • Cells... C ij are arranged at the intersections of the cathode electrode patterns..., K i ⁇ 1 , K i , K i + 1 ,.
  • the cathode electrode pattern ..., K i-1 , K i , K i + 1 , ... cells arranged at the intersections ... C It is also possible to separately measure the characteristics of ij .
  • a spin coating method as shown in FIG. 43 (a) can be applied.
  • a spin coater including a spindle 62 that can be rotated at a high speed and connected to a drive source such as a motor, and a table 63 that is fixed to the spindle 62 and places the substrate 10 thereon is used. It is done.
  • the substrate 10 is placed on the table 63, a driving source such as a motor is operated, and the table 63 is rotated at high speed in the directions of arrows A and B at, for example, about 2000 to about 4000 rpm.
  • a dropper 60 a droplet 64 of a solution that forms the hole transport layer 12, the first bulk heterojunction organic active layer 14, and the second bulk heterojunction organic active layer 14 ⁇ / b> A is dropped.
  • the droplet 64 has a hole transport layer 12, the first bulk heterojunction organic active layer 14, and the second bulk heterojunction organic active layer 14 A having a uniform thickness on the substrate 10 by centrifugal force (FIG. 43 ( b) can be formed.
  • a plurality of transparent electrode layers 11 are formed on a substrate 70 made of glass or the like.
  • the transparent electrode layer 11 can be formed with a plurality of stripe patterns with a gap therebetween.
  • an oxygen plasma etching technique, a laser patterning technique, a nanoimprint technique, or the like can be applied.
  • An insulating layer 72 is formed so as to fill the gap.
  • the insulating layer 72 can be composed of, for example, a SiO 2 thin film.
  • Each insulating layer 72 is patterned by etching.
  • the hole transport layer 12 is sequentially ejected by droplets 76 of the solution forming the first bulk heterojunction organic active layer 14 and the second bulk heterojunction organic active layer 14A. 14.
  • a second bulk heterojunction organic active layer 14A can be formed.
  • the second bulk heterojunction organic active layer 14A is patterned. Furthermore, a second electrode layer is disposed on the surfaces of the first bulk heterojunction organic active layer 14 and the second bulk heterojunction organic active layer 14A. Further, a passive film is formed on the surface of the second electrode layer by oxygen plasma treatment.
  • the organic thin film solar cell 1 forms the hole transport layer 12, the first bulk heterojunction organic active layer 14 and the second bulk heterojunction organic active layer 14A by gravure printing using a roll-to-roll method. You can also.
  • an apparatus to which gravure printing is applied is sandwiched between a cylinder 94 having a plurality of recesses formed along the circumference, a pressure roller 96, and the cylinder 94 and pressure roller 96.
  • the film 98 to be conveyed and the lower part of the cylinder 94 are immersed, and the solution 90 for forming the hole transport layer 12, the first bulk heterojunction organic active layer 14, and the second bulk heterojunction organic active layer 14 A is accommodated.
  • a container 92 A container 92.
  • the solution conveyed upward by the concave portion of the cylinder 94 is transferred to the surface of the film 98 by the action of the pressure roller 96.
  • the hole transport layer 12, the first bulk heterojunction organic active layer 14, and the second bulk heterojunction organic active layer 14 A can be formed.
  • FIG. 46A A schematic cross-sectional structure of the forward structure type organic thin film solar cell 1A according to the basic technology is represented as shown in FIG. 46A, and a schematic cross-sectional structure of the reverse structure type organic thin film solar cell 1B is shown in FIG. It is expressed as shown in (b).
  • the forward structure type organic thin film solar cell 1 ⁇ / b> A includes a substrate 10, a first electrode layer 11 ⁇ / b> A disposed on the substrate 10, and a first electrode layer 11 ⁇ / b> A.
  • the carrier emission buffer layer 12B arranged, the bulk heterojunction organic active layer 14 arranged on the carrier emission buffer layer 12B, and the contact buffer layer 16T arranged on the bulk heterojunction organic active layer 14 And a second electrode layer 16K disposed on the contact buffer layer 16T.
  • the substrate 10 is made of, for example, glass
  • the first electrode layer 11A is made of, for example, ITO
  • the carrier emission buffer layer 12B is made of, for example, , PEDOT: PSS
  • the bulk heterojunction organic active layer 14 is formed of, for example, P3HT: PCBM
  • the contact buffer layer 16T is formed of, for example, TiO 2
  • the second electrode layer 16K is formed of, for example, , Al.
  • the first electrode layer 11A is connected to the anode terminal A ( ⁇ ), and the second electrode layer 16K is connected to the cathode terminal K (+).
  • the electron-hole pairs generated by the light (h ⁇ ) incident on the bulk heterojunction organic active layer 14 functioning as a power generation layer holes are transferred from the carrier emission buffer layer 12B to the first electrode layer 11A.
  • the electrons are emitted from the bulk heterojunction organic active layer 14 to the second electrode layer 16K through the contact buffer layer 16T.
  • anode terminal A ( ⁇ ) / cathode terminal K (+) indicates that holes move to the anode terminal A ( ⁇ ) side and electrons move to the cathode terminal K (+) side.
  • the polarity of the organic thin film solar cell 1A when the external load is short-circuited is that the anode terminal A is a positive electrode and the cathode terminal K is a negative electrode.
  • an inverted structure type organic thin film solar cell 1B includes a substrate 10, a first electrode layer 11K disposed on the substrate 10, and a first electrode layer 11K.
  • Carrier emitting buffer layer 11T disposed above, bulk heterojunction organic active layer 14 disposed on carrier emitting buffer layer 11T, and organic conductive film disposed on bulk heterojunction organic active layer 14 25 and a second electrode layer 16K disposed on the organic conductive film 25.
  • the substrate 10 is made of, for example, glass
  • the first electrode layer 11K is made of, for example, ITO
  • the carrier emission buffer layer 11T is made of, for example, , is formed by TiO 2
  • organic conductive film 25 is, for example, highly conductive PEDOT: formed by PSS
  • the second electrode layer 16A Is formed of, for example, an Ag particle paste layer.
  • the first electrode layer 11K is connected to the cathode terminal K (+), and the second electrode layer 16A is connected to the anode terminal A ( ⁇ ).
  • the electron-hole pairs generated by the light (h ⁇ ) incident on the bulk heterojunction organic active layer 14 functioning as the power generation layer electrons are transferred from the carrier emission buffer layer 11T to the first electrode layer 11K.
  • the holes are released from the bulk heterojunction organic active layer 14 through the organic conductive film 25 to the second electrode layer 16A.
  • the energy band structure of various materials of the forward structure type organic thin film solar cell 1A shown in FIG. 46 (a) is expressed as shown in FIG. 47 (a) and shown in FIG. 46 (b).
  • the energy band structure of various materials of the reverse structure type organic thin film solar cell 1B is expressed as shown in FIG.
  • the thickness W C of the organic conductive film 25 is thicker than the thickness W P of the metal particle intrusion layer 25S formed by migration of metal particles from the second electrode layer 16K to the organic conductive film 25.
  • the thickness W of the metal particle intrusion layer 25S is obtained.
  • P is, for example, about 200 nm to about 300 nm. That is, in the organic thin-film solar cell 2A according to the second embodiment, a sufficiently thick organic conductive film having a thickness of about 1.0 ⁇ m to about 10 ⁇ m is formed between the bulk heterojunction organic active layer 14 and the second electrode layer 16K.
  • metal migration into the bulk heterojunction organic active layer 14 functioning as a power generation layer can be prevented. For this reason, it is possible to improve the reliability by suppressing the leakage current between the cathode and the anode.
  • an Ag particle paste layer can be applied.
  • the substrate 10 can be formed of a glass substrate.
  • the first electrode layer can be formed of, for example, ITO, In 2 O 3 , SnO 2 , ZnO, TiO 2 or the like.
  • the organic conductive film 25 can be formed by, for example, PEDOT: PSS.
  • composition ratio of PEDOT: PSS that forms the organic conductive film 25 is, for example, about 1: 2.5.
  • the carrier release buffer layer 12B can be formed of, for example, PEDOT: PSS.
  • composition ratio of PEDOT: PSS that forms the carrier release buffer layer 12B is, for example, about 1: 6.
  • the PSS composition ratio with respect to PEDOT in PEDOT: PSS for forming the carrier emission buffer layer 12B is PEDOT: PSS for forming the organic conductive film 25. It is desirable that it is larger than the PSS composition ratio with respect to PEDOT.
  • a buffer layer 15 ⁇ / b> B may be provided between the bulk heterojunction organic active layer 14 and the organic conductive film 25.
  • the buffer layer 15 ⁇ / b> B is a layer for obtaining ohmic contact between the bulk heterojunction organic active layer 14 and the organic conductive film 25.
  • the buffer layer 15B can be formed by coating.
  • the buffer layer 15B can be formed of TiO 2 or ZnO.
  • an inverted-structure organic thin film solar cell 2B includes a substrate 10, a first electrode layer 11K arranged on the substrate 10, and a first electrode layer 11K.
  • a carrier emission buffer layer 11T disposed on the substrate, a bulk heterojunction organic active layer 14 disposed on the carrier emission buffer layer 11T, an organic conductive film 25 disposed on the bulk heterojunction organic active layer 14, A second electrode layer 16 ⁇ / b> A disposed on the organic conductive film 25.
  • the second electrode layer 16A is formed by coating with a metal particle paste layer. For this reason, manufacturing cost can be reduced.
  • the size of the metal particles is about several nm to several hundred ⁇ m.
  • W, Mo, Ni, Au, Co, or the like can be applied as the material for the metal particles.
  • the thickness W C of the organic conductive film 25 is thicker than the thickness W P of the metal particle intrusion layer 25S formed by migration of metal particles from the second electrode layer 16A to the organic conductive film 25.
  • the carrier emission buffer layer 11T emits electrons to the first electrode layer 11K.
  • the carrier emission buffer layer 11T can be formed of TiO 2 or ZnO.
  • the buffer layer 15B between the bulk heterojunction organic active layer 14 and the organic conductive film 25. . This is because it is sufficient that a Schottky junction is formed between the bulk heterojunction organic active layer 14 and the organic conductive film 25.
  • the cathode electrode layer 16K can be formed, for example, by applying an Ag particle paste layer by screen printing technology.
  • the Ag particle paste layer is formed of Ag nano ink, and the firing temperature is, for example, about 100 ° C.
  • the sheet resistance of the formed cathode electrode layer 16K is, for example, about 0.1 ⁇ / ⁇ or less. That is, the cathode electrode layer 16K made of a mesh-structured Ag particle paste layer is fired at a low temperature and has high conductivity.
  • the current component indicated by the current i k2 schematically represents the current component that is thermally deactivated inside the relatively thick organic conductive film 25.
  • the mesh electrode structure formed of such an Ag particle paste layer is disposed on the organic conductive film 25 as the cathode electrode layer 16K.
  • the current collecting action can be increased.
  • a metal particle intrusion layer 25S is formed at the interface of the organic conductive film 25 in contact with the cathode electrode layer 16K.
  • the thickness of the organic conductive film 25 is formed sufficiently thicker than the thickness of the metal particle intrusion layer 25S formed by migration of Ag particles.
  • FIG. 53 (b) a planar pattern configuration example of the cathode electrode layer 16K having a parallelogram including a rhombus structure as a basic lattice is shown in FIG.
  • FIG. 53 (a) the dimensions of parallelogram side is represented by W A.
  • FIG. 53 (b) in one mesh structure, a minute current component that conducts the mesh electrode of the cathode electrode layer 16K is represented by i K , and the area of one mesh window is H ti. It is represented by Other configurations are the same as those of the forward structure type organic thin film solar cell according to the second embodiment shown in FIG.
  • FIG. 54 a planar pattern configuration example of the cathode electrode layer 16K having a hexagonal structure as a basic lattice is shown in FIG. 54 (a).
  • An example of the planar pattern configuration of the cathode electrode layer 16K having a circular structure as a basic lattice is expressed as shown in FIG. 54B, and the planar pattern configuration of the cathode electrode layer 16K having a square structure as a basic lattice.
  • FIG. 54 An example is represented as shown in FIG.
  • the mesh electrode structure shown in FIGS. 52, 53 (a) and 54 (a) to 54 (c) is an inverted structure type organic material according to the second embodiment shown in FIG. The same applies to the second electrode layer 16A of the thin film solar cell 2B.
  • FIG. 55 (a) A schematic planar pattern configuration of a forward structure type organic thin film solar cell according to a modification of the second embodiment having a series structure is represented as shown in FIG. 55 (a) and corresponds to FIG. 55 (a).
  • the equivalent circuit configuration is represented as shown in FIG. 55 (b), and the schematic planar pattern configuration viewed from the back surface (light irradiation surface) side of FIG. 55 (a) is as shown in FIG. 55 (c). expressed.
  • the organic thin film solar cell of the forward structure type according to the modification of the second embodiment having a series structure has organic thin film solar cells OPV 1 and OPV 2.
  • a structure in which four OPV 3 and OPV 4 are connected in series between the anode A (11A 1 ) and the cathode K (11A 4 ) is provided. That is, the organic thin film solar cell OPV 1 is disposed between the first electrode layer 11A 1 and the cathode electrode layer 16K 1 , and the organic thin film solar cell OPV 2 is disposed between the first electrode layer 11A 2 and the cathode electrode layer 16K 2.
  • the length L t is, for example, about 29.6 mm
  • the width W t is, for example, about 11.8 mm.
  • the length L1 of the first electrode layer 11A 1 forming the extraction electrode for example, about 3.8 mm
  • the width W2 is, for example, about 1.2 mm.
  • the dimensions of the first electrode layer 11A 4 that forms the extraction electrode are also the same as those of the first electrode layer 11A 1 that forms the extraction electrode.
  • the overall length L E is, for example, about 27.9 mm, and the width W E is, for example, about 9.15 mm.
  • the thickness of the glass substrate 10 is, for example, about 0.7 mm, and the total thickness of the organic thin film solar cell module is, for example, about 1.4 mm at the maximum.
  • FIG. 56 (a) The schematic cross-sectional structure of the laminated structure portion of the forward structure type organic thin film solar cell 2A according to the second embodiment is expressed as shown in FIG. 56 (a), and is the detailed structure of FIG. 56 (a).
  • FIG. 56 (a) A schematic cross-sectional structure of a structural example having the metal particle intrusion layer 25S at the interface in contact with the second electrode layer 16 of the organic conductive film 25 is expressed as shown in FIG.
  • the laminated structure portion of the forward structure type organic thin film solar cell 2A includes a substrate 10 and a transparent electrode layer (first electrode) disposed on the substrate 10. Electrode layer) 11A 1 , 11A 2 , carrier emission buffer layer 12B disposed on first electrode layer 11A 1 , bulk heterojunction organic active layer 14 disposed on carrier emission buffer layer 12B, and bulk heterojunction An organic conductive film 25 disposed on the organic active layer 14 and a second electrode layer 16K 1 disposed on the organic conductive film 25 are provided. The thickness of the organic conductive film 25, as shown in FIG.
  • the thickness of the metal particles penetrate layer 25S formed by the migration of the metal particles to organic conductive film 25 from the second electrode layer 16K 1 Is also formed thick.
  • the thickness of the organic conductive film 25 is thicker than the thickness of the metal particles penetrate layers 25S even at the sidewall portion contacting with the second electrode layer 16K 1.
  • a schematic cross-sectional structure obtained by further performing passivation is expressed as shown in FIG.
  • a schematic cross-sectional structure of a forward structure type organic thin film solar cell 2C according to a comparative example that does not include the organic conductive film 25 is expressed as shown in FIG.
  • a forward structure type organic thin film solar cell 2A includes a substrate 10 and a transparent electrode layer (first electrode layer) 11A disposed on the substrate 10. 1 ⁇ 11A 2 , a carrier emission buffer layer 12B disposed on the first electrode layer 11A 1 , a bulk heterojunction organic active layer 14 disposed on the carrier emission buffer layer 12B, and a bulk heterojunction organic active layer 14
  • the forward structure type organic thin film solar cell 2 ⁇ / b> C includes a substrate 10 and transparent electrode layers (first electrode layers) 11 ⁇ / b > A 1 and 11 ⁇ / b > A 2 disposed on the substrate 10.
  • first electrode layer 11A 1 carrier release buffer layer 12B disposed on a bulk heterojunction organic active layer 14 disposed on the carrier release buffer layer 12B are arranged on the bulk heterojunction organic active layer 14
  • the cathode electrode layer (second electrode layer) 16K 1 , the passivation layer 26 disposed on the second electrode layer 16K 1 , the barrier layer 28 disposed on the passivation layer 26, and the barrier layer 28 A passivation layer 31 and a backsheet layer 33 disposed on the passivation layer 31.
  • the barrier layer 28 is formed by laminating an inorganic passivation film such as SiN or SiON and a resin protective film in multiple layers by a chemical vapor deposition (CVD) method. Since the transparent resin material used as the resin protective film is transparent except for the cell portion, when coloring the module according to the intended use, it is necessary to add an extra material such as attaching a color film as the back sheet layer 33. is there. Since the entire module needs to be colored in accordance with the color of the housing to be incorporated and the work environment, the solar cell is bonded with a white or black back sheet on the back of the module. However, in the forward structure type organic thin film solar cell 2C according to the comparative example, the use of the back sheet layer 33 increases the thickness of the module and increases the cost.
  • CVD chemical vapor deposition
  • the forward structure type organic thin film solar cell 2A is an organic material having a thickness of about several hundreds of nanometers serving as a power generation layer on the glass substrate 10 with ITO, as shown in FIG.
  • the layer (12B • 14) and the organic conductive film 25 having a thickness of about 1 ⁇ m to about 10 ⁇ m are laminated, and the second electrode layer 16 is formed, for example, by applying and baking an Ag particle paste layer by screen printing. It is done.
  • the colored barrier layer 28 disposed on the passivation layer 26 serves as a protective layer for the organic thin-film solar battery cell.
  • the colored barrier layer 28 can be formed of a color filter that can be patterned arbitrarily by ultraviolet (UV) irradiation.
  • UV ultraviolet
  • the forward structure type organic thin film solar cell 2A according to the second embodiment can have a design property in the protective layer, and is a comparative example. Compared with (FIG. 57B), it is possible to reduce the number of manufacturing steps and improve the design.
  • the passivation layer 26 and the colored barrier layer 28 are formed by laminating an inorganic passivation film such as SiN or SiON by CVD and a resin protective film in multiple layers. Can be formed.
  • the chemical structural formula of P3HT applied to the bulk heterojunction organic active layer 14 is expressed as shown in FIG. 13A and applied to the bulk heterojunction organic active layer 14.
  • the chemical structural formula of PCBM is represented as shown in FIG.
  • Examples of chemical structural formulas of materials that can be used in the solution process in the organic thin film solar cell 1A are represented in the same manner as in FIGS. 15 (a) to 15 (g). Hereinafter, redundant description is omitted.
  • FIG. 58 (a) shows a step of preparing an ITO substrate in which the transparent electrode layer 11 is formed on the substrate 10, which is a step of the method for manufacturing the forward structure type organic thin film solar cell according to the second embodiment.
  • the process of patterning the transparent electrode layers 11A 1 and 11A 2 and patterning the carrier emission buffer layer 12B on the transparent electrode layer 11A 1 is expressed as shown in FIG.
  • the step of patterning the bulk heterojunction organic active layer 14 on the carrier emission buffer layer 12B is expressed as shown in FIG. 58C, and is relatively thick on the bulk heterojunction organic active layer 14.
  • step of the organic conductive film 25 patterned is expressed as shown in FIG. 58 (d), the step of the second electrode layer 16K 1 in an organic conductive film 25 on the patterning, as shown in FIG. 58 (e) It is expressed in
  • FIG. 58 (e) shows a step of the method for manufacturing the forward structure type organic thin film solar cell according to the second embodiment.
  • a metal particle intrusion layer 25S is formed on the organic conductive film 25.
  • a schematic cross-sectional structure for explaining the appearance is represented as shown in FIG. 59 (a), and the process of forming the passivation layer 26 on the entire surface of the device is represented as shown in FIG. 59 (b).
  • the step of forming a colored barrier layer on the layer 26 is expressed as shown in FIG.
  • the manufacturing method of the forward structure type organic thin film solar cell according to the second embodiment includes the step of preparing the substrate 10 and the first electrode layer 11 (11A on the substrate 10). 1 ⁇ 11A 2 ), forming the carrier emission buffer layer 12B on the first electrode layer 11A 1 , forming the bulk heterojunction organic active layer 14 on the carrier emission buffer layer 12B, And a step of forming the organic conductive film 25 on the bulk heterojunction organic active layer 14 and a step of forming the second electrode layer 16K 1 on the organic conductive film 25.
  • the step of forming the organic conductive film 25 on the bulk heterojunction organic active layer 14 is performed as shown in FIG. 48 or FIG. You may have the process of forming the buffer layer 15B on the joining organic active layer 14, and the process of forming the organic electrically conductive film 25 on the buffer layer 15B.
  • the step of forming the second electrode layer 16 ⁇ / b> K 1 includes a step of applying and forming a metal particle paste layer on the organic conductive film 25.
  • the thickness of the organic conductive film 25 is thicker than the thickness of the metal particles penetrate layer 25S formed by the migration of the metal particles to organic conductive film 25 from the second electrode layer 16K 1.
  • the thickness of the organic conductive film 25 is thicker than the thickness of the metal particles penetrate layers 25S even at the sidewall portion contacting with the second electrode layer 16K 1 It is formed.
  • the metal particle paste layer may be an Ag particle paste layer.
  • FIGS. 59 and 57 (a) forming a passivation layer 26 on the second electrode layer 16K 1, passivation You may have the process of forming the coloration barrier layer 28 on the layer 26, and the process of forming the back-sheet passivation layer 30 on the colorization barrier layer 28.
  • FIG. 59 and 57 (a) forming a passivation layer 26 on the second electrode layer 16K 1, passivation You may have the process of forming the coloration barrier layer 28 on the layer 26, and the process of forming the back-sheet passivation layer 30 on the colorization barrier layer 28.
  • a wet etching technique, a laser patterning technique, or the like can be applied.
  • a spin coating technique, a spray technique, a screen printing technique, or the like can be applied to the formation of the carrier emission buffer layer 12B.
  • PEDOT: PSS is preferably formed by spin coating, and annealing is performed at 120 ° C. for about 10 minutes.
  • C Next, as shown in FIG. 58C, a bulk heterojunction organic active layer 14 to be a power generation layer is formed on the carrier emission buffer layer 12B.
  • the bulk heterojunction organic active layer 14 for example, P3HT: PCBM is formed by spin coating.
  • heating is performed at about 100 ° C. to 120 ° C. for about 10 minutes to 30 minutes in order to dry the organic solvent. .
  • a buffer layer 15 ⁇ / b> B is formed on the bulk heterojunction organic active layer 14.
  • the buffer layer 15B can be formed using, for example, TiO 2 or ZnO using a printing process or the like.
  • a relatively thick organic conductive film 25 is formed on the bulk heterojunction organic active layer 14.
  • PEDOT: PSS having a relatively high conductivity is formed by spin coating, and an annealing process is performed to remove moisture.
  • the sheet resistance of the organic conductive film 25 is, for example, about 300 ⁇ / ⁇ .
  • the cathode electrode layer 16 ⁇ / b> K 1 is patterned on the organic conductive film 25.
  • the cathode electrode layer 16K 1 is formed, for example, by applying an Ag particle paste layer by screen printing technology.
  • a passivation layer 26 is formed on the second electrode layer 16.
  • a silicon nitride film or the like may be formed by a CVD method.
  • the thickness of the silicon nitride film is, for example, about 0.5 ⁇ m to 1.5 ⁇ m. In order to suppress deterioration due to moisture and oxygen in the atmosphere, durability can be further improved by sealing with a SiN film formed by CVD.
  • a colored barrier layer 28 is formed on the passivation layer 26.
  • a UV curable resin material is applied by a spin coat method or the like and cured by UV irradiation.
  • the colored barrier layer 28 uses a protective film to which a colorant is added, so that the module can be arbitrarily colored with a thinned element structure.
  • a backsheet passivation layer 30 is formed on the colored barrier layer 28.
  • a silicon nitride film or the like may be formed by a CVD method.
  • the thickness of the silicon nitride film is, for example, about 0.5 ⁇ m to 1.5 ⁇ m.
  • durability can be further improved by sealing with a SiN film formed by CVD.
  • the forward structure type organic thin film solar cell 2A according to the second embodiment is completed through the above steps.
  • a step of forming a passivation layer 26 such as a silicon nitride film (FIG. 59B) or a step of forming a colored barrier layer 28 on the passivation layer 26 according to the required module durability (FIG. 59C). )) May be repeated to form a multi-layered protective film.
  • a passivation layer 26 such as a silicon nitride film (FIG. 59B) or a step of forming a colored barrier layer 28 on the passivation layer 26 according to the required module durability (FIG. 59C).
  • the manufacturing method of the inverted structure type organic thin film solar cell according to the second embodiment includes a step of preparing the substrate 10 and a step of forming the first electrode layer 11K on the substrate 10.
  • the step of forming the carrier emission buffer layer 11T on the first electrode layer 11K, the step of forming the bulk heterojunction organic active layer 14 on the carrier emission buffer layer 11T, and the organic conductivity on the bulk heterojunction organic active layer 14 A step of forming the film 25 and a step of forming the second electrode layer 16A on the organic conductive film 25.
  • the carrier emission buffer layer 11T can suppress the oxidative deterioration of the bulk heterojunction organic active layer 14 and has a small optical loss.
  • Formed of material For example, it is made of TiO 2 or ZnO.
  • the bulk heterojunction organic active layer 14 and the organic conductive film 25 may be in Schottky contact. For this reason, the formation process of a buffer layer is unnecessary.
  • a plurality (three in the illustrated example) a one step of the manufacturing method of the forward structure type organic thin film solar cell according to the second embodiment arranged in series, the substrate 10 a transparent electrode layer on 11A 1
  • a schematic plane pattern configuration showing a state in which 11A 2 , 11A 3, and 11A 4 are formed is represented as shown in FIG. 60 (a), and a schematic cross-sectional structure taken along line VIII-VIII in FIG. 60 (a) Is expressed as shown in FIG.
  • FIG. 1 A schematic planar pattern configuration showing a state in which the carrier emission buffer layer 12B is formed on the transparent electrode layers 11A 1 , 11A 2 , 11A 3 is expressed as shown in FIG.
  • FIG. 1 A schematic cross-sectional structure taken along line IX-IX in a) is expressed as shown in FIG.
  • FIG. 62 (a) a schematic planar pattern configuration showing a state in which the bulk heterojunction organic active layer 14 is formed on the carrier emission buffer layer 12B is expressed as shown in FIG. 62 (a), and is shown in FIG. 62 (a).
  • FIG. 62 (a) A schematic cross-sectional structure along the line XX is expressed as shown in FIG.
  • FIG. 59 (b) and FIG. 59 (c) the thickness of the organic conductive film 25, than the thickness of the metal particles penetrate layers 25S even at the sidewall portion contacting with the second electrode layer 16K 1
  • the detailed structure of the side wall is not shown.
  • a schematic planar pattern configuration showing a state in which a relatively thick organic conductive film 25 is formed on the bulk heterojunction organic active layer 14 is expressed as shown in FIG. ) Is a schematic cross-sectional structure taken along line XI-XI as shown in FIG.
  • FIG. 64 a schematic planar pattern configuration showing a state in which the second electrode layers 16K 1 , 16K 2, and 16K 3 are formed on the organic conductive film 25 is expressed as shown in FIG. 64 (a), and FIG. A schematic cross-sectional structure taken along line XII-XII is expressed as shown in FIG.
  • FIG. 65A A schematic cross-sectional structure expressed along the line XIII-XIII in FIG. 65A is expressed as shown in FIG.
  • FIG. 66A a schematic plane pattern configuration showing a state in which the passivation layer 26 is formed on the entire surface of the device is expressed as shown in FIG. 66A, and a schematic cross-sectional structure taken along line XIV-XIV in FIG. This is expressed as shown in FIG.
  • FIG. 67A a schematic planar pattern configuration showing a state in which the colored barrier layer 28 is formed on the passivation layer 26 is expressed as shown in FIG. 67A, and is a schematic diagram along the XV-XV line in FIG. 67A.
  • a typical cross-sectional structure is represented as shown in FIG.
  • FIG. 68 (a) a schematic plane pattern configuration showing a state in which the backsheet passivation layer 30 is formed on the colored barrier layer 28 is expressed as shown in FIG. 68 (a), and is taken along line XVI-XVI in FIG. 68 (a).
  • the schematic cross-sectional structure along is represented as shown in FIG.
  • transparent electrode layers 11A 1 , 11A 2 , 11A 3 , 11A 4 made of, for example, ITO are formed on the glass substrate 10.
  • a plurality of transparent electrode layers 11A 1 , 11A 2 , 11A 3, and 11A 4 are formed in a stripe pattern with a groove portion interposed therebetween.
  • a wet etching technique, a laser patterning technique, or the like can be applied to the formation of the groove.
  • the carrier emission buffer layer 12B is formed on each of the transparent electrode layers 11A 1 , 11A 2 , 11A 3 .
  • a spin coating technique, a spray technique, a screen printing technique, or the like can be applied to the formation of the carrier emission buffer layer 12B.
  • PEDOT: PSS is formed by spin coating, and annealing is performed at 120 ° C. for about 10 minutes to remove moisture.
  • a wet etching technique, a laser patterning technique, or the like can be applied to the formation of the groove.
  • the bulk heterojunction organic active layer 14 is formed on each carrier emission buffer layer 12B.
  • P3HT: PCBM is formed by spin coating.
  • an organic conductive film 25 is formed on the bulk heterojunction organic active layer 14.
  • PEDOT: PSS is formed by spin coating, and annealing is performed at 120 ° C. for about 10 minutes to remove moisture. A wet etching technique, a laser patterning technique, or the like can be applied to the formation of the groove.
  • second electrode layers (cathode electrode layers) 16K 1 , 16K 2, and 16K 3 are formed on each organic conductive film 25.
  • the second electrode layers 16K 1 , 16K 2, and 16K 3 are formed, for example, by coating a metal particle paste layer such as Ag using a screen printing technique and baking.
  • a passivation layer 26 is formed on the entire surface of the device.
  • a silicon nitride film or the like may be formed by a CVD method.
  • the thickness of the silicon nitride film is, for example, about 0.5 ⁇ m to 1.5 ⁇ m. In order to suppress deterioration due to moisture and oxygen in the atmosphere, durability can be further improved by sealing with a SiN film formed by CVD.
  • a colored barrier layer 28 is formed on the passivation layer 26.
  • a UV curable resin material is applied by a spin coat method or the like and cured by UV irradiation.
  • the colored barrier layer 28 uses a protective film to which a colorant is added, so that the module can be arbitrarily colored.
  • a backsheet passivation layer 30 is formed on the colored barrier layer 28.
  • a silicon nitride film or the like may be formed by a CVD method.
  • the thickness of the silicon nitride film is, for example, about 0.5 ⁇ m to 1.5 ⁇ m.
  • durability can be further improved by sealing with a SiN film formed by CVD.
  • a passivation layer 26 such as a silicon nitride film (FIG. 66) and the step of forming a colorized barrier layer 28 on the passivation layer 26 (FIG. 67) are repeated to obtain multiple layers.
  • a laminated protective film may be formed.
  • the organic thin-film solar cell according to the second embodiment arranged in series (three in the example in the figure) can be completed.
  • step S1 PEDOT: PSS is applied on the ITO substrate 10 to form a carrier emission buffer layer 12B.
  • the PEDOT: PSS aqueous solution is filtered with a 0.45 ⁇ m PTFE membrane filter to remove undissolved residues and impurities, and the PEDOT: PSS aqueous solution is applied onto the ITO substrate 10 and spin-coated (for example, 4000 rpm, 30 sec).
  • step S2 PEDOT: PSS is sintered.
  • step S3 PCBM is applied to form the bulk heterojunction organic active layer. Specifically, for example, 16 mg of P3HT and 16 mg of PCBM are dissolved in dichlorobenzene (o-dichlorobenzen). The solution is stirred overnight at 50 ° C. in a nitrogen atmosphere and then sonicated at 50 ° C. for 1 minute. The solution is spin-coated on the ITO substrate 10 cleaned in a nitrogen-substituted glove box ( ⁇ 1 ppm O 2 , H 2 O).
  • step S4 pre-annealing is performed. That is, after the application in step S3, heating is performed at 120 ° C. for 10 minutes. In addition, it is good to cover the petri dish previously warmed with the hot plate so that heat may be transmitted to the whole substrate 10.
  • step S5 a buffer layer 15B made of TiO 2 is applied and baked on the bulk heterojunction organic active layer.
  • step S6 an organic conductive film 25 made of highly conductive PEDOT: PSS is applied on the buffer layer 15B.
  • step S7 the organic conductive film 25 made of highly conductive PEDOT: PSS is sintered.
  • step S ⁇ b> 8 an Ag particle paste layer is applied and baked on the organic conductive film 25 to form the second electrode layer 16.
  • step S9 sealing is performed. Specifically, a passivation layer 26, a colored barrier layer 28, and a backsheet passivation layer 30 are sequentially laminated on the entire device to seal the element.
  • step S11 TiO 2 or ZnO is applied on the ITO substrate 10 to form a carrier emission buffer layer 11T.
  • P3HT PCBM is applied on the carrier emission buffer layer 11T to form the bulk heterojunction organic active layer. Specifically, for example, 16 mg of P3HT and 16 mg of PCBM are dissolved in dichlorobenzene (o-dichlorobenzen). The solution is stirred overnight at 50 ° C. in a nitrogen atmosphere and then sonicated at 50 ° C.
  • step S13 pre-annealing is performed. That is, after the application in step S12, heating is performed at 120 ° C. for 10 minutes. In addition, it is good to cover the petri dish previously heated with the hot plate so that heat may be transmitted to the ITO substrate 10 whole.
  • step S ⁇ b> 14 an organic conductive film 25 made of highly conductive PEDOT: PSS is applied on the bulk heterojunction organic active layer 14.
  • step S15 the organic conductive film 25 made of highly conductive PEDOT: PSS is sintered. That is, after film formation, heat treatment is performed to remove moisture
  • step S16 an Ag particle paste layer is applied and baked on the organic conductive film 25 to form the second electrode layer 16A.
  • step S17 sealing is performed. Specifically, a passivation layer 26, a colored barrier layer 28, and a backsheet passivation layer 30 are sequentially laminated on the entire device to seal the element.
  • the forward structure type organic thin film solar cell according to the second embodiment is mass-produced by arranging a plurality of cells in a matrix. It can also be manufactured by a process.
  • FIG. 38 First, a glass substrate 10 washed with pure water, acetone, and ethanol is placed in an ICP etcher, and surface deposits are removed by O 2 plasma (glass substrate surface treatment). In order to efficiently guide light to the organic active layer, an antireflection treatment may be performed on the surface of the glass substrate 10.
  • the transparent electrode layer 11 made of, for example, ITO is formed on the substrate 10.
  • the transparent electrode layer 11 is formed in two stripe patterns with a gap therebetween. For forming the gap, a wet etching technique, a laser patterning technique, or the like can be applied.
  • the carrier emission buffer layer 12 ⁇ / b> B is formed on the substrate 10 and the transparent electrode layer 11.
  • a spin coating technique, a spray technique, a screen printing technique, or the like can be applied to the formation of the carrier emission buffer layer 12B.
  • PEDOT: PSS is formed by spin coating, and annealing is performed at 120 ° C. for about 10 minutes to remove moisture.
  • the bulk heterojunction organic active layer 14 is formed on the carrier emission buffer layer 12B.
  • P3HT: PCBM is formed by spin coating.
  • the thickness of the bulk heterojunction organic active layer 14 is, for example, about 100 nm to about 200 nm.
  • the cathode electrode layer 16 having two stripe patterns is formed as a transparent electrode. It is formed perpendicular to the layer 11.
  • an Ag particle paste layer is formed on the cathode electrode layer 16 by applying a screen printing technique.
  • the passivation layer 26, the colored barrier layer 28, and the backsheet passivation layer 30 are sequentially laminated on the entire device and sealed.
  • the forward structure type organic thin film solar cell according to the second embodiment can be mass-produced.
  • a schematic planar pattern configuration example in which a plurality of cells C ij are arranged in a matrix is expressed in the same manner as FIG.
  • Cells... C ij are arranged at the intersections of the cathode electrode patterns..., K i ⁇ 1 , K i , K i + 1 ,.
  • spin coating method In the method for manufacturing a forward structure type organic thin film solar cell according to the second embodiment, a spin coating method for forming the carrier emission buffer layer 12B, the bulk heterojunction organic active layer 14 and the organic conductive film 25 is performed. The outline shown is expressed as shown in FIG. 73A, and a schematic bird's-eye view configuration showing an example of the formed carrier emission buffer layer 12B, the bulk heterojunction organic active layer 14 and the organic conductive film 25 is shown in FIG. It is expressed as shown in (b).
  • a spin coating method as shown in FIG. 73 (a) may be applied. it can.
  • a spin coater including a spindle 62 that can be rotated at a high speed and connected to a drive source such as a motor, and a table 63 that is fixed to the spindle 62 and on which the substrate 10 is placed is used. It is done.
  • FIG. 74 (a) shows the result of cell cross-sectional observation by a transmission electron microscope (TEM), which is a forward structure type organic thin film solar cell according to the basic technology.
  • TEM transmission electron microscope
  • SEM Scanning Electron Microscope
  • a W / Pt layer is formed on Al (16K).
  • a contact buffer layer 16T is formed between Al (16K) and P3HT: PCBM (14), but the display is omitted.
  • a carrier emitting buffer layer 11T is formed between the ITO (11A) and the P3HT: PCBM (14), but the display is omitted.
  • formation of the organic electrically conductive film 25 in FIG.1 (b) is abbreviate
  • the Ag particles As shown in FIG. 75 (a) and FIG. 75 (b), due to the migration of the Ag particles from the Ag particle paste layer (16K), the Ag particles reach the vicinity of ITO (11A) and the depth of P3HT: PCBM (14). It is diffused throughout the entire length.
  • the cell cross-section observation result by TEM is expressed as shown in FIG. 76 (a)
  • the cell cross-section observation result by SEM is It is expressed as shown in FIG.
  • an organic conductive film 25 is formed by a screen printing method, and then a second electrode layer made of an Ag particle paste layer is formed by a screen printing method.
  • the electrode layer 16K is formed, and substantially corresponds to the structure shown in FIG. That is, as shown in FIGS.
  • a buffer layer 15B is formed between PEDOT: PSS (25) and P3HT: PCBM (14), but the display is omitted in the example of FIG.
  • PEDOT: PSS (25) is formed relatively thick, it is shown in FIGS. 76 (a) and 76 (b).
  • grains have not reached
  • FIG. 77 is an example showing the outermost surface portion after heat treatment of a sample in which an Ag particle paste layer is formed as the second electrode layer 16K by screen printing.
  • the formation of PEDOT: PSS25 is omitted in order to observe the Ag particle paste layer 16K in the outermost surface portion.
  • the outermost surface portion has a laminated structure of GLASS (10) / ITO (11A) / P3HT: PCBM (14) / Ag paste layer (16K).
  • an organic thin-film solar cell that can suppress metal migration into the power generation layer, reduce manufacturing cost, and improve reliability, and a method for manufacturing the same. be able to.
  • the organic thin-film solar cell of the present invention is inexpensive, has improved durability, and can be reduced in weight and thickness, so it can be applied to a wide range of fields such as solar power generation panels, mobile device charging devices and solar energy systems. It is.
  • 2nd conductivity type organic active layer (n-type organic active layer) 15B: Buffer layer (TiO 2 ) 16,16K, 16K 1, 16K 2, 16K 3, 16K 4 ... second electrode layer (cathode electrode layer, Ag particle paste layer) 16A ... Second electrode layer (anode electrode layer, Ag particle paste layer) 16T: Buffer layer for contact (TiO 2 ) 17 ... 2nd conductivity type transport layer (electron transport layer) 18 ... Metal nanoparticle layer 20 ... Mold 23 ... Groove 24 ... Passive film (oxide film) 25.
  • Organic conductive film High conductivity (HC) PEDOT: PSS) 25S ... metal particle intrusion layer 26, 31 ... passivation layer 28 ... colored barrier layer 30 ...
  • backsheet passivation layer 33 ... backsheet layer 36, 36P ... glass frit 36U ... resin (thermosetting resin, UV curable resin) 38GU ... sheet desiccant for gettering 40 ... sealing layer (sealing glass, glass plate, cover glass) 60 ... eyedropper 62 ... spindle 63 ... table 64, 76 ... droplet 70 ... substrate 72, 74: insulating layer 78 ... inkjet apparatus 80 ... inkjet nozzles 90 ... solution 92 ... container 94 ... cylinder 96 ... crimping rollers 98 ... Film W P ... thickness W C of metal particle intrusion layer 25S ... thickness A (-) of organic conductive film 25 ... anode terminal K (+) ... cathode terminal

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Photovoltaic Devices (AREA)

Abstract

This organic thin film solar cell (1) is provided with: a substrate (10); a first electrode layer (11) that is arranged on the substrate (10); a hole transport layer (12) that is arranged on the first electrode layer (11); a first organic active layer (14) that is arranged on the hole transport layer (12); a second organic active layer (14A) that is arranged on an end face portion of the first organic active layer (14); a second electrode layer (16) that is arranged on the first organic active layer (14) and the second organic active layer (14A); a sealing glass member (40) that faces the substrate (10) and seals a multilayer structure that is composed of the first electrode layer (11), the hole transport layer (12), the first organic active layer (14), the second organic active layer (14A) and the second electrode layer (16); and a sealing part (a glass frit (36) and a resin (36U)) that is arranged between the sealing glass member (40) and the substrate (10) and seals the multilayer structure. This organic thin film solar cell is reduced in the non-power-generating part and has improved power generation characteristics.

