WO2014175101A1 - Method for producing catalyst, electrode catalyst layer using said catalyst, membrane-electrode assembly, and fuel cell - Google Patents

Method for producing catalyst, electrode catalyst layer using said catalyst, membrane-electrode assembly, and fuel cell Download PDF

Info

Publication number
WO2014175101A1
WO2014175101A1 PCT/JP2014/060639 JP2014060639W WO2014175101A1 WO 2014175101 A1 WO2014175101 A1 WO 2014175101A1 JP 2014060639 W JP2014060639 W JP 2014060639W WO 2014175101 A1 WO2014175101 A1 WO 2014175101A1
Authority
WO
WIPO (PCT)
Prior art keywords
catalyst
metal
fuel cell
pores
layer
Prior art date
Application number
PCT/JP2014/060639
Other languages
French (fr)
Japanese (ja)
Inventor
大間 敦史
徹也 眞塩
高橋 真一
健 秋月
Original Assignee
日産自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産自動車株式会社 filed Critical 日産自動車株式会社
Priority to JP2015513687A priority Critical patent/JP5998276B2/en
Publication of WO2014175101A1 publication Critical patent/WO2014175101A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/92Metals of platinum group
    • H01M4/925Metals of platinum group supported on carriers, e.g. powder carriers
    • H01M4/926Metals of platinum group supported on carriers, e.g. powder carriers on carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/8605Porous electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8825Methods for deposition of the catalytic active composition
    • H01M4/8846Impregnation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8878Treatment steps after deposition of the catalytic active composition or after shaping of the electrode being free-standing body
    • H01M4/8882Heat treatment, e.g. drying, baking
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M2008/1095Fuel cells with polymeric electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/92Metals of platinum group
    • H01M4/923Compounds thereof with non-metallic elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/023Porous and characterised by the material
    • H01M8/0234Carbonaceous material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to a method for producing a catalyst, particularly to a method for producing an electrode catalyst used in a fuel cell (PEFC).
  • PEFC fuel cell
  • a solid polymer fuel cell using a proton conductive solid polymer membrane operates at a lower temperature than other types of fuel cells such as a solid oxide fuel cell and a molten carbonate fuel cell. For this reason, the polymer electrolyte fuel cell is expected as a stationary power source or a power source for a moving body such as an automobile, and its practical use has been started.
  • Japanese Patent Application Laid-Open No. 2007-250274 (US Patent Application Publication No. 2009/047559)
  • the average particle diameter of the catalyst metal particles is conductive.
  • Electrocatalysts larger than the average pore size of the support pores are disclosed.
  • Japanese Patent Application Laid-Open No. 2007-250274 (US Patent Application Publication No. 2009/047559) discloses a catalyst used for a three-phase interface by preventing the catalyst metal particles from entering the micropores of the support. It is described that the utilization efficiency of expensive noble metals can be improved by improving the ratio of metal particles.
  • the present invention has been made in view of the above circumstances, and an object thereof is to provide a method for producing a catalyst capable of obtaining a catalyst having excellent catalytic activity.
  • the present inventors include a heat treatment step after the step of impregnating the pores inside the support with the constituent components of the catalyst metal or the precursor of the catalyst metal.
  • the inventors have found that the above problems can be solved by a catalyst production method, and have completed the present invention.
  • FIG. 1 is a polymer electrolyte fuel cell (PEFC)
  • PEFC polymer electrolyte fuel cell
  • 2 is a solid polymer electrolyte membrane
  • 3a is an anode catalyst layer
  • 3c is a cathode catalyst layer
  • 4a is an anode gas diffusion layer.
  • 4c is a cathode gas diffusion layer
  • 5a is an anode separator
  • 5c is a cathode separator
  • 6a is an anode gas flow path
  • 6c is a cathode gas flow path
  • 7 is a refrigerant flow path.
  • Reference numeral 10 denotes a membrane electrode assembly (MEA).
  • FIG. 2 20 is a catalyst
  • 22 is a catalyst metal
  • 23 is a support
  • 24 is a mesopore
  • 25 is a micropore.
  • FIG. 3 shows the relationship between the catalyst and electrolyte in the catalyst layer which concerns on one Embodiment of this invention.
  • 22 is a catalyst metal
  • 23 is a support
  • 24 is a mesopore
  • 25 is a micropore
  • 26 is an electrolyte.
  • 4 is a graph showing a pore size distribution of a carrier B used in Comparative Example 1.
  • the catalyst obtained by the production method of the present invention comprises a catalyst carrier and a catalyst metal supported on the catalyst carrier.
  • the manufacturing method of the catalyst of this invention (it is also called “electrode catalyst” in this specification) has the following processes: (A) a step of impregnating the pores inside the carrier with the constituent components of the catalyst metal; and (b) a step of heat treatment after the impregnation step.
  • the manufacturing method of the catalyst of this invention has the following process: (C) impregnating pores inside the support with a catalyst metal precursor; (D) reducing the catalyst metal precursor; and (b) heat-treating after the reducing step.
  • the carrier has a pore radius mode radius of 1 nm or more and less than 5 nm, and the pore volume of the pore is 0.3 cc / g carrier or more.
  • pores having a radius of less than 1 nm are also referred to as “micropores”.
  • holes having a radius of 1 nm or more are also referred to as “meso holes”.
  • the electrolyte (electrolyte polymer) is on the surface of the catalyst as compared with a gas such as oxygen. Since it is easy to adsorb
  • the distance between the catalyst metal and the inner wall surface of the pores of the carrier is relatively large, and the amount of water adsorbed on the catalyst metal surface Will increase. Since water acts as an oxidant on the catalyst metal to generate a metal oxide, the activity of the catalyst metal is lowered and the catalyst performance is lowered.
  • the distance between the catalyst metal and the inner wall surface of the pore of the support is reduced, and the space where water can exist is reduced, that is, the water adsorbed on the surface of the catalyst metal. The amount is reduced.
  • the catalyst obtained by the production method of the present invention can exhibit high catalytic activity, that is, can promote catalytic reaction. For this reason, the membrane electrode assembly and fuel cell which have a catalyst layer using the catalyst obtained by the manufacturing method of this invention are excellent in electric power generation performance.
  • the average particle radius of the catalyst metal is larger than the mode radius of the pore distribution of the catalyst pores, in addition to the above effects, the catalyst metal is less likely to be detached even when mechanical stress is applied. Since waste is reduced, the catalyst metal is easily used effectively.
  • X to Y indicating a range means “X or more and Y or less”, “weight” and “mass”, “weight%” and “mass%”, “part by weight” and “weight part”. “Part by mass” is treated as a synonym. Unless otherwise specified, measurement of operation and physical properties is performed under conditions of room temperature (20 to 25 ° C.) / Relative humidity 40 to 50%.
  • a fuel cell includes a membrane electrode assembly (MEA), a pair of separators including an anode side separator having a fuel gas flow path through which fuel gas flows and a cathode side separator having an oxidant gas flow path through which oxidant gas flows.
  • MEA membrane electrode assembly
  • the fuel cell of this embodiment is excellent in durability and can exhibit high power generation performance.
  • FIG. 1 is a schematic diagram showing a basic configuration of a polymer electrolyte fuel cell (PEFC) 1 according to an embodiment of the present invention.
  • the PEFC 1 first includes a solid polymer electrolyte membrane 2 and a pair of catalyst layers (an anode catalyst layer 3a and a cathode catalyst layer 3c) that sandwich the membrane.
  • the laminate of the solid polymer electrolyte membrane 2 and the catalyst layers (3a, 3c) is further sandwiched between a pair of gas diffusion layers (GDL) (anode gas diffusion layer 4a and cathode gas diffusion layer 4c).
  • GDL gas diffusion layers
  • the polymer electrolyte membrane 2, the pair of catalyst layers (3a, 3c), and the pair of gas diffusion layers (4a, 4c) constitute a membrane electrode assembly (MEA) 10 in a stacked state.
  • MEA membrane electrode assembly
  • the MEA 10 is further sandwiched between a pair of separators (anode separator 5a and cathode separator 5c).
  • the separators (5 a, 5 c) are illustrated so as to be positioned at both ends of the illustrated MEA 10.
  • the separator is generally used as a separator for an adjacent PEFC (not shown).
  • the MEAs are sequentially stacked via the separator to form a stack.
  • a gas seal portion is disposed between the separator (5a, 5c) and the solid polymer electrolyte membrane 2, or between the PEFC 1 and another adjacent PEFC.
  • the separators (5a, 5c) are obtained, for example, by forming a concavo-convex shape as shown in FIG. 1 by subjecting a thin plate having a thickness of 0.5 mm or less to a press treatment.
  • the convex part seen from the MEA side of the separator (5a, 5c) is in contact with the MEA 10. Thereby, the electrical connection with MEA10 is ensured.
  • a recess (space between the separator and the MEA generated due to the concavo-convex shape of the separator) viewed from the MEA side of the separator (5a, 5c) is a gas for circulating gas during operation of the PEFC 1 Functions as a flow path.
  • a fuel gas for example, hydrogen
  • an oxidant gas for example, air
  • the recess viewed from the side opposite to the MEA side of the separator (5a, 5c) serves as a refrigerant flow path 7 for circulating a refrigerant (for example, water) for cooling the PEFC during operation of the PEFC 1.
  • a refrigerant for example, water
  • the separator is usually provided with a manifold (not shown). This manifold functions as a connection means for connecting cells when a stack is formed. With such a configuration, the mechanical strength of the fuel cell stack can be ensured.
  • the separators (5a, 5c) are formed in an uneven shape.
  • the separator is not limited to such a concavo-convex shape, and may be any form such as a flat plate shape and a partially concavo-convex shape as long as the functions of the gas flow path and the refrigerant flow path can be exhibited. Also good.
  • the fuel cell having the MEA of the present invention as described above exhibits excellent power generation performance.
  • the type of the fuel cell is not particularly limited.
  • the polymer electrolyte fuel cell has been described as an example.
  • an alkaline fuel cell and a direct methanol fuel cell are used.
  • a micro fuel cell is used.
  • a polymer electrolyte fuel cell (PEFC) is preferable because it is small and can achieve high density and high output.
  • the fuel cell is useful as a stationary power source in addition to a power source for a moving body such as a vehicle in which a mounting space is limited.
  • the fuel used when operating the fuel cell is not particularly limited.
  • hydrogen, methanol, ethanol, 1-propanol, 2-propanol, 1-butanol, secondary butanol, tertiary butanol, dimethyl ether, diethyl ether, ethylene glycol, diethylene glycol and the like can be used.
  • hydrogen and methanol are preferably used in that high output is possible.
  • the application application of the fuel cell is not particularly limited, but it is preferably applied to a vehicle.
  • the electrolyte membrane-electrode assembly of the present invention is excellent in power generation performance and durability, and can be downsized. For this reason, the fuel cell of this invention is especially advantageous when this fuel cell is applied to a vehicle from the point of in-vehicle property.
  • FIG. 2 is a schematic cross-sectional explanatory diagram showing an example of the shape and structure of a catalyst obtained by the production method of the present invention.
  • the catalyst 20 obtained by the production method of the present invention includes a catalytic metal 22 and a support 23. Further, the catalyst 20 has pores (mesopores) 24.
  • the catalytic metal 22 is carried inside the mesopores 24. Further, it is sufficient that at least a part of the catalyst metal 22 is supported inside the mesopores 24, and a part of the catalyst metal 22 may be provided on the surface of the carrier 23.
  • substantially all of the catalyst metal 22 is supported inside the mesopores 24.
  • substantially all catalytic metals is not particularly limited as long as it is an amount capable of improving sufficient catalytic activity.
  • substantially all catalyst metals are present in an amount of preferably 50 wt% or more (upper limit: 100 wt%), more preferably 80 wt% or more (upper limit: 100 wt%) in all catalyst metals.
  • the material of the carrier according to the present invention can form the pores (primary pores) having the above-described pore volume and mode radius inside the carrier, and the catalyst component inside the pores (mesopores).
  • the main component is carbon.
  • Specific examples include carbon particles made of carbon black (Ketjen black, oil furnace black, channel black, lamp black, thermal black, acetylene black, etc.), activated carbon, and the like.
  • the main component is carbon means that the main component contains carbon atoms, and is a concept that includes both carbon atoms and substantially carbon atoms. It may be included. “Substantially consists of carbon atoms” means that contamination of impurities of about 2 to 3% by weight or less can be allowed.
  • carbon black since it is easy to form a desired pore region inside the carrier, it is desirable to use carbon black, and particularly preferably, so-called mesoporous carbon having many vacancies with a radius of 5 nm or less is used.
  • porous metals such as Sn (tin) and Ti (titanium), and conductive metal oxides can also be used as carriers.
  • the pore volume of the carrier pores is 0.3 cc / g or more, preferably 0.4 to 3 cc / g carrier, more preferably 0.4 to 1.5 cc / g carrier. If the void volume is in the above range, a large amount of catalyst metal can be stored (supported) in the mesopores, and the catalyst and the catalyst metal in the catalyst layer are physically separated (contact between the catalyst metal and the electrolyte is prevented). It can be suppressed and prevented more effectively). Therefore, the activity of the catalytic metal can be utilized more effectively. In addition, the presence of many mesopores can more effectively promote the catalytic reaction by exerting the effects and advantages of the present invention more remarkably.
  • the mode radius (most frequent diameter) of the pore distribution of the carrier is from 1 nm to less than 5 nm, preferably from 1 nm to 4 nm, more preferably from 1 nm to 3 nm, still more preferably from 1 nm to 2 nm. It is as follows. If the mode radius of the pore distribution is as described above, a sufficient amount of catalyst metal can be stored (supported) in the mesopores, and the electrolyte and catalyst metal in the catalyst layer are physically separated (the catalyst metal and electrolyte are separated from each other). Can more effectively suppress and prevent contact). Therefore, the activity of the catalytic metal can be utilized more effectively. Further, the presence of a large volume of pores (mesopores) can more effectively promote the catalytic reaction by exerting the effects and effects of the present invention more remarkably.
  • the average particle radius of the catalyst metal is larger than the mode radius of the pore distribution of the carrier pores, in addition to the above effects, the catalyst metal is less likely to be detached even when mechanical stress is applied. Since waste is reduced, the catalyst metal is easily used effectively.
  • the mode radius of the pore distribution of the mesopores is also simply referred to as “mode diameter of the mesopores”.
  • the BET specific surface area of the support may be a specific surface area sufficient to support the catalyst component in a highly dispersed state.
  • the BET specific surface area of the support is substantially equivalent to the BET specific surface area of the catalyst.
  • the BET specific surface area of the support is preferably 1000 to 3000 m 2 / g, more preferably 1000 to 1800 m 2 / g. If the specific surface area is as described above, sufficient pores (mesopores) can be secured, so that a large amount of catalyst metal can be stored (supported) in the mesopores.
  • the electrolyte and the catalyst metal in the catalyst layer are physically separated (contact between the catalyst metal and the electrolyte can be more effectively suppressed / prevented).
  • the activity of the catalytic metal can be utilized more effectively.
  • the presence of many pores (mesopores) can more effectively promote the catalytic reaction by exerting the effects and advantages of the present invention more remarkably.
  • the balance between the dispersibility of the catalyst component on the catalyst carrier and the effective utilization rate of the catalyst component can be appropriately controlled.
  • the average particle size of the carrier is preferably 20 to 2000 nm. Within such a range, the mechanical strength can be maintained and the thickness of the catalyst layer can be controlled within an appropriate range even when the support is provided with the above-described pore structure.
  • the value of the “average particle diameter of the carrier” is observed in several to several tens of fields using an observation means such as a scanning electron microscope (SEM) or a transmission electron microscope (TEM) unless otherwise specified. The value calculated as the average value of the particle diameter of the particles shall be adopted.
  • the “particle diameter” means the maximum distance among the distances between any two points on the particle outline.
  • the method for producing the carrier having the pore distribution as described above is not particularly limited, but specifically, the methods described in JP 2010-208887 A, International Publication No. 2009/75264, etc. are preferably used. Is done.
  • examples of the carrier include a non-porous conductive carrier, a non-woven fabric made of carbon fibers constituting a gas diffusion layer, carbon paper, and carbon cloth.
  • the catalyst can be supported on these non-porous conductive carriers, or directly attached to a non-woven fabric made of carbon fibers, carbon paper, carbon cloth, etc. constituting the gas diffusion layer of the membrane electrode assembly. It is.
  • the catalytic metal that can be used in the present invention has a function of catalyzing an electrochemical reaction.
  • the catalyst metal used in the anode catalyst layer is not particularly limited as long as it has a catalytic action in the oxidation reaction of hydrogen, and a known catalyst can be used in the same manner.
  • the catalyst metal used in the cathode catalyst layer is not particularly limited as long as it has a catalytic action for the oxygen reduction reaction, and a known catalyst can be used in the same manner.
  • metals such as platinum, ruthenium, iridium, rhodium, palladium, osmium, tungsten, lead, iron, copper, silver, chromium, cobalt, nickel, manganese, vanadium, molybdenum, gallium, aluminum, and alloys thereof Can be selected.
  • the catalyst metal is preferably platinum or contains a metal component other than platinum and platinum, and more preferably platinum or a platinum-containing alloy.
  • a catalytic metal can exhibit high activity.
  • the composition of the alloy depends on the type of metal to be alloyed, the content of platinum is preferably 30 to 90 atomic%, and the content of the metal to be alloyed with platinum is preferably 10 to 70 atomic%.
  • an alloy is a generic term for a metal element having one or more metal elements or non-metal elements added and having metallic properties.
  • the alloy structure consists of a eutectic alloy, which is a mixture of the component elements as separate crystals, a component element completely melted into a solid solution, and a component element composed of an intermetallic compound or a compound of a metal and a nonmetal.
  • the catalyst metal used for the anode catalyst layer and the catalyst metal used for the cathode catalyst layer can be appropriately selected from the above.
  • the description of the catalyst metal for the anode catalyst layer and the cathode catalyst layer has the same definition for both.
  • the catalyst metals of the anode catalyst layer and the cathode catalyst layer do not have to be the same, and can be appropriately selected so as to exhibit the desired action as described above.
  • the shape and size of the catalyst metal are not particularly limited, and the same shape and size as known catalyst components can be adopted.
  • As the shape for example, a granular shape, a scale shape, a layered shape, and the like can be used, but a granular shape is preferable.
  • the pores inside the carrier are impregnated with the constituent components of the catalyst metal as described above.
  • the impregnating agent containing the catalyst metal component include, for example, platinum nanocolloid solution, dinitrodiammine platinum nitrate solution, platinum chloride (IV) acid hydrate, platinum chloride (IV) acid ammonium, tetraammine.
  • the impregnating agent containing the catalyst metal component include, for example, platinum nanocolloid solution, dinitrodiammine platinum nitrate solution, platinum chloride (IV) acid hydrate, platinum chloride (IV) acid ammonium, tetraammine.
  • examples thereof include a solution containing a precursor of a catalytic metal such as platinum (II) dichloride hydrate and hexahydroxoplatinum (IV) nitric acid solution.
  • These impregnating agents may be used alone or in admixture of two or more.
  • the average particle radius of the constituent components of the catalyst metal contained in the impregnating agent (the sum of the average particle radii when two or more constituent components of the catalyst metal are included) is the pore distribution mode of the pores of the support. It is preferably smaller than the radius. With such a configuration, the constituent components of the catalyst metal are easily impregnated by the pores inside the support.
  • the temperature at which the carrier is immersed in the impregnating agent is not particularly limited, but is preferably room temperature (25 ° C.) to 100 ° C.
  • the time for immersion (immersion time) is not particularly limited, but is preferably 1 to 10 hours, and more preferably 2 to 8 hours.
  • the immersion it is preferable to perform stirring using ultrasonic waves or the like. Further, in order to degas the liquid, it is preferable to perform a depressurization process in order to remove bubbles remaining in the pores inside the carrier and to make it easier for the liquid to enter the inside of the carrier.
  • the support is filtered and dried.
  • Step of reducing precursor In the impregnation step, when a catalyst metal precursor is used as the impregnation agent, it is preferable to perform a step of reducing the catalyst metal precursor before filtration and drying.
  • the reducing agent used in the reduction is not particularly limited, and examples thereof include hydrogen, sodium borohydride, sodium thiosulfate, citric acid, sodium citrate, L-ascorbic acid, acetic acid and other organic acids or salts thereof, Examples thereof include sodium borohydride, aldehydes such as formic acid, acetaldehyde and formaldehyde, alcohols such as methanol, ethanol and propanol, ethylene and carbon monoxide. These reducing agents can be used alone or in admixture of two or more.
  • the temperature during the reduction is not particularly limited, but is preferably room temperature (25 ° C.) to 100 ° C.
  • the time for reduction is not particularly limited, but is preferably 1 to 10 hours, and more preferably 2 to 8 hours.
  • Step of heat treatment After the impregnation step or the precursor reduction step, the support is heat-treated. Thereby, the distance between the catalyst metal and the inner wall surface of the pore of the carrier is reduced, and the space where water can exist is reduced, that is, the amount of water adsorbed on the surface of the catalyst metal is reduced. Further, water is subjected to the interaction of the inner wall surface of the hole, and the water is easily held on the inner wall surface of the hole. Therefore, the formation reaction of the metal oxide is delayed, and the metal oxide is hardly formed. As a result, the deactivation of the catalytic metal surface is suppressed, and high catalytic activity can be exhibited, that is, the catalytic reaction can be promoted.
  • the atmosphere during the heat treatment is not particularly limited, and examples thereof include a hydrogen atmosphere, a nitrogen atmosphere mixed with a small amount of hydrogen, and an argon atmosphere.
  • Examples of the apparatus used for the heat treatment include a heating apparatus such as a firing furnace.
  • the temperature of the heat treatment is not particularly limited, but is preferably 300 to 1200 ° C, more preferably 500 to 1150 ° C, and still more preferably 700 to 1100 ° C.
  • the heat treatment time is not particularly limited, but is preferably 0.02 to 3 hours, and more preferably 0.1 to 2 hours.
  • the mode radius of the pore distribution of the catalyst obtained as described above is preferably not more than the average particle radius of the catalyst metal.
  • the average particle radius of the catalyst metal (catalyst metal particles) is preferably 1 nm to 3.5 nm, more preferably 1.5 nm to 2.5 nm. If the mode radius is equal to or less than the average particle radius of the catalyst metal, the distance between the catalyst metal and the inner wall surface of the pores of the support is reduced, and the space where water can exist is further reduced, that is, The amount of less. Further, water is subjected to the interaction of the inner wall surface of the hole, and the water is easily held on the inner wall surface of the hole. Therefore, the formation reaction of the metal oxide becomes slower and the metal oxide is more difficult to be formed.
  • the deactivation of the catalytic metal surface is further suppressed, and a high catalytic activity can be exhibited, that is, the catalytic reaction can be further promoted.
  • the catalyst metal is supported relatively firmly in the pores (mesopores), and the contact with the electrolyte in the catalyst layer is more effectively suppressed / prevented.
  • elution due to potential change can be prevented, and deterioration in performance over time can be suppressed. For this reason, the catalytic activity can be further improved, that is, the catalytic reaction can be promoted more efficiently.
  • the “average particle radius of the catalyst metal particles” in the present invention is the crystallite radius determined from the half-value width of the diffraction peak of the catalyst metal component in X-ray diffraction, or the catalyst metal particles examined by a transmission electron microscope (TEM). It can be measured as the average value of the particle radii.
  • the “average particle radius of the catalyst metal” is an average value of the particle radii of the catalyst component examined from a transmission electron microscope image of a statistically significant number (for example, at least 203 samples).
  • the relationship in which the mode radius of the pore distribution of the catalyst is equal to or less than the average particle radius of the catalyst metal as described above can be realized by controlling time, temperature, atmosphere, and the like in the heat treatment step. Under such manufacturing conditions, the catalyst metal grows and the distance between the catalyst metal and the inner wall surface of the pore of the carrier is reduced, so that the space where water can exist is further reduced, that is, the amount of water adsorbed on the catalyst metal surface. Is more reduced. Furthermore, since the average particle radius of the catalyst metal is larger than the mode radius of the pore distribution of the catalyst pores, in addition to the above effects, the catalyst metal is less likely to be detached even when mechanical stress is applied. Since waste is reduced, the catalyst metal is easily used effectively.
  • control such that the average particle radius of the catalyst metal is 1.5 nm or more and 2.5 nm or less can be performed by controlling the temperature, time, atmosphere and the like in the heat treatment step. In particular, it can be controlled by increasing the temperature of the heat treatment or by lengthening the heat treatment time.
  • the catalyst content (mg / cm 2 ) per unit catalyst application area is not particularly limited as long as sufficient catalyst dispersion and power generation performance can be obtained. For example, 0.01 to 1 mg / Cm 2 .
  • the platinum content per unit catalyst coating area is preferably 0.5 mg / cm 2 or less.
  • the use of expensive noble metal catalysts typified by platinum (Pt) and platinum alloys has become a high cost factor for fuel cells. Therefore, it is preferable to reduce the amount of expensive platinum used (platinum content) to the above range and reduce the cost.
  • the lower limit is not particularly limited as long as power generation performance is obtained, and is, for example, 0.01 mg / cm 2 or more. More preferably, the platinum content is 0.02 to 0.4 mg / cm 2 .
  • the activity per catalyst weight can be improved by controlling the pore structure of the carrier, the amount of expensive catalyst used can be reduced.
  • inductively coupled plasma emission spectroscopy is used for measurement (confirmation) of “catalyst (platinum) content per unit catalyst application area (mg / cm 2 )”.
  • ICP inductively coupled plasma emission spectroscopy
  • a person skilled in the art can easily carry out a method of making the desired “catalyst (platinum) content per unit catalyst coating area (mg / cm 2 )”, and control the slurry composition (catalyst concentration) and coating amount. You can adjust the amount.
  • the amount of the catalyst supported on the carrier (sometimes referred to as the loading ratio) is preferably 10 to 80% by weight, more preferably 20 to 70% by weight, based on the total amount of the catalyst carrier (that is, the carrier and the catalyst). % Is good. If the loading is within the above range, it is preferable because a sufficient degree of dispersion of the catalyst components on the carrier, improvement in power generation performance, economic advantages, and catalytic activity per unit weight can be achieved.
  • the pore volume of the pores (of the catalyst after supporting the catalyst metal) is preferably 0.3 cc / g or more, more preferably 0.4 to 3 cc / g, and even more preferably 0.4 ⁇ 1.5cc / g carrier. If the void volume is in the above range, a large amount of catalyst metal can be stored (supported) in the mesopores, and the catalyst and the catalyst metal in the catalyst layer are physically separated (contact between the catalyst metal and the electrolyte is prevented). It can be suppressed and prevented more effectively). Therefore, the activity of the catalytic metal can be utilized more effectively. In addition, the presence of many mesopores can more effectively promote the catalytic reaction by exerting the effects and advantages of the present invention more remarkably.
  • the mode radius (most frequent diameter) of the pore distribution (of the catalyst after supporting the catalyst metal) is preferably 1 nm or more and less than 5 nm, more preferably 1 nm or more and 4 nm or less, and further preferably 1 nm or more. It is 3 nm or less, and particularly preferably 1 nm or more and 2 nm or less. If the mode radius of the pore distribution is as described above, a sufficient amount of catalyst metal can be stored (supported) in the mesopores, and the electrolyte and catalyst metal in the catalyst layer are physically separated (the catalyst metal and electrolyte are separated from each other). Can more effectively suppress and prevent contact). Therefore, the activity of the catalytic metal can be utilized more effectively.
  • the presence of a large volume of pores can more effectively promote the catalytic reaction by exerting the effects and effects of the present invention more remarkably.
