WO2014168230A1 - CONJUGATE COMPOSED OF EpCAM-BINDING PEPTIDE APTAMER AND PHOSPHORYLCHOLINE POLYMER COPOLYMER - Google Patents

CONJUGATE COMPOSED OF EpCAM-BINDING PEPTIDE APTAMER AND PHOSPHORYLCHOLINE POLYMER COPOLYMER Download PDF

Info

Publication number
WO2014168230A1
WO2014168230A1 PCT/JP2014/060458 JP2014060458W WO2014168230A1 WO 2014168230 A1 WO2014168230 A1 WO 2014168230A1 JP 2014060458 W JP2014060458 W JP 2014060458W WO 2014168230 A1 WO2014168230 A1 WO 2014168230A1
Authority
WO
WIPO (PCT)
Prior art keywords
epcam
peptide
binding
complex
mpc
Prior art date
Application number
PCT/JP2014/060458
Other languages
French (fr)
Japanese (ja)
Inventor
芝 清隆
和浩 日比野
光孝 吉田
Original Assignee
公益財団法人がん研究会
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 公益財団法人がん研究会 filed Critical 公益財団法人がん研究会
Priority to JP2015511309A priority Critical patent/JP5824596B2/en
Publication of WO2014168230A1 publication Critical patent/WO2014168230A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K7/00Peptides having 5 to 20 amino acids in a fully defined sequence; Derivatives thereof
    • C07K7/04Linear peptides containing only normal peptide links
    • C07K7/08Linear peptides containing only normal peptide links having 12 to 20 amino acids
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/543Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals
    • G01N33/54366Apparatus specially adapted for solid-phase testing
    • G01N33/54386Analytical elements
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/705Receptors; Cell surface antigens; Cell surface determinants
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M47/00Means for after-treatment of the produced biomass or of the fermentation or metabolic products, e.g. storage of biomass
    • C12M47/04Cell isolation or sorting
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/543Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals
    • G01N33/544Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals the carrier being organic
    • G01N33/545Synthetic resin
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/566Immunoassay; Biospecific binding assay; Materials therefor using specific carrier or receptor proteins as ligand binding reagents where possible specific carrier or receptor proteins are classified with their target compounds
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/574Immunoassay; Biospecific binding assay; Materials therefor for cancer