Description

有機薄膜太陽電池およびその製造方法Organic thin film solar cell and method for producing the same
 本発明は、有機薄膜太陽電池およびその製造方法に関し、特に発電特性を向上させ、また製造コストの低減および信頼性の向上可能な有機薄膜太陽電池およびその製造方法に関する。 The present invention relates to an organic thin film solar cell and a method for manufacturing the same, and more particularly to an organic thin film solar cell that can improve power generation characteristics, reduce manufacturing costs, and improve reliability, and a method for manufacturing the same.
 極薄、軽量、フレキシブルを特徴とする有機薄膜太陽電池は、常温、大気圧下でインクジェット法などの印刷法により製造されるため、形状の自由度が高く、意匠性に優れた太陽電池が実現可能である(例えば、特許文献1参照。)。 Organic thin-film solar cells featuring ultra-thin, light weight, and flexibility are manufactured by printing methods such as the ink-jet method at room temperature and atmospheric pressure, realizing a high degree of freedom in shape and excellent design. It is possible (for example, refer to Patent Document 1).
 また、陰極側の金属電極に接触して配置され、金属電極とオーミックコンタクトを得るための塗布型バッファ層を備える有機薄膜太陽電池についても開示されている(例えば、特許文献2参照。)。 Also disclosed is an organic thin-film solar cell that is disposed in contact with the metal electrode on the cathode side and includes a coating-type buffer layer for obtaining an ohmic contact with the metal electrode (see, for example, Patent Document 2).
特表2007-534119号公報Special table 2007-534119 特開2012-186343号公報JP 2012-186343 A
 通常、屋外向けの薄膜太陽電池は、短冊状に折り重なったセルで構成されたモジュールの端面部分において電極が形成される。しかし、発電層となる有機層が約100nmと薄い有機薄膜太陽電池の場合、透明電極膜の端面において有機層が薄くなりリーク電流が発生し易く、また透明電極膜と対極とが接触し所望の発電特性を得られないことがある。 Usually, in a thin film solar cell for outdoor use, an electrode is formed on an end surface portion of a module composed of cells folded in a strip shape. However, in the case of an organic thin film solar cell having a thin organic layer as a power generation layer of about 100 nm, the organic layer becomes thin at the end face of the transparent electrode film and a leak current is likely to occur, and the transparent electrode film and the counter electrode are in contact with each other as desired. The power generation characteristics may not be obtained.
 これを回避するために、従来は樹脂などの絶縁物を透明電極膜の端面に被覆し、電極同士の接触を防止する方法が採用されている。しかし、端面を被覆した部位は非発電部となり、また外観を損なうなどの問題があった。 In order to avoid this, conventionally, an insulating material such as resin is coated on the end face of the transparent electrode film to prevent contact between the electrodes. However, the part covering the end face becomes a non-power generation part, and there is a problem that the appearance is impaired.
 一般的な有機薄膜太陽電池は、例えば、ITO基板上に配置されるバッファ層および発電層は、大気雰囲気下で塗布形成され、最後に、金属電極形成のために、真空・減圧下で真空蒸着法により銀やアルミニウムが形成される。しかしながら、真空蒸着法は、装置およびプロセスコストが高いという課題があった。 In general organic thin-film solar cells, for example, a buffer layer and a power generation layer disposed on an ITO substrate are applied and formed in an air atmosphere, and finally, vacuum deposition is performed under vacuum and reduced pressure to form a metal electrode. Silver or aluminum is formed by the method. However, the vacuum deposition method has a problem of high apparatus and process costs.
 そこで、金属電極を大気雰囲気下でスクリーン印刷法やインクジェット法などを用いて形成することで大幅なコスト低減が可能となるが、発電層に対して金属電極を形成して塗布・焼成すると、金属が発電層内部にマイグレーションし、陰極―陽極間のリーク電流が増大して、信頼性が低下するという課題があった。 Therefore, it is possible to significantly reduce the cost by forming the metal electrode in an air atmosphere by using a screen printing method or an ink jet method. However, if the metal electrode is formed on the power generation layer and applied and fired, the metal electrode Migrates into the power generation layer, increasing the leakage current between the cathode and anode, resulting in a decrease in reliability.
 本発明者は、インクジェット法などの塗布形成方法を用いて、透明電極膜の端面部位に発電層となる有機層を厚く形成することで、非発電部位を低減し、かつ外観を損なうことなく被覆を行う方法を見出した。 The present inventor uses a coating formation method such as an inkjet method to form a thick organic layer as a power generation layer on the end surface portion of the transparent electrode film, thereby reducing non-power generation portions and covering without damaging the appearance. Found a way to do.
 本発明の目的は、非発電部位を低減し、発電特性を向上させた有機薄膜太陽電池およびその製造方法を提供することにある。 An object of the present invention is to provide an organic thin film solar cell in which non-power generation sites are reduced and power generation characteristics are improved, and a method for manufacturing the same.
 本発明の目的は、発電層内部への金属マイグレーションを抑制し、製造コストの低減および信頼性の向上可能な有機薄膜太陽電池およびその製造方法を提供することにある。 An object of the present invention is to provide an organic thin-film solar cell that can suppress metal migration into the power generation layer, reduce manufacturing costs, and improve reliability, and a method for manufacturing the same.
 上記目的を達成するための本発明の一態様によれば、基板と、前記基板上に配置された第1電極層と、前記第1電極層上に配置された正孔輸送層と、前記正孔輸送層上に配置された第1有機活性層と、前記第1有機活性層上の端面部位に配置された第2有機活性層と、前記第1有機活性層および前記第2有機活性層上に配置された第2電極層と、前記基板と対向し、前記第1電極層、前記正孔輸送層、前記第1有機活性層、前記第2有機活性層および前記第2電極層からなる積層構造を封止する封止ガラスと、前記封止ガラスと前記基板との間に配置され、前記積層構造を封止する封止部とを備える有機薄膜太陽電池が提供される。 According to one aspect of the present invention for achieving the above object, a substrate, a first electrode layer disposed on the substrate, a hole transport layer disposed on the first electrode layer, and the positive electrode A first organic active layer disposed on a hole transport layer; a second organic active layer disposed at an end surface of the first organic active layer; and the first organic active layer and the second organic active layer A second electrode layer disposed on the substrate, facing the substrate, and comprising the first electrode layer, the hole transport layer, the first organic active layer, the second organic active layer, and the second electrode layer There is provided an organic thin-film solar cell including a sealing glass for sealing a structure, and a sealing portion that is disposed between the sealing glass and the substrate and seals the laminated structure.
 本発明の他の態様によれば、基板上に第1電極を形成する工程と、前記第1電極層上に正孔輸送層を形成する工程と、前記正孔輸送層上に第1有機活性層を形成する工程と、前記第1有機活性層上の端面部位に第2有機活性層を形成する工程と、前記第1有機活性層および前記第2有機活性層上に第2電極層を形成する工程と、封止ガラス上にガラスフリットを形成する工程と、前記ガラスフリットの先端部分に樹脂を形成する工程と、前記封止ガラスおよび前記基板を対向させ、前記ガラスフリットと前記樹脂によって、前記第1電極層、前記正孔輸送層、前記第1有機活性層、前記第2有機活性層、および前記第2電極層からなる積層構造を封止する工程とを有する有機薄膜太陽電池の製造方法が提供される。 According to another aspect of the present invention, a step of forming a first electrode on a substrate, a step of forming a hole transport layer on the first electrode layer, and a first organic activity on the hole transport layer Forming a layer, forming a second organic active layer at an end surface portion on the first organic active layer, and forming a second electrode layer on the first organic active layer and the second organic active layer A step of forming a glass frit on the sealing glass, a step of forming a resin on a tip portion of the glass frit, the sealing glass and the substrate facing each other, the glass frit and the resin, Manufacturing an organic thin-film solar cell having a step of sealing a laminated structure including the first electrode layer, the hole transport layer, the first organic active layer, the second organic active layer, and the second electrode layer A method is provided.
 本発明の他の態様によれば、基板と、前記基板上に配置された第1電極層と、前記第1電極層上に配置されたキャリア放出用バッファ層と、前記キャリア放出用バッファ層上に配置されたバルクへテロ接合有機活性層と、前記バルクへテロ接合有機活性層上に配置された有機導電膜と、前記有機導電膜上に配置された第2電極層とを備える有機薄膜太陽電池が提供される。 According to another aspect of the present invention, a substrate, a first electrode layer disposed on the substrate, a carrier emission buffer layer disposed on the first electrode layer, and the carrier emission buffer layer An organic thin film solar comprising: a bulk heterojunction organic active layer disposed on the substrate; an organic conductive film disposed on the bulk heterojunction organic active layer; and a second electrode layer disposed on the organic conductive film. A battery is provided.
 本発明の他の態様によれば、基板上に第1電極を形成する工程と、前記第1電極層上にキャリア放出用バッファ層を形成する工程と、前記キャリア放出用バッファ層上にバルクへテロ接合有機活性層を形成する工程と、前記バルクへテロ接合有機活性層上に有機導電膜を形成する工程と、前記有機導電膜上に第2電極層を形成する工程とを有する有機薄膜太陽電池の製造方法が提供される。 According to another aspect of the present invention, a step of forming a first electrode on a substrate, a step of forming a carrier emission buffer layer on the first electrode layer, and a bulk on the carrier emission buffer layer An organic thin-film solar comprising a step of forming a terror junction organic active layer, a step of forming an organic conductive film on the bulk hetero junction organic active layer, and a step of forming a second electrode layer on the organic conductive film A method for manufacturing a battery is provided.
 本発明によれば、非発電部位を低減し、発電特性を向上させた有機薄膜太陽電池およびその製造方法を提供することができる。 According to the present invention, it is possible to provide an organic thin film solar cell in which non-power generation sites are reduced and power generation characteristics are improved, and a method for manufacturing the same.
 本発明によれば、発電層内部への金属マイグレーションを抑制し、製造コストの低減および信頼性の向上可能な有機薄膜太陽電池およびその製造方法を提供することができる。 According to the present invention, it is possible to provide an organic thin-film solar cell that can suppress metal migration into the power generation layer, reduce manufacturing costs, and improve reliability, and a method for manufacturing the same.
基本技術に係る有機薄膜太陽電池の模式的断面構造図。The typical section structure figure of the organic thin film solar cell concerning basic technology. 別の基本技術に係る有機薄膜太陽電池の模式的断面構造図。The typical cross-section figure of the organic thin-film solar cell concerning another basic technique. 更に別の基本技術に係る有機薄膜太陽電池の模式的断面構造図。Furthermore, the typical cross-section figure of the organic thin-film solar cell which concerns on another basic technique. 第1の実施の形態に係る有機薄膜太陽電池の基本構造(バルクへテロ接合構造)の模式的断面構造図。The typical cross-section figure of the basic structure (bulk heterojunction structure) of the organic thin-film solar cell concerning 1st Embodiment. 第1の実施の形態に係る有機薄膜太陽電池の基本構造(バルクへテロ接合構造)を実現した模式的断面構造図。The typical cross-section figure which implement | achieved the basic structure (bulk heterojunction structure) of the organic thin-film solar cell which concerns on 1st Embodiment. 第1の実施の形態に係る有機薄膜太陽電池の模式的断面構造図。The typical cross-section figure of the organic thin-film solar cell which concerns on 1st Embodiment. 第1の実施の形態に係る有機薄膜太陽電池の別の模式的断面構造図。The another typical cross-section figure of the organic thin-film solar cell which concerns on 1st Embodiment. 第1の実施の形態に係る有機薄膜太陽電池の更に別の模式的断面構造図。The another typical cross-section figure of the organic thin-film solar cell which concerns on 1st Embodiment. (a)第1の実施の形態に係る有機薄膜太陽電池の基本構造(モスアイ構造)の模式的断面構造図、(b)図9(a)の部分拡大図。(A) The typical cross-section figure of the basic structure (moth eye structure) of the organic thin-film solar cell concerning 1st Embodiment, (b) The elements on larger scale of Fig.9 (a). 第1の実施の形態に係る有機薄膜太陽電池の原理的な構成および動作を説明する模式図。The schematic diagram explaining the fundamental structure and operation | movement of the organic thin-film solar cell which concern on 1st Embodiment. 図10に示された有機薄膜太陽電池の各種材料のエネルギーバンド構造図。FIG. 11 is an energy band structure diagram of various materials of the organic thin film solar cell shown in FIG. 10. 第1の実施の形態に係る有機薄膜太陽電池において適用する、(a)PEDOTの化学構造式、(b)PSSの化学構造式。The chemical structural formula of (a) PEDOT applied in the organic thin-film solar cell which concerns on 1st Embodiment, (b) The chemical structural formula of PSS. 第1の実施の形態に係る有機薄膜太陽電池において適用する、(a)p型材料となるP3HTの化学構造式、(b)n型材料となるPCBMの化学構造式。The chemical structural formula of P3HT used as the p-type material and (b) the chemical structural formula of PCBM used as the n-type material, which are applied to the organic thin film solar cell according to the first embodiment. 第1の実施の形態に係る有機薄膜太陽電池において、真空蒸着で使用する材料の化学構造式であって、(a)Pc:フタロシアニンの例、(b)ZnPc:亜鉛フタロシアニンの例、(c)Me-Ptcdiの例、(d)C60 :フラーレンの例。In the organic thin-film solar cell according to the first embodiment, the chemical structural formula of a material used in vacuum vapor deposition includes (a) Pc: an example of phthalocyanine, (b) ZnPc: an example of zinc phthalocyanine, (c) Example of Me-Ptcdi, (d) Example of C 60 : fullerene. 第1の実施の形態に係る有機薄膜太陽電池において、溶液プロセスで使用する材料の化学構造式であって、(a)MDMO-PPVの例、(b)PFBの例、(c)CN-MDMO-PPVの例、(d)PFO-DBTの例、(e)F8BTの例、(f)PCDTBTの例、(g)PC 60 BMの例、(h)PC 70 BMの例。In the organic thin-film solar cell according to the first embodiment, chemical structural formulas of materials used in a solution process, including (a) an example of MDMO-PPV, (b) an example of PFB, (c) CN-MDMO -PPV example, (d) PFO-DBT example, (e) F8BT example, (f) PCDTBT example, (g) PC 60 BM example, (h) PC 70 BM example. 比較例1に係る有機薄膜太陽電池の模式的断面構造図。The typical cross-section figure of the organic thin-film solar cell which concerns on the comparative example 1. FIG. 比較例2に係る有機薄膜太陽電池の模式的断面構造図。The typical cross-section figure of the organic thin-film solar cell concerning the comparative example 2. FIG. 比較例3に係る有機薄膜太陽電池の模式的断面構造図。The typical cross-section figure of the organic thin-film solar cell concerning the comparative example 3. FIG. (a)第1の実施の形態に係る有機薄膜太陽電池の光電流電圧特性の模式図、(b)第1の実施の形態に係る有機薄膜太陽電池と比較例に係る有機薄膜太陽電池の光電流電圧特性。(A) Schematic diagram of photocurrent voltage characteristics of the organic thin film solar cell according to the first embodiment, (b) Light of the organic thin film solar cell according to the first embodiment and the organic thin film solar cell according to the comparative example. Current-voltage characteristics. 第1の実施の形態に係る有機薄膜太陽電池の積層構造部分の模式的断面構造図。The typical cross-section figure of the laminated structure part of the organic thin film solar cell which concerns on 1st Embodiment. 第1の実施の形態の変形例に係る有機薄膜太陽電池の積層構造部分の模式的断面構造図。The typical cross-section figure of the laminated structure part of the organic thin-film solar cell which concerns on the modification of 1st Embodiment. 第1の実施の形態に係る有機薄膜太陽電池の製造方法の一工程であって、(a)基板上に透明電極層を形成したITO基板を準備する工程図、(b)透明電極層をパターニング後、透明電極層上に正孔輸送層をパターン形成する工程図、(c)正孔輸送層上に第1バルクへテロ接合有機活性層をパターン形成する工程図。It is 1 process of the manufacturing method of the organic thin-film solar cell concerning 1st Embodiment, Comprising: (a) Process drawing which prepares the ITO substrate which formed the transparent electrode layer on the board | substrate, (b) Patterning a transparent electrode layer Then, process drawing which pattern-forms a positive hole transport layer on a transparent electrode layer, (c) Process drawing which pattern-forms a 1st bulk heterojunction organic active layer on a hole transport layer. 第1の実施の形態に係る有機薄膜太陽電池の製造方法の一工程であって、(a)第1バルクへテロ接合有機活性層上に第2バルクへテロ接合有機活性層をパターン形成する工程図、(b)第1バルクへテロ接合有機活性層および第2バルクへテロ接合有機活性層上に第2電極層をパターン形成する工程図。It is one process of the manufacturing method of the organic thin-film solar cell concerning 1st Embodiment, Comprising: (a) The process of pattern-forming a 2nd bulk heterojunction organic active layer on the 1st bulk heterojunction organic active layer FIG. 4B is a process diagram for patterning a second electrode layer on the first bulk heterojunction organic active layer and the second bulk heterojunction organic active layer. 第1の実施の形態に係る有機薄膜太陽電池の製造方法の一工程であって、(a)封止ガラスを準備する工程図、(b)封止ガラス上にガラスフリットを形成する工程図、(c)ガラスフリットの先端部分にUV硬化樹脂を形成する工程図。It is 1 process of the manufacturing method of the organic thin-film solar cell concerning 1st Embodiment, Comprising: (a) Process drawing which prepares sealing glass, (b) Process drawing which forms glass frit on sealing glass, (C) Process drawing which forms UV hardening resin in the front-end | tip part of glass frit. 第1の実施の形態に係る有機薄膜太陽電池の製造方法の一工程であって、(a)図23(b)に示された工程後のITO基板と、図24(c)に示された工程後の封止ガラスを対向させる工程図、(b)図25(a)に示された工程後、ガラスフリットとUV硬化樹脂を介して、ITO基板と封止ガラスを接着し、封止する工程図。It is one process of the manufacturing method of the organic thin-film solar cell concerning 1st Embodiment, Comprising: (a) ITO board | substrate after the process shown by FIG.23 (b), and FIG.24 (c) showed. Process diagram for facing the sealing glass after the process, (b) After the process shown in FIG. 25A, the ITO substrate and the sealing glass are bonded and sealed through the glass frit and the UV curable resin. Process chart. 第1の実施の形態に係る有機薄膜太陽電池の封止部の構成であって、(a)ガラスフリットがUV硬化樹脂で被覆された構成を示す模式的断面構造図、(b)ガラスフリットがUV硬化樹脂で被覆された別の構成を示す模式的断面構造図。FIG. 1 is a configuration of a sealing portion of an organic thin-film solar cell according to a first embodiment, and (a) a schematic cross-sectional structure diagram illustrating a configuration in which a glass frit is coated with a UV curable resin, and (b) a glass frit. The typical cross-section figure which shows another structure coat | covered with UV curable resin. 第1の実施の形態に係る有機薄膜太陽電池の封止部の構成であって、多孔質性のガラスフリットがUV硬化樹脂で被覆された構成を示す模式的断面構造図。FIG. 3 is a schematic cross-sectional structure diagram showing a configuration of a sealing portion of the organic thin film solar cell according to the first embodiment, in which a porous glass frit is covered with a UV curable resin. 第1の実施の形態に係る有機薄膜太陽電池の封止部の構成であって、(a)2本形成されるガラスフリットが楔形形状を有する構成を示す模式的断面構造図、(b)2本形成されるガラスフリットがテーパー形状を有する構成を示す模式的断面構造図、(c)2本形成されるガラスフリットの断面形状が、封止ガラスから離れるに従って断面積が小さくなる紡錘形のテーパー形状を有する構成を示す模式的断面構造図。FIG. 1 is a schematic cross-sectional structure diagram showing a configuration of a sealing portion of an organic thin film solar cell according to a first embodiment, in which (a) two formed glass frits have a wedge shape; Schematic cross-sectional structure diagram showing a configuration in which the glass frit to be formed has a taper shape, (c) a spindle-shaped taper shape in which the cross-sectional shape of the two glass frit formed becomes smaller as the distance from the sealing glass increases The typical cross-section figure which shows the structure which has. 第1の実施の形態に係る有機薄膜太陽電池の封止部の構成であって、(a)2本形成されるガラスフリットが楔形形状を有し、かつUV硬化樹脂で被覆された構成を示す模式的断面構造図、(b)2本形成されるガラスフリットがテーパー形状を有し、かつUV硬化樹脂で被覆された構成を示す模式的断面構造図、(c)2本形成されるガラスフリットの断面形状が、封止ガラスから離れるに従って断面積が小さくなる紡錘形のテーパー形状を有し、かつUV硬化樹脂で被覆された構成を示す模式的断面構造図。1 is a configuration of a sealing portion of an organic thin film solar cell according to a first embodiment, and (a) a configuration in which two formed glass frit has a wedge shape and is covered with a UV curable resin. Schematic cross-sectional structure diagram, (b) Schematic cross-sectional structure diagram showing a configuration in which two formed glass frits have a tapered shape and are coated with a UV curable resin, and (c) Two formed glass frits. FIG. 3 is a schematic cross-sectional structure diagram showing a configuration in which the cross-sectional shape has a spindle-shaped taper shape in which the cross-sectional area decreases as the distance from the sealing glass increases, and is covered with a UV curable resin. 第1の実施の形態に係る有機薄膜太陽電池の製造方法の一工程であって、(a)基板上に透明電極層を形成した状態を示す模式的平面パターン構成図、(b)図30(a)のI-I線に沿う模式的断面構造図。It is one process of the manufacturing method of the organic thin-film solar cell concerning 1st Embodiment, Comprising: (a) Typical plane pattern block diagram which shows the state which formed the transparent electrode layer on the board | substrate, (b) FIG. 30 ( The typical section structure figure which meets the II line of a). 第1の実施の形態に係る有機薄膜太陽電池の製造方法の一工程であって、(a)透明電極層上に正孔輸送層を製膜した状態を示す模式的平面パターン構成図、(b)図31(a)のII-II線に沿う模式的断面構造図。FIG. 1B is a schematic plan pattern configuration diagram showing a state where a hole transport layer is formed on a transparent electrode layer, in one step of the method for manufacturing an organic thin film solar cell according to the first embodiment; FIG. 31 is a schematic sectional view taken along the line II-II in FIG. 第1の実施の形態に係る有機薄膜太陽電池の製造方法の一工程であって、(a)正孔輸送層上に第1バルクへテロ接合有機活性層を製膜した状態を示す模式的平面パターン構成図、(b)図32(a)のIII-III線に沿う模式的断面構造図。It is 1 process of the manufacturing method of the organic thin-film solar cell concerning 1st Embodiment, Comprising: (a) The schematic plane which shows the state which formed the 1st bulk heterojunction organic active layer on the positive hole transport layer FIG. 33 is a pattern configuration diagram, and (b) a schematic cross-sectional structure diagram taken along the line III-III in FIG. 第1の実施の形態に係る有機薄膜太陽電池の製造方法の一工程であって、(a)第1バルクへテロ接合有機活性層上に第2バルクへテロ接合有機活性層を製膜した状態を示す模式的平面パターン構成図、(b)図33(a)のIV-IV線に沿う模式的断面構造図。It is one process of the manufacturing method of the organic thin-film solar cell which concerns on 1st Embodiment, Comprising: (a) The state which formed the 2nd bulk heterojunction organic active layer on the 1st bulk heterojunction organic active layer FIG. 4B is a schematic plane pattern configuration diagram showing (b) a schematic cross-sectional structure diagram along line IV-IV in FIG. 第1の実施の形態に係る有機薄膜太陽電池の製造方法の一工程であって、(a)第1バルクへテロ接合有機活性層および第2バルクへテロ接合有機活性層上に第2電極層を形成した状態を示す模式的平面パターン構成図、(b)図34(a)のV-V線に沿う模式的断面構造図。It is one process of the manufacturing method of the organic thin-film solar cell which concerns on 1st Embodiment, Comprising: (a) 2nd electrode layer on 1st bulk heterojunction organic active layer and 2nd bulk heterojunction organic active layer The typical plane pattern block diagram which shows the state which formed (b) The typical cross-section figure along the VV line of Fig.34 (a). 第1の実施の形態に係る有機薄膜太陽電池の製造方法の一工程であって、(a)酸素プラズマ処理によって、余分な有機層をエッチングすると共に、第2電極層の表面に酸化被膜を形成した状態を示す模式的平面パターン構成図、(b)図35(a)のVI-VI線に沿う模式的断面構造図。It is a process of the manufacturing method of the organic thin-film solar cell concerning 1st Embodiment, Comprising: (a) While etching an excess organic layer by oxygen plasma treatment, an oxide film is formed in the surface of a 2nd electrode layer The typical plane pattern block diagram which shows the state which carried out, (b) Typical sectional structure drawing which follows the VI-VI line of Fig.35 (a). 第1の実施の形態に係る有機薄膜太陽電池の製造工程の一工程であって、(a)封止ガラス・ガラスフリットおよびUV硬化樹脂で封止した状態を示す模式的平面パターン構成図、(b)図36(a)のVII-VII線に沿う模式的断面構造図。1 is a schematic plan pattern configuration diagram showing a state of a process of manufacturing an organic thin-film solar cell according to a first embodiment, wherein (a) sealing is performed with sealing glass / glass frit and UV curable resin; b) A schematic sectional view taken along line VII-VII in FIG. 第1の実施の形態に係る有機薄膜太陽電池の作成手順を示すフローチャート。The flowchart which shows the preparation procedure of the organic thin film solar cell which concerns on 1st Embodiment. 第1の実施の形態に係る有機薄膜太陽電池の量産化製造工程の一工程であって、基板上に透明電極層のストライプパターンを形成した状態を示す模式的鳥瞰構造図。The typical bird's-eye view structure figure which is one process of the mass production manufacturing process of the organic thin-film solar cell which concerns on 1st Embodiment, and shows the state which formed the stripe pattern of the transparent electrode layer on the board | substrate. 第1の実施の形態に係る有機薄膜太陽電池の量産化製造工程の一工程であって、ストライプ状の透明電極層上に正孔輸送層をスピンコートにより製膜した状態を示す模式的鳥瞰構造図。1 is a schematic bird's-eye view showing a state in which a hole transport layer is formed by spin coating on a stripe-shaped transparent electrode layer, which is a step in the mass production process of the organic thin-film solar cell according to the first embodiment. Figure. 第1の実施の形態に係る有機薄膜太陽電池の量産化製造工程の一工程であって、正孔輸送層上に第1バルクへテロ接合有機活性層・第2バルクへテロ接合有機活性層をスピンコートにより製膜した状態を示す模式的鳥瞰構造図。It is one process of the mass production manufacturing process of the organic thin-film solar cell which concerns on 1st Embodiment, Comprising: A 1st bulk heterojunction organic active layer and a 2nd bulk heterojunction organic active layer are formed on a positive hole transport layer. The typical bird's-eye view structure figure which shows the state formed into a film by spin coat. 第1の実施の形態に係る有機薄膜太陽電池の量産化製造工程の一工程であって、第1バルクへテロ接合有機活性層・第2バルクへテロ接合有機活性層上にストライプ状の透明電極層と直交させて第2電極層のストライプパターンを形成した状態を示す模式的鳥瞰構成図。It is a process of mass production manufacturing process of the organic thin-film solar cell according to the first embodiment, and is a striped transparent electrode on the first bulk heterojunction organic active layer and the second bulk heterojunction organic active layer The typical bird's-eye view block diagram which shows the state which orthogonally crossed the layer and formed the stripe pattern of the 2nd electrode layer. 第1の実施の形態に係る有機薄膜太陽電池において、複数のセルCijをマトリックス状に配置した例を示す模式的平面パターン構成図。The typical plane pattern block diagram which shows the example which has arrange | positioned several cell Cij in the matrix form in the organic thin-film solar cell which concerns on 1st Embodiment. 第1の実施の形態に係る有機薄膜太陽電池の製造方法において、(a)正孔輸送層、第1バルクへテロ接合有機活性層および第2バルクへテロ接合有機活性層を形成する際のスピンコート法を示す概略図、(b)形成された正孔輸送層および第1バルクへテロ接合有機活性層の例を示す模式的鳥瞰構成図。In the method for manufacturing an organic thin-film solar cell according to the first embodiment, (a) spin when forming a hole transport layer, a first bulk heterojunction organic active layer, and a second bulk heterojunction organic active layer The schematic diagram which shows the coating method, (b) The typical bird's-eye view block diagram which shows the example of the formed positive hole transport layer and the 1st bulk heterojunction organic active layer. 第1の実施の形態に係る有機薄膜太陽電池の製造方法であって、正孔輸送層、第1バルクへテロ接合有機活性層および第2バルクへテロ接合有機活性層をインクジェット印刷法で形成する状態を示す模式図。A method for manufacturing an organic thin-film solar cell according to a first embodiment, wherein a hole transport layer, a first bulk heterojunction organic active layer, and a second bulk heterojunction organic active layer are formed by an inkjet printing method. The schematic diagram which shows a state. 第1の実施の形態に係る有機薄膜太陽電池の製造工程の一工程であって、正孔輸送層、第1バルクへテロ接合有機活性層および第2バルクへテロ接合有機活性層をロールツウロール法を用いたグラビア印刷で形成する状態を示す模式図。It is a process of the manufacturing process of the organic thin-film solar cell concerning 1st Embodiment, Comprising: A hole transport layer, a 1st bulk heterojunction organic active layer, and a 2nd bulk heterojunction organic active layer are roll-to-roll The schematic diagram which shows the state formed by the gravure printing using the method. (a)基本技術に係る順構造型の有機薄膜太陽電池の模式的断面構造図、(b)基本技術に係る逆構造型の有機薄膜太陽電池の模式的断面構造図。(A) Typical cross-sectional structure figure of the forward structure type organic thin film solar cell which concerns on basic technology, (b) Typical cross-section structure figure of the reverse structure type organic thin film solar cell which concerns on basic technique. (a)図46(a)に示された順構造型の有機薄膜太陽電池の各種材料のエネルギーバンド構造図、(b)図46(b)に示された逆構造型の有機薄膜太陽電池の各種材料のエネルギーバンド構造図。(A) Energy band structure diagram of various materials of the forward structure type organic thin film solar cell shown in FIG. 46 (a), (b) The reverse structure type organic thin film solar cell shown in FIG. 46 (b). Energy band structure diagram of various materials. 第2の実施の形態に係る順構造型の有機薄膜太陽電池の模式的断面構造図。The typical cross-section figure of the forward structure type organic thin-film solar cell which concerns on 2nd Embodiment. 第2の実施の形態に係る逆構造型の有機薄膜太陽電池の模式的断面構造図。The typical cross-section figure of the reverse structure type organic thin-film solar cell which concerns on 2nd Embodiment. 第2の実施の形態に係る有機薄膜太陽電池の電流-電圧特性の模式図。The schematic diagram of the electric current-voltage characteristic of the organic thin-film solar cell concerning 2nd Embodiment. (a)第2の実施の形態に係る有機薄膜太陽電池の回路構成例、(b)図51(a)に対応する理想化された等価回路。(A) The circuit structural example of the organic thin-film solar cell concerning 2nd Embodiment, (b) The idealized equivalent circuit corresponding to Fig.51 (a). 第2の実施の形態の変形例に係る順構造型の有機薄膜太陽電池の模式的断面構造図。The typical cross-section figure of the forward structure type organic thin-film solar cell which concerns on the modification of 2nd Embodiment. (a)平行四辺形を基本格子とするカソード電極層の平面パターン構成例、(b)図53(a)のA部分の拡大図。(A) Planar pattern configuration example of cathode electrode layer having parallelogram as basic lattice, (b) Enlarged view of portion A in FIG. 53 (a). (a)六角形構造を基本格子とするカソード電極層の平面パターン構成例、(b)円形構造を基本格子とするカソード電極層の平面パターン構成例、(c)正方形構造を基本格子とするカソード電極層の平面パターン構成例。(A) Example of plane pattern configuration of cathode electrode layer having hexagonal structure as basic grid, (b) Example of plane pattern configuration of cathode electrode layer having basic structure as circular structure, (c) Cathode having square structure as basic grid The example of a plane pattern structure of an electrode layer. (a)直列構造を有する第2の実施の形態の変形例に係る順構造型の有機薄膜太陽電池の模式的平面パターン構成図、(b)図55(a)に対応する等価回路構成図、(c)図55(a)の裏面(光照射面)側から見た模式的平面パターン構成図。(A) A schematic plane pattern configuration diagram of a forward structure type organic thin film solar cell according to a modification of the second embodiment having a series structure, (b) an equivalent circuit configuration diagram corresponding to FIG. 55 (a), (C) The typical plane pattern block diagram seen from the back surface (light irradiation surface) side of Fig.55 (a). (a)第2の実施の形態に係る順構造型の有機薄膜太陽電池の積層構造部分の模式的断面構造図、(b)図56(a)の詳細構造であって、有機導電膜の第2電極層と接する界面に金属粒子侵入層を有する構造例の模式的断面構造図。(A) A schematic cross-sectional structure diagram of a laminated structure portion of a forward structure type organic thin film solar cell according to a second embodiment, (b) a detailed structure of FIG. The typical cross-section figure of the structural example which has a metal particle penetration | invasion layer in the interface which contact | connects 2 electrode layers. (a)第2の実施の形態に係る順構造型の有機薄膜太陽電池の模式的断面構造図、(b)比較例に係る順構造型の有機薄膜太陽電池の模式的断面構造図。(A) The typical cross-section figure of the forward structure type organic thin film solar cell which concerns on 2nd Embodiment, (b) The typical cross section structure figure of the forward structure type organic thin film solar cell which concerns on a comparative example. 第2の実施の形態に係る順構造型の有機薄膜太陽電池の製造方法の一工程であって、(a)基板上に透明電極層を形成したITO基板を準備する工程図、(b)透明電極層をパターニング後、透明電極層上にキャリア放出用バッファ層をパターン形成する工程図、(c)キャリア放出用バッファ層上にバルクへテロ接合有機活性層をパターン形成する工程図、(d)バルクへテロ接合有機活性層上に相対的に厚い有機導電膜をパターン形成する工程図、(e)有機導電膜上に第2電極層をパターン形成する工程図。It is one process of the manufacturing method of the forward structure type organic thin film solar cell which concerns on 2nd Embodiment, Comprising: (a) Process drawing which prepares the ITO substrate which formed the transparent electrode layer on the board | substrate, (b) Transparent Step of patterning a carrier emission buffer layer on the transparent electrode layer after patterning the electrode layer, (c) Step of patterning a bulk heterojunction organic active layer on the carrier emission buffer layer, (d) Process drawing which pattern-forms a relatively thick organic conductive film on a bulk heterojunction organic active layer, (e) Process drawing which pattern-forms a 2nd electrode layer on an organic conductive film. 第2の実施の形態に係る順構造型の有機薄膜太陽電池の製造方法の一工程であって、(a)図58(e)の詳細構造において、有機導電膜の第2電極層との界面に金属粒子侵入層が形成される様子を説明する模式的断面構造図、(b)デバイス全面にパッシベーション層を形成する工程図、(c)パッシベーション層上にカラー化バリア層を形成する工程図。It is one process of the manufacturing method of the forward structure type organic thin film solar cell which concerns on 2nd Embodiment, Comprising: (a) In the detailed structure of FIG.58 (e), the interface with the 2nd electrode layer of an organic electrically conductive film FIG. 6 is a schematic cross-sectional structure diagram for explaining how a metal particle intrusion layer is formed, (b) a process diagram for forming a passivation layer on the entire surface of the device, and (c) a process diagram for forming a colored barrier layer on the passivation layer. 複数個(図の例では3個)直列に配置された第2の実施の形態に係る順構造型の有機薄膜太陽電池の製造方法の一工程であって、(a)基板上に透明電極層を形成した状態を示す模式的平面パターン構成図、(b)図60(a)のVIII-VIII線に沿う模式的断面構造図。It is one process of the manufacturing method of the forward structure type organic thin-film solar cell which concerns on 2nd Embodiment arrange | positioned in series by a plurality (three in the example of a figure), Comprising: (a) A transparent electrode layer on a board | substrate The typical plane pattern block diagram which shows the state which formed (b) The typical cross-section figure which follows the VIII-VIII line of Fig.60 (a). (a)透明電極層上にキャリア放出用バッファ層を製膜した状態を示す模式的平面パターン構成図、(b)図61(a)のIX-IX線に沿う模式的断面構造図。(A) A schematic plane pattern configuration diagram showing a state in which a carrier emission buffer layer is formed on a transparent electrode layer, (b) a schematic cross-sectional configuration diagram taken along line IX-IX in FIG. (a)キャリア放出用バッファ層上にバルクへテロ接合有機活性層を製膜した状態を示す模式的平面パターン構成図、(b)図62(a)のX-X線に沿う模式的断面構造図。(A) A schematic plane pattern configuration diagram showing a state in which a bulk heterojunction organic active layer is formed on a carrier emission buffer layer, (b) a schematic cross-sectional structure taken along line XX in FIG. 62 (a) Figure. (a)バルクへテロ接合有機活性層上に相対的に厚い有機導電膜を製膜した状態を示す模式的平面パターン構成図、(b)図63(a)のXI-XI線に沿う模式的断面構造図。(A) A schematic plane pattern configuration diagram showing a state in which a relatively thick organic conductive film is formed on a bulk heterojunction organic active layer, (b) a schematic diagram taken along line XI-XI in FIG. 63 (a) FIG. (a)有機導電膜上に第2電極層を形成した状態を示す模式的平面パターン構成図、(b)図64(a)のXII-XII線に沿う模式的断面構造図。(A) Typical plane pattern block diagram which shows the state which formed the 2nd electrode layer on the organic electrically conductive film, (b) Typical sectional structure drawing which follows the XII-XII line | wire of Fig.64 (a). (a)酸素プラズマ処理などによって、余分な有機層をエッチングした状態を示す模式的平面パターン構成図、(b)図65(a)のXIII-XIII線に沿う模式的断面構造図。(A) A schematic plane pattern configuration diagram showing a state in which an excess organic layer is etched by oxygen plasma treatment or the like, and (b) a schematic cross-sectional configuration diagram taken along line XIII-XIII in FIG. (a)デバイス全面にパッシベーション層を形成した状態を示す模式的平面パターン構成図、(b)図66(a)のXIV-XIV線に沿う模式的断面構造図。(A) A schematic plane pattern configuration diagram showing a state in which a passivation layer is formed on the entire surface of the device, and (b) a schematic cross-sectional configuration diagram along line XIV-XIV in FIG. 66 (a). (a)パッシベーション層上にカラー化バリア層を形成した状態を示す模式的平面パターン構成図、(b)図67(a)のXV-XV線に沿う模式的断面構造図。(A) A schematic plane pattern configuration diagram showing a state in which a colored barrier layer is formed on a passivation layer, (b) a schematic cross-sectional configuration diagram taken along line XV-XV in FIG. 67 (a). (a)カラー化バリア層上にバックシートパッシベーション層を形成した状態を示す模式的平面パターン構成図、(b)図68(a)のXVI-XVI線に沿う模式的断面構造図。(A) A schematic plane pattern configuration diagram showing a state in which a backsheet passivation layer is formed on a colored barrier layer, and (b) a schematic cross-sectional configuration diagram along line XVI-XVI in FIG. 第2の実施の形態に係る順構造型の有機薄膜太陽電池の作成手順を示すフローチャート。The flowchart which shows the preparation procedure of the forward structure type organic thin film solar cell which concerns on 2nd Embodiment. 第2の実施の形態に係る逆構造型の有機薄膜太陽電池の作成手順を示すフローチャート。The flowchart which shows the preparation procedure of the reverse structure type organic thin-film solar cell which concerns on 2nd Embodiment. キャリア放出用バッファ層上にバルクへテロ接合有機活性層をスピンコートにより製膜した状態を示す模式的鳥瞰構造図。FIG. 3 is a schematic bird's-eye view showing a state where a bulk heterojunction organic active layer is formed by spin coating on a carrier emission buffer layer. バルクへテロ接合有機活性層上にバッファ層および有機導電膜を形成した後、有機導電膜上にストライプ状の透明電極層と直交させて第2電極層のストライプパターンを形成した状態を示す模式的鳥瞰構成図。Schematic showing a state in which after the buffer layer and the organic conductive film are formed on the bulk heterojunction organic active layer, the stripe pattern of the second electrode layer is formed on the organic conductive film so as to be orthogonal to the striped transparent electrode layer. FIG. 第2の実施の形態に係る有機薄膜太陽電池の製造方法において、(a)キャリア放出用バッファ層、バルクへテロ接合有機活性層および有機導電層を形成する際のスピンコート法を示す概略図、(b)形成されたキャリア放出用バッファ層、バルクへテロ接合有機活性層および有機導電層の例を示す模式的鳥瞰構成図。In the manufacturing method of the organic thin-film solar cell which concerns on 2nd Embodiment, (a) Schematic which shows the spin coat method at the time of forming a buffer layer for carrier discharge | release, a bulk heterojunction organic active layer, and an organic conductive layer, (B) The typical bird's-eye view block diagram which shows the example of the formed buffer layer for carrier emission, the bulk heterojunction organic active layer, and the organic conductive layer. 基本技術に係る順構造型の有機薄膜太陽電池であって、(a)TEMによるセル断面観察図、(b)SEMによるセル断面観察図。It is a forward structure type organic thin-film solar cell which concerns on a basic technique, Comprising: (a) Cell cross section observation figure by TEM, (b) Cell cross section observation figure by SEM. 基本技術に係る順構造型の有機薄膜太陽電池であって、(a)TEMによるセル断面観察図、(b)SEMによるセル断面観察図。It is a forward structure type organic thin-film solar cell which concerns on a basic technique, Comprising: (a) Cell cross section observation figure by TEM, (b) Cell cross section observation figure by SEM. 第2の実施の形態に係る順構造型の有機薄膜太陽電池であって、(a)TEMによるセル断面観察図、(b)SEMによるセル断面観察図。It is a forward structure type organic thin-film solar cell which concerns on 2nd Embodiment, Comprising: (a) Cell cross section observation figure by TEM, (b) Cell cross section observation figure by SEM. 第2の実施の形態に係る順構造型の有機薄膜太陽電池であって、SEMによるセル断面観察図。It is a forward structure type organic thin-film solar cell which concerns on 2nd Embodiment, Comprising: The cell cross-section observation figure by SEM.
 次に、図面を参照して、実施の形態を説明する。以下の図面の記載において、同一又は類似の部分には同一又は類似の符号を付している。ただし、図面は模式的なものであり、厚みと平面寸法との関係、各層の厚みの比率等は現実のものとは異なることに留意すべきである。したがって、具体的な厚みや寸法は以下の説明を参酌して判断すべきものである。又、図面相互間においても互いの寸法の関係や比率が異なる部分が含まれていることはもちろんである。 Next, embodiments will be described with reference to the drawings. In the following description of the drawings, the same or similar parts are denoted by the same or similar reference numerals. However, it should be noted that the drawings are schematic, and the relationship between the thickness and the planar dimensions, the ratio of the thickness of each layer, and the like are different from the actual ones. Therefore, specific thicknesses and dimensions should be determined in consideration of the following description. Moreover, it is a matter of course that portions having different dimensional relationships and ratios are included between the drawings.
 又、以下に示す実施の形態は、この発明の技術的思想を具体化するための装置や方法を例示するものであって、この発明の実施の形態は、構成部品の材質、形状、構造、配置等を下記のものに特定するものでない。この発明の実施の形態は、特許請求の範囲において、種々の変更を加えることができる。 Further, the embodiments described below exemplify apparatuses and methods for embodying the technical idea of the present invention, and the embodiments of the present invention include the material, shape, structure, The layout is not specified as follows. Various modifications can be made to the embodiment of the present invention within the scope of the claims.
 以下の実施の形態に係る有機薄膜太陽電池において、「透明」とは、透過率が約50%以上であるものと定義する。また「透明」とは、実施の形態に係る有機薄膜太陽電池において、可視光線に対して、無色透明という意味でも使用する。可視光線は波長約360nm~830nm程度、エネルギー約3.45eV~1.49eV程度に相当し、この領域で透過率が50%以上あれば透明である。 In the organic thin film solar cell according to the following embodiment, “transparent” is defined as having a transmittance of about 50% or more. Further, “transparent” is also used to mean colorless and transparent with respect to visible light in the organic thin film solar cell according to the embodiment. Visible light corresponds to a wavelength of about 360 nm to 830 nm and an energy of about 3.45 eV to 1.49 eV, and is transparent if the transmittance is 50% or more in this region.
 (基本技術)
 基本技術に係る有機薄膜太陽電池1Aは、図1に示すように、基板10と、基板10上に配置された透明電極層11と、第1電極層11上に配置された正孔輸送層12と、正孔輸送層12上に配置されたバルクへテロ接合有機活性層14と、バルクへテロ接合有機活性層14上に配置されたカソード電極層16とを備える。図1の構造では、パターニングされた透明電極層11のコーナー部11C、パターニングされた正孔輸送層12のコーナー部12C、パターニングされたバルクへテロ接合有機活性層14のコーナー部14Cおよびパターニングされたカソード電極層16のコーナー部16Cが略90度の理想的な形状を示している。
(Basic technology)
As shown in FIG. 1, an organic thin-film solar cell 1 </ b> A according to a basic technique includes a substrate 10, a transparent electrode layer 11 disposed on the substrate 10, and a hole transport layer 12 disposed on the first electrode layer 11. And a bulk heterojunction organic active layer 14 disposed on the hole transport layer 12 and a cathode electrode layer 16 disposed on the bulk heterojunction organic active layer 14. In the structure of FIG. 1, the corner portion 11C of the patterned transparent electrode layer 11, the corner portion 12C of the patterned hole transport layer 12, the corner portion 14C of the patterned bulk heterojunction organic active layer 14, and the patterned The corner portion 16C of the cathode electrode layer 16 has an ideal shape of approximately 90 degrees.
 別の基本技術に係る有機薄膜太陽電池1Aは、図2に示すように、図1と同様の積層構造を備えるが、図2の構造では、パターニングされた透明電極層11のコーナー部11Cに対して、パターニングされた正孔輸送層12のコーナー部12R、パターニングされたバルクへテロ接合有機活性層14のコーナー部14Rおよびパターニングされたカソード電極層16のコーナー部16Rが曲面状に湾曲した形状を備える。このため、図2の構造では、透明電極層11のコーナー部11Cとカソード電極層16間で特にコーナー部分でリーク電流が発生し易く、また、図1の理想的な構造に比べ、相対的な発電効率も低下する。 As shown in FIG. 2, an organic thin film solar cell 1A according to another basic technique has a stacked structure similar to that of FIG. 1, but in the structure of FIG. 2, the corner portion 11C of the patterned transparent electrode layer 11 is The corner portion 12R of the patterned hole transport layer 12, the corner portion 14R of the patterned bulk heterojunction organic active layer 14, and the corner portion 16R of the patterned cathode electrode layer 16 are curved. Prepare. For this reason, in the structure of FIG. 2, leakage current is likely to occur between the corner portion 11 </ b> C of the transparent electrode layer 11 and the cathode electrode layer 16, particularly in the corner portion. Power generation efficiency is also reduced.
 更に別の基本技術に係る有機薄膜太陽電池1Aは、図3に示すように、図1と同様の積層構造を備えるが、パターニングされた透明電極層11のコーナー部位に絶縁層44を備える。すなわち、図3の構造では、透明電極層11のコーナー部位に絶縁層44を配置することによって、透明電極層11のコーナー部11Cとカソード電極層16との間のリーク電流の発生は抑制可能である。しかしながら、透明電極層11と有機層(12・14)間に絶縁層44が介在するため、絶縁層44に接触する面積部分は、発電に寄与していない。このため、発電に寄与する面積効率が低下する。 As shown in FIG. 3, the organic thin-film solar cell 1A according to yet another basic technology has the same stacked structure as that of FIG. 1, but includes an insulating layer 44 at the corner portion of the patterned transparent electrode layer 11. That is, in the structure of FIG. 3, the occurrence of leakage current between the corner portion 11C of the transparent electrode layer 11 and the cathode electrode layer 16 can be suppressed by disposing the insulating layer 44 at the corner portion of the transparent electrode layer 11. is there. However, since the insulating layer 44 is interposed between the transparent electrode layer 11 and the organic layers (12, 14), the area portion in contact with the insulating layer 44 does not contribute to power generation. For this reason, the area efficiency which contributes to electric power generation falls.
 (第1の実施の形態の基本構造)
 第1の実施の形態に係る有機薄膜太陽電池の基本構造は、図4に示すように、基板10と、基板10上に配置された透明電極層11と、第1電極層11上に配置された正孔輸送層12と、正孔輸送層12上に配置された第1バルクへテロ接合有機活性層14と、第1バルクへテロ接合有機活性層14上の端面部位に配置された第2バルクへテロ接合有機活性層14Aと、第1バルクへテロ接合有機活性層14および第2バルクへテロ接合有機活性層14A上に配置されたカソード電極層16とを備える。図4の構造では、パターニングされた第1バルクへテロ接合有機活性層14の端面部位に相対的に厚く形成された第2バルクへテロ接合有機活性層14Aを備えるため、透明電極層11のコーナー部11Cとカソード電極層16との間のコーナー部分でのリーク電流の発生は抑制可能である。しかも、第2バルクへテロ接合有機活性層14Aは、発電に寄与するため、発電に寄与する面積効率の低下はない。