  • the average particle radius of the catalyst metal is larger than the mode radius of the pore distribution of the catalyst pores, in addition to the above effects, the catalyst metal is less likely to be detached even when mechanical stress is applied. Since waste is reduced, the catalyst metal is easily used effectively.
  • the mode radius of the pore distribution of mesopores is also simply referred to as “mode diameter of mesopores”.
  • the BET specific surface area (of the catalyst after supporting the catalyst metal) [the BET specific surface area of the catalyst per 1 g of support (m 2 / g support)] is not particularly limited, but is preferably 1000 m 2 / g or more, more
  • the carrier is preferably 1000 to 3000 m 2 / g, and more preferably 1000 to 1800 m 2 / g.
  • the “BET specific surface area (m 2 / g support)” of the catalyst is measured by a nitrogen adsorption method. Specifically, about 0.04 to 0.07 g of catalyst powder is precisely weighed and sealed in a sample tube. This sample tube is preliminarily dried at 90 ° C. for several hours in a vacuum dryer to obtain a measurement sample. For weighing, an electronic balance (AW220) manufactured by Shimadzu Corporation is used. In the case of a coated sheet, a net weight of about 0.03 to 0.04 g of the coated layer obtained by subtracting the weight of Teflon (registered trademark) (base material) of the same area from the total weight is used as the sample weight. .
  • the BET specific surface area is measured under the following measurement conditions.
  • a BET specific surface area is calculated from the slope and intercept by creating a BET plot from a relative pressure (P / P 0 ) range of about 0.00 to 0.45.
  • “Void radius (nm)” means the radius of a pore measured by the nitrogen adsorption method (DH method). Further, “mode radius (nm) of pore distribution” means a pore radius at a point where a peak value (maximum frequency) is obtained in a differential pore distribution curve obtained by a nitrogen adsorption method (DH method).
  • the upper limit of the radius of the hole is not particularly limited, but is 100 nm or less.
  • the pore volume of pores means the total volume of pores present in the catalyst, and is expressed as the volume per gram of carrier (cc / g carrier).
  • the “pore volume of vacancies (cc / g carrier)” is calculated as the area (integrated value) below the differential pore distribution curve obtained by the nitrogen adsorption method (DH method).
  • the “differential pore distribution” is a distribution curve in which the pore diameter is plotted on the horizontal axis and the pore volume corresponding to the pore diameter in the catalyst is plotted on the vertical axis. That is, when the pore volume of the catalyst obtained by the nitrogen adsorption method (DH method) is V and the pore diameter is D, the differential pore volume dV is divided by the logarithmic difference d (log D) of the pore diameter. A value (dV / d (logD)) is obtained. A differential pore distribution curve is obtained by plotting this dV / d (logD) against the average pore diameter of each section.
  • the differential hole volume dV refers to an increase in the hole volume between measurement points.
  • the method of measuring the mesopore radius and pore volume by the nitrogen adsorption method is not particularly limited.
  • “Science of adsorption” (2nd edition, written by Seiichi Kondo, Tatsuo Ishikawa, Ikuo Abe, Maruzen Stock Company), “Fuel cell analysis method” (Yoshio Takasu, Yuu Yoshitake, Tatsumi Ishihara, edited by Chemistry), D. Dollion, G. R. Heal: J. Appl. Chem. Methods described in known literature can be employed.
  • the mesopore radius and pore volume by nitrogen adsorption method (DH method) are described in D. Dollion, G. R. Heal: J. Appl. Chem., 14, 109 (1964). The value measured by the method.
  • the catalyst obtained by the production method of the present invention can exhibit high catalytic activity, that is, can promote catalytic reaction. Therefore, the catalyst obtained by the production method of the present invention can be suitably used for an electrode catalyst layer for a fuel cell.
  • FIG. 3 is a schematic diagram showing the relationship between the catalyst and the electrolyte in the catalyst layer according to one embodiment of the present invention.
  • the catalyst in the catalyst layer according to the present invention, the catalyst is covered with the electrolyte 26, but the electrolyte 26 does not enter the mesopores 24 of the catalyst (support 23).
  • the catalyst metal 22 on the surface of the carrier 23 is in contact with the electrolyte 26, but the catalyst metal 22 supported in the mesopores 24 is not in contact with the electrolyte 26.
  • the catalytic metal in the mesopores forms a three-phase interface between oxygen gas and water in a non-contact state with the electrolyte, thereby ensuring a reaction active area of the catalytic metal.
  • the catalyst obtained by the production method of the present invention may be present in either the cathode catalyst layer or the anode catalyst layer, but is preferably used in the cathode catalyst layer. As described above, the catalyst obtained by the production method of the present invention can effectively utilize the catalyst by forming a three-phase interface with water without contact with the electrolyte. It is because it forms.
  • the electrolyte is not particularly limited, but is preferably an ion conductive polymer electrolyte. Since the polymer electrolyte plays a role of transmitting protons generated around the catalyst active material on the fuel electrode side, it is also called a proton conductive polymer.
  • the polymer electrolyte is not particularly limited, and conventionally known knowledge can be appropriately referred to.
  • Polymer electrolytes are roughly classified into fluorine-based polymer electrolytes and hydrocarbon-based polymer electrolytes depending on the type of ion exchange resin that is a constituent material.
  • ion exchange resins constituting the fluorine-based polymer electrolyte include Nafion (registered trademark, manufactured by DuPont), Aciplex (registered trademark, manufactured by Asahi Kasei Co., Ltd.), Flemion (registered trademark, manufactured by Asahi Glass Co., Ltd.), and the like.
  • Perfluorocarbon sulfonic acid polymer perfluorocarbon phosphonic acid polymer, trifluorostyrene sulfonic acid polymer, ethylene tetrafluoroethylene-g-styrene sulfonic acid polymer, ethylene-tetrafluoroethylene copolymer, polyvinylidene fluoride-per Examples thereof include fluorocarbon sulfonic acid polymers. From the viewpoint of excellent heat resistance, chemical stability, durability, and mechanical strength, these fluorine-based polymer electrolytes are preferably used, and particularly preferably fluorine-based polymer electrolytes composed of perfluorocarbon sulfonic acid polymers. Is used.
  • hydrocarbon electrolyte examples include sulfonated polyethersulfone (S-PES), sulfonated polyaryletherketone, sulfonated polybenzimidazole alkyl, phosphonated polybenzimidazole alkyl, sulfonated polystyrene, sulfonated poly Examples include ether ether ketone (S-PEEK) and sulfonated polyphenylene (S-PPP).
  • S-PES sulfonated polyethersulfone
  • S-PEEK ether ketone
  • S-PPP sulfonated polyphenylene
  • the catalyst layer of this embodiment contains a polymer electrolyte having a small EW.
  • the catalyst layer of this embodiment preferably has an EW of 1500 g / eq.
  • the following polymer electrolyte is contained, More preferably, it is 1200 g / eq.
  • the following polymer electrolyte is included, and particularly preferably 1000 g / eq.
  • the following polymer electrolytes are included.
  • the EW of the polymer electrolyte is preferably 600 or more.
  • EW Equivalent Weight
  • the equivalent weight is the dry weight of the ion exchange membrane per equivalent of ion exchange group, and is expressed in units of “g / eq”.
  • the catalyst layer includes two or more types of polymer electrolytes having different EWs in the power generation surface.
  • the polymer electrolyte having the lowest EW among the polymer electrolytes has a relative humidity of 90% or less of the gas in the flow path. It is preferable to use in the region. By adopting such a material arrangement, the resistance value becomes small regardless of the current density region, and the battery performance can be improved.
  • the EW of the polymer electrolyte used in the region where the relative humidity of the gas in the flow channel is 90% or less, that is, the polymer electrolyte having the lowest EW is 900 g / eq. The following is desirable. Thereby, the above-mentioned effect becomes more reliable and remarkable.
  • the polymer electrolyte having the lowest EW is within 3/5 from the gas supply port of at least one of the fuel gas and the oxidant gas with respect to the channel length. It is desirable to use it in the range area.
  • the catalyst layer of this embodiment may include a liquid proton conductive material that can connect the catalyst and the polymer electrolyte (solid proton conductive material) in a proton conductive state between the catalyst and the polymer electrolyte.
  • a liquid proton conductive material that can connect the catalyst and the polymer electrolyte (solid proton conductive material) in a proton conductive state between the catalyst and the polymer electrolyte.
  • the liquid proton conductive material only needs to be interposed between the catalyst and the polymer electrolyte, and the pores (secondary pores) between the porous carriers in the catalyst layer and the pores (micropores) in the porous carrier. Or mesopores: primary vacancies).
  • the liquid proton conductive material is not particularly limited as long as it has ion conductivity and can exhibit a function of forming a proton transport path between the catalyst and the polymer electrolyte.
  • Specific examples include water, protic ionic liquid, aqueous perchloric acid solution, aqueous nitric acid solution, aqueous formic acid solution, and aqueous acetic acid solution.
  • the liquid proton conductive material When water is used as the liquid proton conductive material, water as the liquid proton conductive material is introduced into the catalyst layer by moistening the catalyst layer with a small amount of liquid water or humidified gas before starting power generation. Can do. Moreover, the water produced by the electrochemical reaction during the operation of the fuel cell can be used as the liquid proton conductive material. Therefore, it is not always necessary to hold the liquid proton conductive material when the fuel cell is in operation.
  • the surface distance between the catalyst and the electrolyte is preferably 0.28 nm or more, which is the diameter of oxygen ions constituting water molecules.
  • water liquid proton conductive material
  • the polymer electrolyte liquid conductive material holding part
  • a material other than water such as an ionic liquid
  • An ionic liquid may be added when applying to the layer substrate.
  • the total area in contact with the polymer electrolyte of the catalyst is smaller than the total area where the catalyst is exposed to the liquid conductive material holding part.
  • these areas are compared, for example, with the capacity of the electric double layer formed at the catalyst-polymer electrolyte interface and the catalyst-liquid proton conducting material interface in a state where the liquid conducting material holding portion is filled with the liquid proton conducting material.
  • This can be done by seeking a relationship.
  • the electric double layer capacity formed at the catalyst-electrolyte interface is the electric double layer capacity formed at the catalyst-liquid proton conducting material interface. If it is smaller, the contact area of the catalyst with the electrolyte is smaller than the area exposed to the liquid conductive material holding part.
  • the measurement method of the electric double layer capacity formed at the catalyst-electrolyte interface and the catalyst-liquid proton conducting material interface in other words, the contact area between the catalyst and electrolyte and between the catalyst and liquid proton conducting material ( A method for determining the relationship between the contact area of the catalyst with the electrolyte and the exposed area of the liquid conductive material holding portion will be described.
  • Catalyst-Polymer electrolyte (CS) (2) Catalyst-Liquid proton conductive material (CL) (3) Porous carrier-polymer electrolyte (Cr-S) (4) Porous carrier-liquid proton conducting material (Cr-L)
  • C dl electric double layer capacitance
  • C dl CS electric double layer capacity at the catalyst-polymer electrolyte interface
  • C dl CL The electric double layer capacity at the catalyst-liquid proton conductive material interface may be obtained.
  • the contribution of the four types of interfaces to the electric double layer capacity (C dl ) can be separated as follows.
  • the electric double layer capacity is measured under a high humidification condition such as 100% RH and a low humidification condition such as 10% RH or less.
  • examples of the measurement method of the electric double layer capacitance include cyclic voltammetry and electrochemical impedance spectroscopy. From these comparisons, the contribution of the liquid proton conducting material (in this case “water”), that is, the above (2) and (4) can be separated.
  • the catalyst when the catalyst is deactivated, for example, when Pt is used as the catalyst, the catalyst is deactivated by supplying CO gas to the electrode to be measured and adsorbing CO on the Pt surface.
  • the contribution to the multilayer capacity can be separated. In such a state, as described above, the electric double layer capacity under high and low humidification conditions is measured by the same method, and the contribution of the catalyst, that is, the above (1) and (2) is separated from these comparisons. be able to.
  • the measured value (A) in the highly humidified state is the electric double layer capacity formed at all the interfaces (1) to (4)
  • the measured value (B) in the lowly humidified state is the above (1) and (3).
  • the measured value (C) in the catalyst deactivation / highly humidified state is the electric double layer capacity formed at the interface of the above (3) and (4)
  • the measured value (D) in the catalyst deactivated / lowly humidified state is the above It becomes an electric double layer capacity formed at the interface of (3).
  • the difference between A and C is the electric double layer capacity formed at the interface of (1) and (2)
  • the difference between B and D is the electric double layer capacity formed at the interface of (1).
  • (AC)-(BD) the electric double layer capacity formed at the interface of (2) can be obtained.
  • the contact area of the catalyst with the polymer electrolyte and the exposed area of the conductive material holding part can be obtained by, for example, TEM (transmission electron microscope) tomography.
  • the coverage of the electrolyte with respect to the catalyst metal is preferably 0.45 or less, preferably 0.35, and more preferably 0.25 (lower limit: 0). .
  • the electrolyte coverage is in the above range, the catalytic activity is further improved.
  • the coverage of the electrolyte can be calculated from the electric double layer capacity, and specifically can be calculated by the method described in the examples.
  • a water repellent such as polytetrafluoroethylene, polyhexafluoropropylene, tetrafluoroethylene-hexafluoropropylene copolymer, a dispersing agent such as a surfactant, glycerin, ethylene glycol (EG), as necessary.
  • a thickener such as polyvinyl alcohol (PVA) and propylene glycol (PG), and an additive such as a pore-forming agent may be contained.
  • the thickness (dry film thickness) of the catalyst layer is preferably 0.05 to 30 ⁇ m, more preferably 1 to 20 ⁇ m, still more preferably 2 to 15 ⁇ m.
  • the said thickness is applied to both a cathode catalyst layer and an anode catalyst layer.
  • the thickness of the cathode catalyst layer and the anode catalyst layer may be the same or different.
  • a catalyst ink containing the catalyst powder, polymer electrolyte, and solvent obtained by the above-described catalyst production method of the present invention is prepared.
  • the solvent is not particularly limited, and ordinary solvents used for forming the catalyst layer can be used in the same manner. Specifically, water such as tap water, pure water, ion exchange water, distilled water, cyclohexanol, methanol, ethanol, n-propanol (n-propyl alcohol), isopropanol, n-butanol, sec-butanol, isobutanol And lower alcohols having 1 to 4 carbon atoms such as tert-butanol, propylene glycol, benzene, toluene, xylene and the like. Besides these, butyl acetate alcohol, dimethyl ether, ethylene glycol, and the like may be used as a solvent. These solvents may be used alone or in the form of a mixture of two or more.
  • the amount of the solvent constituting the catalyst ink is not particularly limited as long as it is an amount capable of completely dissolving the electrolyte.
  • the solid content concentration of the catalyst powder and the polymer electrolyte is preferably 1 to 50% by weight, more preferably about 5 to 30% by weight in the electrode catalyst ink.
  • additives such as a water repellent, a dispersant, a thickener, and a pore-forming agent
  • these additives may be added to the catalyst ink.
  • the amount of the additive added is not particularly limited as long as it is an amount that does not interfere with the effects of the present invention.
  • the amount of the additive added is preferably 5 to 20% by weight with respect to the total weight of the electrode catalyst ink.
  • a catalyst ink is applied to the surface of the substrate.
  • the application method to the substrate is not particularly limited, and a known method can be used. Specifically, it can be performed using a known method such as a spray (spray coating) method, a gulliver printing method, a die coater method, a screen printing method, or a doctor blade method.
  • a solid polymer electrolyte membrane (electrolyte layer) or a gas diffusion substrate (gas diffusion layer) can be used as the substrate on which the catalyst ink is applied.
  • the obtained laminate can be used for the production of the membrane electrode assembly as it is.
  • a peelable substrate such as a polytetrafluoroethylene (PTFE) [Teflon (registered trademark)] sheet is used as the substrate, and after the catalyst layer is formed on the substrate, the catalyst layer portion is peeled from the substrate.
  • PTFE polytetrafluoroethylene
  • the coating layer (film) of the catalyst ink is dried at room temperature to 150 ° C. for 1 to 60 minutes in an air atmosphere or an inert gas atmosphere. Thereby, a catalyst layer is formed.
  • the solid polymer electrolyte membrane 2 a cathode catalyst layer disposed on one side of the electrolyte membrane, an anode catalyst layer disposed on the other side of the electrolyte membrane,
  • a membrane electrode assembly for a fuel cell having an electrolyte membrane 2 and a pair of gas diffusion layers (4a, 4c) sandwiching the anode catalyst layer 3a and the cathode catalyst layer 3c.
  • at least one of the cathode catalyst layer and the anode catalyst layer is the catalyst layer of the embodiment described above.
  • the cathode catalyst layer may be the catalyst layer of the embodiment described above.
  • the catalyst layer according to the above embodiment may be used as an anode catalyst layer, or may be used as both a cathode catalyst layer and an anode catalyst layer, and is not particularly limited.
  • a fuel cell having the membrane electrode assembly of the above form there is provided a fuel cell having the membrane electrode assembly of the above form. That is, one embodiment of the present invention is a fuel cell having a pair of anode separator and cathode separator that sandwich the membrane electrode assembly of the above-described embodiment.
  • the present invention is characterized by the catalyst layer. Therefore, the specific form of the members other than the catalyst layer constituting the fuel cell can be appropriately modified with reference to conventionally known knowledge.
  • the electrolyte membrane is composed of a solid polymer electrolyte membrane 2 as shown in FIG.
  • the solid polymer electrolyte membrane 2 has a function of selectively permeating protons generated in the anode catalyst layer 3a during operation of the PEFC 1 to the cathode catalyst layer 3c along the film thickness direction.
  • the solid polymer electrolyte membrane 2 also has a function as a partition wall for preventing the fuel gas supplied to the anode side and the oxidant gas supplied to the cathode side from being mixed.
  • the electrolyte material constituting the solid polymer electrolyte membrane 2 is not particularly limited, and conventionally known knowledge can be appropriately referred to.
  • the fluorine-based polymer electrolyte or hydrocarbon-based polymer electrolyte described above as the polymer electrolyte can be used. At this time, it is not always necessary to use the same polymer electrolyte used for the catalyst layer.
  • the thickness of the electrolyte layer may be appropriately determined in consideration of the characteristics of the obtained fuel cell, and is not particularly limited.
  • the thickness of the electrolyte layer is usually about 5 to 300 ⁇ m. When the thickness of the electrolyte layer is within such a range, the balance of strength during film formation, durability during use, and output characteristics during use can be appropriately controlled.
  • the gas diffusion layers are catalyst layers (3a, 3c) of gas (fuel gas or oxidant gas) supplied via the gas flow paths (6a, 6c) of the separator. ) And a function as an electron conduction path.
  • the material which comprises the base material of a gas diffusion layer (4a, 4c) is not specifically limited, A conventionally well-known knowledge can be referred suitably.
  • a sheet-like material having conductivity and porosity such as a carbon woven fabric, a paper-like paper body, a felt, and a non-woven fabric can be used.
  • the thickness of the substrate may be appropriately determined in consideration of the characteristics of the obtained gas diffusion layer, but may be about 30 to 500 ⁇ m. If the thickness of the substrate is within such a range, the balance between mechanical strength and diffusibility such as gas and water can be appropriately controlled.
  • the gas diffusion layer preferably contains a water repellent for the purpose of further improving water repellency and preventing flooding.
  • the water repellent is not particularly limited, but fluorine-based high repellents such as polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVdF), polyhexafluoropropylene, and tetrafluoroethylene-hexafluoropropylene copolymer (FEP). Examples thereof include molecular materials, polypropylene, and polyethylene.
  • the gas diffusion layer has a carbon particle layer (microporous layer; MPL, not shown) made of an aggregate of carbon particles containing a water repellent agent on the catalyst layer side of the substrate. You may have.
  • MPL microporous layer
  • the carbon particles contained in the carbon particle layer are not particularly limited, and conventionally known materials such as carbon black, graphite, and expanded graphite can be appropriately employed. Among them, carbon black such as oil furnace black, channel black, lamp black, thermal black, acetylene black and the like can be preferably used because of excellent electron conductivity and a large specific surface area.
  • the average particle size of the carbon particles is preferably about 10 to 100 nm. Thereby, while being able to obtain the high drainage property by capillary force, it becomes possible to improve contact property with a catalyst layer.
  • Examples of the water repellent used for the carbon particle layer include the same water repellents as described above.
  • fluorine-based polymer materials can be preferably used because of excellent water repellency, corrosion resistance during electrode reaction, and the like.
  • the mixing ratio of the carbon particles to the water repellent in the carbon particle layer is about 90:10 to 40:60 (carbon particles: water repellent) by weight in consideration of the balance between water repellency and electronic conductivity. It is good.
  • a method for producing the membrane electrode assembly is not particularly limited, and a conventionally known method can be used.
  • a catalyst layer is transferred or applied to a solid polymer electrolyte membrane by hot pressing, and this is dried, and a gas diffusion layer is bonded to the gas diffusion layer, or a microporous layer side (a microporous layer is attached to the gas diffusion layer).
  • two gas diffusion electrodes are prepared by applying a catalyst layer on one side of the base material layer in advance and drying, and hot pressing the gas diffusion electrodes on both sides of the solid polymer electrolyte membrane.
  • the application and joining conditions such as hot press are appropriately determined depending on the type of polymer electrolyte in the solid polymer electrolyte membrane or catalyst layer (perfluorosulfonic acid type or hydrocarbon type). Adjust it.
  • the separator has a function of electrically connecting each cell in series when a plurality of single cells of a fuel cell such as a polymer electrolyte fuel cell are connected in series to form a fuel cell stack.
  • the separator also functions as a partition that separates the fuel gas, the oxidant gas, and the coolant from each other.
  • each of the separators is preferably provided with a gas flow path and a cooling flow path.
  • a material constituting the separator conventionally known materials such as dense carbon graphite, carbon such as a carbon plate, and metal such as stainless steel can be appropriately employed without limitation.
  • the thickness and size of the separator and the shape and size of each flow path provided are not particularly limited, and can be appropriately determined in consideration of the desired output characteristics of the obtained fuel cell.
  • the manufacturing method of the fuel cell is not particularly limited, and conventionally known knowledge can be appropriately referred to in the field of the fuel cell.
  • a fuel cell stack having a structure in which a plurality of membrane electrode assemblies are stacked and connected in series via a separator may be formed so that the fuel cell can exhibit a desired voltage.
  • the shape of the fuel cell is not particularly limited, and may be determined as appropriate so that desired battery characteristics such as voltage can be obtained.
  • the above-mentioned PEFC and membrane electrode assembly use a catalyst layer having excellent power generation performance and durability. Therefore, the PEFC and the membrane electrode assembly are excellent in power generation performance and durability.
  • the PEFC of this embodiment and the fuel cell stack using the same can be mounted on a vehicle as a driving power source, for example.
  • Synthesis example 1 Support A was prepared having a pore volume of 1.56 cc / g; a pore mode radius of 1.65 nm; and a BET specific surface area of 1773 m 2 / g. Specifically, the carrier A was produced by the method described in International Publication No. 2009/075264.
  • Ketjen Black EC300J manufactured by Ketjen Black International Co., Ltd. having a pore volume of 0.69 cc / g and a BET specific surface area of 790 m 2 / g was prepared.
  • Support C was prepared with a pore volume of 2.16 cc / g; a pore mode radius of 2.13 nm; and a BET specific surface area of 1596 m 2 / g.
  • the carrier C was produced by the method described in JP2009-35598A.
  • Example 1 Using the carrier A prepared in Synthesis Example 1 above, platinum (Pt) having an average particle radius of 1.8 nm as a catalyst metal was supported so that the supporting rate was 30% by weight, and catalyst powder A was obtained. That is, 46 g of carrier A was immersed in 1000 g (platinum content: 46 g) of a dinitrodiammine platinum nitric acid solution having a platinum concentration of 4.6% by mass, and 100 ml of 100% ethanol was added as a reducing agent. This solution was stirred and mixed at the boiling point for 7 hours, platinum was supported on the carrier A, filtered and dried. Thereafter, the catalyst powder A was held at a temperature of 900 ° C. for 1 hour in a hydrogen atmosphere to obtain a catalyst powder A having a loading rate of 31.1% by weight.
  • an n-propyl alcohol solution 50%) was added as a solvent so that the solid content (Pt + carbon carrier + ionomer) was 7% by weight to prepare a cathode catalyst ink.
  • Ketjen black (particle size: 30 to 60 nm) is used as a carrier, and platinum (Pt) with an average particle size of 2.5 nm is supported on the catalyst metal so that the loading ratio is 50% by weight as catalyst metal.
  • a gasket manufactured by Teijin DuPont Films, Teonex (registered trademark), thickness: 25 ⁇ m (adhesive layer: 25 ⁇ m) around both sides of a polymer electrolyte membrane (Dupont, Nafion (registered trademark) NR211, thickness: 25 ⁇ m). 10 ⁇ m)).
  • the catalyst ink was applied to a size of 5 cm ⁇ 2 cm by spray coating on the exposed portion of one side of the polymer electrolyte membrane. The catalyst ink was dried by keeping the stage for spray coating at 60 ° C. to obtain an electrode catalyst layer. The amount of platinum supported at this time is 0.15 mg / cm 2 .
  • spray coating and heat treatment were performed on the electrolyte membrane to form an anode catalyst layer, thereby obtaining a membrane electrode assembly of this example.
  • Example 1 Comparative Example 1 Except that the carrier B prepared in Synthesis Example 2 was used instead of the carrier A, platinum (Pt) having an average particle radius of 2.25 nm was used as a catalyst metal, and heat treatment was not performed in a hydrogen atmosphere. Performed the same operation as in Example 1 to obtain catalyst powder B. With respect to the catalyst powder B thus obtained, the pore volume of the pores and the mode radius of the pores were measured. The results are shown in Table 2 below. Further, a membrane electrode assembly of this example was obtained in the same manner as in Example 1.
  • Example 2 (Comparative Example 2) Except that the carrier C produced in the above Synthesis Example 3 was used in place of the carrier A, platinum (Pt) having an average particle radius of 1.15 nm was used as the catalyst metal, and heat treatment was not performed in a hydrogen atmosphere. Performed the same operation as Example 1, and obtained catalyst powder C. With respect to the catalyst powder C thus obtained, the pore volume of the pores and the mode radius of the pores were measured. The results are shown in Table 2 below. Moreover, the membrane electrode assembly of this example was obtained in the same manner as in Example 1.
  • the obtained MEA was measured by electrochemical impedance spectroscopy to measure the electric double layer capacity in the highly humidified state, the lowly humidified state, and the catalyst deactivation and the highly humidified and lowly humidified states, respectively.
  • the contact areas with both proton conducting materials were compared.
  • each battery was heated to 30 ° C. with a heater, and the electric double layer capacity was measured in a state where nitrogen gas and hydrogen gas adjusted to the humidified state shown in Table 1 were supplied to the working electrode and the counter electrode, respectively.
  • the real part and imaginary part of the impedance at each frequency are obtained from the response when the working electrode potential vibrates. Since the relationship between the imaginary part (Z ′′) and the angular velocity ⁇ (converted from the frequency) is expressed by the following equation, the reciprocal of the imaginary part is arranged with respect to ⁇ 2 to the angular velocity, and The electric double layer capacitance C dl is obtained by extrapolating the value.
  • the fuel cell is kept at 80 ° C., and oxygen gas conditioned to 100% RH is circulated through the oxygen electrode and hydrogen gas conditioned to 100% RH is circulated through the fuel electrode. Water was introduced, and this water functions as a liquid proton conducting material), and the electronic load was set so that the current density was 1.0 A / cm 2 and held for 15 minutes.
  • the pore size distribution of the carrier B used in Comparative Example 1 is shown in FIG.
  • the pore volume tends to increase up to 1 nm, and in the mesopore region (pore radius is 1 nm or more), a clear mode radius is obtained. It was confirmed that it does not have.