Definitions

  • the present invention relates to a method for preparing a complex of a peptide aptamer capable of binding to EpCAM and a phosphorylcholine polymer copolymer, and immobilizing the peptide aptamer using the complex to prepare a material surface having affinity for EpCAM.
  • the present invention relates to a method and a tool for diagnosis and treatment using the complex.
  • Epidermal cell adhesion factor (EpCAM; Epithelial cell hesadhesion molecule, CD326, GA733-2, HEA125, KS1 / 4, MK-1, MH99, MOC31, 323 / A3, 17-1A, CO-17A, ESA, EGP-2, EGP34, EGP40, KSA, KS1 / 4, TROP-1, and TACST-1) are type I membrane proteins reported as cancer-specific cell surface antigens expressed in colorectal cancer (Non-patent Document 1).
  • EpCAM is mainly expressed in the basement membrane of epithelial cells in normal tissues, but expression is observed in most cancer cells derived from epithelium, so that it is known as a so-called cancer antigen and is shown to be useful as a diagnostic marker.
  • Non-Patent Document 2 Non-Patent Document 2.
  • EpCAM is detected in most epithelial cancer cells, it has been attempted to collect cells having EpCAM antigen on the surface using an antibody, analyze this, and predict the prognosis. Since circulating tumor cells expressing EpCAM circulating in blood as a surface antigen are closely related to cancer metastasis, detection of circulating tumor cells expressing EpCAM is very important for prognosis prediction. Yes (Patent Document 1). In addition, attention has been focused on diagnostic methods using extracellular vesicles such as exosomes and microvesicles in body fluids, and here also the relationship between cancer and EpCAM positive extracellular vesicles has been reported (non-patented). Reference 3).
  • EpCAM EpCAM protein
  • anti-EpCAM antibodies for cancer treatment have been developed, and clinical trials using anti-EpCAM antibodies such as Adecatumumab (MT201) and ING-1 are being conducted.
  • the treatment using these antibodies aims to reduce the cancer by binding the antibody to EpCAM on the surface of cancer cells and inducing cellular immunity (cytotoxic activity) by the in vivo immune system.
  • antibody molecules have been used for treatment and diagnosis targeting EpCAM.
  • antibody molecules have the advantage of binding strongly to the target molecule, but this “strong binding” is often a drawback. For example, when an antibody binds to a target receptor on the cell surface, a signal transmission system downstream of the receptor is activated, or acid treatment for removing the bound antibody damages the cell. These drawbacks can be fatal when considering treatment using cells and regenerative medicine.
  • a peptide aptamer is an effective technical means instead of an antibody.
  • the present inventors have already disclosed a peptide capable of binding to EpCAM, which can be easily prepared using chemical synthesis or genetic engineering techniques (Patent Document 2). In addition, the development of peptides having the ability to bind to EpCAM is being promoted.
  • a method for immobilizing an EpCAM-binding peptide it is essential to establish a high-yield and stable binding method for binding to many solids of different materials.
  • materials and materials such as polycarbonate (PC), polydimethylsiloxane (PDMS), polystyrene (PS), polyethylene terephthalate (PET), epoxy resin, glass, and silicon in the flow path system of the target device. It is used.
  • materials and materials such as polycarbonate (PC), polydimethylsiloxane (PDMS), polystyrene (PS), polyethylene terephthalate (PET), epoxy resin, glass, and silicon in the flow path system of the target device. It is used.
  • shapes of materials such as beads, plates, films and filaments.
  • the “coating agent” approach using physical bonding has the advantage of wide material selectivity and high versatility. Therefore, the present invention has an object to develop a method for functionalizing a material as a material surface having affinity for a specific biomolecule by combining a peptide / aptamer with a coating agent, that is, a biointerface or a functional biosurface. .
  • biosurfaces are created using peptides and aptamers that have affinity for EpCAM, but other aptamers and the like can be used to create functional biosurfaces that have affinity for molecules other than EpCAM. Can also be applied.
  • An object of the present invention is to create a material surface having affinity for EpCAM for use in cell therapy, regenerative medicine, diagnosis, and the like.
  • a flow path system on the plate and a column filled with beads are used, and a solid phase such as beads and chips is used as a carrier for diagnosis etc. Therefore, there is a strong demand for a method for efficiently immobilizing a developed peptide aptamer capable of binding to EpCAM on a solid phase.
  • An object of the present invention is to provide a complex of a peptide / aptamer capable of binding to EpCAM and a high molecular weight polymer, wherein the solid phase is simply a functional biosurface having the ability to bind EpCAM.
  • the realization of a material surface having affinity for specific biomolecules such as biointerfaces and functional biosurfaces according to the present invention is important for use in a wide range of fields such as diagnosis and treatment using biosensors and cells. Tool.
  • the present invention is characterized in that it is a complex of a polymer containing a phosphorylcholine group and a peptide capable of binding to EpCAM.
  • the phosphorylcholine group is a component of a biological membrane, it is very useful when creating a biofunctional surface that detects the interaction of biological components such as EpCAM molecules and EpCAM-expressing exosomes.
  • the complex of the present invention is a complex of a copolymer having a phosphorylcholine group containing 2-methacryloyloxyethyl phosphorylcholine (MPC) and a hydrophobic unit, and a peptide capable of binding to EpCAM. It is characterized by that.
  • a high molecular polymer for immobilizing an EpCAM-binding peptide is, in particular, a copolymer containing 2-methacryloyloxyethyl phosphorylcholine (MPC) and a hydrophobic unit (for example, 2-methacryloyloxyethyl phosphorylcholine / n -Butyl methacrylate copolymer, 2-methacryloyloxyethyl phosphorylcholine / allylamine hydrochloride copolymer, etc.) are preferably used. This is because the high molecular weight polymer containing MPC has very good biocompatibility.
  • MPC 2-methacryloyloxyethyl phosphorylcholine
  • hydrophobic unit for example, 2-methacryloyloxyethyl phosphorylcholine / n -Butyl methacrylate copolymer, 2-methacryloyloxyethyl phosphorylcholine / allylamine hydroch
  • a peptide capable of binding to EpCAM can be efficiently immobilized on a solid phase. Therefore, wide application to diagnosis and treatment using EpCAM as a target is possible. Furthermore, by using the MPC copolymer, various materials including glass, polycarbonate, and silica can be coated, and a biofunctional surface can be easily created.
  • the peptide having binding ability to EpCAM is an amino acid sequence represented by SEQ ID NO: 1 (KHLQCVRNICWS; Ep114), SEQ ID NO: 2 (EHLHCLGLSLCWP; Ep133), or SEQ ID NO: 3 (KSLQCINLCWP; Ep301). It is characterized by being a peptide having binding ability to EpCAM.
  • the peptide Ep114 of SEQ ID NO: 1 and the peptide Ep133 of SEQ ID NO: 2 disclosed by the present inventors show strong binding ability to EpCAM. These two peptides bind about 10 times stronger than the peptide Ep301 of SEQ ID NO: 3 disclosed by the present inventors in Patent Document 2. Therefore, EpCAM can be detected with high sensitivity.
  • Ep301 having a relatively weak binding to the EpCAM molecule it can be an effective tool when it is desired to avoid applying a strong stimulus to the cell.
  • the composite material using the peptide aptamer is expected to have various applications in terms of diagnosis and treatment.
  • a synthetic peptide is used, it becomes easy to ensure safety in terms of treatment.
  • EpCAM-binding peptide it is possible to easily produce a large amount of EpCAM-binding peptide by using a DNA or a recombinant vector encoding these peptides and using a known genetic engineering technique or a chemical synthesis technique. Therefore, it is possible to manufacture diagnostic materials and the like at low cost.
  • the composite material of the present invention is obtained by immobilizing the complex according to the present invention on a carrier and has an EpCAM affinity.
  • the composite of the present invention is spin-coated with various materials such as polycarbonate (PC), polydimethylsiloxane (PDMS), polystyrene (PS), polyethylene terephthalate (PET), epoxy resin, glass, and silicon glass. It can be easily coated by standing or standing. Therefore, it can be functionalized and applied to diagnosis, treatment, etc. by coating various shapes of carriers such as beads, plates, films, filaments, membranes, column carriers, flow paths, medical materials, etc. Be expected.
  • PC polycarbonate
  • PDMS polydimethylsiloxane
  • PS polystyrene
  • PET polyethylene terephthalate
  • epoxy resin glass
  • glass silicon glass
  • silicon glass silicon glass
  • the separation apparatus of the present invention comprises a composite material having affinity for the EpCAM of the present invention, and is characterized by fractionating EpCAM-expressing cells, EpCAM-expressing exosomes, EpCAM-expressing microvesicles, or EpCAM molecules based on the expression of EpCAM And
  • an apparatus for efficiently separating EpCAM-expressing cells, exosomes, and microvesicles can be produced. Therefore, circulating tumor cells, exosomes, and microvesicles expressing EpCAM can be detected with high sensitivity, and cancer can be diagnosed with high accuracy.
  • separation that has been conventionally performed using antibodies, such as cell selection, exosomes, microvesicles, and purification of EpCAM, can be performed by the separation apparatus of the present invention. Furthermore, since it is possible to design the affinity for EpCAM as a peptide aptamer, it is possible to create a separation apparatus having a desired affinity. In other words, using a material surface with a moderate affinity, rather than strongly binding cells, exosomes, and microvesicles, the movement is delayed (retardation effect) while suppressing motility by weak interaction. A device that sorts in the flow path can be realized. In addition, in the case of such weak binding, it is possible to avoid damage caused to cells due to excessive stimulation, which is a problem with strong binding of antibodies, etc., and unexpected activation of signal transmission system It becomes possible.
  • the target substance can be selectively separated in various modes.
  • This advantage is qualitatively different from conventional methods such as a method using a strong antigen antibody, a method of sieving by molecular weight, and a method of fractionating adsorption by charge or hydrophobicity.
  • the diagnostic apparatus of the present invention is characterized by comprising a measurement unit that measures the degree of EpCAM expression using the composite material of the present invention.
  • Detecting EpCAM expression by detecting circulating tumor cells, exosomes, microvesicles, etc. is very useful for cancer diagnosis and prognosis.
  • a highly accurate diagnostic apparatus can be easily prepared.
  • bonding to the MPC copolymer of a peptide aptamer is shown.
  • XPS X-ray photoelectron spectroscopy
  • FIG. 1 schematically shows a method for producing a complex of the MPC copolymer of the present invention and a peptide capable of binding to EpCAM. Conjugation of MPC with a peptide capable of binding to EpCAM via a polyethylene glycol (PEG) linker to an MPC copolymer polymer comprising a hydrophobic unit and a unit having a carboxyl group, that is, EpCAM-binding peptide-MPC complex Create a body.
  • PEG polyethylene glycol
  • the detailed peptide introduction method is as follows. MPC copolymer (NOF Corporation, MPC polymer, Lipidure-5903S) After adding 10 equivalents of PEG linker (Quantadesignbiodesign) to ethanol solution, triazine condensing agent 4- (4,6-Dimethoxy-1,3, 50 equivalents of 5-triazin-2-yl) -4-methylmorpholinium Chloride n-Hydrate (DMT-MM) is added and allowed to react overnight at room temperature. Thereafter, the solution is put into a dialysis tube (Spectra / Por (trademark) Dialysis Membrane MWCO: 8000), and the external solution is dialyzed for 2 days. After recovery from the dialysis tube, the solution is concentrated to the original reaction volume using an evaporator.
  • PEG linker Quantadesignbiodesign
  • 0.5M sodium ascorbate aqueous solution (Wako Pure Chemical Industries, Ltd.) is added, and when the yellow color in the test tube becomes dark, 0.5M copper sulfate aqueous solution is added. When the color changes from yellow to black-brown, the test tube is sealed and heated at 50 ° C. for 30 minutes.
  • the peptide introduction rate was measured as follows.
  • the peptide introduced into the MPC copolymer was synthesized by synthesizing GGK (FITC) GG (propargyl), a peptide in which FITC was added to the C-terminal of the Ep114 peptide, and measuring the FITC absorbance in the Ep114 (FITC) peptide-MPC complex. The rate was determined.
  • the spectrum was measured with an ultraviolet-visible spectrophotometer (UV-2550, Shimadzu Corporation), the absorption maximum value of FITC at 495 nm and the absorbance at 800 nm were measured, and a calibration curve prepared in advance was used.
  • the peptide concentration was measured to determine the peptide introduction rate. The results are shown in Table 1.
  • the amount of peptide introduced into the MPC copolymer varies depending on the length of the linker used.
  • a PEG linker with a short chain length dPEG3
  • the peptide introduction rate is extremely low, but when other linkers are used, the values are all 10% or more.
  • a PEG linker with a short chain length has a low introduction rate, and as shown below, the binding property to EpCAM is also low.
  • the chain length is dPEG7 or more, a high introduction rate can form a functional surface material. it can.
  • Example 3 [Examination of linker length and amount of EpCAM-binding peptide presented as functional molecule]
  • the obtained EpCAM-binding peptide-MPC complex was immobilized on a solid phase, and the amount of functional EpCAM-binding peptide presented was examined. Immobilization to the solid phase was performed by the following two methods: spin coater method and stationary method.
  • Ep114 is used as the EpCAM-binding peptide.
  • the glass on which the EpCAM-binding peptide-MPC complex was immobilized was blocked with a blocking agent (Nacalai, Blocking One) for 1 hour and washed three times with TBS (Tris buffered saline) containing 0.05% by weight of Tween20.
  • a blocking agent Nacalai, Blocking One
  • (A) shows the result of the spin coater method
  • (B) shows the result of the stationary method.
  • B-3, B-7, B-11, B-23, and B-35 are dPEG3, dPEG7, dPEG11, dPEG23, and dPEG35, respectively. It shows that.
  • MPC refers to an immobilized MPC copolymer not bound with a peptide.
  • the peptide introduction rate of the Ep114 peptide into the MPC copolymer showed the highest value when dPEG23 was used as a linker, but the EpCAM-binding peptide detected by the antibody is shown in FIG. As shown in FIG. 4, no significant difference is observed between dPEG7, dPEG11, dPEG23, and dPEG35.
  • the detection of the EpCAM-binding peptide shown in FIG. 3 by the antibody differs from the peptide introduction rate shown in Table 1 in that the peptide exists as a state recognized by the antibody, that is, as a state that can be recognized by the antibody as a functional molecule. Show.
  • the difference between the amount of peptide introduced and the amount of peptide recognized by the antibody is because the amount of peptide introduced and the amount of peptide present as a functional molecule differ depending on the chain length of the linker. Seem. When the linker length is 3 (dPEG3), the peptide accessibility is poor, so the peptide introduction rate is low, and as a result, the amount of functional peptide recognized by the antibody is considered to be small.
  • Example 4 The linker structure on the C-terminal side of the Ep114 peptide to be introduced was examined. Using the Fmoc-N-amido-dPEG 2 -acid (manufactured by Quanta biodesign) at the C-terminus of the Ep114 peptide, the Ep114 peptide added with PEG was synthesized using a peptide synthesizer.
  • Example 5 The Ep114-MPC complex produced using the peptide produced in Example 4, Ep114-dPEG 2 -K (FITC) -dPEG 2 -G (propargyl) -NH 2 , was spin-coated on a glass plate in the same manner as in Example 3. The samples were coated by the method and compared by antibody staining. Note that the Ep114 peptide is bound to MPC via dPEG7. The results are shown in FIG.
  • GGK is Ep114-GGK (FITC) GG (propargyl) used in Example 2
  • PEG2 is Ep114-dPEG 2 -K (FITC) -dPEG 2 -produced in Example 4.
  • G (propargyl) -NH 2 PEG 2 represents Ep114-dPEG 2 -S-dPEG 2 -G (propargyl) -NH 2 each formed into a complex with an MPC copolymer
  • MPC represents a peptide A raw glass in which only an unbound MPC copolymer is fixed, and Raw glass indicate that nothing is fixed.
  • Ep114-dPEG 2 -K (FITC) -dPEG 2 -G (propargyl) -NH 2 represented by PEG2 (FITC) is particularly good for the antibody
  • Ep114-dPEG represented by PEG 2 2 -S-dPEG 2 -G (propargyl) -NH 2 was shown to be almost as reactive as GGK (FITC) (Ep114-GGK (FITC) GG (propargyl).
  • a glass plate coated with the Ep114 peptide-MPC complex was measured using XPS (ULVAC-PHI® PHI5000® VersaProbe). Each sample is centered at three locations on both ends. Pass Energy: 117.4eV, Lower Energy: 0eV, Range: 1400eV, Energy step: 1eV, Time / step: 20ms, Total cycle: 10, X-ray width 100 ⁇ m Scanned.
  • Figure 7 shows the results. Since the same result was obtained in three places where the measurement was performed, an example is shown. As shown in the enlarged portion, MPC-derived phosphorus (P) was detected on the glass surface, and it was confirmed that MPC was coated on the surface. However, the copper element used for the binding reaction between the linker and the peptide was not detected. The fact that copper is not detected indicates that the EpCAM-binding peptide-MPC complex of the present invention can be used safely in vivo, such as for treatment.
  • P MPC-derived phosphorus
  • the two large peaks shown in the enlarged portion indicate glass-derived silicon.
  • the coated glass surface is smooth, but it is recognized that a portion where the glass surface is exposed remains.
  • the coated EpCAM-binding peptide-MPC complex had a film thickness of about 30 nm, so that the film thickness was not entirely thin and the glass surface was partially exposed. It is thought that there is a part.
  • Example 7 Coating of various solid phases with EpCAM-binding peptide-MPC complex
  • various materials such as beads and channels are used as a carrier.
  • various materials such as polypropylene and polycarbonate are known as materials used as these carriers. Therefore, it was investigated whether these materials could be coated with the prepared EpCAM-binding peptide-MPC complex.
  • a carrier material such as polypropylene was coated with an EpCAM-binding peptide-MPC complex by a stationary method, and detection was performed using an anti-Ep114 antibody.
  • Figure 8 shows the results.
  • the following materials are used as the carrier: (A) polypropylene, (B) vinyl chloride, (C) polycarbonate, (D) polystyrene, (E) polyethylene terephthalate (PET), (F) silicon, (G ) Hydrophilic polydimethylsiloxane (PDMS), (H) Hydrophobic polydimethylsiloxane.
  • + indicates an Ep114-binding peptide-MPC complex
  • MPC only coats an MPC copolymer, and-indicates a region where nothing is coated.
  • the upper row shows that the anti-Ep114 antibody was used as the primary antibody, and the lower row used the rabbit IgG antibody as a control as the primary antibody.
  • any of these materials widely used as carriers could be efficiently coated with the EpCAM-binding peptide-MPC complex of the present invention. Although not shown here, it has been confirmed that gold is also efficiently coated. Furthermore, none of the carriers has any background and only specific binding has been observed.
  • EpCAM-binding peptide-MPC complex of the present invention is very useful as a coating agent for a carrier material generally used for measurement, inspection, and treatment, such as a flow channel system and beads.
  • a carrier material generally used for measurement, inspection, and treatment, such as a flow channel system and beads.
  • the gel carrier was coated with an EpCAM-binding peptide-MPC complex, and it was analyzed whether it interacted with an anti-EpCAM-binding peptide antibody, EpCAM, and exosome.
  • exosomes are involved in signal transmission between cells, and in recent years, it has been clarified that cancer cells release a large amount of exosomes and are deeply involved in cancer metastasis and formation. ing. Based on this phenomenon, it has been disclosed that exosomes are used for treatment and diagnosis (for example, see Non-Patent Documents 6 and 7). Therefore, it was analyzed whether the EpCAM-binding peptide-MPC complex of the present invention interacts with exosomes.
  • HT-29 cells are cultured, the culture supernatant is centrifuged (5,500 g, 10 minutes), a microfiltration membrane Stericup filter unit (Membrane Type Millipore Express (R) PLUS (PES), Pore Size Rating 0.22 ⁇ m) (Milliopore Corporation ) And ultracentrifuged at 160,000 g for 70 minutes to recover exosomes. Furthermore, sucrose density gradient centrifugation (100,000 g, 17 hours) of 0.25-2M sucrose, 20 mM Hepes, pH 7.2 was performed, and the exosome fraction was isolated. The isolated exosome fraction was washed with PBS and collected by ultracentrifugation (160,000 g, 2 hours). The collected exosomes were suspended in PBS and labeled by the following method.
  • Exosome labeling was performed using DiI (invitrogen). Dilute 20 ⁇ l of isolated exosome with 980 ⁇ l of PBS, add 5 ⁇ l of DiI, mix, and let stand at 37 ° C. for 1 hour. After ultracentrifugation (120,000 g, 90 minutes), the supernatant is removed, and 1% BSA / PBS is added and mixed. Ultracentrifugation (120,000 g, 90 minutes) was repeated twice to obtain labeled exosomes.
  • DiI invitrogen
  • Example 9 [Application to flow path system] An application example in which silica beads are coated with the EpCAM-binding peptide-MPC complex of the present invention and packed in a flow path system is shown.
  • the silica beads coated with the Ep114 peptide-MPC complex were packed in a microchannel (manufactured by microfluidic® ChipShop). The results are shown in FIG.
  • FIG. 10 shows a transmitted light photograph in which silica beads are packed in a flow path.
  • the middle and lower rows show FITC detected by a fluorescence microscope, while the middle row is filled with silica beads coated with PEG2 (FITC), and (C) is filled with uncoated silica beads. .
  • the presence of the peptide on the carrier surface coated with the EpCAM-binding peptide-MPC complex as a functional molecule indicates that the QCM (crystal oscillator microbalance) sensor surface is attached to the EpCAM binding of the present invention. It has also been confirmed by coating with a peptide-MPC complex and interacting with exosomes.
  • the measurement device to which the present invention is applied includes a fluorescence microscope, a fluorescence detection device such as a microplate reader, an optical detection device such as a dark field illumination microscope, a magnetic analysis device, and a zeta potential measurement.
  • a fluorescence microscope a fluorescence detection device such as a microplate reader
  • an optical detection device such as a dark field illumination microscope
  • a magnetic analysis device a magnetic analysis device
  • zeta potential measurement zeta potential measurement.
  • a known detection device such as a meter or an atomic force microscope can be used as the measurement unit.
  • the peptide 114 and the MPC complex have been studied.
  • the peptide having a binding strength different from that of EpCAM for example, the peptide Ep133 having a different affinity for the EpCAM already disclosed by the present inventors.
  • Ep301 it is possible to create EpCAM-binding peptide-MPC complexes having different binding strengths to EpCAM.
  • peptides having different binding capacities it is possible to prepare EpCAM-binding peptide-MPC complexes that are suitable for applications such as cell separation and diagnosis.
  • the method of the present invention it is possible to easily form various carriers as functionalized composite materials having EpCAM affinity with EpCAM-binding peptides. Therefore, various applications such as medical research, clinical measurement, testing, and development of therapeutic instruments are possible by using these for medical materials such as metallic titanium for flow channels, column carriers, magnetic beads, membranes, filters, etc. It becomes.
  • the binding targets include all those in which EpCAM molecules are present, and include not only EpCAM-expressing cells but also EpCAM-expressing exosomes, microvesicles, and EpCAM molecules themselves.
  • a composite material using an MPC copolymer has been examined using a peptide capable of binding to EpCAM, but various aptamers can be bound to the MPC copolymer by the method of the present invention. it can. As a result, it is possible to create a functional biosurface having affinity for various biomolecules, and a wide range of applications can be expected.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Immunology (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • Biomedical Technology (AREA)
  • Hematology (AREA)
  • Urology & Nephrology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Biotechnology (AREA)
  • Medicinal Chemistry (AREA)
  • Cell Biology (AREA)
  • Microbiology (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Food Science & Technology (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Genetics & Genomics (AREA)
  • Zoology (AREA)
  • Biophysics (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Hospice & Palliative Care (AREA)
  • Oncology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Toxicology (AREA)
  • General Engineering & Computer Science (AREA)
  • Sustainable Development (AREA)
  • Peptides Or Proteins (AREA)

Abstract

The present invention addresses the problem of providing a peptide conjugate, which is capable of functionalizing carriers formed of various materials by an EpCAM-binding peptide, a diagnostic device using the same and a separation device using the same. A solid phase can be easily coated by preparing a conjugate that is composed of a phosphorylcholine group-containing polymer [in particular, a copolymerized polymer comprising a 2-methacryloyloxyethylphosphorylcholine (MPC) and a hydrophobic unit] and a peptide capable of binding to EpCAM. The aforesaid conjugate also interacts with EpCAM molecules and exosomes and, therefore, is widely applicable as a diagnostic or therapeutic tool.