(Basic structure of the first embodiment)
As shown in FIG. 4, the basic structure of the organic thin film solar cell according to the first embodiment is disposed on the substrate 10, the transparent electrode layer 11 disposed on the substrate 10, and the first electrode layer 11. Hole transport layer 12, first bulk heterojunction organic active layer 14 disposed on hole transport layer 12, and second end surface disposed on first bulk heterojunction organic active layer 14. A bulk heterojunction organic active layer 14A and a cathode electrode layer 16 disposed on the first bulk heterojunction organic active layer 14 and the second bulk heterojunction organic active layer 14A are provided. In the structure of FIG. 4, since the second bulk heterojunction organic active layer 14 </ b> A is formed relatively thick at the end surface portion of the patterned first bulk heterojunction organic active layer 14, the corner of the transparent electrode layer 11 is provided. The generation of leakage current at the corner portion between the portion 11C and the cathode electrode layer 16 can be suppressed. Moreover, since the second bulk heterojunction organic active layer 14A contributes to power generation, there is no reduction in area efficiency that contributes to power generation.
 第1の実施の形態に係る有機薄膜太陽電池の基本構造を実現する際には、図5に示すように、正孔輸送層12・第1バルクへテロ接合有機活性層14・第2バルクへテロ接合有機活性層14Aの形成工程を経て、コーナー部12R・14R・16Rなどには、曲面状に湾曲した形状が発生するが、相対的に厚く形成された第2バルクへテロ接合有機活性層14Aを介在されることによって、発電特性を損なうことなく、コーナー部位におけるリーク電流の発生も抑制可能である。 When realizing the basic structure of the organic thin-film solar cell according to the first embodiment, as shown in FIG. 5, the hole transport layer 12, the first bulk heterojunction organic active layer 14, and the second bulk The second bulk heterojunction organic active layer is formed to have a relatively curved shape at the corner portions 12R, 14R, 16R, etc. through the step of forming the telojunction organic active layer 14A. By interposing 14A, it is possible to suppress the occurrence of leakage current at the corner portion without impairing the power generation characteristics.
 第1の実施の形態に係る有機薄膜太陽電池1は、図6に示すように、基板10と、基板10上に配置された透明電極層(第1電極層)11と、第1電極層11上に配置された正孔輸送層12と、正孔輸送層12上に配置された第1有機活性層14と、第1有機活性層14上の端面部位に配置された第2有機活性層14Aと、第1有機活性層14および第2有機活性層14A上に配置されたカソード電極層(第2電極層)16と、基板10と対向し、第1電極層11、正孔輸送層12、第1有機活性層14、第2有機活性層14Aおよび第2電極層16からなる積層構造を封止する封止ガラス40と、ガラス40と基板10との間に配置され、上記の積層構造を封止する封止部とを備える。 As shown in FIG. 6, the organic thin film solar cell 1 according to the first embodiment includes a substrate 10, a transparent electrode layer (first electrode layer) 11 disposed on the substrate 10, and a first electrode layer 11. The hole transport layer 12 disposed above, the first organic active layer 14 disposed on the hole transport layer 12, and the second organic active layer 14A disposed on the end surface portion on the first organic active layer 14 A cathode electrode layer (second electrode layer) 16 disposed on the first organic active layer 14 and the second organic active layer 14A, and the substrate 10, facing the first electrode layer 11, the hole transport layer 12, A sealing glass 40 for sealing a laminated structure composed of the first organic active layer 14, the second organic active layer 14A, and the second electrode layer 16 is disposed between the glass 40 and the substrate 10. And a sealing portion for sealing.
 第1有機活性層14および第2有機活性層14Aは、バルクへテロ接合有機活性層で形成されていても良い。 The first organic active layer 14 and the second organic active layer 14A may be formed of a bulk heterojunction organic active layer.
 また、第1有機活性層14および第2有機活性層14Aは、pn接合を積層化したモスアイ(Moss Eye)構造(図9)を備えていても良い。 Further, the first organic active layer 14 and the second organic active layer 14A may have a moss eye structure (FIG. 9) in which pn junctions are stacked.
 封止部は、樹脂から構成されていても良い。樹脂は、例えば、エポキシ樹脂、光硬化樹脂、若しくは熱硬化樹脂で形成可能である。 The sealing part may be made of resin. The resin can be formed of, for example, an epoxy resin, a light curable resin, or a thermosetting resin.
 また、封止ガラス40は、カバーガラスから構成されていても良い。 Moreover, the sealing glass 40 may be comprised from the cover glass.
 また、封止ガラス40は、掘り込みガラスから構成されていても良い。 Moreover, the sealing glass 40 may be comprised from the digging glass.
 また、封止部は、ガラスフリットから構成されていても良い。 Moreover, the sealing part may be comprised from the glass frit.
 第1の実施の形態に係る有機薄膜太陽電池1は、図6に示すように、ITO付きガラス基板10上に発電層となる約数100nm程度の厚さを有する有機層(12・14・14A)を積層し、第2電極層16として、LiF/アルミニウムなどの金属層を蒸着して作られる。第2電極層16として形成された純アルミニウムは、酸化され易いため、耐久性を持たせるために、不動態膜を形成したり、SiNやSiONなどのパッシベーション膜を積層したりしても良い。 As shown in FIG. 6, the organic thin-film solar cell 1 according to the first embodiment has an organic layer (12 · 14 · 14A) having a thickness of about several hundreds of nanometers serving as a power generation layer on a glass substrate 10 with ITO. ) And a metal layer such as LiF / aluminum is deposited as the second electrode layer 16. Since pure aluminum formed as the second electrode layer 16 is easily oxidized, a passive film may be formed or a passivation film such as SiN or SiON may be laminated for durability.
 ここで、ガラスフリット36は、封止ガラス40上に配置される。基板10上には、正孔輸送層12・第1バルクへテロ接合有機活性層14・第2バルクへテロ接合有機活性層14Aなどの有機層が配置されるため、ガラスフリットを高温焼結する際に、これらの有機層に損傷を与えないためである。 Here, the glass frit 36 is disposed on the sealing glass 40. On the substrate 10, organic layers such as the hole transport layer 12, the first bulk heterojunction organic active layer 14, and the second bulk heterojunction organic active layer 14 A are disposed, so that the glass frit is sintered at a high temperature. This is because these organic layers are not damaged.
 第1の実施の形態に係る有機薄膜太陽電池1においては、スクリーン印刷技術やディスペンサーを用いて塗布可能なガラスフリットペーストを任意のパターンで塗布・高温焼成し、ガラスフリット36を形成可能である。 In the organic thin film solar cell 1 according to the first embodiment, a glass frit 36 can be formed by applying a glass frit paste that can be applied using a screen printing technique or a dispenser in an arbitrary pattern and baking at a high temperature.
 ガラスフリット36の高さは、例えば、約1μm~約100μmであり、ガラスフリット36の幅は、例えば、約0.2mm~約2.0mmである。ガラスフリット36を配置することによって、封止ガラス40と内部の素子との接触を避けることができる。 The height of the glass frit 36 is, for example, about 1 μm to about 100 μm, and the width of the glass frit 36 is, for example, about 0.2 mm to about 2.0 mm. By arranging the glass frit 36, contact between the sealing glass 40 and the internal elements can be avoided.
 第1の実施の形態に係る有機薄膜太陽電池1においては、図6に示すように、封止ガラス40と素子を形成した基板10とを貼り合わせるために、ガラスフリット36表面に接着するための樹脂36Uを備える。 In the organic thin film solar cell 1 according to the first embodiment, as shown in FIG. 6, in order to bond the sealing glass 40 and the substrate 10 on which the element is formed, for bonding to the surface of the glass frit 36. Resin 36U is provided.
 第1の実施の形態に係る有機薄膜太陽電池においては、封止用に封止ガラス40と封止ガラス40上に焼成した透明ガラスフリット36とを使用する。封止ガラス40としては、例えば、厚さ約0.1mm~0.2mm程度の無アルカリ強化ガラスを適用可能である。 In the organic thin film solar cell according to the first embodiment, a sealing glass 40 and a transparent glass frit 36 fired on the sealing glass 40 are used for sealing. As the sealing glass 40, for example, non-alkali tempered glass having a thickness of about 0.1 mm to 0.2 mm is applicable.
 また、ガラスフリット36は、封止ガラス40に対して、ガラスフリットペースト(有機溶剤+ガラスフリット)をスクリーン印刷によって塗布し、約100℃で有機溶剤を乾燥した後、約500℃~約590℃で、約30分焼結して形成する。ガラスフリット36の厚さは、例えば、約5μm~約20μm程度である。また、ガラスフリット36と基板10とを接着するための樹脂36Uの厚さも、例えば、約5μm~約20μm程度である。 The glass frit 36 is applied to the sealing glass 40 by applying glass frit paste (organic solvent + glass frit) by screen printing, drying the organic solvent at about 100 ° C., and then about 500 ° C. to about 590 ° C. And sintered for about 30 minutes. The glass frit 36 has a thickness of about 5 μm to about 20 μm, for example. Further, the thickness of the resin 36U for bonding the glass frit 36 and the substrate 10 is, for example, about 5 μm to about 20 μm.
 ガラスフリット36は、ディスペンサー塗布技術を用いることで、自由にパターンを描画可能であり、危険な薬品を使用することなく、封止ガラス40上に形成可能である。また、相対的に薄いカバーガラス(封止ガラス40)を用いることで、第1の実施の形態に係る有機薄膜太陽電池のモジュールをより軽量化・薄層化することができる。 The glass frit 36 can freely draw a pattern by using a dispenser coating technique, and can be formed on the sealing glass 40 without using dangerous chemicals. Moreover, by using a relatively thin cover glass (sealing glass 40), the module of the organic thin-film solar cell according to the first embodiment can be further reduced in weight and thickness.
 樹脂36Uとしては、熱硬化性樹脂若しくはUV硬化樹脂を適用可能である。素子へ与える熱ショックを回避するためには、UV硬化樹脂を使用することが望ましい。また、UV硬化樹脂を用いる場合は、紫外線を透過する透明ガラスフリットを用いると良い。UV光に対する全線透過率(例えば、90%以上)の高いガラスフリット材料としては、例えば、Zn系のガラスを適用可能である。また、ガラスフリットは、Bi-B-Si系の酸化物の粉末で構成することもできる。このBi-B-Si系の酸化物からなるガラスフリットは赤外線を吸収して発熱し、融解する性質を有する。そのため、このガラスフリットを含有するペーストの焼成体に赤外線レーザ(例えば、波長1064nm)を照射することにより融着させることが可能である。 As the resin 36U, a thermosetting resin or a UV curable resin can be applied. In order to avoid heat shock applied to the element, it is desirable to use a UV curable resin. In addition, when a UV curable resin is used, a transparent glass frit that transmits ultraviolet rays may be used. As a glass frit material having a high total ray transmittance (for example, 90% or more) with respect to UV light, for example, a Zn-based glass can be applied. Further, the glass frit can also be composed of Bi—B—Si based oxide powder. This glass frit made of Bi—B—Si oxide has the property of absorbing infrared rays to generate heat and melt. Therefore, it is possible to fuse the sintered body of the paste containing the glass frit by irradiating it with an infrared laser (for example, wavelength 1064 nm).
 また、第1の実施の形態に係る有機薄膜太陽電池は、図7に示すように、封止ガラス40の内壁面にゲッタリング用シート乾燥剤38GUを設けることによって、酸素(O2)ゲッター作用を高めても良い。ゲッタリング用シート乾燥剤としては、酸素(O2)系のゲッター剤として、例えば、酸化ストロンチウム(SrO)、酸化カルシウム(CaO)などを適用可能である。 In addition, as shown in FIG. 7, the organic thin-film solar cell according to the first embodiment is provided with a gettering sheet desiccant 38GU on the inner wall surface of the sealing glass 40 to thereby obtain an oxygen (O 2 ) getter action. May be increased. As the gettering sheet desiccant, for example, strontium oxide (SrO), calcium oxide (CaO), or the like can be used as an oxygen (O 2 ) -based getter agent.
 一方、図8に示すように、第1の実施の形態に係る有機薄膜太陽電池1において、封止用に掘り込みガラス40Aを適用しても良い。掘り込みガラス40Aの外形の厚さは、例えば、約0.7mm程度、素子部を内蔵する掘り込み部分の深さは、例えば、約0.3mm程度である。この掘り込みガラス40AとITO基板10との間には、接着するための樹脂36Uを備える。また、図7に示された第1の実施の形態に係る有機薄膜太陽電池1と同様に、掘り込みガラス40Aの内壁面にゲッタリング用シート乾燥剤38GUを配置しても良い。 On the other hand, as shown in FIG. 8, in the organic thin-film solar cell 1 according to the first embodiment, a dug glass 40A may be applied for sealing. The thickness of the outer shape of the digging glass 40A is, for example, about 0.7 mm, and the depth of the digging portion containing the element portion is, for example, about 0.3 mm. Between the dug glass 40A and the ITO substrate 10, a resin 36U for bonding is provided. Moreover, you may arrange | position the sheet desiccant 38GU for gettering on the inner wall face of the digging glass 40A similarly to the organic thin film solar cell 1 which concerns on 1st Embodiment shown by FIG.
 (モスアイ(Moss Eye)構造)
 第1の実施の形態に係る有機薄膜太陽電池1の基本構造は、図9(a)および図9(b)に示すように、有機活性層として、バルクへテロ接合構造の代わりに、モスアイ構造を備えていても良い。このような、モスアイ構造においても、上述の端面部位の湾曲化によるリーク電流を回避するために、モスアイ構造の端面部位に相対的に厚いモスアイ構造若しくはバルクへテロ接合有機活性層を形成すると良い。
(Moss Eye structure)
As shown in FIGS. 9A and 9B, the basic structure of the organic thin film solar cell 1 according to the first embodiment is a moth-eye structure as an organic active layer, instead of a bulk heterojunction structure. May be provided. Even in such a moth-eye structure, in order to avoid the leakage current due to the curvature of the end face part described above, it is preferable to form a relatively thick moth eye structure or bulk heterojunction organic active layer at the end face part of the moth-eye structure.
 第1の実施の形態に係る有機薄膜太陽電池1の基本構造は、図9(a)および図9(b)に示すように、基板10と、基板10上に配置された透明電極層11と、透明電極層11上に配置された正孔輸送層12と、正孔輸送層12上に配置された第1p型有機活性層131と、第1p型有機活性層131上に配置された第2p型有機活性層132と、第2p型有機活性層132上に配置された第3p型有機活性層133と、第1p型有機活性層131と第2p型有機活性層132を貫通し、第3p型有機活性層133まで形成された溝部23の凹面および凸面に配置されたn型有機活性層15と、n型有機活性層15上に配置された電子輸送層17と、電子輸送層17の凹面および凸面に配置された金属ナノ粒子層18と、溝部23を充填しかつ金属ナノ粒子層18を被覆するカソード電極層16とを備える。 As shown in FIGS. 9A and 9B, the basic structure of the organic thin film solar cell 1 according to the first embodiment includes a substrate 10 and a transparent electrode layer 11 disposed on the substrate 10. The hole transport layer 12 disposed on the transparent electrode layer 11, the first p-type organic active layer 13 1 disposed on the hole transport layer 12, and the first p-type organic active layer 13 1 . and the 2p-type organic active layer 13, second 2p-type organic active layer 13 and the 3p-type organic active layer 13 3 arranged on the two, first 1p-type organic active layer 13 1 and the 2p-type organic active layer 13 2 N-type organic active layer 15 disposed on the concave and convex surfaces of groove 23 formed up to third p-type organic active layer 133, and electron transport layer 17 disposed on n-type organic active layer 15; The metal nanoparticle layer 18 disposed on the concave surface and the convex surface of the electron transport layer 17, the groove portion 23, and gold And a cathode electrode layer 16 covering the genus nanoparticle layer 18.
 正孔輸送層12上に配置された第1p型有機活性層131とn型有機活性層15間には、溝部23の側壁面および底面において、p(131)n(15)接合が形成されている。第1p型有機活性層131上に配置された第2p型有機活性層132とn型有機活性層15間には、溝部23の側壁面において、p(132)n(15)接合が形成されている。第2p型有機活性層132上に配置された第3p型有機活性層133とn型有機活性層15間には、溝部23の側壁面において、p(133)n(15)接合が形成されている。 A p (13 1 ) n (15) junction is formed between the first p-type organic active layer 13 1 and the n-type organic active layer 15 disposed on the hole transport layer 12 on the side wall surface and the bottom surface of the groove 23. Has been. Between the second p-type organic active layer 13 2 and the n-type organic active layer 15 disposed on the first p-type organic active layer 13 1 , a p (13 2 ) n (15) junction is formed on the side wall surface of the groove 23. Is formed. Between the third p-type organic active layer 13 3 and the n-type organic active layer 15 disposed on the second p-type organic active layer 13 2 , a p (13 3 ) n (15) junction is formed on the side wall surface of the groove 23. Is formed.
 基板10側から侵入した光は、p(131)n(15)接合、p(132)n(15)接合およびp(133)n(15)接合において吸収されるため、第1p型有機活性層131・第2p型有機活性層132・第3p型有機活性層133において、それぞれの光侵入深さに応じた波長吸収特性を有する。このため、幅広い波長帯域に光電変換性能を有することができる。 Since the light that has entered from the substrate 10 side is absorbed at the p (13 1 ) n (15) junction, the p (13 2 ) n (15) junction, and the p (13 3 ) n (15) junction, the first p-type The organic active layer 13 1 , the second p-type organic active layer 13 2, and the third p-type organic active layer 13 3 have wavelength absorption characteristics corresponding to the respective light penetration depths. For this reason, it can have photoelectric conversion performance in a wide wavelength band.
 また、図9(a)および図9(b)に示すように、溝部23にpn接合が形成されるため、pn接合面積を実質的に増大することができ、有機薄膜太陽電池の性能上、起電力を増加することができる。 Moreover, as shown in FIG. 9A and FIG. 9B, since the pn junction is formed in the groove 23, the pn junction area can be substantially increased. The electromotive force can be increased.
 例えば、第1p型有機活性層131を青色波長吸収用、第2p型有機活性層132を緑色波長吸収用、第3p型有機活性層133を赤色波長吸収用として形成しても良い。或いは、第1p型有機活性層131は、紫外線吸収用、第2p型有機活性層132は、可視光吸収用、第3p型有機活性層133は、赤外光吸収用として形成しても良い。 For example, the 1p-type organic active layer 13 1 a blue wavelength absorption, the 2p-type organic active layer 13 2 for green wavelength absorbed, may be formed first 3p-type organic active layer 13 3 for the red wavelength absorption. Alternatively, the first p-type organic active layer 13 1 is formed for absorbing ultraviolet light, the second p-type organic active layer 13 2 is formed for absorbing visible light, and the third p-type organic active layer 13 3 is formed for absorbing infrared light. Also good.
 高分子材料は、可視光領域で高い吸収を持つが、長波長側では、吸収帯を持たないため、第1p型有機活性層131・第2p型有機活性層132・第3p型有機活性層133には、長波長に吸収帯を有する色素をドーピングするか若しくは積層することで、変換効率を向上させることができる。例えば、長波長吸収に優れた材料としては、鉛フタロシアニン(PbPc)、珪素フタロシアニン(SiPc)、銅フタロシアニン(CuPc)などを適用することができる。また、可溶性フタロシアニン(IR-14)、可溶性フタロシアニン(IR-915)なども適用することができる。 The polymer material has high absorption in the visible light region, but does not have an absorption band on the long wavelength side. Therefore, the first p-type organic active layer 13 1 , the second p-type organic active layer 13 2, and the third p-type organic activity the layer 13 3, by either or laminated doping dye having an absorption band in a long wavelength, it is possible to improve the conversion efficiency. For example, as a material excellent in long wavelength absorption, lead phthalocyanine (PbPc), silicon phthalocyanine (SiPc), copper phthalocyanine (CuPc), or the like can be used. Soluble phthalocyanine (IR-14), soluble phthalocyanine (IR-915), and the like can also be applied.
 第1p型有機活性層131・第2p型有機活性層132・第3p型有機活性層133には、p型材料であるP3HT(poly(3-hexylthiophene-2,5diyl))などを適用することができる。第1p型有機活性層131・第2p型有機活性層132・第3p型有機活性層133各層の厚さは、例えば、35nm程度である。 For the first p-type organic active layer 13 1 , the second p-type organic active layer 13 2, and the third p-type organic active layer 13 3 , a p-type material such as P3HT (poly (3-hexylthiophene-2,5diyl)) is applied. can do. The thickness of each of the first p-type organic active layer 13 1 , the second p-type organic active layer 13 2, and the third p-type organic active layer 13 3 is, for example, about 35 nm.
 溝部23の形成には、例えば、ナノインプリント技術、ドライエッチング技術などを適用することができる。溝部23の深さは、例えば、約50nm~約100nm程度、溝部23の幅は、例えば、約5nm~約35nm程度である。 For the formation of the groove 23, for example, a nanoimprint technique, a dry etching technique, or the like can be applied. The depth of the groove 23 is, for example, about 50 nm to about 100 nm, and the width of the groove 23 is, for example, about 5 nm to about 35 nm.
 n型有機活性層15には、n型材料であるPCBM(6,6-phenyl-C61-butyric acid methyl ester)などを適用することができる。 The n-type organic active layer 15 may be an n-type material such as PCB (6,6-phenyl-C61-butyric acid methyl ester).
 電子輸送層17には、例えば、PC60BMなどを適用することができる。 For example, PC 60 BM can be applied to the electron transport layer 17.
 金属ナノ粒子層18には、例えば、Ag層若しくはAu層などを用いることができる。 For example, an Ag layer or an Au layer can be used for the metal nanoparticle layer 18.
 カソード電極層16には、例えば、LiF/Alなどを適用することができる。 For example, LiF / Al can be applied to the cathode electrode layer 16.
 図示は省略するが、前述の基本構造(図4・図5)と同様に、モスアイ構造においても、端面部位の湾曲化によるリーク電流を回避するために、モスアイ構造の端面部位に相対的に厚いモスアイ構造若しくはバルクへテロ接合有機活性層(図4・図5の14Aと同様)を形成することによって、端面部位におけるリークを回避することができる。 Although not shown, in the moth-eye structure, as in the above-described basic structure (FIGS. 4 and 5), in order to avoid leakage current due to the curvature of the end face part, the end face part of the moth eye structure is relatively thick. By forming a moth-eye structure or a bulk heterojunction organic active layer (similar to 14A in FIGS. 4 and 5), it is possible to avoid leakage at the end face portion.
 (動作原理)
 有機薄膜太陽電池1の動作原理を説明する模式図は、図10に示すように表される。また、図10に示された有機薄膜太陽電池1Aの各種材料のエネルギーバンド構造は、図11に示すように表される。図10および図11を参照して、第1の実施の形態に係る有機薄膜太陽電池1の原理的な構成と、その動作について説明する。以下の動作原理の説明においては、第1バルクへテロ接合有機活性層14のみ示す。第1バルクへテロ接合有機活性層14の端面部位には、第2バルクへテロ接合有機活性層14Aを備えるが、図示は省略する。
(Operating principle)
A schematic diagram for explaining the operation principle of the organic thin-film solar cell 1 is expressed as shown in FIG. Moreover, the energy band structure of the various materials of the organic thin film solar cell 1A shown in FIG. 10 is expressed as shown in FIG. With reference to FIG. 10 and FIG. 11, the principle structure of the organic thin-film solar cell 1 which concerns on 1st Embodiment, and its operation | movement are demonstrated. In the following description of the operating principle, only the first bulk heterojunction organic active layer 14 is shown. Although the end surface portion of the first bulk heterojunction organic active layer 14 includes the second bulk heterojunction organic active layer 14A, the illustration is omitted.
 ここで、バルクへテロ接合有機活性層14は、図10の右図に示すように、p型有機活性層領域とn型有機活性層領域が混在し、複雑なバルクへテロpn接合を形成している。ここで、p型有機活性層領域は、例えば、P3HT(poly(3-hexylthiophene-2,5diyl))で形成され、n型有機活性層領域は、例えば、PCBM(6,6-phenyl-C61-butyric acid methyl ester)で形成されている。
(a)光を吸収すると、バルクへテロ接合有機活性層14内で、励起子が生成される。
(b)次に、励起子は、バルクへテロ接合有機活性層14内のpn接合界面において、自発分極によって、電子(e-)と正孔(h+)の自由キャリアに解離する。
(c)次に、解離した正孔(h+)は、アノード電極となる透明電極層11に向けて走行し、解離した電子(e-)は、カソード電極層16に向けて走行する。
(d)結果として、カソード電極層16・透明電極層11間には、逆方向電流が導通して、開放電圧Vocが発生し、有機薄膜太陽電池1が得られる。
Here, as shown in the right diagram of FIG. 10, the bulk heterojunction organic active layer 14 includes a p-type organic active layer region and an n-type organic active layer region, thereby forming a complex bulk hetero pn junction. ing. Here, the p-type organic active layer region is formed of, for example, P3HT (poly (3-hexylthiophene-2,5diyl)), and the n-type organic active layer region is, for example, PCBM (6,6-phenyl-C61-). butyric acid methyl ester).
(A) When light is absorbed, excitons are generated in the bulk heterojunction organic active layer 14.
(B) Next, excitons dissociate into free carriers of electrons (e−) and holes (h +) by spontaneous polarization at the pn junction interface in the bulk heterojunction organic active layer 14.
(C) Next, the dissociated holes (h +) travel toward the transparent electrode layer 11 serving as the anode electrode, and the dissociated electrons (e−) travel toward the cathode electrode layer 16.
(D) As a result, a reverse current is conducted between the cathode electrode layer 16 and the transparent electrode layer 11 to generate an open circuit voltage Voc, and the organic thin film solar cell 1 is obtained.
 正孔輸送層12に適用するPEDOT:PSSの内、PEDOTの化学構造式は、図12(a)に示すように表され、PSSの化学構造式は、図12(b)に示すように表される。 Of PEDOT: PSS applied to the hole transport layer 12, the chemical structural formula of PEDOT is represented as shown in FIG. 12 (a), and the chemical structural formula of PSS is represented as shown in FIG. 12 (b). Is done.
 第1バルクへテロ接合有機活性層14(第2バルクへテロ接合有機活性層14Aも同様)に適用されるP3HTの化学構造式は、図13(a)に示すように表され、第1バルクへテロ接合有機活性層14(第2バルクへテロ接合有機活性層14Aも同様)に適用されるPCBMの化学構造式は、図13(b)に示すように表される。 The chemical structural formula of P3HT applied to the first bulk heterojunction organic active layer 14 (the same applies to the second bulk heterojunction organic active layer 14A) is expressed as shown in FIG. The chemical structural formula of PCBM applied to the heterojunction organic active layer 14 (the same applies to the second bulk heterojunction organic active layer 14A) is represented as shown in FIG.
 有機薄膜太陽電池1において、真空蒸着で使用する材料の化学構造式の例は、以下の通りである。すなわち、フタロシアニン(Pc:Phthalocyanine)の例は、図14(a)に示すように表され、亜鉛フタロシアニン(ZnPc:Zinc- phthalocyanine)の例は、図14(b)に示すように表され、Me-Ptcdi(N,N’-dimethyl perylene-3,4,9,10-dicarboximide)の例は、図14(c)に示すように表され、フラーレン(C 60 :Buckminster fullerene)の例は、図14(d)に示すように表される。 In the organic thin-film solar cell 1, examples of chemical structural formulas of materials used for vacuum deposition are as follows. That is, an example of phthalocyanine (Pc) is represented as shown in FIG. 14A, and an example of zinc phthalocyanine (ZnPc: Zinc-phthalocyanine) is represented as shown in FIG. An example of -Ptcdi (N, N'-dimethyl perylene-3,4,9,10-dicarboximide) is represented as shown in FIG. 14 (c), and an example of fullerene (C 60 : Buckminster fullerene) 14 (d).
 有機薄膜太陽電池1において、溶液プロセスで使用する材料の化学構造式の例は、以下の通りである。すなわち、MDMO-PPV(poly[2-methoxy-5-(3,7-dimethyl octyloxy)]-1,4-phenylene vinylene)の例は、図15(a)に示すように表される。PFB(poly (9,9’-dioctylfluorene-co-bis-N,N’-(4-butylphenyl)-bis-N,N’-phenyl-1,4-phenylenediamine)の例は、図15(b)に示すように表される。CN-MDMO-PPV (poly-[2-methoxy-5-(2’-ethylhexyloxy)-1,4-(1-cyanovinylene)-phenylene]) の例は、図15(c)に示すように表される。PFO-DBT (poly[2,7-(9,9-dioctyl-fluorene)-alt-5,5-(4,7’-di-2-thienyl-2’,1’,3’-benzothiadiazole)])の例は、図15(d)に示すように表される。 Examples of chemical structural formulas of materials used in the solution process in the organic thin film solar cell 1 are as follows. That is, an example of MDMO-PPV (poly [2-methoxy-5- (3,7-dimethyl-octyloxy)]-1,4-phenylene-vinylene) is represented as shown in FIG. An example of PFB (poly (9,9′-dioctylfluorene-co-bis-N, N ′-(4-butylphenyl) -bis-N, N′-phenyl-1,4-phenylenediamine) is shown in FIG. An example of CN-MDMO-PPV (poly- [2-methoxy-5- (2'-ethylhexyloxy) -1,4- (1-cyanovinylene) -phenylene]) is shown in FIG. c) PFO-DBT (poly [2,7- (9,9-dioctyl-fluorene) -alt-5,5- (4,7'-di-2-thienyl-2 ') , 1 ′, 3′-benzothiadiazole)]) is represented as shown in FIG.
 また、F8BT(poly(9,9’-dioctyl fluoreneco-benzothiadiazole))の例は、図15(e)に示すように表され、PCDTBT(poly[N-9’-hepta-decanyl-2,7-carbazole-alt-5,5-(4’,7’-di-thienyl-2’1’,3’-b3nzothiadizaole)])の例は、図15(f)に示すように表される。 An example of F8BT (poly (9,9′-dioctyl fluoreneco-benzothiadiazole)) is represented as shown in FIG. 15 (e), and PCDTBT (poly [N-9′-hepta-decanyl-2,7- An example of carbazole-alt-5,5- (4 ′, 7′-di-thienyl-2′1 ′, 3′-b3nzothiadizaole)]) is represented as shown in FIG.
 また、PC60BM (6,6-phenyl-C61-butyric acid methyl ester)の例は、図15(g)に示すように表され、PC70BM(6,6-phenyl-C71-butyric acid methyl ester)の例は、図15(h)に示すように表される。 An example of PC 60 BM (6,6-phenyl-C61-butyric acid methyl ester) is represented as shown in FIG. 15 (g), and PC 70 BM (6,6-phenyl-C71-butyric acid methyl ester) An example of ester) is represented as shown in FIG.
 (比較例)
 比較例に係る有機薄膜太陽電池1Bは、図16~図18に示すように、図2の積層構造を図6~8と同様に、封止する構成を示す。すなわち、比較例1に係る有機薄膜太陽電池1Bは、図16に示すように、図2の積層構造を封止ガラス40・ガラスフリット36・樹脂36Uを用いて封止した構造を備える。比較例2に係る有機薄膜太陽電池1Bは、図17に示すように、封止ガラス40の内壁面にゲッタリング用シート乾燥剤38GUを配置した構造を備える。比較例3に係る有機薄膜太陽電池1Bは、図18に示すように、封用に掘り込みガラス40Aを適用した構造を備える。いずれの構造においても、透明電極層11とカソード電極層16間で特にコーナー部分でリーク電流が発生し易く、相対的な発電効率も低下し易い。
(Comparative example)
As shown in FIGS. 16 to 18, the organic thin-film solar cell 1B according to the comparative example has a configuration in which the stacked structure in FIG. 2 is sealed in the same manner as in FIGS. That is, as shown in FIG. 16, the organic thin-film solar cell 1B according to Comparative Example 1 has a structure in which the stacked structure of FIG. 2 is sealed using sealing glass 40, glass frit 36, and resin 36U. As shown in FIG. 17, the organic thin-film solar cell 1 </ b> B according to Comparative Example 2 has a structure in which a gettering sheet desiccant 38GU is disposed on the inner wall surface of the sealing glass 40. As shown in FIG. 18, the organic thin-film solar cell 1 </ b> B according to Comparative Example 3 has a structure in which a dug glass 40 </ b> A is applied for sealing. In any structure, a leak current is likely to occur between the transparent electrode layer 11 and the cathode electrode layer 16, particularly at the corner portion, and the relative power generation efficiency is likely to be lowered.
 (光電流電圧特性)
 第1の実施の形態に係る有機薄膜太陽電池の光電流電圧特性は、模式的に図19(a)に示すように表される。図19(a)において、曲線DAは、光照射されていない状態における光電流電圧特性を示し、曲線ILは、光照射された状態における光電流電圧特性を示す。曲線DAでは、光起電力を発生することはできないが、曲線ILでは、V=VMAX、I=IMAXで表される点において、最大起電力PMAXを発生することができる。図19(a)において、VOCは、開放電圧を表し、ISCは、短絡電流を表す。ここで、第1の実施の形態に係る有機薄膜太陽電池の曲線因子(FF:フィルファクター)は、FF=VMAX・IMAX/(VOC・ISC)で表される。
(Photocurrent voltage characteristics)
The photocurrent voltage characteristic of the organic thin-film solar cell according to the first embodiment is schematically represented as shown in FIG. In FIG. 19A, a curve DA indicates a photocurrent voltage characteristic in a state where light is not irradiated, and a curve IL indicates a photocurrent voltage characteristic in a state where light is irradiated. In the curve DA, the photovoltaic force cannot be generated, but in the curve IL, the maximum electromotive force P MAX can be generated at a point represented by V = V MAX and I = I MAX . In FIG. 19A, V OC represents an open circuit voltage, and I SC represents a short circuit current. Here, the fill factor (FF) of the organic thin-film solar cell according to the first embodiment is expressed by FF = V MAX · I MAX / (V OC · I SC ).
 第1の実施の形態に係る有機薄膜太陽電池と比較例に係る有機薄膜太陽電池の光電流電圧特性は、模式的に、図19(b)に示すように表される。第1の実施の形態は、図6~図8の構成に対応し、光電流電圧特性は、曲線Pで示される。一方、比較例は、図16~図18の構成に対応し、光電流電圧特性は、曲線Cで示される。比較例に比べ、第1の実施の形態では、最大起電力PMAXおよびフィルファクターFFはいずれも大きい。 The photocurrent voltage characteristics of the organic thin film solar cell according to the first embodiment and the organic thin film solar cell according to the comparative example are schematically represented as shown in FIG. The first embodiment corresponds to the configuration of FIGS. 6 to 8, and the photocurrent voltage characteristic is indicated by a curve P. On the other hand, the comparative example corresponds to the configurations of FIGS. 16 to 18, and the photocurrent-voltage characteristics are indicated by a curve C. Compared to the comparative example, in the first embodiment, the maximum electromotive force P MAX and the fill factor FF are both large.
 第1の実施の形態に係る有機薄膜太陽電池においては、非発電部位を低減し、発電特性を向上可能である。 In the organic thin film solar cell according to the first embodiment, it is possible to reduce non-power generation sites and improve power generation characteristics.
 第1の実施の形態に係る有機薄膜太陽電池1の積層構造部分は、図20に示すように、基板10と、基板10上に配置された透明電極層(第1電極層)11と、第1電極層11上に配置された正孔輸送層12と、正孔輸送層12上に配置された第1バルクへテロ接合有機活性層14と、第1バルクへテロ接合有機活性層14の端面部位上に配置された第2バルクへテロ接合有機活性層14Aと、第1バルクへテロ接合有機活性層14・第2バルクへテロ接合有機活性層14A上に配置されたカソード電極層(第2電極層)16とを備える。 As shown in FIG. 20, the stacked structure portion of the organic thin film solar cell 1 according to the first embodiment includes a substrate 10, a transparent electrode layer (first electrode layer) 11 disposed on the substrate 10, Hole transport layer 12 disposed on one electrode layer 11, first bulk heterojunction organic active layer 14 disposed on hole transport layer 12, and end face of first bulk heterojunction organic active layer 14 The second bulk heterojunction organic active layer 14A disposed on the region, and the cathode electrode layer (the second bulk heterojunction organic active layer 14A disposed on the first bulk heterojunction organic active layer 14 and the second bulk heterojunction organic active layer 14A). Electrode layer) 16.
 また、第1の実施の形態の変形例に係る有機薄膜太陽電池1の積層構造部分は、図21に示すように、第2電極層16の表面に配置された不動態膜24をさらに備える。ここで、不動態膜24は、第2電極層16の酸化膜で構成される。また、第2電極層16の酸化膜は、第2電極層16の表面を酸素プラズマ処理することによって、形成可能である。不動態膜24の厚さは、例えば、約10オングストローム~約100オングストロームである。なお、図示は省略するが、不動態膜24上に配置されたパッシベーション膜を備えていても良い。このパッシベーション膜は、例えば、SiN膜若しくはSiON膜で構成可能である。 Further, the laminated structure portion of the organic thin film solar cell 1 according to the modification of the first embodiment further includes a passive film 24 disposed on the surface of the second electrode layer 16 as shown in FIG. Here, the passive film 24 is composed of an oxide film of the second electrode layer 16. The oxide film of the second electrode layer 16 can be formed by performing oxygen plasma treatment on the surface of the second electrode layer 16. The thickness of the passivation film 24 is, for example, about 10 angstroms to about 100 angstroms. In addition, although illustration is abbreviate | omitted, you may provide the passivation film arrange | positioned on the passive film 24. FIG. This passivation film can be composed of, for example, a SiN film or a SiON film.
 第2電極層16は、LiF/Al、W、Mo、Mn、Mgの何れかの金属で構成されていても良い。第2電極層16をAlで形成する場合には、不動態膜24は、アルミナ(Al23)膜となる。 The second electrode layer 16 may be made of any one of LiF / Al, W, Mo, Mn, and Mg. When the second electrode layer 16 is formed of Al, the passive film 24 is an alumina (Al 2 O 3 ) film.
 図21に示すように、第2電極層16の表面に不動態膜24を備える有機薄膜太陽電池1は、第1バルクへテロ接合有機活性層14・第2バルクへテロ接合有機活性層14A内に水分や酸素が侵入した場合であっても、第2電極層16がその水分・酸素によって酸化する事態を防止することができる。これにより、有機太陽電池の劣化を抑制することができ、耐久性を高めることができる。 As shown in FIG. 21, the organic thin-film solar cell 1 including the passive film 24 on the surface of the second electrode layer 16 includes the first bulk heterojunction organic active layer 14 and the second bulk heterojunction organic active layer 14A. Even when moisture or oxygen penetrates into the second electrode layer, it is possible to prevent the second electrode layer 16 from being oxidized by the moisture and oxygen. Thereby, deterioration of an organic solar cell can be suppressed and durability can be improved.
 (製造方法)
 第1の実施の形態に係る有機薄膜太陽電池の製造方法の一工程であって、基板10上に透明電極層11を形成したITO基板を準備する工程は、図22(a)に示すように表され、透明電極層11をパターニング後、透明電極層11上に正孔輸送層12をパターン形成する工程は、図22(b)に示すように表され、正孔輸送層12上に第1バルクへテロ接合有機活性層14をパターン形成する工程は、図22(c)に示すように表される。
(Production method)
As shown in FIG. 22A, a process for preparing an ITO substrate in which the transparent electrode layer 11 is formed on the substrate 10 is a process of the method for manufacturing the organic thin-film solar cell according to the first embodiment. The step of patterning the transparent electrode layer 11 and then patterning the hole transport layer 12 on the transparent electrode layer 11 is expressed as shown in FIG. The step of patterning the bulk heterojunction organic active layer 14 is expressed as shown in FIG.
 第1の実施の形態に係る有機薄膜太陽電池の製造方法の一工程であって、第1バルクへテロ接合有機活性層14上に第2バルクへテロ接合有機活性層14Aをパターン形成する工程は、図23(a)に示すように表され、第1バルクへテロ接合有機活性層14および第2バルクへテロ接合有機活性層14A上に第2電極層16をパターン形成する工程は、図23(b)に示すように表される。 A step of manufacturing the organic thin-film solar cell according to the first embodiment, in which the second bulk heterojunction organic active layer 14A is formed on the first bulk heterojunction organic active layer 14 by patterning. 23A, the step of patterning the second electrode layer 16 on the first bulk heterojunction organic active layer 14 and the second bulk heterojunction organic active layer 14A is performed as shown in FIG. It is expressed as shown in (b).
 第1の実施の形態に係る有機薄膜太陽電池の製造方法の一工程であって、封止ガラス40を準備する工程は、図24(a)に示すように表され、封止ガラス40上にガラスフリット36を形成する工程は、図24(b)に示すように表され、ガラスフリット36の先端部分に樹脂36Uを形成する工程は、図24(c)に示すように表される。 A process of preparing the organic thin-film solar cell according to the first embodiment, the process of preparing the sealing glass 40 is expressed as shown in FIG. The step of forming the glass frit 36 is represented as shown in FIG. 24B, and the step of forming the resin 36U on the tip portion of the glass frit 36 is represented as shown in FIG.
 第1の実施の形態に係る有機薄膜太陽電池の製造方法の一工程であって、図23(b)に示された工程後のITO基板10と、図24(c)に示された工程後の封止ガラス40を対向させる工程は、図25(a)に示すように表され、図25(a)に示された工程後、ガラスフリット36とUV硬化樹脂36Uを介して、ITO基板10と封止ガラス40を接着し、封止する工程は、図25(b)に示すように表される。 It is one process of the manufacturing method of the organic thin-film solar cell concerning 1st Embodiment, Comprising: The ITO board | substrate 10 after the process shown by FIG.23 (b), and the process shown by FIG.24 (c) The process of making the sealing glass 40 face each other is expressed as shown in FIG. 25A. After the process shown in FIG. 25A, the ITO substrate 10 is interposed via the glass frit 36 and the UV curable resin 36U. The process of adhering and sealing the sealing glass 40 is expressed as shown in FIG.
 第1の実施の形態に係る有機薄膜太陽電池1の製造方法は、図22~図25に示すように、基板10を準備する工程と、基板10上に第1電極層11を形成する工程と、第1電極層11上に正孔輸送層12を形成する工程と、正孔輸送層12上に第1有機活性層14を形成する工程と、第1有機活性層14上に第2有機活性層14Aを形成する工程と、第1有機活性層14および第2有機活性層14A上に第2電極層16を形成する工程と、封止ガラス40上にガラスフリット36を形成する工程と、ガラスフリット36の先端部分に樹脂36Uを形成する工程と、封止ガラス40および基板10を対向させ、ガラスフリット36と樹脂36Uによって、第1電極層11・正孔輸送層12・第1有機活性層14・第2有機活性層14A・第2電極層16からなる積層構造を封止する工程とを有する。 The method for manufacturing the organic thin-film solar cell 1 according to the first embodiment includes a step of preparing the substrate 10 and a step of forming the first electrode layer 11 on the substrate 10 as shown in FIGS. A step of forming a hole transport layer 12 on the first electrode layer 11, a step of forming a first organic active layer 14 on the hole transport layer 12, and a second organic activity on the first organic active layer 14. A step of forming the layer 14A, a step of forming the second electrode layer 16 on the first organic active layer 14 and the second organic active layer 14A, a step of forming the glass frit 36 on the sealing glass 40, and a glass The step of forming the resin 36U at the tip of the frit 36, the sealing glass 40 and the substrate 10 are opposed to each other, and the first electrode layer 11, the hole transport layer 12, and the first organic active layer are formed by the glass frit 36 and the resin 36U. 14. Second organic active layer 14A, second And a step of sealing the layered structure consisting of the electrode layer 16.
 第1有機活性層14および第2有機活性層14Aは、バルクへテロ接合有機活性層で形成されていても良い。 The first organic active layer 14 and the second organic active layer 14A may be formed of a bulk heterojunction organic active layer.
 また、第1有機活性層14および第2有機活性層14Aを形成する工程は、インクジェット法を用いても良い。 Further, the step of forming the first organic active layer 14 and the second organic active layer 14A may use an inkjet method.
 図22~図25を参照して、第1の実施の形態に係る有機薄膜太陽電池の製造方法について説明する。
(a)まず、図22(a)に示すように、基板10上に、例えば、ITOからなる透明電極層11を形成する。
(b)次に、図22(b)に示すように、透明電極層11をパターニング後、透明電極層11上に正孔輸送層12をパターン形成する。透明電極層11のパターニングには、ウエットエッチング技術、酸素プラズマエッチング技術、レーザパターニング技術、ナノインプリント技術などを適用可能である。正孔輸送層12の形成には、スピンコート技術、スプレー技術、スクリーン印刷技術などを適用可能である。ここで、正孔輸送層12の形成工程では、例えば、PEDOT:PSSをスピンコートによって形成し、水分除去のために、アニ-ルを120℃で約10分間行うと良い。
(c)次に、図22(c)に示すように、正孔輸送層12上に、発電層となる第1バルクへテロ接合有機活性層14をパターン形成する。第1バルクへテロ接合有機活性層14の形成工程においては、例えば、P3HTをスピンコートによって形成する。また、第1バルクへテロ接合有機活性層14の形成においては、インクジェット法を用いてフィルム状に形成した後、有機溶剤を乾燥させるために、約100℃~約120℃で約10分~約30分加熱する。
(d)次に、図23(a)に示すように、第1バルクへテロ接合有機活性層14上の端面部位に第2バルクへテロ接合有機活性層14Aをパターン形成する。第2バルクへテロ接合有機活性層14Aも第1バルクへテロ接合有機活性層14と同様に発電層となる。第1バルクへテロ接合有機活性層14Aの形成工程においても、例えば、P3HTをスピンコートによって形成する。また、第2バルクへテロ接合有機活性層14Aの形成においても、インクジェット法を用いてフィルム状に形成した後、有機溶剤を乾燥させるために、約100℃~約120℃で約10分~約30分加熱する。
(e)次に、図23(b)に示すように、第1バルクへテロ接合有機活性層14および第2バルクへテロ接合有機活性層14A上のカソード電極層16をパターン形成する。カソード電極層16の形成には、例えばLiF/Al、W、Mo、Mn、Mgなどの金属層を真空加熱蒸着法により形成可能である。また、スクリーン印刷技術を適用しても良い。
(f)次に、図24(a)に示すように、封止ガラス40を準備する。封止ガラス40としては、例えば、厚さ約0.1mm~約0.2mm程度の無アルカリ強化ガラスを適用可能である。
(g)次に、図24(b)に示すように、封止ガラス40上にガラスフリット36を形成する。ガラスフリット36は、封止ガラス40に対して、ガラスフリットペースト(有機溶剤+ガラスフリット)をスクリーン印刷によって塗布し、約100℃で有機溶剤を乾燥した後、約500℃~約590℃で、約30分焼結して形成する。ガラスフリット36の厚さは、例えば、約5μm~約20μm程度である。ガラスフリット36は、ディスペンサー塗布を用いることで、自由にパターンを描画可能であり、危険な薬品を使用することなく、封止ガラス40上に形成可能である。
(h)次に、図24(c)に示すように、ガラスフリット36と基板10とを接着するための樹脂36Uをガラスフリット36の先端部分に形成する。樹脂36Uの厚さも、例えば、約5μm~約20μm程度である。また、樹脂36Uは、紫外線硬化樹脂で形成されていても良い。また、樹脂36Uは、熱硬化樹脂で形成されていても良い。但し、熱硬化の温度は、正孔輸送層12、第1バルクへテロ接合有機活性層14・第2バルクへテロ接合有機活性層14Aを損傷しない程度の温度、例えば、約100℃~約120℃以下であることが望ましい。
(i)次に、図25(a)に示すように、図23(b)に示された工程後のITO基板10と、図24(c)に示された工程後の封止ガラス40を対向させる。
(j)次に、図25(b)に示すように、封止ガラス(カバーガラス)40およびガラスフリット36・樹脂36Uによって素子全体を封止する。樹脂36Uによって、ガラスフリット36と透明電極層(ITO)11とを接着する。なお、封止工程は、大気中の水分や酸素による劣化を防ぐために、窒素雰囲気中で行うと良い。
With reference to FIGS. 22 to 25, a method of manufacturing the organic thin-film solar cell according to the first embodiment will be described.
(A) First, as shown in FIG. 22A, the transparent electrode layer 11 made of, for example, ITO is formed on the substrate 10.
(B) Next, as shown in FIG. 22B, after patterning the transparent electrode layer 11, the hole transport layer 12 is patterned on the transparent electrode layer 11. For the patterning of the transparent electrode layer 11, a wet etching technique, an oxygen plasma etching technique, a laser patterning technique, a nanoimprint technique, and the like can be applied. For the formation of the hole transport layer 12, a spin coating technique, a spray technique, a screen printing technique, or the like can be applied. Here, in the step of forming the hole transport layer 12, for example, PEDOT: PSS is formed by spin coating, and annealing is performed at 120 ° C. for about 10 minutes in order to remove moisture.
(C) Next, as shown in FIG. 22C, the first bulk heterojunction organic active layer 14 to be a power generation layer is patterned on the hole transport layer 12. In the step of forming the first bulk heterojunction organic active layer 14, for example, P3HT is formed by spin coating. Further, in forming the first bulk heterojunction organic active layer 14, after forming into a film using an ink jet method, the organic solvent is dried at about 100 ° C. to about 120 ° C. for about 10 minutes to about Heat for 30 minutes.
(D) Next, as shown in FIG. 23A, the second bulk heterojunction organic active layer 14 </ b> A is formed in a pattern on the end surface portion on the first bulk heterojunction organic active layer 14. Similarly to the first bulk heterojunction organic active layer 14, the second bulk heterojunction organic active layer 14A also serves as a power generation layer. Also in the step of forming the first bulk heterojunction organic active layer 14A, for example, P3HT is formed by spin coating. Also, in the formation of the second bulk heterojunction organic active layer 14A, it is formed at about 100 ° C. to about 120 ° C. for about 10 minutes to about Heat for 30 minutes.
(E) Next, as shown in FIG. 23B, the cathode electrode layer 16 on the first bulk heterojunction organic active layer 14 and the second bulk heterojunction organic active layer 14A is patterned. For the formation of the cathode electrode layer 16, for example, a metal layer such as LiF / Al, W, Mo, Mn, and Mg can be formed by a vacuum heating deposition method. Further, screen printing technology may be applied.
(F) Next, as shown to Fig.24 (a), the sealing glass 40 is prepared. As the sealing glass 40, for example, non-alkali tempered glass having a thickness of about 0.1 mm to about 0.2 mm can be applied.
(G) Next, as shown in FIG. 24B, a glass frit 36 is formed on the sealing glass 40. The glass frit 36 is formed by applying a glass frit paste (organic solvent + glass frit) to the sealing glass 40 by screen printing, drying the organic solvent at about 100 ° C., and then at about 500 ° C. to about 590 ° C. It is formed by sintering for about 30 minutes. The glass frit 36 has a thickness of about 5 μm to about 20 μm, for example. The glass frit 36 can freely draw a pattern by using dispenser coating, and can be formed on the sealing glass 40 without using dangerous chemicals.
(H) Next, as shown in FIG. 24C, a resin 36 </ b> U for bonding the glass frit 36 and the substrate 10 is formed at the tip of the glass frit 36. The thickness of the resin 36U is, for example, about 5 μm to about 20 μm. The resin 36U may be formed of an ultraviolet curable resin. The resin 36U may be formed of a thermosetting resin. However, the thermosetting temperature is a temperature that does not damage the hole transport layer 12, the first bulk heterojunction organic active layer 14 and the second bulk heterojunction organic active layer 14A, for example, about 100 ° C. to about 120 ° C. It is desirable that the temperature is not higher than ° C.