Abstract

The objective of the present invention is to provide a method that is for producing a catalyst and that can obtain a catalyst having superior catalytic activity. This method is for producing a catalyst such that a catalyst metal is carried on a carrier having a mode radius in the distribution of pores that is at least 1 nm and less than 5 nm and a pore volume of the pores that is at least 0.3 cc per gram of the carrier, wherein the method for producing a catalyst contains: a step for impregnating the pores within the carrier with a constituent of the catalyst metal, and a step for thermal processing after the impregnation step; or a step for impregnating the pores within the carrier with a precursor of the catalyst metal, a step for reducing the precursor of the catalyst metal, and a step for thermal processing after the reducing step.

Description

[規則37.2に基づきISAが決定した発明の名称] 触媒の製造方法ならびに当該触媒を用いる電極触媒層、膜電極接合体および燃料電池[Title of Invention Determined by ISA Based on Rule 37.2] Catalyst Production Method, Electrocatalyst Layer, Membrane Electrode Assembly, and Fuel Cell Using the Catalyst
 本発明は、触媒の製造方法、特に燃料電池(PEFC)に用いられる電極触媒の製造方法に関するものである。 The present invention relates to a method for producing a catalyst, particularly to a method for producing an electrode catalyst used in a fuel cell (PEFC).
 プロトン伝導性固体高分子膜を用いた固体高分子形燃料電池は、例えば、固体酸化物形燃料電池や溶融炭酸塩形燃料電池など、他のタイプの燃料電池と比較して低温で作動する。このため、固体高分子形燃料電池は、定置用電源や、自動車などの移動体用動力源として期待されており、その実用も開始されている。 A solid polymer fuel cell using a proton conductive solid polymer membrane operates at a lower temperature than other types of fuel cells such as a solid oxide fuel cell and a molten carbonate fuel cell. For this reason, the polymer electrolyte fuel cell is expected as a stationary power source or a power source for a moving body such as an automobile, and its practical use has been started.
 このような固体高分子形燃料電池には、一般的に、白金(Pt)やPt合金に代表される高価な金属触媒が用いられており、このような燃料電池の高価格要因となっている。このため、貴金属触媒の使用量を低減して、燃料電池の低コスト化が可能な技術の開発が求められている。 In such a polymer electrolyte fuel cell, generally, an expensive metal catalyst represented by platinum (Pt) or a Pt alloy is used, which is a high cost factor of such a fuel cell. . For this reason, development of a technique capable of reducing the cost of fuel cells by reducing the amount of noble metal catalyst used is required.
 例えば、特開2007-250274号公報(米国特許出願公開第2009/047559号明細書)には、導電性担体に触媒金属粒子が担持される電極触媒において、触媒金属粒子の平均粒径が導電性担体の微細孔の平均孔径より大きい電極触媒が開示される。特開2007-250274号公報(米国特許出願公開第2009/047559号明細書)には、当該構成により、触媒金属粒子が担体の微細孔内に入り込まないようにし、三相界面に使用される触媒金属粒子の割合を向上させて、高価な貴金属の利用効率を向上できることが記載される。 For example, in Japanese Patent Application Laid-Open No. 2007-250274 (US Patent Application Publication No. 2009/047559), in an electrode catalyst in which catalyst metal particles are supported on a conductive carrier, the average particle diameter of the catalyst metal particles is conductive. Electrocatalysts larger than the average pore size of the support pores are disclosed. Japanese Patent Application Laid-Open No. 2007-250274 (US Patent Application Publication No. 2009/047559) discloses a catalyst used for a three-phase interface by preventing the catalyst metal particles from entering the micropores of the support. It is described that the utilization efficiency of expensive noble metals can be improved by improving the ratio of metal particles.
 しかしながら、特開2007-250274号公報(米国特許出願公開第2009/047559号明細書)に記載の触媒を含む触媒層では、触媒活性が低下するという問題があった。 However, the catalyst layer containing the catalyst described in Japanese Patent Application Laid-Open No. 2007-250274 (US Patent Application Publication No. 2009/047559) has a problem that the catalytic activity is lowered.
 したがって、本発明は、上記事情を鑑みてなされたものであり、触媒活性に優れる触媒を得ることができる触媒の製造方法を提供することを目的とする。 Therefore, the present invention has been made in view of the above circumstances, and an object thereof is to provide a method for producing a catalyst capable of obtaining a catalyst having excellent catalytic activity.
 本発明者らは、上記の問題を解決すべく、鋭意研究を行った結果、触媒金属の構成成分または触媒金属の前駆体を担体内部の空孔に含浸する工程の後に、熱処理する工程を含む触媒の製造方法により、上記課題を解決することを見出し、本発明を完成するに到った。 As a result of intensive studies to solve the above problems, the present inventors include a heat treatment step after the step of impregnating the pores inside the support with the constituent components of the catalyst metal or the precursor of the catalyst metal. The inventors have found that the above problems can be solved by a catalyst production method, and have completed the present invention.
本発明の一実施形態に係る固体高分子形燃料電池の基本構成を示す概略断面図である。図1の1は固体高分子形燃料電池(PEFC)であり、2は固体高分子電解質膜であり、3aはアノード触媒層であり、3cはカソード触媒層であり、4aはアノードガス拡散層であり、4cはカソードガス拡散層であり、5aはアノードセパレータであり、5cはカソードセパレータであり、6aはアノードガス流路であり、6cはカソードガス流路であり、7は冷媒流路であり、10は膜電極接合体(MEA)である。It is a schematic sectional drawing which shows the basic composition of the polymer electrolyte fuel cell which concerns on one Embodiment of this invention. 1 in FIG. 1 is a polymer electrolyte fuel cell (PEFC), 2 is a solid polymer electrolyte membrane, 3a is an anode catalyst layer, 3c is a cathode catalyst layer, and 4a is an anode gas diffusion layer. Yes, 4c is a cathode gas diffusion layer, 5a is an anode separator, 5c is a cathode separator, 6a is an anode gas flow path, 6c is a cathode gas flow path, and 7 is a refrigerant flow path. Reference numeral 10 denotes a membrane electrode assembly (MEA). 本発明の製造方法により得られる触媒の形状・構造の一例を示す概略断面説明図である。図2の20は触媒であり、22は触媒金属であり、23は担体であり、24はメソ孔であり、25はミクロ孔である。It is a schematic sectional explanatory drawing which shows an example of the shape and structure of the catalyst obtained by the manufacturing method of this invention. In FIG. 2, 20 is a catalyst, 22 is a catalyst metal, 23 is a support, 24 is a mesopore, and 25 is a micropore. 本発明の一実施形態に係る触媒層における触媒および電解質の関係を示す模式図である。図3の22は触媒金属であり、23は担体であり、24はメソ孔であり、25はミクロ孔であり、26は電解質である。It is a schematic diagram which shows the relationship between the catalyst and electrolyte in the catalyst layer which concerns on one Embodiment of this invention. In FIG. 3, 22 is a catalyst metal, 23 is a support, 24 is a mesopore, 25 is a micropore, and 26 is an electrolyte. 比較例1で用いた担体Bの空孔径分布を示すグラフである。4 is a graph showing a pore size distribution of a carrier B used in Comparative Example 1.
 本発明の製造方法により得られる触媒は、触媒担体および前記触媒担体に担持される触媒金属からなる。そして、本発明の触媒(本明細書中では、「電極触媒」とも称する)の製造方法は、下記工程を有する:
(a)触媒金属の構成成分を担体内部の空孔に含浸する工程;および
(b)前記含浸する工程の後に熱処理する工程。
The catalyst obtained by the production method of the present invention comprises a catalyst carrier and a catalyst metal supported on the catalyst carrier. And the manufacturing method of the catalyst of this invention (it is also called "electrode catalyst" in this specification) has the following processes:
(A) a step of impregnating the pores inside the carrier with the constituent components of the catalyst metal; and (b) a step of heat treatment after the impregnation step.
 また、本発明の触媒の製造方法は、下記工程を有する:
(c)触媒金属の前駆体を担体内部の空孔に含浸する工程;
(d)前記触媒金属の前駆体を還元する工程;および
(b)前記還元する工程の後に熱処理する工程。
Moreover, the manufacturing method of the catalyst of this invention has the following process:
(C) impregnating pores inside the support with a catalyst metal precursor;
(D) reducing the catalyst metal precursor; and (b) heat-treating after the reducing step.
 前記担体は、空孔の空孔分布のモード半径が1nm以上5nm未満であり、かつ前記空孔の空孔容積が0.3cc/g担体以上である。 The carrier has a pore radius mode radius of 1 nm or more and less than 5 nm, and the pore volume of the pore is 0.3 cc / g carrier or more.
 なお、本明細書中では、半径が1nm未満の空孔を「ミクロ孔」とも称する。また、本明細書中では、半径1nm以上の空孔を「メソ孔」とも称する。 In the present specification, pores having a radius of less than 1 nm are also referred to as “micropores”. In the present specification, holes having a radius of 1 nm or more are also referred to as “meso holes”.
 本発明者らは、上記特開2007-250274号公報(米国特許出願公開第2009/047559号明細書)に記載の触媒では、電解質(電解質ポリマー)は酸素等のガスに比して触媒表面に吸着し易いため、触媒金属が電解質(電解質ポリマー)と接触すると、触媒表面の反応活性面積が減少することを見出した。これに対して、本発明者らは、触媒が電解質と接触しない場合であっても、水により三相界面を形成することによって、触媒を有効に利用できることを見出した。このため、触媒金属を電解質が進入できない空孔(メソ孔)内部に担持する構成をとることによって、触媒活性を向上できる。 In the catalyst described in the above-mentioned Japanese Patent Application Laid-Open No. 2007-250274 (US Patent Application Publication No. 2009/047559), the electrolyte (electrolyte polymer) is on the surface of the catalyst as compared with a gas such as oxygen. Since it is easy to adsorb | suck, when the catalyst metal contacted electrolyte (electrolyte polymer), it discovered that the reaction active area of the catalyst surface decreased. In contrast, the present inventors have found that even when the catalyst does not contact the electrolyte, the catalyst can be effectively used by forming a three-phase interface with water. For this reason, catalyst activity can be improved by taking the structure which carries a catalyst metal inside the void | hole (mesopore) into which electrolyte cannot enter.
 一方、触媒金属を電解質が進入できない空孔(メソ孔)内部に担持する場合には、触媒金属と、担体の空孔内壁面との距離が比較的大きく、触媒金属表面に吸着する水の量が多くなる。水は触媒金属に酸化剤として作用し金属酸化物を生成させるため、触媒金属の活性を低下させ、触媒性能が低下してしまう。これに対して、本発明の製造方法により得られる触媒は、触媒金属と担体の空孔内壁面との距離が縮まり、水が存在しうる空間が減少する、すなわち触媒金属表面に吸着する水の量が減る。また、水が空孔内壁面の相互作用を受け、水が空孔内壁面に保持されやすくなる。よって、金属酸化物の形成反応が遅くなり、金属酸化物が形成されにくくなる。その結果、触媒金属表面の失活が抑制される。ゆえに、本発明の製造方法により得られる触媒は、高い触媒活性を発揮できる、すなわち、触媒反応を促進できる。このため、本発明の製造方法により得られる触媒を用いた触媒層を有する膜電極接合体および燃料電池は、発電性能に優れる。 On the other hand, when the catalyst metal is supported inside pores (mesopores) into which the electrolyte cannot enter, the distance between the catalyst metal and the inner wall surface of the pores of the carrier is relatively large, and the amount of water adsorbed on the catalyst metal surface Will increase. Since water acts as an oxidant on the catalyst metal to generate a metal oxide, the activity of the catalyst metal is lowered and the catalyst performance is lowered. On the other hand, in the catalyst obtained by the production method of the present invention, the distance between the catalyst metal and the inner wall surface of the pore of the support is reduced, and the space where water can exist is reduced, that is, the water adsorbed on the surface of the catalyst metal. The amount is reduced. Further, water is subjected to the interaction of the inner wall surface of the hole, and the water is easily held on the inner wall surface of the hole. Therefore, the formation reaction of the metal oxide is delayed, and the metal oxide is hardly formed. As a result, the deactivation of the catalytic metal surface is suppressed. Therefore, the catalyst obtained by the production method of the present invention can exhibit high catalytic activity, that is, can promote catalytic reaction. For this reason, the membrane electrode assembly and fuel cell which have a catalyst layer using the catalyst obtained by the manufacturing method of this invention are excellent in electric power generation performance.
 さらに、触媒の空孔の空孔分布のモード半径よりも触媒金属の平均粒半径が大きくなることにより、上記効果に加えて、触媒に機械的ストレスがかかっても脱離しにくくなり、触媒金属のムダが減るため、触媒金属が有効利用されやすくなる。 Furthermore, since the average particle radius of the catalyst metal is larger than the mode radius of the pore distribution of the catalyst pores, in addition to the above effects, the catalyst metal is less likely to be detached even when mechanical stress is applied. Since waste is reduced, the catalyst metal is easily used effectively.
 以下、適宜図面を参照しながら、本発明の触媒の製造方法の実施形態、ならびに該製造方法により得られる触媒、該触媒を使用した触媒層、膜電極接合体(MEA)および燃料電池の一実施形態を詳細に説明する。しかし、本発明は、以下の実施形態のみには制限されない。なお、各図面は説明の便宜上誇張されて表現されており、各図面における各構成要素の寸法比率が実際とは異なる場合がある。また、本発明の実施の形態を、図面を参照しながら説明した場合では、図面の説明において同一の要素には同一の符号を付し、重複する説明を省略する。 Hereinafter, an embodiment of a method for producing a catalyst of the present invention, and an embodiment of a catalyst obtained by the production method, a catalyst layer using the catalyst, a membrane electrode assembly (MEA), and a fuel cell, with appropriate reference to the drawings A form is demonstrated in detail. However, the present invention is not limited only to the following embodiments. Each drawing is exaggerated for convenience of explanation, and the dimensional ratio of each component in each drawing may be different from the actual one. Further, in the case where the embodiment of the present invention is described with reference to the drawings, the same reference numerals are given to the same elements in the description of the drawings, and a duplicate description is omitted.
 また、本明細書において、範囲を示す「X~Y」は「X以上Y以下」を意味し、「重量」と「質量」、「重量%」と「質量%」および「重量部」と「質量部」は同義語として扱う。また、特記しない限り、操作および物性等の測定は室温(20~25℃)/相対湿度40~50%の条件で測定する。 In the present specification, “X to Y” indicating a range means “X or more and Y or less”, “weight” and “mass”, “weight%” and “mass%”, “part by weight” and “weight part”. “Part by mass” is treated as a synonym. Unless otherwise specified, measurement of operation and physical properties is performed under conditions of room temperature (20 to 25 ° C.) / Relative humidity 40 to 50%.
 [燃料電池]
 燃料電池は、膜電極接合体(MEA)と、燃料ガスが流れる燃料ガス流路を有するアノード側セパレータと酸化剤ガスが流れる酸化剤ガス流路を有するカソード側セパレータとからなる一対のセパレータとを有する。本形態の燃料電池は、耐久性に優れ、かつ高い発電性能を発揮できる。
[Fuel cell]
A fuel cell includes a membrane electrode assembly (MEA), a pair of separators including an anode side separator having a fuel gas flow path through which fuel gas flows and a cathode side separator having an oxidant gas flow path through which oxidant gas flows. Have. The fuel cell of this embodiment is excellent in durability and can exhibit high power generation performance.
 図1は、本発明の一実施形態に係る固体高分子形燃料電池(PEFC)1の基本構成を示す概略図である。PEFC1は、まず、固体高分子電解質膜2と、これを挟持する一対の触媒層(アノード触媒層3aおよびカソード触媒層3c)とを有する。そして、固体高分子電解質膜2と触媒層(3a、3c)との積層体はさらに、一対のガス拡散層(GDL)(アノードガス拡散層4aおよびカソードガス拡散層4c)により挟持されている。このように、固体高分子電解質膜2、一対の触媒層(3a、3c)および一対のガス拡散層(4a、4c)は、積層された状態で膜電極接合体(MEA)10を構成する。 FIG. 1 is a schematic diagram showing a basic configuration of a polymer electrolyte fuel cell (PEFC) 1 according to an embodiment of the present invention. The PEFC 1 first includes a solid polymer electrolyte membrane 2 and a pair of catalyst layers (an anode catalyst layer 3a and a cathode catalyst layer 3c) that sandwich the membrane. The laminate of the solid polymer electrolyte membrane 2 and the catalyst layers (3a, 3c) is further sandwiched between a pair of gas diffusion layers (GDL) (anode gas diffusion layer 4a and cathode gas diffusion layer 4c). Thus, the polymer electrolyte membrane 2, the pair of catalyst layers (3a, 3c), and the pair of gas diffusion layers (4a, 4c) constitute a membrane electrode assembly (MEA) 10 in a stacked state.
 PEFC1において、MEA10はさらに、一対のセパレータ(アノードセパレータ5aおよびカソードセパレータ5c)により挟持されている。図1において、セパレータ(5a、5c)は、図示したMEA10の両端に位置するように図示されている。ただし、複数のMEAが積層されてなる燃料電池スタックでは、セパレータは、隣接するPEFC(図示せず)のためのセパレータとしても用いられるのが一般的である。換言すれば、燃料電池スタックにおいてMEAは、セパレータを介して順次積層されることにより、スタックを構成することとなる。なお、実際の燃料電池スタックにおいては、セパレータ(5a、5c)と固体高分子電解質膜2との間や、PEFC1とこれと隣接する他のPEFCとの間にガスシール部が配置されるが、図1ではこれらの記載を省略する。 In PEFC1, the MEA 10 is further sandwiched between a pair of separators (anode separator 5a and cathode separator 5c). In FIG. 1, the separators (5 a, 5 c) are illustrated so as to be positioned at both ends of the illustrated MEA 10. However, in a fuel cell stack in which a plurality of MEAs are stacked, the separator is generally used as a separator for an adjacent PEFC (not shown). In other words, in the fuel cell stack, the MEAs are sequentially stacked via the separator to form a stack. In an actual fuel cell stack, a gas seal portion is disposed between the separator (5a, 5c) and the solid polymer electrolyte membrane 2, or between the PEFC 1 and another adjacent PEFC. These descriptions are omitted in FIG.
 セパレータ(5a、5c)は、例えば、厚さ0.5mm以下の薄板にプレス処理を施すことで図1に示すような凹凸状の形状に成形することにより得られる。セパレータ(5a、5c)のMEA側から見た凸部はMEA10と接触している。これにより、MEA10との電気的な接続が確保される。また、セパレータ(5a、5c)のMEA側から見た凹部(セパレータの有する凹凸状の形状に起因して生じるセパレータとMEAとの間の空間)は、PEFC1の運転時にガスを流通させるためのガス流路として機能する。具体的には、アノードセパレータ5aのガス流路6aには燃料ガス(例えば、水素など)を流通させ、カソードセパレータ5cのガス流路6cには酸化剤ガス(例えば、空気など)を流通させる。 The separators (5a, 5c) are obtained, for example, by forming a concavo-convex shape as shown in FIG. 1 by subjecting a thin plate having a thickness of 0.5 mm or less to a press treatment. The convex part seen from the MEA side of the separator (5a, 5c) is in contact with the MEA 10. Thereby, the electrical connection with MEA10 is ensured. Further, a recess (space between the separator and the MEA generated due to the concavo-convex shape of the separator) viewed from the MEA side of the separator (5a, 5c) is a gas for circulating gas during operation of the PEFC 1 Functions as a flow path. Specifically, a fuel gas (for example, hydrogen) is circulated through the gas flow path 6a of the anode separator 5a, and an oxidant gas (for example, air) is circulated through the gas flow path 6c of the cathode separator 5c.
 一方、セパレータ(5a、5c)のMEA側とは反対の側から見た凹部は、PEFC1の運転時にPEFCを冷却するための冷媒(例えば、水)を流通させるための冷媒流路7とされる。さらに、セパレータには通常、マニホールド(図示せず)が設けられる。このマニホールドは、スタックを構成した際に各セルを連結するための連結手段として機能する。かような構成とすることで、燃料電池スタックの機械的強度が確保されうる。 On the other hand, the recess viewed from the side opposite to the MEA side of the separator (5a, 5c) serves as a refrigerant flow path 7 for circulating a refrigerant (for example, water) for cooling the PEFC during operation of the PEFC 1. . Further, the separator is usually provided with a manifold (not shown). This manifold functions as a connection means for connecting cells when a stack is formed. With such a configuration, the mechanical strength of the fuel cell stack can be ensured.
 なお、図1に示す実施形態においては、セパレータ(5a、5c)は凹凸状の形状に成形されている。ただし、セパレータは、かような凹凸状の形態のみに限定されるわけではなく、ガス流路および冷媒流路の機能を発揮できる限り、平板状、一部凹凸状などの任意の形態であってもよい。 In the embodiment shown in FIG. 1, the separators (5a, 5c) are formed in an uneven shape. However, the separator is not limited to such a concavo-convex shape, and may be any form such as a flat plate shape and a partially concavo-convex shape as long as the functions of the gas flow path and the refrigerant flow path can be exhibited. Also good.
 上記のような、本発明のMEAを有する燃料電池は、優れた発電性能を発揮する。ここで、燃料電池の種類としては、特に限定されず、上記した説明中では高分子電解質形燃料電池を例に挙げて説明したが、この他にも、アルカリ型燃料電池、ダイレクトメタノール型燃料電池、マイクロ燃料電池などが挙げられる。なかでも小型かつ高密度・高出力化が可能であるから、高分子電解質形燃料電池(PEFC)が好ましく挙げられる。また、前記燃料電池は、搭載スペースが限定される車両などの移動体用電源の他、定置用電源などとして有用である。なかでも、比較的長時間の運転停止後に高い出力電圧が要求される自動車などの移動体用電源として用いられることが特に好ましい。 The fuel cell having the MEA of the present invention as described above exhibits excellent power generation performance. Here, the type of the fuel cell is not particularly limited. In the above description, the polymer electrolyte fuel cell has been described as an example. However, in addition to the above, an alkaline fuel cell and a direct methanol fuel cell are used. And a micro fuel cell. Among them, a polymer electrolyte fuel cell (PEFC) is preferable because it is small and can achieve high density and high output. The fuel cell is useful as a stationary power source in addition to a power source for a moving body such as a vehicle in which a mounting space is limited. Among them, it is particularly preferable to use as a power source for a mobile body such as an automobile that requires a high output voltage after a relatively long time of operation stop.
 燃料電池を運転する際に用いられる燃料は特に限定されない。例えば、水素、メタノール、エタノール、1-プロパノール、2-プロパノール、1-ブタノール、第2級ブタノール、第3級ブタノール、ジメチルエーテル、ジエチルエーテル、エチレングリコール、ジエチレングリコールなどが用いられうる。なかでも、高出力化が可能である点で、水素やメタノールが好ましく用いられる。 The fuel used when operating the fuel cell is not particularly limited. For example, hydrogen, methanol, ethanol, 1-propanol, 2-propanol, 1-butanol, secondary butanol, tertiary butanol, dimethyl ether, diethyl ether, ethylene glycol, diethylene glycol and the like can be used. Of these, hydrogen and methanol are preferably used in that high output is possible.
 また、燃料電池の適用用途は特に限定されるものではないが、車両に適用することが好ましい。本発明の電解質膜-電極接合体は、発電性能および耐久性に優れ、小型化が実現可能である。このため、本発明の燃料電池は、車載性の点から、車両に該燃料電池を適用した場合、特に有利である。 Further, the application application of the fuel cell is not particularly limited, but it is preferably applied to a vehicle. The electrolyte membrane-electrode assembly of the present invention is excellent in power generation performance and durability, and can be downsized. For this reason, the fuel cell of this invention is especially advantageous when this fuel cell is applied to a vehicle from the point of in-vehicle property.
 [触媒(電極触媒)]
 図2は、本発明の製造方法により得られる触媒の形状・構造の一例を示す概略断面説明図である。図2に示されるように、本発明の製造方法により得られる触媒20は、触媒金属22および担体23からなる。また、触媒20は、空孔(メソ孔)24を有する。ここで、触媒金属22は、メソ孔24の内部に担持される。また、触媒金属22は、少なくとも一部がメソ孔24の内部に担持されていればよく、一部が担体23表面にされていてもよい。しかし、触媒層での電解質と触媒金属の接触を防ぐという観点からは、実質的にすべての触媒金属22がメソ孔24の内部に担持されることが好ましい。ここで、「実質的にすべての触媒金属」とは、十分な触媒活性を向上できる量であれば特に制限されない。「実質的にすべての触媒金属」は、全触媒金属において、好ましくは50重量%以上(上限:100重量%)、より好ましくは80重量%以上(上限:100重量%)の量で存在する。
[Catalyst (Electrocatalyst)]
FIG. 2 is a schematic cross-sectional explanatory diagram showing an example of the shape and structure of a catalyst obtained by the production method of the present invention. As shown in FIG. 2, the catalyst 20 obtained by the production method of the present invention includes a catalytic metal 22 and a support 23. Further, the catalyst 20 has pores (mesopores) 24. Here, the catalytic metal 22 is carried inside the mesopores 24. Further, it is sufficient that at least a part of the catalyst metal 22 is supported inside the mesopores 24, and a part of the catalyst metal 22 may be provided on the surface of the carrier 23. However, from the viewpoint of preventing contact between the electrolyte and the catalyst metal in the catalyst layer, it is preferable that substantially all of the catalyst metal 22 is supported inside the mesopores 24. Here, “substantially all catalytic metals” is not particularly limited as long as it is an amount capable of improving sufficient catalytic activity. “Substantially all catalyst metals” are present in an amount of preferably 50 wt% or more (upper limit: 100 wt%), more preferably 80 wt% or more (upper limit: 100 wt%) in all catalyst metals.
 〔触媒の製造方法〕
 本発明に係る担体の材質は、上述した空孔容積およびモード半径を有する空孔(一次空孔)を担体の内部に形成することができ、かつ、触媒成分を空孔(メソ孔)内部に分散状態で担持させるのに充分な比表面積と充分な電子伝導性とを有するものであれば特に制限されない。好ましくは、主成分がカーボンである。具体的には、カーボンブラック(ケッチェンブラック、オイルファーネスブラック、チャネルブラック、ランプブラック、サーマルブラック、アセチレンブラックなど)、活性炭などからなるカーボン粒子が挙げられる。「主成分がカーボンである」とは、主成分として炭素原子を含むことをいい、炭素原子のみからなる、実質的に炭素原子からなる、の双方を含む概念であり、炭素原子以外の元素が含まれていてもよい。「実質的に炭素原子からなる」とは、2~3重量%程度以下の不純物の混入が許容されうることを意味する。
[Production method of catalyst]
The material of the carrier according to the present invention can form the pores (primary pores) having the above-described pore volume and mode radius inside the carrier, and the catalyst component inside the pores (mesopores). There is no particular limitation as long as it has a sufficient specific surface area and sufficient electron conductivity to be supported in a dispersed state. Preferably, the main component is carbon. Specific examples include carbon particles made of carbon black (Ketjen black, oil furnace black, channel black, lamp black, thermal black, acetylene black, etc.), activated carbon, and the like. “The main component is carbon” means that the main component contains carbon atoms, and is a concept that includes both carbon atoms and substantially carbon atoms. It may be included. “Substantially consists of carbon atoms” means that contamination of impurities of about 2 to 3% by weight or less can be allowed.
 より好ましくは、担体内部に所望の空孔領域を形成し易いことから、カーボンブラックを使用することが望ましく、特に好ましくは、半径5nm以下の空孔を多く有する、いわゆるメソポーラスカーボンを使用する。 More preferably, since it is easy to form a desired pore region inside the carrier, it is desirable to use carbon black, and particularly preferably, so-called mesoporous carbon having many vacancies with a radius of 5 nm or less is used.
 上記カーボン材料の他、Sn(錫)やTi(チタン)などの多孔質金属、さらには導電性金属酸化物なども担体として使用可能である。 In addition to the above carbon materials, porous metals such as Sn (tin) and Ti (titanium), and conductive metal oxides can also be used as carriers.
 担体の空孔の空孔容積は、0.3cc/g担体以上であり、好ましくは0.4~3cc/g担体であり、より好ましくは0.4~1.5cc/g担体である。空孔容積が上記したような範囲にあれば、メソ孔により多くの触媒金属を格納(担持)でき、触媒層での電解質と触媒金属とを物理的に離す(触媒金属と電解質との接触をより有効に抑制・防止できる)。ゆえに、触媒金属の活性をより有効に利用できる。また、多くのメソ孔の存在により、本発明による作用・効果をさらに顕著に発揮して、触媒反応をより効果的に促進できる。 The pore volume of the carrier pores is 0.3 cc / g or more, preferably 0.4 to 3 cc / g carrier, more preferably 0.4 to 1.5 cc / g carrier. If the void volume is in the above range, a large amount of catalyst metal can be stored (supported) in the mesopores, and the catalyst and the catalyst metal in the catalyst layer are physically separated (contact between the catalyst metal and the electrolyte is prevented). It can be suppressed and prevented more effectively). Therefore, the activity of the catalytic metal can be utilized more effectively. In addition, the presence of many mesopores can more effectively promote the catalytic reaction by exerting the effects and advantages of the present invention more remarkably.
 担体の空孔の空孔分布のモード半径(最頻度径)は、1nm以上5nm未満であり、好ましくは1nm以上4nm以下であり、より好ましくは1nm以上3nm以下であり、さらに好ましくは1nm以上2nm以下である。上記したような空孔分布のモード半径であれば、メソ孔に十分量の触媒金属を格納(担持)でき、触媒層での電解質と触媒金属とを物理的に離す(触媒金属と電解質との接触をより有効に抑制・防止できる)。ゆえに、触媒金属の活性をより有効に利用できる。また、大容積の空孔(メソ孔)の存在により、本発明による作用・効果をさらに顕著に発揮して、触媒反応をより効果的に促進できる。 The mode radius (most frequent diameter) of the pore distribution of the carrier is from 1 nm to less than 5 nm, preferably from 1 nm to 4 nm, more preferably from 1 nm to 3 nm, still more preferably from 1 nm to 2 nm. It is as follows. If the mode radius of the pore distribution is as described above, a sufficient amount of catalyst metal can be stored (supported) in the mesopores, and the electrolyte and catalyst metal in the catalyst layer are physically separated (the catalyst metal and electrolyte are separated from each other). Can more effectively suppress and prevent contact). Therefore, the activity of the catalytic metal can be utilized more effectively. Further, the presence of a large volume of pores (mesopores) can more effectively promote the catalytic reaction by exerting the effects and effects of the present invention more remarkably.
 さらに、担体の空孔の空孔分布のモード半径よりも触媒金属の平均粒半径が大きくなることにより、上記効果に加えて、触媒に機械的ストレスがかかっても脱離しにくくなり、触媒金属のムダが減るため、触媒金属が有効利用されやすくなる。 Furthermore, since the average particle radius of the catalyst metal is larger than the mode radius of the pore distribution of the carrier pores, in addition to the above effects, the catalyst metal is less likely to be detached even when mechanical stress is applied. Since waste is reduced, the catalyst metal is easily used effectively.
 なお、本明細書では、メソ孔の空孔分布のモード半径を単に「メソ孔のモード径」とも称する。 In this specification, the mode radius of the pore distribution of the mesopores is also simply referred to as “mode diameter of the mesopores”.