Description

EpCAMに結合するペプチド・アプタマーとホスホリルコリンポリマー共重合体を含む複合体Complex comprising peptide aptamer binding to EpCAM and phosphorylcholine polymer copolymer
 本発明は、EpCAMに結合能を有するペプチド・アプタマーとホスホリルコリンポリマー共重合体との複合体の作成方法、該複合体によりペプチド・アプタマーを固相化し、EpCAMに親和性を有する材料表面を作成する方法、及び該複合体を用いた診断や治療のためのツールの提供に関する。 The present invention relates to a method for preparing a complex of a peptide aptamer capable of binding to EpCAM and a phosphorylcholine polymer copolymer, and immobilizing the peptide aptamer using the complex to prepare a material surface having affinity for EpCAM. The present invention relates to a method and a tool for diagnosis and treatment using the complex.
 上皮細胞接着因子(EpCAM; Epithelial cell adhesion molecule, CD326、GA733-2、HEA125、KS1/4、MK-1、MH99、MOC31、323/A3、17-1A、CO-17A、ESA、EGP-2、EGP34、EGP40、KSA、KS1/4、TROP-1、TACST-1)は、大腸癌で発現している癌特異的細胞表面抗原として報告されたI型膜タンパク質である(非特許文献1)。EpCAMは正常組織では主として上皮細胞の基底膜に発現しているが、上皮由来のほとんどの癌細胞で発現が認められることから、いわゆる癌抗原として知られ、診断マーカーとして有用であることが示されている(非特許文献2)。 Epidermal cell adhesion factor (EpCAM; Epithelial cell hesadhesion molecule, CD326, GA733-2, HEA125, KS1 / 4, MK-1, MH99, MOC31, 323 / A3, 17-1A, CO-17A, ESA, EGP-2, EGP34, EGP40, KSA, KS1 / 4, TROP-1, and TACST-1) are type I membrane proteins reported as cancer-specific cell surface antigens expressed in colorectal cancer (Non-patent Document 1). EpCAM is mainly expressed in the basement membrane of epithelial cells in normal tissues, but expression is observed in most cancer cells derived from epithelium, so that it is known as a so-called cancer antigen and is shown to be useful as a diagnostic marker. (Non-Patent Document 2).
 上述のようにEpCAMはほとんどの上皮由来の癌細胞で検出されることから、EpCAM抗原を表面に有する細胞を抗体によって集め、これを解析し予後予測を行うことが試みられている。血液中を循環しているEpCAMを表面抗原として発現している循環腫瘍細胞は、癌の転移と密接な関係にあることから、EpCAMを発現する循環腫瘍細胞の検出は予後予測に非常に重要である(特許文献1)。また、体液中のエクソソーム、マイクロベシクルなどの細胞外小胞を用いた診断法に注目が集まってきており、ここでも癌とEpCAM陽性の細胞外小胞との関連が報告されている(非特許文献3)。 As described above, since EpCAM is detected in most epithelial cancer cells, it has been attempted to collect cells having EpCAM antigen on the surface using an antibody, analyze this, and predict the prognosis. Since circulating tumor cells expressing EpCAM circulating in blood as a surface antigen are closely related to cancer metastasis, detection of circulating tumor cells expressing EpCAM is very important for prognosis prediction. Yes (Patent Document 1). In addition, attention has been focused on diagnostic methods using extracellular vesicles such as exosomes and microvesicles in body fluids, and here also the relationship between cancer and EpCAM positive extracellular vesicles has been reported (non-patented). Reference 3).
 さらに、近年診断だけではなく、治療においてもEpCAMの有用性が示されてきている。すでにEpCAMを利用した癌ワクチンが開発されており、バキュロウイルス等による昆虫細胞発現系を利用して調製したEpCAMタンパク質や抗EpCAM抗体の抗原認識部位に結合する抗イディオタイプ抗体を用いたワクチン療法も報告されている。また、癌治療用抗EpCAM抗体も開発され、Adecatumumab(MT201)、ING-1等の抗EpCAM抗体を用いた治験が行われている。これらの抗体を用いた治療では、癌細胞表面上のEpCAMに抗体が結合し、生体内の免疫系により細胞性免疫(細胞障害活性)を誘導することで癌を縮小させることを狙いとしている。さらに、抗EpCAM抗体による細胞障害活性を高める目的で、抗EpCAM抗体と緑膿菌外毒素を融合させたProxiniums Vivendiums (VB4-845)や、IL-2と融合させたEMD 273 066(huKS-IL2)や、抗CD3活性を併せ持つEU承認薬であるカツマキソマブ(Catumaximab)等が開発されている(非特許文献4、5)。 Furthermore, in recent years, the usefulness of EpCAM has been shown not only in diagnosis but also in treatment. Cancer vaccines using EpCAM have already been developed, and vaccine therapy using an anti-idiotype antibody that binds to the antigen recognition site of an EpCAM protein or anti-EpCAM antibody prepared using an insect cell expression system such as baculovirus is also available. It has been reported. In addition, anti-EpCAM antibodies for cancer treatment have been developed, and clinical trials using anti-EpCAM antibodies such as Adecatumumab (MT201) and ING-1 are being conducted. The treatment using these antibodies aims to reduce the cancer by binding the antibody to EpCAM on the surface of cancer cells and inducing cellular immunity (cytotoxic activity) by the in vivo immune system. Furthermore, for the purpose of enhancing the cytotoxic activity by the anti-EpCAM antibody, Proxinium Vivendiums (VB4-845) fused with anti-EpCAM antibody and Pseudomonas aeruginosa exotoxin, or EMD 273-066 (huKS-IL2 fused with IL-2) ), And an EU approved drug that has anti-CD3 activity, such as Katumamaximab (Non-patent Documents 4 and 5).
 上述のように、EpCAMを標的とした治療や診断には、抗体分子が用いられてきた。しかしながら、抗体分子は、標的分子に強く結合するといったメリットをもつが、しばしばこの「強い結合」が欠点ともなる。例えば抗体が細胞表面の標的受容体に結合したことにより、受容体下流の信号伝達系が活性化したり、あるいは、結合した抗体を取り除くための酸処理などが細胞にダメージを与える。これらの欠点は、細胞を用いた治療や再生医療を考える場合、致命的ともいえる。 As described above, antibody molecules have been used for treatment and diagnosis targeting EpCAM. However, antibody molecules have the advantage of binding strongly to the target molecule, but this “strong binding” is often a drawback. For example, when an antibody binds to a target receptor on the cell surface, a signal transmission system downstream of the receptor is activated, or acid treatment for removing the bound antibody damages the cell. These drawbacks can be fatal when considering treatment using cells and regenerative medicine.
 そこで、抗体を用いた強い結合ではなく、特異的ではあるが弱い結合が、流体の動力学的な性質を利用した流路系、マクロ流路系での、細胞培養、細胞選別等を実現する上で求められている。このような特異的で弱い結合を実現するには、抗体の代わりに、ペプチド・アプタマーが有効な技術的手段の一つとなる。 Therefore, specific but weak binding, not strong binding using an antibody, realizes cell culture, cell sorting, etc. in a flow channel system or macro flow channel system utilizing the dynamic properties of fluids. Needed above. In order to realize such specific and weak binding, a peptide aptamer is an effective technical means instead of an antibody.
 本発明者らは、すでに化学合成法や遺伝子工学的手法を用いて簡単に作製することができる、EpCAMに結合能を有するペプチドを開示している(特許文献2)。また、新たにEpCAMに対して結合能を有するペプチドの開発を進めている。 The present inventors have already disclosed a peptide capable of binding to EpCAM, which can be easily prepared using chemical synthesis or genetic engineering techniques (Patent Document 2). In addition, the development of peptides having the ability to bind to EpCAM is being promoted.
特表2008-533587号公報Special table 2008-533587 gazette 特開2011-193728号公報JP 2011-193728 A
 EpCAMに対して結合能を有するペプチドを固相化して利用する場合、直接結合させる場合やリンカーを用いてリガンドの結合性を高める方法などが考えられる。EpCAM結合ペプチドを固相化する方法として、多くの、しかも素材の異なる固体に結合させるための高収率で安定した結合方法を確立することが必須である。実際、対象となるデバイスの流路系には、ポリカーボネート(PC)、ポリジメチルシロキサン(PDMS)、ポリスチレン(PS),ポリエチレンテレフタレート(PET),エポキシ樹脂,ガラス、シリコンなどのいろいろな材料や素材が用いられている。また、素材の形状もビーズ、プレート、フィルム、フィラメント等、多様である。これらの材料表面に共有結合を利用してペプチドを固相化することも可能であるが、材料に合わせた反応系を考える必要があり、また、反応基をもたない材料表面への固相化が極めて難しくなる。 When using a peptide capable of binding to EpCAM in a solid phase, there may be a method of directly binding or a method of increasing ligand binding using a linker. As a method for immobilizing an EpCAM-binding peptide, it is essential to establish a high-yield and stable binding method for binding to many solids of different materials. In fact, there are various materials and materials such as polycarbonate (PC), polydimethylsiloxane (PDMS), polystyrene (PS), polyethylene terephthalate (PET), epoxy resin, glass, and silicon in the flow path system of the target device. It is used. In addition, there are various shapes of materials such as beads, plates, films and filaments. Although it is possible to immobilize peptides on the surface of these materials using covalent bonds, it is necessary to consider a reaction system tailored to the material, and the solid phase on the surface of the material without reactive groups It becomes extremely difficult.
 一方で、物理的結合を利用した、「コート剤」的なアプローチは、材料選択性が広くなり、汎用性が高くなる利点をもつ。そこで、本発明はペプチド・アプタマーをコート剤と組み合わせて、特定の生体分子に親和性をもった材料表面、すなわち、バイオ界面、機能性バイオ表面として材料を機能化する方法の開発を課題としている。 On the other hand, the “coating agent” approach using physical bonding has the advantage of wide material selectivity and high versatility. Therefore, the present invention has an object to develop a method for functionalizing a material as a material surface having affinity for a specific biomolecule by combining a peptide / aptamer with a coating agent, that is, a biointerface or a functional biosurface. .
 ここでは、EpCAMに親和性を有するペプチド・アプタマーを用いて機能性バイオ表面を作成しているが、他のアプタマー等を用いれば、EpCAM以外の分子に親和性を備える機能性バイオ表面の作成にも応用することが可能である。 Here, functional biosurfaces are created using peptides and aptamers that have affinity for EpCAM, but other aptamers and the like can be used to create functional biosurfaces that have affinity for molecules other than EpCAM. Can also be applied.
 本発明は、細胞治療や再生医療、診断等に用いるために、EpCAMに親和性を有する材料表面を作成することを課題とする。細胞治療や再生医療を行うための細胞分離には主としてプレート上の流路系やビーズを充填したカラムが、また、診断等に用いる担体としてはビーズやチップ等の固相が用いられていることから、開発されたEpCAMに結合能を有するペプチド・アプタマーを、固相に効率よく固定化する方法が強く求められている。本発明は、固相を簡便にEpCAM結合能を備えた機能性バイオ表面とする、EpCAMに結合能を有するペプチド・アプタマーと高分子ポリマーとの複合体を提供することを課題とする。 An object of the present invention is to create a material surface having affinity for EpCAM for use in cell therapy, regenerative medicine, diagnosis, and the like. For cell separation for cell therapy and regenerative medicine, a flow path system on the plate and a column filled with beads are used, and a solid phase such as beads and chips is used as a carrier for diagnosis etc. Therefore, there is a strong demand for a method for efficiently immobilizing a developed peptide aptamer capable of binding to EpCAM on a solid phase. An object of the present invention is to provide a complex of a peptide / aptamer capable of binding to EpCAM and a high molecular weight polymer, wherein the solid phase is simply a functional biosurface having the ability to bind EpCAM.
 本発明によるバイオ界面、機能性バイオ表面といわれるような特定の生体分子に親和性をもった材料表面の実現は、バイオセンサーや細胞を用いた、診断や治療などの幅広い分野で利用される重要なツールとなる。 The realization of a material surface having affinity for specific biomolecules such as biointerfaces and functional biosurfaces according to the present invention is important for use in a wide range of fields such as diagnosis and treatment using biosensors and cells. Tool.
 本発明は、ホスホリルコリン基を含むポリマーとEpCAMに結合能を有するペプチドとの複合体であることを特徴とする。 The present invention is characterized in that it is a complex of a polymer containing a phosphorylcholine group and a peptide capable of binding to EpCAM.
 ホスホリルコリン基は、生体膜構成成分であることから、EpCAM分子やEpCAM発現エクソソーム等、生体成分の相互作用を検出するバイオ機能性表面を作成する際に非常に有用である。 Since the phosphorylcholine group is a component of a biological membrane, it is very useful when creating a biofunctional surface that detects the interaction of biological components such as EpCAM molecules and EpCAM-expressing exosomes.
 また、本発明の複合体は、ホスホリルコリン基を含むポリマーが、2-メタクリロイルオキシエチルホスホリルコリン(MPC)及び疎水性ユニットとを含む共重合ポリマーと、EpCAMに結合能を有するペプチドとの複合体であることを特徴とする。 Further, the complex of the present invention is a complex of a copolymer having a phosphorylcholine group containing 2-methacryloyloxyethyl phosphorylcholine (MPC) and a hydrophobic unit, and a peptide capable of binding to EpCAM. It is characterized by that.
 EpCAM結合ペプチドを固定化する高分子ポリマーは、ホスホリルコリン基を有するポリマーの中でも、特に2-メタクリロイルオキシエチルホスホリルコリン(MPC)及び疎水性ユニットを含む共重合ポリマー(例えば、2-メタクリロイルオキシエチルホスホリルコリン/n-ブチルメタクリレート共重合体、2-メタクリロイルオキシエチルホスホリルコリン/アリルアミン塩酸塩共重合体など)が好ましく用いられる。MPCを含む高分子ポリマーは生体親和性が非常に良いからである。 Among the polymers having a phosphorylcholine group, a high molecular polymer for immobilizing an EpCAM-binding peptide is, in particular, a copolymer containing 2-methacryloyloxyethyl phosphorylcholine (MPC) and a hydrophobic unit (for example, 2-methacryloyloxyethyl phosphorylcholine / n -Butyl methacrylate copolymer, 2-methacryloyloxyethyl phosphorylcholine / allylamine hydrochloride copolymer, etc.) are preferably used. This is because the high molecular weight polymer containing MPC has very good biocompatibility.
 本発明の複合体によれば、EpCAMに結合能を有するペプチドを効率良く固相化することが可能となる。したがって、EpCAMを標的として用いた診断、治療への幅広い応用が可能となる。さらに、MPC共重合体を用いることにより、ガラス、ポリカーボネート、シリカをはじめとする様々な材料をコーティングすることが可能となり、簡便にバイオ機能性表面を作成することが可能となる。 According to the complex of the present invention, a peptide capable of binding to EpCAM can be efficiently immobilized on a solid phase. Therefore, wide application to diagnosis and treatment using EpCAM as a target is possible. Furthermore, by using the MPC copolymer, various materials including glass, polycarbonate, and silica can be coated, and a biofunctional surface can be easily created.
 また、本発明の複合体は、EpCAMに結合能を有するペプチドが、配列番号1(KHLQCVRNICWS;Ep114)、配列番号2(EHLHCLGSLCWP;Ep133)、又は配列番号3(KSLQCINNLCWP;Ep301)に示されるアミノ酸配列からなるEpCAMに結合能を有するペプチドであることを特徴とする。 In the complex of the present invention, the peptide having binding ability to EpCAM is an amino acid sequence represented by SEQ ID NO: 1 (KHLQCVRNICWS; Ep114), SEQ ID NO: 2 (EHLHCLGLSLCWP; Ep133), or SEQ ID NO: 3 (KSLQCINLCWP; Ep301). It is characterized by being a peptide having binding ability to EpCAM.
 本発明者らが、開示している配列番号1のペプチドEp114、及び配列番号2のペプチドEp133は、EpCAMに対して強い結合能を示す。これら2つのペプチドは、本発明者らが特許文献2で開示している配列番号3のペプチドEp301と比較して、10倍程度強く結合する。したがって、感度良くEpCAMの検出を行うことができる。 The peptide Ep114 of SEQ ID NO: 1 and the peptide Ep133 of SEQ ID NO: 2 disclosed by the present inventors show strong binding ability to EpCAM. These two peptides bind about 10 times stronger than the peptide Ep301 of SEQ ID NO: 3 disclosed by the present inventors in Patent Document 2. Therefore, EpCAM can be detected with high sensitivity.