(I) Next, as shown in FIG. 25A, the ITO substrate 10 after the process shown in FIG. 23B and the sealing glass 40 after the process shown in FIG. Make them face each other.
(J) Next, as shown in FIG. 25B, the entire device is sealed with a sealing glass (cover glass) 40, a glass frit 36, and a resin 36U. The glass frit 36 and the transparent electrode layer (ITO) 11 are bonded by the resin 36U. Note that the sealing step is preferably performed in a nitrogen atmosphere in order to prevent deterioration due to moisture and oxygen in the air.
 以上の工程により、第1の実施の形態に係る有機薄膜太陽電池1を得ることができる。 Through the above steps, the organic thin-film solar cell 1 according to the first embodiment can be obtained.
 なお、第2電極層16の表面に酸化膜(不動態膜)24を形成しても良い。また、不動態膜24は、第2電極層16を酸素プラズマ処理することによって形成することができる。酸素プラズマにより、余分な有機層を除去するとともに、アルミニウムの再表面に対して酸化被膜処理を行う。なお、第2電極層16の表面上に、パッシベーション膜として、シリコン窒化膜などを化学的気相堆積法(CVD:Chemical Vapor Deposition)で形成しても良い。シリコン窒化膜の厚さ、例えば、約0.5μm~約1.5μm程度である。内部の素子をシリコン窒化膜で被服保護することで、さらに耐久性を向上可能である。 Note that an oxide film (passive film) 24 may be formed on the surface of the second electrode layer 16. The passive film 24 can be formed by subjecting the second electrode layer 16 to oxygen plasma treatment. The excess organic layer is removed by oxygen plasma, and an oxide film treatment is performed on the aluminum resurface. Note that a silicon nitride film or the like may be formed as a passivation film on the surface of the second electrode layer 16 by a chemical vapor deposition method (CVD: Chemical Vapor Deposition). The thickness of the silicon nitride film is, for example, about 0.5 μm to about 1.5 μm. Durability can be further improved by protecting the inner element with a silicon nitride film.
 また、封止ガラス40の内壁面にゲッタリング用シート乾燥剤38GUを設け、水分や酸素による影響をより一層排除するようにしても良い。封止部周辺に樹脂乾燥剤や酸素ゲッターを塗布・形成することで、さらに高い耐久性を確保することができる。 Further, a gettering sheet desiccant 38GU may be provided on the inner wall surface of the sealing glass 40 to further eliminate the influence of moisture and oxygen. By applying and forming a resin desiccant and an oxygen getter around the sealing portion, higher durability can be ensured.
 真空蒸着法によって、第2電極層16を形成した後、内部N2若しくは真空減圧化で、UV照射によって、UV硬化樹脂36Uを硬化させる場合、UV照射は、封止ガラス40側から実施すると良い。UV照射に対して、第2電極層(アルミニウム)16は反射層となるため、素子部を保護可能となるためである。 By vacuum evaporation after forming the second electrode layer 16, an internal N 2 or vacuum depressurization, by UV irradiation, when curing the UV curable resin 36U, UV irradiation, may be carried out from the sealing glass 40 side . This is because the second electrode layer (aluminum) 16 becomes a reflective layer against UV irradiation, and thus the element portion can be protected.
 (封止部の構成例)
 第1の実施の形態に係る有機薄膜太陽電池における封止部は、図26(a)に示すように、ガラスフリット36がUV硬化樹脂36Uで被覆された構成を備えていても良い。さらに、第1の実施の形態に係る有機薄膜太陽電池における封止部は、図26(b)に示すように、ガラスフリット36がUV硬化樹脂36Uで被覆され、かつUV硬化樹脂36Uと基板10との接触面積を、図26(a)の構成に比べ、増大させた構成を備えていても良い。
(Configuration example of sealing part)
The sealing part in the organic thin film solar cell according to the first embodiment may have a configuration in which a glass frit 36 is covered with a UV curable resin 36U as shown in FIG. Furthermore, as shown in FIG. 26B, the sealing portion in the organic thin film solar cell according to the first embodiment is such that the glass frit 36 is covered with the UV curable resin 36U, and the UV curable resin 36U and the substrate 10 are covered. The contact area may be increased in comparison with the configuration shown in FIG.
 また、第1の実施の形態に係る有機薄膜太陽電池における封止部は、図27に示すように、多孔質性のガラスフリット36PがUV硬化樹脂36Uで被覆された構成を備えていても良い。すなわち、ガラスフリットには、多孔質のものを用いても良い。多孔質性のガラスフリット36Pを適用する場合には、ガラスフリット36P内部に樹脂36Uが浸み込み、“アンカー効果”が働くため、より強固な接着を実現可能である。 Moreover, the sealing part in the organic thin film solar cell according to the first embodiment may have a configuration in which a porous glass frit 36P is covered with a UV curable resin 36U as shown in FIG. . That is, a porous glass frit may be used. When the porous glass frit 36P is applied, the resin 36U penetrates into the glass frit 36P and the “anchor effect” works, so that stronger adhesion can be realized.
 また、第1の実施の形態に係る有機薄膜太陽電池におけるガラスフリット36は、楔形形状、テーパー形状、もしくは封止ガラス40から離れるに従って断面積が小さくなる紡錘形のテーパー形状を有していても良い。 Further, the glass frit 36 in the organic thin film solar cell according to the first embodiment may have a wedge-shaped shape, a tapered shape, or a spindle-shaped tapered shape in which the cross-sectional area decreases as the distance from the sealing glass 40 increases. .
 また、ガラスフリット36は、複数本形成されていても良い。 Further, a plurality of glass frit 36 may be formed.
 第1の実施の形態に係る有機薄膜太陽電池の封止部であって、2本形成されるガラスフリット36が楔形形状を有する構成例は、図28(a)に示すように表される。また、2本形成されるガラスフリット36がテーパー形状を有する構成例は、図28(b)に示すように表される。また、2本形成されるガラスフリット36の断面形状が、封止ガラス40から離れるに従って断面積が小さくなる紡錘形のテーパー形状を有する構成例は、図28(c)に示すように表される。 A configuration example of the organic thin-film solar cell sealing portion according to the first embodiment, in which two formed glass frits 36 have a wedge shape, is expressed as shown in FIG. A configuration example in which the two glass frit 36 formed has a taper shape is represented as shown in FIG. Further, a configuration example in which the cross-sectional shape of the two glass frit 36 formed has a spindle-shaped taper shape in which the cross-sectional area decreases as the distance from the sealing glass 40 is expressed as shown in FIG.
 また、第1の実施の形態に係る有機薄膜太陽電池の封止部であって、2本形成されるガラスフリット36が楔形形状を有し、かつUV硬化樹脂36Uで被覆された構成例は、図29(a)に示すように表される。また、2本形成されるガラスフリット36がテーパー形状を有し、かつUV硬化樹脂36Uで被覆された構成例は、図29(b)に示すように表される。また、2本形成されるガラスフリット36の断面形状が、封止ガラス40から離れるに従って断面積が小さくなる紡錘形のテーパー形状を有し、かつUV硬化樹脂36で被覆された構成例は、図29(c)に示すように表される。 In addition, in the organic thin-film solar cell sealing portion according to the first embodiment, a configuration example in which two formed glass frits 36 have a wedge shape and are covered with a UV curable resin 36U is as follows. It is expressed as shown in FIG. In addition, a configuration example in which the two formed glass frits 36 have a tapered shape and are covered with the UV curable resin 36U is expressed as shown in FIG. In addition, a configuration example in which the cross-sectional shape of the two formed glass frits 36 has a spindle-shaped taper shape in which the cross-sectional area decreases as the distance from the sealing glass 40 increases, and is coated with the UV curable resin 36 is shown in FIG. It is expressed as shown in (c).
 (直列化構造の製造方法)
 第1の実施の形態に係る有機薄膜太陽電池の直列化構造の製造方法の一工程であって、基板10上に透明電極層11を形成した状態を示す模式的平面パターン構成は、図30(a)に示すように表され、図30(a)のI-I線に沿う模式的断面構造は、図30(b)に示すように表される。
(Manufacturing method of serialized structure)
30 is a schematic plan pattern configuration showing a state in which the transparent electrode layer 11 is formed on the substrate 10 in one step of the method for manufacturing the serialized structure of the organic thin film solar cell according to the first embodiment. A schematic cross-sectional structure expressed as shown in a) and taken along line II in FIG. 30A is expressed as shown in FIG.
 また、透明電極層11上に正孔輸送層12を製膜した状態を示す模式的平面パターン構成は、図31(a)に示すように表され、図31(a)のII-II線に沿う模式的断面構造は、図31(b)に示すように表される。 Further, a schematic planar pattern configuration showing a state in which the hole transport layer 12 is formed on the transparent electrode layer 11 is expressed as shown in FIG. 31A, and is taken along line II-II in FIG. The schematic cross-sectional structure along is represented as shown in FIG.
 また、正孔輸送層12上に第1バルクへテロ接合有機活性層14を製膜した状態を示す模式的平面パターン構成は、図32(a)に示すように表され、図32(a)のIII-III線に沿う模式的断面構造は、図32(b)に示すように表される。 Also, a schematic planar pattern configuration showing a state in which the first bulk heterojunction organic active layer 14 is formed on the hole transport layer 12 is expressed as shown in FIG. 32 (a), and FIG. A schematic cross-sectional structure taken along the line III-III is represented as shown in FIG.
 また、第1バルクへテロ接合有機活性層14上の端面部位に第2バルクへテロ接合有機活性層14Aを製膜した状態を示す模式的平面パターン構成は、図33(a)に示すように表され、図33(a)のIV-IV線に沿う模式的断面構造は、図33(b)に示すように表される。 Also, a schematic planar pattern configuration showing a state in which the second bulk heterojunction organic active layer 14A is formed on the end surface portion on the first bulk heterojunction organic active layer 14 is as shown in FIG. The schematic cross-sectional structure shown along the line IV-IV in FIG. 33A is expressed as shown in FIG.
 また、第1バルクへテロ接合有機活性層14および第2バルクへテロ接合有機活性層14A上に第2電極層16を形成した状態を示す模式的平面パターン構成は、図34(a)に示すように表され、図34(a)のV-V線に沿う模式的断面構造は、図34(b)に示すように表される。 Further, a schematic planar pattern configuration showing a state in which the second electrode layer 16 is formed on the first bulk heterojunction organic active layer 14 and the second bulk heterojunction organic active layer 14A is shown in FIG. A schematic cross-sectional structure taken along the line VV in FIG. 34A is expressed as shown in FIG.
 また、酸素プラズマ処理によって、正孔輸送層12・第1バルクへテロ接合有機活性層14・第2バルクへテロ接合有機活性層14Aの内、パターン上において、余分な有機層をエッチングすると共に、第2電極層16の表面に不動態膜(酸化膜)24を形成した状態を示す模式的平面パターン構成は、図35(a)に示すように表され、図35(a)のVI-V線Iに沿う模式的断面構造は、図35(b)に示すように表される。 Further, by etching the excess organic layer on the pattern in the hole transport layer 12, the first bulk heterojunction organic active layer 14 and the second bulk heterojunction organic active layer 14A by oxygen plasma treatment, A schematic plane pattern configuration showing a state in which a passive film (oxide film) 24 is formed on the surface of the second electrode layer 16 is expressed as shown in FIG. A schematic cross-sectional structure along the line I is expressed as shown in FIG.
 また、封止ガラス40・ガラスフリット36およびUV硬化樹脂36Uで封止した状態を示す模式的平面パターン構成は、図36(a)に示すように表され、図36(a)のVI-VI線に沿う模式的断面構造は、図36(b)に示すように表される。 Further, a schematic plane pattern configuration showing a state of being sealed with the sealing glass 40, the glass frit 36, and the UV curable resin 36U is expressed as shown in FIG. 36A, and VI-VI in FIG. A schematic cross-sectional structure along the line is expressed as shown in FIG.
 図30~図36を参照して、第1の実施の形態に係る有機薄膜太陽電池の複数個(図の例では3個)直列に配置された構造の製造方法について説明する。
(a)まず、純水、アセトン、エタノールで洗浄したガラス基板10(例えば、長さ約50mm×幅約50mm×厚さ約0.7mm)をICPエッチャ-に入れ、Oプラズマにより、表面の付着物を取り除く(ガラス基板表面処理)。なお、基板10をガラス基板で形成し、有機活性層へ光を効率的に誘導するために、ガラス表面に反射防止処理を実施しても良い。
(b)次に、図30(a)および図30(b)に示すように、ガラス基板10上に、例えば、ITOからなる透明電極層11を形成する。図30に示すように、透明電極層11は溝部を挟んだストライプパターンで複数形成される。溝部の形成には、酸素プラズマエッチング技術、レーザパターニング技術、ナノインプリント技術などを適用することができる。
(c)次に、図31(a)および図31(b)に示すように、各透明電極層11上に、正孔輸送層12を形成する。正孔輸送層12の形成には、スピンコート技術、スプレー技術、スクリーン印刷技術などを適用することができる。ここで、正孔輸送層12の形成工程では、例えば、PEDOT:PSSをスピンコートによって製膜を行い、水分除去のために、アニ-ルを約120℃で約10分間行う。溝部の形成には、酸素プラズマエッチング技術、レーザパターニング技術、ナノインプリント技術などを適用することができる。
(d)次に、図32(a)および図32(b)に示すように、各正孔輸送層12上に、第1バルクへテロ接合有機活性層14を形成する。第1バルクへテロ接合有機活性層14の形成工程においては、例えば、P3HTをスピンコートによって製膜を行う。
(e)次に、図33(a)および図33(b)に示すように、第1バルクへテロ接合有機活性層14上の端面部位に第2バルクへテロ接合有機活性層14Aを形成する。第2バルクへテロ接合有機活性層14Aの形成工程においても、例えば、P3HTをスピンコートによって製膜を行う。
(f)次に、図34(a)および図34(b)に示すように、各第1バルクへテロ接合有機活性層14および各第2バルクへテロ接合有機活性層14A上に、カソード電極層16を形成する。カソード電極層16の形成には、例えばLiF/Al、W、Mo、Mn、Mgなどの金属層を真空加熱蒸着法により堆積することによって行われる。真空加熱蒸着法の代わりに、スクリーン印刷技術を適用しても良い。
(g)次に、図35(a)および図35(b)に示すように、第1バルクへテロ接合有機活性層14・第2バルクへテロ接合有機活性層14A・正孔輸送層12をエッチング処理した後、カソード電極層16の表面に酸化膜(不動態膜)24を形成する。第1バルクへテロ接合有機活性層14・第2バルクへテロ接合有機活性層14A・正孔輸送層12をエッチング処理することによって、各セルを分離することができる。また、不動態膜24は、第2電極層16を酸素プラズマ処理することによって形成することができる。不動態膜24の形成は、例えば、高密度プラズマエッチング装置を用いて行うことができる。なお、第2電極層16を酸素プラズマ処理することによって不動態膜24を形成すると同時に、第1バルクへテロ接合有機活性層14・第2バルクへテロ接合有機活性層14A・正孔輸送層12をエッチング処理することも可能である。
(h)上記の工程(g)の後、図示は省略するが、大気中の水分と酸素による劣化を抑えるため、CVD法を用いて、窒化膜による封止を行う。さらに、窒化膜のスポットなどの不良を無くし、有機薄膜太陽電池モジュールの背面を平滑化するために、樹脂素材をスピンコート法などで塗布し、紫外線(UV)照射により硬化させる。以下、要求する有機薄膜太陽電池モジュールの耐久性に応じて、上記の工程を繰り返し、多重積層保護膜を形成しても良い。
(i)次に、図36(a)および図36(b)に示すように、封止ガラス(カバーガラス)40およびガラスフリット36・UV硬化樹脂36Uによって素子全体を封止する。UV硬化樹脂36Uによって、ガラスフリット36と透明電極層(ITO)11とを接着する。なお、封止工程は、大気中の水分や酸素による劣化を防ぐために、窒素雰囲気中で行うと良い。また、封止ガラス40の内壁面にゲッタリング用シート乾燥剤38GUを設け、水分や酸素による影響をより一層排除するようにしても良い。
With reference to FIGS. 30 to 36, a method of manufacturing a structure in which a plurality (three in the example shown) of the organic thin-film solar cells according to the first embodiment are arranged in series will be described.
(A) First, a glass substrate 10 (for example, about 50 mm in length × about 50 mm in width × about 0.7 mm in thickness) washed with pure water, acetone, and ethanol is placed in an ICP etcher, and the surface of the glass substrate 10 is obtained by O 2 plasma Remove deposits (glass substrate surface treatment). In addition, in order to form the board | substrate 10 with a glass substrate and to guide | invade light to an organic active layer efficiently, you may implement an antireflection process on the glass surface.
(B) Next, as shown in FIGS. 30A and 30B, a transparent electrode layer 11 made of, for example, ITO is formed on the glass substrate 10. As shown in FIG. 30, a plurality of transparent electrode layers 11 are formed in a stripe pattern across the groove. An oxygen plasma etching technique, a laser patterning technique, a nanoimprint technique, or the like can be applied to the formation of the groove.
(C) Next, as shown in FIGS. 31A and 31B, the hole transport layer 12 is formed on each transparent electrode layer 11. For the formation of the hole transport layer 12, a spin coating technique, a spray technique, a screen printing technique, or the like can be applied. Here, in the step of forming the hole transport layer 12, for example, PEDOT: PSS is formed by spin coating, and annealing is performed at about 120 ° C. for about 10 minutes in order to remove moisture. An oxygen plasma etching technique, a laser patterning technique, a nanoimprint technique, or the like can be applied to the formation of the groove.
(D) Next, as shown in FIGS. 32A and 32B, the first bulk heterojunction organic active layer 14 is formed on each hole transport layer 12. In the step of forming the first bulk heterojunction organic active layer 14, for example, P3HT is formed by spin coating.
(E) Next, as shown in FIGS. 33A and 33B, the second bulk heterojunction organic active layer 14 </ b> A is formed at the end surface portion on the first bulk heterojunction organic active layer 14. . Also in the formation process of the second bulk heterojunction organic active layer 14A, for example, P3HT is formed by spin coating.
(F) Next, as shown in FIGS. 34 (a) and 34 (b), a cathode electrode is formed on each first bulk heterojunction organic active layer 14 and each second bulk heterojunction organic active layer 14A. Layer 16 is formed. The cathode electrode layer 16 is formed, for example, by depositing a metal layer such as LiF / Al, W, Mo, Mn, and Mg by a vacuum heating vapor deposition method. A screen printing technique may be applied instead of the vacuum heating deposition method.
(G) Next, as shown in FIGS. 35A and 35B, the first bulk heterojunction organic active layer 14, the second bulk heterojunction organic active layer 14A, and the hole transport layer 12 are formed. After the etching process, an oxide film (passive film) 24 is formed on the surface of the cathode electrode layer 16. Each cell can be separated by etching the first bulk heterojunction organic active layer 14, the second bulk heterojunction organic active layer 14 A, and the hole transport layer 12. The passive film 24 can be formed by subjecting the second electrode layer 16 to oxygen plasma treatment. The passive film 24 can be formed using, for example, a high-density plasma etching apparatus. The second electrode layer 16 is subjected to oxygen plasma treatment to form the passive film 24, and at the same time, the first bulk heterojunction organic active layer 14, the second bulk heterojunction organic active layer 14A, and the hole transport layer 12 are formed. It is also possible to perform etching.
(H) After the above step (g), although not shown, sealing with a nitride film is performed using a CVD method in order to suppress deterioration due to moisture and oxygen in the atmosphere. Further, in order to eliminate defects such as spots on the nitride film and to smooth the back surface of the organic thin film solar cell module, a resin material is applied by a spin coat method or the like and cured by ultraviolet (UV) irradiation. Hereinafter, depending on the durability of the required organic thin film solar cell module, the above-described steps may be repeated to form a multi-layer protective film.
(I) Next, as shown in FIGS. 36A and 36B, the entire device is sealed with a sealing glass (cover glass) 40, a glass frit 36, and a UV curable resin 36U. The glass frit 36 and the transparent electrode layer (ITO) 11 are bonded by the UV curable resin 36U. Note that the sealing step is preferably performed in a nitrogen atmosphere in order to prevent deterioration due to moisture and oxygen in the air. Further, a gettering sheet desiccant 38GU may be provided on the inner wall surface of the sealing glass 40 to further eliminate the influence of moisture and oxygen.
 以上の工程により、第1の実施の形態に係る有機薄膜太陽電池1を得ることができる。 Through the above steps, the organic thin-film solar cell 1 according to the first embodiment can be obtained.
 結果として、有機薄膜太陽電池のセルを3個直列接続した構造が得られる。 As a result, a structure in which three cells of organic thin-film solar cells are connected in series is obtained.
 このようにセルを複数個直列接続することによって、各セルに発生する起電力の総和としての高い開放電圧Vocを得ることができる。 Thus, by connecting a plurality of cells in series, a high open-circuit voltage Voc as a sum of electromotive forces generated in each cell can be obtained.
 (有機薄膜太陽電池の作成手順)
 図37に示すフローチャートに基づいて、第1の実施の形態に係る有機薄膜太陽電池1の作成手順について説明する。
(a)ステップS1では、ITO基板10上に、正孔輸送層12の形成用として、PEDOT:PSSを塗布する。例えば、約0.45μmのPTFEメンブレンフィルターでPEDOT:PSS水溶液を濾過し、溶け残りや不純物を取り除き、PEDOT:PSS水溶液をITO基板10上に塗布し、スピンコート(例えば、約4000rpm,約30sec)する。
(b)ステップS2では、PEDOT:PSSを焼結する。即ち、製膜後、水分除去のために例えば、約120℃、約10分間加熱処理をする。なお、基板10全体に熱が伝わるように予めホットプレートで温めておいたシャーレを被せると良い。
(c)ステップS3では、第1バルクへテロ接合有機活性層14の形成用として、P3HT:PCBMを塗布する。具体的には、例えば、ジクロロベンゼン(o-dichlorobenzen)にP3HT:約16mgとPCBM:約16mgを溶解させる。溶液は、窒素雰囲気中の約50℃で一晩攪拌を行った後に、約50℃で約1分間超音波処理を行う。溶液は窒素置換されたグローブボックス(<1ppmO、HO)内で洗浄処理したITO基板10上にスピンコートを行う。回転数は例えば約550rpm・約60secの後に約2000rpm・約1secである。
(d)ステップS4では、プレアニールを行う。即ち、ステップS3の塗布の後、約120℃で約10分間加熱を行う。なお、基板10全体に熱が伝わるように予めホットプレートで温めておいたシャーレを被せると良い。
(e)ステップS5では、第2バルクへテロ接合有機活性層14Aの形成用として、P3HT:PCBMを塗布する。形成条件は、ステップS3と同様である。
(f)ステップS6では、プレアニールを行う。即ち、ステップS5の塗布の後、ステップS4と同様に、約20℃で約10分間加熱を行う。
(g)ステップS7では、LiF真空蒸着を行う。具体的には、LiF(純度:99.98%)は、真空度:1.1×10-6torr・蒸着レートが0.1Å/secで真空加熱蒸着を行う。
(h)ステップS8では、Al真空蒸着を行って第2電極層16を形成する。具体的には、Al(純度:99.999%)は、真空度:1.1×10-6torrで蒸着レートが~2Å/secで真空加熱蒸着を行う。
(i)ステップS9では、第2電極層16について、電極酸化被膜処理を行う。具体的には、高密度プラズマエッチング装置を用いて酸素プラズマにより第2電極層16表面を酸化し、酸化膜24を形成する。
(j)ステップS10では、封止を行う。具体的には、ガラスフリットを形成した封止ガラスを用い、ガラスフリットの先端部分にUV硬化樹脂を形成し、基板と対向させて、UVオーブンで例えば、約10分間露光を行い素子を完全に封止する。
(Procedure for making organic thin-film solar cells)
Based on the flowchart shown in FIG. 37, the preparation procedure of the organic thin-film solar cell 1 which concerns on 1st Embodiment is demonstrated.
(A) In step S <b> 1, PEDOT: PSS is applied on the ITO substrate 10 for forming the hole transport layer 12. For example, the PEDOT: PSS aqueous solution is filtered with a PTFE membrane filter of about 0.45 μm to remove undissolved residues and impurities, and the PEDOT: PSS aqueous solution is applied onto the ITO substrate 10 and spin-coated (for example, about 4000 rpm, about 30 sec) To do.
(B) In step S2, PEDOT: PSS is sintered. That is, after film formation, for example, heat treatment is performed at about 120 ° C. for about 10 minutes to remove moisture. In addition, it is good to cover the petri dish previously warmed with the hot plate so that heat may be transmitted to the whole substrate 10.
(C) In step S3, P3HT: PCBM is applied for forming the first bulk heterojunction organic active layer. Specifically, for example, P3HT: about 16 mg and PCBM: about 16 mg are dissolved in dichlorobenzene (o-dichlorobenzen). The solution is stirred overnight at about 50 ° C. in a nitrogen atmosphere and then sonicated at about 50 ° C. for about 1 minute. The solution is spin-coated on the ITO substrate 10 cleaned in a nitrogen-substituted glove box (<1 ppm O 2 , H 2 O). For example, the rotational speed is about 2000 rpm · about 1 sec after about 550 rpm · about 60 sec.
(D) In step S4, pre-annealing is performed. That is, after the application in step S3, heating is performed at about 120 ° C. for about 10 minutes. In addition, it is good to cover the petri dish previously warmed with the hot plate so that heat may be transmitted to the whole substrate 10.
(E) In step S5, P3HT: PCBM is applied for forming the second bulk heterojunction organic active layer 14A. The formation conditions are the same as in step S3.
(F) In step S6, pre-annealing is performed. That is, after the application in step S5, heating is performed at about 20 ° C. for about 10 minutes as in step S4.
(G) In step S7, LiF vacuum deposition is performed. Specifically, LiF (purity: 99.98%) is subjected to vacuum heating deposition with a degree of vacuum: 1.1 × 10 −6 torr · deposition rate of 0.1 Å / sec.
(H) In step S8, the second electrode layer 16 is formed by performing Al vacuum deposition. Specifically, Al (purity: 99.999%) is subjected to vacuum heating deposition with a degree of vacuum: 1.1 × 10 −6 torr and a deposition rate of ˜2Å / sec.
(I) In step S9, an electrode oxide film treatment is performed on the second electrode layer 16. Specifically, the oxide film 24 is formed by oxidizing the surface of the second electrode layer 16 with oxygen plasma using a high-density plasma etching apparatus.
(J) In step S10, sealing is performed. Specifically, using a sealing glass on which a glass frit is formed, a UV curable resin is formed on the tip of the glass frit, facing the substrate, and exposed for about 10 minutes in a UV oven, for example. Seal.
 (量産化工程)
 第1の実施の形態に係る有機薄膜太陽電池は、図38~図42に示すように、複数のセルをマトリックス状に配置し、量産化工程によって製造することもできる。
(Mass production process)
As shown in FIGS. 38 to 42, the organic thin-film solar cell according to the first embodiment can be manufactured in a mass production process by arranging a plurality of cells in a matrix.
 以下、図38~図42を参照して説明する。
(a)まず、純水、アセトン、エタノールで洗浄したガラス基板10をICPエッチャ-に入れ、Oプラズマにより、表面の付着物を取り除く(ガラス基板表面処理)。なお、有機活性層へ光を効率的に誘導するために、ガラス基板10の表面に反射防止処理を実施しても良い。
(b)次に、図38に示すように、基板10上に、例えば、ITOからなる透明電極層11を形成する。図38に示す例では、透明電極層11は隙間を挟んだ2本のストライプパターンで形成される。隙間の形成には、酸素プラズマエッチング技術、レーザパターニング技術、ナノインプリント技術などを適用することができる。
(c)次に、図39に示すように、基板10および透明電極層11上に、正孔輸送層12を形成する。正孔輸送層12の形成には、スピンコート技術、スプレー技術、スクリーン印刷技術などを適用することができる。ここで、正孔輸送層12の形成工程では、例えば、PEDOT:PSSをスピンコートによって製膜を行い、水分除去のために、アニ-ルを約120℃で約10分間行う。
(d)次に、図40に示すように、正孔輸送層12上に、第1バルクへテロ接合有機活性層14・第2バルクへテロ接合有機活性層14Aを形成する。第1バルクへテロ接合有機活性層14・第2バルクへテロ接合有機活性層14Aの形成工程においては、例えば、P3HT:PCBMをスピンコートによって製膜を行う。第1バルクへテロ接合有機活性層14・第2バルクへテロ接合有機活性層14Aの厚さは、それぞれ、例えば、約100nm~約200nmである。第2バルクへテロ接合有機活性層14Aは、第1バルクへテロ接合有機活性層14上の各セルの端面部位にパターン形成されているが、図40では、図示を省略している。
(e)次に、図41に示すように、第1バルクへテロ接合有機活性層14・第2バルクへテロ接合有機活性層14A上に、2本のストライプパターンのカソード電極層16を透明電極層11と直交させて形成する。
Hereinafter, a description will be given with reference to FIGS.
(A) First, a glass substrate 10 washed with pure water, acetone, and ethanol is placed in an ICP etcher, and surface deposits are removed by O 2 plasma (glass substrate surface treatment). In order to efficiently guide light to the organic active layer, an antireflection treatment may be performed on the surface of the glass substrate 10.
(B) Next, as shown in FIG. 38, a transparent electrode layer 11 made of, for example, ITO is formed on the substrate 10. In the example shown in FIG. 38, the transparent electrode layer 11 is formed in two stripe patterns with a gap therebetween. For forming the gap, an oxygen plasma etching technique, a laser patterning technique, a nanoimprint technique, or the like can be applied.
(C) Next, as shown in FIG. 39, the hole transport layer 12 is formed on the substrate 10 and the transparent electrode layer 11. For the formation of the hole transport layer 12, a spin coating technique, a spray technique, a screen printing technique, or the like can be applied. Here, in the step of forming the hole transport layer 12, for example, PEDOT: PSS is formed by spin coating, and annealing is performed at about 120 ° C. for about 10 minutes in order to remove moisture.
(D) Next, as shown in FIG. 40, the first bulk heterojunction organic active layer 14 and the second bulk heterojunction organic active layer 14 </ b> A are formed on the hole transport layer 12. In the formation process of the first bulk heterojunction organic active layer 14 and the second bulk heterojunction organic active layer 14A, for example, P3HT: PCBM is formed by spin coating. The thicknesses of the first bulk heterojunction organic active layer 14 and the second bulk heterojunction organic active layer 14A are, for example, about 100 nm to about 200 nm. The second bulk heterojunction organic active layer 14A is patterned on the end face portion of each cell on the first bulk heterojunction organic active layer 14, but is not shown in FIG.
(E) Next, as shown in FIG. 41, two striped cathode electrode layers 16 are formed on the first bulk heterojunction organic active layer 14 and the second bulk heterojunction organic active layer 14A as transparent electrodes. It is formed perpendicular to the layer 11.
 カソード電極層16の形成には、例えばLiF/Al、W、Mo、Mn、Mgなどを真空加熱蒸着法により堆積することによって行われる。真空加熱蒸着法の代わりに、スクリーン印刷技術を適用しても良い。
(f)次に、図示は省略するが、カソード電極層16の表面に酸化膜(不動態膜)を形成する。不動態膜は、カソード電極層16を酸素プラズマに暴露させて形成することができる。酸素プラズマによる酸化膜の形成は、例えば、プラズマエッチング装置を用いて行うことができる。
(g)次に、封止ガラス(カバーガラス)およびガラスフリットによって素子全体を封止する。なお、封止工程は、大気中の水分や酸素による劣化を防ぐために、窒素雰囲気中若しくは真空減圧下で行うと良い。
The cathode electrode layer 16 is formed, for example, by depositing LiF / Al, W, Mo, Mn, Mg, or the like by a vacuum heating vapor deposition method. A screen printing technique may be applied instead of the vacuum heating deposition method.
(F) Next, although not shown, an oxide film (passive film) is formed on the surface of the cathode electrode layer 16. The passive film can be formed by exposing the cathode electrode layer 16 to oxygen plasma. Formation of the oxide film by oxygen plasma can be performed using, for example, a plasma etching apparatus.
(G) Next, the entire device is sealed with sealing glass (cover glass) and glass frit. Note that the sealing step is preferably performed in a nitrogen atmosphere or under vacuum under reduced pressure in order to prevent deterioration due to moisture or oxygen in the air.
 以上の工程により、第1の実施の形態に係る有機薄膜太陽電池1を量産化することができる。 Through the above steps, the organic thin-film solar cell 1 according to the first embodiment can be mass-produced.
 第1の実施の形態に係る有機薄膜太陽電池において、複数のセルCijをマトリックス状に配置した模式的平面パターン構成例は、図42に示すように表される。アノード電極層11で形成されるアノード電極パターン…,Aj, Aj+1,…と、アノード電極パターン…, Aj, Aj+1,…と直交し、カソード電極層16で形成されるカソード電極パターン…,Ki-1, Ki, Ki+1,…の交差部にセル…Cij…が配置されている。アノード電極パターン…, Aj, Aj+1,…と、カソード電極パターン…, Ki-1, Ki, Ki+1,…を選択することによって、交差部に配置されたセル…Cij…の特性をそれぞれ別個に測定することもできる。 In the organic thin-film solar cell according to the first embodiment, a schematic planar pattern configuration example in which a plurality of cells C ij are arranged in a matrix is expressed as shown in FIG. An anode electrode pattern formed by the anode electrode layer 11, A j , A j + 1 ,..., And an anode electrode pattern..., A j , A j + 1 ,. Cells... C ij are arranged at the intersections of the cathode electrode patterns..., K i−1 , K i , K i + 1 ,. By selecting the anode electrode pattern ..., A j , A j + 1 , ... and the cathode electrode pattern ..., K i-1 , K i , K i + 1 , ..., cells arranged at the intersections ... C It is also possible to separately measure the characteristics of ij .
 (スピンコート法)
 第1の実施の形態に係る有機薄膜太陽電池の製造方法において、正孔輸送層12・第1バルクへテロ接合有機活性層14・第2バルクへテロ接合有機活性層14Aを形成する際のスピンコート法を示す概略は図43(a)に示すように表され、形成された正孔輸送層12・第1バルクへテロ接合有機活性層14・第2バルクへテロ接合有機活性層14Aの例を示す模式的鳥瞰構成は、図43(b)に示すように表される。
(Spin coating method)
Spin in forming hole transport layer 12, first bulk heterojunction organic active layer 14 and second bulk heterojunction organic active layer 14A in the method for manufacturing an organic thin film solar cell according to the first embodiment The outline showing the coating method is expressed as shown in FIG. 43A, and an example of the formed hole transport layer 12, first bulk heterojunction organic active layer 14, second bulk heterojunction organic active layer 14A. A schematic bird's-eye view configuration showing is represented as shown in FIG.
 例えば、第1の実施の形態に係る有機薄膜太陽電池1において、比較的小面積の素子を作成する場合には、図43(a)に示すようなスピンコート法を適用することができる。 For example, in the case of creating an element with a relatively small area in the organic thin film solar cell 1 according to the first embodiment, a spin coating method as shown in FIG. 43 (a) can be applied.
 即ち、図43(a)に示すように、モータ等の駆動源に接続される高速回転可能なスピンドル62と、スピンドル62に固設され基板10を載置するテーブル63とを備えるスピンコーターが用いられる。 That is, as shown in FIG. 43A, a spin coater including a spindle 62 that can be rotated at a high speed and connected to a drive source such as a motor, and a table 63 that is fixed to the spindle 62 and places the substrate 10 thereon is used. It is done.
 そして、テーブル63上に基板10を載置し、モータ等の駆動源を稼働させてテーブル63を例えば約2000~約4000rpmで矢印A、B方向に高速回転させる。次いで、スポイト60を用いて、正孔輸送層12や第1バルクへテロ接合有機活性層14・第2バルクへテロ接合有機活性層14Aを形成する溶液の液滴64を落下させる。これにより、液滴64は遠心力により基板10上に均一な厚さの正孔輸送層12・第1バルクへテロ接合有機活性層14・第2バルクへテロ接合有機活性層14A(図43(b)参照)を形成することができる。 Then, the substrate 10 is placed on the table 63, a driving source such as a motor is operated, and the table 63 is rotated at high speed in the directions of arrows A and B at, for example, about 2000 to about 4000 rpm. Next, using a dropper 60, a droplet 64 of a solution that forms the hole transport layer 12, the first bulk heterojunction organic active layer 14, and the second bulk heterojunction organic active layer 14 </ b> A is dropped. As a result, the droplet 64 has a hole transport layer 12, the first bulk heterojunction organic active layer 14, and the second bulk heterojunction organic active layer 14 A having a uniform thickness on the substrate 10 by centrifugal force (FIG. 43 ( b) can be formed.
 (インクジェット印刷法)
 また、比較的大面積の有機薄膜太陽電池を作成する場合には、図44に示すようなインクジェット印刷による手法を用いることができる。
(Inkjet printing method)
Moreover, when producing an organic thin-film solar cell with a comparatively large area, the method by inkjet printing as shown in FIG. 44 can be used.
 即ち、図44に示すように、ガラス等で構成される基板70上に、複数の透明電極層11が形成されている。透明電極層11は隙間を挟んだ複数本のストライプパターンで形成することができる。隙間の形成には、酸素プラズマエッチング技術、レーザパターニング技術、ナノインプリント技術などを適用することができる。 That is, as shown in FIG. 44, a plurality of transparent electrode layers 11 are formed on a substrate 70 made of glass or the like. The transparent electrode layer 11 can be formed with a plurality of stripe patterns with a gap therebetween. For forming the gap, an oxygen plasma etching technique, a laser patterning technique, a nanoimprint technique, or the like can be applied.
 そして、隙間を埋めるようにして絶縁層72が形成されている。絶縁層72は、例えば、SiO2薄膜等で構成することができる。各絶縁層72は、エッチングによりパターン形成される。 An insulating layer 72 is formed so as to fill the gap. The insulating layer 72 can be composed of, for example, a SiO 2 thin film. Each insulating layer 72 is patterned by etching.
 また、各絶縁層72の上には、さらに別の絶縁層74が形成される。絶縁層74の形成には、例えば、SiO薄膜等で構成することができる。各絶縁層72は、エッチングによりパターン形成される。 Further, another insulating layer 74 is formed on each insulating layer 72. The insulating layer 74 can be formed by, for example, a SiO 2 thin film. Each insulating layer 72 is patterned by etching.
 次いで、図44の右側に示すように、インクジェットノズル80、80、80を備えるインクジェット装置78を用いて、絶縁層72間および絶縁層74間の隙間に、正孔輸送層12・第1バルクへテロ接合有機活性層14・第2バルクへテロ接合有機活性層14Aを形成する溶液の液滴76を順次噴射することにより、正孔輸送層12・第1バルクへテロ接合有機活性層14・第2バルクへテロ接合有機活性層14Aを形成することができる。尚、第2バルクへテロ接合有機活性層14Aを厚く形成するための、上記のインクジェットによる塗布工程を複数回実施しても良い。 Next, as shown on the right side of FIG. 44, using the inkjet device 78 including the inkjet nozzles 80 1 , 80 2 , and 80 3 , the hole transport layer 12. The hole transport layer 12 and the first bulk heterojunction organic active layer are sequentially ejected by droplets 76 of the solution forming the first bulk heterojunction organic active layer 14 and the second bulk heterojunction organic active layer 14A. 14. A second bulk heterojunction organic active layer 14A can be formed. In addition, you may implement the said application | coating process by said inkjet for thickly forming the 2nd bulk heterojunction organic active layer 14A in multiple times.
 ここで、図示は省略されているが、その後、第2バルクへテロ接合有機活性層14Aは、パターニングされる。更に、第1バルクへテロ接合有機活性層14・第2バルクへテロ接合有機活性層14Aの表面には、第2電極層が配置される。さらに、第2電極層の表面には、酸素プラズマ処理により不動態膜が形成される。 Here, although illustration is omitted, after that, the second bulk heterojunction organic active layer 14A is patterned. Furthermore, a second electrode layer is disposed on the surfaces of the first bulk heterojunction organic active layer 14 and the second bulk heterojunction organic active layer 14A. Further, a passive film is formed on the surface of the second electrode layer by oxygen plasma treatment.
 これにより、非発電部位を低減し、発電特性を向上させた比較的大面積の有機薄膜太陽電池を効率的に作成することができる。 This makes it possible to efficiently produce a relatively large-area organic thin-film solar cell with reduced non-power generation sites and improved power generation characteristics.
 (ロールツウロール法)
 また、有機薄膜太陽電池1は、正孔輸送層12・第1バルクへテロ接合有機活性層14・第2バルクへテロ接合有機活性層14Aをロールツウロール法を用いたグラビア印刷で形成することもできる。
(Roll-to-roll method)
Moreover, the organic thin film solar cell 1 forms the hole transport layer 12, the first bulk heterojunction organic active layer 14 and the second bulk heterojunction organic active layer 14A by gravure printing using a roll-to-roll method. You can also.
 即ち、図45に示すように、グラビア印刷を適用した装置は、円周に沿って複数の凹部を形成したシリンダ94と、圧着ローラ96と、シリンダ94と圧着ローラ96との間に挟まれて搬送されるフィルム98と、シリンダ94の下部が浸され、正孔輸送層12・第1バルクへテロ接合有機活性層14・第2バルクへテロ接合有機活性層14Aを形成する溶液90を収容した容器92とを備える。 That is, as shown in FIG. 45, an apparatus to which gravure printing is applied is sandwiched between a cylinder 94 having a plurality of recesses formed along the circumference, a pressure roller 96, and the cylinder 94 and pressure roller 96. The film 98 to be conveyed and the lower part of the cylinder 94 are immersed, and the solution 90 for forming the hole transport layer 12, the first bulk heterojunction organic active layer 14, and the second bulk heterojunction organic active layer 14 A is accommodated. A container 92.
 そして、図示しない駆動源を稼働させてシリンダ94および圧着ローラ96を回動させると、シリンダ94が備える凹部に溶液が保持された状態で搬送される。なお、シリンダ94には図示しないドクターブレードが接触されており、余分な溶液を掻き落とすようになっている。 Then, when a driving source (not shown) is operated to rotate the cylinder 94 and the pressure roller 96, the solution is conveyed in a state where the solution is held in the concave portion provided in the cylinder 94. The cylinder 94 is in contact with a doctor blade (not shown) so as to scrape off excess solution.
 シリンダ94の凹部によって上方に搬送された溶液は、圧着ローラ96の作用によって、フィルム98の表面に転移される。 The solution conveyed upward by the concave portion of the cylinder 94 is transferred to the surface of the film 98 by the action of the pressure roller 96.
 このようにして、正孔輸送層12・第1バルクへテロ接合有機活性層14・第2バルクへテロ接合有機活性層14Aを形成することができる。 Thus, the hole transport layer 12, the first bulk heterojunction organic active layer 14, and the second bulk heterojunction organic active layer 14 A can be formed.
 以上説明したように、本第1の実施の形態によれば、非発電部位を低減し、発電特性を向上させた有機薄膜太陽電池およびその製造方法を提供することができる。 As described above, according to the first embodiment, it is possible to provide an organic thin-film solar cell with reduced non-power generation sites and improved power generation characteristics and a method for manufacturing the same.
 (基本技術)
 基本技術に係る順構造型の有機薄膜太陽電池1Aの模式的断面構造は、図46(a)に示すように表され、逆構造型の有機薄膜太陽電池1Bの模式的断面構造は、図46(b)に示すように表される。
(Basic technology)
A schematic cross-sectional structure of the forward structure type organic thin film solar cell 1A according to the basic technology is represented as shown in FIG. 46A, and a schematic cross-sectional structure of the reverse structure type organic thin film solar cell 1B is shown in FIG. It is expressed as shown in (b).
 (順構造型)
 基本技術に係る順構造型の有機薄膜太陽電池1Aは、図46(a)に示すように、基板10と、基板10上に配置された第1電極層11Aと、第1電極層11A上に配置されたキャリア放出用バッファ層12Bと、キャリア放出用バッファ層12B上に配置されたバルクへテロ接合有機活性層14と、バルクへテロ接合有機活性層14上に配置されたコンタクト用バッファ層16Tと、コンタクト用バッファ層16T上に配置された第2電極層16Kとを備える。基本技術に係る順構造型の有機薄膜太陽電池1Aにおいては、基板10は、例えば、ガラスで形成され、第1電極層11Aは、例えば、ITOで形成され、キャリア放出用バッファ層12Bは、例えば、PEDOT:PSSで形成され、バルクへテロ接合有機活性層14は、例えば、P3HT:PCBMで形成され、コンタクト用バッファ層16Tは、例えば、TiO2で形成され、第2電極層16Kは、例えば、Alで形成される。
(Order structure type)
As shown in FIG. 46A, the forward structure type organic thin film solar cell 1 </ b> A according to the basic technique includes a substrate 10, a first electrode layer 11 </ b> A disposed on the substrate 10, and a first electrode layer 11 </ b> A. The carrier emission buffer layer 12B arranged, the bulk heterojunction organic active layer 14 arranged on the carrier emission buffer layer 12B, and the contact buffer layer 16T arranged on the bulk heterojunction organic active layer 14 And a second electrode layer 16K disposed on the contact buffer layer 16T. In the forward structure type organic thin film solar cell 1A according to the basic technology, the substrate 10 is made of, for example, glass, the first electrode layer 11A is made of, for example, ITO, and the carrier emission buffer layer 12B is made of, for example, , PEDOT: PSS, the bulk heterojunction organic active layer 14 is formed of, for example, P3HT: PCBM, the contact buffer layer 16T is formed of, for example, TiO 2 , and the second electrode layer 16K is formed of, for example, , Al.
 基本技術に係る順構造型の有機薄膜太陽電池1Aにおいて、第1電極層11Aは、アノード端子A(-)に接続され、第2電極層16Kは、カソード端子K(+)に接続される。発電層として機能するバルクへテロ接合有機活性層14に入射された光(hν)によって生成された電子―正孔対の内、正孔は、キャリア放出用バッファ層12Bから第1電極層11Aに対して放出され、電子は、バルクへテロ接合有機活性層14からコンタクト用バッファ層16Tを介して、第2電極層16Kに放出される。ここで、アノード端子A(-)・カソード端子K(+)の表記は、アノード端子A(-)側に正孔が移動し、カソード端子K(+)側に電子が移動することを表示している。外部負荷を短絡した場合の有機薄膜太陽電池1Aとしての極性は、アノード端子Aが正極となり、カソード端子Kが負極となる。 In the forward structure type organic thin film solar cell 1A according to the basic technology, the first electrode layer 11A is connected to the anode terminal A (−), and the second electrode layer 16K is connected to the cathode terminal K (+). Of the electron-hole pairs generated by the light (hν) incident on the bulk heterojunction organic active layer 14 functioning as a power generation layer, holes are transferred from the carrier emission buffer layer 12B to the first electrode layer 11A. The electrons are emitted from the bulk heterojunction organic active layer 14 to the second electrode layer 16K through the contact buffer layer 16T. Here, the notation of anode terminal A (−) / cathode terminal K (+) indicates that holes move to the anode terminal A (−) side and electrons move to the cathode terminal K (+) side. ing. The polarity of the organic thin film solar cell 1A when the external load is short-circuited is that the anode terminal A is a positive electrode and the cathode terminal K is a negative electrode.
 (逆構造型)
 一方、基本技術に係る逆構造型の有機薄膜太陽電池1Bは、図46(b)に示すように、基板10と、基板10上に配置された第1電極層11Kと、第1電極層11K上に配置されたキャリア放出用バッファ層11Tと、キャリア放出用バッファ層11T上に配置されたバルクへテロ接合有機活性層14と、バルクへテロ接合有機活性層14上に配置された有機導電膜25と、有機導電膜25上に配置された第2電極層16Kとを備える。基本技術に係る逆構造型の有機薄膜太陽電池1Bにおいては、基板10は、例えば、ガラスで形成され、第1電極層11Kは、例えば、ITOで形成され、キャリア放出用バッファ層11Tは、例えば、TiO2で形成され、バルクへテロ接合有機活性層14は、例えば、P3HT:PCBMで形成され、有機導電膜25は、例えば、高導電性のPEDOT:PSSで形成され、第2電極層16Aは、例えば、Ag粒子ペースト層で形成される。
(Reverse structure type)
On the other hand, as shown in FIG. 46 (b), an inverted structure type organic thin film solar cell 1B according to the basic technique includes a substrate 10, a first electrode layer 11K disposed on the substrate 10, and a first electrode layer 11K. Carrier emitting buffer layer 11T disposed above, bulk heterojunction organic active layer 14 disposed on carrier emitting buffer layer 11T, and organic conductive film disposed on bulk heterojunction organic active layer 14 25 and a second electrode layer 16K disposed on the organic conductive film 25. In the reverse structure type organic thin film solar cell 1B according to the basic technology, the substrate 10 is made of, for example, glass, the first electrode layer 11K is made of, for example, ITO, and the carrier emission buffer layer 11T is made of, for example, , is formed by TiO 2, heterojunction organic active layer 14 to the bulk, for example, P3HT: formed by PCBM, organic conductive film 25 is, for example, highly conductive PEDOT: formed by PSS, the second electrode layer 16A Is formed of, for example, an Ag particle paste layer.
 基本技術に係る逆構造型の有機薄膜太陽電池1Bにおいて、第1電極層11Kは、カソード端子K(+)に接続され、第2電極層16Aは、アノード端子A(-)に接続される。発電層として機能するバルクへテロ接合有機活性層14に入射された光(hν)によって生成された電子―正孔対の内、電子は、キャリア放出用バッファ層11Tから第1電極層11Kに対して放出され、正孔は、バルクへテロ接合有機活性層14から有機導電膜25を介して、第2電極層16Aに放出される。 In the reverse structure type organic thin film solar cell 1B according to the basic technology, the first electrode layer 11K is connected to the cathode terminal K (+), and the second electrode layer 16A is connected to the anode terminal A (−). Of the electron-hole pairs generated by the light (hν) incident on the bulk heterojunction organic active layer 14 functioning as the power generation layer, electrons are transferred from the carrier emission buffer layer 11T to the first electrode layer 11K. The holes are released from the bulk heterojunction organic active layer 14 through the organic conductive film 25 to the second electrode layer 16A.
 逆構造型においても同様に、外部負荷を短絡した場合の有機薄膜太陽電池1Bとしての極性は、アノード端子Aが正極となり、カソード端子Kが負極となる。 Similarly, in the reverse structure type, the polarity of the organic thin-film solar cell 1B when the external load is short-circuited is that the anode terminal A is the positive electrode and the cathode terminal K is the negative electrode.
 また、図46(a)に示された順構造型の有機薄膜太陽電池1Aの各種材料のエネルギーバンド構造は、図47(a)に示すように表され、図46(b)に示された逆構造型の有機薄膜太陽電池1Bの各種材料のエネルギーバンド構造は、図47(b)に示すように表される。 Moreover, the energy band structure of various materials of the forward structure type organic thin film solar cell 1A shown in FIG. 46 (a) is expressed as shown in FIG. 47 (a) and shown in FIG. 46 (b). The energy band structure of various materials of the reverse structure type organic thin film solar cell 1B is expressed as shown in FIG.
 (順構造型)
(a)まず、図47(a)に示すように、光(hν)を吸収すると、バルクへテロ接合有機活性層14内で、励起子が生成される。
(b)次に、励起子は、バルクへテロ接合有機活性層14内のpn接合界面において、自発分極によって、電子(e-)と正孔(h+)の自由キャリアに解離する。
(c)次に、解離した正孔(h+)は、アノード電極となる透明電極層11Aに向けて走行し、解離した電子(e-)は、カソード電極層16Kに向けて走行する。
(d)結果として、カソード電極層16K・透明電極層11A間には、逆方向電流が導通して、図47(a)に示すように、開放電圧VOCが発生し、有機薄膜太陽電池1Aが得られる。
(Order structure type)
(A) First, as shown in FIG. 47A, when light (hν) is absorbed, excitons are generated in the bulk heterojunction organic active layer 14.