 担体のBET比表面積は、触媒成分を高分散担持させるのに充分な比表面積であればよい。担体のBET比表面積は、実質的に触媒のBET比表面積と同等である。担体のBET比表面積は、好ましくは1000~3000m/g、より好ましくは1000~1800m/gである。上記したような比表面積であれば、十分な空孔(メソ孔)を確保できるため、メソ孔により多くの触媒金属を格納(担持)できる。また、触媒層での電解質と触媒金属とを物理的に離す(触媒金属と電解質との接触をより有効に抑制・防止できる)。ゆえに、触媒金属の活性をより有効に利用できる。また、多くの空孔(メソ孔)の存在により、本発明による作用・効果をさらに顕著に発揮して、触媒反応をより効果的に促進できる。また、触媒担体上での触媒成分の分散性と触媒成分の有効利用率とのバランスが適切に制御できる。 The BET specific surface area of the support may be a specific surface area sufficient to support the catalyst component in a highly dispersed state. The BET specific surface area of the support is substantially equivalent to the BET specific surface area of the catalyst. The BET specific surface area of the support is preferably 1000 to 3000 m 2 / g, more preferably 1000 to 1800 m 2 / g. If the specific surface area is as described above, sufficient pores (mesopores) can be secured, so that a large amount of catalyst metal can be stored (supported) in the mesopores. In addition, the electrolyte and the catalyst metal in the catalyst layer are physically separated (contact between the catalyst metal and the electrolyte can be more effectively suppressed / prevented). Therefore, the activity of the catalytic metal can be utilized more effectively. In addition, the presence of many pores (mesopores) can more effectively promote the catalytic reaction by exerting the effects and advantages of the present invention more remarkably. In addition, the balance between the dispersibility of the catalyst component on the catalyst carrier and the effective utilization rate of the catalyst component can be appropriately controlled.
 担体の平均粒径は20~2000nmであることが好ましい。かような範囲であれば、担体に上記空孔構造を設けた場合であっても機械的強度が維持され、かつ、触媒層の厚みを適切な範囲で制御することができる。「担体の平均粒径」の値としては、特に言及のない限り、走査型電子顕微鏡(SEM)や透過型電子顕微鏡(TEM)などの観察手段を用い、数~数十視野中に観察される粒子の粒子径の平均値として算出される値を採用するものとする。また、「粒子径」とは、粒子の輪郭線上の任意の2点間の距離のうち、最大の距離を意味するものとする。 The average particle size of the carrier is preferably 20 to 2000 nm. Within such a range, the mechanical strength can be maintained and the thickness of the catalyst layer can be controlled within an appropriate range even when the support is provided with the above-described pore structure. The value of the “average particle diameter of the carrier” is observed in several to several tens of fields using an observation means such as a scanning electron microscope (SEM) or a transmission electron microscope (TEM) unless otherwise specified. The value calculated as the average value of the particle diameter of the particles shall be adopted. The “particle diameter” means the maximum distance among the distances between any two points on the particle outline.
 上記したような空孔分布を有する担体の製造方法は、特に制限されないが、具体的には、特開2010-208887号公報、国際公開第2009/75264号、などに記載される方法が好ましく使用される。 The method for producing the carrier having the pore distribution as described above is not particularly limited, but specifically, the methods described in JP 2010-208887 A, International Publication No. 2009/75264, etc. are preferably used. Is done.
 なお、本発明においては、触媒内に上記したような空孔分布を有するものである限り、必ずしも上記したような粒状の多孔質担体を用いる必要はない。 In the present invention, it is not always necessary to use the granular porous carrier as described above as long as the catalyst has the pore distribution as described above.
 すなわち、担体として、非多孔質の導電性担体やガス拡散層を構成する炭素繊維から成る不織布やカーボンペーパー、カーボンクロスなども挙げられる。このとき、触媒をこれら非多孔質の導電性担体に担持したり、膜電極接合体のガス拡散層を構成する炭素繊維から成る不織布やカーボンペーパー、カーボンクロスなどに直接付着させたりすることも可能である。 That is, examples of the carrier include a non-porous conductive carrier, a non-woven fabric made of carbon fibers constituting a gas diffusion layer, carbon paper, and carbon cloth. At this time, the catalyst can be supported on these non-porous conductive carriers, or directly attached to a non-woven fabric made of carbon fibers, carbon paper, carbon cloth, etc. constituting the gas diffusion layer of the membrane electrode assembly. It is.
 本発明で使用できる触媒金属は、電気的化学反応の触媒作用をする機能を有する。アノード触媒層に用いられる触媒金属は、水素の酸化反応に触媒作用を有するものであれば特に制限はなく公知の触媒が同様にして使用できる。また、カソード触媒層に用いられる触媒金属もまた、酸素の還元反応に触媒作用を有するものであれば特に制限はなく公知の触媒が同様にして使用できる。具体的には、白金、ルテニウム、イリジウム、ロジウム、パラジウム、オスミウム、タングステン、鉛、鉄、銅、銀、クロム、コバルト、ニッケル、マンガン、バナジウム、モリブデン、ガリウム、アルミニウム等の金属およびこれらの合金などから選択されうる。 The catalytic metal that can be used in the present invention has a function of catalyzing an electrochemical reaction. The catalyst metal used in the anode catalyst layer is not particularly limited as long as it has a catalytic action in the oxidation reaction of hydrogen, and a known catalyst can be used in the same manner. The catalyst metal used in the cathode catalyst layer is not particularly limited as long as it has a catalytic action for the oxygen reduction reaction, and a known catalyst can be used in the same manner. Specifically, metals such as platinum, ruthenium, iridium, rhodium, palladium, osmium, tungsten, lead, iron, copper, silver, chromium, cobalt, nickel, manganese, vanadium, molybdenum, gallium, aluminum, and alloys thereof Can be selected.
 これらのうち、触媒活性、一酸化炭素等に対する耐被毒性、耐熱性などを向上させるために、少なくとも白金を含むものが好ましく用いられる。すなわち、触媒金属は、白金であるまたは白金と白金以外の金属成分を含むことが好ましく、白金または白金含有合金であることがより好ましい。このような触媒金属は、高い活性を発揮できる。前記合金の組成は、合金化する金属の種類にもよるが、白金の含有量を30~90原子%とし、白金と合金化する金属の含有量を10~70原子%とするのがよい。なお、合金とは、一般に金属元素に1種以上の金属元素または非金属元素を加えたものであって、金属的性質をもっているものの総称である。合金の組織には、成分元素が別個の結晶となるいわば混合物である共晶合金、成分元素が完全に溶け合い固溶体となっているもの、成分元素が金属間化合物または金属と非金属との化合物を形成しているものなどがあり、本願ではいずれであってもよい。この際、アノード触媒層に用いられる触媒金属およびカソード触媒層に用いられる触媒金属は、上記の中から適宜選択されうる。本明細書では、特記しない限り、アノード触媒層用およびカソード触媒層用の触媒金属についての説明は、両者について同様の定義である。しかしながら、アノード触媒層およびカソード触媒層の触媒金属は同一である必要はなく、上記したような所望の作用を奏するように、適宜選択されうる。 Among these, those containing at least platinum are preferably used in order to improve catalytic activity, poisoning resistance to carbon monoxide, heat resistance, and the like. That is, the catalyst metal is preferably platinum or contains a metal component other than platinum and platinum, and more preferably platinum or a platinum-containing alloy. Such a catalytic metal can exhibit high activity. Although the composition of the alloy depends on the type of metal to be alloyed, the content of platinum is preferably 30 to 90 atomic%, and the content of the metal to be alloyed with platinum is preferably 10 to 70 atomic%. In general, an alloy is a generic term for a metal element having one or more metal elements or non-metal elements added and having metallic properties. The alloy structure consists of a eutectic alloy, which is a mixture of the component elements as separate crystals, a component element completely melted into a solid solution, and a component element composed of an intermetallic compound or a compound of a metal and a nonmetal. There is what is formed, and any may be used in the present application. At this time, the catalyst metal used for the anode catalyst layer and the catalyst metal used for the cathode catalyst layer can be appropriately selected from the above. In the present specification, unless otherwise specified, the description of the catalyst metal for the anode catalyst layer and the cathode catalyst layer has the same definition for both. However, the catalyst metals of the anode catalyst layer and the cathode catalyst layer do not have to be the same, and can be appropriately selected so as to exhibit the desired action as described above.
 触媒金属(触媒成分)の形状や大きさは、特に制限されず公知の触媒成分と同様の形状および大きさが採用されうる。形状としては、例えば、粒状、鱗片状、層状などのものが使用できるが、好ましくは粒状である。 The shape and size of the catalyst metal (catalyst component) are not particularly limited, and the same shape and size as known catalyst components can be adopted. As the shape, for example, a granular shape, a scale shape, a layered shape, and the like can be used, but a granular shape is preferable.
 〔担体内部の空孔に触媒金属の構成成分を含浸する工程〕
 本工程においては、上記のような触媒金属の構成成分を担体内部の空孔に含浸する。前記触媒金属の構成成分を含む含浸剤の具体的な例としては、例えば、白金ナノコロイド溶液、ジニトロジアンミン白金硝酸溶液、塩化白金(IV)酸水和物、塩化白金(IV)酸アンモニウム、テトラアンミン白金(II)ジクロライド水和物、ヘキサヒドロキソ白金(IV)酸硝酸溶液等の触媒金属の前駆体を含む溶液が挙げられる。これら含浸剤は、単独でもまたは2種以上混合して用いてもよい。
[Step of impregnating the pores inside the support with the components of the catalyst metal]
In this step, the pores inside the carrier are impregnated with the constituent components of the catalyst metal as described above. Specific examples of the impregnating agent containing the catalyst metal component include, for example, platinum nanocolloid solution, dinitrodiammine platinum nitrate solution, platinum chloride (IV) acid hydrate, platinum chloride (IV) acid ammonium, tetraammine. Examples thereof include a solution containing a precursor of a catalytic metal such as platinum (II) dichloride hydrate and hexahydroxoplatinum (IV) nitric acid solution. These impregnating agents may be used alone or in admixture of two or more.
 上記含浸剤に含まれる触媒金属の構成成分の平均粒半径(2種以上の触媒金属の構成成分を含む場合は、その平均粒半径の総和)は、前記担体の空孔の空孔分布のモード半径よりも小さいことが好ましい。かような構成により、触媒金属の構成成分が、担体内部の空孔により含浸されやすくなる。 The average particle radius of the constituent components of the catalyst metal contained in the impregnating agent (the sum of the average particle radii when two or more constituent components of the catalyst metal are included) is the pore distribution mode of the pores of the support. It is preferably smaller than the radius. With such a configuration, the constituent components of the catalyst metal are easily impregnated by the pores inside the support.
 上記担体を含浸剤に浸漬する際の温度(浸漬温度)は特に制限されないが、室温(25℃)~100℃であることが好ましい。また、浸漬の際の時間(浸漬時間)も特に制限されないが、1~10時間であることが好ましく、2~8時間であることがより好ましい。 The temperature at which the carrier is immersed in the impregnating agent (immersion temperature) is not particularly limited, but is preferably room temperature (25 ° C.) to 100 ° C. The time for immersion (immersion time) is not particularly limited, but is preferably 1 to 10 hours, and more preferably 2 to 8 hours.
 浸漬時には、超音波等を利用して攪拌を行うことが好ましい。また、液を脱泡するため、さらには担体内部の空孔に残存する気泡を除去し、液が担体内部に入りやすくするために、減圧処理を行うことが好ましい。 During the immersion, it is preferable to perform stirring using ultrasonic waves or the like. Further, in order to degas the liquid, it is preferable to perform a depressurization process in order to remove bubbles remaining in the pores inside the carrier and to make it easier for the liquid to enter the inside of the carrier.
 含浸する工程が終了した後は、担体をろ過し乾燥する。 After completion of the impregnation step, the support is filtered and dried.
 〔前駆体を還元する工程〕
 上記含浸する工程において、含浸剤として触媒金属の前駆体を用いた場合には、ろ過・乾燥の前に触媒金属の前駆体を還元する工程を行うことが好ましい。還元の際に用いられる還元剤としては、特に制限されないが、例えば、水素、ホウ素化水素ナトリウム、チオ硫酸ナトリウム、クエン酸、クエン酸ナトリウム、L-アスコルビン酸、酢酸などの有機酸またはその塩、水素化ホウ素ナトリウム、蟻酸、アセトアルデヒド、ホルムアルデヒドなどのアルデヒド類、メタノール、エタノール、プロパノールなどのアルコール類、エチレン、一酸化炭素等が挙げられる。これら還元剤は、単独でもまたは2種以上混合しても用いることができる。
[Step of reducing precursor]
In the impregnation step, when a catalyst metal precursor is used as the impregnation agent, it is preferable to perform a step of reducing the catalyst metal precursor before filtration and drying. The reducing agent used in the reduction is not particularly limited, and examples thereof include hydrogen, sodium borohydride, sodium thiosulfate, citric acid, sodium citrate, L-ascorbic acid, acetic acid and other organic acids or salts thereof, Examples thereof include sodium borohydride, aldehydes such as formic acid, acetaldehyde and formaldehyde, alcohols such as methanol, ethanol and propanol, ethylene and carbon monoxide. These reducing agents can be used alone or in admixture of two or more.
 還元の際の温度は特に制限されないが、室温(25℃)~100℃であることが好ましい。また、還元の際の時間も特に制限されないが、1~10時間であることが好ましく、2~8時間であることがより好ましい。 The temperature during the reduction is not particularly limited, but is preferably room temperature (25 ° C.) to 100 ° C. The time for reduction is not particularly limited, but is preferably 1 to 10 hours, and more preferably 2 to 8 hours.
 〔熱処理する工程〕
 上記含浸する工程または前駆体を還元する工程の後に、担体を熱処理する。これにより、触媒金属と担体の空孔内壁面との距離が縮まり、水が存在しうる空間が減少する、すなわち触媒金属表面に吸着する水の量が減る。また、水が空孔内壁面の相互作用を受け、水が空孔内壁面に保持されやすくなる。よって、金属酸化物の形成反応が遅くなり、金属酸化物が形成されにくくなる。その結果、触媒金属表面の失活が抑制され、高い触媒活性を発揮できる、すなわち、触媒反応を促進できる。
[Step of heat treatment]
After the impregnation step or the precursor reduction step, the support is heat-treated. Thereby, the distance between the catalyst metal and the inner wall surface of the pore of the carrier is reduced, and the space where water can exist is reduced, that is, the amount of water adsorbed on the surface of the catalyst metal is reduced. Further, water is subjected to the interaction of the inner wall surface of the hole, and the water is easily held on the inner wall surface of the hole. Therefore, the formation reaction of the metal oxide is delayed, and the metal oxide is hardly formed. As a result, the deactivation of the catalytic metal surface is suppressed, and high catalytic activity can be exhibited, that is, the catalytic reaction can be promoted.
 熱処理の際の雰囲気は特に制限されないが、水素雰囲気、水素を少量混ぜた窒素雰囲気、アルゴン雰囲気等が挙げられる。 The atmosphere during the heat treatment is not particularly limited, and examples thereof include a hydrogen atmosphere, a nitrogen atmosphere mixed with a small amount of hydrogen, and an argon atmosphere.
 熱処理に用いられる装置としては、例えば、焼成炉等の加熱装置が挙げられる。 Examples of the apparatus used for the heat treatment include a heating apparatus such as a firing furnace.
 熱処理の温度は特に制限されないが、300~1200℃であることが好ましく、500~1150℃の範囲であることがより好ましく、700~1100℃の範囲であることがさらに好ましい。また、熱処理の時間は特に制限されないが、0.02~3時間であることが好ましく、0.1~2時間であることがより好ましい。 The temperature of the heat treatment is not particularly limited, but is preferably 300 to 1200 ° C, more preferably 500 to 1150 ° C, and still more preferably 700 to 1100 ° C. Further, the heat treatment time is not particularly limited, but is preferably 0.02 to 3 hours, and more preferably 0.1 to 2 hours.
 上記のようにして得られる触媒の空孔分布のモード半径は、前記触媒金属の平均粒半径以下であることが好ましい。この際、触媒金属(触媒金属粒子)の平均粒半径は、好ましくは1nm以上3.5nm以下、より好ましくは1.5nm以上2.5nm以下である。前記モード半径が前記触媒金属の平均粒半径以下であれば、触媒金属と担体の空孔内壁面との距離が縮まり、水が存在しうる空間がより減少する、すなわち触媒金属表面に吸着する水の量がより減る。また、水が空孔内壁面の相互作用を受け、水が空孔内壁面に保持されやすくなる。よって、金属酸化物の形成反応がより遅くなり、金属酸化物がより形成されにくくなる。その結果、触媒金属表面の失活がより抑制され、高い触媒活性をより発揮できる、すなわち、触媒反応をより促進できる。また、触媒金属が空孔(メソ孔)内に比較的強固に担持され、触媒層内で電解質と接触するのをより有効に抑制・防止される。また、電位変化による溶出を防止し、経時的な性能低下をも抑制できる。このため、触媒活性をより向上できる、すなわち、触媒反応をより効率的に促進できる。なお、本発明における「触媒金属粒子の平均粒半径」は、X線回折における触媒金属成分の回折ピークの半値幅より求められる結晶子半径や、透過型電子顕微鏡(TEM)より調べられる触媒金属粒子の粒子半径の平均値として測定されうる。本明細書では、「触媒金属の平均粒半径」は、統計上有意な数(例えば、少なくとも203個)のサンプルについて透過型電子顕微鏡像より調べられる触媒成分の粒子半径の平均値である。 The mode radius of the pore distribution of the catalyst obtained as described above is preferably not more than the average particle radius of the catalyst metal. At this time, the average particle radius of the catalyst metal (catalyst metal particles) is preferably 1 nm to 3.5 nm, more preferably 1.5 nm to 2.5 nm. If the mode radius is equal to or less than the average particle radius of the catalyst metal, the distance between the catalyst metal and the inner wall surface of the pores of the support is reduced, and the space where water can exist is further reduced, that is, The amount of less. Further, water is subjected to the interaction of the inner wall surface of the hole, and the water is easily held on the inner wall surface of the hole. Therefore, the formation reaction of the metal oxide becomes slower and the metal oxide is more difficult to be formed. As a result, the deactivation of the catalytic metal surface is further suppressed, and a high catalytic activity can be exhibited, that is, the catalytic reaction can be further promoted. Further, the catalyst metal is supported relatively firmly in the pores (mesopores), and the contact with the electrolyte in the catalyst layer is more effectively suppressed / prevented. In addition, elution due to potential change can be prevented, and deterioration in performance over time can be suppressed. For this reason, the catalytic activity can be further improved, that is, the catalytic reaction can be promoted more efficiently. The “average particle radius of the catalyst metal particles” in the present invention is the crystallite radius determined from the half-value width of the diffraction peak of the catalyst metal component in X-ray diffraction, or the catalyst metal particles examined by a transmission electron microscope (TEM). It can be measured as the average value of the particle radii. In the present specification, the “average particle radius of the catalyst metal” is an average value of the particle radii of the catalyst component examined from a transmission electron microscope image of a statistically significant number (for example, at least 203 samples).
 上記のような触媒の空孔分布のモード半径が触媒金属の平均粒半径以下となる関係は、前記熱処理の工程において、時間、温度、雰囲気等の制御を行うことにより実現することができる。このような製造条件により、触媒金属が粒成長し、触媒金属と担体の空孔内壁面との距離が縮まり、水が存在しうる空間がより減少する、すなわち触媒金属表面に吸着する水の量がより減る。さらに、触媒の空孔の空孔分布のモード半径よりも触媒金属の平均粒半径が大きくなることにより、上記効果に加えて、触媒に機械的ストレスがかかっても脱離しにくくなり、触媒金属のムダが減るため、触媒金属が有効利用されやすくなる。 The relationship in which the mode radius of the pore distribution of the catalyst is equal to or less than the average particle radius of the catalyst metal as described above can be realized by controlling time, temperature, atmosphere, and the like in the heat treatment step. Under such manufacturing conditions, the catalyst metal grows and the distance between the catalyst metal and the inner wall surface of the pore of the carrier is reduced, so that the space where water can exist is further reduced, that is, the amount of water adsorbed on the catalyst metal surface. Is more reduced. Furthermore, since the average particle radius of the catalyst metal is larger than the mode radius of the pore distribution of the catalyst pores, in addition to the above effects, the catalyst metal is less likely to be detached even when mechanical stress is applied. Since waste is reduced, the catalyst metal is easily used effectively.
 また、触媒金属の平均粒半径が1.5nm以上2.5nm以下となるような制御は、前記熱処理の工程において、温度、時間、雰囲気等の制御を行うことにより実施することができる。特に、熱処理の温度を高くするか、熱処理時間を長く行うことにより制御することができる。 Further, the control such that the average particle radius of the catalyst metal is 1.5 nm or more and 2.5 nm or less can be performed by controlling the temperature, time, atmosphere and the like in the heat treatment step. In particular, it can be controlled by increasing the temperature of the heat treatment or by lengthening the heat treatment time.
 本形態において、単位触媒塗布面積当たりの触媒含有量(mg/cm)は、十分な触媒の担体上での分散度、発電性能が得られる限り特に制限されず、例えば、0.01~1mg/cmである。ただし、触媒が白金または白金含有合金を含む場合、単位触媒塗布面積当たりの白金含有量が0.5mg/cm以下であることが好ましい。白金(Pt)や白金合金に代表される高価な貴金属触媒の使用は燃料電池の高価格要因となっている。したがって、高価な白金の使用量(白金含有量)を上記範囲まで低減し、コストを削減することが好ましい。下限値は発電性能が得られる限り特に制限されず、例えば、0.01mg/cm以上である。より好ましくは、当該白金含有量は0.02~0.4mg/cmである。本形態では、担体の空孔構造を制御することにより、触媒重量あたりの活性を向上させることができるため、高価な触媒の使用量を低減することが可能となる。 In the present embodiment, the catalyst content (mg / cm 2 ) per unit catalyst application area is not particularly limited as long as sufficient catalyst dispersion and power generation performance can be obtained. For example, 0.01 to 1 mg / Cm 2 . However, when the catalyst contains platinum or a platinum-containing alloy, the platinum content per unit catalyst coating area is preferably 0.5 mg / cm 2 or less. The use of expensive noble metal catalysts typified by platinum (Pt) and platinum alloys has become a high cost factor for fuel cells. Therefore, it is preferable to reduce the amount of expensive platinum used (platinum content) to the above range and reduce the cost. The lower limit is not particularly limited as long as power generation performance is obtained, and is, for example, 0.01 mg / cm 2 or more. More preferably, the platinum content is 0.02 to 0.4 mg / cm 2 . In this embodiment, since the activity per catalyst weight can be improved by controlling the pore structure of the carrier, the amount of expensive catalyst used can be reduced.
 なお、本明細書において、「単位触媒塗布面積当たりの触媒(白金)含有量(mg/cm)」の測定(確認)には、誘導結合プラズマ発光分光法(ICP)を用いる。所望の「単位触媒塗布面積当たりの触媒(白金)含有量(mg/cm)」にせしめる方法も当業者であれば容易に行うことができ、スラリーの組成(触媒濃度)と塗布量を制御することで量を調整することができる。 In this specification, inductively coupled plasma emission spectroscopy (ICP) is used for measurement (confirmation) of “catalyst (platinum) content per unit catalyst application area (mg / cm 2 )”. A person skilled in the art can easily carry out a method of making the desired “catalyst (platinum) content per unit catalyst coating area (mg / cm 2 )”, and control the slurry composition (catalyst concentration) and coating amount. You can adjust the amount.
 また、担体における触媒の担持量(担持率とも称する場合がある)は、触媒担持体(つまり、担体および触媒)の全量に対して、好ましくは10~80重量%、より好ましくは20~70重量%とするのがよい。担持量が前記範囲であれば、十分な触媒成分の担体上での分散度、発電性能の向上、経済上での利点、単位重量あたりの触媒活性が達成できるため好ましい。 The amount of the catalyst supported on the carrier (sometimes referred to as the loading ratio) is preferably 10 to 80% by weight, more preferably 20 to 70% by weight, based on the total amount of the catalyst carrier (that is, the carrier and the catalyst). % Is good. If the loading is within the above range, it is preferable because a sufficient degree of dispersion of the catalyst components on the carrier, improvement in power generation performance, economic advantages, and catalytic activity per unit weight can be achieved.
 (触媒金属担持後の触媒の)空孔の空孔容積は、0.3cc/g担体以上であることが好ましく、より好ましくは0.4~3cc/g担体であり、さらに好ましくは0.4~1.5cc/g担体である。空孔容積が上記したような範囲にあれば、メソ孔により多くの触媒金属を格納(担持)でき、触媒層での電解質と触媒金属とを物理的に離す(触媒金属と電解質との接触をより有効に抑制・防止できる)。ゆえに、触媒金属の活性をより有効に利用できる。また、多くのメソ孔の存在により、本発明による作用・効果をさらに顕著に発揮して、触媒反応をより効果的に促進できる。 The pore volume of the pores (of the catalyst after supporting the catalyst metal) is preferably 0.3 cc / g or more, more preferably 0.4 to 3 cc / g, and even more preferably 0.4 ~ 1.5cc / g carrier. If the void volume is in the above range, a large amount of catalyst metal can be stored (supported) in the mesopores, and the catalyst and the catalyst metal in the catalyst layer are physically separated (contact between the catalyst metal and the electrolyte is prevented). It can be suppressed and prevented more effectively). Therefore, the activity of the catalytic metal can be utilized more effectively. In addition, the presence of many mesopores can more effectively promote the catalytic reaction by exerting the effects and advantages of the present invention more remarkably.
 (触媒金属担持後の触媒の)空孔の空孔分布のモード半径(最頻度径)は、1nm以上5nm未満であることが好ましく、より好ましくは1nm以上4nm以下であり、さらに好ましくは1nm以上3nm以下であり、特に好ましくは1nm以上2nm以下である。上記したような空孔分布のモード半径であれば、メソ孔に十分量の触媒金属を格納(担持)でき、触媒層での電解質と触媒金属とを物理的に離す(触媒金属と電解質との接触をより有効に抑制・防止できる)。ゆえに、触媒金属の活性をより有効に利用できる。また、大容積の空孔(メソ孔)の存在により、本発明による作用・効果をさらに顕著に発揮して、触媒反応をより効果的に促進できる。さらに、触媒の空孔の空孔分布のモード半径よりも触媒金属の平均粒半径が大きくなることにより、上記効果に加えて、触媒に機械的ストレスがかかっても脱離しにくくなり、触媒金属のムダが減るため、触媒金属が有効利用されやすくなる。なお、本明細書では、メソ孔の空孔分布のモード半径を単に「メソ孔のモード径」とも称する。 The mode radius (most frequent diameter) of the pore distribution (of the catalyst after supporting the catalyst metal) is preferably 1 nm or more and less than 5 nm, more preferably 1 nm or more and 4 nm or less, and further preferably 1 nm or more. It is 3 nm or less, and particularly preferably 1 nm or more and 2 nm or less. If the mode radius of the pore distribution is as described above, a sufficient amount of catalyst metal can be stored (supported) in the mesopores, and the electrolyte and catalyst metal in the catalyst layer are physically separated (the catalyst metal and electrolyte are separated from each other). Can more effectively suppress and prevent contact). Therefore, the activity of the catalytic metal can be utilized more effectively. Further, the presence of a large volume of pores (mesopores) can more effectively promote the catalytic reaction by exerting the effects and effects of the present invention more remarkably. Furthermore, since the average particle radius of the catalyst metal is larger than the mode radius of the pore distribution of the catalyst pores, in addition to the above effects, the catalyst metal is less likely to be detached even when mechanical stress is applied. Since waste is reduced, the catalyst metal is easily used effectively. In the present specification, the mode radius of the pore distribution of mesopores is also simply referred to as “mode diameter of mesopores”.
 (触媒金属担持後の触媒の)BET比表面積[担体1gあたりの触媒のBET比表面積(m/g担体)]は、特に制限されないが、1000m/g担体以上であることが好ましく、より好ましくは1000~3000m/g担体であり、さらに好ましくは1000~1800m/g担体であることが好ましい。上記したような比表面積であれば、メソ孔により多くの触媒金属を格納(担持)できる。また、触媒層での電解質と触媒金属とを物理的に離す(触媒金属と電解質との接触をより有効に抑制・防止できる)。ゆえに、触媒金属の活性をより有効に利用できる。また、多くの空孔(メソ孔)の存在により、本発明による作用・効果をさらに顕著に発揮して、触媒反応をより効果的に促進できる。 The BET specific surface area (of the catalyst after supporting the catalyst metal) [the BET specific surface area of the catalyst per 1 g of support (m 2 / g support)] is not particularly limited, but is preferably 1000 m 2 / g or more, more The carrier is preferably 1000 to 3000 m 2 / g, and more preferably 1000 to 1800 m 2 / g. With the specific surface area as described above, a large amount of catalyst metal can be stored (supported) in the mesopores. In addition, the electrolyte and the catalyst metal in the catalyst layer are physically separated (contact between the catalyst metal and the electrolyte can be more effectively suppressed / prevented). Therefore, the activity of the catalytic metal can be utilized more effectively. In addition, the presence of many pores (mesopores) can more effectively promote the catalytic reaction by exerting the effects and advantages of the present invention more remarkably.
 なお、本明細書において、触媒の「BET比表面積(m/g担体)」は、窒素吸着法により測定される。詳細には、触媒粉末 約0.04~0.07gを精秤し、試料管に封入する。この試料管を真空乾燥器で90℃×数時間予備乾燥し、測定用サンプルとする。秤量には、株式会社島津製作所製電子天秤(AW220)を用いる。なお、塗布シートの場合には、これの全重量から、同面積のテフロン(登録商標)(基材)重量を差し引いた塗布層の正味の重量約0.03~0.04gを試料重量として用いる。次に、下記測定条件にて、BET比表面積を測定する。吸着・脱着等温線の吸着側において、相対圧(P/P)約0.00~0.45の範囲から、BETプロットを作成することで、その傾きと切片からBET比表面積を算出する。 In the present specification, the “BET specific surface area (m 2 / g support)” of the catalyst is measured by a nitrogen adsorption method. Specifically, about 0.04 to 0.07 g of catalyst powder is precisely weighed and sealed in a sample tube. This sample tube is preliminarily dried at 90 ° C. for several hours in a vacuum dryer to obtain a measurement sample. For weighing, an electronic balance (AW220) manufactured by Shimadzu Corporation is used. In the case of a coated sheet, a net weight of about 0.03 to 0.04 g of the coated layer obtained by subtracting the weight of Teflon (registered trademark) (base material) of the same area from the total weight is used as the sample weight. . Next, the BET specific surface area is measured under the following measurement conditions. On the adsorption side of the adsorption / desorption isotherm, a BET specific surface area is calculated from the slope and intercept by creating a BET plot from a relative pressure (P / P 0 ) range of about 0.00 to 0.45.
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
 「空孔の半径(nm)」は、窒素吸着法(DH法)により測定される空孔の半径を意味する。また、「空孔分布のモード半径(nm)」は、窒素吸着法(DH法)により得られる微分細孔分布曲線においてピーク値(最大頻度)をとる点の空孔半径を意味する。ここで、空孔の半径の上限は、特に制限されないが、100nm以下である。 “Void radius (nm)” means the radius of a pore measured by the nitrogen adsorption method (DH method). Further, “mode radius (nm) of pore distribution” means a pore radius at a point where a peak value (maximum frequency) is obtained in a differential pore distribution curve obtained by a nitrogen adsorption method (DH method). Here, the upper limit of the radius of the hole is not particularly limited, but is 100 nm or less.
 「空孔の空孔容積」は、触媒に存在する空孔の総容積を意味し、担体1gあたりの容積(cc/g担体)で表される。「空孔の空孔容積(cc/g担体)」は、窒素吸着法(DH法)によって求めた微分細孔分布曲線の下部の面積(積分値)として算出される。 “The pore volume of pores” means the total volume of pores present in the catalyst, and is expressed as the volume per gram of carrier (cc / g carrier). The “pore volume of vacancies (cc / g carrier)” is calculated as the area (integrated value) below the differential pore distribution curve obtained by the nitrogen adsorption method (DH method).
 「微分細孔分布」とは、細孔径を横軸に、触媒中のその細孔径に相当する細孔容積を縦軸にプロットした分布曲線である。すなわち、窒素吸着法(DH法)により得られる触媒の空孔容積をVとし、空孔直径をDとした際の、差分空孔容積dVを空孔直径の対数差分d(logD)で割った値(dV/d(logD))を求める。そして、このdV/d(logD)を各区分の平均空孔直径に対してプロットすることにより微分細孔分布曲線が得られる。差分空孔容積dVとは、測定ポイント間の空孔容積の増加分をいう。 The “differential pore distribution” is a distribution curve in which the pore diameter is plotted on the horizontal axis and the pore volume corresponding to the pore diameter in the catalyst is plotted on the vertical axis. That is, when the pore volume of the catalyst obtained by the nitrogen adsorption method (DH method) is V and the pore diameter is D, the differential pore volume dV is divided by the logarithmic difference d (log D) of the pore diameter. A value (dV / d (logD)) is obtained. A differential pore distribution curve is obtained by plotting this dV / d (logD) against the average pore diameter of each section. The differential hole volume dV refers to an increase in the hole volume between measurement points.
 窒素吸着法(DH法)によるメソ孔の半径および空孔容積の測定方法は、特に制限されず、例えば、「吸着の科学」(第2版 近藤精一、石川達雄、安部郁夫 共著、丸善株式会社)や「燃料電池の解析手法」(高須芳雄、吉武優、石原達己 編、化学同人)、D. Dollion, G. R. Heal : J. Appl. Chem., 14, 109 (1964)等の公知の文献に記載される方法が採用できる。本明細書では、窒素吸着法(DH法)によるメソ孔の半径及び空孔容積は、D. Dollion, G. R. Heal : J. Appl. Chem., 14, 109 (1964) に記載される方法によって、測定された値である。 The method of measuring the mesopore radius and pore volume by the nitrogen adsorption method (DH method) is not particularly limited. For example, “Science of adsorption” (2nd edition, written by Seiichi Kondo, Tatsuo Ishikawa, Ikuo Abe, Maruzen Stock Company), “Fuel cell analysis method” (Yoshio Takasu, Yuu Yoshitake, Tatsumi Ishihara, edited by Chemistry), D. Dollion, G. R. Heal: J. Appl. Chem. Methods described in known literature can be employed. In this specification, the mesopore radius and pore volume by nitrogen adsorption method (DH method) are described in D. Dollion, G. R. Heal: J. Appl. Chem., 14, 109 (1964). The value measured by the method.
 [触媒層]
 上述したように、本発明の製造方法により得られる触媒は、高い触媒活性を発揮できる、即ち、触媒反応を促進できる。したがって、本発明の製造方法により得られる触媒は、燃料電池用の電極触媒層に好適に使用できる。
[Catalyst layer]
As described above, the catalyst obtained by the production method of the present invention can exhibit high catalytic activity, that is, can promote catalytic reaction. Therefore, the catalyst obtained by the production method of the present invention can be suitably used for an electrode catalyst layer for a fuel cell.
 図3は、本発明の一実施形態に係る触媒層における触媒および電解質の関係を示す模式図である。図3に示されるように、本発明に係る触媒層内では、触媒は電解質26で被覆されているが、電解質26は、触媒(担体23)のメソ孔24内には侵入しない。このため、担体23表面の触媒金属22は電解質26と接触するが、メソ孔24内部に担持された触媒金属22は電解質26と非接触状態である。メソ孔内の触媒金属が、電解質と非接触状態で酸素ガスと水との三相界面を形成することにより、触媒金属の反応活性面積を確保できる。 FIG. 3 is a schematic diagram showing the relationship between the catalyst and the electrolyte in the catalyst layer according to one embodiment of the present invention. As shown in FIG. 3, in the catalyst layer according to the present invention, the catalyst is covered with the electrolyte 26, but the electrolyte 26 does not enter the mesopores 24 of the catalyst (support 23). For this reason, the catalyst metal 22 on the surface of the carrier 23 is in contact with the electrolyte 26, but the catalyst metal 22 supported in the mesopores 24 is not in contact with the electrolyte 26. The catalytic metal in the mesopores forms a three-phase interface between oxygen gas and water in a non-contact state with the electrolyte, thereby ensuring a reaction active area of the catalytic metal.
 本発明の製造方法により得られる触媒は、カソード触媒層またはアノード触媒層のいずれに存在してもいてもよいが、カソード触媒層で使用されることが好ましい。上述したように、本発明の製造方法により得られる触媒は、電解質と接触しなくても、水との三相界面を形成することによって、触媒を有効に利用できるが、カソード触媒層で水が形成するからである。 The catalyst obtained by the production method of the present invention may be present in either the cathode catalyst layer or the anode catalyst layer, but is preferably used in the cathode catalyst layer. As described above, the catalyst obtained by the production method of the present invention can effectively utilize the catalyst by forming a three-phase interface with water without contact with the electrolyte. It is because it forms.
 電解質は、特に制限されないが、イオン伝導性の高分子電解質であることが好ましい。上記高分子電解質は、燃料極側の触媒活物質周辺で発生したプロトンを伝達する役割を果たすことから、プロトン伝導性高分子とも呼ばれる。 The electrolyte is not particularly limited, but is preferably an ion conductive polymer electrolyte. Since the polymer electrolyte plays a role of transmitting protons generated around the catalyst active material on the fuel electrode side, it is also called a proton conductive polymer.
 当該高分子電解質は、特に限定されず従来公知の知見が適宜参照されうる。高分子電解質は、構成材料であるイオン交換樹脂の種類によって、フッ素系高分子電解質と炭化水素系高分子電解質とに大別される。 The polymer electrolyte is not particularly limited, and conventionally known knowledge can be appropriately referred to. Polymer electrolytes are roughly classified into fluorine-based polymer electrolytes and hydrocarbon-based polymer electrolytes depending on the type of ion exchange resin that is a constituent material.
 フッ素系高分子電解質を構成するイオン交換樹脂としては、例えば、ナフィオン(登録商標、デュポン社製)、アシプレックス(登録商標、旭化成株式会社製)、フレミオン(登録商標、旭硝子株式会社製)等のパーフルオロカーボンスルホン酸系ポリマー、パーフルオロカーボンホスホン酸系ポリマー、トリフルオロスチレンスルホン酸系ポリマー、エチレンテトラフルオロエチレン-g-スチレンスルホン酸系ポリマー、エチレン-テトラフルオロエチレン共重合体、ポリビニリデンフルオリド-パーフルオロカーボンスルホン酸系ポリマーなどが挙げられる。耐熱性、化学的安定性、耐久性、機械強度に優れるという観点からは、これらのフッ素系高分子電解質が好ましく用いられ、特に好ましくはパーフルオロカーボンスルホン酸系ポリマーから構成されるフッ素系高分子電解質が用いられる。 Examples of ion exchange resins constituting the fluorine-based polymer electrolyte include Nafion (registered trademark, manufactured by DuPont), Aciplex (registered trademark, manufactured by Asahi Kasei Co., Ltd.), Flemion (registered trademark, manufactured by Asahi Glass Co., Ltd.), and the like. Perfluorocarbon sulfonic acid polymer, perfluorocarbon phosphonic acid polymer, trifluorostyrene sulfonic acid polymer, ethylene tetrafluoroethylene-g-styrene sulfonic acid polymer, ethylene-tetrafluoroethylene copolymer, polyvinylidene fluoride-per Examples thereof include fluorocarbon sulfonic acid polymers. From the viewpoint of excellent heat resistance, chemical stability, durability, and mechanical strength, these fluorine-based polymer electrolytes are preferably used, and particularly preferably fluorine-based polymer electrolytes composed of perfluorocarbon sulfonic acid polymers. Is used.
 炭化水素系電解質として、具体的には、スルホン化ポリエーテルスルホン(S-PES)、スルホン化ポリアリールエーテルケトン、スルホン化ポリベンズイミダゾールアルキル、ホスホン化ポリベンズイミダゾールアルキル、スルホン化ポリスチレン、スルホン化ポリエーテルエーテルケトン(S-PEEK)、スルホン化ポリフェニレン(S-PPP)などが挙げられる。原料が安価で製造工程が簡便であり、かつ材料の選択性が高いといった製造上の観点からは、これらの炭化水素系高分子電解質が好ましく用いられる。なお、上述したイオン交換樹脂は、1種のみが単独で用いられてもよいし、2種以上が併用されてもよい。また、上述した材料のみに制限されず、その他の材料が用いられてもよい。 Specific examples of the hydrocarbon electrolyte include sulfonated polyethersulfone (S-PES), sulfonated polyaryletherketone, sulfonated polybenzimidazole alkyl, phosphonated polybenzimidazole alkyl, sulfonated polystyrene, sulfonated poly Examples include ether ether ketone (S-PEEK) and sulfonated polyphenylene (S-PPP). These hydrocarbon polymer electrolytes are preferably used from the viewpoint of production such that the raw material is inexpensive, the production process is simple, and the selectivity of the material is high. In addition, as for the ion exchange resin mentioned above, only 1 type may be used independently and 2 or more types may be used together. Moreover, it is not restricted only to the material mentioned above, Other materials may be used.
 プロトンの伝達を担う高分子電解質においては、プロトンの伝導度が重要となる。ここで、高分子電解質のEWが大きすぎる場合には触媒層全体でのイオン伝導性が低下する。したがって、本形態の触媒層は、EWの小さい高分子電解質を含むことが好ましい。具体的には、本形態の触媒層は、好ましくはEWが1500g/eq.以下の高分子電解質を含み、より好ましくは1200g/eq.以下の高分子電解質を含み、特に好ましくは1000g/eq.以下の高分子電解質を含む。 Proton conductivity is important in polymer electrolytes responsible for proton transmission. Here, when the EW of the polymer electrolyte is too large, the ionic conductivity in the entire catalyst layer is lowered. Therefore, it is preferable that the catalyst layer of this embodiment contains a polymer electrolyte having a small EW. Specifically, the catalyst layer of this embodiment preferably has an EW of 1500 g / eq. The following polymer electrolyte is contained, More preferably, it is 1200 g / eq. The following polymer electrolyte is included, and particularly preferably 1000 g / eq. The following polymer electrolytes are included.
 一方、EWが小さすぎる場合には、親水性が高すぎて、水の円滑な移動が困難となる。かような観点から、高分子電解質のEWは600以上であることが好ましい。なお、EW(Equivalent Weight)は、プロトン伝導性を有する交換基の当量重量を表している。当量重量は、イオン交換基1当量あたりのイオン交換膜の乾燥重量であり、「g/eq」の単位で表される。 On the other hand, if the EW is too small, the hydrophilicity is too high and it becomes difficult to smoothly move water. From such a viewpoint, the EW of the polymer electrolyte is preferably 600 or more. Note that EW (Equivalent Weight) represents an equivalent weight of an exchange group having proton conductivity. The equivalent weight is the dry weight of the ion exchange membrane per equivalent of ion exchange group, and is expressed in units of “g / eq”.
 また、触媒層は、EWが異なる2種類以上の高分子電解質を発電面内に含み、この際、高分子電解質のうち最もEWが低い高分子電解質が流路内ガスの相対湿度が90%以下の領域に用いることが好ましい。このような材料配置を採用することにより、電流密度領域によらず、抵抗値が小さくなって、電池性能の向上を図ることができる。流路内ガスの相対湿度が90%以下の領域に用いる高分子電解質、すなわちEWが最も低い高分子電解質のEWとしては、900g/eq.以下であることが望ましい。これにより、上述の効果がより確実、顕著なものとなる。 Further, the catalyst layer includes two or more types of polymer electrolytes having different EWs in the power generation surface. At this time, the polymer electrolyte having the lowest EW among the polymer electrolytes has a relative humidity of 90% or less of the gas in the flow path. It is preferable to use in the region. By adopting such a material arrangement, the resistance value becomes small regardless of the current density region, and the battery performance can be improved. The EW of the polymer electrolyte used in the region where the relative humidity of the gas in the flow channel is 90% or less, that is, the polymer electrolyte having the lowest EW is 900 g / eq. The following is desirable. Thereby, the above-mentioned effect becomes more reliable and remarkable.
 さらに、EWが最も低い高分子電解質を冷却水の入口と出口の平均温度よりも高い領域に用いることが望ましい。これによって、電流密度領域によらず、抵抗値が小さくなって、電池性能のさらなる向上を図ることができる。 Furthermore, it is desirable to use a polymer electrolyte with the lowest EW in a region higher than the average temperature of the cooling water inlet and outlet. As a result, the resistance value is reduced regardless of the current density region, and the battery performance can be further improved.
 さらには、燃料電池システムの抵抗値を小さくするとする観点から、EWが最も低い高分子電解質は、流路長に対して燃料ガスおよび酸化剤ガスの少なくとも一方のガス供給口から3/5以内の範囲の領域に用いることが望ましい。 Furthermore, from the viewpoint of reducing the resistance value of the fuel cell system, the polymer electrolyte having the lowest EW is within 3/5 from the gas supply port of at least one of the fuel gas and the oxidant gas with respect to the channel length. It is desirable to use it in the range area.
 本形態の触媒層は、触媒と高分子電解質との間に、触媒と高分子電解質(固体プロトン伝導材)とをプロトン伝導可能な状態に連結しうる液体プロトン伝導材を含んでもよい。液体プロトン伝導材が導入されることによって、触媒と高分子電解質との間に、液体プロトン伝導材を介したプロトン輸送経路が確保され、発電に必要なプロトンを効率的に触媒表面へ輸送することが可能となる。これにより、触媒の利用効率が向上するため、発電性能を維持しながら触媒の使用量を低減することが可能となる。この液体プロトン伝導材は触媒と高分子電解質との間に介在していればよく、触媒層内の多孔質担体間の空孔(二次空孔)や多孔質担体内の空孔(ミクロ孔またはメソ孔:一次空孔)内に配置されうる。 The catalyst layer of this embodiment may include a liquid proton conductive material that can connect the catalyst and the polymer electrolyte (solid proton conductive material) in a proton conductive state between the catalyst and the polymer electrolyte. By introducing a liquid proton conductive material, a proton transport path through the liquid proton conductive material is secured between the catalyst and the polymer electrolyte, and protons necessary for power generation are efficiently transported to the catalyst surface. Is possible. Thereby, since the utilization efficiency of a catalyst improves, it becomes possible to reduce the usage-amount of a catalyst, maintaining electric power generation performance. The liquid proton conductive material only needs to be interposed between the catalyst and the polymer electrolyte, and the pores (secondary pores) between the porous carriers in the catalyst layer and the pores (micropores) in the porous carrier. Or mesopores: primary vacancies).
 液体プロトン伝導材としては、イオン伝導性を有し、触媒と高分子電解質と間のプロトン輸送経路を形成する機能を発揮しうる限り、特に限定されることはない。具体的には水、プロトン性イオン液体、過塩素酸水溶液、硝酸水溶液、ギ酸水溶液、酢酸水溶液などを挙げることができる。 The liquid proton conductive material is not particularly limited as long as it has ion conductivity and can exhibit a function of forming a proton transport path between the catalyst and the polymer electrolyte. Specific examples include water, protic ionic liquid, aqueous perchloric acid solution, aqueous nitric acid solution, aqueous formic acid solution, and aqueous acetic acid solution.
 液体プロトン伝導材として水を使用する場合には、発電を開始する前に少量の液水か加湿ガスにより触媒層を湿らせることによって、触媒層内に液体プロトン伝導材としての水を導入することができる。また、燃料電池の作動時における電気化学反応によって生じた生成水を液体プロトン伝導材として利用することもできる。したがって、燃料電池の運転開始の状態においては、必ずしも液体プロトン伝導材が保持されている必要はない。例えば、触媒と電解質との表面距離を、水分子を構成する酸素イオン径である0.28nm以上とすることが望ましい。このような距離を保持することによって、触媒と高分子電解質との非接触状態を保持しながら、触媒と高分子電解質の間(液体伝導材保持部)に水(液体プロトン伝導材)を介入させることができ、両者間の水によるプロトン輸送経路が確保されることになる。 When water is used as the liquid proton conductive material, water as the liquid proton conductive material is introduced into the catalyst layer by moistening the catalyst layer with a small amount of liquid water or humidified gas before starting power generation. Can do. Moreover, the water produced by the electrochemical reaction during the operation of the fuel cell can be used as the liquid proton conductive material. Therefore, it is not always necessary to hold the liquid proton conductive material when the fuel cell is in operation. For example, the surface distance between the catalyst and the electrolyte is preferably 0.28 nm or more, which is the diameter of oxygen ions constituting water molecules. By maintaining such a distance, water (liquid proton conductive material) is interposed between the catalyst and the polymer electrolyte (liquid conductive material holding part) while maintaining a non-contact state between the catalyst and the polymer electrolyte. Therefore, a proton transport route by water between them can be secured.
 イオン性液体など、水以外のものを液体プロトン伝導材として使用する場合には、触媒インク作製時に、イオン性液体と高分子電解質と触媒とを溶液中に分散させることが望ましいが、触媒を触媒層基材に塗布する際にイオン性液体を添加してもよい。 When a material other than water, such as an ionic liquid, is used as the liquid proton conducting material, it is desirable to disperse the ionic liquid, the polymer electrolyte, and the catalyst in the solution when preparing the catalyst ink. An ionic liquid may be added when applying to the layer substrate.
 本発明の製造方法により得られる触媒では、触媒の高分子電解質と接触している総面積が、この触媒が液体伝導材保持部に露出している総面積よりも小さいものとなっている。 In the catalyst obtained by the production method of the present invention, the total area in contact with the polymer electrolyte of the catalyst is smaller than the total area where the catalyst is exposed to the liquid conductive material holding part.
 これら面積の比較は、例えば、上記液体伝導材保持部に液体プロトン伝導材を満たした状態で、触媒-高分子電解質界面と触媒-液体プロトン伝導材界面に形成される電気二重層の容量の大小関係を求めることによって行うことができる。すなわち、電気二重層容量は、電気化学的に有効な界面の面積に比例するため、触媒-電解質界面に形成される電気二重層容量が触媒-液体プロトン伝導材界面に形成される電気二重層容量より小さければ、触媒の電解質との接触面積が液体伝導材保持部への露出面積よりも小さいことになる。 These areas are compared, for example, with the capacity of the electric double layer formed at the catalyst-polymer electrolyte interface and the catalyst-liquid proton conducting material interface in a state where the liquid conducting material holding portion is filled with the liquid proton conducting material. This can be done by seeking a relationship. In other words, since the electric double layer capacity is proportional to the area of the electrochemically effective interface, the electric double layer capacity formed at the catalyst-electrolyte interface is the electric double layer capacity formed at the catalyst-liquid proton conducting material interface. If it is smaller, the contact area of the catalyst with the electrolyte is smaller than the area exposed to the liquid conductive material holding part.
 ここで、触媒-電解質界面、触媒-液体プロトン伝導材界面にそれぞれ形成される電気二重層容量の測定方法、言い換えると、触媒-電解質間および触媒-液体プロトン伝導材間の接触面積の大小関係(触媒の電解質との接触面積と液体伝導材保持部への露出面積の大小関係の判定方法)について説明する。 Here, the measurement method of the electric double layer capacity formed at the catalyst-electrolyte interface and the catalyst-liquid proton conducting material interface, in other words, the contact area between the catalyst and electrolyte and between the catalyst and liquid proton conducting material ( A method for determining the relationship between the contact area of the catalyst with the electrolyte and the exposed area of the liquid conductive material holding portion will be described.
 すなわち、本形態の触媒層においては、
 (1)触媒-高分子電解質(C-S)
 (2)触媒-液体プロトン伝導材(C-L)
 (3)多孔質担体-高分子電解質(Cr-S)
 (4)多孔質担体-液体プロトン伝導材(Cr-L)
の4種の界面が電気二重層容量(Cdl)として寄与し得る。
That is, in the catalyst layer of this embodiment,
(1) Catalyst-Polymer electrolyte (CS)
(2) Catalyst-Liquid proton conductive material (CL)
(3) Porous carrier-polymer electrolyte (Cr-S)
(4) Porous carrier-liquid proton conducting material (Cr-L)
These four types of interfaces can contribute as electric double layer capacitance (C dl ).
 電気二重層容量は、上記したように、電気化学的に有効な界面の面積に正比例するため、CdlC-S(触媒-高分子電解質界面の電気二重層容量)およびCdlC-L(触媒-液体プロトン伝導材界面の電気二重層容量)を求めればよい。そして、電気二重層容量(Cdl)に対する上記4種の界面の寄与については、以下のようにして分離することができる。 Since the electric double layer capacity is directly proportional to the area of the electrochemically effective interface as described above, C dl CS (electric double layer capacity at the catalyst-polymer electrolyte interface) and C dl CL ( The electric double layer capacity at the catalyst-liquid proton conductive material interface may be obtained. The contribution of the four types of interfaces to the electric double layer capacity (C dl ) can be separated as follows.
 まず、例えば100%RHのような高加湿条件、および10%RH以下のような低加湿条件下において、電気二重層容量をそれぞれ計測する。なお、電気二重層容量の計測手法としては、サイクリックボルタンメトリーや電気化学インピーダンス分光法などを挙げることができる。これらの比較から、液体プロトン伝導材(この場合は「水」)の寄与、すなわち上記(2)および(4)を分離することができる。 First, for example, the electric double layer capacity is measured under a high humidification condition such as 100% RH and a low humidification condition such as 10% RH or less. In addition, examples of the measurement method of the electric double layer capacitance include cyclic voltammetry and electrochemical impedance spectroscopy. From these comparisons, the contribution of the liquid proton conducting material (in this case “water”), that is, the above (2) and (4) can be separated.
 さらに触媒を失活させること、例えば、Ptを触媒として用いた場合には、測定対象の電極にCOガスを供給してCOをPt表面上に吸着させることによる触媒の失活によって、その電気二重層容量への寄与を分離することができる。このような状態で、前述のように高加湿および低加湿条件における電気二重層容量を同様の手法で計測し、これらの比較から、触媒の寄与、つまり上記(1)および(2)を分離することができる。 Further, when the catalyst is deactivated, for example, when Pt is used as the catalyst, the catalyst is deactivated by supplying CO gas to the electrode to be measured and adsorbing CO on the Pt surface. The contribution to the multilayer capacity can be separated. In such a state, as described above, the electric double layer capacity under high and low humidification conditions is measured by the same method, and the contribution of the catalyst, that is, the above (1) and (2) is separated from these comparisons. be able to.
 以上により、上記(1)~(4)全ての寄与を分離することができ、触媒と高分子電解質および液体プロトン伝導材両界面に形成される電気二重層容量を求めることができる。 As described above, all the contributions (1) to (4) can be separated, and the electric double layer capacity formed at the interfaces of the catalyst, the polymer electrolyte, and the liquid proton conducting material can be obtained.
 すなわち、高加湿状態における測定値(A)が上記(1)~(4)の全界面に形成される電気二重層容量、低加湿状態における測定値(B)が上記(1)および(3)の界面に形成される電気二重層容量になる。また、触媒失活・高加湿状態における測定値(C)が上記(3)および(4)の界面に形成される電気二重層容量、触媒失活・低加湿状態における測定値(D)が上記(3)の界面に形成される電気二重層容量になる。 That is, the measured value (A) in the highly humidified state is the electric double layer capacity formed at all the interfaces (1) to (4), and the measured value (B) in the lowly humidified state is the above (1) and (3). The electric double layer capacity formed at the interface. Further, the measured value (C) in the catalyst deactivation / highly humidified state is the electric double layer capacity formed at the interface of the above (3) and (4), and the measured value (D) in the catalyst deactivated / lowly humidified state is the above It becomes an electric double layer capacity formed at the interface of (3).
 したがって、AとCの差が(1)および(2)の界面に形成される電気二重層容量、BとDの差が(1)の界面に形成される電気二重層容量ということになる。そして、これら値の差、(A-C)-(B-D)を算出すれば、(2)の界面に形成される電気二重層容量を求めることができる。なお、触媒の高分子電解質との接触面積や、伝導材保持部への露出面積については、上記の他には、例えば、TEM(透過型電子顕微鏡)トモグラフィなどによっても求めることができる。 Therefore, the difference between A and C is the electric double layer capacity formed at the interface of (1) and (2), and the difference between B and D is the electric double layer capacity formed at the interface of (1). Then, by calculating the difference between these values, (AC)-(BD), the electric double layer capacity formed at the interface of (2) can be obtained. In addition to the above, the contact area of the catalyst with the polymer electrolyte and the exposed area of the conductive material holding part can be obtained by, for example, TEM (transmission electron microscope) tomography.
 本発明に係る触媒層において、触媒金属に対する電解質の被覆率は0.45以下であることが好ましく、0.35であることが好ましく、0.25であることがより好ましい(下限値:0)。電解質の被覆率が上記範囲であれば、触媒活性がより向上する。 In the catalyst layer according to the present invention, the coverage of the electrolyte with respect to the catalyst metal is preferably 0.45 or less, preferably 0.35, and more preferably 0.25 (lower limit: 0). . When the electrolyte coverage is in the above range, the catalytic activity is further improved.
 電解質の被覆率は、上記電気二重層容量から算出することができ、具体的には実施例に記載の方法により算出することができる。 The coverage of the electrolyte can be calculated from the electric double layer capacity, and specifically can be calculated by the method described in the examples.
 触媒層には、必要に応じて、ポリテトラフルオロエチレン、ポリヘキサフルオロプロピレン、テトラフルオロエチレン-ヘキサフルオロプロピレン共重合体などの撥水剤、界面活性剤などの分散剤、グリセリン、エチレングリコール(EG)、ポリビニルアルコール(PVA)、プロピレングリコール(PG)などの増粘剤、造孔剤等の添加剤が含まれていても構わない。 For the catalyst layer, a water repellent such as polytetrafluoroethylene, polyhexafluoropropylene, tetrafluoroethylene-hexafluoropropylene copolymer, a dispersing agent such as a surfactant, glycerin, ethylene glycol (EG), as necessary. ), A thickener such as polyvinyl alcohol (PVA) and propylene glycol (PG), and an additive such as a pore-forming agent may be contained.
 触媒層の厚み(乾燥膜厚)は、好ましくは0.05~30μm、より好ましくは1~20μm、さらに好ましくは2~15μmである。なお、上記厚みは、カソード触媒層およびアノード触媒層双方に適用される。しかし、カソード触媒層およびアノード触媒層の厚みは、同じであってもあるいは異なってもよい。 The thickness (dry film thickness) of the catalyst layer is preferably 0.05 to 30 μm, more preferably 1 to 20 μm, still more preferably 2 to 15 μm. In addition, the said thickness is applied to both a cathode catalyst layer and an anode catalyst layer. However, the thickness of the cathode catalyst layer and the anode catalyst layer may be the same or different.
 (触媒層の製造方法)
 以下、触媒層を製造するための好ましい実施形態を記載するが、本発明の技術的範囲は下記の形態のみには限定されない。触媒の製造方法、また、触媒層の各構成要素の材質などの諸条件については、上述した通りであるため、ここでは説明を省略する。
(Method for producing catalyst layer)
Hereinafter, although preferable embodiment for manufacturing a catalyst layer is described, the technical scope of this invention is not limited only to the following form. Since the manufacturing method of the catalyst and various conditions such as the material of each component of the catalyst layer are as described above, the description thereof is omitted here.
 上記の本発明の触媒の製造方法で得られた触媒粉末、高分子電解質、および溶剤を含む触媒インクを作製する。溶剤としては、特に制限されず、触媒層を形成するのに使用される通常の溶媒が同様にして使用できる。具体的には、水道水、純水、イオン交換水、蒸留水等の水、シクロヘキサノール、メタノール、エタノール、n-プロパノール(n-プロピルアルコール)、イソプロパノール、n-ブタノール、sec-ブタノール、イソブタノール、およびtert-ブタノール等の炭素数1~4の低級アルコール、プロピレングリコール、ベンゼン、トルエン、キシレンなどが挙げられる。これらの他にも、酢酸ブチルアルコール、ジメチルエーテル、エチレングリコール、などが溶媒として用いられてもよい。これらの溶剤は、1種を単独で使用してもあるいは2種以上の混合液の状態で使用してもよい。 A catalyst ink containing the catalyst powder, polymer electrolyte, and solvent obtained by the above-described catalyst production method of the present invention is prepared. The solvent is not particularly limited, and ordinary solvents used for forming the catalyst layer can be used in the same manner. Specifically, water such as tap water, pure water, ion exchange water, distilled water, cyclohexanol, methanol, ethanol, n-propanol (n-propyl alcohol), isopropanol, n-butanol, sec-butanol, isobutanol And lower alcohols having 1 to 4 carbon atoms such as tert-butanol, propylene glycol, benzene, toluene, xylene and the like. Besides these, butyl acetate alcohol, dimethyl ether, ethylene glycol, and the like may be used as a solvent. These solvents may be used alone or in the form of a mixture of two or more.
 触媒インクを構成する溶剤の量は、電解質を完全に溶解できる量であれば特に制限されない。具体的には、触媒粉末および高分子電解質などを合わせた固形分の濃度が、電極触媒インク中、1~50重量%、より好ましくは5~30重量%程度とするのが好ましい。 The amount of the solvent constituting the catalyst ink is not particularly limited as long as it is an amount capable of completely dissolving the electrolyte. Specifically, the solid content concentration of the catalyst powder and the polymer electrolyte is preferably 1 to 50% by weight, more preferably about 5 to 30% by weight in the electrode catalyst ink.
 なお、撥水剤、分散剤、増粘剤、造孔剤等の添加剤を使用する場合には、触媒インクにこれらの添加剤を添加すればよい。この際、添加剤の添加量は、本発明の上記効果を妨げない程度の量であれば特に制限されない。例えば、添加剤の添加量は、それぞれ、電極触媒インクの全重量に対して、好ましくは5~20重量%である。 In addition, when additives such as a water repellent, a dispersant, a thickener, and a pore-forming agent are used, these additives may be added to the catalyst ink. At this time, the amount of the additive added is not particularly limited as long as it is an amount that does not interfere with the effects of the present invention. For example, the amount of the additive added is preferably 5 to 20% by weight with respect to the total weight of the electrode catalyst ink.
 次に、基材の表面に触媒インクを塗布する。基材への塗布方法は、特に制限されず、公知の方法を使用できる。具体的には、スプレー(スプレー塗布)法、ガリバー印刷法、ダイコーター法、スクリーン印刷法、ドクターブレード法など、公知の方法を用いて行うことができる。 Next, a catalyst ink is applied to the surface of the substrate. The application method to the substrate is not particularly limited, and a known method can be used. Specifically, it can be performed using a known method such as a spray (spray coating) method, a gulliver printing method, a die coater method, a screen printing method, or a doctor blade method.
 この際、触媒インクを塗布する基材としては、固体高分子電解質膜(電解質層)やガス拡散基材(ガス拡散層)を使用することができる。かような場合には、固体高分子電解質膜(電解質層)またはガス拡散基材(ガス拡散層)の表面に触媒層を形成した後、得られた積層体をそのまま膜電極接合体の製造に利用することができる。あるいは、基材としてポリテトラフルオロエチレン(PTFE)[テフロン(登録商標)]シート等の剥離可能な基材を使用し、基材上に触媒層を形成した後に基材から触媒層部分を剥離することにより、触媒層を得てもよい。 At this time, a solid polymer electrolyte membrane (electrolyte layer) or a gas diffusion substrate (gas diffusion layer) can be used as the substrate on which the catalyst ink is applied. In such a case, after forming the catalyst layer on the surface of the solid polymer electrolyte membrane (electrolyte layer) or the gas diffusion base material (gas diffusion layer), the obtained laminate can be used for the production of the membrane electrode assembly as it is. Can be used. Alternatively, a peelable substrate such as a polytetrafluoroethylene (PTFE) [Teflon (registered trademark)] sheet is used as the substrate, and after the catalyst layer is formed on the substrate, the catalyst layer portion is peeled from the substrate. Thus, a catalyst layer may be obtained.
 最後に、触媒インクの塗布層(膜)を、空気雰囲気下あるいは不活性ガス雰囲気下、室温~150℃で、1~60分間、乾燥する。これにより、触媒層が形成される。 Finally, the coating layer (film) of the catalyst ink is dried at room temperature to 150 ° C. for 1 to 60 minutes in an air atmosphere or an inert gas atmosphere. Thereby, a catalyst layer is formed.
 (膜電極接合体)
 本発明のさらなる実施形態によれば、固体高分子電解質膜2、前記電解質膜の一方の側に配置されたカソード触媒層と、前記電解質膜の他方の側に配置されたアノード触媒層と、前記電解質膜2並びに前記アノード触媒層3aおよび前記カソード触媒層3cを挟持する一対のガス拡散層(4a,4c)とを有する燃料電池用膜電極接合体が提供される。そしてこの膜電極接合体において、前記カソード触媒層およびアノード触媒層の少なくとも一方が上記に記載した実施形態の触媒層である。
(Membrane electrode assembly)
According to a further embodiment of the present invention, the solid polymer electrolyte membrane 2, a cathode catalyst layer disposed on one side of the electrolyte membrane, an anode catalyst layer disposed on the other side of the electrolyte membrane, There is provided a membrane electrode assembly for a fuel cell having an electrolyte membrane 2 and a pair of gas diffusion layers (4a, 4c) sandwiching the anode catalyst layer 3a and the cathode catalyst layer 3c. In this membrane electrode assembly, at least one of the cathode catalyst layer and the anode catalyst layer is the catalyst layer of the embodiment described above.
 ただし、プロトン伝導性の向上および反応ガス(特にO)の輸送特性(ガス拡散性)の向上の必要性を考慮すると、少なくともカソード触媒層が上記に記載した実施形態の触媒層であることが好ましい。ただし、上記形態に係る触媒層は、アノード触媒層として用いてもよいし、カソード触媒層およびアノード触媒層双方として用いてもよいなど、特に制限されるものではない。 However, in consideration of the necessity for improvement of proton conductivity and improvement of transport characteristics (gas diffusibility) of the reaction gas (especially O 2 ), at least the cathode catalyst layer may be the catalyst layer of the embodiment described above. preferable. However, the catalyst layer according to the above embodiment may be used as an anode catalyst layer, or may be used as both a cathode catalyst layer and an anode catalyst layer, and is not particularly limited.
 本発明のさらなる実施形態によれば、上記形態の膜電極接合体を有する燃料電池が提供される。すなわち、本発明の一実施形態は、上記形態の膜電極接合体を挟持する一対のアノードセパレータおよびカソードセパレータを有する燃料電池である。 According to a further embodiment of the present invention, there is provided a fuel cell having the membrane electrode assembly of the above form. That is, one embodiment of the present invention is a fuel cell having a pair of anode separator and cathode separator that sandwich the membrane electrode assembly of the above-described embodiment.
 以下、図1を参照しつつ、上記実施形態の触媒層を用いたPEFC1の構成要素について説明する。ただし、本発明は触媒層に特徴を有するものである。よって、燃料電池を構成する触媒層以外の部材の具体的な形態については、従来公知の知見を参照しつつ、適宜、改変が施されうる。 Hereinafter, the components of the PEFC 1 using the catalyst layer of the above embodiment will be described with reference to FIG. However, the present invention is characterized by the catalyst layer. Therefore, the specific form of the members other than the catalyst layer constituting the fuel cell can be appropriately modified with reference to conventionally known knowledge.
 (電解質膜)
 電解質膜は、例えば、図1に示す形態のように固体高分子電解質膜2から構成される。この固体高分子電解質膜2は、PEFC1の運転時にアノード触媒層3aで生成したプロトンを膜厚方向に沿ってカソード触媒層3cへと選択的に透過させる機能を有する。また、固体高分子電解質膜2は、アノード側に供給される燃料ガスとカソード側に供給される酸化剤ガスとを混合させないための隔壁としての機能をも有する。
(Electrolyte membrane)
The electrolyte membrane is composed of a solid polymer electrolyte membrane 2 as shown in FIG. The solid polymer electrolyte membrane 2 has a function of selectively permeating protons generated in the anode catalyst layer 3a during operation of the PEFC 1 to the cathode catalyst layer 3c along the film thickness direction. The solid polymer electrolyte membrane 2 also has a function as a partition wall for preventing the fuel gas supplied to the anode side and the oxidant gas supplied to the cathode side from being mixed.
 固体高分子電解質膜2を構成する電解質材料としては特に限定されず従来公知の知見が適宜参照されうる。例えば、先に高分子電解質として説明したフッ素系高分子電解質や炭化水素系高分子電解質を用いることができる。この際、触媒層に用いた高分子電解質と必ずしも同じものを用いる必要はない。 The electrolyte material constituting the solid polymer electrolyte membrane 2 is not particularly limited, and conventionally known knowledge can be appropriately referred to. For example, the fluorine-based polymer electrolyte or hydrocarbon-based polymer electrolyte described above as the polymer electrolyte can be used. At this time, it is not always necessary to use the same polymer electrolyte used for the catalyst layer.
 電解質層の厚さは、得られる燃料電池の特性を考慮して適宜決定すればよく、特に制限されない。電解質層の厚さは、通常は5~300μm程度である。電解質層の厚さがかような範囲内の値であると、製膜時の強度や使用時の耐久性および使用時の出力特性のバランスが適切に制御されうる。 The thickness of the electrolyte layer may be appropriately determined in consideration of the characteristics of the obtained fuel cell, and is not particularly limited. The thickness of the electrolyte layer is usually about 5 to 300 μm. When the thickness of the electrolyte layer is within such a range, the balance of strength during film formation, durability during use, and output characteristics during use can be appropriately controlled.
 (ガス拡散層)
 ガス拡散層(アノードガス拡散層4a、カソードガス拡散層4c)は、セパレータのガス流路(6a、6c)を介して供給されたガス(燃料ガスまたは酸化剤ガス)の触媒層(3a、3c)への拡散を促進する機能、および電子伝導パスとしての機能を有する。
(Gas diffusion layer)
The gas diffusion layers (anode gas diffusion layer 4a, cathode gas diffusion layer 4c) are catalyst layers (3a, 3c) of gas (fuel gas or oxidant gas) supplied via the gas flow paths (6a, 6c) of the separator. ) And a function as an electron conduction path.
 ガス拡散層(4a、4c)の基材を構成する材料は特に限定されず、従来公知の知見が適宜参照されうる。例えば、炭素製の織物、紙状抄紙体、フェルト、不織布といった導電性および多孔質性を有するシート状材料が挙げられる。基材の厚さは、得られるガス拡散層の特性を考慮して適宜決定すればよいが、30~500μm程度とすればよい。基材の厚さがかような範囲内の値であれば、機械的強度とガスおよび水などの拡散性とのバランスが適切に制御されうる。 The material which comprises the base material of a gas diffusion layer (4a, 4c) is not specifically limited, A conventionally well-known knowledge can be referred suitably. For example, a sheet-like material having conductivity and porosity such as a carbon woven fabric, a paper-like paper body, a felt, and a non-woven fabric can be used. The thickness of the substrate may be appropriately determined in consideration of the characteristics of the obtained gas diffusion layer, but may be about 30 to 500 μm. If the thickness of the substrate is within such a range, the balance between mechanical strength and diffusibility such as gas and water can be appropriately controlled.
 ガス拡散層は、撥水性をより高めてフラッディング現象などを防止することを目的として、撥水剤を含むことが好ましい。撥水剤としては、特に限定されないが、ポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン(PVdF)、ポリヘキサフルオロプロピレン、テトラフルオロエチレン-ヘキサフルオロプロピレン共重合体(FEP)などのフッ素系の高分子材料、ポリプロピレン、ポリエチレンなどが挙げられる。 The gas diffusion layer preferably contains a water repellent for the purpose of further improving water repellency and preventing flooding. The water repellent is not particularly limited, but fluorine-based high repellents such as polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVdF), polyhexafluoropropylene, and tetrafluoroethylene-hexafluoropropylene copolymer (FEP). Examples thereof include molecular materials, polypropylene, and polyethylene.
 また、撥水性をより向上させるために、ガス拡散層は、撥水剤を含むカーボン粒子の集合体からなるカーボン粒子層(マイクロポーラス層;MPL、図示せず)を基材の触媒層側に有するものであってもよい。 In order to further improve the water repellency, the gas diffusion layer has a carbon particle layer (microporous layer; MPL, not shown) made of an aggregate of carbon particles containing a water repellent agent on the catalyst layer side of the substrate. You may have.
 カーボン粒子層に含まれるカーボン粒子は特に限定されず、カーボンブラック、グラファイト、膨張黒鉛などの従来公知の材料が適宜採用されうる。なかでも、電子伝導性に優れ、比表面積が大きいことから、オイルファーネスブラック、チャネルブラック、ランプブラック、サーマルブラック、アセチレンブラックなどのカーボンブラックが好ましく用いられうる。カーボン粒子の平均粒径は、10~100nm程度とするのがよい。これにより、毛細管力による高い排水性が得られるとともに、触媒層との接触性も向上させることが可能となる。 The carbon particles contained in the carbon particle layer are not particularly limited, and conventionally known materials such as carbon black, graphite, and expanded graphite can be appropriately employed. Among them, carbon black such as oil furnace black, channel black, lamp black, thermal black, acetylene black and the like can be preferably used because of excellent electron conductivity and a large specific surface area. The average particle size of the carbon particles is preferably about 10 to 100 nm. Thereby, while being able to obtain the high drainage property by capillary force, it becomes possible to improve contact property with a catalyst layer.
 カーボン粒子層に用いられる撥水剤としては、上述した撥水剤と同様のものが挙げられる。なかでも、撥水性、電極反応時の耐食性などに優れることから、フッ素系の高分子材料が好ましく用いられうる。 Examples of the water repellent used for the carbon particle layer include the same water repellents as described above. Among these, fluorine-based polymer materials can be preferably used because of excellent water repellency, corrosion resistance during electrode reaction, and the like.
 カーボン粒子層におけるカーボン粒子と撥水剤との混合比は、撥水性および電子伝導性のバランスを考慮して、重量比で90:10~40:60(カーボン粒子:撥水剤)程度とするのがよい。なお、カーボン粒子層の厚さについても特に制限はなく、得られるガス拡散層の撥水性を考慮して適宜決定すればよい。 The mixing ratio of the carbon particles to the water repellent in the carbon particle layer is about 90:10 to 40:60 (carbon particles: water repellent) by weight in consideration of the balance between water repellency and electronic conductivity. It is good. In addition, there is no restriction | limiting in particular also about the thickness of a carbon particle layer, What is necessary is just to determine suitably in consideration of the water repellency of the gas diffusion layer obtained.
 (膜電極接合体の製造方法)
 膜電極接合体の作製方法としては、特に制限されず、従来公知の方法を使用できる。例えば、固体高分子電解質膜に触媒層をホットプレスで転写または塗布し、これを乾燥したものに、ガス拡散層を接合する方法や、ガス拡散層の微多孔質層側(微多孔質層を含まない場合には、基材層の片面に触媒層を予め塗布して乾燥することによりガス拡散電極(GDE)を2枚作製し、固体高分子電解質膜の両面にこのガス拡散電極をホットプレスで接合する方法を使用することができる。ホットプレス等の塗布、接合条件は、固体高分子電解質膜や触媒層内の高分子電解質の種類(パ-フルオロスルホン酸系や炭化水素系)によって適宜調整すればよい。
(Method for producing membrane electrode assembly)
A method for producing the membrane electrode assembly is not particularly limited, and a conventionally known method can be used. For example, a catalyst layer is transferred or applied to a solid polymer electrolyte membrane by hot pressing, and this is dried, and a gas diffusion layer is bonded to the gas diffusion layer, or a microporous layer side (a microporous layer is attached to the gas diffusion layer). When not included, two gas diffusion electrodes (GDE) are prepared by applying a catalyst layer on one side of the base material layer in advance and drying, and hot pressing the gas diffusion electrodes on both sides of the solid polymer electrolyte membrane. The application and joining conditions such as hot press are appropriately determined depending on the type of polymer electrolyte in the solid polymer electrolyte membrane or catalyst layer (perfluorosulfonic acid type or hydrocarbon type). Adjust it.
 (セパレータ)
 セパレータは、固体高分子形燃料電池などの燃料電池の単セルを複数個直列に接続して燃料電池スタックを構成する際に、各セルを電気的に直列に接続する機能を有する。また、セパレータは、燃料ガス、酸化剤ガス、および冷却剤を互に分離する隔壁としての機能も有する。これらの流路を確保するため、上述したように、セパレータのそれぞれにはガス流路および冷却流路が設けられていることが好ましい。セパレータを構成する材料としては、緻密カーボングラファイト、炭素板などのカーボンや、ステンレスなどの金属など、従来公知の材料が適宜制限なく採用できる。セパレータの厚さやサイズ、設けられる各流路の形状やサイズなどは特に限定されず、得られる燃料電池の所望の出力特性などを考慮して適宜決定できる。
(Separator)
The separator has a function of electrically connecting each cell in series when a plurality of single cells of a fuel cell such as a polymer electrolyte fuel cell are connected in series to form a fuel cell stack. The separator also functions as a partition that separates the fuel gas, the oxidant gas, and the coolant from each other. In order to secure these flow paths, as described above, each of the separators is preferably provided with a gas flow path and a cooling flow path. As a material constituting the separator, conventionally known materials such as dense carbon graphite, carbon such as a carbon plate, and metal such as stainless steel can be appropriately employed without limitation. The thickness and size of the separator and the shape and size of each flow path provided are not particularly limited, and can be appropriately determined in consideration of the desired output characteristics of the obtained fuel cell.
 燃料電池の製造方法は、特に制限されることなく、燃料電池の分野において従来公知の知見が適宜参照されうる。 The manufacturing method of the fuel cell is not particularly limited, and conventionally known knowledge can be appropriately referred to in the field of the fuel cell.
 さらに、燃料電池が所望する電圧を発揮できるように、セパレータを介して膜電極接合体を複数積層して直列に繋いだ構造の燃料電池スタックを形成してもよい。燃料電池の形状などは、特に限定されず、所望する電圧などの電池特性が得られるように適宜決定すればよい。 Furthermore, a fuel cell stack having a structure in which a plurality of membrane electrode assemblies are stacked and connected in series via a separator may be formed so that the fuel cell can exhibit a desired voltage. The shape of the fuel cell is not particularly limited, and may be determined as appropriate so that desired battery characteristics such as voltage can be obtained.
 上述したPEFCや膜電極接合体は、発電性能および耐久性に優れる触媒層を用いている。したがって、当該PEFCや膜電極接合体は発電性能および耐久性に優れる。 The above-mentioned PEFC and membrane electrode assembly use a catalyst layer having excellent power generation performance and durability. Therefore, the PEFC and the membrane electrode assembly are excellent in power generation performance and durability.
 本実施形態のPEFCやこれを用いた燃料電池スタックは、例えば、車両に駆動用電源として搭載されうる。 The PEFC of this embodiment and the fuel cell stack using the same can be mounted on a vehicle as a driving power source, for example.
 本発明の効果を、以下の実施例および比較例を用いて説明する。ただし、本発明の技術的範囲が以下の実施例のみに制限されるわけではない。 The effect of the present invention will be described using the following examples and comparative examples. However, the technical scope of the present invention is not limited only to the following examples.
 合成例1
 空孔容積が1.56cc/g;空孔のモード半径が1.65nm;およびBET比表面積が1773m/gである、担体Aを調製した。具体的には、国際公開第2009/075264号などに記載の方法により、担体Aを作製した。
Synthesis example 1
Support A was prepared having a pore volume of 1.56 cc / g; a pore mode radius of 1.65 nm; and a BET specific surface area of 1773 m 2 / g. Specifically, the carrier A was produced by the method described in International Publication No. 2009/075264.
 合成例2
 担体Bとして、空孔容積が0.69cc/g;BET比表面積が790m/gである、ケッチェンブラックEC300J(ケッチェンブラックインターナショナル株式会社製)を準備した。
Synthesis example 2
As the carrier B, Ketjen Black EC300J (manufactured by Ketjen Black International Co., Ltd.) having a pore volume of 0.69 cc / g and a BET specific surface area of 790 m 2 / g was prepared.
 合成例3
 空孔容積が2.16cc/g;空孔のモード半径が2.13nm;およびBET比表面積が1596m/gである、担体Cを調製した。具体的には、特開2009-35598号公報などに記載の方法により担体Cを作製した。
Synthesis example 3
Support C was prepared with a pore volume of 2.16 cc / g; a pore mode radius of 2.13 nm; and a BET specific surface area of 1596 m 2 / g. Specifically, the carrier C was produced by the method described in JP2009-35598A.
 (実施例1)
 上記合成例1で作製した担体Aを用い、これに触媒金属として平均粒半径1.8nmの白金(Pt)を担持率が30重量%となるように担持させて、触媒粉末Aを得た。すなわち、白金濃度4.6質量%のジニトロジアンミン白金硝酸溶液を1000g(白金含有量:46g)に担体Aを46g浸漬させ攪拌後、還元剤として100%エタノールを100ml添加した。この溶液を沸点で7時間、攪拌、混合し、白金を担体Aに担持させ、濾過、乾燥した。その後、水素雰囲気において、温度900℃に1時間保持し、担持率が31.1重量%の触媒粉末Aを得た。
(Example 1)
Using the carrier A prepared in Synthesis Example 1 above, platinum (Pt) having an average particle radius of 1.8 nm as a catalyst metal was supported so that the supporting rate was 30% by weight, and catalyst powder A was obtained. That is, 46 g of carrier A was immersed in 1000 g (platinum content: 46 g) of a dinitrodiammine platinum nitric acid solution having a platinum concentration of 4.6% by mass, and 100 ml of 100% ethanol was added as a reducing agent. This solution was stirred and mixed at the boiling point for 7 hours, platinum was supported on the carrier A, filtered and dried. Thereafter, the catalyst powder A was held at a temperature of 900 ° C. for 1 hour in a hydrogen atmosphere to obtain a catalyst powder A having a loading rate of 31.1% by weight.
 このようにして得られた触媒粉末Aについて、空孔の空孔容積、および空孔のモード半径を測定した。その結果を下記表2に示す。 For the catalyst powder A thus obtained, the pore volume of the pores and the mode radius of the pores were measured. The results are shown in Table 2 below.
 上記で作製した触媒粉末Aと、高分子電解質としてのアイオノマー分散液(Nafion(登録商標)D2020,EW=1100g/mol、DuPont社製)とをカーボン担体とアイオノマーの重量比が0.9となるよう混合した。さらに、溶媒としてn-プロピルアルコール溶液(50%)を固形分率(Pt+カーボン担体+アイオノマー)が7重量%となるよう添加して、カソード触媒インクを調製した。 The weight ratio of the carbon support and the ionomer in the catalyst powder A prepared above and an ionomer dispersion (Nafion (registered trademark) D2020, EW = 1100 g / mol, manufactured by DuPont) as a polymer electrolyte is 0.9. Mixed. Further, an n-propyl alcohol solution (50%) was added as a solvent so that the solid content (Pt + carbon carrier + ionomer) was 7% by weight to prepare a cathode catalyst ink.
 担体として、ケッチェンブラック(粒径:30~60nm)を用い、これに触媒金属として平均粒径2.5nmの白金(Pt)を担持率が50重量%となるように担持させて、触媒粉末を得た。この触媒粉末と、高分子電解質としてのアイオノマー分散液(Nafion(登録商標)D2020,EW=1100g/mol、DuPont社製)とをカーボン担体とアイオノマーの重量比が0.9となるよう混合した。さらに、溶媒としてn-プロピルアルコール溶液(50%)を固形分率(Pt+カーボン担体+アイオノマー)が7重量%となるよう添加して、アノード触媒インクを調製した。 Ketjen black (particle size: 30 to 60 nm) is used as a carrier, and platinum (Pt) with an average particle size of 2.5 nm is supported on the catalyst metal so that the loading ratio is 50% by weight as catalyst metal. Got. This catalyst powder was mixed with an ionomer dispersion (Nafion (registered trademark) D2020, EW = 1100 g / mol, manufactured by DuPont) as a polymer electrolyte so that the weight ratio of the carbon support to the ionomer was 0.9. Further, an anode catalyst ink was prepared by adding an n-propyl alcohol solution (50%) as a solvent so that the solid content (Pt + carbon carrier + ionomer) was 7% by weight.
 次に、高分子電解質膜(Dupont社製、Nafion(登録商標) NR211、厚み:25μm)の両面の周囲にガスケット(帝人デュポンフィルム株式会社製、テオネックス(登録商標)、厚み:25μm(接着層:10μm))を配置した。次いで、高分子電解質膜の片面の露出部に触媒インクをスプレー塗布法により、5cm×2cmのサイズに塗布した。スプレー塗布を行うステージを60℃に保つことで触媒インクを乾燥し、電極触媒層を得た。このときの白金担持量は0.15mg/cmである。次に、カソード触媒層と同様に電解質膜上にスプレー塗布および熱処理を行うことでアノード触媒層を形成し、本例の膜電極接合体を得た。 Next, a gasket (manufactured by Teijin DuPont Films, Teonex (registered trademark), thickness: 25 μm (adhesive layer: 25 μm) around both sides of a polymer electrolyte membrane (Dupont, Nafion (registered trademark) NR211, thickness: 25 μm). 10 μm)). Next, the catalyst ink was applied to a size of 5 cm × 2 cm by spray coating on the exposed portion of one side of the polymer electrolyte membrane. The catalyst ink was dried by keeping the stage for spray coating at 60 ° C. to obtain an electrode catalyst layer. The amount of platinum supported at this time is 0.15 mg / cm 2 . Next, similarly to the cathode catalyst layer, spray coating and heat treatment were performed on the electrolyte membrane to form an anode catalyst layer, thereby obtaining a membrane electrode assembly of this example.
 (比較例1)
 担体Aの代わりに、上記合成例2で準備した担体Bを使用し、触媒金属として平均粒半径2.25nmの白金(Pt)を使用し、さらに水素雰囲気下での熱処理を行わなかったこと以外は、実施例1と同様の操作を行い、触媒粉末Bを得た。このようにして得られた触媒粉末Bについて、空孔の空孔容積、空孔のモード半径を測定した。その結果を下記表2に示す。また、実施例1と同様の方法で、本例の膜電極接合体を得た。
(Comparative Example 1)
Except that the carrier B prepared in Synthesis Example 2 was used instead of the carrier A, platinum (Pt) having an average particle radius of 2.25 nm was used as a catalyst metal, and heat treatment was not performed in a hydrogen atmosphere. Performed the same operation as in Example 1 to obtain catalyst powder B. With respect to the catalyst powder B thus obtained, the pore volume of the pores and the mode radius of the pores were measured. The results are shown in Table 2 below. Further, a membrane electrode assembly of this example was obtained in the same manner as in Example 1.
 (比較例2)
 担体Aの代わりに、上記合成例3で作製した担体Cを使用し、触媒金属として平均粒半径1.15nmの白金(Pt)を使用し、さらに水素雰囲気下での熱処理を行わなかったこと以外は、実施例1と同様の操作を行い、触媒粉末Cを得た。このようにして得られた触媒粉末Cについて、空孔の空孔容積、空孔のモード半径を測定した。その結果を下記表2に示す。また、実施例1と同様の方法で、本例の膜電極接合体を得た。
(Comparative Example 2)
Except that the carrier C produced in the above Synthesis Example 3 was used in place of the carrier A, platinum (Pt) having an average particle radius of 1.15 nm was used as the catalyst metal, and heat treatment was not performed in a hydrogen atmosphere. Performed the same operation as Example 1, and obtained catalyst powder C. With respect to the catalyst powder C thus obtained, the pore volume of the pores and the mode radius of the pores were measured. The results are shown in Table 2 below. Moreover, the membrane electrode assembly of this example was obtained in the same manner as in Example 1.
 〔電解質の被覆率〕
 触媒金属に対する電解質の被覆率は、触媒の固体プロトン伝導材および液体プロトン伝導材との界面に形成される電気二重層容量の計測を用いて、固体プロトン伝導材による触媒の被覆率を算出した。なお、被覆率の算出に当たっては、高加湿状態に対する低加湿状態の電気二重層容量の比より算出し、湿度状態を代表するものとして、それぞれ5%RHおよび100%RH条件における計測値を用いた。
[Cover rate of electrolyte]
The coverage of the electrolyte with respect to the catalyst metal was calculated by measuring the electric double layer capacity formed at the interface of the catalyst with the solid proton conducting material and the liquid proton conducting material. In calculating the coverage, it was calculated from the ratio of the electric double layer capacity in the low humidified state to the high humidified state, and the measured values under the conditions of 5% RH and 100% RH were used as representatives of the humidity state. .
 <電気二重層容量の測定>
 得られたMEAについて、電気化学インピーダンス分光法により、高加湿状態、低加湿状態、さらに触媒失活かつ高加湿状態および低加湿状態における電気二重層容量をそれぞれ測定し、両電池の電極触媒における触媒の両プロトン伝導材との接触面積を比較した。
<Measurement of electric double layer capacity>
The obtained MEA was measured by electrochemical impedance spectroscopy to measure the electric double layer capacity in the highly humidified state, the lowly humidified state, and the catalyst deactivation and the highly humidified and lowly humidified states, respectively. The contact areas with both proton conducting materials were compared.
 なお、使用機器としては、北斗電工株式会社製電気化学測定システムHZ-3000と、エヌエフ回路設計ブロック社製周波数応答分析器FRA5020とを用い、下記表1に示す測定条件を採用した。 As the equipment used, an electrochemical measurement system HZ-3000 manufactured by Hokuto Denko Corporation and a frequency response analyzer FRA5020 manufactured by NF Circuit Design Block Co., Ltd. were used, and the measurement conditions shown in Table 1 below were adopted.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 まず、それぞれの電池をヒーターによって30℃に加温し、作用極および対極に、それぞれ表1に示した加湿状態に調整した窒素ガスおよび水素ガスを供給した状態で電気二重層容量を計測した。 First, each battery was heated to 30 ° C. with a heater, and the electric double layer capacity was measured in a state where nitrogen gas and hydrogen gas adjusted to the humidified state shown in Table 1 were supplied to the working electrode and the counter electrode, respectively.
 電気二重層容量の測定に際しては、表1に示したように、0.45Vで保持し、さらに、±10mVの振幅で、20kHz~10mHzの周波数範囲で作用極の電位を振動させた。 When measuring the electric double layer capacity, as shown in Table 1, it was held at 0.45 V, and the working electrode potential was oscillated with an amplitude of ± 10 mV and a frequency range of 20 kHz to 10 mHz.
 すなわち、作用極電位の振動時の応答から、各周波数におけるインピーダンスの実部、虚部が得られる。この虚部(Z”)と角速度ω(周波数から変換)の関係が次式で表されるため、虚部の逆数を角速度の-2乗について整理し、角速度の-2乗が0のときの値を外挿することによって、電気二重層容量Cdlが求められる。 That is, the real part and imaginary part of the impedance at each frequency are obtained from the response when the working electrode potential vibrates. Since the relationship between the imaginary part (Z ″) and the angular velocity ω (converted from the frequency) is expressed by the following equation, the reciprocal of the imaginary part is arranged with respect to −2 to the angular velocity, and The electric double layer capacitance C dl is obtained by extrapolating the value.
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
 このような測定を低加湿状態および高加湿状態(5%RH→10%RH→90%RH→100%RH条件)で順次実施した。 Such measurement was sequentially performed in a low humidified state and a high humidified state (5% RH → 10% RH → 90% RH → 100% RH condition).
 さらに、作用極に濃度1%(体積比)のCOを含む窒素ガスを1NL/分で15分以上流通させることによって、Pt触媒を失活させたのち、上記のような高加湿および低加湿状態における電気二重層容量をそれぞれ同様に計測した。これらの結果を表2に示す。なお、得られた電気二重層容量は、触媒層の面積当たりの値に換算して示した。 Furthermore, after deactivating the Pt catalyst by flowing nitrogen gas containing CO at a concentration of 1% (volume ratio) to the working electrode at 1 NL / min for 15 minutes or more, the above high humidification and low humidification conditions are as described above. The electric double layer capacity was measured in the same manner. These results are shown in Table 2. In addition, the obtained electric double layer capacity was shown in terms of a value per area of the catalyst layer.
 そして、計測値に基づいて、触媒-固体プロトン伝導材(C-S)界面および触媒-液体プロトン伝導材(C-L)界面に形成された電気二重層容量を算出した。 Based on the measured values, the electric double layer capacity formed at the catalyst-solid proton conductive material (CS) interface and the catalyst-liquid proton conductive material (CL) interface was calculated.
 なお、算出に当たっては、低加湿状態および高加湿状態の電気二重層容量を代表するものとして、それぞれ5%RHおよび100%RH条件における計測値を用いた。その結果を表2に示す。 In the calculation, the measured values under the conditions of 5% RH and 100% RH were used as representatives of the electric double layer capacity in the low and high humidification states. The results are shown in Table 2.
 〔発電性能の評価〕
 燃料電池を80℃に保持し、酸素極には100%RHに調湿した酸素ガス、燃料極には100%RHに調湿した水素ガスをそれぞれ流通させ(これによって、担体の空孔内に水が導入され、この水が液体プロトン伝導材として機能する)、電流密度が1.0A/cmとなるように電子負荷を設定し、15分保持した。
[Evaluation of power generation performance]
The fuel cell is kept at 80 ° C., and oxygen gas conditioned to 100% RH is circulated through the oxygen electrode and hydrogen gas conditioned to 100% RH is circulated through the fuel electrode. Water was introduced, and this water functions as a liquid proton conducting material), and the electronic load was set so that the current density was 1.0 A / cm 2 and held for 15 minutes.
 その後、セル電圧が0.9V以上となるまで、段階的に電流密度を低下させた。このとき、各電流密度に15分保持するようにして、電流密度と電位との関係を取得した。そして、100%RH条件で取得した触媒有効表面積を用いて、触媒表面積あたりの電流密度に換算し、0.9Vにおける電流密度を比較した。その結果を下記表2に示す。 Thereafter, the current density was gradually reduced until the cell voltage became 0.9 V or higher. At this time, each current density was held for 15 minutes to obtain the relationship between the current density and the potential. And it converted into the current density per catalyst surface area using the catalyst effective surface area acquired on 100% RH conditions, and compared the current density in 0.9V. The results are shown in Table 2 below.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 上記表2から、本発明の製造方法により得られる触媒を使用したMEAは、本発明の範囲外の製造方法により得られる触媒を使用したMEAと比べて、発電性能に優れることが分かった。 From Table 2 above, it was found that MEA using the catalyst obtained by the production method of the present invention was superior in power generation performance compared to MEA using the catalyst obtained by the production method outside the scope of the present invention.
 なお、比較例1で用いた担体Bの空孔径分布を図4に示す。図4に示す比較例1の空孔径分布においては、空孔径が1nmまで空孔容積が増大する傾向を示しており、メソ空孔領域(空孔半径が1nm以上)においては、明確なモード半径を有さないことが確認された。 The pore size distribution of the carrier B used in Comparative Example 1 is shown in FIG. In the pore diameter distribution of Comparative Example 1 shown in FIG. 4, the pore volume tends to increase up to 1 nm, and in the mesopore region (pore radius is 1 nm or more), a clear mode radius is obtained. It was confirmed that it does not have.
 なお、本出願は、2013年4月25日に出願された日本特許出願第2013-92925号に基づいており、その開示内容は、参照により全体として引用されている。 Note that this application is based on Japanese Patent Application No. 2013-92925 filed on April 25, 2013, the disclosure of which is incorporated by reference in its entirety.

Claims (12)

  1.  空孔の空孔分布のモード半径が1nm以上5nm未満であり、かつ前記空孔の空孔容積が0.3cc/g担体以上である担体に対して、触媒金属を担持する触媒の製造方法であって、
     前記触媒金属の構成成分を前記担体内部の空孔に含浸する工程と、
     前記含浸する工程の後に熱処理する工程と、
    を含む、触媒の製造方法。
    A method for producing a catalyst carrying a catalyst metal on a carrier having a pore radius distribution mode of 1 nm or more and less than 5 nm and a pore volume of the pores of 0.3 cc / g or more. There,
    Impregnating pores inside the carrier with the components of the catalytic metal;
    A heat treatment step after the impregnation step;
    A method for producing a catalyst, comprising:
  2.  空孔の空孔分布のモード半径が1nm以上5nm未満であり、かつ前記空孔の空孔容積が0.3cc/g担体以上である担体に対して、触媒金属を担持する触媒の製造方法であって、
     前記触媒金属の前駆体を前記担体内部の空孔に含浸する工程と、
     前記触媒金属の前駆体を還元する工程と、
     前記還元する工程の後に熱処理する工程と、
    を含む、触媒の製造方法。
    A method for producing a catalyst carrying a catalyst metal on a carrier having a pore radius distribution mode of 1 nm or more and less than 5 nm and a pore volume of the pores of 0.3 cc / g or more. There,
    Impregnating pores inside the carrier with the catalyst metal precursor;
    Reducing the catalyst metal precursor;
    A heat treatment step after the reducing step;
    A method for producing a catalyst, comprising:
  3.  前記熱処理する工程は、前記触媒の空孔の空孔分布のモード半径よりも前記触媒金属の平均粒半径が大きくなるように制御される、請求項1または2に記載の触媒の製造方法。 The method for producing a catalyst according to claim 1 or 2, wherein the heat treatment step is controlled such that an average grain radius of the catalyst metal is larger than a mode radius of a pore distribution of the pores of the catalyst.
  4.  前記触媒の空孔の空孔分布のモード半径は1nm以上2nm以下である、請求項1~3のいずれか1項に記載の触媒の製造方法。 The method for producing a catalyst according to any one of claims 1 to 3, wherein a mode radius of pore distribution of the pores of the catalyst is 1 nm or more and 2 nm or less.
  5.  前記触媒金属の平均粒半径が1.5nm以上2.5nm以下となるように制御する工程をさらに含む、請求項4に記載の触媒の製造方法。 The method for producing a catalyst according to claim 4, further comprising a step of controlling the catalyst metal so that an average particle radius is 1.5 nm or more and 2.5 nm or less.
  6.  前記触媒金属は、白金であるまたは白金と白金以外の金属成分を含む、請求項1~5のいずれか1項に記載の触媒の製造方法。 The method for producing a catalyst according to any one of claims 1 to 5, wherein the catalyst metal is platinum or contains a metal component other than platinum and platinum.
  7.  前記触媒金属の構成成分の平均粒半径が、前記担体の空孔の空孔分布のモード半径よりも小さい、請求項6に記載の触媒の製造方法。 The method for producing a catalyst according to claim 6, wherein an average particle radius of the constituent component of the catalyst metal is smaller than a mode radius of a pore distribution of the pores of the support.
  8.  請求項1~7のいずれか1項に記載の製造方法により得られる触媒および電解質を含む、燃料電池用電極触媒層。 An electrode catalyst layer for a fuel cell comprising a catalyst and an electrolyte obtained by the production method according to any one of claims 1 to 7.
  9.  前記触媒中の触媒金属と前記電解質とを、プロトン伝導可能な状態に連結する液体プロトン伝導材を含む、請求項8に記載の燃料電池用電極触媒層。 The fuel cell electrode catalyst layer according to claim 8, comprising a liquid proton conducting material that couples the catalyst metal in the catalyst and the electrolyte in a state capable of proton conduction.
  10.  前記電解質による前記触媒金属への被覆率が0.45以下である、請求項8または9に記載の燃料電池用電極触媒層。 The electrode catalyst layer for a fuel cell according to claim 8 or 9, wherein a coverage of the catalyst metal by the electrolyte is 0.45 or less.
  11.  請求項8~10のいずれか1項に記載の燃料電池用電極触媒層を含む、燃料電池用膜電極接合体。 A fuel cell membrane electrode assembly comprising the fuel cell electrode catalyst layer according to any one of claims 8 to 10.
  12.  請求項11に記載の燃料電池用膜電極接合体を含む燃料電池。 A fuel cell comprising the membrane electrode assembly for a fuel cell according to claim 11.
PCT/JP2014/060639 2013-04-25 2014-04-14 Method for producing catalyst, electrode catalyst layer using said catalyst, membrane-electrode assembly, and fuel cell WO2014175101A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015513687A JP5998276B2 (en) 2013-04-25 2014-04-14 Method for producing catalyst, and electrode catalyst layer, membrane electrode assembly and fuel cell using the catalyst

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-092925 2013-04-25
JP2013092925 2013-04-25

Publications (1)

Publication Number Publication Date
WO2014175101A1 true WO2014175101A1 (en) 2014-10-30

Family

ID=51791680

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/060639 WO2014175101A1 (en) 2013-04-25 2014-04-14 Method for producing catalyst, electrode catalyst layer using said catalyst, membrane-electrode assembly, and fuel cell

Country Status (2)

Country Link
JP (1) JP5998276B2 (en)
WO (1) WO2014175101A1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016225151A (en) * 2015-05-29 2016-12-28 日産自動車株式会社 Method of manufacturing fuel cell
EP3185342A1 (en) 2015-12-24 2017-06-28 Toyota Jidosha Kabushiki Kaisha Electrode catalyst for fuel cells
JP2018098198A (en) * 2016-12-09 2018-06-21 トヨタ自動車株式会社 Electrode catalyst for fuel cell, and method for manufacturing the same
EP3392938A1 (en) * 2017-04-17 2018-10-24 Panasonic Intellectual Property Management Co., Ltd. Electrode catalyst layer of electrochemical device, membrane electrode assembly of electrochemical device, and electrochemical device
US10333153B2 (en) 2015-10-09 2019-06-25 Toyota Jidosha Kabushiki Kaisha Fuel cell catalyst layer, and fuel cell
EP3553862A1 (en) * 2018-04-13 2019-10-16 Panasonic Intellectual Property Management Co., Ltd. Membrane catalyst layer assembly of electrochemical device, membrane electrode assembly, electrochemical device, method for manufacturing membrane catalyst layer assembly of electrochemical device
CN111952601A (en) * 2020-07-10 2020-11-17 华南理工大学 Method for preparing integrated electrocatalytic oxygen evolution electrode through ultra-fast carbothermic reduction
US11258075B2 (en) 2016-12-09 2022-02-22 Toyota Jidosha Kabushiki Kaisha Fuel cell electrode catalyst

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113508478B (en) * 2018-12-28 2024-04-19 凸版印刷株式会社 Electrode catalyst layer, membrane electrode assembly, and solid polymer fuel cell

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09167622A (en) * 1995-12-18 1997-06-24 Matsushita Electric Ind Co Ltd Electrode catalyst and solid polymer type fuel cell using same
WO2005028719A1 (en) * 2003-09-19 2005-03-31 Teijin Limited Fibrous activated carbon and nonwoven fabric made of same
JP2006008472A (en) * 2004-06-29 2006-01-12 Hitachi Powdered Metals Co Ltd Nano-structured graphite, its composite material, conductive material and catalyst material using them
WO2006070635A1 (en) * 2004-12-27 2006-07-06 Nippon Shokubai Co., Ltd. Membrane electrode assembly for solid polymer fuel cell
JP2006272324A (en) * 2005-03-03 2006-10-12 Japan Energy Corp Catalyst for producing hydrogen and method for producing hydrogen
JP2007137754A (en) * 2005-11-21 2007-06-07 Samsung Sdi Co Ltd Mesoporous carbon, its production method, supported catalyst using it, and fuel cell
JP2008036451A (en) * 2006-08-01 2008-02-21 Konoshima Chemical Co Ltd Catalyst support and catalyst for methane reformation and method for preparing the same
JP2008290062A (en) * 2007-04-25 2008-12-04 Kansai Coke & Chem Co Ltd Catalytic carrier, catalyst, method for manufacturing the catalytic carrier and method for manufacturing the catalyst
JP2008311055A (en) * 2007-06-14 2008-12-25 Asahi Kasei Corp Platinum free electrode for fuel cell and fuel cell
JP2012000566A (en) * 2010-06-16 2012-01-05 Jx Nippon Oil & Energy Corp Hydrogenation catalyst of aromatic hydrocarbon, and hydrogenation method using the same

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09167622A (en) * 1995-12-18 1997-06-24 Matsushita Electric Ind Co Ltd Electrode catalyst and solid polymer type fuel cell using same
WO2005028719A1 (en) * 2003-09-19 2005-03-31 Teijin Limited Fibrous activated carbon and nonwoven fabric made of same
JP2006008472A (en) * 2004-06-29 2006-01-12 Hitachi Powdered Metals Co Ltd Nano-structured graphite, its composite material, conductive material and catalyst material using them
WO2006070635A1 (en) * 2004-12-27 2006-07-06 Nippon Shokubai Co., Ltd. Membrane electrode assembly for solid polymer fuel cell
JP2006272324A (en) * 2005-03-03 2006-10-12 Japan Energy Corp Catalyst for producing hydrogen and method for producing hydrogen
JP2007137754A (en) * 2005-11-21 2007-06-07 Samsung Sdi Co Ltd Mesoporous carbon, its production method, supported catalyst using it, and fuel cell
JP2008036451A (en) * 2006-08-01 2008-02-21 Konoshima Chemical Co Ltd Catalyst support and catalyst for methane reformation and method for preparing the same
JP2008290062A (en) * 2007-04-25 2008-12-04 Kansai Coke & Chem Co Ltd Catalytic carrier, catalyst, method for manufacturing the catalytic carrier and method for manufacturing the catalyst
JP2008311055A (en) * 2007-06-14 2008-12-25 Asahi Kasei Corp Platinum free electrode for fuel cell and fuel cell
JP2012000566A (en) * 2010-06-16 2012-01-05 Jx Nippon Oil & Energy Corp Hydrogenation catalyst of aromatic hydrocarbon, and hydrogenation method using the same

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016225151A (en) * 2015-05-29 2016-12-28 日産自動車株式会社 Method of manufacturing fuel cell
US10333153B2 (en) 2015-10-09 2019-06-25 Toyota Jidosha Kabushiki Kaisha Fuel cell catalyst layer, and fuel cell
EP3185342A1 (en) 2015-12-24 2017-06-28 Toyota Jidosha Kabushiki Kaisha Electrode catalyst for fuel cells
CN106920970A (en) * 2015-12-24 2017-07-04 丰田自动车株式会社 Electrode catalyst for fuel cell
CN106920970B (en) * 2015-12-24 2020-04-03 丰田自动车株式会社 Electrode catalyst for fuel cell
JP2018098198A (en) * 2016-12-09 2018-06-21 トヨタ自動車株式会社 Electrode catalyst for fuel cell, and method for manufacturing the same
US11258076B2 (en) 2016-12-09 2022-02-22 Toyota Jidosha Kabushiki Kaisha Electrode catalyst for fuel cell, method of producing the same, and fuel cell
US11258075B2 (en) 2016-12-09 2022-02-22 Toyota Jidosha Kabushiki Kaisha Fuel cell electrode catalyst
CN110383549A (en) * 2016-12-09 2019-10-25 丰田自动车株式会社 Electrode catalyst for fuel cell, the method and fuel cell for producing it
US10790526B2 (en) 2017-04-17 2020-09-29 Panasonic Intellectual Property Management Co., Ltd. Electrode catalyst layer of electrochemical device, membrane electrode assembly of electrochemical device, and electrochemical device
EP3392938A1 (en) * 2017-04-17 2018-10-24 Panasonic Intellectual Property Management Co., Ltd. Electrode catalyst layer of electrochemical device, membrane electrode assembly of electrochemical device, and electrochemical device
EP3553862A1 (en) * 2018-04-13 2019-10-16 Panasonic Intellectual Property Management Co., Ltd. Membrane catalyst layer assembly of electrochemical device, membrane electrode assembly, electrochemical device, method for manufacturing membrane catalyst layer assembly of electrochemical device
CN111952601A (en) * 2020-07-10 2020-11-17 华南理工大学 Method for preparing integrated electrocatalytic oxygen evolution electrode through ultra-fast carbothermic reduction
CN111952601B (en) * 2020-07-10 2022-08-16 华南理工大学 Method for preparing integrated electrocatalytic oxygen evolution electrode through ultra-fast carbothermic reduction

Also Published As

Publication number Publication date
JP5998276B2 (en) 2016-09-28
JPWO2014175101A1 (en) 2017-02-23

Similar Documents

Publication Publication Date Title
JP5998275B2 (en) Fuel cell catalyst, electrode catalyst layer using the fuel cell catalyst, membrane electrode assembly, and fuel cell
JP5998277B2 (en) Fuel cell catalyst and fuel cell electrode catalyst layer including the same
JP6461805B2 (en) Catalyst carbon powder, catalyst using the catalyst carbon powder, electrode catalyst layer, membrane electrode assembly, and fuel cell
JP6156490B2 (en) ELECTRODE CATALYST FOR FUEL CELL AND ELECTRODE CATALYST LAYER, MEMBRANE ELECTRODE ASSEMBLY AND FUEL CELL
JP6113837B2 (en) Catalyst, electrode catalyst layer using the catalyst, membrane electrode assembly, and fuel cell
EP2990104B1 (en) Catalyst, method for producing same, and electrode catalyst layer using said catalyst
JP6113836B2 (en) Catalyst, electrode catalyst layer using the catalyst, membrane electrode assembly, and fuel cell
JP5998276B2 (en) Method for producing catalyst, and electrode catalyst layer, membrane electrode assembly and fuel cell using the catalyst
JP6008044B2 (en) Fuel cell catalyst, electrode catalyst layer using the fuel cell catalyst, membrane electrode assembly, and fuel cell
JP2013109856A (en) Electrode catalyst layer for fuel cell
WO2017183475A1 (en) Electrocatalyst, membrane electrode assembly using said electrocatalyst, and fuel cell
JP6327681B2 (en) FUEL CELL ELECTRODE CATALYST, PROCESS FOR PRODUCING THE SAME, ELECTRODE CATALYST FOR FUEL CELL CONTAINING THE CATALYST, MEMBRANE ELECTRODE ASSEMBLY AND FUEL CELL USING THE CATALYST OR CATALYST
JP6339220B2 (en) ELECTRODE CATALYST LAYER FOR FUEL CELL, PROCESS FOR PRODUCING THE SAME, MEMBRANE ELECTRODE ASSEMBLY AND FUEL CELL
JP6323818B2 (en) FUEL CELL ELECTRODE CATALYST, FUEL CELL ELECTRODE CATALYST, PROCESS FOR PRODUCING THE SAME, MEMBRANE ELECTRODE ASSEMBLING AND FUEL CELL
JP6672622B2 (en) Electrode catalyst layer for fuel cell, method for producing the same, and membrane electrode assembly using the catalyst layer, fuel cell, and vehicle
JP6183120B2 (en) Membrane electrode assembly for fuel cell and fuel cell
JP6699094B2 (en) Fuel cell manufacturing method
JP6191368B2 (en) Membrane electrode assembly for fuel cell and fuel cell

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14788391

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015513687

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14788391

Country of ref document: EP

Kind code of ref document: A1