 また、EpCAM分子に対して比較的弱い結合を有するEp301を用いれば、細胞に対して強い刺激を加えることを避けたい場合に、有効なツールとなり得る。 In addition, if Ep301 having a relatively weak binding to the EpCAM molecule is used, it can be an effective tool when it is desired to avoid applying a strong stimulus to the cell.
 したがって、該ペプチド・アプタマーを用いた複合材料は、診断、治療面において様々な応用が期待される。特に合成ペプチドを用いれば、治療面においての安全性を担保することが容易となる。 Therefore, the composite material using the peptide aptamer is expected to have various applications in terms of diagnosis and treatment. In particular, if a synthetic peptide is used, it becomes easy to ensure safety in terms of treatment.
 また、これらペプチドをコードするDNAや組換えベクターを用い、公知の遺伝子工学の手法を用いたり、化学合成的手法で製造することにより、簡便に大量のEpCAM結合ペプチドを製造することが可能となることから、安価に診断材等を製造することが可能となる。 In addition, it is possible to easily produce a large amount of EpCAM-binding peptide by using a DNA or a recombinant vector encoding these peptides and using a known genetic engineering technique or a chemical synthesis technique. Therefore, it is possible to manufacture diagnostic materials and the like at low cost.
 本発明の複合素材は、本発明による複合体を担体に固相化することにより得られ、EpCAM親和性を有することを特徴とする。 The composite material of the present invention is obtained by immobilizing the complex according to the present invention on a carrier and has an EpCAM affinity.
 本発明の複合体は、上述のように、ポリカーボネート(PC)、ポリジメチルシロキサン(PDMS)、ポリスチレン(PS),ポリエチレンテレフタレート(PET),エポキシ樹脂、ガラス、シリコンガラス等、様々な材料をスピンコートや静置によって簡便にコーティングすることが可能である。したがって、様々な材料からなる、ビーズ、プレート、フィルム、フィラメント、メンブレン、カラム担体、流路、医療材料等、様々な形状の担体をコーティングすることにより、機能化し、診断、治療等への応用が期待される。 As described above, the composite of the present invention is spin-coated with various materials such as polycarbonate (PC), polydimethylsiloxane (PDMS), polystyrene (PS), polyethylene terephthalate (PET), epoxy resin, glass, and silicon glass. It can be easily coated by standing or standing. Therefore, it can be functionalized and applied to diagnosis, treatment, etc. by coating various shapes of carriers such as beads, plates, films, filaments, membranes, column carriers, flow paths, medical materials, etc. Be expected.
 本発明の分離装置は、本発明のEpCAMに親和性を有する複合素材を備え、EpCAM発現細胞、EpCAM発現エクソソーム、EpCAM発現マイクロベシクル、又はEpCAM分子をEpCAMの発現に基づいて分画することを特徴とする。 The separation apparatus of the present invention comprises a composite material having affinity for the EpCAM of the present invention, and is characterized by fractionating EpCAM-expressing cells, EpCAM-expressing exosomes, EpCAM-expressing microvesicles, or EpCAM molecules based on the expression of EpCAM And
 例えば、本発明の複合体を流路系の担体にコーティングすることにより、EpCAM発現細胞やエクソソーム、マイクロベシクルを効率良く分離する装置が作製可能となる。したがって、EpCAMを発現している循環腫瘍細胞、エクソソーム、マイクロベシクルの検出を感度良く行うことが可能となり、癌の診断を高精度で行うことができる。 For example, by coating the complex of the present invention on a channel system carrier, an apparatus for efficiently separating EpCAM-expressing cells, exosomes, and microvesicles can be produced. Therefore, circulating tumor cells, exosomes, and microvesicles expressing EpCAM can be detected with high sensitivity, and cancer can be diagnosed with high accuracy.
 また、細胞の選別や、エクソソーム、マイクロベシクル、EpCAMの精製等、従来は抗体を用いて行ってきた分離を、本発明の分離装置により行うことができる。さらに、ペプチド・アプタマーとしてEpCAMに対する親和性をデザインすることが可能であることから、所望の親和性を備えた分離装置を作成することが可能となる。すなわち、適度な親和性をもった材料表面を利用し、細胞やエクソソーム、マイクロベシクルを強く結合するのではなく、弱い相互作用で運動性を抑えながら、遅滞性のある移動(レターデーション・エフェクト)によって流路内でソートしていくようなデバイスが実現できる。また、このような弱い結合の場合、抗体などの強い結合で問題となる、必要以上の刺激が加わることにより細胞に与えていたダメージや、予期せぬ信号伝達系の活性化を回避することが可能となる。 Further, separation that has been conventionally performed using antibodies, such as cell selection, exosomes, microvesicles, and purification of EpCAM, can be performed by the separation apparatus of the present invention. Furthermore, since it is possible to design the affinity for EpCAM as a peptide aptamer, it is possible to create a separation apparatus having a desired affinity. In other words, using a material surface with a moderate affinity, rather than strongly binding cells, exosomes, and microvesicles, the movement is delayed (retardation effect) while suppressing motility by weak interaction. A device that sorts in the flow path can be realized. In addition, in the case of such weak binding, it is possible to avoid damage caused to cells due to excessive stimulation, which is a problem with strong binding of antibodies, etc., and unexpected activation of signal transmission system It becomes possible.
 さらに、流量や流圧などの調整によってレターデーション・エフェクトを変えることができることから、多様なモードで選択的に目的物質を分離することができる。この利点は、従来的手法である、強固な抗原抗体を用いる方法、分子量によってふるいをかける方法、荷電や疎水性によって吸着分画する方法などとは質的に異なる手法である。 Furthermore, since the retardation effect can be changed by adjusting the flow rate and flow pressure, the target substance can be selectively separated in various modes. This advantage is qualitatively different from conventional methods such as a method using a strong antigen antibody, a method of sieving by molecular weight, and a method of fractionating adsorption by charge or hydrophobicity.
 本発明の診断装置は、本発明の複合素材を用い、EpCAM発現の程度を計測する計測ユニットを備えることを特徴とする。 The diagnostic apparatus of the present invention is characterized by comprising a measurement unit that measures the degree of EpCAM expression using the composite material of the present invention.
 循環腫瘍細胞、エクソソーム、マイクロベシクルの検出等により、EpCAM発現の検出を行うことは、癌の診断、予後診断に非常に有用である。本発明の複合体を担体にコーティングすることにより、簡便に高精度の診断装置を作成することができる。 Detecting EpCAM expression by detecting circulating tumor cells, exosomes, microvesicles, etc. is very useful for cancer diagnosis and prognosis. By coating a carrier with the complex of the present invention, a highly accurate diagnostic apparatus can be easily prepared.
MPC共重合体と、EpCAMに結合能を有するペプチド・アプタマーとの複合体の作成方法を模式的に示す図。The figure which shows typically the preparation method of the composite_body | complex of the MPC copolymer and the peptide aptamer which has the binding ability to EpCAM. ペプチド・アプタマーのMPC共重合体への結合に用いるPEGリンカーを示す。The PEG linker used for the coupling | bonding to the MPC copolymer of a peptide aptamer is shown. リンカーの長さによりガラス表面に提示されるEpCAM結合ペプチド量を示す図。The figure which shows the amount of EpCAM binding peptide shown on the glass surface by the length of a linker. Ep114ペプチドのC末端側にdPEGを2つ含むリンカー(以下、PEG2リンカーと呼ぶ)構造。A linker (hereinafter referred to as PEG2 linker) structure containing two dPEG 2 on the C-terminal side of the Ep114 peptide. PEG2リンカーを用いた場合のガラス表面に提示されるEpCAM結合ペプチドの量を示す図。The figure which shows the quantity of the EpCAM binding peptide shown on the glass surface at the time of using a PEG2 linker. PEG2リンカーを用いたEpCAM結合ペプチド-MPC複合体でポリスチレンビーズをコートした結果を示す図。The figure which shows the result of having coat | covered the polystyrene bead with the EpCAM binding peptide-MPC complex using a PEG2 linker. EpCAM結合ペプチド-MPC複合体をコートしたガラス表面のX線光電子分光(XPS)による表面元素分析の結果を示す図。The figure which shows the result of the surface elemental analysis by X-ray photoelectron spectroscopy (XPS) of the glass surface which coated the EpCAM binding peptide-MPC complex. EpCAM結合ペプチド-MPC複合体により種々の固相をコーティングできることを示す図。The figure which shows that various solid-phases can be coated by EpCAM binding peptide-MPC complex. EpCAM結合ペプチド-MPC複合体によりコートされた担体が抗EpCAM抗体、EpCAM、エクソソームによって認識されることを示す図。The figure which shows that the support | carrier coated with the EpCAM binding peptide-MPC complex is recognized by an anti-EpCAM antibody, EpCAM, and an exosome. EpCAM結合ペプチド-MPC複合体でシリカビーズをコートし、流路系に詰めた例を示す図。The figure which shows the example which coated the silica bead with the EpCAM binding peptide-MPC complex, and was packed in the flow-path system.
 以下、実施例を示しながら、本発明を詳細に説明する。
[実施例1]
[EpCAM結合ペプチド-MPC複合体の作成方法]
 図1に本発明のMPC共重合体と、EpCAMに結合能を有するペプチドとの複合体の作成方法を模式的に示す。MPCと、疎水性ユニット、カルボキシル基を備えたユニットからなるMPC共重合体ポリマーにポリエチレングリコール(PEG)リンカーを介して、EpCAMに結合能を有するペプチドとのコンジュゲート、すなわちEpCAM結合ペプチド-MPC複合体を作成する。
Hereinafter, the present invention will be described in detail with reference to examples.
[Example 1]
[Method for producing EpCAM-binding peptide-MPC complex]
FIG. 1 schematically shows a method for producing a complex of the MPC copolymer of the present invention and a peptide capable of binding to EpCAM. Conjugation of MPC with a peptide capable of binding to EpCAM via a polyethylene glycol (PEG) linker to an MPC copolymer polymer comprising a hydrophobic unit and a unit having a carboxyl group, that is, EpCAM-binding peptide-MPC complex Create a body.
 詳細なペプチド導入方法は以下のとおりである。MPC共重合体(日油株式会社、MPCポリマー、リピジュア?5903S)エタノール溶液にPEGリンカー(Quanta biodesign)を10当量入れた後、トリアジン系縮合剤4-(4,6-Dimethoxy-1,3,5-triazin-2-yl)-4-methylmorpholinium Chloride n-Hydrate (DMT-MM)を50当量加え、室温で一晩反応させる。その後、溶液を透析チューブ(Spectra/Por(商) Dialysis Membrane MWCO: 8000)に入れ、外液をメタノールにして2日間透析を行う。透析チューブから回収後、溶液を元の反応液の体積までエバポレータを用いて濃縮する。 The detailed peptide introduction method is as follows. MPC copolymer (NOF Corporation, MPC polymer, Lipidure-5903S) After adding 10 equivalents of PEG linker (Quantadesignbiodesign) to ethanol solution, triazine condensing agent 4- (4,6-Dimethoxy-1,3, 50 equivalents of 5-triazin-2-yl) -4-methylmorpholinium Chloride n-Hydrate (DMT-MM) is added and allowed to react overnight at room temperature. Thereafter, the solution is put into a dialysis tube (Spectra / Por (trademark) Dialysis Membrane MWCO: 8000), and the external solution is dialyzed for 2 days. After recovery from the dialysis tube, the solution is concentrated to the original reaction volume using an evaporator.
 続いて、リンカーを導入したMPC共重合体のメタノール溶液0.5mlに対し、2mlのメタノールと2.5mlのHOを加える。続いて、EpCAM結合ペプチドのC末側にGGK(FITC)GG(propargyl)を導入したものを10当量加えた後、ソニケーションによりペプチドを溶解させる。 Subsequently, 2 ml of methanol and 2.5 ml of H 2 O are added to 0.5 ml of the methanol solution of the MPC copolymer introduced with the linker. Subsequently, after adding 10 equivalent of CGK (FITC) GG (propargyl) introduced to the C-terminal side of the EpCAM-binding peptide, the peptide is dissolved by sonication.
 次に、0.5Mのアスコルビン酸ナトリウム水溶液(和光純薬)を加え、試験管内の黄色が濃くなったら、0.5Mの硫酸銅水溶液を加える。色が黄色から黒褐色に変化したら、試験管を密栓し、50℃、30分、加熱する。 Next, 0.5M sodium ascorbate aqueous solution (Wako Pure Chemical Industries, Ltd.) is added, and when the yellow color in the test tube becomes dark, 0.5M copper sulfate aqueous solution is added. When the color changes from yellow to black-brown, the test tube is sealed and heated at 50 ° C. for 30 minutes.
 反応終了後、0.5Mのエチレンジアミン四酢酸四ナトリウム(同仁化学)水溶液、pH8を加えながら、前出の透析チューブへと移し入れる。外液のメタノール/ミリQ水混合溶液3Lに対し、30mlの0.5Mエチレンジアミン四酢酸四ナトリウム水溶液、pH8を加え1週間透析を行う。外液を、エチレンジアミン四酢酸水溶液を含まない溶液に換えて2日透析を行った後、外液をメタノールのみに変えて透析を24時間行い、その後、透析チューブ内の溶液をエバポレータで濃縮し、EpCAM結合ペプチド-MPC複合体を合成した。 After completion of the reaction, add 0.5M ethylenediaminetetraacetic acid tetrasodium (Dojindo) aqueous solution, pH 8, and transfer to the above dialysis tube. Add 30 ml of 0.5 M ethylenediaminetetraacetate aqueous solution, pH 8 to 3 L of methanol / milli-Q water mixed solution as an external solution, and perform dialysis for 1 week. After dialysis for 2 days, changing the external solution to a solution not containing ethylenediaminetetraacetic acid aqueous solution, changing the external solution to methanol only, dialysis was performed for 24 hours, and then the solution in the dialysis tube was concentrated with an evaporator. EpCAM binding peptide-MPC complex was synthesized.
 [実施例2]
[ペプチド導入率に対するリンカーの長さの検討]
 用いるPEGリンカーの長さとペプチドの導入率について検討を行った。図2に示す鎖長の異なるPEGリンカー(Quanta biodesign)を用い、Ep114のMPC共重合体への導入率を求めた。
[Example 2]
[Examination of linker length for peptide introduction rate]
The length of the PEG linker used and the rate of peptide introduction were examined. Using the PEG linkers (Quanta biodesign) having different chain lengths shown in FIG. 2, the introduction rate of Ep114 into the MPC copolymer was determined.
 ペプチドの導入率は以下のようにして測定した。Ep114ペプチドのC末にFITCを付加したペプチド、GGK(FITC)GG(propargyl)を合成し、Ep114(FITC)ペプチド-MPC複合体におけるFITCの吸光度を測定することにより、MPC共重合体に対するペプチド導入率を求めた。 The peptide introduction rate was measured as follows. The peptide introduced into the MPC copolymer was synthesized by synthesizing GGK (FITC) GG (propargyl), a peptide in which FITC was added to the C-terminal of the Ep114 peptide, and measuring the FITC absorbance in the Ep114 (FITC) peptide-MPC complex. The rate was determined.
 具体的には、紫外可視分光光度計(UV-2550、島津製作所)でスペクトルを測定し、FITCの495nmにおける吸収極大値と、800nmの吸光度を測定し、予め作成しておいた検量線により、ペプチド濃度を測定し、ペプチド導入率を求めた。結果を表1に示す。 Specifically, the spectrum was measured with an ultraviolet-visible spectrophotometer (UV-2550, Shimadzu Corporation), the absorption maximum value of FITC at 495 nm and the absorbance at 800 nm were measured, and a calibration curve prepared in advance was used. The peptide concentration was measured to determine the peptide introduction rate. The results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1に示すように、用いるリンカーの長さによって、MPC共重合体に導入されるペプチドの量は異なっている。鎖長の短いPEGリンカー、dPEG3を用いた場合にはペプチド導入率が極端に低いが、他のリンカーを用いた場合は、すべて10%以上の値となっている。鎖長の短いPEGリンカーは導入率が低く、以下に示すように、EpCAMとの結合性も低いが、dPEG7以上の鎖長であれば、導入率も高く機能的な表面材料を形成することができる。 As shown in Table 1, the amount of peptide introduced into the MPC copolymer varies depending on the length of the linker used. When a PEG linker with a short chain length, dPEG3, is used, the peptide introduction rate is extremely low, but when other linkers are used, the values are all 10% or more. A PEG linker with a short chain length has a low introduction rate, and as shown below, the binding property to EpCAM is also low. However, if the chain length is dPEG7 or more, a high introduction rate can form a functional surface material. it can.