(B) Next, excitons dissociate into free carriers of electrons (e−) and holes (h +) by spontaneous polarization at the pn junction interface in the bulk heterojunction organic active layer 14.
(C) Next, the dissociated holes (h +) travel toward the transparent electrode layer 11A serving as the anode electrode, and the dissociated electrons (e−) travel toward the cathode electrode layer 16K.
(D) As a result, a reverse current is conducted between the cathode electrode layer 16K and the transparent electrode layer 11A, and an open circuit voltage V OC is generated as shown in FIG. Is obtained.
 (逆構造型)
(a)まず、図47(b)に示すように、光(hν)を吸収すると、バルクへテロ接合有機活性層14内で、励起子が生成される。
(b)次に、励起子は、バルクへテロ接合有機活性層14内のpn接合界面において、自発分極によって、電子(e-)と正孔(h+)の自由キャリアに解離する。
(c)次に、解離した正孔(h+)は、アノード電極層16Aに向けて走行し、解離した電子(e-)は、カソード電極層11Kに向けて走行する。
(d)結果として、カソード電極層11K・アノード電極層16A間には、逆方向電流が導通して、図47(b)に示すように、開放電圧VOCが発生し、有機薄膜太陽電池1Bが得られる。
(Reverse structure type)
(A) First, as shown in FIG. 47 (b), when light (hν) is absorbed, excitons are generated in the bulk heterojunction organic active layer 14.
(B) Next, excitons dissociate into free carriers of electrons (e−) and holes (h +) by spontaneous polarization at the pn junction interface in the bulk heterojunction organic active layer 14.
(C) Next, the dissociated holes (h +) travel toward the anode electrode layer 16A, and the dissociated electrons (e−) travel toward the cathode electrode layer 11K.
(D) As a result, a reverse current is conducted between the cathode electrode layer 11K and the anode electrode layer 16A, and as shown in FIG. 47B , an open circuit voltage V OC is generated, and the organic thin film solar cell 1B Is obtained.
 (第2の実施の形態)
(順構造型)
 第2の実施の形態に係る順構造型の有機薄膜太陽電池2Aは、図48に示すように、基板10と、基板10上に配置された第1電極層11Aと、第1電極層11A上に配置されたキャリア放出用バッファ層12Bと、キャリア放出用バッファ層12B上に配置されたバルクへテロ接合有機活性層14と、バルクへテロ接合有機活性層14上に配置された有機導電膜25と、有機導電膜25上に配置された第2電極層16Kとを備える。
(Second Embodiment)
(Order structure type)
As shown in FIG. 48, the forward structure type organic thin film solar cell 2A according to the second embodiment includes a substrate 10, a first electrode layer 11A disposed on the substrate 10, and a first electrode layer 11A. Carrier emitting buffer layer 12B disposed on the substrate, bulk heterojunction organic active layer 14 disposed on carrier emitting buffer layer 12B, and organic conductive film 25 disposed on bulk heterojunction organic active layer 14. And a second electrode layer 16K disposed on the organic conductive film 25.
 第2電極層16Kは、金属粒子ペースト層で塗布形成される。すなわち、真空蒸着技術を用いていないため、製造コストを低減化可能である。金属粒子のサイズは、数nm~数100μm程度である。また、金属粒子の材料としては、Ag粒子の他に、W、Mo、Ni、Au、Coなども適用可能である。 The second electrode layer 16K is formed by coating with a metal particle paste layer. That is, since the vacuum evaporation technique is not used, the manufacturing cost can be reduced. The size of the metal particles is about several nm to several hundred μm. In addition to Ag particles, W, Mo, Ni, Au, Co, or the like can be applied as the material for the metal particles.
 有機導電膜25の厚さWCは、第2電極層16Kから有機導電膜25への金属粒子のマイグレーションにより形成される金属粒子侵入層25Sの厚さWPよりも厚い。 The thickness W C of the organic conductive film 25 is thicker than the thickness W P of the metal particle intrusion layer 25S formed by migration of metal particles from the second electrode layer 16K to the organic conductive film 25.
 ここで、有機導電膜25として高導電性(HC:High Conductivity)のPEDOT:PSSを使用し、第2電極層16Kとして、Ag粒子ペースト層を使用した場合、金属粒子侵入層25Sの厚さWPは、例えば、約200nm~約300nm程度である。すなわち、第2の実施の形態に係る有機薄膜太陽電池2Aにおいては、バルクへテロ接合有機活性層14と第2電極層16K間に、厚さ約1.0μm~約10μmと十分に厚い有機導電膜25を形成することで、発電層として機能するバルクへテロ接合有機活性層14の内部への金属マイグレーションを防止することができる。このため、陰極―陽極間のリーク電流を抑制して、信頼性を向上可能である。 Here, when using PEDOT: PSS of high conductivity (HC) as the organic conductive film 25 and using an Ag particle paste layer as the second electrode layer 16K, the thickness W of the metal particle intrusion layer 25S is obtained. P is, for example, about 200 nm to about 300 nm. That is, in the organic thin-film solar cell 2A according to the second embodiment, a sufficiently thick organic conductive film having a thickness of about 1.0 μm to about 10 μm is formed between the bulk heterojunction organic active layer 14 and the second electrode layer 16K. By forming the film 25, metal migration into the bulk heterojunction organic active layer 14 functioning as a power generation layer can be prevented. For this reason, it is possible to improve the reliability by suppressing the leakage current between the cathode and the anode.
 ここで、金属粒子ペースト層は、例えば、Ag粒子ペースト層を適用可能である。 Here, as the metal particle paste layer, for example, an Ag particle paste layer can be applied.
 基板10は、ガラス基板で形成可能である。 The substrate 10 can be formed of a glass substrate.
 第1電極層は、例えば、ITO、In23、SnO2、ZnO、TiO2などで形成可能である。 The first electrode layer can be formed of, for example, ITO, In 2 O 3 , SnO 2 , ZnO, TiO 2 or the like.
 バルクへテロ接合有機活性層14は、例えば、P3HT:PCBMで形成可能である。 The bulk heterojunction organic active layer 14 can be formed by, for example, P3HT: PCBM.
 有機導電膜25は、例えば、PEDOT:PSSで形成可能である。 The organic conductive film 25 can be formed by, for example, PEDOT: PSS.
 有機導電膜25を形成するPEDOT:PSSの組成比は、例えば、約1:2.5である。 The composition ratio of PEDOT: PSS that forms the organic conductive film 25 is, for example, about 1: 2.5.
 第2の実施の形態に係る順構造型の有機薄膜太陽電池2Aにおいては、キャリア放出用バッファ層12Bは、第1電極層11Aに正孔を放出する。 In the forward structure type organic thin film solar cell 2A according to the second embodiment, the carrier emission buffer layer 12B emits holes to the first electrode layer 11A.
 キャリア放出用バッファ層12Bは、例えば、PEDOT:PSSで形成可能である。 The carrier release buffer layer 12B can be formed of, for example, PEDOT: PSS.
 キャリア放出用バッファ層12Bを形成するPEDOT:PSSの組成比は、例えば、約1:6である。 The composition ratio of PEDOT: PSS that forms the carrier release buffer layer 12B is, for example, about 1: 6.
 第2の実施の形態に係る順構造型の有機薄膜太陽電池2Aにおいては、キャリア放出用バッファ層12Bを形成するPEDOT:PSSにおけるPEDOTに対するPSS組成比は、有機導電膜25を形成するPEDOT:PSSにおけるPEDOTに対するPSS組成比よりも大きいことが望ましい。 In the forward structure type organic thin film solar cell 2A according to the second embodiment, the PSS composition ratio with respect to PEDOT in PEDOT: PSS for forming the carrier emission buffer layer 12B is PEDOT: PSS for forming the organic conductive film 25. It is desirable that it is larger than the PSS composition ratio with respect to PEDOT.
 また、第2の実施の形態に係る順構造型の有機薄膜太陽電池2Aにおいては、バルクへテロ接合有機活性層14と有機導電膜25との間には、バッファ層15Bを備えていても良い。 Further, in the forward structure type organic thin film solar cell 2 </ b> A according to the second embodiment, a buffer layer 15 </ b> B may be provided between the bulk heterojunction organic active layer 14 and the organic conductive film 25. .
 バッファ層15Bは、バルクへテロ接合有機活性層14と有機導電膜25との間にオーミックコンタクトを得るための層である。 The buffer layer 15 </ b> B is a layer for obtaining ohmic contact between the bulk heterojunction organic active layer 14 and the organic conductive film 25.
 バッファ層15Bは、塗布形成可能である。 The buffer layer 15B can be formed by coating.
 バッファ層15Bは、TiO2若しくはZnOで形成可能である。 The buffer layer 15B can be formed of TiO 2 or ZnO.
 (逆構造型)
 第2の実施の形態に係る逆構造型の有機薄膜太陽電池2Bは、図49に示すように、基板10と、基板10上に配置された第1電極層11Kと、第1電極層11K上に配置されたキャリア放出用バッファ層11Tと、キャリア放出用バッファ層11T上に配置されたバルクヘテロ接合有機活性層14と、バルクへテロ接合有機活性層14上に配置された有機導電膜25と、有機導電膜25上に配置された第2電極層16Aとを備える。
(Reverse structure type)
As shown in FIG. 49, an inverted-structure organic thin film solar cell 2B according to the second embodiment includes a substrate 10, a first electrode layer 11K arranged on the substrate 10, and a first electrode layer 11K. A carrier emission buffer layer 11T disposed on the substrate, a bulk heterojunction organic active layer 14 disposed on the carrier emission buffer layer 11T, an organic conductive film 25 disposed on the bulk heterojunction organic active layer 14, A second electrode layer 16 </ b> A disposed on the organic conductive film 25.
 第2電極層16Aは、金属粒子ペースト層で塗布形成される。このため、製造コストを低減化可能である。金属粒子のサイズは、数nm~数100μm程度である。また、金属粒子の材料としては、Ag粒子の他に、W、Mo、Ni、Au、Coなども適用可能である。 The second electrode layer 16A is formed by coating with a metal particle paste layer. For this reason, manufacturing cost can be reduced. The size of the metal particles is about several nm to several hundred μm. In addition to Ag particles, W, Mo, Ni, Au, Co, or the like can be applied as the material for the metal particles.
 有機導電膜25の厚さWCは、第2電極層16Aから有機導電膜25への金属粒子のマイグレーションにより形成される金属粒子侵入層25Sの厚さWPよりも厚い。 The thickness W C of the organic conductive film 25 is thicker than the thickness W P of the metal particle intrusion layer 25S formed by migration of metal particles from the second electrode layer 16A to the organic conductive film 25.
 ここで、有機導電膜25としてPEDOT:PSSを使用し、第2電極層16Aとして、Ag粒子ペースト層を使用した場合、金属粒子侵入層25Sの厚さWPは、例えば、約200nm~約300nm程度である。すなわち、第2の実施の形態に係る構造型の有機薄膜太陽電池2Bにおいては、バルクへテロ接合有機活性層14と第2電極層16K間に、厚さ約1.0μm~約10μmと十分に厚い有機導電膜25を形成することで、発電層として機能するバルクヘテロ接合有機活性層14の内部への金属マイグレーションを防止することができる。このため、陰極―陽極間のリーク電流を抑制して、信頼性を向上可能である。 Here, when PEDOT: PSS is used as the organic conductive film 25 and an Ag particle paste layer is used as the second electrode layer 16A, the thickness W P of the metal particle intrusion layer 25S is, for example, about 200 nm to about 300 nm. Degree. That is, in the structural type organic thin film solar cell 2B according to the second embodiment, a thickness of about 1.0 μm to about 10 μm is sufficiently provided between the bulk heterojunction organic active layer 14 and the second electrode layer 16K. By forming the thick organic conductive film 25, metal migration into the bulk heterojunction organic active layer 14 functioning as a power generation layer can be prevented. For this reason, it is possible to improve the reliability by suppressing the leakage current between the cathode and the anode.
 第2の実施の形態に係る逆構造型の有機薄膜太陽電池2Bにおいては、キャリア放出用バッファ層11Tは、第1電極層11Kに電子を放出する。 In the reverse structure type organic thin film solar cell 2B according to the second embodiment, the carrier emission buffer layer 11T emits electrons to the first electrode layer 11K.
 キャリア放出用バッファ層11Tは、TiO2若しくはZnOで形成可能である。 The carrier emission buffer layer 11T can be formed of TiO 2 or ZnO.
 尚、第2の実施の形態に係る逆構造型の有機薄膜太陽電池2Bにおいては、バルクへテロ接合有機活性層14と有機導電膜25との間には、バッファ層15Bを配置する必要はない。バルクへテロ接合有機活性層14と有機導電膜25との間には、ショットキー接合が形成されていれば良いからである。 In the inverted structure type organic thin film solar cell 2B according to the second embodiment, it is not necessary to arrange the buffer layer 15B between the bulk heterojunction organic active layer 14 and the organic conductive film 25. . This is because it is sufficient that a Schottky junction is formed between the bulk heterojunction organic active layer 14 and the organic conductive film 25.
 その他の構成は、図48に示された順構造型と同様であるため、重複説明は省略する。 Other configurations are the same as the forward structure type shown in FIG.
 (電流-電圧特性)
 第2の実施の形態に係る有機薄膜太陽電池の電流I-電圧V特性は、模式的に図50に示すように表される。光照射がない場合には、曲線Pに示すように、原点(0,0)を通過する電流―電圧特性となる。光照射がある場合には、曲線Qに示すように、(0,開放電圧VOC)および(短絡電流ISC,0)を通過する電流―電圧特性となる。図50において、斜線部の面積が、Im×Vm=Pmで表される最大出力電力Pmを表す。
(Current-voltage characteristics)
The current I-voltage V characteristics of the organic thin-film solar cell according to the second embodiment are schematically represented as shown in FIG. When there is no light irradiation, as shown by the curve P, the current-voltage characteristic passing through the origin (0, 0) is obtained. When there is light irradiation, as shown by the curve Q, the current-voltage characteristic passes through (0, open circuit voltage V OC ) and (short circuit current I SC , 0). In FIG. 50, the shaded area represents the maximum output power P m represented by I m × V m = P m .
 (等価回路)
 第2の実施の形態に係る有機薄膜太陽電池のアノード・カソード間に、負荷抵抗RLを短絡させて電力を取り出すための回路構成は、図51(a)に示すように表され、図51(a)に対応する理想化された等価回路構成は、図51(b)に示すように表される。図51(b)においては、第2の実施の形態に係る有機薄膜太陽電池に対して入射された光(hν)によって励起された過剰キャリアに基づく定電流源ILが、有機薄膜太陽電池を表すダイオードに並列接続されている。
(Equivalent circuit)
A circuit configuration for extracting power by short-circuiting the load resistance R L between the anode and the cathode of the organic thin-film solar cell according to the second embodiment is expressed as shown in FIG. An idealized equivalent circuit configuration corresponding to (a) is expressed as shown in FIG. In FIG. 51 (b), a constant current source I L based on the excess carriers excited by the incident light (hv) the organic thin film solar cell according to the second embodiment, the organic thin film solar cell Connected in parallel to the representing diode.
 第2の実施の形態に係る有機薄膜太陽電池を表すダイオードの飽和電流をISとすると、有機薄膜太陽電池の電流I-電圧V特性は、I=IS ( exp(qV/kT)-1)-ILで表される。ここで、qは単位電荷、kはボルツマン定数、Tは絶対温度を表す。 When the saturation current of the diode representing the organic thin-film solar cell according to the second embodiment is I S , the current I-voltage V characteristic of the organic thin-film solar cell is I = I S (exp (qV / kT) −1 ) -I L Here, q represents a unit charge, k represents a Boltzmann constant, and T represents an absolute temperature.
 (変形例:順構造型)
 第2の実施の形態の変形例に係る順構造型の有機薄膜太陽電池2Aの模式的断面構造は、図52に示すように、第2電極層16Kにメッシュ構造を備える。メッシュ構造のカソード電極層16Kは、図52に示すように、有機導電膜25上にパターン形成される。このように第2電極層16Kにメッシュ構造を設けることによって、光(hν)を表面側からも取り込むことができる。
(Modification: Forward structure type)
As shown in FIG. 52, the schematic cross-sectional structure of the forward structure type organic thin film solar cell 2A according to the modification of the second embodiment includes a mesh structure in the second electrode layer 16K. The cathode electrode layer 16K having a mesh structure is patterned on the organic conductive film 25 as shown in FIG. Thus, by providing a mesh structure in the second electrode layer 16K, light (hν) can be taken in from the surface side.
 カソード電極層16Kは、例えば、Ag粒子ペースト層をスクリーン印刷技術を適用して形成可能である。具体的には、Ag粒子ペースト層は、Agナノインクで形成され、焼成温度は、例えば、約100℃前後である。形成されたカソード電極層16Kのシート抵抗は、例えば、約0.1Ω/□以下である。すなわち、メッシュ構造のAg粒子ペースト層からなるカソード電極層16Kは、低温焼成され、かつ高い導電性を有する。 The cathode electrode layer 16K can be formed, for example, by applying an Ag particle paste layer by screen printing technology. Specifically, the Ag particle paste layer is formed of Ag nano ink, and the firing temperature is, for example, about 100 ° C. The sheet resistance of the formed cathode electrode layer 16K is, for example, about 0.1Ω / □ or less. That is, the cathode electrode layer 16K made of a mesh-structured Ag particle paste layer is fired at a low temperature and has high conductivity.
 発電した電力を外周の電極まで集電する際に、有機導電膜25に生じる発熱による電気エネルギーのロスを、第2電極層16Kにメッシュ構造を設けることによって、有機導電膜25の抵抗値を実質的に下げることにより、発熱ロスを抑制し、エネルギー変換効率を高めることができる。 When the generated electric power is collected to the outer peripheral electrode, a loss of electric energy due to heat generated in the organic conductive film 25 is substantially reduced by providing a mesh structure in the second electrode layer 16K. By reducing the temperature, the heat loss can be suppressed and the energy conversion efficiency can be increased.
 光励起されたキャリアの内、正孔は、図52において、電流iAで示されるように、第1電極層11Aに導通する。一方、光励起されたキャリアの内、電子は、図52において、電流ik1で示されるように、カソード電極層16Kに主として導通する。このような低抵抗率のカソード電極層16Kを有機導電膜25上に形成することによって、光励起されたキャリア(順構造型の場合電子)が相対的に厚い有機導電膜25内部において熱失活(Thermal Inactivity)されることを抑制することができる。図52において、電流ik2で示される電流成分は、相対的に厚い有機導電膜25内部において熱失活される電流成分を模式的に表している。 Of the photoexcited carriers, holes are conducted to the first electrode layer 11A as indicated by a current i A in FIG. On the other hand, among the photoexcited carriers, electrons are mainly conducted to the cathode electrode layer 16K as shown by a current i k1 in FIG. By forming such a low-resistivity cathode electrode layer 16K on the organic conductive film 25, heat deactivation (in the case of the forward structure type, electrons) in the organic conductive film 25 where the photoexcited carriers (electrons in the forward structure type) are relatively thick. Thermal Inactivity) can be suppressed. In FIG. 52, the current component indicated by the current i k2 schematically represents the current component that is thermally deactivated inside the relatively thick organic conductive film 25.
 第2の実施の形態の変形例に係る順構造型の有機薄膜太陽電池2Aにおいては、このようなAg粒子ペースト層からなるメッシュ電極構造をカソード電極層16Kとして有機導電膜25上に配置することによって、集電作用を上昇することができる。 In the forward structure type organic thin film solar cell 2A according to the modification of the second embodiment, the mesh electrode structure formed of such an Ag particle paste layer is disposed on the organic conductive film 25 as the cathode electrode layer 16K. Thus, the current collecting action can be increased.
 有機導電膜25のカソード電極層16Kと接する界面には、図52に示すように、金属粒子侵入層25Sが形成される。有機導電膜25の厚さは、Ag粒子のマイグレーションにより形成される金属粒子侵入層25S厚さよりも十分に厚く形成される。 As shown in FIG. 52, a metal particle intrusion layer 25S is formed at the interface of the organic conductive film 25 in contact with the cathode electrode layer 16K. The thickness of the organic conductive film 25 is formed sufficiently thicker than the thickness of the metal particle intrusion layer 25S formed by migration of Ag particles.
 第2の実施の形態の変形例に係る順構造型の有機薄膜太陽電池2Aにおいて、菱形構造を含む平行四辺形を基本格子とするカソード電極層16Kの平面パターン構成例は、図53(a)に示すように表され、図53(a)のA部分の拡大図は、図53(b)に示すように表される。図53(a)に示すように、平行四辺形の一辺の寸法は、WAで表されている。また、図53(b)に示すように、1個のメッシュ構造において、カソード電極層16Kのメッシュ電極を導通する微小電流成分はiKで表され、1個のメッシュ窓の面積は、Htiで表される。その他の構成は、図48に示された第2の実施の形態に係る順構造型の有機薄膜太陽電池と同様である。 In the forward structure type organic thin-film solar cell 2A according to the modification of the second embodiment, a planar pattern configuration example of the cathode electrode layer 16K having a parallelogram including a rhombus structure as a basic lattice is shown in FIG. And an enlarged view of portion A in FIG. 53 (a) is represented as shown in FIG. 53 (b). As shown in FIG. 53 (a), the dimensions of parallelogram side is represented by W A. As shown in FIG. 53 (b), in one mesh structure, a minute current component that conducts the mesh electrode of the cathode electrode layer 16K is represented by i K , and the area of one mesh window is H ti. It is represented by Other configurations are the same as those of the forward structure type organic thin film solar cell according to the second embodiment shown in FIG.
 同様に、第2の実施の形態の変形例に係る順構造型の有機薄膜太陽電池2Aにおいて、六角形構造を基本格子とするカソード電極層16Kの平面パターン構成例、図54(a)に示すように表され、円形構造を基本格子とするカソード電極層16Kの平面パターン構成例は、図54(b)に示すように表され、正方形構造を基本格子とするカソード電極層16Kの平面パターン構成例は、図54(c)に示すように表される。 Similarly, in the forward structure type organic thin film solar cell 2A according to the modification of the second embodiment, a planar pattern configuration example of the cathode electrode layer 16K having a hexagonal structure as a basic lattice is shown in FIG. 54 (a). An example of the planar pattern configuration of the cathode electrode layer 16K having a circular structure as a basic lattice is expressed as shown in FIG. 54B, and the planar pattern configuration of the cathode electrode layer 16K having a square structure as a basic lattice. An example is represented as shown in FIG.
 また、図52、図53(a)および図54(a)~図54(c)に示されたメッシュ電極構造は、図49に示された第2の実施の形態に係る逆構造型の有機薄膜太陽電池2Bの第2電極層16Aに対しても同様に適用可能である。 Also, the mesh electrode structure shown in FIGS. 52, 53 (a) and 54 (a) to 54 (c) is an inverted structure type organic material according to the second embodiment shown in FIG. The same applies to the second electrode layer 16A of the thin film solar cell 2B.
 (直列構造)
 直列構造を有する第2の実施の形態の変形例に係る順構造型の有機薄膜太陽電池の模式的平面パターン構成は、図55(a)に示すように表され、図55(a)に対応する等価回路構成は、図55(b)に示すように表され、図55(a)の裏面(光照射面)側から見た模式的平面パターン構成は、図55(c)に示すように表される。
(Series structure)
A schematic planar pattern configuration of a forward structure type organic thin film solar cell according to a modification of the second embodiment having a series structure is represented as shown in FIG. 55 (a) and corresponds to FIG. 55 (a). The equivalent circuit configuration is represented as shown in FIG. 55 (b), and the schematic planar pattern configuration viewed from the back surface (light irradiation surface) side of FIG. 55 (a) is as shown in FIG. 55 (c). expressed.
 直列構造を有する第2の実施の形態の変形例に係る順構造型の有機薄膜太陽電池は、図55(a)~図55(c)に示すように、有機薄膜太陽電池OPV1・OPV2・OPV3・OPV4が4個直列にアノードA(11A1)・カソードK(11A4)間に接続された構造を備える。すなわち、有機薄膜太陽電池OPV1は、第1電極層11A1・カソード電極層16K1間に配置され、有機薄膜太陽電池OPV2は、第1電極層11A2・カソード電極層16K2間に配置され、有機薄膜太陽電池OPV3は、第1電極層11A3・カソード電極層16K3間に配置され、有機薄膜太陽電池OPV4は、第1電極層11A4・カソード電極層16K4間に配置される。 As shown in FIGS. 55 (a) to 55 (c), the organic thin film solar cell of the forward structure type according to the modification of the second embodiment having a series structure has organic thin film solar cells OPV 1 and OPV 2. A structure in which four OPV 3 and OPV 4 are connected in series between the anode A (11A 1 ) and the cathode K (11A 4 ) is provided. That is, the organic thin film solar cell OPV 1 is disposed between the first electrode layer 11A 1 and the cathode electrode layer 16K 1 , and the organic thin film solar cell OPV 2 is disposed between the first electrode layer 11A 2 and the cathode electrode layer 16K 2. The organic thin film solar cell OPV 3 is disposed between the first electrode layer 11A 3 and the cathode electrode layer 16K 3 , and the organic thin film solar cell OPV 4 is disposed between the first electrode layer 11A 4 and the cathode electrode layer 16K 4. Is done.
 図55(a)において、長さLtは、例えば、約29.6mm、幅Wtは、例えば、約11.8mmである。取り出し電極を形成する第1電極層11A1の長さL1は、例えば、約3.8mm、幅W2は、例えば、約1.2mmである。取り出し電極を形成する第1電極層11A4の寸法も、取り出し電極を形成する第1電極層11A1と同様である。 In FIG. 55A, the length L t is, for example, about 29.6 mm, and the width W t is, for example, about 11.8 mm. The length L1 of the first electrode layer 11A 1 forming the extraction electrode, for example, about 3.8 mm, the width W2 is, for example, about 1.2 mm. The dimensions of the first electrode layer 11A 4 that forms the extraction electrode are also the same as those of the first electrode layer 11A 1 that forms the extraction electrode.
 図55(c)において、全体の長さLEは、例えば、約27.9mm、幅WEは、例えば、約9.15mmである。 In FIG. 55 (c), the overall length L E is, for example, about 27.9 mm, and the width W E is, for example, about 9.15 mm.
 また、ガラス基板10の厚さは、例えば、約0.7mm、有機薄膜太陽電池モジュール全体の厚さは、例えば、最大約1.4mmである。 Further, the thickness of the glass substrate 10 is, for example, about 0.7 mm, and the total thickness of the organic thin film solar cell module is, for example, about 1.4 mm at the maximum.
 第2の実施の形態に係る順構造型の有機薄膜太陽電池2Aの積層構造部分の模式的断面構造は、図56(a)に示すように表され、図56(a)の詳細構造であって、有機導電膜25の第2電極層16と接する界面に金属粒子侵入層25Sを有する構造例の模式的断面構造は、図56(b)に示すように表される。 The schematic cross-sectional structure of the laminated structure portion of the forward structure type organic thin film solar cell 2A according to the second embodiment is expressed as shown in FIG. 56 (a), and is the detailed structure of FIG. 56 (a). A schematic cross-sectional structure of a structural example having the metal particle intrusion layer 25S at the interface in contact with the second electrode layer 16 of the organic conductive film 25 is expressed as shown in FIG.
 第2の実施の形態に係る順構造型の有機薄膜太陽電池2Aの積層構造部分は、図56(a)に示すように、基板10と、基板10上に配置された透明電極層(第1電極層)11A1・11A2と、第1電極層11A1上に配置されたキャリア放出用バッファ層12Bと、キャリア放出用バッファ層12B上に配置されたバルクヘテロ接合有機活性層14と、バルクヘテロ接合有機活性層14上に配置された有機導電膜25と、有機導電膜25上に配置された第2電極層16K1とを備える。また、有機導電膜25の厚さは、図56(b)に示すように、第2電極層16K1から有機導電膜25への金属粒子のマイグレーションにより形成される金属粒子侵入層25Sの厚さよりも厚く形成される。特に、図56(b)に示すように、有機導電膜25の厚さは、第2電極層16K1と接触する側壁部においても金属粒子侵入層25Sの厚さよりも厚く形成される。 As shown in FIG. 56A, the laminated structure portion of the forward structure type organic thin film solar cell 2A according to the second embodiment includes a substrate 10 and a transparent electrode layer (first electrode) disposed on the substrate 10. Electrode layer) 11A 1 , 11A 2 , carrier emission buffer layer 12B disposed on first electrode layer 11A 1 , bulk heterojunction organic active layer 14 disposed on carrier emission buffer layer 12B, and bulk heterojunction An organic conductive film 25 disposed on the organic active layer 14 and a second electrode layer 16K 1 disposed on the organic conductive film 25 are provided. The thickness of the organic conductive film 25, as shown in FIG. 56 (b), than the thickness of the metal particles penetrate layer 25S formed by the migration of the metal particles to organic conductive film 25 from the second electrode layer 16K 1 Is also formed thick. In particular, as shown in FIG. 56 (b), the thickness of the organic conductive film 25 is thicker than the thickness of the metal particles penetrate layers 25S even at the sidewall portion contacting with the second electrode layer 16K 1.
 第2の実施の形態に係る順構造型の有機薄膜太陽電池2Aにおいて、更にパッシベーションを実施した模式的断面構造は、図57(a)に示すように表される。一方、有機導電膜25を備えない比較例に係る順構造型の有機薄膜太陽電池2Cの模式的断面構造は、図57(b)に示すように表される。 In the forward structure type organic thin film solar cell 2A according to the second embodiment, a schematic cross-sectional structure obtained by further performing passivation is expressed as shown in FIG. On the other hand, a schematic cross-sectional structure of a forward structure type organic thin film solar cell 2C according to a comparative example that does not include the organic conductive film 25 is expressed as shown in FIG.
 第2の実施の形態に係る順構造型の有機薄膜太陽電池2Aは、図57(a)に示すように、基板10と、基板10上に配置された透明電極層(第1電極層)11A1・11A2と、第1電極層11A1上に配置されたキャリア放出用バッファ層12Bと、キャリア放出用バッファ層12B上に配置されたバルクヘテロ接合有機活性層14と、バルクヘテロ接合有機活性層14上に配置された有機導電膜25と、有機導電膜25上に配置されたカソード電極層(第2電極層)16K1と、第2電極層16K1上に配置されたパッシベーション層26と、パッシベーション層26上に配置されたカラー化バリア層28と、カラー化バリア層28上に配置されたバックシートパッシベーション層30とを備える。 As shown in FIG. 57A, a forward structure type organic thin film solar cell 2A according to the second embodiment includes a substrate 10 and a transparent electrode layer (first electrode layer) 11A disposed on the substrate 10. 1 · 11A 2 , a carrier emission buffer layer 12B disposed on the first electrode layer 11A 1 , a bulk heterojunction organic active layer 14 disposed on the carrier emission buffer layer 12B, and a bulk heterojunction organic active layer 14 An organic conductive film 25 disposed on top, a cathode electrode layer (second electrode layer) 16K 1 disposed on the organic conductive film 25, a passivation layer 26 disposed on the second electrode layer 16K 1 , and a passivation It comprises a colored barrier layer 28 disposed on the layer 26 and a backsheet passivation layer 30 disposed on the colored barrier layer 28.
 (比較例)
 比較例に係る順構造型の有機薄膜太陽電池2Cは、図57(b)に示すように、基板10と、基板10上に配置された透明電極層(第1電極層)11A1・11A2と、第1電極層11A1上に配置されたキャリア放出用バッファ層12Bと、キャリア放出用バッファ層12B上に配置されたバルクヘテロ接合有機活性層14と、バルクヘテロ接合有機活性層14上に配置されたカソード電極層(第2電極層)16K1と、第2電極層16K1上に配置されたパッシベーション層26と、パッシベーション層26上に配置されたバリア層28と、バリア層28上に配置されたパッシベーション層31と、パッシベーション層31上に配置されたバックシート層33とを備える。
(Comparative example)
As shown in FIG. 57 (b), the forward structure type organic thin film solar cell 2 </ b> C according to the comparative example includes a substrate 10 and transparent electrode layers (first electrode layers) 11 </ b > A 1 and 11 </ b > A 2 disposed on the substrate 10. When the first electrode layer 11A 1 carrier release buffer layer 12B disposed on a bulk heterojunction organic active layer 14 disposed on the carrier release buffer layer 12B, are arranged on the bulk heterojunction organic active layer 14 The cathode electrode layer (second electrode layer) 16K 1 , the passivation layer 26 disposed on the second electrode layer 16K 1 , the barrier layer 28 disposed on the passivation layer 26, and the barrier layer 28 A passivation layer 31 and a backsheet layer 33 disposed on the passivation layer 31.
 バリア層28は、化学的気相堆積(CVD:Chemical Vapor Deposition)法によるSiNやSiONなどの無機パッシベーション膜と樹脂保護膜を多層に積層して形成する。樹脂保護膜として用いていた透明樹脂素材では、セル部分以外は透明のため、使用用途に応じてモジュールを着色する場合、バックシート層33としてカラーフィルムを貼り付けるなど余分な素材を追加する必要がある。太陽電池は、組み込む筐体の色や作業環境に応じてモジュール全体が着色されている必要があるため、モジュール背面に白色や黒色のバックシートを接着する。しかし、比較例に係る順構造型の有機薄膜太陽電池2Cは、バックシート層33を用いることでモジュールの厚みが厚くなり、コストも高くなる。 The barrier layer 28 is formed by laminating an inorganic passivation film such as SiN or SiON and a resin protective film in multiple layers by a chemical vapor deposition (CVD) method. Since the transparent resin material used as the resin protective film is transparent except for the cell portion, when coloring the module according to the intended use, it is necessary to add an extra material such as attaching a color film as the back sheet layer 33. is there. Since the entire module needs to be colored in accordance with the color of the housing to be incorporated and the work environment, the solar cell is bonded with a white or black back sheet on the back of the module. However, in the forward structure type organic thin film solar cell 2C according to the comparative example, the use of the back sheet layer 33 increases the thickness of the module and increases the cost.
 第2の実施の形態に係る順構造型の有機薄膜太陽電池2Aは、図57(a)に示すように、着色剤を添加した保護膜(カラー化バリア層28)を用いることで、モジュールに任意の着色を可能にしている。すなわち、セルの保護層にUV照射により任意のパターニングが可能なカラーフィルタを用いることで、保護層に意匠性を持たせ、作製工程の減少と意匠性の向上を可能にしている。 As shown in FIG. 57 (a), the forward structure type organic thin film solar cell 2A according to the second embodiment uses a protective film (colored barrier layer 28) to which a colorant has been added to form a module. Arbitrary coloring is possible. That is, by using a color filter that can be arbitrarily patterned by UV irradiation for the protective layer of the cell, the protective layer has a design property, and the manufacturing process can be reduced and the design property can be improved.
 第2の実施の形態に係る順構造型の有機薄膜太陽電池2Aは、図57(a)に示すように、ITO付きガラス基板10上に発電層となる約数100nm程度の厚さを有する有機層(12B・14)と、約1μm~約10μm程度の厚さを有する有機導電膜25を積層し、第2電極層16として、例えば、Ag粒子ペースト層をスクリーン印刷による塗布・焼成して作られる。 The forward structure type organic thin film solar cell 2A according to the second embodiment is an organic material having a thickness of about several hundreds of nanometers serving as a power generation layer on the glass substrate 10 with ITO, as shown in FIG. The layer (12B • 14) and the organic conductive film 25 having a thickness of about 1 μm to about 10 μm are laminated, and the second electrode layer 16 is formed, for example, by applying and baking an Ag particle paste layer by screen printing. It is done.
 パッシベーション層26上に配置されたカラー化バリア層28は、有機薄膜太陽電池セルの保護層としての役割を有する。 The colored barrier layer 28 disposed on the passivation layer 26 serves as a protective layer for the organic thin-film solar battery cell.
 カラー化バリア層28は、紫外線(UV)照射により任意のパターニングが可能なカラーフィルタで形成可能である。このようなパターニングが可能なカラーフィルタを保護層として用いることによって、第2の実施の形態に係る順構造型の有機薄膜太陽電池2Aは、保護層に意匠性を持たせることができ、比較例(図57(b))よりも、作製工程の減少と意匠性の向上を可能にする。 The colored barrier layer 28 can be formed of a color filter that can be patterned arbitrarily by ultraviolet (UV) irradiation. By using such a patternable color filter as a protective layer, the forward structure type organic thin film solar cell 2A according to the second embodiment can have a design property in the protective layer, and is a comparative example. Compared with (FIG. 57B), it is possible to reduce the number of manufacturing steps and improve the design.
 第2の実施の形態に係る順構造型の有機薄膜太陽電池2Aにおいて、パッシベーション層26、カラー化バリア層28は、CVD法によるSiNやSiONなどの無機パッシベーション膜と樹脂保護膜を多層に積層して形成可能である。 In the forward structure type organic thin film solar cell 2A according to the second embodiment, the passivation layer 26 and the colored barrier layer 28 are formed by laminating an inorganic passivation film such as SiN or SiON by CVD and a resin protective film in multiple layers. Can be formed.
 第2の実施の形態に係る順構造型の有機薄膜太陽電池2Aにおいては、モジュールのプロセスを変更することなく、着色を可能にするため、樹脂保護膜の素材に色素を添加することで、モジュールのセル以外の部位を任意の色に着色できる。この樹脂素材は、塗布形成後にUV照射した部分のみパターンを残すことができることから、背面の配色を任意のパターンで行うことが可能である。 In the forward structure type organic thin film solar cell 2A according to the second embodiment, a module is added by adding a dye to the material of the resin protective film in order to enable coloring without changing the process of the module. Sites other than the cells can be colored in any color. Since this resin material can leave a pattern only in a portion irradiated with UV after coating and forming, it is possible to perform a color scheme on the back with an arbitrary pattern.
 着色剤としては、黒色では、例えば、カーボンブラック、青色では、例えば、フタロシアニン系塗料、赤色では、例えば、アリザリン系塗料などを適用可能である。 As the colorant, for example, carbon black, blue, for example, phthalocyanine-based paints, and red, for example, alizarin-based paints can be applied.
 (動作原理)
 基本技術に係る有機薄膜太陽電池の動作原理を説明する模式図は、図10と同様に表される。また、図10に示された有機薄膜太陽電池の各種材料のエネルギーバンド構造は、図11と同様に表される。
(Operating principle)
A schematic diagram for explaining the operation principle of the organic thin-film solar cell according to the basic technology is expressed in the same manner as FIG. Moreover, the energy band structure of the various materials of the organic thin film solar cell shown in FIG. 10 is expressed similarly to FIG.
 基本技術に係る有機薄膜太陽電池1Aにおいて、キャリア放出用バッファ層12Bに適用するPEDOT:PSSの内、PEDOTの化学構造式は、図12(a)に示すように表され、PSSの化学構造式は、図12(b)に示すように表される。 In the organic thin film solar cell 1A according to the basic technology, the chemical structural formula of PEDOT among PEDOT: PSS applied to the carrier emission buffer layer 12B is expressed as shown in FIG. Is expressed as shown in FIG.
 基本技術に係る有機薄膜太陽電池1Aにおいて、バルクヘテロ接合有機活性層14に適用されるP3HTの化学構造式は、図13(a)に示すように表され、バルクヘテロ接合有機活性層14に適用されるPCBMの化学構造式は、図13(b)に示すように表される。 In the organic thin film solar cell 1A according to the basic technology, the chemical structural formula of P3HT applied to the bulk heterojunction organic active layer 14 is expressed as shown in FIG. 13A and applied to the bulk heterojunction organic active layer 14. The chemical structural formula of PCBM is represented as shown in FIG.
 基本技術に係る有機薄膜太陽電池1Aにおいて、適用可能な材料の化学構造式の例は、図14(a)~図14(d)と同様に表される。 In the organic thin film solar cell 1A according to the basic technology, examples of chemical structural formulas of applicable materials are represented in the same manner as in FIGS. 14 (a) to 14 (d).
 有機薄膜太陽電池1Aにおいて、溶液プロセスで使用可能な材料の化学構造式の例は、図15(a)~図15(g)と同様に表される。以下重複説明は省略する。 Examples of chemical structural formulas of materials that can be used in the solution process in the organic thin film solar cell 1A are represented in the same manner as in FIGS. 15 (a) to 15 (g). Hereinafter, redundant description is omitted.
 (製造方法:順構造型)
 第2の実施の形態に係る順構造型の有機薄膜太陽電池の製造方法の一工程であって、基板10上に透明電極層11を形成したITO基板を準備する工程は、図58(a)に示すように表され、透明電極層11A1・11A2をパターニング後、透明電極層11A1上にキャリア放出用バッファ層12Bをパターン形成する工程は、図58(b)に示すように表され、キャリア放出用バッファ層12B上にバルクへテロ接合有機活性層14をパターン形成する工程は、図58(c)に示すように表され、バルクへテロ接合有機活性層14上に相対的に厚い有機導電膜25をパターン形成する工程は、図58(d)に示すように表され、有機導電膜25上に第2電極層16K1をパターン形成する工程は、図58(e)に示すように表される。
(Manufacturing method: forward structure type)
FIG. 58 (a) shows a step of preparing an ITO substrate in which the transparent electrode layer 11 is formed on the substrate 10, which is a step of the method for manufacturing the forward structure type organic thin film solar cell according to the second embodiment. The process of patterning the transparent electrode layers 11A 1 and 11A 2 and patterning the carrier emission buffer layer 12B on the transparent electrode layer 11A 1 is expressed as shown in FIG. The step of patterning the bulk heterojunction organic active layer 14 on the carrier emission buffer layer 12B is expressed as shown in FIG. 58C, and is relatively thick on the bulk heterojunction organic active layer 14. step of the organic conductive film 25 patterned is expressed as shown in FIG. 58 (d), the step of the second electrode layer 16K 1 in an organic conductive film 25 on the patterning, as shown in FIG. 58 (e) It is expressed in
 第2の実施の形態に係る順構造型の有機薄膜太陽電池の製造方法の一工程であって、図58(e)の詳細構造において、有機導電膜25の上部に金属粒子侵入層25Sが形成される様子を説明する模式的断面構造は、図59(a)に示すように表され、デバイス全面にパッシベーション層26を形成する工程は、図59(b)に示すように表され、パッシベーション層26上にカラー化バリア層を形成する工程は、図59(c)に示すように表される。 FIG. 58 (e) shows a step of the method for manufacturing the forward structure type organic thin film solar cell according to the second embodiment. In the detailed structure of FIG. 58 (e), a metal particle intrusion layer 25S is formed on the organic conductive film 25. A schematic cross-sectional structure for explaining the appearance is represented as shown in FIG. 59 (a), and the process of forming the passivation layer 26 on the entire surface of the device is represented as shown in FIG. 59 (b). The step of forming a colored barrier layer on the layer 26 is expressed as shown in FIG.
 第2の実施の形態に係る順構造型の有機薄膜太陽電池の製造方法は、図58~図59に示すように、基板10を準備する工程と、基板10上に第1電極層11(11A1・11A2)を形成する工程と、第1電極層11A1上にキャリア放出用バッファ層12Bを形成する工程と、キャリア放出用バッファ層12B上にバルクヘテロ接合有機活性層14を形成する工程と、バルクヘテロ接合有機活性層14上に有機導電膜25を形成する工程と、有機導電膜25上に第2電極層16K1を形成する工程とを有する。 As shown in FIGS. 58 to 59, the manufacturing method of the forward structure type organic thin film solar cell according to the second embodiment includes the step of preparing the substrate 10 and the first electrode layer 11 (11A on the substrate 10). 1 · 11A 2 ), forming the carrier emission buffer layer 12B on the first electrode layer 11A 1 , forming the bulk heterojunction organic active layer 14 on the carrier emission buffer layer 12B, And a step of forming the organic conductive film 25 on the bulk heterojunction organic active layer 14 and a step of forming the second electrode layer 16K 1 on the organic conductive film 25.
 また、図58~図59では図示を省略しているが、バルクへテロ接合有機活性層14上に有機導電膜25を形成する工程は、図48若しくは図52に示したように、バルクへテロ接合有機活性層14上にバッファ層15Bを形成する工程と、バッファ層15B上に有機導電膜25を形成する工程とを有していても良い。 Further, although not shown in FIGS. 58 to 59, the step of forming the organic conductive film 25 on the bulk heterojunction organic active layer 14 is performed as shown in FIG. 48 or FIG. You may have the process of forming the buffer layer 15B on the joining organic active layer 14, and the process of forming the organic electrically conductive film 25 on the buffer layer 15B.
 ここで、第2電極層16K1を形成する工程は、有機導電膜25上に金属粒子ペースト層を塗布して形成する工程を有する。 Here, the step of forming the second electrode layer 16 </ b> K 1 includes a step of applying and forming a metal particle paste layer on the organic conductive film 25.
 また、有機導電膜25の厚さは、第2電極層16K1から有機導電膜25への金属粒子のマイグレーションにより形成される金属粒子侵入層25Sの厚さよりも厚い。特に、図59(b)および図59(c)に示すように、有機導電膜25の厚さは、第2電極層16K1と接触する側壁部においても金属粒子侵入層25Sの厚さよりも厚く形成される。 The thickness of the organic conductive film 25 is thicker than the thickness of the metal particles penetrate layer 25S formed by the migration of the metal particles to organic conductive film 25 from the second electrode layer 16K 1. In particular, as shown in FIG. 59 (b) and FIG. 59 (c), the thickness of the organic conductive film 25 is thicker than the thickness of the metal particles penetrate layers 25S even at the sidewall portion contacting with the second electrode layer 16K 1 It is formed.
 また、金属粒子ペースト層は、Ag粒子ペースト層であっても良い。 The metal particle paste layer may be an Ag particle paste layer.
 更に、第2の実施の形態に係る有機薄膜太陽電池の製造方法は、図59および図57(a)に示すように、第2電極層16K1上にパッシベーション層26を形成する工程と、パッシベーション層26上にカラー化バリア層28を形成する工程と、カラー化バリア層28上にバックシートパッシベーション層30を形成する工程とを有していても良い。 Furthermore, the method of manufacturing the organic thin film solar cell according to the second embodiment, as shown in FIGS. 59 and 57 (a), forming a passivation layer 26 on the second electrode layer 16K 1, passivation You may have the process of forming the coloration barrier layer 28 on the layer 26, and the process of forming the back-sheet passivation layer 30 on the colorization barrier layer 28. FIG.
 図58~図59および図57(a)を参照して、第2の実施の形態に係る有機薄膜太陽電池の製造方法について説明する。
(a)まず、図58(a)に示すように、基板10上に、例えば、ITOからなる透明電極層11を形成する。ここで、ITOからなる透明電極層11のシート抵抗は、例えば、約7Ω/□~約10Ω/□である。
(b)次に、図58(b)に示すように、透明電極層11(11A1・11A2)をパターニング後、透明電極層11A1上にキャリア放出用バッファ層12Bをパターン形成する。透明電極層11(11A1・11A2)のパターニングには、ウエットエッチング技術、レーザパターニング技術などを適用可能である。キャリア放出用バッファ層12Bの形成には、スピンコート技術、スプレー技術、スクリーン印刷技術などを適用可能である。ここで、キャリア放出用バッファ層12Bの形成工程では、例えば、PEDOT:PSSをスピンコートによって形成し、水分除去のために、アニ-ルを120℃で約10分間行うと良い。
(c)次に、図58(c)に示すように、キャリア放出用バッファ層12B上に、発電層となるバルクヘテロ接合有機活性層14を形成する。バルクヘテロ接合有機活性層14の形成工程においては、例えば、P3HT:PCBMをスピンコートによって形成する。また、バルクへテロ接合有機活性層14の形成においては、インクジェット法を用いてフィルム状に形成した後、有機溶剤を乾燥させるために、約100℃~120℃で約10分~30分加熱する。
(d)次に、図48および図52に示したように、バルクへテロ接合有機活性層14上にバッファ層15Bを形成する。バッファ層15Bは、例えば、TiO2やZnOを印刷工程などを用いて形成可能である。
(e)次に、図58(d)に示すように、バルクヘテロ接合有機活性層14上に、相対的に厚い有機導電膜25を形成する。有機導電膜25の形成工程においては、相対的に高導電性のPEDOT:PSSをスピンコートによって形成し、水分除去のために、アニ-ル処理を実施する。有機導電膜25の厚さは、例えば、約1μm~約10μmであり、高導電性を得るために、例えば、PEDOT:PSS=1:2.5としている。有機導電膜25のシート抵抗は、例えば、約300Ω/□である。
(f)次に、図58(e)に示すように、有機導電膜25上にカソード電極層16K1をパターン形成する。カソード電極層16K1は、例えば、Ag粒子ペースト層をスクリーン印刷技術を適用して形成する。具体的には、例えば、Ag粒子ペースト層は、Agナノインクで形成され、焼成温度は、例えば、約100℃前後である。形成されたカソード電極層16K1のシート抵抗は、例えば、約0.1Ω/□以下である。また、カソード電極層16K1には、図52~図55に示したように、メッシュ構造を導入しても良い。このような低抵抗率のカソード電極層16K1を有機導電膜25上に形成することによって、光励起されたキャリア(順構造型の場合電子)が相対的に厚い有機導電膜25内部において熱失活(Thermal Inactivity)されることを抑制することができる。図59(a)に示すように、有機導電膜25のカソード電極層16K1と接する面には、金属粒子侵入層25Sが形成される。有機導電膜25の厚さは、Ag粒子のマイグレーションにより形成される金属粒子侵入層25S厚さよりも十分に厚く形成されている。
(g)次に、図59(b)に示すように、第2電極層16上にパッシベーション層26を形成する。ここで、パッシベーション層26は、シリコン窒化膜などをCVD法で形成しても良い。シリコン窒化膜の厚さは、例えば、約0.5μm~1.5μm程度である。大気中の水分と酸素による劣化を抑えるため、CVDにより形成したSiN膜による封止を行うことで、さらに耐久性を向上可能である。
(h)次に、図59(c)に示すように、パッシベーション層26上にカラー化バリア層28を形成する。ここでは、SiN膜で形成されたパッシベーション層26のスポットなどの不良を無くし、モジュールの背面を平滑化するために、UV硬化樹脂素材をスピンコート法などで塗布し、UV照射により硬化させる。なお、ここで、カラー化バリア層28には着色剤を添加した保護膜を用いることで、薄層化された素子構造で、モジュールに任意の着色を可能にしている。
(i)次に、図57(a)に示すように、カラー化バリア層28上にバックシートパッシベーション層30を形成する。バックシートパッシベーション層30は、例えば、シリコン窒化膜などをCVD法で形成しても良い。シリコン窒化膜の厚さは、例えば、約0.5μm~1.5μm程度である。大気中の水分と酸素による劣化を抑えるため、CVDにより形成したSiN膜による封止を行うことで、さらに耐久性を向上可能である。
A method for manufacturing an organic thin-film solar cell according to the second embodiment will be described with reference to FIGS. 58 to 59 and FIG. 57 (a).
(A) First, as shown in FIG. 58A, a transparent electrode layer 11 made of, for example, ITO is formed on a substrate 10. Here, the sheet resistance of the transparent electrode layer 11 made of ITO is, for example, about 7Ω / □ to about 10Ω / □.
(B) Next, as shown in FIG. 58B, after patterning the transparent electrode layer 11 (11A 1 · 11A 2 ), the carrier emission buffer layer 12B is patterned on the transparent electrode layer 11A 1 . For patterning the transparent electrode layer 11 (11A 1 and 11A 2 ), a wet etching technique, a laser patterning technique, or the like can be applied. A spin coating technique, a spray technique, a screen printing technique, or the like can be applied to the formation of the carrier emission buffer layer 12B. Here, in the step of forming the carrier emission buffer layer 12B, for example, PEDOT: PSS is preferably formed by spin coating, and annealing is performed at 120 ° C. for about 10 minutes.
(C) Next, as shown in FIG. 58C, a bulk heterojunction organic active layer 14 to be a power generation layer is formed on the carrier emission buffer layer 12B. In the formation process of the bulk heterojunction organic active layer 14, for example, P3HT: PCBM is formed by spin coating. In forming the bulk heterojunction organic active layer 14, after forming into a film using an inkjet method, heating is performed at about 100 ° C. to 120 ° C. for about 10 minutes to 30 minutes in order to dry the organic solvent. .
(D) Next, as shown in FIGS. 48 and 52, a buffer layer 15 </ b> B is formed on the bulk heterojunction organic active layer 14. The buffer layer 15B can be formed using, for example, TiO 2 or ZnO using a printing process or the like.
(E) Next, as shown in FIG. 58D, a relatively thick organic conductive film 25 is formed on the bulk heterojunction organic active layer 14. In the step of forming the organic conductive film 25, PEDOT: PSS having a relatively high conductivity is formed by spin coating, and an annealing process is performed to remove moisture. The thickness of the organic conductive film 25 is, for example, about 1 μm to about 10 μm, and for example, PEDOT: PSS = 1: 2.5 in order to obtain high conductivity. The sheet resistance of the organic conductive film 25 is, for example, about 300Ω / □.
(F) Next, as shown in FIG. 58 (e), the cathode electrode layer 16 </ b> K 1 is patterned on the organic conductive film 25. The cathode electrode layer 16K 1 is formed, for example, by applying an Ag particle paste layer by screen printing technology. Specifically, for example, the Ag particle paste layer is formed of Ag nanoink, and the firing temperature is, for example, about 100 ° C. The sheet resistance of the formed cathode electrode layer 16K 1 is, for example, about 0.1Ω / □ or less. Further, a mesh structure may be introduced into the cathode electrode layer 16K 1 as shown in FIGS. By forming the cathode electrode layer 16K 1 in such a low resistivity organic conductive film 25 on, photoexcited carriers heat inactivation (if the forward structure type electrons) inside a relatively thick organic conductive film 25 (Thermal Inactivity) can be suppressed. As shown in FIG. 59 (a), the surface in contact with the cathode electrode layer 16K 1 organic conductive film 25, the metal particles penetrate layer 25S is formed. The thickness of the organic conductive film 25 is sufficiently thicker than the thickness of the metal particle intrusion layer 25S formed by migration of Ag particles.
(G) Next, as shown in FIG. 59B, a passivation layer 26 is formed on the second electrode layer 16. Here, as the passivation layer 26, a silicon nitride film or the like may be formed by a CVD method. The thickness of the silicon nitride film is, for example, about 0.5 μm to 1.5 μm. In order to suppress deterioration due to moisture and oxygen in the atmosphere, durability can be further improved by sealing with a SiN film formed by CVD.
(H) Next, as shown in FIG. 59 (c), a colored barrier layer 28 is formed on the passivation layer 26. Here, in order to eliminate defects such as spots on the passivation layer 26 formed of the SiN film and smooth the back surface of the module, a UV curable resin material is applied by a spin coat method or the like and cured by UV irradiation. Here, the colored barrier layer 28 uses a protective film to which a colorant is added, so that the module can be arbitrarily colored with a thinned element structure.
(I) Next, as shown in FIG. 57A, a backsheet passivation layer 30 is formed on the colored barrier layer 28. For the backsheet passivation layer 30, for example, a silicon nitride film or the like may be formed by a CVD method. The thickness of the silicon nitride film is, for example, about 0.5 μm to 1.5 μm. In order to suppress deterioration due to moisture and oxygen in the atmosphere, durability can be further improved by sealing with a SiN film formed by CVD.
 以上の工程により、第2の実施の形態に係る順構造型の有機薄膜太陽電池2Aが完成する。 The forward structure type organic thin film solar cell 2A according to the second embodiment is completed through the above steps.
 尚、要求するモジュール耐久性に応じて、シリコン窒化膜などのパッシベーション層26を形成する工程(図59(b))・パッシベーション層26上にカラー化バリア層28を形成する工程(図59(c))を繰り返し、多重積層保護膜を形成しても良い。 Note that a step of forming a passivation layer 26 such as a silicon nitride film (FIG. 59B) or a step of forming a colored barrier layer 28 on the passivation layer 26 according to the required module durability (FIG. 59C). )) May be repeated to form a multi-layered protective film.
 (製造方法:逆構造型)
 第2の実施の形態に係る逆構造型の有機薄膜太陽電池の製造方法は、図49に示すように、基板10を準備する工程と、基板10上に第1電極層11Kを形成する工程と、第1電極層11K上にキャリア放出用バッファ層11Tを形成する工程と、キャリア放出用バッファ層11T上にバルクヘテロ接合有機活性層14を形成する工程と、バルクヘテロ接合有機活性層14上に有機導電膜25を形成する工程と、有機導電膜25上に第2電極層16Aを形成する工程とを有する。
(Manufacturing method: reverse structure type)
As shown in FIG. 49, the manufacturing method of the inverted structure type organic thin film solar cell according to the second embodiment includes a step of preparing the substrate 10 and a step of forming the first electrode layer 11K on the substrate 10. The step of forming the carrier emission buffer layer 11T on the first electrode layer 11K, the step of forming the bulk heterojunction organic active layer 14 on the carrier emission buffer layer 11T, and the organic conductivity on the bulk heterojunction organic active layer 14 A step of forming the film 25 and a step of forming the second electrode layer 16A on the organic conductive film 25.
 第2の実施の形態に係る逆構造型の有機薄膜太陽電池の製造方法においては、キャリア放出用バッファ層11Tは、バルクヘテロ接合有機活性層14の酸化劣化を抑制可能で、かつ光損失の少ないバッファ材料で形成される。例えば、TiO2若しくはZnOなどで形成される。
第2の実施の形態に係る逆構造型の有機薄膜太陽電池では、バルクヘテロ接合有機活性層14と有機導電膜25との間は、ショットキー接触されていれば良い。このため、バッファ層の形成工程は不要である。
In the manufacturing method of the inverted structure type organic thin film solar cell according to the second embodiment, the carrier emission buffer layer 11T can suppress the oxidative deterioration of the bulk heterojunction organic active layer 14 and has a small optical loss. Formed of material. For example, it is made of TiO 2 or ZnO.
In the inverted structure type organic thin film solar cell according to the second embodiment, the bulk heterojunction organic active layer 14 and the organic conductive film 25 may be in Schottky contact. For this reason, the formation process of a buffer layer is unnecessary.
 その他の工程は、第2の実施の形態に係る順構造型の有機薄膜太陽電池の製造方法と同様であるため、重複説明は省略する。 Other steps are the same as those in the method of manufacturing the forward structure type organic thin-film solar cell according to the second embodiment, and thus a duplicate description is omitted.
 (製造方法)
 複数個(図の例では3個)直列に配置された第2の実施の形態に係る順構造型の有機薄膜太陽電池の製造方法について説明する。
(Production method)
A method for manufacturing a forward structure type organic thin-film solar cell according to the second embodiment, which is arranged in series (three in the example in the figure), will be described.
 複数個(図の例では3個)直列に配置された第2の実施の形態に係る順構造型の有機薄膜太陽電池の製造方法の一工程であって、基板10上に透明電極層11A1・11A2・11A3・11A4を形成した状態を示す模式的平面パターン構成は、図60(a)に示すように表され、図60(a)のVIII-VIII線に沿う模式的断面構造は、図60(b)に示すように表される。 A plurality (three in the illustrated example) a one step of the manufacturing method of the forward structure type organic thin film solar cell according to the second embodiment arranged in series, the substrate 10 a transparent electrode layer on 11A 1 A schematic plane pattern configuration showing a state in which 11A 2 , 11A 3, and 11A 4 are formed is represented as shown in FIG. 60 (a), and a schematic cross-sectional structure taken along line VIII-VIII in FIG. 60 (a) Is expressed as shown in FIG.
 また、透明電極層11A1・11A2・11A3上にキャリア放出用バッファ層12Bを製膜した状態を示す模式的平面パターン構成は、図61(a)に示すように表され、図61(a)のIX-IX線に沿う模式的断面構造は、図61(b)に示すように表される。 Further, a schematic planar pattern configuration showing a state in which the carrier emission buffer layer 12B is formed on the transparent electrode layers 11A 1 , 11A 2 , 11A 3 is expressed as shown in FIG. A schematic cross-sectional structure taken along line IX-IX in a) is expressed as shown in FIG.
 また、キャリア放出用バッファ層12B上にバルクへテロ接合有機活性層14を製膜した状態を示す模式的平面パターン構成は、図62(a)に示すように表され、図62(a)のX-X線に沿う模式的断面構造は、図62(b)に示すように表される。ここで、図59(b)および図59(c)に示したように、有機導電膜25の厚さは、第2電極層16K1と接触する側壁部においても金属粒子侵入層25Sの厚さよりも厚く形成されるが、以下においては、側壁部の詳細構造は図示を省略する。 Further, a schematic planar pattern configuration showing a state in which the bulk heterojunction organic active layer 14 is formed on the carrier emission buffer layer 12B is expressed as shown in FIG. 62 (a), and is shown in FIG. 62 (a). A schematic cross-sectional structure along the line XX is expressed as shown in FIG. Here, as shown in FIG. 59 (b) and FIG. 59 (c), the thickness of the organic conductive film 25, than the thickness of the metal particles penetrate layers 25S even at the sidewall portion contacting with the second electrode layer 16K 1 However, in the following, the detailed structure of the side wall is not shown.
 また、バルクへテロ接合有機活性層14上に相対的に厚い有機導電膜25を製膜した状態を示す模式的平面パターン構成は、図63(a)に示すように表され、図63(a)のXI-XI線に沿う模式的断面構造は、図63(b)に示すように表される。 A schematic planar pattern configuration showing a state in which a relatively thick organic conductive film 25 is formed on the bulk heterojunction organic active layer 14 is expressed as shown in FIG. ) Is a schematic cross-sectional structure taken along line XI-XI as shown in FIG.
 また、有機導電膜25上に第2電極層16K1・16K2・16K3を形成した状態を示す模式的平面パターン構成は、図64(a)に示すように表され、図64(a)のXII-XII線に沿う模式的断面構造は、図64(b)に示すように表される。 Further, a schematic planar pattern configuration showing a state in which the second electrode layers 16K 1 , 16K 2, and 16K 3 are formed on the organic conductive film 25 is expressed as shown in FIG. 64 (a), and FIG. A schematic cross-sectional structure taken along line XII-XII is expressed as shown in FIG.
 また、酸素プラズマ処理などによって、余分な有機層(25・14・12B)をエッチングし、隣接するOPVセルを互いに分離した状態を示す模式的平面パターン構成は、図65(a)に示すように表され、図65(a)のXIII-XIII線に沿う模式的断面構造は、図65(b)に示すように表される。 Further, a schematic planar pattern configuration showing a state in which the excess organic layers (25, 14, 12B) are etched by oxygen plasma treatment or the like and adjacent OPV cells are separated from each other is as shown in FIG. A schematic cross-sectional structure expressed along the line XIII-XIII in FIG. 65A is expressed as shown in FIG.
 また、デバイス全面にパッシベーション層26を形成した状態を示す模式的平面パターン構成は、図66(a)に示すように表され、図66(a)のXIV-XIV線に沿う模式的断面構造は、図66(b)に示すように表される。 Further, a schematic plane pattern configuration showing a state in which the passivation layer 26 is formed on the entire surface of the device is expressed as shown in FIG. 66A, and a schematic cross-sectional structure taken along line XIV-XIV in FIG. This is expressed as shown in FIG.
 また、パッシベーション層26上にカラー化バリア層28を形成した状態を示す模式的平面パターン構成は、図67(a)に示すように表され、図67(a)のXV-XV線に沿う模式的断面構造は、図67(b)に示すように表される。 Further, a schematic planar pattern configuration showing a state in which the colored barrier layer 28 is formed on the passivation layer 26 is expressed as shown in FIG. 67A, and is a schematic diagram along the XV-XV line in FIG. 67A. A typical cross-sectional structure is represented as shown in FIG.
 また、カラー化バリア層28上にバックシートパッシベーション層30を形成した状態を示す模式的平面パターン構成は、図68(a)に示すように表され、図68(a)のXVI-XVI線に沿う模式的断面構造は、図68(b)に示すように表される。 Further, a schematic plane pattern configuration showing a state in which the backsheet passivation layer 30 is formed on the colored barrier layer 28 is expressed as shown in FIG. 68 (a), and is taken along line XVI-XVI in FIG. 68 (a). The schematic cross-sectional structure along is represented as shown in FIG.
 図60~図68を参照して、複数個(図の例では3個)直列に配置された第2の実施の形態に係る有機薄膜太陽電池の製造方法について説明する。
(a)まず、純水、アセトン、エタノールで洗浄したガラス基板10(例えば、長さ約50mm×幅約50mm×厚さ約10.4mm)をICPエッチャ-に入れ、Oプラズマにより、表面の付着物を取り除く(ガラス基板表面処理)。なお、基板10をガラス基板で形成し、有機活性層へ光を効率的に誘導するために、ガラス表面に反射防止処理を実施しても良い。
(b)次に、図60に示すように、ガラス基板10上に、例えば、ITOからなる透明電極層11A1・11A2・11A3・11A4を形成する。図60に示すように、透明電極層11A1・11A2・11A3・11A4は溝部を挟んだストライプパターンで複数形成される。溝部の形成には、ウエットエッチング技術、レーザパターニング技術などを適用することができる。
(c)次に、図61に示すように、各透明電極層11A1・11A2・11A3上に、キャリア放出用バッファ層12Bを形成する。キャリア放出用バッファ層12Bの形成には、スピンコート技術、スプレー技術、スクリーン印刷技術などを適用することができる。ここで、キャリア放出用バッファ層12Bの形成工程では、例えば、PEDOT:PSSをスピンコートによって製膜を行い、水分除去のために、アニ-ルを120℃で約10分間行う。溝部の形成には、ウエットエッチング技術、レーザパターニング技術などを適用することができる。
(d)次に、図62に示すように、各キャリア放出用バッファ層12B上に、バルクヘテロ接合有機活性層14を形成する。バルクヘテロ接合有機活性層14の形成工程においては、例えば、P3HT:PCBMをスピンコートによって製膜を行う。
(e)次に、図63に示すように、バルクヘテロ接合有機活性層14上に、有機導電膜25を形成する。有機導電膜25の形成工程においては、例えば、PEDOT:PSSをスピンコートによって製膜を行い、水分除去のために、アニ-ルを120℃で約10分間行う。溝部の形成には、ウエットエッチング技術、レーザパターニング技術などを適用することができる。
(f)次に、図64に示すように、各有機導電膜25上に、第2電極層(カソード電極層)16K1・16K2・16K3を形成する。第2電極層16K1・16K2・16K3は、例えば、Agなどの金属粒子ペースト層をスクリーン印刷技術を適用してコーティングし、焼成して形成する。
(g)次に、図65に示すように、有機導電膜25、バルクヘテロ接合有機活性層14およびキャリア放出用バッファ層12Bをエッチング処理する。バルクヘテロ接合有機活性層14およびキャリア放出用バッファ層12Bをエッチング処理することによって、各セルを分離することができる。
(h)次に、図66に示すように、デバイス全面にパッシベーション層26を形成する。ここで、パッシベーション層26は、シリコン窒化膜などをCVD法で形成しても良い。シリコン窒化膜の厚さは、例えば、約0.5μm~1.5μm程度である。大気中の水分と酸素による劣化を抑えるため、CVDにより形成したSiN膜による封止を行うことで、さらに耐久性を向上可能である。
(i)次に、図67に示すように、パッシベーション層26上にカラー化バリア層28を形成する。ここでは、SiN膜で形成されたパッシベーション層26のスポットなどの不良を無くし、モジュールの背面を平滑化するために、UV硬化樹脂素材をスピンコート法などで塗布し、UV照射により硬化させる。なお、ここで、カラー化バリア層28には着色剤を添加した保護膜を用いることで、モジュールに任意の着色を可能にしている。
(j)次に、図68に示すように、カラー化バリア層28上にバックシートパッシベーション層30を形成する。バックシートパッシベーション層30は、例えば、シリコン窒化膜などをCVD法で形成しても良い。シリコン窒化膜の厚さは、例えば、約0.5μm~1.5μm程度である。大気中の水分と酸素による劣化を抑えるため、CVDにより形成したSiN膜による封止を行うことで、さらに耐久性を向上可能である。
With reference to FIGS. 60 to 68, a method of manufacturing an organic thin film solar cell according to the second embodiment in which a plurality (three in the illustrated example) are arranged in series will be described.
(A) First, a glass substrate 10 (for example, length of about 50 mm × width of about 50 mm × thickness of about 10.4 mm) washed with pure water, acetone, and ethanol is placed in an ICP etcher, and the surface of the substrate is clarified by O 2 plasma. Remove deposits (glass substrate surface treatment). In addition, in order to form the board | substrate 10 with a glass substrate and to guide | invade light to an organic active layer efficiently, you may implement an antireflection process on the glass surface.
(B) Next, as shown in FIG. 60, transparent electrode layers 11A 1 , 11A 2 , 11A 3 , 11A 4 made of, for example, ITO are formed on the glass substrate 10. As shown in FIG. 60, a plurality of transparent electrode layers 11A 1 , 11A 2 , 11A 3, and 11A 4 are formed in a stripe pattern with a groove portion interposed therebetween. A wet etching technique, a laser patterning technique, or the like can be applied to the formation of the groove.
(C) Next, as shown in FIG. 61, the carrier emission buffer layer 12B is formed on each of the transparent electrode layers 11A 1 , 11A 2 , 11A 3 . A spin coating technique, a spray technique, a screen printing technique, or the like can be applied to the formation of the carrier emission buffer layer 12B. Here, in the step of forming the carrier emission buffer layer 12B, for example, PEDOT: PSS is formed by spin coating, and annealing is performed at 120 ° C. for about 10 minutes to remove moisture. A wet etching technique, a laser patterning technique, or the like can be applied to the formation of the groove.
(D) Next, as shown in FIG. 62, the bulk heterojunction organic active layer 14 is formed on each carrier emission buffer layer 12B. In the formation process of the bulk heterojunction organic active layer 14, for example, P3HT: PCBM is formed by spin coating.
(E) Next, as shown in FIG. 63, an organic conductive film 25 is formed on the bulk heterojunction organic active layer 14. In the step of forming the organic conductive film 25, for example, PEDOT: PSS is formed by spin coating, and annealing is performed at 120 ° C. for about 10 minutes to remove moisture. A wet etching technique, a laser patterning technique, or the like can be applied to the formation of the groove.
(F) Next, as shown in FIG. 64, second electrode layers (cathode electrode layers) 16K 1 , 16K 2, and 16K 3 are formed on each organic conductive film 25. The second electrode layers 16K 1 , 16K 2, and 16K 3 are formed, for example, by coating a metal particle paste layer such as Ag using a screen printing technique and baking.
(G) Next, as shown in FIG. 65, the organic conductive film 25, the bulk heterojunction organic active layer 14, and the carrier emission buffer layer 12B are etched. Each cell can be separated by etching the bulk heterojunction organic active layer 14 and the carrier emission buffer layer 12B.
(H) Next, as shown in FIG. 66, a passivation layer 26 is formed on the entire surface of the device. Here, as the passivation layer 26, a silicon nitride film or the like may be formed by a CVD method. The thickness of the silicon nitride film is, for example, about 0.5 μm to 1.5 μm. In order to suppress deterioration due to moisture and oxygen in the atmosphere, durability can be further improved by sealing with a SiN film formed by CVD.
(I) Next, as shown in FIG. 67, a colored barrier layer 28 is formed on the passivation layer 26. Here, in order to eliminate defects such as spots on the passivation layer 26 formed of the SiN film and smooth the back surface of the module, a UV curable resin material is applied by a spin coat method or the like and cured by UV irradiation. Here, the colored barrier layer 28 uses a protective film to which a colorant is added, so that the module can be arbitrarily colored.
(J) Next, as shown in FIG. 68, a backsheet passivation layer 30 is formed on the colored barrier layer 28. For the backsheet passivation layer 30, for example, a silicon nitride film or the like may be formed by a CVD method. The thickness of the silicon nitride film is, for example, about 0.5 μm to 1.5 μm. In order to suppress deterioration due to moisture and oxygen in the atmosphere, durability can be further improved by sealing with a SiN film formed by CVD.
 尚、要求するモジュール耐久性に応じて、シリコン窒化膜などのパッシベーション層26を形成する工程(図66)・パッシベーション層26上にカラー化バリア層28を形成する工程(図67)を繰り返し、多重積層保護膜を形成しても良い。 Depending on the required module durability, the step of forming a passivation layer 26 such as a silicon nitride film (FIG. 66) and the step of forming a colorized barrier layer 28 on the passivation layer 26 (FIG. 67) are repeated to obtain multiple layers. A laminated protective film may be formed.
 以上の工程により、複数個(図の例では3個)直列に配置された第2の実施の形態に係る有機薄膜太陽電池を完成することができる。 Through the above steps, the organic thin-film solar cell according to the second embodiment arranged in series (three in the example in the figure) can be completed.
 (順構造型の有機薄膜太陽電池の作成手順)
 図69に示すフローチャートに基づいて、第2の実施の形態に係る順構造型の有機薄膜太陽電池の作成手順について説明する。
(a)ステップS1では、ITO基板10上に、PEDOT:PSSを塗布し、キャリア放出用バッファ層12Bを形成する。例えば、0.45μmPTFEメンブレンフィルターでPEDOT:PSS水溶液を濾過し、溶け残りや不純物を取り除き、PEDOT:PSS水溶液をITO基板10上に塗布し、スピンコート(例えば、4000rpm,30sec)する。
(b)ステップS2では、PEDOT:PSSを焼結する。即ち、製膜後、水分除去のために120℃、10分間加熱処理をする。なお、基板10全体に熱が伝わるように予めホットプレートで温めておいたシャーレを被せると良い。
(c)ステップS3では、P3HT:PCBMを塗布し、バルクヘテロ接合有機活性層14を形成する。具体的には、例えば、ジクロロベンゼン(o-dichlorobenzen)にP3HT16mgとPCBM16mgを溶解させる。溶液は、窒素雰囲気中の50℃で一晩攪拌を行った後に、50℃で1分間超音波処理を行う。溶液は窒素置換されたグローブボックス(<1ppmO、HO)内で洗浄処理したITO基板10上にスピンコートを行う。回転数は例えば550rpm・60secの後に2000rpm・1secである。
(d)ステップS4では、プレアニールを行う。即ち、ステップS3の塗布の後、120℃で10分間加熱を行う。なお、基板10全体に熱が伝わるように予めホットプレートで温めておいたシャーレを被せると良い。
(e)ステップS5では、バルクヘテロ接合有機活性層14上にTiO2からなるバッファ層15Bを塗布・焼成する。
(f)ステップS6では、バッファ層15B上に高導電性のPEDOT:PSSからなる有機導電膜25を塗布する。
(g)ステップS7では、高導電性のPEDOT:PSSからなる有機導電膜25を焼結する。即ち、製膜後、水分除去のために加熱処理をする。
(h)ステップS8では、有機導電膜25上にAg粒子ペースト層を塗布・焼成し、第2電極層16を形成する。
(i)ステップS9では、封止を行う。具体的には、デバイス全体に、パッシベーション層26・カラー化バリア層28・バックシートパッシベーション層30を順次積層化形成して、素子を封止する。
(Procedure for creating a forward-structured organic thin-film solar cell)
Based on the flowchart shown in FIG. 69, the preparation procedure of the forward structure type organic thin-film solar cell which concerns on 2nd Embodiment is demonstrated.
(A) In step S1, PEDOT: PSS is applied on the ITO substrate 10 to form a carrier emission buffer layer 12B. For example, the PEDOT: PSS aqueous solution is filtered with a 0.45 μm PTFE membrane filter to remove undissolved residues and impurities, and the PEDOT: PSS aqueous solution is applied onto the ITO substrate 10 and spin-coated (for example, 4000 rpm, 30 sec).
(B) In step S2, PEDOT: PSS is sintered. That is, after film formation, heat treatment is performed at 120 ° C. for 10 minutes to remove moisture. In addition, it is good to cover the petri dish previously warmed with the hot plate so that heat may be transmitted to the whole substrate 10.
(C) In step S3, P3HT: PCBM is applied to form the bulk heterojunction organic active layer. Specifically, for example, 16 mg of P3HT and 16 mg of PCBM are dissolved in dichlorobenzene (o-dichlorobenzen). The solution is stirred overnight at 50 ° C. in a nitrogen atmosphere and then sonicated at 50 ° C. for 1 minute. The solution is spin-coated on the ITO substrate 10 cleaned in a nitrogen-substituted glove box (<1 ppm O 2 , H 2 O). The number of rotations is, for example, 2000 rpm · 1 sec after 550 rpm · 60 sec.
(D) In step S4, pre-annealing is performed. That is, after the application in step S3, heating is performed at 120 ° C. for 10 minutes. In addition, it is good to cover the petri dish previously warmed with the hot plate so that heat may be transmitted to the whole substrate 10.
(E) In step S5, a buffer layer 15B made of TiO 2 is applied and baked on the bulk heterojunction organic active layer.
(F) In step S6, an organic conductive film 25 made of highly conductive PEDOT: PSS is applied on the buffer layer 15B.
(G) In step S7, the organic conductive film 25 made of highly conductive PEDOT: PSS is sintered. That is, after film formation, heat treatment is performed to remove moisture.
(H) In step S <b> 8, an Ag particle paste layer is applied and baked on the organic conductive film 25 to form the second electrode layer 16.
(I) In step S9, sealing is performed. Specifically, a passivation layer 26, a colored barrier layer 28, and a backsheet passivation layer 30 are sequentially laminated on the entire device to seal the element.
 (逆構造型の有機薄膜太陽電池の作成手順)
 図70に示すフローチャートに基づいて、第2の実施の形態に係る逆構造型の有機薄膜太陽電池の作成手順について説明する。
(a)ステップS11では、ITO基板10上に、TiO2若しくはZnOを塗布し、キャリア放出用バッファ層11Tを形成する。
(b)ステップS12では、キャリア放出用バッファ層11T上にP3HT:PCBMを塗布し、バルクヘテロ接合有機活性層14を形成する。具体的には、例えば、ジクロロベンゼン(o-dichlorobenzen)にP3HT16mgとPCBM16mgを溶解させる。溶液は、窒素雰囲気中の50℃で一晩攪拌を行った後に、50℃で1分間超音波処理を行う。溶液は窒素置換されたグローブボックス(<1ppmO、HO)内で洗浄処理したITO基板10のキャリア放出用バッファ層11T上にスピンコートを行う。回転数は例えば550rpm・60secの後に2000rpm・1secである。
(c)ステップS13では、プレアニールを行う。即ち、ステップS12の塗布の後、120℃で10分間加熱を行う。なお、ITO基板10全体に熱が伝わるように予めホットプレートで温めておいたシャーレを被せると良い。
(d)ステップS14では、バルクヘテロ接合有機活性層14上に高導電性のPEDOT:PSSからなる有機導電膜25を塗布する。
(e)ステップS15では、高導電性のPEDOT:PSSからなる有機導電膜25を焼結する。即ち、製膜後、水分除去のために加熱処理をする
(f)ステップS16では、有機導電膜25上にAg粒子ペースト層を塗布・焼成し、第2電極層16Aを形成する。
(g)ステップS17では、封止を行う。具体的には、デバイス全体に、パッシベーション層26・カラー化バリア層28・バックシートパッシベーション層30を順次積層化形成して、素子を封止する。
(Procedure for creating reverse structure type organic thin film solar cell)
Based on the flowchart shown in FIG. 70, a procedure for creating an inverted structure type organic thin-film solar cell according to the second embodiment will be described.
(A) In step S11, TiO 2 or ZnO is applied on the ITO substrate 10 to form a carrier emission buffer layer 11T.
(B) In step S12, P3HT: PCBM is applied on the carrier emission buffer layer 11T to form the bulk heterojunction organic active layer. Specifically, for example, 16 mg of P3HT and 16 mg of PCBM are dissolved in dichlorobenzene (o-dichlorobenzen). The solution is stirred overnight at 50 ° C. in a nitrogen atmosphere and then sonicated at 50 ° C. for 1 minute. The solution is spin-coated on the carrier emission buffer layer 11T of the ITO substrate 10 that has been cleaned in a nitrogen-substituted glove box (<1 ppm O 2 , H 2 O). The number of rotations is, for example, 2000 rpm · 1 sec after 550 rpm · 60 sec.
(C) In step S13, pre-annealing is performed. That is, after the application in step S12, heating is performed at 120 ° C. for 10 minutes. In addition, it is good to cover the petri dish previously heated with the hot plate so that heat may be transmitted to the ITO substrate 10 whole.
(D) In step S <b> 14, an organic conductive film 25 made of highly conductive PEDOT: PSS is applied on the bulk heterojunction organic active layer 14.
(E) In step S15, the organic conductive film 25 made of highly conductive PEDOT: PSS is sintered. That is, after film formation, heat treatment is performed to remove moisture (f) In step S16, an Ag particle paste layer is applied and baked on the organic conductive film 25 to form the second electrode layer 16A.
(G) In step S17, sealing is performed. Specifically, a passivation layer 26, a colored barrier layer 28, and a backsheet passivation layer 30 are sequentially laminated on the entire device to seal the element.
 (量産化工程)
 第2の実施の形態に係る順構造型の有機薄膜太陽電池は、図38、図39、図71、図72、および図42に示すように、複数のセルをマトリックス状に配置し、量産化工程によって製造することもできる。
(Mass production process)
As shown in FIG. 38, FIG. 39, FIG. 71, FIG. 72, and FIG. 42, the forward structure type organic thin film solar cell according to the second embodiment is mass-produced by arranging a plurality of cells in a matrix. It can also be manufactured by a process.
 以下、図38、図39、図71、図72、および図42を参照して説明する。
(a)まず、純水、アセトン、エタノールで洗浄したガラス基板10をICPエッチャ-に入れ、Oプラズマにより、表面の付着物を取り除く(ガラス基板表面処理)。なお、有機活性層へ光を効率的に誘導するために、ガラス基板10の表面に反射防止処理を実施しても良い。
(b)次に、図38と同様に、基板10上に、例えば、ITOからなる透明電極層11を形成する。図38に示す例では、透明電極層11は隙間を挟んだ2本のストライプパターンで形成される。隙間の形成には、ウエットエッチング技術、レーザパターニング技術などを適用することができる。
(c)次に、図39と同様に、基板10および透明電極層11上に、キャリア放出用バッファ層12Bを形成する。キャリア放出用バッファ層12Bの形成には、スピンコート技術、スプレー技術、スクリーン印刷技術などを適用することができる。ここで、キャリア放出用バッファ層12Bの形成工程では、PEDOT:PSSをスピンコートによって製膜を行い、水分除去のために、アニ-ルを120℃で約10分間行う。
(d)次に、図71に示すように、キャリア放出用バッファ層12B上に、バルクヘテロ接合有機活性層14を形成する。バルクヘテロ接合有機活性層14の形成工程においては、例えば、P3HT:PCBMをスピンコートによって製膜を行う。バルクヘテロ接合有機活性層14の厚さは、例えば、約100nm~約200nmである。
(e)次に、図72に示すように、バルクへテロ接合有機活性層14上に、バッファ層15Bおよび有機導電膜25を形成した後、2本のストライプパターンのカソード電極層16を透明電極層11と直交させて形成する。
Hereinafter, description will be made with reference to FIGS. 38, 39, 71, 72, and 42. FIG.
(A) First, a glass substrate 10 washed with pure water, acetone, and ethanol is placed in an ICP etcher, and surface deposits are removed by O 2 plasma (glass substrate surface treatment). In order to efficiently guide light to the organic active layer, an antireflection treatment may be performed on the surface of the glass substrate 10.
(B) Next, as in FIG. 38, the transparent electrode layer 11 made of, for example, ITO is formed on the substrate 10. In the example shown in FIG. 38, the transparent electrode layer 11 is formed in two stripe patterns with a gap therebetween. For forming the gap, a wet etching technique, a laser patterning technique, or the like can be applied.
(C) Next, similarly to FIG. 39, the carrier emission buffer layer 12 </ b> B is formed on the substrate 10 and the transparent electrode layer 11. A spin coating technique, a spray technique, a screen printing technique, or the like can be applied to the formation of the carrier emission buffer layer 12B. Here, in the step of forming the carrier release buffer layer 12B, PEDOT: PSS is formed by spin coating, and annealing is performed at 120 ° C. for about 10 minutes to remove moisture.
(D) Next, as shown in FIG. 71, the bulk heterojunction organic active layer 14 is formed on the carrier emission buffer layer 12B. In the formation process of the bulk heterojunction organic active layer 14, for example, P3HT: PCBM is formed by spin coating. The thickness of the bulk heterojunction organic active layer 14 is, for example, about 100 nm to about 200 nm.
(E) Next, as shown in FIG. 72, after forming the buffer layer 15B and the organic conductive film 25 on the bulk heterojunction organic active layer 14, the cathode electrode layer 16 having two stripe patterns is formed as a transparent electrode. It is formed perpendicular to the layer 11.
 カソード電極層16には、例えばAg粒子ペースト層をスクリーン印刷技術を適用して形成する。
(f)次に、図示は省略するが、デバイス全体に、パッシベーション層26・カラー化バリア層28・バックシートパッシベーション層30を順次積層化形成して、封止する。
For example, an Ag particle paste layer is formed on the cathode electrode layer 16 by applying a screen printing technique.
(F) Next, although not shown, the passivation layer 26, the colored barrier layer 28, and the backsheet passivation layer 30 are sequentially laminated on the entire device and sealed.
 以上の工程により、第2の実施の形態に係る順構造型の有機薄膜太陽電池を量産化することができる。 Through the above steps, the forward structure type organic thin film solar cell according to the second embodiment can be mass-produced.
 第2の実施の形態に係る順構造型の有機薄膜太陽電池において、複数のセルCijをマトリックス状に配置した模式的平面パターン構成例は、図42と同様に表される。アノード電極層11で形成されるアノード電極パターン…,Aj, Aj+1,…と、アノード電極パターン…, Aj, Aj+1,…と直交し、カソード電極層16で形成されるカソード電極パターン…,Ki-1, Ki, Ki+1,…の交差部にセル…Cij…が配置されている。アノード電極パターン…, Aj, Aj+1,…と、カソード電極パターン…, Ki-1, Ki, Ki+1,…を選択することによって、交差部に配置されたセル…Cij…の特性をそれぞれ別個に測定することもできる。尚、同様にして、第2の実施の形態に係る逆構造型の有機薄膜太陽電池を量産化することもできる。 In the forward structure type organic thin film solar cell according to the second embodiment, a schematic planar pattern configuration example in which a plurality of cells C ij are arranged in a matrix is expressed in the same manner as FIG. An anode electrode pattern formed by the anode electrode layer 11, A j , A j + 1 ,..., And an anode electrode pattern..., A j , A j + 1 ,. Cells... C ij are arranged at the intersections of the cathode electrode patterns..., K i−1 , K i , K i + 1 ,. By selecting the anode electrode pattern ..., A j , A j + 1 , ... and the cathode electrode pattern ..., K i-1 , K i , K i + 1 , ..., cells arranged at the intersections ... C It is also possible to separately measure the characteristics of ij . In the same manner, mass production of the inverted structure type organic thin film solar cell according to the second embodiment can be achieved.
 第2の実施の形態に係る逆構造型の有機薄膜太陽電池においても、上記の量産化工程と同様の工程を適用可能である。 Also in the reverse structure type organic thin film solar cell according to the second embodiment, the same process as the mass production process can be applied.
 (スピンコート法)
 第2の実施の形態に係る順構造型の有機薄膜太陽電池の製造方法において、キャリア放出用バッファ層12B、バルクへテロ接合有機活性層14および有機導電膜25を形成する際のスピンコート法を示す概略は図73(a)に示すように表され、形成されたキャリア放出用バッファ層12B、バルクへテロ接合有機活性層14および有機導電膜25の例を示す模式的鳥瞰構成は、図73(b)に示すように表される。
(Spin coating method)
In the method for manufacturing a forward structure type organic thin film solar cell according to the second embodiment, a spin coating method for forming the carrier emission buffer layer 12B, the bulk heterojunction organic active layer 14 and the organic conductive film 25 is performed. The outline shown is expressed as shown in FIG. 73A, and a schematic bird's-eye view configuration showing an example of the formed carrier emission buffer layer 12B, the bulk heterojunction organic active layer 14 and the organic conductive film 25 is shown in FIG. It is expressed as shown in (b).
 例えば、第2の実施の形態に係る順構造型の有機薄膜太陽電池において、比較的小面積の素子を作成する場合には、図73(a)に示すようなスピンコート法を適用することができる。 For example, in the case of producing a relatively small area element in the forward structure type organic thin film solar cell according to the second embodiment, a spin coating method as shown in FIG. 73 (a) may be applied. it can.
 即ち、図73(a)に示すように、モータ等の駆動源に接続される高速回転可能なスピンドル62と、スピンドル62に固設され基板10を載置するテーブル63とを備えるスピンコーターが用いられる。 That is, as shown in FIG. 73A, a spin coater including a spindle 62 that can be rotated at a high speed and connected to a drive source such as a motor, and a table 63 that is fixed to the spindle 62 and on which the substrate 10 is placed is used. It is done.
 そして、テーブル63上に基板10を載置し、モータ等の駆動源を稼働させてテーブル63を例えば2000~4000rpmで矢印A、B方向に高速回転させる。次いで、スポイト60を用いて、キャリア放出用バッファ層12Bやバルクへテロ接合有機活性層14、有機導電膜25を形成する溶液の液滴64を落下させる。これにより、液滴64は遠心力により基板10上に均一な厚さのキャリア放出用バッファ層12B、バルクへテロ接合有機活性層14および有機導電膜25(図73(b)参照)を形成することができる。 Then, the substrate 10 is placed on the table 63, a driving source such as a motor is operated, and the table 63 is rotated at a high speed in the directions of arrows A and B, for example, at 2000 to 4000 rpm. Next, using a dropper 60, a droplet 64 of a solution that forms the carrier emission buffer layer 12 </ b> B, the bulk heterojunction organic active layer 14, and the organic conductive film 25 is dropped. As a result, the droplet 64 forms the carrier emission buffer layer 12B, the bulk heterojunction organic active layer 14 and the organic conductive film 25 (see FIG. 73B) having a uniform thickness on the substrate 10 by centrifugal force. be able to.
 (実験結果)
 基本技術に係る順構造型の有機薄膜太陽電池であって、透過型電子顕微鏡(TEM:Transmission Electron Microscope)によるセル断面観察結果は、図74(a)に示すように表され、走査型電子顕微鏡(SEM:Scanning Electron Microscope)によるセル断面観察結果は、図74(b)に示すように表される。図74(a)および図74(b)に示された構造は、第2電極層として真空蒸着法により、Alを形成した例であり、図1(a)に示された構造に対応している。すなわち、図74(a)および図74(b)に示すように、GLASS(10)/ITO(11A)/PEDOT:PSS(12B)/P3HT:PCBM(14)/Al(16K)の積層構造を備える。Al(16K)上には、W/Pt層が形成されている。なお、Al(16K)とP3HT:PCBM(14)との間には、コンタクト用バッファ層16Tが形成されているが表示を省略している。
(Experimental result)
FIG. 74 (a) shows the result of cell cross-sectional observation by a transmission electron microscope (TEM), which is a forward structure type organic thin film solar cell according to the basic technology. The cell cross-section observation result by (SEM: Scanning Electron Microscope) is expressed as shown in FIG. The structure shown in FIGS. 74 (a) and 74 (b) is an example in which Al is formed as the second electrode layer by vacuum deposition, and corresponds to the structure shown in FIG. 1 (a). Yes. That is, as shown in FIGS. 74 (a) and 74 (b), a laminated structure of GLASS (10) / ITO (11A) / PEDOT: PSS (12B) / P3HT: PCBM (14) / Al (16K) is used. Prepare. A W / Pt layer is formed on Al (16K). A contact buffer layer 16T is formed between Al (16K) and P3HT: PCBM (14), but the display is omitted.
 同様に、基本技術に係る順構造型の有機薄膜太陽電池であって、TEMによるセル断面観察結果は、図75(a)に示すように表され、SEMによるセル断面観察結果は、図75(b)に示すように表される。図75(a)および図75(b)に示された構造は、第2電極層としてスクリーン印刷法により、Ag粒子ペースト層を形成した例であり、実質的に図1(b)に示された構造に対応している。すなわち、図75(a)および図75(b)に示すように、GLASS(10)/ITO(11A)/P3HT:PCBM(14)/Agペースト層(16K)の積層構造を備える。ITO(11A)とP3HT:PCBM(14)との間には、キャリア放出用バッファ層11Tが形成されているが表示を省略している。なお、また、図75に示された実験結果を得たサンプルの例では、図1(b)における有機導電膜25の形成を省略している。図75(a)および図75(b)に示すように、Ag粒子ペースト層(16K)からのAg粒子のマイグレーションによって、Ag粒子は、ITO(11A)近傍まで、P3HT:PCBM(14)の深さ方向の全域に拡散されている。 Similarly, in the forward structure type organic thin film solar cell according to the basic technology, the cell cross-section observation result by TEM is expressed as shown in FIG. 75A, and the cell cross-section observation result by SEM is shown in FIG. It is expressed as shown in b). The structure shown in FIGS. 75A and 75B is an example in which an Ag particle paste layer is formed as a second electrode layer by screen printing, and is substantially shown in FIG. Corresponds to the structure. That is, as shown in FIGS. 75A and 75B, a laminated structure of GLASS (10) / ITO (11A) / P3HT: PCBM (14) / Ag paste layer (16K) is provided. A carrier emitting buffer layer 11T is formed between the ITO (11A) and the P3HT: PCBM (14), but the display is omitted. In addition, in the example of the sample which obtained the experimental result shown by FIG. 75, formation of the organic electrically conductive film 25 in FIG.1 (b) is abbreviate | omitted. As shown in FIG. 75 (a) and FIG. 75 (b), due to the migration of the Ag particles from the Ag particle paste layer (16K), the Ag particles reach the vicinity of ITO (11A) and the depth of P3HT: PCBM (14). It is diffused throughout the entire length.
 また、第2の実施の形態に係る順構造型の有機薄膜太陽電池であって、TEMによるセル断面観察結果は、図76(a)に示すように表され、SEMによるセル断面観察結果は、図76(b)に示すように表される。図76(a)および図76(b)に示された構造は、スクリーン印刷法により有機導電膜25を形成し、その後、第2電極層としてスクリーン印刷法により、Ag粒子ペースト層からなる第2電極層16Kを形成した例であり、実質的に図3に示された構造に対応している。すなわち、図76(a)および図76(b)に示すように、GLASS(10)/ITO(11A)/P3HT:PCBM(14)/PEDOT:PSS(25)/Agペースト層(16K)の積層構造を備える。ITO(11A)とP3HT:PCBM(14)との間には、キャリア放出用バッファ層12Bが形成されているが、図76の例では、表示を省略している。また、図76に示された実験結果を得たサンプルの例では、図76に示すように、P3HT:PCBM(14)とPEDOT:PSS(25)間には、ギャップ(GAP)が存在しており、そのGAP内には、粒形状のPEDOT:PSSも観測されている。なお、PEDOT:PSS(25)とP3HT:PCBM(14)との間には、バッファ層15Bが形成されているが、図76の例では、表示を省略している。第2の実施の形態に係る有機薄膜太陽電池(順構造型)においては、PEDOT:PSS(25)を相対的に厚く形成しているため、図76(a)および図76(b)に示すように、Ag粒子ペースト層(16K)からのAg粒子のマイグレーションによっても、Ag粒子は、P3HT:PCBM(14)には、到達していない。 Further, in the forward structure type organic thin film solar cell according to the second embodiment, the cell cross-section observation result by TEM is expressed as shown in FIG. 76 (a), and the cell cross-section observation result by SEM is It is expressed as shown in FIG. In the structure shown in FIGS. 76A and 76B, an organic conductive film 25 is formed by a screen printing method, and then a second electrode layer made of an Ag particle paste layer is formed by a screen printing method. This is an example in which the electrode layer 16K is formed, and substantially corresponds to the structure shown in FIG. That is, as shown in FIGS. 76 (a) and 76 (b), the lamination of GLASS (10) / ITO (11A) / P3HT: PCBM (14) / PEDOT: PSS (25) / Ag paste layer (16K). Provide structure. A carrier emission buffer layer 12B is formed between the ITO (11A) and the P3HT: PCBM (14), but the display is omitted in the example of FIG. In the example of the sample obtained from the experimental result shown in FIG. 76, there is a gap (GAP) between P3HT: PCBM (14) and PEDOT: PSS (25) as shown in FIG. In the GAP, grain-shaped PEDOT: PSS is also observed. A buffer layer 15B is formed between PEDOT: PSS (25) and P3HT: PCBM (14), but the display is omitted in the example of FIG. In the organic thin film solar cell (forward structure type) according to the second embodiment, since PEDOT: PSS (25) is formed relatively thick, it is shown in FIGS. 76 (a) and 76 (b). Thus, Ag particle | grains have not reached | attained P3HT: PCBM (14) also by migration of Ag particle | grains from an Ag particle paste layer (16K).
 同様に、第2の実施の形態に係る順構造型の有機薄膜太陽電池であって、SEMによるセル断面観察結果は、図77に示すように表される。図77に示された構造は、第2電極層16Kとしてスクリーン印刷法により、Ag粒子ペースト層を形成したサンプルの熱処理後の最表面部分を示す例である。このサンプルは、最表面部分のAg粒子ペースト層16Kを観察するために、PEDOT:PSS25の形成は省略している。この最表面部分は、図77に示すように、GLASS(10)/ITO(11A)/P3HT:PCBM(14)/Agペースト層(16K)の積層構造を備える。 Similarly, in the forward structure type organic thin film solar cell according to the second embodiment, the cell cross-sectional observation result by SEM is expressed as shown in FIG. The structure shown in FIG. 77 is an example showing the outermost surface portion after heat treatment of a sample in which an Ag particle paste layer is formed as the second electrode layer 16K by screen printing. In this sample, the formation of PEDOT: PSS25 is omitted in order to observe the Ag particle paste layer 16K in the outermost surface portion. As shown in FIG. 77, the outermost surface portion has a laminated structure of GLASS (10) / ITO (11A) / P3HT: PCBM (14) / Ag paste layer (16K).
 以上説明したように、本第2の実施の形態によれば、発電層内部への金属マイグレーションを抑制し、製造コストの低減および信頼性の向上可能な有機薄膜太陽電池およびその製造方法を提供することができる。 As described above, according to the second embodiment, there is provided an organic thin-film solar cell that can suppress metal migration into the power generation layer, reduce manufacturing cost, and improve reliability, and a method for manufacturing the same. be able to.
 [その他の実施の形態]
 上記のように、実施の形態によって記載したが、この開示の一部をなす論述および図面は例示的なものであり、この発明を限定するものであると理解すべきではない。この開示から当業者には様々な代替実施の形態、実施例および運用技術が明らかとなろう。
[Other embodiments]
As described above, the embodiments have been described. However, it should be understood that the descriptions and drawings constituting a part of this disclosure are illustrative and do not limit the present invention. From this disclosure, various alternative embodiments, examples and operational techniques will be apparent to those skilled in the art.
 このように、本発明はここでは記載していない様々な実施の形態などを含む。 Thus, the present invention includes various embodiments that are not described herein.
 本発明の有機薄膜太陽電池は、安価で耐久性が向上し、かつ軽量化・薄層化可能であることから、太陽光発電パネル、モバイル機器用充電装置や太陽エネルギーシステムなど幅広い分野に適用可能である。 The organic thin-film solar cell of the present invention is inexpensive, has improved durability, and can be reduced in weight and thickness, so it can be applied to a wide range of fields such as solar power generation panels, mobile device charging devices and solar energy systems. It is.
1、1A、1B、2A、2B、2C、OPV1、OPV2、OPV3、OPV4…有機薄膜太陽電池
10…基板(ITO基板)
11、11A、11B、11A1、11A2、11A3、11A4…第1電極層(アノード電極層、透明電極層)
11K…第1電極層(カソード電極層、透明電極層)
11T、12B…キャリア放出用バッファ層
12…第1導電型輸送層(正孔輸送層)
13、131、132、133…第1導電型有機活性層(p型有機活性層)
14、14A…バルクヘテロ接合有機活性層(P3HT:PCBM)
15…第2導電型有機活性層(n型有機活性層)
15B…バッファ層(TiO2
16、16K、16K1、16K2、16K3、16K4…第2電極層(カソード電極層、Ag粒子ペースト層)
16A…第2電極層(アノード電極層、Ag粒子ペースト層)
16T…コンタクト用バッファ層(TiO2
17…第2導電型輸送層(電子輸送層)
18…金属ナノ粒子層
20…金型
23…溝部
24…不動態膜(酸化膜)
25…有機導電膜(高導電性(HC)PEDOT:PSS)
25S…金属粒子侵入層
26、31…パッシベーション層
28…カラー化バリア層
30…バックシートパッシベーション層
33…バックシート層
36、36P…ガラスフリット
36U…樹脂(熱硬化性樹脂、UV硬化樹脂)
38GU…ゲッタリング用シート乾燥剤
40…封止層(封止ガラス、ガラスプレート、カバーガラス)
60…スポイト
62…スピンドル
63…テーブル
64、76…液滴
70…基板
72、74…絶縁層
78…インクジェット装置
80…インクジェットノズル
90…溶液
92…容器
94…シリンダ
96…圧着ローラ
98…フィルム
P…金属粒子侵入層25Sの厚さ
C…有機導電膜25の厚さ
A(-)…アノード端子
K(+)…カソード端子
1, 1A, 1B, 2A, 2B, 2C, OPV 1 , OPV 2 , OPV 3 , OPV 4 ... Organic thin film solar cell 10 ... Substrate (ITO substrate)
11,11A, 11B, 11A 1, 11A 2, 11A 3, 11A 4 ... first electrode layer (anode electrode layer, a transparent electrode layer)
11K ... 1st electrode layer (cathode electrode layer, transparent electrode layer)
11T, 12B ... carrier emission buffer layer 12 ... first conductivity type transport layer (hole transport layer)
13, 13 1 , 13 2 , 13 3 ... First conductive organic active layer (p-type organic active layer)
14, 14A ... Bulk heterojunction organic active layer (P3HT: PCBM)
15 ... 2nd conductivity type organic active layer (n-type organic active layer)
15B: Buffer layer (TiO 2 )
16,16K, 16K 1, 16K 2, 16K 3, 16K 4 ... second electrode layer (cathode electrode layer, Ag particle paste layer)
16A ... Second electrode layer (anode electrode layer, Ag particle paste layer)
16T: Buffer layer for contact (TiO 2 )
17 ... 2nd conductivity type transport layer (electron transport layer)
18 ... Metal nanoparticle layer 20 ... Mold 23 ... Groove 24 ... Passive film (oxide film)
25. Organic conductive film (High conductivity (HC) PEDOT: PSS)
25S ... metal particle intrusion layer 26, 31 ... passivation layer 28 ... colored barrier layer 30 ... backsheet passivation layer 33 ... backsheet layer 36, 36P ... glass frit 36U ... resin (thermosetting resin, UV curable resin)
38GU ... sheet desiccant for gettering 40 ... sealing layer (sealing glass, glass plate, cover glass)
60 ... eyedropper 62 ... spindle 63 ... table 64, 76 ... droplet 70 ... substrate 72, 74: insulating layer 78 ... inkjet apparatus 80 ... inkjet nozzles 90 ... solution 92 ... container 94 ... cylinder 96 ... crimping rollers 98 ... Film W P ... thickness W C of metal particle intrusion layer 25S ... thickness A (-) of organic conductive film 25 ... anode terminal K (+) ... cathode terminal