 [実施例3]
[リンカーの長さと機能的分子として提示されるEpCAM結合ペプチド量の検討]
 得られたEpCAM結合ペプチド-MPC複合体を固相に固定化し、提示される機能的なEpCAM結合ペプチド量の検討を行った。固相への固定化は、以下のスピンコーター法、静置法の2つの方法により行った。
[Example 3]
[Examination of linker length and amount of EpCAM-binding peptide presented as functional molecule]
The obtained EpCAM-binding peptide-MPC complex was immobilized on a solid phase, and the amount of functional EpCAM-binding peptide presented was examined. Immobilization to the solid phase was performed by the following two methods: spin coater method and stationary method.
 (1)スピンコーター法
 ガラス板を10分間、紫外線オゾン処理した後、メタノールに浸漬し5分間ソニケーションし、洗浄を行う。EpCAM結合ペプチド-MPC複合体溶液20μlを、スピンコーターにより回転塗布した。その後、30分間風乾した後、2時間真空乾燥させる。その後、PBS(Phosphate buffered saline)中、4℃で、15時間静置する。
(1) Spin coater method A glass plate is subjected to ultraviolet ozone treatment for 10 minutes, then immersed in methanol, sonicated for 5 minutes, and washed. 20 μl of EpCAM-binding peptide-MPC complex solution was spin-coated with a spin coater. Then, after air-drying for 30 minutes, it is vacuum-dried for 2 hours. Then, it leaves still at 4 degreeC in PBS (Phosphate buffered saline) for 15 hours.
 (2)静置法
 ガラス板を上記と同様の方法で洗浄処理した後、ガラス板の表面にEpCAM結合ペプチド-MPC複合体溶液を50μl載せ、4℃、一晩静置する。静置後、スピンコータにより余分なEpCAM結合ペプチド-MPC複合体溶液を除去し、上記と同様に乾燥、PBSで処理する。
(2) Standing method After washing the glass plate by the same method as described above, 50 μl of EpCAM-binding peptide-MPC complex solution is placed on the surface of the glass plate and left at 4 ° C. overnight. After standing, the excess EpCAM-binding peptide-MPC complex solution is removed with a spin coater, dried and treated with PBS as described above.
 コート後のEpCAM結合ペプチドの量を抗体染色により比較検討した。ここでは、EpCAM結合ペプチドとして、Ep114を用いている。EpCAM結合ペプチド-MPC複合体を固定したガラスをブロッキング剤(ナカライ、Blocking One)で、1時間ブロッキングし、0.05重量%のTween20を含むTBS(Tris buffered saline)で3回洗浄した。 The amount of EpCAM-binding peptide after coating was compared by antibody staining. Here, Ep114 is used as the EpCAM-binding peptide. The glass on which the EpCAM-binding peptide-MPC complex was immobilized was blocked with a blocking agent (Nacalai, Blocking One) for 1 hour and washed three times with TBS (Tris buffered saline) containing 0.05% by weight of Tween20.
 ブロッキング後、一次抗体として、抗Ep114ウサギIgG、二次抗体としてHRP標識ヤギ抗ウサギIgGを使用した。各抗体との反応後は、0.05重量%のTween20を含むTBSを用いて洗浄し、ECL溶液により化学発光させ検出を行っている。結果を図3に示す。 After blocking, anti-Ep114 rabbit IgG was used as the primary antibody, and HRP-labeled goat anti-rabbit IgG was used as the secondary antibody. After the reaction with each antibody, detection is performed by washing with TBS containing 0.05% by weight of Tween 20 and chemiluminescence with an ECL solution. The results are shown in FIG.
 (A)はスピンコーター法、(B)は静置法による結果を示す。図中B-3、B-7,B-11、B-23、B-35はペプチドとMPC共重合体を作成するときに用いたリンカーが、各々dPEG3、dPEG7、dPEG11、dPEG23、dPEG35であることを示す。また、MPCは、ペプチドを結合していないMPC共重合体のみを固定したものを示す。 (A) shows the result of the spin coater method, and (B) shows the result of the stationary method. In the figure, B-3, B-7, B-11, B-23, and B-35 are dPEG3, dPEG7, dPEG11, dPEG23, and dPEG35, respectively. It shows that. MPC refers to an immobilized MPC copolymer not bound with a peptide.
 スピンコーター法(A)、静置法(B)、どちらの固定化法を用いた場合でも、抗Ep114抗体との反応が認められることから、EpCAM結合ペプチドがガラス担体に固定化されることが認められた。短いリンカー、dPEG3(B-3)は、MPC共重合体への導入率が低いこともあり、EpCAM結合が検出されなかった。 In any of the spin coater method (A) and the stationary method (B), the reaction with the anti-Ep114 antibody is observed, so that the EpCAM-binding peptide may be immobilized on the glass carrier. Admitted. The short linker, dPEG3 (B-3), had a low introduction rate into the MPC copolymer, and no EpCAM bond was detected.
 表1で示したように、Ep114ペプチドのMPC共重合体へのペプチド導入率は、dPEG23をリンカーとして用いたときに最も高い値を示したが、抗体によって検出されるEpCAM結合ペプチドは、図3に示すようにdPEG7、dPEG11、dPEG23、dPEG35で大きな差は認められない。 As shown in Table 1, the peptide introduction rate of the Ep114 peptide into the MPC copolymer showed the highest value when dPEG23 was used as a linker, but the EpCAM-binding peptide detected by the antibody is shown in FIG. As shown in FIG. 4, no significant difference is observed between dPEG7, dPEG11, dPEG23, and dPEG35.
 図3に示したEpCAM結合ペプチドの抗体による検出は、表1に示したペプチド導入率と異なり、ペプチドは抗体で認識される状態、すなわち機能性分子として抗体に認識し得る状態として存在することを示している。導入されるペプチド量と、抗体により認識されるペプチド量との間に差が見られるのは、リンカーの鎖長によって、導入されたペプチド量と機能性分子として存在するペプチド量が異なるためだと思われる。リンカーの長さが3(dPEG3)のものに関しては、ペプチドのアクセス能が悪いため、低いペプチド導入率になり、結果として抗体で認識される機能的なペプチドの量も少ないものと考えられる。 The detection of the EpCAM-binding peptide shown in FIG. 3 by the antibody differs from the peptide introduction rate shown in Table 1 in that the peptide exists as a state recognized by the antibody, that is, as a state that can be recognized by the antibody as a functional molecule. Show. The difference between the amount of peptide introduced and the amount of peptide recognized by the antibody is because the amount of peptide introduced and the amount of peptide present as a functional molecule differ depending on the chain length of the linker. Seem. When the linker length is 3 (dPEG3), the peptide accessibility is poor, so the peptide introduction rate is low, and as a result, the amount of functional peptide recognized by the antibody is considered to be small.
 以上の結果から、EpCAM結合ペプチド-MPC複合体により、固相が機能的なEp114により効率よく被覆されることが示された。 From the above results, it was shown that the solid phase is efficiently coated with functional Ep114 by the EpCAM-binding peptide-MPC complex.
 [実施例4]
 導入するEp114ペプチドのC末端側のリンカー構造について検討した。Ep114ペプチドのC末端に、Fmoc-N-amido-dPEG2-acid (Quanta biodesign社製)を用い、PEGを付加したEp114ペプチドを、ペプチド合成装置を用いて合成した。
[Example 4]
The linker structure on the C-terminal side of the Ep114 peptide to be introduced was examined. Using the Fmoc-N-amido-dPEG 2 -acid (manufactured by Quanta biodesign) at the C-terminus of the Ep114 peptide, the Ep114 peptide added with PEG was synthesized using a peptide synthesizer.
 作製したFITCを含んだペプチド、Ep114-dPEG-K(FITC)-dPEG-G(propargyl)-NH、及びFITCを含まないペプチド、Ep114-dPEG-S-dPEG-G(propargyl)-NHの構造を図4に示す。 Peptide containing FITC, Ep114-dPEG 2 -K (FITC) -dPEG 2 -G (propargyl) -NH 2 , and peptide not containing FITC, Ep114-dPEG 2 -S-dPEG 2 -G (propargyl) The structure of —NH 2 is shown in FIG.
 [実施例5]
 実施例4で作製したペプチド、Ep114-dPEG-K(FITC)-dPEG-G(propargyl)-NHを用いて作製したEp114-MPC複合体を実施例3と同様にガラス板にスピンコーター法でコートして、抗体染色により比較検討した。なお、dPEG7を介してEp114ペプチドをMPCに結合させている。結果を図5に示す。
[Example 5]
The Ep114-MPC complex produced using the peptide produced in Example 4, Ep114-dPEG 2 -K (FITC) -dPEG 2 -G (propargyl) -NH 2 , was spin-coated on a glass plate in the same manner as in Example 3. The samples were coated by the method and compared by antibody staining. Note that the Ep114 peptide is bound to MPC via dPEG7. The results are shown in FIG.
 GGK(FITC)は、実施例2で用いているEp114-GGK(FITC)GG(propargyl)を、PEG2(FITC)は、実施例4で作製したEp114-dPEG-K(FITC)-dPEG-G(propargyl)-NHを、PEG2は、Ep114-dPEG-S-dPEG-G(propargyl)-NHをそれぞれMPC共重合体と複合体を形成させたものを示し、MPCはペプチドを結合していないMPC共重合体のみを固定したもの、Raw glassは、何も固定していないものを示す。 GGK (FITC) is Ep114-GGK (FITC) GG (propargyl) used in Example 2, and PEG2 (FITC) is Ep114-dPEG 2 -K (FITC) -dPEG 2 -produced in Example 4. G (propargyl) -NH 2 , PEG 2 represents Ep114-dPEG 2 -S-dPEG 2 -G (propargyl) -NH 2 each formed into a complex with an MPC copolymer, and MPC represents a peptide A raw glass in which only an unbound MPC copolymer is fixed, and Raw glass indicate that nothing is fixed.
 図5に示すように、PEG2(FITC)で示すEp114-dPEG-K(FITC)-dPEG-G(propargyl)-NHは、抗体に対する反応が特に良いこと、PEG2で示す、Ep114-dPEG-S-dPEG-G(propargyl)-NHは、GGK(FITC)(Ep114-GGK(FITC)GG(propargyl)とほぼ同等の反応性であることが示された。 As shown in FIG. 5, Ep114-dPEG 2 -K (FITC) -dPEG 2 -G (propargyl) -NH 2 represented by PEG2 (FITC) is particularly good for the antibody, and Ep114-dPEG represented by PEG 2 2 -S-dPEG 2 -G (propargyl) -NH 2 was shown to be almost as reactive as GGK (FITC) (Ep114-GGK (FITC) GG (propargyl).
 さらに、ポリスチレンビーズにコートして共焦点顕微鏡(OLYMPUS FLUOVIEW 1000)を用い観察を行った。PEG2(FITC)、あるいはGGK(FITC)とMPCとの複合体をポリスチレンビーズに固定し、ウサギに免疫して作成した抗Ep114抗体を用い、Zenon Rabbit IgG labeling reagent(Molecular Probes社)を用い、Alexa Fluor(商)594標識し、共焦点顕微鏡で観察を行った。なお、MPCとペプチドとの複合体を作製する際のリンカーとしては両者ともdPEG7を用いている。また、コントロールとしてウサギIgG(SANTA CRUZ BIOTECHNOLOGY社)を用いている。結果を図6に示す。 Furthermore, the sample was coated on polystyrene beads and observed using a confocal microscope (OLYMPUS FLUOVIEW 1000). A complex of PEG2 (FITC) or GGK (FITC) and MPC is fixed to polystyrene beads, and an anti-Ep114 antibody prepared by immunizing rabbits is used, Zenon Rabbit IgG labeling reagent (Molecular-Probes) is used, and Alexa Labeled with Fluor (trademark) 594 and observed with a confocal microscope. Note that both use dPEG7 as a linker in preparing a complex of MPC and peptide. In addition, rabbit IgG (SANTA CRUZ BIOTECHNOLOGY) is used as a control. The results are shown in FIG.
 PEG2(FITC)をGGK(FITC)と比較すると、抗Ep114抗体での染色性が非常に良く、ペプチドがMPC複合体の表面に効率良く現れていることを示している。 When PEG2 (FITC) is compared with GGK (FITC), the staining property with the anti-Ep114 antibody is very good, indicating that the peptide appears efficiently on the surface of the MPC complex.
 [実施例6]
 [X線光電子分光(XPS)を用いた表面元素分析]
 XPSにより、EpCAM結合ペプチド-MPC複合体をコートしたガラスの表面解析を行った。
[Example 6]
[Surface elemental analysis using X-ray photoelectron spectroscopy (XPS)]
Surface analysis of the glass coated with EpCAM-binding peptide-MPC complex was performed by XPS.
 Ep114ペプチド-MPC複合体をコートしたガラス板を、XPS(アルバックファイ PHI5000 VersaProbe)を用いて測定した。各サンプルは中央、両端の3箇所を、Pass Energy:117.4eV、Lower Energy:0eV、Range:1400eV、Energy step:1eV、Time/step:20ms、Total cycle:10、X-ray幅100μmの条件でスキャンした。 A glass plate coated with the Ep114 peptide-MPC complex was measured using XPS (ULVAC-PHI® PHI5000® VersaProbe). Each sample is centered at three locations on both ends. Pass Energy: 117.4eV, Lower Energy: 0eV, Range: 1400eV, Energy step: 1eV, Time / step: 20ms, Total cycle: 10, X-ray width 100μm Scanned.
 図7に結果を示す。測定を行った3箇所とも同様の結果を得たので、一例を示す。拡大部分に示すように、ガラス表面にはMPC由来のリン(P)が検出され、MPCが表面にコートされていることが確認された。しかしながら、リンカーとペプチドとの結合反応に用いた銅元素は検出されなかった。銅が不検出であることは、本発明のEpCAM結合ペプチド-MPC複合体を治療等、生体内で安全に用い得ることを示している。 Figure 7 shows the results. Since the same result was obtained in three places where the measurement was performed, an example is shown. As shown in the enlarged portion, MPC-derived phosphorus (P) was detected on the glass surface, and it was confirmed that MPC was coated on the surface. However, the copper element used for the binding reaction between the linker and the peptide was not detected. The fact that copper is not detected indicates that the EpCAM-binding peptide-MPC complex of the present invention can be used safely in vivo, such as for treatment.
 また、拡大部分に示す2つの大きなピークはガラス由来のケイ素を示す。走査型電子顕微鏡による観察では、コートしたガラス表面は平滑であるが、ガラス表面が露出している部分が残存しているものと認められる。しかしながら、膜厚測定の結果、コートされたEpCAM結合ペプチド-MPC複合体の膜厚が30nm程度であったことから、全体的に膜厚が薄いわけではなく、部分的にガラス表面が露出している部分があるものと考えられる。 Also, the two large peaks shown in the enlarged portion indicate glass-derived silicon. In observation with a scanning electron microscope, the coated glass surface is smooth, but it is recognized that a portion where the glass surface is exposed remains. However, as a result of the film thickness measurement, the coated EpCAM-binding peptide-MPC complex had a film thickness of about 30 nm, so that the film thickness was not entirely thin and the glass surface was partially exposed. It is thought that there is a part.
 [実施例7]
 [EpCAM結合ペプチド-MPC複合体による種々の固相のコーティング]
 EpCAMに結合能を有するペプチドを診断、治療に用いる場合には、担体としてビーズ、流路等様々な材料を使用することが予想される。これらの担体として用いられている材料としては、ガラス以外にも、ポリプロピレン、ポリカーボネート等、種々の材料が知られている。そこで、作成したEpCAM結合ペプチド-MPC複合体により、これらの材料をコーティングできるか検討を行った。
[Example 7]
[Coating of various solid phases with EpCAM-binding peptide-MPC complex]
When a peptide capable of binding to EpCAM is used for diagnosis and treatment, it is expected that various materials such as beads and channels are used as a carrier. In addition to glass, various materials such as polypropylene and polycarbonate are known as materials used as these carriers. Therefore, it was investigated whether these materials could be coated with the prepared EpCAM-binding peptide-MPC complex.
 実施例3で示したガラス担体の場合と同様に、静置法でポリプロピレン等の担体材料をEpCAM結合ペプチド-MPC複合体によりコートし、抗Ep114抗体を用いて検出を行った。 As in the case of the glass carrier shown in Example 3, a carrier material such as polypropylene was coated with an EpCAM-binding peptide-MPC complex by a stationary method, and detection was performed using an anti-Ep114 antibody.
 図8に結果を示す。担体としては、以下の材料を用いている;(A)ポリプロピレン、(B)塩化ビニル、(C)ポリカーボネート、(D)ポリスチレン、(E)ポリエチレンテレフタラート(PET)、(F)シリコン、(G)親水性ポリジメチルシロキサン(PDMS)、(H)疎水性ポリジメチルシロキサン。 Figure 8 shows the results. The following materials are used as the carrier: (A) polypropylene, (B) vinyl chloride, (C) polycarbonate, (D) polystyrene, (E) polyethylene terephthalate (PET), (F) silicon, (G ) Hydrophilic polydimethylsiloxane (PDMS), (H) Hydrophobic polydimethylsiloxane.
 また、図中+はEp114結合ペプチド-MPC複合体を、MPCはMPC共重合体のみをコートし、-は何もコートしていない領域であることを示す。上段は抗Ep114抗体を、下段はコントロールであるウサギIgG抗体を一次抗体として用いたことを示している。 In the figure, + indicates an Ep114-binding peptide-MPC complex, MPC only coats an MPC copolymer, and-indicates a region where nothing is coated. The upper row shows that the anti-Ep114 antibody was used as the primary antibody, and the lower row used the rabbit IgG antibody as a control as the primary antibody.
 図8に示すように、担体として汎用されているこれら材料はいずれも本発明のEpCAM結合ペプチド-MPC複合体により、効率良くコートすることができた。また、ここでは示さないが、金も効率良くコートすることを確認している。さらに、いずれの担体もバックグラウンドがほとんどなく、特異的な結合のみが観察されている。 As shown in FIG. 8, any of these materials widely used as carriers could be efficiently coated with the EpCAM-binding peptide-MPC complex of the present invention. Although not shown here, it has been confirmed that gold is also efficiently coated. Furthermore, none of the carriers has any background and only specific binding has been observed.
 また、実際にシリコンゴム系の流路やポリジメチルシロキサン系の流路に、本発明の複合体を用いてコートしたところ、効率良く流路をコートできることを蛍光観察により確認している。 In addition, it has been confirmed by fluorescence observation that when a silicon rubber-based channel or a polydimethylsiloxane-based channel is actually coated using the composite of the present invention, the channel can be efficiently coated.
 したがって、本発明のEpCAM結合ペプチド-MPC複合体は、流路系、ビーズ等、一般に計測、検査、治療に用いる担体材料のコート剤として非常に有用であることが示された。
[実施例8]
 [ゲル担体を用いた応用、エクソソームとの結合]
 ゲル担体をEpCAM結合ペプチド-MPC複合体でコートし、抗EpCAM結合ペプチド抗体、EpCAM、エクソソームと相互作用を行うか解析した。
Therefore, it was shown that the EpCAM-binding peptide-MPC complex of the present invention is very useful as a coating agent for a carrier material generally used for measurement, inspection, and treatment, such as a flow channel system and beads.
[Example 8]
[Application using gel carrier, binding to exosomes]
The gel carrier was coated with an EpCAM-binding peptide-MPC complex, and it was analyzed whether it interacted with an anti-EpCAM-binding peptide antibody, EpCAM, and exosome.
 具体的には、silica gel 60(nacalai tesque)にEp114ペプチド-MPC複合体(リンカーはdPEG7を使用)をコートした。このEp114ペプチドを担持したゲル担体が、抗Ep114抗体、精製EpCAM、エクソソームと相互作用を行うか解析した。 Specifically, Silica gel 60 (nacalai tesque) was coated with Ep114 peptide-MPC complex (dPEG7 was used as the linker). It was analyzed whether the gel carrier carrying the Ep114 peptide interacts with the anti-Ep114 antibody, purified EpCAM, and exosome.
(1)抗Ep114抗体との相互作用
 ゲル担体を2%BSAで30分間ブロッキング後、PBSで3回洗浄し、ウサギに免疫して作成した抗Ep114抗体を、Zenon Rabbit IgG labeling reagent(Molecular Probes社)を用い、Alexa Fluor(商)594標識し、この抗Ep114標識抗体を用いてゲル担体を標識し,共焦点顕微鏡で観察を行った。コントロールとしては、ウサギIgG(SANTA CRUZ BIOTECHNOLOGY社)を用いた。結果を図9(B)(1)に示す。
(1) Interaction with anti-Ep114 antibody The gel carrier was blocked with 2% BSA for 30 minutes, washed with PBS three times, and immunized to a rabbit. The anti-Ep114 antibody prepared by Zenon Rabbit IgG labeling reagent (Molecular Probes) ) Was labeled with Alexa Fluor (trademark) 594, the gel carrier was labeled with this anti-Ep114-labeled antibody, and observed with a confocal microscope. Rabbit IgG (SANTA CRUZ BIOTECHNOLOGY) was used as a control. A result is shown to FIG. 9 (B) (1).
(2)EpCAMとの相互作用
 上記と同様にブロッキング、洗浄を行った後、精製EpCAMを加え、30分間震盪、反応させた。PBSで3回洗浄後、Alexa Fluor(商)594 Zenon Mouse IgG Labeling Kitsで標識したマウス抗EpCAM抗体(Gene Tex, VU-1D9)抗体で反応を行った。PBSで3回洗浄後、共焦点顕微鏡で観察した。結果を図9(B)(2)に示す。
(2) Interaction with EpCAM After blocking and washing as described above, purified EpCAM was added, and the mixture was shaken and reacted for 30 minutes. After washing with PBS three times, the reaction was performed with a mouse anti-EpCAM antibody (Gene Tex, VU-1D9) antibody labeled with Alexa Fluor (trademark) 594 Zenon Mouse IgG Labeling Kits. After washing 3 times with PBS, it was observed with a confocal microscope. A result is shown to FIG. 9 (B) (2).
(3)エクソソームとの相互作用
 細胞は、細胞質内からタンパク質やアミノ酸等をエクソソームと呼ばれる小型膜小胞として放出している。エクソソームは細胞間の情報伝達に関与していることが明らかになっており、特に近年、癌細胞がエクソソームを多量に放出し、癌の転移や形成に深く関与していることが明らかにされてきている。この現象に基づいて、エクソソームを治療や診断に用いることが開示されている(例えば、非特許文献6、7参照)。そこで、本発明のEpCAM結合ペプチド-MPC複合体とエクソソームとが相互作用するか解析を行った。
(3) Interaction with exosomes Cells release proteins and amino acids from the cytoplasm as small membrane vesicles called exosomes. It has been revealed that exosomes are involved in signal transmission between cells, and in recent years, it has been clarified that cancer cells release a large amount of exosomes and are deeply involved in cancer metastasis and formation. ing. Based on this phenomenon, it has been disclosed that exosomes are used for treatment and diagnosis (for example, see Non-Patent Documents 6 and 7). Therefore, it was analyzed whether the EpCAM-binding peptide-MPC complex of the present invention interacts with exosomes.
 エクソソームの単離、標識は以下の方法で行った。HT-29細胞を培養し、培養上清を遠心(5,500g、10分)、精密濾過膜Stericupフィルターユニット(Membrane Type Millipore Express(R) PLUS(PES)、Pore Size Rating 0.22μm)(Milliopore Corporation)により処理し、160,000g、70分超遠心し、エクソソームを回収した。さらに、0.25-2Mショ糖、20mM Hepes,pH7.2のショ糖密度勾配遠心(100,000g、17時間)を行い、エクソソーム分画を単離した。単離したエクソソーム分画は、PBSで洗浄し、超遠心(160,000g、2時間)を行い回収した。回収したエクソソームはPBSに懸濁し、以下の方法により標識して用いた。 Isolation and labeling of exosomes were performed by the following method. HT-29 cells are cultured, the culture supernatant is centrifuged (5,500 g, 10 minutes), a microfiltration membrane Stericup filter unit (Membrane Type Millipore Express (R) PLUS (PES), Pore Size Rating 0.22μm) (Milliopore Corporation ) And ultracentrifuged at 160,000 g for 70 minutes to recover exosomes. Furthermore, sucrose density gradient centrifugation (100,000 g, 17 hours) of 0.25-2M sucrose, 20 mM Hepes, pH 7.2 was performed, and the exosome fraction was isolated. The isolated exosome fraction was washed with PBS and collected by ultracentrifugation (160,000 g, 2 hours). The collected exosomes were suspended in PBS and labeled by the following method.
 エクソソームの標識はDiI(invitrogen)を用いて行った。単離したエクソソーム20μlを980μlのPBSで希釈し,DiI5μlを加え、混和したのち、37℃で1時間静置する。超遠心(120,000g、90分)の後、上清を除き、1% BSA/PBSを加え、混和する。超遠心(120,000g、90分)を2回繰り返し、標識化エクソソームを得た。 Exosome labeling was performed using DiI (invitrogen). Dilute 20 μl of isolated exosome with 980 μl of PBS, add 5 μl of DiI, mix, and let stand at 37 ° C. for 1 hour. After ultracentrifugation (120,000 g, 90 minutes), the supernatant is removed, and 1% BSA / PBS is added and mixed. Ultracentrifugation (120,000 g, 90 minutes) was repeated twice to obtain labeled exosomes.
 標識化エクソソームを(1)と同様にブロッキング、洗浄を行った後、担体と相互作用させ、共焦点顕微鏡で観察した。結果を図9(B)(3)に示す。 The labeled exosome was blocked and washed in the same manner as in (1), then allowed to interact with the carrier and observed with a confocal microscope. A result is shown to FIG. 9 (B) (3).
 図9(B)に示すように、抗EpCAM結合ペプチド抗体、EpCAM、エクソソームと、いずれを用いた場合でも、担体上のEpCAM結合ペプチドとの相互作用が確認された。上記結果は、EpCAM発現細胞や、エクソソームが、本発明の複合体でコートしたバイオ機能性表面と相互作用することを示すものである。特に、エクソソームとの相互作用が示されたことは、エクソソームを標的とした診断や治療への応用を考えるうえで、非常に重要である。 As shown in FIG. 9 (B), the interaction between the anti-EpCAM binding peptide antibody, EpCAM, and exosome and the EpCAM binding peptide on the carrier was confirmed in any case. The above results indicate that EpCAM-expressing cells and exosomes interact with the biofunctional surface coated with the complex of the present invention. In particular, the fact that interaction with exosomes has been demonstrated is very important in considering diagnostic and therapeutic applications targeting exosomes.
 [実施例9]
 [流路系への応用]
 本発明のEpCAM結合ペプチド-MPC複合体でシリカビーズをコートし、流路系に詰めて用いる応用例を示す。
[Example 9]
[Application to flow path system]
An application example in which silica beads are coated with the EpCAM-binding peptide-MPC complex of the present invention and packed in a flow path system is shown.
 シリカゲルを115℃で15分加熱する。その後、室温で15分放冷した後、ゲルをメタノールで置換する。Ep114ペプチド-MPC複合体を入れ、37℃、2時間コートする。溶液を除いた後、30分間自然乾燥し、PBSを用いて15時間平衡化を行う。 Heat the silica gel at 115 ° C. for 15 minutes. Then, after cooling at room temperature for 15 minutes, the gel is replaced with methanol. Put Ep114 peptide-MPC complex and coat at 37 ° C. for 2 hours. After removing the solution, it is air-dried for 30 minutes and equilibrated with PBS for 15 hours.
 マイクロ流路(microfluidic ChipShop社製)に、Ep114ペプチド-MPC複合体をコートしたシリカビーズを詰めた。図10に結果を示す。 The silica beads coated with the Ep114 peptide-MPC complex were packed in a microchannel (manufactured by microfluidic® ChipShop). The results are shown in FIG.
 図10上段に、シリカビーズを流路に詰めた透過光写真を示す。中段、下段は蛍光顕微鏡によりFITCを検出したものであるが、中段はPEG2(FITC)でコートしたシリカビーズを詰めたもの、(C)は何もコートしていないシリカビーズを詰めたものである。 The upper part of FIG. 10 shows a transmitted light photograph in which silica beads are packed in a flow path. The middle and lower rows show FITC detected by a fluorescence microscope, while the middle row is filled with silica beads coated with PEG2 (FITC), and (C) is filled with uncoated silica beads. .
 PEG2(FITC)でコートしたシリカビーズを詰めたものでは、蛍光が観察されることから、シリカビーズにPEG2(FITC)が結合していることが示された。ビーズにコートして流路系に詰めることにより、EpCAMの精製や、患者検体を用いた診断等、幅広い応用に用いることができる。 When the silica beads coated with PEG2 (FITC) were packed, fluorescence was observed, indicating that PEG2 (FITC) was bound to the silica beads. By coating beads and filling the flow path system, it can be used for a wide range of applications such as purification of EpCAM and diagnosis using patient specimens.
 また、ここでは示さないが、EpCAM結合ペプチド-MPC複合体によりコートした担体表面上のペプチドが、機能性分子として存在することは、QCM(水晶発振子マイクロバランス)センサー表面を本発明のEpCAM結合ペプチド-MPC複合体によりコートし、エクソソームと相互作用することによっても確認している。 Although not shown here, the presence of the peptide on the carrier surface coated with the EpCAM-binding peptide-MPC complex as a functional molecule indicates that the QCM (crystal oscillator microbalance) sensor surface is attached to the EpCAM binding of the present invention. It has also been confirmed by coating with a peptide-MPC complex and interacting with exosomes.
 本発明を応用した計測装置としては、上記のようなQCMの他に、蛍光顕微鏡、マイクロプレートリーダーのような蛍光検出装置、暗視野照明顕微鏡のような光学検出装置、磁気分析装置、ゼータ電位測定計、原子間力顕微鏡等、公知の検出機器を計測ユニットとして用いることができる。 In addition to the above-mentioned QCM, the measurement device to which the present invention is applied includes a fluorescence microscope, a fluorescence detection device such as a microplate reader, an optical detection device such as a dark field illumination microscope, a magnetic analysis device, and a zeta potential measurement. A known detection device such as a meter or an atomic force microscope can be used as the measurement unit.
 以上、ペプチド114とMPC複合体とを用いて検討を行ってきたが、EpCAMと結合強度の異なるペプチド、例えば、本発明者らがすでに開示しているEpCAMに対する異なる親和性を備えたペプチドEp133、Ep301を用いることにより、EpCAMに対して結合力の異なるEpCAM結合ペプチド-MPC複合体を作成することが可能である。結合能の異なるペプチドを用いることにより、細胞分離や診断等、用途に合わせたEpCAM結合ペプチド-MPC複合体を作成することが可能となる。 As described above, the peptide 114 and the MPC complex have been studied. However, the peptide having a binding strength different from that of EpCAM, for example, the peptide Ep133 having a different affinity for the EpCAM already disclosed by the present inventors, By using Ep301, it is possible to create EpCAM-binding peptide-MPC complexes having different binding strengths to EpCAM. By using peptides having different binding capacities, it is possible to prepare EpCAM-binding peptide-MPC complexes that are suitable for applications such as cell separation and diagnosis.
 本発明の方法によれば、EpCAM結合ペプチドにより、簡便に種々の担体をEpCAM親和性を備えた機能化させた複合素材として形成することが可能となる。したがって、これらを流路系、カラムの担体、磁気ビーズ、メンブラン、フィルター等に金属チタンなどの医用材料等に用いることにより、医学研究、臨床計測、検査や治療器具開発等、様々な応用が可能となる。結合の対象はEpCAM分子が存在しているものすべてが含まれ、EpCAM発現細胞のみならず、EpCAM発現エクソソーム、マイクロベシクル、EpCAM分子そのものが挙げられる。上記EpCAM親和性を備えた機能化させた複合素材を流路系等に配置し、分離ユニットとして用いることにより、これらEpCAM分子を発現しているものを分離することができる。EpCAM分子は、ある状況でその細胞外ドメインが血中に放出されることが分かっており(非特許文献8参照)、血中からこれら細胞外ドメインを除去するような治療装置の開発にも利用できる。 According to the method of the present invention, it is possible to easily form various carriers as functionalized composite materials having EpCAM affinity with EpCAM-binding peptides. Therefore, various applications such as medical research, clinical measurement, testing, and development of therapeutic instruments are possible by using these for medical materials such as metallic titanium for flow channels, column carriers, magnetic beads, membranes, filters, etc. It becomes. The binding targets include all those in which EpCAM molecules are present, and include not only EpCAM-expressing cells but also EpCAM-expressing exosomes, microvesicles, and EpCAM molecules themselves. By arranging the functionalized composite material having the EpCAM affinity in a flow path system or the like and using it as a separation unit, those expressing the EpCAM molecule can be separated. EpCAM molecules have been found to release their extracellular domains into the blood under certain circumstances (see Non-Patent Document 8), and are also used to develop therapeutic devices that remove these extracellular domains from the blood. it can.
 さらに、ここではEpCAMに結合能を有するペプチドを用いて、MPC共重合体を用いた複合材料の検討を行ってきたが、本発明の方法により様々なアプタマーをMPC共重合体に結合させることができる。それにより種々の生体分子に親和性を備えた機能性バイオ表面を作成することが可能であり、幅広い応用が期待できる。 Furthermore, here, a composite material using an MPC copolymer has been examined using a peptide capable of binding to EpCAM, but various aptamers can be bound to the MPC copolymer by the method of the present invention. it can. As a result, it is possible to create a functional biosurface having affinity for various biomolecules, and a wide range of applications can be expected.

Claims (8)

  1.  ホスホリルコリン基を含むポリマーとEpCAMに結合能を有するペプチドとの複合体。 A complex of a polymer containing a phosphorylcholine group and a peptide capable of binding to EpCAM.
  2.  請求項1に記載の複合体において、
     前記ホスホリルコリン基を含むポリマーが、2-メタクリロイルオキシエチルホスホリルコリン(MPC)及び疎水性ユニットとを含む共重合ポリマーであることを特徴とする複合体。
    The complex according to claim 1,
    A complex characterized in that the polymer containing a phosphorylcholine group is a copolymer polymer containing 2-methacryloyloxyethyl phosphorylcholine (MPC) and a hydrophobic unit.
  3.  請求項1又は2記載の複合体において、
     EpCAMに結合能を有するペプチドが、配列番号1(KHLQCVRNICWS;Ep114)に示されるアミノ酸配列からなるEpCAMに結合能を有するペプチドであることを特徴とする複合体。
    The complex according to claim 1 or 2,
    A complex characterized in that the peptide capable of binding to EpCAM is a peptide capable of binding to EpCAM consisting of the amino acid sequence shown in SEQ ID NO: 1 (KHLQCVRNICWS; Ep114).
  4.  請求項1又は2記載の複合体において、
     EpCAMに結合能を有するペプチドが、配列番号2(EHLHCLGSLCWP;Ep133)に示されるアミノ酸配列からなるEpCAMに結合能を有するペプチドであることを特徴とする複合体。
    The complex according to claim 1 or 2,
    A complex characterized in that the peptide capable of binding to EpCAM is a peptide capable of binding to EpCAM consisting of the amino acid sequence shown in SEQ ID NO: 2 (EHLHCLGSLCWP; Ep133).
  5.  請求項1又は2記載の複合体において、
     EpCAMに結合能を有するペプチドが、配列番号3(KSLQCINNLCWP;Ep301)に示されるアミノ酸配列からなるEpCAMに結合能を有するペプチドであることを特徴とする複合体。
    The complex according to claim 1 or 2,
    A complex characterized in that the peptide capable of binding to EpCAM is a peptide capable of binding to EpCAM consisting of the amino acid sequence shown in SEQ ID NO: 3 (KSLQCINNLCWP; Ep301).
  6.  請求項1~5のいずれか1項記載の複合体を用いた複合素材であって、
     担体に前記複合体が固相化されたことを特徴とするEpCAM親和性を有する複合素材。
    A composite material using the composite according to any one of claims 1 to 5,
    A composite material having an affinity for EpCAM, wherein the complex is immobilized on a carrier.
  7.  請求項6記載の複合素材を用いたEpCAM発現細胞、EpCAM発現エクソソーム、EpCAM発現マイクロベシクル、又はEpCAM分子を分離する分離装置であって、
     EpCAMに親和性を有する複合体が固相化された複合素材を備えた分離ユニットを有することを特徴とする分離装置。
    A separation apparatus for separating an EpCAM-expressing cell, EpCAM-expressing exosome, EpCAM-expressing microvesicle, or EpCAM molecule using the composite material according to claim 6,
    A separation apparatus comprising a separation unit including a composite material in which a complex having affinity for EpCAM is solid-phased.
  8.  請求項6記載の複合素材を用いた計測装置であって、
     EpCAM発現の程度を計測する計測ユニットを備えることを特徴とする計測装置。
    A measuring device using the composite material according to claim 6,
    A measuring apparatus comprising a measuring unit that measures the degree of EpCAM expression.
PCT/JP2014/060458 2013-04-12 2014-04-11 CONJUGATE COMPOSED OF EpCAM-BINDING PEPTIDE APTAMER AND PHOSPHORYLCHOLINE POLYMER COPOLYMER WO2014168230A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015511309A JP5824596B2 (en) 2013-04-12 2014-04-11 Complex comprising peptide aptamer binding to EpCAM and phosphorylcholine polymer copolymer

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013084393 2013-04-12
JP2013-084393 2013-04-12

Publications (1)

Publication Number Publication Date
WO2014168230A1 true WO2014168230A1 (en) 2014-10-16

Family

ID=51689631

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/060458 WO2014168230A1 (en) 2013-04-12 2014-04-11 CONJUGATE COMPOSED OF EpCAM-BINDING PEPTIDE APTAMER AND PHOSPHORYLCHOLINE POLYMER COPOLYMER

Country Status (2)

Country Link
JP (1) JP5824596B2 (en)
WO (1) WO2014168230A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018516358A (en) * 2015-04-02 2018-06-21 バイオデシー, インコーポレイテッド Method for determining protein structure using surface selective nonlinear optical techniques
WO2019013148A1 (en) * 2017-07-11 2019-01-17 国立大学法人富山大学 Substrate covered with polymers for selective separation of cells or for cell culturing
WO2019039179A1 (en) * 2017-08-22 2019-02-28 国立大学法人広島大学 Method for isolating exosome and exosome isolation kit
WO2020140530A1 (en) * 2019-01-03 2020-07-09 京东方科技集团股份有限公司 Pseudopeptide, preparation method therefor and uses thereof
WO2021094750A1 (en) * 2019-11-11 2021-05-20 Oxford University Innovation Limited Method of isolating a selected population of exosomes
WO2023157950A1 (en) * 2022-02-18 2023-08-24 株式会社Lsiメディエンス Nonspecific reaction inhibitor

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010071230A1 (en) * 2008-12-17 2010-06-24 学校法人慶應義塾 Photodynamic therapeutic agent showing accumulation of cell-specific functions
JP2011193728A (en) * 2008-07-17 2011-10-06 Murata Mfg Co Ltd PEPTIDE HAVING BINDING CAPABILITY TO EpCAM

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011193728A (en) * 2008-07-17 2011-10-06 Murata Mfg Co Ltd PEPTIDE HAVING BINDING CAPABILITY TO EpCAM
WO2010071230A1 (en) * 2008-12-17 2010-06-24 学校法人慶應義塾 Photodynamic therapeutic agent showing accumulation of cell-specific functions

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
JAPANESE FOUNDATION FOR CANCER RESEARCH: "Bunshi Imaging Kiki Kenkyu Kaihatsu Project/ Shinki Akusei Shuyo Bunshi Probe no Kiban Gijutsu Kaihatsu/Bunshi Probe Yoso Gi", NEW ENERGY AND INDUSTRIAL TECHNOLOGY DEVELOPMENT ORGANIZATION (NEDO) HEISEI 20 NENDO TO HEISEI 21 NENDO SEIKA HOKOKUSHO, 3 May 2011 (2011-05-03), pages 1 - 21 *
KAZUHIRO HIBINO ET AL.: "EpiVeta: a coating agent that endows material surfaces with an affinity to EpCAM-expressing exosome", SECOND INTERNATIONAL MEETING OF ISEV 2013, 18 April 2013 (2013-04-18) *
TERUO FUJII: "Creation of Nanosystems with Novel Function through Process Integration", HEISEI 23 NENDO SENRYAKUTEKI SOZO KENKYU SUISHIN JIGYO CREST KENKYU NENPO, 7 September 2012 (2012-09-07), Retrieved from the Internet <URL:http://www.jst.go.jp/kisoken/crest/report/heisei23/pdf/pdf16/16-012.pdf> [retrieved on 20140626] *

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018516358A (en) * 2015-04-02 2018-06-21 バイオデシー, インコーポレイテッド Method for determining protein structure using surface selective nonlinear optical techniques
US20210130788A1 (en) * 2017-07-11 2021-05-06 National University Corporation University Of Toyama Substrates coated with selective cell separation or cell culture polymers
JP7272590B2 (en) 2017-07-11 2023-05-12 国立大学法人富山大学 Substrate coated with polymer for selective separation of cells or for cell culture
CN110914309A (en) * 2017-07-11 2020-03-24 国立大学法人富山大学 Polymer coated substrates for selective isolation of cells or for cell culture
JPWO2019013148A1 (en) * 2017-07-11 2020-05-07 国立大学法人富山大学 Substrates coated with polymers for selective cell isolation or cell culture
WO2019013148A1 (en) * 2017-07-11 2019-01-17 国立大学法人富山大学 Substrate covered with polymers for selective separation of cells or for cell culturing
CN110914309B (en) * 2017-07-11 2023-10-24 国立大学法人富山大学 Polymer-coated substrates for the selective isolation of cells or for cell culture
TWI816680B (en) * 2017-07-11 2023-10-01 國立大學法人富山大學 Matrix coated with polymer for selective separation of cells or cell culture
US11655273B2 (en) 2017-07-11 2023-05-23 National University Corporation University Of Toyama Substrates coated with selective cell separation or cell culture polymers
JPWO2019039179A1 (en) * 2017-08-22 2020-06-18 国立大学法人広島大学 Exosome isolation method and exosome isolation kit
WO2019039179A1 (en) * 2017-08-22 2019-02-28 国立大学法人広島大学 Method for isolating exosome and exosome isolation kit
CN111393502B (en) * 2019-01-03 2022-04-29 北京京东方技术开发有限公司 Quasi-peptide and preparation method and application thereof
CN111393502A (en) * 2019-01-03 2020-07-10 北京京东方技术开发有限公司 Quasi-peptide and preparation method and application thereof
WO2020140530A1 (en) * 2019-01-03 2020-07-09 京东方科技集团股份有限公司 Pseudopeptide, preparation method therefor and uses thereof
WO2021094750A1 (en) * 2019-11-11 2021-05-20 Oxford University Innovation Limited Method of isolating a selected population of exosomes
WO2023157950A1 (en) * 2022-02-18 2023-08-24 株式会社Lsiメディエンス Nonspecific reaction inhibitor

Also Published As

Publication number Publication date
JPWO2014168230A1 (en) 2017-02-16
JP5824596B2 (en) 2015-11-25

Similar Documents

Publication Publication Date Title
JP5824596B2 (en) Complex comprising peptide aptamer binding to EpCAM and phosphorylcholine polymer copolymer
CN107315086B (en) Capture, purifying and release using surface covering to biological substance
Gori et al. Membrane-binding peptides for extracellular vesicles on-chip analysis
US10788486B2 (en) Graphene oxide-based nanolab and methods of detecting of exosomes
Wang et al. Advances in epitope molecularly imprinted polymers for protein detection: a review
Teixeira et al. Epitope-imprinted polymers: Design principles of synthetic binding partners for natural biomacromolecules
Bhakta et al. Antibody-like biorecognition sites for proteins from surface imprinting on nanoparticles
DK2906717T3 (en) PROCEDURE FOR PAINTING MICROVESICS
Wang et al. Biomimetic polymer-based method for selective capture of C-reactive protein in biological fluids
KR101355176B1 (en) Composition for Diagnosing Circulating Tumor Cells and Method for Detecting Circulating Tumor Cells Using the Same
WO2012083020A2 (en) Antibody-linked immuno-sedimentation agent and method of isolating a target from a sample using same
Sathish et al. Air plasma-enhanced covalent functionalization of poly (methyl methacrylate): high-throughput protein immobilization for miniaturized bioassays
JP5647599B2 (en) Method for detecting a substance in a biological sample
Berwanger et al. Determination of the serum concentrations of the monoclonal antibodies bevacizumab, rituximab, and panitumumab using porous membranes containing immobilized peptide mimotopes
JP2023100770A (en) Manufacturing device and manufacturing method for exosome liquid biopsy sample
Yeh et al. A silicone-based microfluidic chip grafted with carboxyl functionalized hyperbranched polyglycerols for selective protein capture
Chen et al. Inside-out oriented choline phosphate-based biomimetic magnetic nanomaterials for precise recognition and analysis of C-reactive protein
Tappertzhofen et al. Synthesis of Maleimide‐Functionalyzed HPMA‐Copolymers and in vitro Characterization of the aRAGE‐and Human Immunoglobulin (huIgG)–Polymer Conjugates
Yamazoe Antibody immobilization technique using protein film for high stability and orientation control of the immobilized antibody
Krivitsky et al. Ultrafast and Controlled Capturing, Loading, and Release of Extracellular Vesicles by a Portable Microstructured Electrochemical Fluidic Device
CN108659115A (en) A kind of synthetic method of blood group antigens trisaccharide A analog BSA derivatives and application
Butvilovskaya et al. Hydrogel microchip as a tool for studying exosomes in human serum
Saleh et al. Manipulating Physicochemical Properties of Biosensor Platform with Polysuccinimide‐Silica Nanocomposite for Enhanced Protein Detection
JP6259245B2 (en) Peptide having affinity for immunoglobulin G and IgG type antibody adsorbent using the same
Chang et al. Rapid and sensitive detection of cardiac troponin I using a force enhanced immunoassay with nanoporous membrane

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14783389

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015511309

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14783389

Country of ref document: EP

Kind code of ref document: A1