Claims (65)

  1.  基板と、
     前記基板上に配置された第1電極層と、
     前記第1電極層上に配置された正孔輸送層と、
     前記正孔輸送層上に配置された第1有機活性層と、
     前記第1有機活性層上の端面部位に配置された第2有機活性層と、
     前記第1有機活性層および前記第2有機活性層上に配置された第2電極層と、
     前記基板と対向し、前記第1電極層、前記正孔輸送層、前記第1有機活性層、前記第2有機活性層および前記第2電極層からなる積層構造を封止する封止ガラスと、
     前記封止ガラスと前記基板との間に配置され、前記積層構造を封止する封止部と
     を備えることを特徴とする有機薄膜太陽電池。
    A substrate,
    A first electrode layer disposed on the substrate;
    A hole transport layer disposed on the first electrode layer;
    A first organic active layer disposed on the hole transport layer;
    A second organic active layer disposed at an end surface portion on the first organic active layer;
    A second electrode layer disposed on the first organic active layer and the second organic active layer;
    A sealing glass that faces the substrate and seals a laminated structure including the first electrode layer, the hole transport layer, the first organic active layer, the second organic active layer, and the second electrode layer;
    An organic thin-film solar cell comprising: a sealing portion that is disposed between the sealing glass and the substrate and seals the laminated structure.
  2.  前記第1有機活性層および前記第2有機活性層は、バルクへテロ接合有機活性層で形成されたことを特徴とする請求項1に記載の有機薄膜太陽電池。 The organic thin-film solar cell according to claim 1, wherein the first organic active layer and the second organic active layer are formed of a bulk heterojunction organic active layer.
  3.  前記第1有機活性層および前記第2有機活性層は、pn接合を積層化したモスアイ構造を備えることを特徴とする請求項1に記載の有機薄膜太陽電池。 The organic thin-film solar cell according to claim 1, wherein the first organic active layer and the second organic active layer have a moth-eye structure in which pn junctions are stacked.
  4.  前記封止部は、第1樹脂からなることを特徴とする請求項1または2に記載の有機薄膜太陽電池。 The organic thin-film solar cell according to claim 1 or 2, wherein the sealing portion is made of a first resin.
  5.  前記第1樹脂は、エポキシ樹脂、光硬化樹脂、若しくは熱硬化樹脂からなることを特徴とする請求項4に記載の有機薄膜太陽電池。 The organic thin-film solar cell according to claim 4, wherein the first resin is made of an epoxy resin, a photo-curing resin, or a thermosetting resin.
  6.  前記封止ガラスは、カバーガラスからなることを特徴とする請求項1または2に記載の有機薄膜太陽電池。 The organic thin-film solar cell according to claim 1 or 2, wherein the sealing glass is made of a cover glass.
  7.  前記封止ガラスは、掘り込みガラスからなることを特徴とする請求項1または2に記載の有機薄膜太陽電池。 The organic thin-film solar cell according to claim 1 or 2, wherein the sealing glass is made of dug glass.
  8.  前記封止部は、ガラスフリットからなることを特徴とする請求項1または2に記載の有機薄膜太陽電池。 The organic thin-film solar cell according to claim 1 or 2, wherein the sealing portion is made of glass frit.
  9.  前記ガラスフリットは、前記封止ガラス上に配置されることを特徴とする請求項8に記載の有機薄膜太陽電池。 The organic thin-film solar cell according to claim 8, wherein the glass frit is disposed on the sealing glass.
  10.  前記ガラスフリットは、紫外線に対して透明であることを特徴とする請求項8または9に記載の有機薄膜太陽電池。 The organic thin film solar cell according to claim 8 or 9, wherein the glass frit is transparent to ultraviolet rays.
  11.  前記ガラスフリットは、亜鉛系ガラスを主成分とすることを特徴とする請求項10に記載の有機薄膜太陽電池。 The organic thin-film solar cell according to claim 10, wherein the glass frit contains zinc-based glass as a main component.
  12.  前記ガラスフリットは、楔形形状、テーパー形状、もしくは前記封止ガラスから離れるに従って断面積が小さくなる紡錘形のテーパー形状を有することを特徴とする請求項8~11のいずれか1項に記載の有機薄膜太陽電池。 The organic thin film according to any one of claims 8 to 11, wherein the glass frit has a wedge-shaped shape, a tapered shape, or a spindle-shaped tapered shape in which a cross-sectional area decreases as the distance from the sealing glass increases. Solar cell.
  13.  前記ガラスフリットは、複数本形成されることを特徴とする請求項12に記載の有機薄膜太陽電池。 The organic thin film solar cell according to claim 12, wherein a plurality of the glass frit is formed.
  14.  前記ガラスフリットと前記基板とを接続する第2樹脂を備えることを特徴とする請求項8~13のいずれか1項に記載の有機薄膜太陽電池。 The organic thin-film solar cell according to any one of claims 8 to 13, further comprising a second resin that connects the glass frit and the substrate.
  15.  前記ガラスフリットは、前記第2樹脂で被覆されることを特徴とする請求項14に記載の有機薄膜太陽電池。 The organic thin-film solar cell according to claim 14, wherein the glass frit is covered with the second resin.
  16.  前記第2樹脂は、紫外線硬化樹脂若しくは熱硬化樹脂で形成されたことを特徴とする請求項15に記載の有機薄膜太陽電池。 The organic thin-film solar cell according to claim 15, wherein the second resin is formed of an ultraviolet curable resin or a thermosetting resin.
  17.  前記ガラスフリットは、多孔質性を有し、前記第2樹脂は、前記ガラスフリット内に浸み込み可能であることを特徴とする請求項8~16のいずれか1項に記載の有機薄膜太陽電池。 The organic thin film solar cell according to any one of claims 8 to 16, wherein the glass frit has a porous property, and the second resin can be immersed in the glass frit. battery.
  18.  前記第2電極層の表面に配置された不動態膜を備えることを特徴とする請求項1~17のいずれか1項に記載の有機薄膜太陽電池。 The organic thin-film solar cell according to any one of claims 1 to 17, further comprising a passive film disposed on a surface of the second electrode layer.
  19.  前記不動態膜は、前記第2電極層の酸化膜であることを特徴とする請求項18に記載の有機薄膜太陽電池。 The organic thin-film solar cell according to claim 18, wherein the passive film is an oxide film of the second electrode layer.
  20.  前記酸化膜は、前記第2電極層の表面を酸素プラズマ処理により形成されることを特徴とする請求項19に記載の有機薄膜太陽電池。 The organic thin film solar cell according to claim 19, wherein the oxide film is formed by oxygen plasma treatment on a surface of the second electrode layer.
  21.  前記酸化膜上に配置されたパッシベーション膜を備えることを特徴とする請求項19または20に記載の有機薄膜太陽電池。 21. The organic thin-film solar cell according to claim 19 or 20, further comprising a passivation film disposed on the oxide film.
  22.  前記パッシベーション膜は、SiN膜若しくはSiON膜であることを特徴とする請求項21に記載の有機薄膜太陽電池。 The organic thin film solar cell according to claim 21, wherein the passivation film is a SiN film or a SiON film.
  23.  前記封止ガラスの前記基板と対向する内壁面にゲッタリング用シート乾燥剤を備えることを特徴とする請求項1~22のいずれか1項に記載の有機薄膜太陽電池。 The organic thin-film solar cell according to any one of claims 1 to 22, wherein a gettering sheet desiccant is provided on an inner wall surface of the sealing glass facing the substrate.
  24.  請求項1~23のいずれか1項に記載の有機薄膜太陽電池からなるセルを複数個直列接続したことを特徴とする有機薄膜太陽電池。 An organic thin-film solar battery comprising a plurality of cells made of the organic thin-film solar battery according to any one of claims 1 to 23 connected in series.
  25.  基板上に第1電極を形成する工程と、
     前記第1電極層上に正孔輸送層を形成する工程と、
     前記正孔輸送層上に第1有機活性層を形成する工程と、
     前記第1上の端面部位に第2有機活性層を形成する工程と、
     前記第1有機活性層および前記第2有機活性層上に第2電極層を形成する工程と、
     封止ガラス上にガラスフリットを形成する工程と、
     前記ガラスフリットの先端部分に第3樹脂を形成する工程と、
     前記封止ガラスおよび前記基板を対向させ、前記ガラスフリットと前記第3樹脂によって、前記第1電極層、前記正孔輸送層、前記第1有機活性層および前記第2有機活性層、および前記第2電極層からなる積層構造を封止する工程と
     を有することを特徴とする有機薄膜太陽電池の製造方法。
    Forming a first electrode on a substrate;
    Forming a hole transport layer on the first electrode layer;
    Forming a first organic active layer on the hole transport layer;
    Forming a second organic active layer on the first end surface portion;
    Forming a second electrode layer on the first organic active layer and the second organic active layer;
    Forming a glass frit on the sealing glass;
    Forming a third resin on the tip of the glass frit;
    The sealing glass and the substrate are opposed to each other, and the first electrode layer, the hole transport layer, the first organic active layer, the second organic active layer, and the first resin are formed by the glass frit and the third resin. And a step of sealing a laminated structure composed of two electrode layers.
  26.  前記第1有機活性層および前記第2有機活性層は、バルクへテロ接合有機活性層で形成されたことを特徴とする請求項25に記載の有機薄膜太陽電池の製造方法。 The method of manufacturing an organic thin-film solar cell according to claim 25, wherein the first organic active layer and the second organic active layer are formed of a bulk heterojunction organic active layer.
  27.  前記第1有機活性層および前記第2有機活性層を形成する工程は、インクジェット法を用いたことを特徴とする請求項26に記載の有機薄膜太陽電池の製造方法。 27. The method of manufacturing an organic thin-film solar cell according to claim 26, wherein the step of forming the first organic active layer and the second organic active layer uses an inkjet method.
  28.  前記ガラスフリットを形成する工程は、前記封止ガラス上にスクリーン印刷により実施されることを特徴とする請求項25~27のいずれか1項に記載の有機薄膜太陽電池の製造方法。 The method for producing an organic thin-film solar cell according to any one of claims 25 to 27, wherein the step of forming the glass frit is performed by screen printing on the sealing glass.
  29.  前記第2電極層の表面に不動態膜を形成する工程を更に有することを特徴とする請求項25~28のいずれか1項に記載の有機薄膜太陽電池の製造方法。 The method for producing an organic thin-film solar cell according to any one of claims 25 to 28, further comprising a step of forming a passive film on the surface of the second electrode layer.
  30.  前記不動態膜を形成する工程は、
     前記第2電極層を酸素プラズマ処理する工程を有することを特徴とする請求項29に記載の有機薄膜太陽電池の製造方法。
    The step of forming the passive film comprises
    30. The method of manufacturing an organic thin film solar cell according to claim 29, further comprising a step of performing oxygen plasma treatment on the second electrode layer.
  31.  基板と、
     前記基板上に配置された第1電極層と、
     前記第1電極層上に配置されたキャリア放出用バッファ層と、
     前記キャリア放出用バッファ層上に配置されたバルクへテロ接合有機活性層と、
     前記バルクへテロ接合有機活性層上に配置された有機導電膜と、
     前記有機導電膜上に配置された第2電極層と
     を備えることを特徴とする有機薄膜太陽電池。
    A substrate,
    A first electrode layer disposed on the substrate;
    A carrier emission buffer layer disposed on the first electrode layer;
    A bulk heterojunction organic active layer disposed on the carrier release buffer layer;
    An organic conductive film disposed on the bulk heterojunction organic active layer;
    An organic thin film solar cell comprising: a second electrode layer disposed on the organic conductive film.
  32.  前記第2電極層は、金属粒子ペースト層で塗布形成されることを特徴とする請求項31に記載の有機薄膜太陽電池。 32. The organic thin-film solar cell according to claim 31, wherein the second electrode layer is formed by coating with a metal particle paste layer.
  33.  前記有機導電膜の厚さは、前記第2電極層から前記有機導電膜への金属粒子のマイグレーションにより形成される金属粒子侵入層の厚さよりも厚いことを特徴とする請求項32に記載の有機薄膜太陽電池。 33. The organic material according to claim 32, wherein a thickness of the organic conductive film is thicker than a thickness of a metal particle intrusion layer formed by migration of metal particles from the second electrode layer to the organic conductive film. Thin film solar cell.
  34.  前記金属粒子ペースト層は、Ag粒子ペースト層であることを特徴とする請求項32または33に記載の有機薄膜太陽電池。 34. The organic thin film solar cell according to claim 32 or 33, wherein the metal particle paste layer is an Ag particle paste layer.
  35.  前記基板は、ガラス基板で形成されることを特徴とする請求項31~34のいずれか1項に記載の有機薄膜太陽電池。 The organic thin-film solar cell according to any one of claims 31 to 34, wherein the substrate is formed of a glass substrate.
  36.  前記第1電極層は、ITOで形成されることを特徴とする請求項31~35のいずれか1項に記載の有機薄膜太陽電池。 The organic thin-film solar cell according to any one of claims 31 to 35, wherein the first electrode layer is made of ITO.
  37.  前記バルクへテロ接合有機活性層は、P3HT:PCBMで形成されることを特徴とする請求項31~36のいずれか1項に記載の有機薄膜太陽電池。 The organic thin-film solar cell according to any one of claims 31 to 36, wherein the bulk heterojunction organic active layer is formed of P3HT: PCBM.
  38.  前記有機導電膜は、PEDOT:PSS形成されることを特徴とする請求項31~37のいずれか1項に記載の有機薄膜太陽電池。 The organic thin-film solar cell according to any one of claims 31 to 37, wherein the organic conductive film is formed by PEDOT: PSS.
  39.  前記有機導電膜を形成するPEDOT:PSSの組成比は、1:2.5であることを特徴とする請求項38に記載の有機薄膜太陽電池。 The organic thin film solar cell according to claim 38, wherein the composition ratio of PEDOT: PSS forming the organic conductive film is 1: 2.5.
  40.  前記キャリア放出用バッファ層は、前記第1電極層に正孔を放出することを特徴とする請求項31~39のいずれか1項に記載の有機薄膜太陽電池。 The organic thin-film solar cell according to any one of claims 31 to 39, wherein the carrier emission buffer layer emits holes to the first electrode layer.
  41.  前記キャリア放出用バッファ層は、PEDOT:PSSで形成されることを特徴とする請求項40に記載の有機薄膜太陽電池。 41. The organic thin film solar cell according to claim 40, wherein the carrier emission buffer layer is formed of PEDOT: PSS.
  42.  前記キャリア放出用バッファ層を形成するPEDOT:PSSの組成比は、1:6であることを特徴とする請求項41に記載の有機薄膜太陽電池。 42. The organic thin-film solar cell according to claim 41, wherein a composition ratio of PEDOT: PSS forming the buffer layer for carrier emission is 1: 6.
  43.  前記キャリア放出用バッファ層を形成するPEDOT:PSSにおけるPEDOTに対するPSS組成比は、前記有機導電膜を形成するPEDOT:PSSにおけるPEDOTに対するPSS組成比よりも大きいことを特徴とする請求項41に記載の有機薄膜太陽電池。 The PSS composition ratio with respect to PEDOT in PEDOT: PSS that forms the carrier emission buffer layer is larger than the PSS composition ratio with respect to PEDOT in PEDOT: PSS that forms the organic conductive film. Organic thin film solar cell.
  44.  前記バルクへテロ接合有機活性層と前記有機導電膜との間には、バッファ層を備えることを特徴とする請求項40に記載の有機薄膜太陽電池。 The organic thin-film solar cell according to claim 40, further comprising a buffer layer between the bulk heterojunction organic active layer and the organic conductive film.
  45.  前記バッファ層は、前記バルクへテロ接合有機活性層と前記有機導電膜との間にオーミックコンタクトを得るための層であることを特徴とする請求項44に記載の有機薄膜太陽電池。 45. The organic thin film solar cell according to claim 44, wherein the buffer layer is a layer for obtaining an ohmic contact between the bulk heterojunction organic active layer and the organic conductive film.
  46.  前記バッファ層は、塗布形成可能であることを特徴とする請求項44または45に記載の有機薄膜太陽電池。 46. The organic thin-film solar cell according to claim 44 or 45, wherein the buffer layer can be formed by coating.
  47.  前記バッファ層は、TiO2で形成されることを特徴とする請求項45または46に記載の有機薄膜太陽電池。 The buffer layer, an organic thin film solar cell according to claim 45 or 46, characterized in that it is formed by TiO 2.
  48.  前記キャリア放出用バッファ層は、前記第1電極層に電子を放出することを特徴とする請求項31~39のいずれか1項に記載の有機薄膜太陽電池。 The organic thin-film solar cell according to any one of claims 31 to 39, wherein the carrier emission buffer layer emits electrons to the first electrode layer.
  49.  前記キャリア放出用バッファ層は、TiO2若しくはZnOで形成されることを特徴とする請求項48に記載の有機薄膜太陽電池。 The organic thin-film solar cell according to claim 48, wherein the carrier emission buffer layer is made of TiO 2 or ZnO.
  50.  前記第2電極層上に配置されたパッシベーション層と、
     前記パッシベーション層上に配置されたカラー化バリア層と、
     前記カラー化バリア層上に配置されたバックシートパッシベーション層と
     を備えることを特徴とする請求項31~49のいずれか1項に記載の有機薄膜太陽電池。
    A passivation layer disposed on the second electrode layer;
    A colored barrier layer disposed on the passivation layer;
    The organic thin-film solar cell according to any one of claims 31 to 49, further comprising: a backsheet passivation layer disposed on the colored barrier layer.
  51.  前記カラー化バリア層は、紫外線硬化樹脂であることを特徴とする請求項50に記載の有機薄膜太陽電池。 The organic thin-film solar cell according to claim 50, wherein the colored barrier layer is an ultraviolet curable resin.
  52.  前記カラー化バリア層には、着色剤を添加したことを特徴とする請求項51に記載の有機薄膜太陽電池。 52. The organic thin film solar cell according to claim 51, wherein a coloring agent is added to the colored barrier layer.
  53.  前記パッシベーション層は、SiN膜若しくはSiON膜であることを特徴とする請求項50~52のいずれか1項に記載の有機薄膜太陽電池。 The organic thin-film solar cell according to any one of claims 50 to 52, wherein the passivation layer is a SiN film or a SiON film.
  54.  前記カラー化バリア層は、前記パッシベーション層に形成されるスポットを被覆可能であることを特徴とする請求項53に記載の有機薄膜太陽電池。 54. The organic thin film solar cell according to claim 53, wherein the colored barrier layer is capable of covering spots formed on the passivation layer.
  55.  前記パッシベーション層と前記カラー化バリア層は、複数層繰り返し積層化されて、多重積層保護膜を形成したことを特徴とする請求項50~54のいずれか1項に記載の有機薄膜太陽電池。 The organic thin-film solar cell according to any one of claims 50 to 54, wherein the passivation layer and the colored barrier layer are repeatedly laminated to form a multi-layered protective film.
  56.  前記第2電極層は、平面視においてメッシュ構造を備えることを特徴とする請求項31~55のいずれか1項に記載の有機薄膜太陽電池。 The organic thin-film solar cell according to any one of claims 31 to 55, wherein the second electrode layer has a mesh structure in plan view.
  57.  前記メッシュ構造は、菱形構造、六角形構造、円形構造、若しくは正方形構造のいずれかを基本格子とすることを特徴とする請求項56に記載の有機薄膜太陽電池。 57. The organic thin film solar cell according to claim 56, wherein the mesh structure uses a rhomboid structure, a hexagonal structure, a circular structure, or a square structure as a basic lattice.
  58.  請求項31~57のいずれか1項に記載の有機薄膜太陽電池からなるセルを複数個直列接続したことを特徴とする有機薄膜太陽電池。 An organic thin-film solar battery comprising a plurality of cells comprising the organic thin-film solar battery according to any one of claims 31 to 57 connected in series.
  59.  基板上に第1電極を形成する工程と、
     前記第1電極層上にキャリア放出用バッファ層を形成する工程と、
     前記キャリア放出用バッファ層上にバルクへテロ接合有機活性層を形成する工程と、
     前記バルクへテロ接合有機活性層上に有機導電膜を形成する工程と、
     前記有機導電膜上に第2電極層を形成する工程と
     を有することを特徴とする有機薄膜太陽電池の製造方法。
    Forming a first electrode on a substrate;
    Forming a carrier emission buffer layer on the first electrode layer;
    Forming a bulk heterojunction organic active layer on the carrier release buffer layer;
    Forming an organic conductive film on the bulk heterojunction organic active layer;
    And a step of forming a second electrode layer on the organic conductive film.
  60.  前記キャリア放出用バッファ層は、PEDOT:PSSで形成されることを特徴とする請求項59に記載の有機薄膜太陽電池の製造方法。 60. The method of manufacturing an organic thin film solar cell according to claim 59, wherein the carrier release buffer layer is formed of PEDOT: PSS.
  61.  前記キャリア放出用バッファ層は、TiO2若しくはZnOで形成されることを特徴とする請求項59に記載の有機薄膜太陽電池の製造方法。 The carrier release buffer layer manufacturing method of the organic thin film solar cell according to claim 59, characterized in that it is formed by the TiO 2 or ZnO.
  62.  前記バルクへテロ接合有機活性層上に有機導電膜を形成する工程は、
     前記バルクへテロ接合有機活性層上にバッファ層を形成する工程と、
     前記バッファ層上に前記有機導電膜を形成する工程と
     を有することを特徴とする請求項59または60に記載の有機薄膜太陽電池の製造方法。
    Forming an organic conductive film on the bulk heterojunction organic active layer,
    Forming a buffer layer on the bulk heterojunction organic active layer;
    The method for producing an organic thin-film solar cell according to claim 59, further comprising: forming the organic conductive film on the buffer layer.
  63.  前記第2電極層を形成する工程は、
     前記有機導電膜上に金属粒子ペースト層を塗布して形成する工程を有することを特徴とする請求項59~62のいずれか1項に記載の有機薄膜太陽電池の製造方法。
    The step of forming the second electrode layer includes:
    The method for producing an organic thin film solar cell according to any one of claims 59 to 62, further comprising a step of applying and forming a metal particle paste layer on the organic conductive film.
  64.  前記有機導電膜の厚さは、前記第2電極層から前記有機導電膜への金属粒子のマイグレーションにより形成される金属粒子侵入層の厚さよりも厚いことを特徴とする請求項63に記載の有機薄膜太陽電池の製造方法。 64. The organic material according to claim 63, wherein a thickness of the organic conductive film is thicker than a thickness of a metal particle intrusion layer formed by migration of metal particles from the second electrode layer to the organic conductive film. Manufacturing method of thin film solar cell.
  65.  前記金属粒子ペースト層は、Ag粒子ペースト層であることを特徴とする請求項63または64に記載の有機薄膜太陽電池の製造方法。 The method for producing an organic thin-film solar cell according to claim 63 or 64, wherein the metal particle paste layer is an Ag particle paste layer.
PCT/JP2014/062140 2013-05-09 2014-05-02 Organic thin film solar cell and method for manufacturing same WO2014181765A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2013099271 2013-05-09
JP2013-099271 2013-05-09
JP2013162046 2013-08-05
JP2013-162046 2013-08-05

Publications (1)

Publication Number Publication Date
WO2014181765A1 true WO2014181765A1 (en) 2014-11-13

Family

ID=51867245

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/062140 WO2014181765A1 (en) 2013-05-09 2014-05-02 Organic thin film solar cell and method for manufacturing same

Country Status (1)

Country Link
WO (1) WO2014181765A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016031293A1 (en) * 2014-08-29 2016-03-03 ローム株式会社 Organic thin-film solar cell and method for manufacturing same, and electronic device
JP2016181625A (en) * 2015-03-24 2016-10-13 株式会社東芝 Photoelectric conversion element and manufacturing method of photoelectric conversion element
CN116234338A (en) * 2023-04-27 2023-06-06 广东爱旭科技有限公司 Solar cell

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007273939A (en) * 2005-09-06 2007-10-18 Kyoto Univ Organic thin-film photoelectric converter and method of manufacturing the same
JP2011060795A (en) * 2009-09-07 2011-03-24 Univ Of Tsukuba Organic thin film solar cell
JP2012023126A (en) * 2010-07-13 2012-02-02 Konica Minolta Holdings Inc Organic photoelectric conversion element

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007273939A (en) * 2005-09-06 2007-10-18 Kyoto Univ Organic thin-film photoelectric converter and method of manufacturing the same
JP2011060795A (en) * 2009-09-07 2011-03-24 Univ Of Tsukuba Organic thin film solar cell
JP2012023126A (en) * 2010-07-13 2012-02-02 Konica Minolta Holdings Inc Organic photoelectric conversion element

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016031293A1 (en) * 2014-08-29 2016-03-03 ローム株式会社 Organic thin-film solar cell and method for manufacturing same, and electronic device
JP2016051805A (en) * 2014-08-29 2016-04-11 ローム株式会社 Organic thin-film solar cell and method for manufacturing the same, and electronic equipment
JP2016181625A (en) * 2015-03-24 2016-10-13 株式会社東芝 Photoelectric conversion element and manufacturing method of photoelectric conversion element
US10205110B2 (en) 2015-03-24 2019-02-12 Kabushiki Kaisha Toshiba Photoelectric conversion element and manufacturing method of photoelectric conversion element
CN116234338A (en) * 2023-04-27 2023-06-06 广东爱旭科技有限公司 Solar cell
CN116234338B (en) * 2023-04-27 2023-10-10 广东爱旭科技有限公司 Solar cell

Similar Documents

Publication Publication Date Title
US9728736B2 (en) Organic thin film photovoltaic device, fabrication method thereof, and electronic apparatus
JP6941915B2 (en) Organic thin-film solar cell modules and electronic devices
US20150287873A1 (en) Electro-optic device having nanowires interconnected into a network of nanowires
KR101557587B1 (en) Organic solar cell and manufacturing the same
JP5663264B2 (en) Manufacturing method of organic thin film solar cell module
JP2007005620A (en) Organic thin film solar cell
JP2013115084A (en) Organic thin-film solar cell and method for manufacturing the same
KR101097090B1 (en) Organic Solar Cells with triphenylene compounds
WO2014181765A1 (en) Organic thin film solar cell and method for manufacturing same
JP6082294B2 (en) Organic thin film solar cell, method for manufacturing the same, and electronic device
KR20180138185A (en) Organic solar module and/or fabrication method
US20170162812A1 (en) Organic thin film photovoltaic device and electronic apparatus
JP2009217970A (en) Laminate for oxide semiconductor electrode, oxide semiconductor electrode, dye-sensitized solar cell, and dye-sensitized solar cell module
JP2014192188A (en) Organic thin film solar cell, method for manufacturing the same, and electronic apparatus
KR101098792B1 (en) Organic Solar Cells with biphenyl compounds
JP2014175380A (en) Organic thin-film solar cell and method of manufacturing the same
JP6635357B2 (en) Photovoltaic device including light absorbing layer
WO2021176518A1 (en) Transparent electrode, method for producing transparent electrode, and photoelectric conversion element provided with transparent electrode
KR101206758B1 (en) Hybrid tandem type thin film Solar Cell and method of manufacturing the same
US20220367125A1 (en) A photovoltaic device and a method for preparation thereof
WO2012029781A1 (en) Solar cell and solar cell module
Zimmermann et al. Organic photovoltaic cells and modules for applications under indoor lighting conditions
JP6240711B2 (en) Organic thin film solar cell
JP5251149B2 (en) Laminated body for oxide semiconductor electrode, oxide semiconductor electrode, and dye-sensitized solar cell module
KR20130050812A (en) Organic photovoltaic unit cell

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14794843

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14794843

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP