WO2014168040A1 - Optical coupling structure - Google Patents

Optical coupling structure Download PDF

Info

Publication number
WO2014168040A1
WO2014168040A1 PCT/JP2014/059558 JP2014059558W WO2014168040A1 WO 2014168040 A1 WO2014168040 A1 WO 2014168040A1 JP 2014059558 W JP2014059558 W JP 2014059558W WO 2014168040 A1 WO2014168040 A1 WO 2014168040A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical fiber
optical
core
face
light
Prior art date
Application number
PCT/JP2014/059558
Other languages
French (fr)
Japanese (ja)
Inventor
幸寛 土田
味村 裕
松浦 寛
康平 土井
航 熊谷
由紀子 白澤
佐々木 勇人
京平 吉田
雄介 大友
Original Assignee
古河電気工業株式会社
学校法人東北学院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 古河電気工業株式会社, 学校法人東北学院 filed Critical 古河電気工業株式会社
Priority to JP2015511216A priority Critical patent/JPWO2014168040A1/en
Publication of WO2014168040A1 publication Critical patent/WO2014168040A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/264Optical coupling means with optical elements between opposed fibre ends which perform a function other than beam splitting
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/02042Multicore optical fibres
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/063Waveguide lasers, i.e. whereby the dimensions of the waveguide are of the order of the light wavelength
    • H01S3/067Fibre lasers
    • H01S3/06708Constructional details of the fibre, e.g. compositions, cross-section, shape or tapering
    • H01S3/06729Peculiar transverse fibre profile
    • H01S3/06737Fibre having multiple non-coaxial cores, e.g. multiple active cores or separate cores for pump and gain

Definitions

  • the present invention relates to an optical coupling structure.
  • Patent Document 1 As an optical coupling structure for coupling light such as pumping light to a multi-core optical fiber having a plurality of core parts, a structure using an optical multiplexer as described in Patent Document 1, for example, and Non-Patent Document 1 are described. A structure using a lens is disclosed.
  • the present invention has been made in view of the above, and an object of the present invention is to provide an optical coupling structure capable of obtaining high coupling efficiency when coupling light to a multi-core optical fiber.
  • an optical coupling structure includes a multi-core optical fiber having a plurality of core portions and a cladding portion formed on an outer periphery of the plurality of core portions,
  • the multi-core optical fiber is arranged to be inclined, and an optical fiber that outputs light to be input to the end face of the multi-core optical fiber from the end face; and the light that is output from the end face of the optical fiber.
  • a light reflecting element for reflecting to an end face, and the end face of the multi-core optical fiber, the end face of the optical fiber, and the light reflecting element are arranged close to each other, and the light is output from the optical fiber after being output from the optical fiber. Input to the multi-core optical fiber only through a reflective element.
  • the end surface of the multi-core optical fiber is inclined with respect to the optical axis of the multi-core optical fiber so that the end surface has a normal line that is inclined opposite to the optical fiber. It is characterized by being.
  • the optical coupling structure according to the present invention is characterized in that, in the above invention, the multi-core optical fiber is inserted and fixed in a ferrule, and the optical fiber is held in a holding portion formed in the ferrule.
  • the optical coupling structure according to the present invention is characterized in that, in the above invention, the ferrule is made of a material transparent to the light output from the optical fiber.
  • the optical coupling structure according to the present invention is the above-described invention, wherein the multi-core optical fiber is a double-clad multi-core amplification optical fiber in which an optical amplification medium is added to at least one of the plurality of core portions.
  • the light output from the optical fiber is pumping light for optically pumping the optical amplification medium.
  • the optical coupling structure according to the present invention is disposed so as to face an end face of the multi-core amplification optical fiber with the light reflecting element interposed therebetween, and the signal light for performing optical amplification with the multi-core amplification optical fiber is provided.
  • a first lens configured to be input to the multi-core amplification optical fiber is further provided.
  • the optical coupling structure according to the present invention is characterized in that, in the above invention, the end surface of the multi-core amplification optical fiber is arranged at a position farther from the first lens than the focal length of the first lens.
  • the optical coupling structure according to the present invention is characterized in that, in the above invention, the end face of the multi-core amplification optical fiber is disposed at a position substantially at a focal length of the first lens.
  • the optical coupling structure according to the present invention further includes a first optical path displacement optical element disposed so as to face an end face of the multi-core amplification optical fiber with the first lens interposed therebetween, wherein the first optical path displacement is provided.
  • the optical element is configured to allow the plurality of signal lights input to the first optical path displacement optical element to be input to the multi-core amplification optical fiber via the lenses with optical axes parallel to each other. It is characterized by being.
  • the optical coupling structure according to the present invention is characterized in that, in the above invention, the first optical path displacement optical element is a lens or a prism.
  • the optical coupling structure according to the present invention is disposed so as to face the signal optical coupling optical fiber that outputs the plurality of signal lights to the multi-core amplification optical fiber, and the end face of the signal optical coupling optical fiber.
  • a second optical path displacement optical element disposed so as to face the end surface of the signal light coupling optical fiber with the second lens interposed therebetween, and the second lens includes the second lens,
  • a plurality of signal lights can be coupled to the multi-core amplification optical fiber, and the second optical path displacement optical element is input from the signal light coupling optical fiber via the second lens.
  • the plurality of signal lights are configured to be output with optical axes parallel to each other.
  • the optical coupling structure according to the present invention is characterized in that, in the above invention, the second optical path displacement optical element is a lens or a prism.
  • optical coupling structure is characterized in that, in the above invention, the optical coupling structure further includes an optical isolator disposed between the first and second optical path displacement optical elements.
  • the optical coupling structure according to the present invention is characterized in that, in the above invention, the optical fiber has a distributed refractive index type optical fiber portion disposed on the end face side of the optical fiber.
  • FIG. 1 is a schematic configuration diagram of an optical coupling structure according to the first embodiment.
  • FIG. 2 is a schematic cross-sectional view of the multi-core optical fiber shown in FIG.
  • FIG. 3 is a schematic side cutaway view of the optical coupling module according to the second embodiment.
  • 4 is a plan view of the optical coupling module shown in FIG.
  • FIG. 5 is a schematic configuration diagram of an optical coupling structure according to the third embodiment.
  • FIG. 6 is a schematic configuration diagram of an optical coupling structure according to the fourth embodiment.
  • FIG. 7 is a schematic configuration diagram of an optical coupling structure according to the fifth embodiment.
  • FIG. 8A is a schematic diagram of the prism shown in FIG.
  • FIG. 9 is a schematic configuration diagram of an optical coupling structure according to the sixth embodiment.
  • FIG. 10 is a diagram illustrating a configuration of an optical fiber bundle.
  • FIG. 11 is a schematic
  • FIG. 1 is a schematic configuration diagram of an optical coupling structure according to Embodiment 1 of the present invention.
  • the optical coupling structure 10 includes a multi-core optical fiber 1, an optical fiber 2, and an optical filter 3 that is a light reflecting element.
  • FIG. 2 is a schematic cross-sectional view of the multi-core optical fiber 1 shown in FIG.
  • the multi-core optical fiber 1 has seven core portions 1a made of, for example, quartz glass and a refractive index lower than that of, for example, the core portion 1a formed on the outer periphery of the seven core portions 1a.
  • This is a double-clad multi-core optical fiber.
  • the core portion 1a is arranged in a triangular lattice shape, and is composed of a core portion located substantially at the center of the multi-core optical fiber 1 and a core portion arranged so as to form a regular hexagon around the core portion.
  • the multi-core optical fiber 1 is a multi-core amplification optical fiber.
  • the multi-core optical fiber 1 has an end face 1d.
  • the end face 1d has a normal V that is inclined with respect to an axis X parallel to the optical axis of the core portion 1a and the inner cladding portion 1b of the multi-core optical fiber 1.
  • the core portion 1a receives, for example, signal light in the 1.0 ⁇ m wavelength band or 1.55 ⁇ m wavelength band from the outside, and the core diameter and the cladding so that the signal light can be transmitted in a single mode.
  • a relative refractive index difference with respect to the portion 1b is set.
  • the core diameter of the core part 1a is 2.0 ⁇ m or more and 5.5 ⁇ m or less
  • the interval between the core parts 1a is 30 ⁇ m or more and 60 ⁇ m or less.
  • the optical fiber 2 includes a core portion 2a made of, for example, silica-based glass, a clad portion 2b made of, for example, silica-based glass having a refractive index lower than that of the core portion 2a, and an end surface 2c.
  • the optical fiber 2 is arranged to be inclined with respect to the multi-core optical fiber 1 by an inclination angle A. Note that the normal V of the end face 1 d of the multicore optical fiber 1 is inclined to the side opposite to the optical fiber 2.
  • the optical filter 3 has a reflecting surface 3a, and the reflecting surface 3a is disposed so as to face the end surface 1d of the multicore optical fiber 1 and the end surface 2c of the optical fiber 2 in close proximity.
  • a dielectric multilayer film that totally reflects light having the wavelength of the light L1 output from the optical fiber 2 is formed.
  • the optical filter 3 is made of glass such as quartz glass, BK7, or SF6.
  • the optical fiber 2 outputs the light L1 from the end face 2c.
  • the light L1 is, for example, light having a wavelength that can optically pump the optical amplifying medium added to the core portion 1a of the multi-core optical fiber 1 (for example, excitation light having a wavelength band of 980 nm or 1480 nm).
  • the optical filter 3 reflects the light L ⁇ b> 1 output from the end surface 2 c to the end surface 1 d of the multicore optical fiber 1.
  • the reflected light L1 is optically coupled to the inner cladding portion 1b of the multi-core optical fiber 1, and the optical amplification medium added to the core portion 1a can be optically excited.
  • the optical coupling structure 10 after the light L1 is output from the optical fiber 2, it is input to the multi-core optical fiber 1 through the optical filter 3 only.
  • the reflection surface 3a is placed close to the end surface 1d and the end surface 2c, and the light L1 is coupled to the multicore optical fiber 1 without using a lens. Efficiency (for example, about 50% or more) can be realized.
  • the optical path length P of the light L1 from the end face 2c of the optical fiber 2 to the end face 1d of the multicore optical fiber 1 is preferably 1 mm or less, and is about several hundred ⁇ m. More preferred.
  • NA1 is about 0.15
  • d1 is about 150
  • NA2 is about 0.11
  • d2 is about 50 ⁇ m or 105 ⁇ m, for example.
  • the normal V of the end face 1d of the multicore optical fiber 1 is inclined to the side opposite to the optical fiber 2, the light L1 is incident in accordance with the optical axis of the inner cladding portion 1b according to Snell's law. Therefore, the incident angle to the end face 1d is inclined toward the optical fiber 2 side.
  • the inclination angle A can be increased, the optical filter 3 can be brought closer to the multi-core optical fiber 1 and the optical fiber 2, thereby realizing further higher coupling efficiency and downsizing.
  • the inclination angle of the normal line V can also be set as appropriate in order to achieve higher coupling efficiency.
  • the optical coupling structure 10 As described above, according to the optical coupling structure 10 according to the first embodiment, a sufficiently high coupling efficiency can be obtained when the light L1 is coupled to the multicore optical fiber 1.
  • An antireflection film may be formed on the end surface 1 d of the multicore optical fiber 1 or the end surface 2 c of the optical fiber 2.
  • Such an antireflection film is composed of, for example, a laminated film of a tantalum pentoxide film, a titanium oxide film, an alumina film, and a SiO 2 film.
  • the normal line V is not necessarily inclined and may be parallel to the axis X.
  • FIG. 3 is a schematic side cutaway view of an optical coupling module having an optical coupling structure according to Embodiment 2 of the present invention.
  • 4 is a plan view of the optical coupling module shown in FIG.
  • the optical coupling module 100 is obtained by modularizing the optical coupling structure 10 according to the first embodiment.
  • the optical coupling module 100 includes an optical coupling structure 10 including a multi-core optical fiber 1, an optical fiber 2, and an optical filter 3, a ferrule 101, a housing 102, a lens 103, and a lens holder 104. .
  • the housing 102 has a substantially cylindrical shape, and stores the ferrule 101 and also holds a lens holder 104 that stores the lens 103.
  • the housing 102 is formed with an opening 102a for taking out the optical fiber 2 to the outside. If the housing
  • the lens 103 is disposed so as to face the end face of the multi-core optical fiber 1 with the optical filter 3 interposed therebetween, and receives light input from the outside, for example, signal light in a 1.0 ⁇ m wavelength band or 1.55 ⁇ m wavelength band, as multi-core light.
  • the optical fiber 1 is configured to be input to the multi-core optical fiber 1 for optical amplification.
  • the lens holder 104 houses and holds the lens 103, and is made of, for example, stainless steel and is joined to the housing 102 by laser welding or the like.
  • the arrangement of the components of the optical coupling structure 10 according to the first embodiment can be set more suitably.
  • the multi-core optical fiber 1 When a structure in which the multi-core optical fiber 1 is inserted and fixed to the ferrule 101 is manufactured, first, the multi-core optical fiber 1 is inserted into the ferrule 101 in a state where the inclined surface 101b is not formed, and the ferrule 101 and the multi-core optical fiber are inserted. 1 is polished to form the inclined surface 101b and the inclined end surface 1d of the multi-core optical fiber 1 at the same time, and then the multi-core optical fiber 1 is pulled out from the inclined surface 101b to the rear side (right side of the paper) by a predetermined length, Therefore, it can be manufactured more easily by fixing.
  • FIG. 5 is a schematic configuration diagram of an optical coupling structure according to Embodiment 3 of the present invention, and an example of lens arrangement when a condensing optical system is configured when signal light is coupled to the multicore optical fiber 1.
  • FIG. 5 is a schematic configuration diagram of an optical coupling structure according to Embodiment 3 of the present invention, and an example of lens arrangement when a condensing optical system is configured when signal light is coupled to the multicore optical fiber 1.
  • the optical coupling structure 20A includes a multi-core optical fiber 1, an optical fiber 2, an optical filter 3, and a lens 4 corresponding to the lens 103 in FIGS.
  • the lens 4 as the first lens is disposed so as to face the end face of the multi-core optical fiber 1 with the optical filter 3 interposed therebetween, and light input from the outside, for example, signal light for communication is transmitted through the multi-core optical fiber 1. It is configured to be able to input to the multi-core optical fiber 1 for amplification.
  • the lens 4 is a spherical lens, an aspheric lens, a distributed refractive index lens, or the like, but is not particularly limited.
  • the reflective surface 3a (see FIG. 1) of the optical filter 3 totally reflects the light having the wavelength of the light L1 output from the optical fiber 2, and transmits the light having the wavelength band including the signal light. Is formed.
  • a dielectric multilayer film that transmits light in a wavelength band including signal light is also formed on the surface opposite to the reflecting surface 3a.
  • FIG. 5 two of the core portions 1a1 and 1a2 arranged on the outer peripheral side of the core portion 1a of the multi-core optical fiber 1 are shown as core portions 1a1 and 1a2, and the other core portions are not shown. is there.
  • the end face 1d of the multi-core optical fiber 1 is disposed at a position farther from the lens 4 than the focal length f of the lens 4. That is, if the distance between the end face 1d of the multi-core optical fiber 1 and the lens 4 is a, f ⁇ a holds. Then, when the beams B1 and B2 of the signal light input from the outside are condensed on the core portions 1a1 and 1a2 on the end face 1d by the lens 4, the beam waists W1 and W2 of the beams B1 and B2 are To the position of distance b.
  • the beam of signal light to be input to the other core portion 1a is also at a distance b from the lens 4 like the beams B1 and B2.
  • FIG. 6 is a schematic configuration diagram of an optical coupling structure according to the fourth embodiment, and illustrates a lens arrangement example 2 in a case where a parallel optical system is configured when signal light is coupled to the multi-core optical fiber 1.
  • FIG. 6 is a schematic configuration diagram of an optical coupling structure according to the fourth embodiment, and illustrates a lens arrangement example 2 in a case where a parallel optical system is configured when signal light is coupled to the multi-core optical fiber 1.
  • This optical coupling structure 20B is different from the optical coupling structure 20A shown in FIG. 5 in that the end face 1d of the multi-core optical fiber 1 is disposed at a position substantially at the focal length f of the lens 4, and the other configurations are as follows. It is the same. Then, when the externally input signal light beams B1 and B2 are input to the lens 4 as parallel light, they are condensed on the core portions 1a1 and 1a2 on the end face 1d. The beam of signal light to be input to the other core unit 1a is the same as the beams B1 and B2.
  • any arrangement of the lens arrangement examples 1 and 2 of the optical coupling structures 20A and 20B can be used.
  • FIG. 7 is a schematic configuration diagram of the optical coupling structure according to the fifth embodiment of the present invention, and is a diagram illustrating a configuration example 1 of the signal light input unit when the lens arrangement example 1 illustrated in FIG. 5 is employed. It is.
  • the multi-core optical fiber 5 is arranged in the same manner as the core portion 1a with the multi-core optical fiber 1 and is formed on the outer periphery of the seven core portions 5a made of quartz glass and the seven core portions 5a, for example, And a clad portion 5b made of quartz glass having a refractive index lower than that of the portion 5a.
  • a clad portion 5b made of quartz glass having a refractive index lower than that of the portion 5a.
  • FIG. 7 of the core portions 5 a of the multicore optical fiber 5 two core portions arranged on the outer peripheral side are shown as core portions 5 a 1 and 5 a 2, and the other core portions are not shown.
  • the multi-core optical fiber 5 is for inputting signal light for optical amplification by the multi-core optical fiber 1.
  • the lens 6 is disposed so as to face the end face of the multi-core optical fiber 5, and the optical axis and beam waist of the signal light output from the core portion 5 a of the multi-core optical fiber 5 have the signal light beam B 1, It is spatially propagated so as to substantially coincide with the optical axis of B2 and the beam waists W1 and W2, and is coupled to the core portions 1a1 and 1a2.
  • the prism 7 as the second optical path displacement optical element is disposed so as to face the end surface 5c of the multi-core optical fiber 5 with the lens 6 interposed therebetween.
  • the prism 8 as the first optical path displacement optical element is disposed so as to face the end surface 1 d of the multicore optical fiber 1 with the lens 4 interposed therebetween.
  • the prisms 7 and 8 have inclined surfaces 7a and 8a for displacing the optical path of incident light, and parallel surfaces 7b and 8b perpendicular to the optical axis, respectively.
  • FIG. 8A is a schematic diagram of the prism 7 (8) shown in FIG.
  • n 8
  • a regular octagonal pyramid shaped prism shown in FIG. 8B can be used.
  • the optical axis of the lens is placed on the central axis of the multi-core optical fiber and the focal position is set to the center of the multi-core optical fiber.
  • the traveling angle of the light output from the core portions 5a1 and 5a2 of the multi-core optical fiber 5 is determined.
  • the light traveling at this traveling angle is incident on one or two surfaces (parallel surface and inclined surface) of the regular n-pyramid and refracted according to Snell's law.
  • the angle of the positive n pyramid and the focal length of the lens are determined so that this refraction angle is parallel to the central axis of the optical fiber.
  • the inclined surfaces 7 a and 8 a are formed so as to correspond to the core portions on the outer peripheral side of the multi-core optical fibers 1 and 5.
  • Portions through which signal light input / output to / from the central core portion of the multi-core optical fibers 1 and 5 pass are parallel surfaces 7c and 8c parallel to the parallel surfaces 7b and 8b.
  • the prisms 7 and 8 are made of glass such as quartz glass or BK7 or SF6.
  • the lenses 4 and 6 are arranged so that the beam waists W1 and W2 of the beams B1 and B2 are formed at the position of the optical isolator 9.
  • the prism 7 is arranged so that each signal light is output from the core portions 5 a 1 and 5 a 2 of the multi-core optical fiber 5 and inputted through the lens 6.
  • the signal lights output from the prism 7 have their optical axes parallel to each other.
  • the prism 8 outputs the signal light beams B 1 and B 2 output from the core portions 5 a 1 and 5 a 2 of the multi-core optical fiber 5 and whose optical axes are made parallel by the prism 7 via the lens 4 to the core of the multi-core optical fiber 1.
  • the inclination angle of the inclined surface 8a is set so that the parts 1a1 and 1a2 can be input with optical axes parallel to each other. The same applies to the beam of signal light output from the other core portion of the multi-core optical fiber 5.
  • the prisms 7 and 8 can input signal light from the multi-core optical fiber 5 to the multi-core optical fiber 1 with low loss.
  • the signal light input to the multi-core optical fiber 1 is optically amplified while propagating through the core portion 1a optically pumped by the light L1 that is pumping light input from the optical fiber 2.
  • FIG. 9 is a schematic configuration diagram of the optical coupling structure according to the sixth embodiment of the present invention, and shows a configuration example 2 of the signal light input unit when the lens arrangement example 2 shown in FIG. 6 is adopted. It is.
  • any of the configurations 1 and 2 of the optical coupling structures 30A and 30B can be used.
  • the optical coupling structure 30A that employs the lens arrangement example 1 of the condensing optical system shown in FIG. 7 has a greater tolerance to the angular deviation of the beam, and therefore is free from manufacturing errors of the inclined surfaces 7a and 8a of the prisms 7 and 8. This is preferable because the tolerance value is large.
  • the optical coupling structure 30B adopting the parallel optical system lens arrangement example 2 shown in FIG. 9 is preferable in that it is easier to adjust the position of the optical element when it is manufactured.
  • the optical isolator 9 used in the present embodiment is a known one such as a one-stage structure using a wedge prism and a garnet crystal, or a two-stage structure having a structure for canceling polarization mode dispersion.
  • An optical isolator using a wedge-shaped prism is, for example, a birefringent optical crystal formed in a wedge shape so that the light incident / exit surfaces are not parallel to each other on the signal light incident / exit side.
  • the optical isolator is configured so that only the signal light in the optical transmission direction is coupled to the core portion of the optical fiber by including the 45-degree polarization plane rotation element and the 45-degree rotation Faraday element.
  • the optical axis of the return light is the signal light in the optical transmission direction. This is preferable because it has an angular deviation with respect to the optical axis of the optical axis and can effectively block the return light.
  • the condensing optical system as shown in FIG. 7 since the tolerance for the beam position deviation in the direction perpendicular to the optical axis is small, an optical isolator using a parallel plate type as a birefringent crystal is used.
  • the optical axis of the return light has a positional deviation with respect to the optical axis of the signal light in the optical transmission direction, which is preferable because the return light can be effectively blocked.
  • the prisms 7 and 8 are arranged so that the parallel surfaces 7b and 8b are opposed to each other, but the inclined surfaces 7a and 8a may be arranged so as to be opposed to each other. Further, instead of the prisms 7 and 8, a prism having no parallel surfaces 7b and 8b and inclined on both sides may be used. Alternatively, instead of the prisms 7 and 8, a lens as an optical path displacement optical element may be used.
  • the distance between the optical axes of the signal lights parallel to each other between the optical path displacement optical elements is larger than the distance between the cores of the multi-core optical fiber, so that the signal lights are less likely to interfere with each other.
  • this is realized by using a lens having a longer focal length than the lens 6 instead of the prism 7 and using a lens having a longer focal length than the lens 4 instead of the prism 8.
  • the signal lights parallel to each other between the optical path displacement optical elements are spaced so that the beam spreads in the plane perpendicular to the propagation direction do not overlap each other.
  • optical fiber bundle 5A as shown in FIG. 10 may be used in place of the multi-core optical fiber 5 in order to input signal light.
  • the optical fiber bundle 5A is formed by bundling and integrating seven optical fibers 5Aa including a core portion 5Aa1 and a cladding portion 5Aa2.
  • FIG. 11 is a schematic configuration diagram of an optical coupling structure according to Embodiment 7 of the present invention.
  • the optical coupling structure 10A is obtained by replacing the optical fiber 2 with the optical fiber 2A in the optical coupling structure 10 according to the first embodiment shown in FIG.
  • the optical fiber 2A includes an optical fiber portion 2A1 having a step index type refractive index distribution, and a distributed refractive index type optical fiber portion 2A2 disposed on the end face 2Aa side of the optical fiber 2A.
  • the coupling efficiency can be further increased.
  • the multi-core optical fiber 1 is a double-clad amplification optical fiber, but may be replaced with a multi-core optical fiber in which no optical amplification medium is added to the core portion.
  • the light L1 may not be excitation light.
  • the optical fiber 2 is not limited to a multimode optical fiber, and may be a single mode optical fiber.
  • signal light is input from the multi-core optical fiber 5 to the multi-core optical fiber 1, but the amplified signal light output from the multi-core optical fiber 1 is converted into multi-core optical fiber due to reciprocity of light.
  • the above-described embodiment can be applied to the case where the input is made to 5.
  • the present invention is not limited by the above embodiment. What was comprised combining each component mentioned above suitably is also contained in this invention.
  • any of the optical coupling structures according to the above third to seventh embodiments may be configured like the optical coupling module according to the second embodiment. Further effects and modifications can be easily derived by those skilled in the art. Therefore, the broader aspect of the present invention is not limited to the above-described embodiment, and various modifications can be made.
  • the optical coupling structure according to the present invention is suitable mainly for use in optical communication.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Couplings Of Light Guides (AREA)
  • Lasers (AREA)

Abstract

An optical coupling structure is provided with: a multicore optical fiber having a plurality of core parts and a cladding part formed around the plurality of core parts; an optical fiber that is disposed at a slant with respect to the multicore optical fiber and outputs light for input to an end surface of the multicore optical fiber from an end surface thereof; and a light reflecting element for reflecting the light output from the end surface of the optical fiber to an end surface of the multicore optical fiber. The end surface of the multicore optical fiber, the end surface of the optical fiber, and the light reflecting element are disposed in proximity to each other, and after the light is output by the optical fiber, the same is input to the multicore optical fiber via only the light reflecting element. Thus, an optical coupling structure with which high coupling efficiency is obtained when light is coupled with the multicore optical fiber is provided.

Description

光結合構造Optical coupling structure
 本発明は、光結合構造に関するものである。 The present invention relates to an optical coupling structure.
 複数のコア部を有するマルチコア光ファイバに励起光などの光を結合させるための光結合構造として、たとえば特許文献1に記載されるような光合波器を用いる構造や、非特許文献1に記載されるようにレンズを用いた構造が開示されている。 As an optical coupling structure for coupling light such as pumping light to a multi-core optical fiber having a plurality of core parts, a structure using an optical multiplexer as described in Patent Document 1, for example, and Non-Patent Document 1 are described. A structure using a lens is disclosed.
特開平10-125988号公報JP-A-10-125988
 しかしながら、公知の光結合構造では、マルチコア光ファイバに光を結合する際に十分に高い結合効率が得られないという問題があった。 However, the known optical coupling structure has a problem that a sufficiently high coupling efficiency cannot be obtained when light is coupled to the multi-core optical fiber.
 本発明は、上記に鑑みてなされたものであって、マルチコア光ファイバに光を結合する際に高い結合効率が得られる光結合構造を提供することを目的とする。 The present invention has been made in view of the above, and an object of the present invention is to provide an optical coupling structure capable of obtaining high coupling efficiency when coupling light to a multi-core optical fiber.
 上述した課題を解決し、目的を達成するために、本発明に係る光結合構造は、複数のコア部と前記複数のコア部の外周に形成されたクラッド部とを有するマルチコア光ファイバと、前記マルチコア光ファイバとは傾斜して配置されており、前記マルチコア光ファイバの端面に入力するための光を端面から出力する光ファイバと、前記光ファイバの端面から出力した前記光を前記マルチコア光ファイバの端面に反射させるための光反射素子と、を備え、前記マルチコア光ファイバの端面、前記光ファイバの端面、および前記光反射素子は近接して配置され、前記光は前記光ファイバから出力後に前記光反射素子のみを介して前記マルチコア光ファイバに入力することを特徴とする。 In order to solve the above-described problems and achieve the object, an optical coupling structure according to the present invention includes a multi-core optical fiber having a plurality of core portions and a cladding portion formed on an outer periphery of the plurality of core portions, The multi-core optical fiber is arranged to be inclined, and an optical fiber that outputs light to be input to the end face of the multi-core optical fiber from the end face; and the light that is output from the end face of the optical fiber. A light reflecting element for reflecting to an end face, and the end face of the multi-core optical fiber, the end face of the optical fiber, and the light reflecting element are arranged close to each other, and the light is output from the optical fiber after being output from the optical fiber. Input to the multi-core optical fiber only through a reflective element.
 本発明に係る光結合構造は、上記発明において、前記マルチコア光ファイバの端面は前記光ファイバとは反対側に傾斜する法線を有するように、前記マルチコア光ファイバの光軸に対して傾斜していることを特徴とする。 In the optical coupling structure according to the present invention, in the above invention, the end surface of the multi-core optical fiber is inclined with respect to the optical axis of the multi-core optical fiber so that the end surface has a normal line that is inclined opposite to the optical fiber. It is characterized by being.
 本発明に係る光結合構造は、上記発明において、前記マルチコア光ファイバと前記光ファイバとの傾斜角度が15度~45度であることを特徴とする。 The optical coupling structure according to the present invention is characterized in that, in the above invention, an inclination angle between the multi-core optical fiber and the optical fiber is 15 degrees to 45 degrees.
 本発明に係る光結合構造は、上記発明において、前記光ファイバの端面から前記マルチコア光ファイバの端面までの前記光の光路長が1mm以下であることを特徴とする。 The optical coupling structure according to the present invention is characterized in that, in the above invention, the optical path length of the light from the end face of the optical fiber to the end face of the multi-core optical fiber is 1 mm or less.
 本発明に係る光結合構造は、上記発明において、前記マルチコア光ファイバは、フェルールに挿通固定されており、前記光ファイバは前記フェルールに形成された保持部に保持されていることを特徴とする。 The optical coupling structure according to the present invention is characterized in that, in the above invention, the multi-core optical fiber is inserted and fixed in a ferrule, and the optical fiber is held in a holding portion formed in the ferrule.
 本発明に係る光結合構造は、上記発明において、前記フェルールは、前記光ファイバが出力する前記光に対して透明な材質からなることを特徴とする。 The optical coupling structure according to the present invention is characterized in that, in the above invention, the ferrule is made of a material transparent to the light output from the optical fiber.
 本発明に係る光結合構造は、上記発明において、前記マルチコア光ファイバは、前記複数のコア部の少なくともいずれか一つに光増幅媒体が添加されたダブルクラッド型のマルチコア増幅光ファイバであり、前記光ファイバが出力する前記光は前記光増幅媒体を光励起する励起光であることを特徴とする。 The optical coupling structure according to the present invention is the above-described invention, wherein the multi-core optical fiber is a double-clad multi-core amplification optical fiber in which an optical amplification medium is added to at least one of the plurality of core portions. The light output from the optical fiber is pumping light for optically pumping the optical amplification medium.
 本発明に係る光結合構造は、上記発明において、前記光反射素子を挟んで前記マルチコア増幅光ファイバの端面に対向するように配置され、前記マルチコア増幅光ファイバで光増幅をさせるための信号光を該マルチコア増幅光ファイバに入力できるように構成された第1レンズをさらに備えることを特徴とする。 In the above invention, the optical coupling structure according to the present invention is disposed so as to face an end face of the multi-core amplification optical fiber with the light reflecting element interposed therebetween, and the signal light for performing optical amplification with the multi-core amplification optical fiber is provided. A first lens configured to be input to the multi-core amplification optical fiber is further provided.
 本発明に係る光結合構造は、上記発明において、前記マルチコア増幅光ファイバの端面は、前記第1レンズから、該第1レンズの焦点距離よりも遠い位置に配置されていることを特徴とする。 The optical coupling structure according to the present invention is characterized in that, in the above invention, the end surface of the multi-core amplification optical fiber is arranged at a position farther from the first lens than the focal length of the first lens.
 本発明に係る光結合構造は、上記発明において、前記マルチコア増幅光ファイバの端面は、前記第1レンズの略焦点距離の位置に配置されていることを特徴とする。 The optical coupling structure according to the present invention is characterized in that, in the above invention, the end face of the multi-core amplification optical fiber is disposed at a position substantially at a focal length of the first lens.
 本発明に係る光結合構造は、上記発明において、前記第1レンズを挟んで前記マルチコア増幅光ファイバの端面に対向するように配置された第1光路変位光学素子をさらに備え、前記第1光路変位光学素子は、該第1光路変位光学素子に入力された複数の前記信号光を、前記レンズを介して前記マルチコア増幅光ファイバに、互いに平行な光軸で入力させることができるように構成されていることを特徴とする。 The optical coupling structure according to the present invention further includes a first optical path displacement optical element disposed so as to face an end face of the multi-core amplification optical fiber with the first lens interposed therebetween, wherein the first optical path displacement is provided. The optical element is configured to allow the plurality of signal lights input to the first optical path displacement optical element to be input to the multi-core amplification optical fiber via the lenses with optical axes parallel to each other. It is characterized by being.
 本発明に係る光結合構造は、上記発明において、前記第1光路変位光学素子はレンズまたはプリズムであることを特徴とする。 The optical coupling structure according to the present invention is characterized in that, in the above invention, the first optical path displacement optical element is a lens or a prism.
 本発明に係る光結合構造は、上記発明において、前記複数の信号光を前記マルチコア増幅光ファイバに出力する信号光結合用光ファイバと、前記信号光結合用光ファイバの端面に対向するように配置された第2レンズと、前記第2レンズを挟んで前記信号光結合用光ファイバの端面に対向するように配置された第2光路変位光学素子と、をさらに備え、前記第2レンズは、前記複数の信号光を前記マルチコア増幅光ファイバに結合させることができるように構成されており、前記第2光路変位光学素子は、前記信号光結合用光ファイバから、前記第2レンズを介して入力された前記複数の信号光が、互いに平行な光軸で出力するように構成されていることを特徴とする。 In the above invention, the optical coupling structure according to the present invention is disposed so as to face the signal optical coupling optical fiber that outputs the plurality of signal lights to the multi-core amplification optical fiber, and the end face of the signal optical coupling optical fiber. A second optical path displacement optical element disposed so as to face the end surface of the signal light coupling optical fiber with the second lens interposed therebetween, and the second lens includes the second lens, A plurality of signal lights can be coupled to the multi-core amplification optical fiber, and the second optical path displacement optical element is input from the signal light coupling optical fiber via the second lens. Further, the plurality of signal lights are configured to be output with optical axes parallel to each other.
 本発明に係る光結合構造は、上記発明において、前記第2光路変位光学素子はレンズまたはプリズムであることを特徴とする。 The optical coupling structure according to the present invention is characterized in that, in the above invention, the second optical path displacement optical element is a lens or a prism.
 本発明に係る光結合構造は、上記発明において、前記第1および第2光路変位光学素子の間に配置された光アイソレータをさらに備えることを特徴とする。 The optical coupling structure according to the present invention is characterized in that, in the above invention, the optical coupling structure further includes an optical isolator disposed between the first and second optical path displacement optical elements.
 本発明に係る光結合構造は、上記発明において、前記光ファイバは、該光ファイバの端面側に配置された分布屈折率型の光ファイバ部を有することを特徴とする。 The optical coupling structure according to the present invention is characterized in that, in the above invention, the optical fiber has a distributed refractive index type optical fiber portion disposed on the end face side of the optical fiber.
 本発明によれば、マルチコア光ファイバに光を結合する際に十分に高い結合効率が得られるという効果を奏する。 According to the present invention, there is an effect that a sufficiently high coupling efficiency can be obtained when light is coupled to a multi-core optical fiber.
図1は、実施の形態1に係る光結合構造の模式的な構成図である。FIG. 1 is a schematic configuration diagram of an optical coupling structure according to the first embodiment. 図2は、図1に示すマルチコア光ファイバの模式的な断面図である。FIG. 2 is a schematic cross-sectional view of the multi-core optical fiber shown in FIG. 図3は、実施の形態2に係る光結合モジュールの模式的な側面切り欠き図である。FIG. 3 is a schematic side cutaway view of the optical coupling module according to the second embodiment. 図4は、図3に示す光結合モジュールの平面図である。4 is a plan view of the optical coupling module shown in FIG. 図5は、実施の形態3に係る光結合構造の模式的な構成図である。FIG. 5 is a schematic configuration diagram of an optical coupling structure according to the third embodiment. 図6は、実施の形態4に係る光結合構造の模式的な構成図である。FIG. 6 is a schematic configuration diagram of an optical coupling structure according to the fourth embodiment. 図7は、実施の形態5に係る光結合構造の模式的な構成図である。FIG. 7 is a schematic configuration diagram of an optical coupling structure according to the fifth embodiment. 図8Aは、図7に示すプリズムの模式図である。FIG. 8A is a schematic diagram of the prism shown in FIG. 図8Bは、n=8の場合に使用できるプリズムの模式図である。FIG. 8B is a schematic diagram of a prism that can be used when n = 8. 図9は、実施の形態6係る光結合構造の模式的な構成図である。FIG. 9 is a schematic configuration diagram of an optical coupling structure according to the sixth embodiment. 図10は、光ファイババンドルの構成を示す図である。FIG. 10 is a diagram illustrating a configuration of an optical fiber bundle. 図11は、実施の形態7に係る光結合構造の模式的な構成図である。FIG. 11 is a schematic configuration diagram of an optical coupling structure according to the seventh embodiment.
 以下に、図面を参照して本発明に係る光結合構造の実施の形態を詳細に説明する。なお、この実施の形態によりこの発明が限定されるものではない。また、各図面において、同一または対応する構成要素には適宜同一の符号を付している。また、図面は模式的なものであり、各要素の寸法の比率などは現実のものとは異なる場合があることに留意すべきである。また、図面相互間においても互いの寸法の関係や比率が異なる部分が含まれている場合がある。 Hereinafter, embodiments of an optical coupling structure according to the present invention will be described in detail with reference to the drawings. Note that the present invention is not limited to the embodiments. Moreover, in each drawing, the same code | symbol is attached | subjected suitably to the same or corresponding component. In addition, it should be noted that the drawings are schematic and the ratio of dimensions of each element may be different from the actual one. In addition, there may be a case where the dimensional relationships and ratios are different between the drawings.
(実施の形態1)
 図1は、本発明の実施の形態1に係る光結合構造の模式的な構成図である。光結合構造10は、マルチコア光ファイバ1と、光ファイバ2と、光反射素子である光フィルタ3とを備えている。
(Embodiment 1)
FIG. 1 is a schematic configuration diagram of an optical coupling structure according to Embodiment 1 of the present invention. The optical coupling structure 10 includes a multi-core optical fiber 1, an optical fiber 2, and an optical filter 3 that is a light reflecting element.
 図2は、図1に示すマルチコア光ファイバ1の模式的な断面図である。図1、2に示すように、マルチコア光ファイバ1は、たとえば石英系ガラスからなる7つのコア部1aと、7つのコア部1aの外周に形成された、たとえばコア部1aよりも屈折率が低い石英系ガラスからなる内側クラッド部1bと、内側クラッド部1bの外周に形成された、たとえば内側クラッド部1bよりも屈折率が低い石英系ガラスや樹脂からなる外側クラッド部1cとを有しているダブルクラッド型のマルチコア光ファイバである。コア部1aは、三角格子状に配置されており、マルチコア光ファイバ1の略中心に位置するコア部とその周囲に正六角形を形成するように配置されたコア部とからなる。 FIG. 2 is a schematic cross-sectional view of the multi-core optical fiber 1 shown in FIG. As shown in FIGS. 1 and 2, the multi-core optical fiber 1 has seven core portions 1a made of, for example, quartz glass and a refractive index lower than that of, for example, the core portion 1a formed on the outer periphery of the seven core portions 1a. An inner clad portion 1b made of quartz glass and an outer clad portion 1c made of quartz glass or resin having a lower refractive index than the inner clad portion 1b, for example, formed on the outer periphery of the inner clad portion 1b. This is a double-clad multi-core optical fiber. The core portion 1a is arranged in a triangular lattice shape, and is composed of a core portion located substantially at the center of the multi-core optical fiber 1 and a core portion arranged so as to form a regular hexagon around the core portion.
 また、マルチコア光ファイバ1のコア部1aには、たとえば希土類元素であるエルビウム(Er)やイッテルビウム(Yb)などの光増幅媒体が添加されている。したがって、マルチコア光ファイバ1はマルチコア増幅光ファイバである。マルチコア光ファイバ1は端面1dを有している。端面1dはマルチコア光ファイバ1のコア部1aおよび内側クラッド部1bの光軸に平行な軸Xに対して傾斜した法線Vを有する。 Also, an optical amplification medium such as erbium (Er) or ytterbium (Yb), which are rare earth elements, is added to the core portion 1a of the multi-core optical fiber 1. Therefore, the multi-core optical fiber 1 is a multi-core amplification optical fiber. The multi-core optical fiber 1 has an end face 1d. The end face 1d has a normal V that is inclined with respect to an axis X parallel to the optical axis of the core portion 1a and the inner cladding portion 1b of the multi-core optical fiber 1.
 なお、コア部1aは、後述するように、たとえば1.0μm波長帯や1.55μm波長帯の信号光が外部から入力されるが、この信号光をシングルモードで伝送できるようにコア直径およびクラッド部1bに対する比屈折率差が設定されている。たとえば、コア部1aのコア直径は2.0μm以上5.5μm以下であり、コア部1a同士の間隔は30μm以上60μm以下である。 As will be described later, the core portion 1a receives, for example, signal light in the 1.0 μm wavelength band or 1.55 μm wavelength band from the outside, and the core diameter and the cladding so that the signal light can be transmitted in a single mode. A relative refractive index difference with respect to the portion 1b is set. For example, the core diameter of the core part 1a is 2.0 μm or more and 5.5 μm or less, and the interval between the core parts 1a is 30 μm or more and 60 μm or less.
 光ファイバ2は、たとえば石英系ガラスからなるコア部2aと、コア部2aの外周に形成された、たとえばコア部2aよりも屈折率が低い石英系ガラスからなるクラッド部2bと、端面2cとを有するマルチモード光ファイバである。光ファイバ2はマルチコア光ファイバ1とは傾斜角度Aだけ傾斜して配置されている。なお、マルチコア光ファイバ1の端面1dの法線Vは、光ファイバ2とは反対側に傾斜している。 The optical fiber 2 includes a core portion 2a made of, for example, silica-based glass, a clad portion 2b made of, for example, silica-based glass having a refractive index lower than that of the core portion 2a, and an end surface 2c. A multimode optical fiber. The optical fiber 2 is arranged to be inclined with respect to the multi-core optical fiber 1 by an inclination angle A. Note that the normal V of the end face 1 d of the multicore optical fiber 1 is inclined to the side opposite to the optical fiber 2.
 光フィルタ3は、反射面3aを有しており、反射面3aがマルチコア光ファイバ1の端面1dおよび光ファイバ2の端面2cと近接して対向するように配置されている。光フィルタ3の反射面3aは、光ファイバ2から出力される光L1の波長の光を全反射する誘電体多層膜が形成される。光フィルタ3はたとえば石英ガラスやBK7、SF6等のガラスからなる。 The optical filter 3 has a reflecting surface 3a, and the reflecting surface 3a is disposed so as to face the end surface 1d of the multicore optical fiber 1 and the end surface 2c of the optical fiber 2 in close proximity. On the reflection surface 3a of the optical filter 3, a dielectric multilayer film that totally reflects light having the wavelength of the light L1 output from the optical fiber 2 is formed. The optical filter 3 is made of glass such as quartz glass, BK7, or SF6.
 光結合構造10の光結合作用について説明する。光ファイバ2は、端面2cから光L1を出力する。光L1は、たとえばマルチコア光ファイバ1のコア部1aに添加された光増幅媒体を光励起できる波長の光(たとえば980nm波長帯や1480nm波長帯の励起光)である。つぎに、光フィルタ3は、端面2cから出力された光L1をマルチコア光ファイバ1の端面1dに反射させる。反射された光L1はマルチコア光ファイバ1の内側クラッド部1bに光結合し、コア部1aに添加された光増幅媒体を光励起することができる。 The optical coupling action of the optical coupling structure 10 will be described. The optical fiber 2 outputs the light L1 from the end face 2c. The light L1 is, for example, light having a wavelength that can optically pump the optical amplifying medium added to the core portion 1a of the multi-core optical fiber 1 (for example, excitation light having a wavelength band of 980 nm or 1480 nm). Next, the optical filter 3 reflects the light L <b> 1 output from the end surface 2 c to the end surface 1 d of the multicore optical fiber 1. The reflected light L1 is optically coupled to the inner cladding portion 1b of the multi-core optical fiber 1, and the optical amplification medium added to the core portion 1a can be optically excited.
 ここで、光結合構造10では、光L1は光ファイバ2から出力後に、光フィルタ3のみを介してマルチコア光ファイバ1に入力する。このように、光結合構造10では、反射面3aを端面1dおよび端面2cと近接させて、レンズを介さずに光L1をマルチコア光ファイバ1に結合させているので、実用上好ましい程度の高い結合効率(たとえば50%程度以上)を実現することができる。 Here, in the optical coupling structure 10, after the light L1 is output from the optical fiber 2, it is input to the multi-core optical fiber 1 through the optical filter 3 only. As described above, in the optical coupling structure 10, the reflection surface 3a is placed close to the end surface 1d and the end surface 2c, and the light L1 is coupled to the multicore optical fiber 1 without using a lens. Efficiency (for example, about 50% or more) can be realized.
 より高い結合効率を実現するためには、光ファイバ2の端面2cからマルチコア光ファイバ1の端面1dまでの光L1の光路長Pが1mm以下で有ることが好ましく、数百μm程度であることがより好ましい。 In order to realize higher coupling efficiency, the optical path length P of the light L1 from the end face 2c of the optical fiber 2 to the end face 1d of the multicore optical fiber 1 is preferably 1 mm or less, and is about several hundred μm. More preferred.
 また、マルチコア光ファイバ1の内側クラッド部1bのNA(開口数)をNA1、外径をd1とし、光ファイバ2のNAをNA2、外径をd2とすると、d1>d2、NA1>NA2の関係が成り立つことが結合効率の向上の点から好ましい。ただし、これらの関係は、許容される結合効率によっては必ずしも満たさなくてもよい。NA1はたとえば約0.15、d1は約150μmである。また、NA2はたとえば約0.11、d2は約50μmまたは105μmである。 Further, assuming that the NA (numerical aperture) of the inner cladding portion 1b of the multi-core optical fiber 1 is NA1, the outer diameter is d1, the NA of the optical fiber 2 is NA2, and the outer diameter is d2, d1> d2 and NA1> NA2. Is preferable from the viewpoint of improving the coupling efficiency. However, these relationships may not necessarily be satisfied depending on the allowable coupling efficiency. For example, NA1 is about 0.15, and d1 is about 150 μm. NA2 is about 0.11, and d2 is about 50 μm or 105 μm, for example.
 また、マルチコア光ファイバ1、光ファイバ2、光フィルタ3の配置については、より高い結合効率を実現するように設定される。たとえは、マルチコア光ファイバ1、光ファイバ2、光フィルタ3の配置については、マルチコア光ファイバ1に入射される光L1の光軸が内側クラッド部1bの光軸と略一致し、かつ光L1がマルチコア光ファイバ1によってけられない(マルチコア光ファイバ1の端部などで光L1が遮られない)ような配置とすることが好ましい。また、光ファイバ2とマルチコア光ファイバ1との間の傾斜角度Aは、上記結合効率が最大になるように設定すればよいが、たとえば15度から45度の範囲である。 Further, the arrangement of the multi-core optical fiber 1, the optical fiber 2, and the optical filter 3 is set so as to realize higher coupling efficiency. For example, regarding the arrangement of the multi-core optical fiber 1, the optical fiber 2, and the optical filter 3, the optical axis of the light L1 incident on the multi-core optical fiber 1 substantially matches the optical axis of the inner cladding portion 1b, and the light L1 is It is preferable that the arrangement is such that the multi-core optical fiber 1 is not blocked (the light L1 is not blocked by the end of the multi-core optical fiber 1 or the like). Further, the inclination angle A between the optical fiber 2 and the multi-core optical fiber 1 may be set so that the coupling efficiency is maximized, and is, for example, in the range of 15 to 45 degrees.
 また、マルチコア光ファイバ1の端面1dの法線Vが、光ファイバ2とは反対側に傾斜していると、スネルの法則によって、内側クラッド部1bの光軸に一致させて光L1を入射させるための端面1dへの入射角が、光ファイバ2側に傾斜することとなる。その結果、傾斜角度Aを大きくすることができるので、光フィルタ3をマルチコア光ファイバ1および光ファイバ2とより近接させることができるので、さらに高い結合効率および小型化が実現される。法線Vの傾斜角度についても、より高い結合効率を実現するために適宜設定できる。 Further, when the normal V of the end face 1d of the multicore optical fiber 1 is inclined to the side opposite to the optical fiber 2, the light L1 is incident in accordance with the optical axis of the inner cladding portion 1b according to Snell's law. Therefore, the incident angle to the end face 1d is inclined toward the optical fiber 2 side. As a result, since the inclination angle A can be increased, the optical filter 3 can be brought closer to the multi-core optical fiber 1 and the optical fiber 2, thereby realizing further higher coupling efficiency and downsizing. The inclination angle of the normal line V can also be set as appropriate in order to achieve higher coupling efficiency.
 以上説明したように、本実施の形態1に係る光結合構造10によれば、マルチコア光ファイバ1に光L1を結合する際に十分に高い結合効率を得ることができる。 As described above, according to the optical coupling structure 10 according to the first embodiment, a sufficiently high coupling efficiency can be obtained when the light L1 is coupled to the multicore optical fiber 1.
 なお、マルチコア光ファイバ1の端面1dや光ファイバ2の端面2cに反射防止膜を形成してもよい。このような反射防止膜は、たとえば5酸化タンタル膜、酸化チタン膜、アルミナ膜、およびSiO膜の積層膜で構成される。また、法線Vは必ずしも傾斜していなくてもよく、軸Xに対して平行でもよい。 An antireflection film may be formed on the end surface 1 d of the multicore optical fiber 1 or the end surface 2 c of the optical fiber 2. Such an antireflection film is composed of, for example, a laminated film of a tantalum pentoxide film, a titanium oxide film, an alumina film, and a SiO 2 film. Further, the normal line V is not necessarily inclined and may be parallel to the axis X.
(実施の形態2)
 図3は、本発明の実施の形態2に係る光結合構造である光結合モジュールの模式的な側面切り欠き図である。図4は、図3に示す光結合モジュールの平面図である。光結合モジュール100は、実施の形態1に係る光結合構造10をモジュール化したものである。
(Embodiment 2)
FIG. 3 is a schematic side cutaway view of an optical coupling module having an optical coupling structure according to Embodiment 2 of the present invention. 4 is a plan view of the optical coupling module shown in FIG. The optical coupling module 100 is obtained by modularizing the optical coupling structure 10 according to the first embodiment.
 光結合モジュール100は、マルチコア光ファイバ1と、光ファイバ2と、光フィルタ3とを備える光結合構造10と、フェルール101と、筐体102と、レンズ103と、レンズホルダ104とを備えている。 The optical coupling module 100 includes an optical coupling structure 10 including a multi-core optical fiber 1, an optical fiber 2, and an optical filter 3, a ferrule 101, a housing 102, a lens 103, and a lens holder 104. .
 フェルール101は、略円柱状であって、マルチコア光ファイバ1を挿通固定する挿通孔101aと、光フィルタ3が装着される傾斜面101bと、光ファイバ2を保持する保持部である溝101cとを有している。溝101cは、挿通孔101aに対して傾斜角度Aで傾斜した底面を有しており、挿通孔101aに挿通固定されたマルチコア光ファイバ1と光ファイバ2との傾斜角度を傾斜角度Aに保持することができる。また、傾斜面101bは、マルチコア光ファイバ1、光ファイバ2に対して光フィルタ3が適切な配置となるように傾斜角度が設定されている。このようなフェルール101の構造によって、マルチコア光ファイバ1、光ファイバ2、および光フィルタ3の配置が適切に保持される。なお、フェルール101は、ガラス等の光L1に対して透明な材質や、ジルコニア、金属等の材質で構成することができるが、透明な材質であれば、光L1のうちマルチコア光ファイバ1に結合できずに漏洩した光を透過し、光のエネルギーを外部に拡散できるので、光L1の強度が高いときには耐光強度性の点から好ましい。 The ferrule 101 is substantially cylindrical, and includes an insertion hole 101a for inserting and fixing the multi-core optical fiber 1, an inclined surface 101b to which the optical filter 3 is mounted, and a groove 101c that is a holding portion for holding the optical fiber 2. Have. The groove 101c has a bottom surface inclined at an inclination angle A with respect to the insertion hole 101a, and holds the inclination angle between the multicore optical fiber 1 and the optical fiber 2 inserted and fixed in the insertion hole 101a at the inclination angle A. be able to. In addition, the inclined surface 101 b is set to have an inclination angle so that the optical filter 3 is appropriately arranged with respect to the multi-core optical fiber 1 and the optical fiber 2. With such a structure of the ferrule 101, the arrangement of the multi-core optical fiber 1, the optical fiber 2, and the optical filter 3 is appropriately maintained. The ferrule 101 can be made of a material transparent to the light L1 such as glass, or a material such as zirconia or metal. However, if the material is transparent, the ferrule 101 is coupled to the multi-core optical fiber 1 in the light L1. Since the leaked light can be transmitted and the energy of the light can be diffused to the outside, it is preferable from the viewpoint of light resistance when the intensity of the light L1 is high.
 筐体102は、略円筒状であり、フェルール101を収容するとともに、レンズ103を収容したレンズホルダ104を保持する。筐体102には光ファイバ2を外部に取り出すための開口部102aが形成されている。筐体102はたとえばステンレス鋼等の金属であれば、上述した漏洩光を受けたときに発生した熱を放熱することができる。これによって、光結合モジュール100の温度上昇を抑制することができる。 The housing 102 has a substantially cylindrical shape, and stores the ferrule 101 and also holds a lens holder 104 that stores the lens 103. The housing 102 is formed with an opening 102a for taking out the optical fiber 2 to the outside. If the housing | casing 102 is metals, such as stainless steel, for example, it can thermally radiate the heat | fever which generate | occur | produced when receiving the leakage light mentioned above. Thereby, the temperature rise of the optical coupling module 100 can be suppressed.
 レンズ103は、光フィルタ3を挟んでマルチコア光ファイバ1の端面に対向するように配置され、外部から入力された光、たとえば1.0μm波長帯や1.55μm波長帯の信号光を、マルチコア光ファイバ1で光増幅するためにマルチコア光ファイバ1に入力できるように構成されている。
 レンズホルダ104はレンズ103を収容し、保持するものであり、たとえばステンレス等からなり、筐体102にレーザ溶接等で接合されている。
The lens 103 is disposed so as to face the end face of the multi-core optical fiber 1 with the optical filter 3 interposed therebetween, and receives light input from the outside, for example, signal light in a 1.0 μm wavelength band or 1.55 μm wavelength band, as multi-core light. The optical fiber 1 is configured to be input to the multi-core optical fiber 1 for optical amplification.
The lens holder 104 houses and holds the lens 103, and is made of, for example, stainless steel and is joined to the housing 102 by laser welding or the like.
 この光結合モジュール100によれば、実施の形態1に係る光結合構造10の構成要素の配置をより好適に設定することができる。 According to the optical coupling module 100, the arrangement of the components of the optical coupling structure 10 according to the first embodiment can be set more suitably.
 なお、フェルール101にマルチコア光ファイバ1が挿通固定された構造を作製する場合には、まず傾斜面101bが形成されていない状態のフェルール101にマルチコア光ファイバ1を挿通し、フェルール101およびマルチコア光ファイバ1の端面を研磨して傾斜面101bとマルチコア光ファイバ1の傾斜した端面1dとを同時に形成し、その後マルチコア光ファイバ1を傾斜面101bから後方側(紙面右側)に所定長さだけ引き抜いて、そこで固定することによって、より簡易に作製することができる。 When a structure in which the multi-core optical fiber 1 is inserted and fixed to the ferrule 101 is manufactured, first, the multi-core optical fiber 1 is inserted into the ferrule 101 in a state where the inclined surface 101b is not formed, and the ferrule 101 and the multi-core optical fiber are inserted. 1 is polished to form the inclined surface 101b and the inclined end surface 1d of the multi-core optical fiber 1 at the same time, and then the multi-core optical fiber 1 is pulled out from the inclined surface 101b to the rear side (right side of the paper) by a predetermined length, Therefore, it can be manufactured more easily by fixing.
(実施の形態3)
 図5は、本発明の実施の形態3に係る光結合構造の模式的な構成図であって、マルチコア光ファイバ1に信号光を結合する際に集光光学系を構成する場合のレンズ配置例1を説明する図である。
(Embodiment 3)
FIG. 5 is a schematic configuration diagram of an optical coupling structure according to Embodiment 3 of the present invention, and an example of lens arrangement when a condensing optical system is configured when signal light is coupled to the multicore optical fiber 1. FIG.
 この光結合構造20Aは、マルチコア光ファイバ1と、光ファイバ2と、光フィルタ3と、さらに図3、4のレンズ103に対応するレンズ4とを備えている。第1レンズであるレンズ4は、光フィルタ3を挟んでマルチコア光ファイバ1の端面に対向するように配置され、外部から入力された光、たとえば通信用の信号光を、マルチコア光ファイバ1で光増幅するためにマルチコア光ファイバ1に入力できるように構成されている。レンズ4は球面レンズ、非球面レンズ、分布屈折率型レンズ等であるが、特に限定はされない。 The optical coupling structure 20A includes a multi-core optical fiber 1, an optical fiber 2, an optical filter 3, and a lens 4 corresponding to the lens 103 in FIGS. The lens 4 as the first lens is disposed so as to face the end face of the multi-core optical fiber 1 with the optical filter 3 interposed therebetween, and light input from the outside, for example, signal light for communication is transmitted through the multi-core optical fiber 1. It is configured to be able to input to the multi-core optical fiber 1 for amplification. The lens 4 is a spherical lens, an aspheric lens, a distributed refractive index lens, or the like, but is not particularly limited.
 また、光フィルタ3の反射面3a(図1参照)は、光ファイバ2から出力される光L1の波長の光を全反射し、信号光が含まれる波長帯の光を透過する誘電体多層膜が形成される。また、反射面3aとは反対側の面も、信号光が含まれる波長帯の光を透過する誘電体多層膜が形成される。 The reflective surface 3a (see FIG. 1) of the optical filter 3 totally reflects the light having the wavelength of the light L1 output from the optical fiber 2, and transmits the light having the wavelength band including the signal light. Is formed. A dielectric multilayer film that transmits light in a wavelength band including signal light is also formed on the surface opposite to the reflecting surface 3a.
 なお、図5では、マルチコア光ファイバ1のコア部1aのうち、外周側に配置されたコア部のうち2つをコア部1a1、1a2として示してあり、他のコア部は記載を省略してある。 In FIG. 5, two of the core portions 1a1 and 1a2 arranged on the outer peripheral side of the core portion 1a of the multi-core optical fiber 1 are shown as core portions 1a1 and 1a2, and the other core portions are not shown. is there.
 ここで、この光結合構造20Aでは、レンズ4の焦点距離をfとすると、マルチコア光ファイバ1の端面1dは、レンズ4から、レンズ4の焦点距離fよりも遠い位置に配置されている。すなわち、マルチコア光ファイバ1の端面1dとレンズ4との距離をaとすると、f<aが成り立つ。すると、外部から入力された信号光のビームB1、B2が、レンズ4によって、端面1dにおけるコア部1a1、1a2のそれぞれに集光するとき、ビームB1、B2のビームウエストW1、W2は、レンズ4から距離bの位置となる。ここで、bについては、1/f=1/a+1/bの関係が成り立つ。なお、他のコア部1aに入力されるべき信号光のビームも、ビームB1、B2と同様にレンズ4から距離bの位置となる。 Here, in this optical coupling structure 20A, when the focal length of the lens 4 is f, the end face 1d of the multi-core optical fiber 1 is disposed at a position farther from the lens 4 than the focal length f of the lens 4. That is, if the distance between the end face 1d of the multi-core optical fiber 1 and the lens 4 is a, f <a holds. Then, when the beams B1 and B2 of the signal light input from the outside are condensed on the core portions 1a1 and 1a2 on the end face 1d by the lens 4, the beam waists W1 and W2 of the beams B1 and B2 are To the position of distance b. Here, for b, the relationship 1 / f = 1 / a + 1 / b is established. The beam of signal light to be input to the other core portion 1a is also at a distance b from the lens 4 like the beams B1 and B2.
(実施の形態4)
 図6は、実施の形態4に係る光結合構造の模式的な構成図であって、マルチコア光ファイバ1に信号光を結合する際に平行光学系を構成する場合のレンズ配置例2を説明する図である。
(Embodiment 4)
FIG. 6 is a schematic configuration diagram of an optical coupling structure according to the fourth embodiment, and illustrates a lens arrangement example 2 in a case where a parallel optical system is configured when signal light is coupled to the multi-core optical fiber 1. FIG.
 この光結合構造20Bは、図5に示す光結合構造20Aと比較すると、マルチコア光ファイバ1の端面1dが、レンズ4の略焦点距離fの位置に配置されている点が異なり、その他の構成は同様である。すると、外部から入力された信号光のビームB1、B2を平行光としてレンズ4に入力したときに、端面1dにおけるコア部1a1、1a2のそれぞれに集光する。なお、他のコア部1aの入力されるべき信号光のビームも、ビームB1、B2と同様である。 This optical coupling structure 20B is different from the optical coupling structure 20A shown in FIG. 5 in that the end face 1d of the multi-core optical fiber 1 is disposed at a position substantially at the focal length f of the lens 4, and the other configurations are as follows. It is the same. Then, when the externally input signal light beams B1 and B2 are input to the lens 4 as parallel light, they are condensed on the core portions 1a1 and 1a2 on the end face 1d. The beam of signal light to be input to the other core unit 1a is the same as the beams B1 and B2.
 レンズ4の配置については、光結合構造20A、20Bのレンズ配置例1、2のいずれの配置も利用できる。 As for the arrangement of the lens 4, any arrangement of the lens arrangement examples 1 and 2 of the optical coupling structures 20A and 20B can be used.
(実施の形態5)
 図7は、本発明の実施の形態5に係る光結合構造の模式的な構成図であって、図5に示すレンズ配置例1を採用した場合の信号光入力部の構成例1を示す図である。
(Embodiment 5)
FIG. 7 is a schematic configuration diagram of the optical coupling structure according to the fifth embodiment of the present invention, and is a diagram illustrating a configuration example 1 of the signal light input unit when the lens arrangement example 1 illustrated in FIG. 5 is employed. It is.
 この光結合構造30Aは、マルチコア光ファイバ1と、光ファイバ2と、光フィルタ3と、レンズ4と、信号光結合用マルチコア光ファイバとしてのマルチコア光ファイバ5と、第2レンズであるレンズ6と、光路変位光学素子としてのプリズム7、8と、光アイソレータ9とを備えている。 The optical coupling structure 30A includes a multi-core optical fiber 1, an optical fiber 2, an optical filter 3, a lens 4, a multi-core optical fiber 5 as a multi-core optical fiber for signal light coupling, and a lens 6 that is a second lens. , Prisms 7 and 8 as optical path displacement optical elements, and an optical isolator 9 are provided.
 マルチコア光ファイバ5は、マルチコア光ファイバ1とのコア部1aと同様に配置された、石英系ガラスからなる7つの複数のコア部5aと、7つのコア部5aの外周に形成された、たとえばコア部5aよりも屈折率が低い石英系ガラスからなるクラッド部5bとを備えている。なお、図7では、マルチコア光ファイバ5のコア部5aのうち、外周側に配置された2つのコア部をコア部5a1、5a2として示してあり、他のコア部は記載を省略してある。マルチコア光ファイバ5はマルチコア光ファイバ1にて光増幅させるための信号光を入力するためのものである。 The multi-core optical fiber 5 is arranged in the same manner as the core portion 1a with the multi-core optical fiber 1 and is formed on the outer periphery of the seven core portions 5a made of quartz glass and the seven core portions 5a, for example, And a clad portion 5b made of quartz glass having a refractive index lower than that of the portion 5a. In FIG. 7, of the core portions 5 a of the multicore optical fiber 5, two core portions arranged on the outer peripheral side are shown as core portions 5 a 1 and 5 a 2, and the other core portions are not shown. The multi-core optical fiber 5 is for inputting signal light for optical amplification by the multi-core optical fiber 1.
 レンズ6は、マルチコア光ファイバ5の端面に対向するように配置されており、マルチコア光ファイバ5のコア部5aから出力された信号光を、その光軸およびビームウエストが、信号光のビームB1、B2の光軸およびビームウエストW1、W2と略一致するように空間伝搬させて、コア部1a1、1a2に結合させるものである。 The lens 6 is disposed so as to face the end face of the multi-core optical fiber 5, and the optical axis and beam waist of the signal light output from the core portion 5 a of the multi-core optical fiber 5 have the signal light beam B 1, It is spatially propagated so as to substantially coincide with the optical axis of B2 and the beam waists W1 and W2, and is coupled to the core portions 1a1 and 1a2.
 第2光路変位光学素子としてのプリズム7は、レンズ6を挟んでマルチコア光ファイバ5の端面5cに対向するように配置されている。第1光路変位光学素子としてのプリズム8は、レンズ4を挟んでマルチコア光ファイバ1の端面1dに対向するように配置されている。プリズム7、8は、入射された光の光路を変位させるための傾斜面7a、8aと、光軸に垂直な平行面7b、8bをそれぞれ有する。図8Aは、図7に示すプリズム7(8)の模式図である。プリズム7、8の傾斜面7a、8aは、正n角錐の頂部を中心軸に垂直な面で切断したような形状をしている。ここで、nはマルチコア光ファイバ1、5のコア部の数(ただし略同心円状に並んだコア部の数)に等しい。したがって、図8Aの場合はn=6である。なお、n=8の場合は、図8Bに示す正8角錐形状のプリズムを用いることができる。ここで、レンズの光軸をマルチコア光ファイバの中心軸上に置きかつ焦点位置をマルチコア光ファイバの中心にする。このとき、マルチコア光ファイバ5のコア部5a1、5a2から出力された光の進行角度が決まる。この進行角度で進んだ光が、正n角錐の一面、二面(平行面と傾斜面)に入射し、スネルの法則に従って屈折する。この屈折角度が光ファイバの中心軸と平行になるように正n角錐の角度、レンズの焦点距離を決める。傾斜面7a、8aは、マルチコア光ファイバ1、5の外周側のコア部に対応させて形成されている。マルチコア光ファイバ1、5の中心のコア部に入出力される信号光が通過する部分は、平行面7b、8bに平行な平行面7c、8cとなっている。プリズム7、8はたとえば石英ガラスやBK7、SF6等のガラスからなる。 The prism 7 as the second optical path displacement optical element is disposed so as to face the end surface 5c of the multi-core optical fiber 5 with the lens 6 interposed therebetween. The prism 8 as the first optical path displacement optical element is disposed so as to face the end surface 1 d of the multicore optical fiber 1 with the lens 4 interposed therebetween. The prisms 7 and 8 have inclined surfaces 7a and 8a for displacing the optical path of incident light, and parallel surfaces 7b and 8b perpendicular to the optical axis, respectively. FIG. 8A is a schematic diagram of the prism 7 (8) shown in FIG. The inclined surfaces 7a and 8a of the prisms 7 and 8 are shaped such that the tops of the regular n-pyramids are cut by a plane perpendicular to the central axis. Here, n is equal to the number of core portions of the multi-core optical fibers 1 and 5 (however, the number of core portions arranged substantially concentrically). Therefore, in the case of FIG. 8A, n = 6. When n = 8, a regular octagonal pyramid shaped prism shown in FIG. 8B can be used. Here, the optical axis of the lens is placed on the central axis of the multi-core optical fiber and the focal position is set to the center of the multi-core optical fiber. At this time, the traveling angle of the light output from the core portions 5a1 and 5a2 of the multi-core optical fiber 5 is determined. The light traveling at this traveling angle is incident on one or two surfaces (parallel surface and inclined surface) of the regular n-pyramid and refracted according to Snell's law. The angle of the positive n pyramid and the focal length of the lens are determined so that this refraction angle is parallel to the central axis of the optical fiber. The inclined surfaces 7 a and 8 a are formed so as to correspond to the core portions on the outer peripheral side of the multi-core optical fibers 1 and 5. Portions through which signal light input / output to / from the central core portion of the multi-core optical fibers 1 and 5 pass are parallel surfaces 7c and 8c parallel to the parallel surfaces 7b and 8b. The prisms 7 and 8 are made of glass such as quartz glass or BK7 or SF6.
 プリズム7、8の間には光アイソレータ9が配置されている。光アイソレータ9は、マルチコア光ファイバ5側から入力された光を透過し、マルチコア光ファイバ1側から入力された光をほとんど透過しないように構成されている。 An optical isolator 9 is disposed between the prisms 7 and 8. The optical isolator 9 is configured to transmit light input from the multi-core optical fiber 5 side and hardly transmit light input from the multi-core optical fiber 1 side.
 また、図7に示すように、光アイソレータ9の位置においてビームB1、B2のビームウエストW1、W2が形成されるように、レンズ4、6が配置される。 Further, as shown in FIG. 7, the lenses 4 and 6 are arranged so that the beam waists W1 and W2 of the beams B1 and B2 are formed at the position of the optical isolator 9.
 図7に示すように、プリズム7は、マルチコア光ファイバ5のコア部5a1、5a2から出力し、レンズ6を介して各信号光が入力されるように配置される。そして、プリズム7から出力した各信号光は、その各々の光軸が互いに平行になるようになっている。また、プリズム8は、マルチコア光ファイバ5のコア部5a1、5a2から出力され、プリズム7によって光軸が平行にされた信号光のビームB1、B2を、レンズ4を介してマルチコア光ファイバ1のコア部1a1、1a2に互いに平行な光軸で入力させることができるように、傾斜面8aの傾斜角が設定されている。マルチコア光ファイバ5の他のコア部から出力された信号光のビームも同様である。このように、プリズム7、8によって、マルチコア光ファイバ5からマルチコア光ファイバ1への信号光の入力を低損失で行うことができる。このようにマルチコア光ファイバ1へ入力された信号光は、光ファイバ2から入力された励起光である光L1によって光励起されたコア部1aを伝搬しながら、光増幅される。 7, the prism 7 is arranged so that each signal light is output from the core portions 5 a 1 and 5 a 2 of the multi-core optical fiber 5 and inputted through the lens 6. The signal lights output from the prism 7 have their optical axes parallel to each other. The prism 8 outputs the signal light beams B 1 and B 2 output from the core portions 5 a 1 and 5 a 2 of the multi-core optical fiber 5 and whose optical axes are made parallel by the prism 7 via the lens 4 to the core of the multi-core optical fiber 1. The inclination angle of the inclined surface 8a is set so that the parts 1a1 and 1a2 can be input with optical axes parallel to each other. The same applies to the beam of signal light output from the other core portion of the multi-core optical fiber 5. As described above, the prisms 7 and 8 can input signal light from the multi-core optical fiber 5 to the multi-core optical fiber 1 with low loss. Thus, the signal light input to the multi-core optical fiber 1 is optically amplified while propagating through the core portion 1a optically pumped by the light L1 that is pumping light input from the optical fiber 2.
(実施の形態6)
 図9は、本発明の実施の形態6に係る光結合構造の模式的な構成図であって、図6に示すレンズ配置例2を採用した場合の信号光入力部の構成例2を示す図である。
(Embodiment 6)
FIG. 9 is a schematic configuration diagram of the optical coupling structure according to the sixth embodiment of the present invention, and shows a configuration example 2 of the signal light input unit when the lens arrangement example 2 shown in FIG. 6 is adopted. It is.
 この光結合構造30Bは、図7に示す光結合構造30Aと比較すると、図6に示すレンズ配置例2を採用した点が異なり、その他の構成は同様である。 This optical coupling structure 30B is different from the optical coupling structure 30A shown in FIG. 7 in that the lens arrangement example 2 shown in FIG. 6 is adopted, and other configurations are the same.
 信号光入力部の構成については、光結合構造30A、30Bの構成例1、2のいずれの構成も利用できる。なお、図7に示す集光光学系のレンズ配置例1を採用した光結合構造30Aの方が、ビームの角度ずれに対するトレランスが大きいので、プリズム7、8の傾斜面7a、8aの製造誤差に対する許容値が大きい点で好ましい。一方、図9に示す平行光学系のレンズ配置例2を採用した光結合構造30Bの方が、作製するときの光学素子の位置調整がより容易である点で好ましい。 As for the configuration of the signal light input unit, any of the configurations 1 and 2 of the optical coupling structures 30A and 30B can be used. Note that the optical coupling structure 30A that employs the lens arrangement example 1 of the condensing optical system shown in FIG. 7 has a greater tolerance to the angular deviation of the beam, and therefore is free from manufacturing errors of the inclined surfaces 7a and 8a of the prisms 7 and 8. This is preferable because the tolerance value is large. On the other hand, the optical coupling structure 30B adopting the parallel optical system lens arrangement example 2 shown in FIG. 9 is preferable in that it is easier to adjust the position of the optical element when it is manufactured.
 本実施の形態で用いられる光アイソレータ9は、たとえば楔形プリズムとガーネット結晶とを用いた1段型構造、または偏波モード分散をキャンセルする構造を有する2段型構造のような公知のものであるが、特に限定はされない。楔形プリズムを用いた光アイソレータとは、たとえば、光入出射面が非平行になるように楔型に成形された複屈折光学結晶を信号光の入出射側に、その複数の複屈折光学結晶間に45度偏波面回転素子および45度回転ファラデー素子を備えることで、光伝送方向の信号光のみが光ファイバのコア部に結合するように構成された光アイソレータである。 The optical isolator 9 used in the present embodiment is a known one such as a one-stage structure using a wedge prism and a garnet crystal, or a two-stage structure having a structure for canceling polarization mode dispersion. However, there is no particular limitation. An optical isolator using a wedge-shaped prism is, for example, a birefringent optical crystal formed in a wedge shape so that the light incident / exit surfaces are not parallel to each other on the signal light incident / exit side. The optical isolator is configured so that only the signal light in the optical transmission direction is coupled to the core portion of the optical fiber by including the 45-degree polarization plane rotation element and the 45-degree rotation Faraday element.
 なお、図9のような平行光学系を用いた場合には、ビーム角度ずれに対するトレランスが小さいため、楔型プリズムを使用した光アイソレータを用いると、戻り光の光軸が光伝送方向の信号光の光軸に対し角度ずれを持つこととなり、戻り光を効果的に遮断できるので好ましい。 When the parallel optical system as shown in FIG. 9 is used, the tolerance against the beam angle deviation is small. Therefore, when an optical isolator using a wedge prism is used, the optical axis of the return light is the signal light in the optical transmission direction. This is preferable because it has an angular deviation with respect to the optical axis of the optical axis and can effectively block the return light.
 また、図7のような集光光学系を用いた場合には、光軸に垂直方向のビーム位置ずれに対するトレランスが小さいため、複屈折結晶として平行平板型のものを使用した光アイソレータを用いると、戻り光の光軸が光伝送方向の信号光の光軸に対し位置ずれを持つこととなり、戻り光を効果的に遮断できるので好ましい。 In addition, when the condensing optical system as shown in FIG. 7 is used, since the tolerance for the beam position deviation in the direction perpendicular to the optical axis is small, an optical isolator using a parallel plate type as a birefringent crystal is used. The optical axis of the return light has a positional deviation with respect to the optical axis of the signal light in the optical transmission direction, which is preferable because the return light can be effectively blocked.
 なお、光結合構造30A、30Bでは、プリズム7、8は、平行面7b、8bが対向するように配置されているが、傾斜面7a、8aが対向するように配置してもよい。また、プリズム7、8に代えて、平行面7b、8bが無く、両面が傾斜したプリズムを用いても良い。あるいは、プリズム7、8に代えて、光路変位光学素子としてのレンズを用いても良い。 In the optical coupling structures 30A and 30B, the prisms 7 and 8 are arranged so that the parallel surfaces 7b and 8b are opposed to each other, but the inclined surfaces 7a and 8a may be arranged so as to be opposed to each other. Further, instead of the prisms 7 and 8, a prism having no parallel surfaces 7b and 8b and inclined on both sides may be used. Alternatively, instead of the prisms 7 and 8, a lens as an optical path displacement optical element may be used.
 なお、プリズム7、8に代えてレンズを用いる場合は、該レンズの焦点距離がそれぞれレンズ4、6よりも長いものを用いることが好ましい。これにより、光路変位光学素子の間で互いに平行になった各信号光の光軸間の間隔がマルチコア光ファイバのコア間の間隔より大きくなるため、各信号光同士が干渉しにくくなる。これは、たとえば、プリズム7の代わりにレンズ6より焦点距離の長いレンズを、プリズム8の代わりにレンズ4より焦点距離の長いレンズを用いることで実現される。 In addition, when using a lens instead of the prisms 7 and 8, it is preferable to use a lens having a focal length longer than that of the lenses 4 and 6, respectively. Accordingly, the distance between the optical axes of the signal lights parallel to each other between the optical path displacement optical elements is larger than the distance between the cores of the multi-core optical fiber, so that the signal lights are less likely to interfere with each other. For example, this is realized by using a lens having a longer focal length than the lens 6 instead of the prism 7 and using a lens having a longer focal length than the lens 4 instead of the prism 8.
 更に、光路変位光学素子の間で互いに平行になった各信号光は、その伝搬方向と垂直な面内におけるビームの広がりが互いに重なり合わない程度の間隔にするとより好ましい。 Further, it is more preferable that the signal lights parallel to each other between the optical path displacement optical elements are spaced so that the beam spreads in the plane perpendicular to the propagation direction do not overlap each other.
 また、信号光を入力するために、マルチコア光ファイバ5の代わりに、図10に示すような光ファイババンドル5Aを使用しても良い。光ファイババンドル5Aは、コア部5Aa1とクラッド部5Aa2とを備える7つの光ファイバ5Aaを束ねて一体化したものである。 Further, an optical fiber bundle 5A as shown in FIG. 10 may be used in place of the multi-core optical fiber 5 in order to input signal light. The optical fiber bundle 5A is formed by bundling and integrating seven optical fibers 5Aa including a core portion 5Aa1 and a cladding portion 5Aa2.
(実施の形態7)
 図11は、本発明の実施の形態7に係る光結合構造の模式的な構成図である。光結合構造10Aは、図1に示す実施の形態1に係る光結合構造10において、光ファイバ2を光ファイバ2Aに置き換えたものである。
(Embodiment 7)
FIG. 11 is a schematic configuration diagram of an optical coupling structure according to Embodiment 7 of the present invention. The optical coupling structure 10A is obtained by replacing the optical fiber 2 with the optical fiber 2A in the optical coupling structure 10 according to the first embodiment shown in FIG.
 光ファイバ2Aは、ステップインデックス型の屈折率分布を有する光ファイバ部2A1と、光ファイバ2Aの端面2Aa側に配置された、分布屈折率型の光ファイバ部2A2とを有する。この光ファイバ2Aでは、分布屈折率型の光ファイバ部2A2によって光L1をある程度集光させ、平行光または集光光として出力するので、結合効率をより高めることができる。 The optical fiber 2A includes an optical fiber portion 2A1 having a step index type refractive index distribution, and a distributed refractive index type optical fiber portion 2A2 disposed on the end face 2Aa side of the optical fiber 2A. In this optical fiber 2A, since the light L1 is condensed to some extent by the distributed refractive index type optical fiber portion 2A2 and output as parallel light or condensed light, the coupling efficiency can be further increased.
 なお、上記実施の形態では、マルチコア光ファイバ1はダブルクラッド型増幅光ファイバであるが、コア部に光増幅媒体が添加されていないマルチコア光ファイバに置き換えても良い。この場合、光L1は励起光でなくてもよい。また、光ファイバ2はマルチモード光ファイバにかぎられず、シングルモード光ファイバでもよい。 In the above embodiment, the multi-core optical fiber 1 is a double-clad amplification optical fiber, but may be replaced with a multi-core optical fiber in which no optical amplification medium is added to the core portion. In this case, the light L1 may not be excitation light. The optical fiber 2 is not limited to a multimode optical fiber, and may be a single mode optical fiber.
 また、上記実施の形態では、マルチコア光ファイバ5からマルチコア光ファイバ1へ信号光を入力させているが、光の相反性によって、マルチコア光ファイバ1から出力された増幅された信号光をマルチコア光ファイバ5に入力させる場合にも、上記実施の形態を適用できることは言うまでもない。 In the above embodiment, signal light is input from the multi-core optical fiber 5 to the multi-core optical fiber 1, but the amplified signal light output from the multi-core optical fiber 1 is converted into multi-core optical fiber due to reciprocity of light. Needless to say, the above-described embodiment can be applied to the case where the input is made to 5.
 なお、上記実施の形態により本発明が限定されるものではない。上述した各構成要素を適宜組み合わせて構成したものも本発明に含まれる。たとえば、上記実施の形態3~7に係る光結合構造のいずれについても、実施の形態2に係る光結合モジュールのように構成してもよい。また、さらなる効果や変形例は、当業者によって容易に導き出すことができる。よって、本発明のより広範な態様は、上記の実施の形態に限定されるものではなく、様々な変更が可能である。 The present invention is not limited by the above embodiment. What was comprised combining each component mentioned above suitably is also contained in this invention. For example, any of the optical coupling structures according to the above third to seventh embodiments may be configured like the optical coupling module according to the second embodiment. Further effects and modifications can be easily derived by those skilled in the art. Therefore, the broader aspect of the present invention is not limited to the above-described embodiment, and various modifications can be made.
 以上のように、本発明に係る光結合構造は、主に光通信の用途に利用して好適なものである。 As described above, the optical coupling structure according to the present invention is suitable mainly for use in optical communication.
 1、5 マルチコア光ファイバ
 1a、1a1、1a2、2a、5a、5a1、5a2、5Aa1 コア部
 1c 外側クラッド部
 1b 内側クラッド部
 1d、2c、2Aa、5c 端面
 2、2A、5Aa 光ファイバ
 2b、5b、5Aa2 クラッド部
 2A1、2A2 光ファイバ部
 3 光フィルタ
 3a 反射面
 4、6、103 レンズ
 5A 光ファイババンドル
 7、8 プリズム
 7a、8a 傾斜面
 7b、7c、8b、8c 平行面
 9 光アイソレータ
 10、10A、20A、20B、30A、30B 光結合構造
 100 光結合モジュール
 101 フェルール
 101a 挿通孔
 101b 傾斜面
 101c 溝
 102 筐体
 102a 開口部
 104 レンズホルダ
 A 傾斜角度
 B1、B2 ビーム
 L1 光
 P 光路長
 V 法線
 W1、W2 ビームウエスト
 X 軸
1, 5 Multi-core optical fiber 1a, 1a1, 1a2, 2a, 5a, 5a1, 5a2, 5Aa1 Core part 1c Outer cladding part 1b Inner cladding part 1d, 2c, 2Aa, 5c End face 2, 2A, 5Aa Optical fiber 2b, 5b, 5Aa2 Cladding portion 2A1, 2A2 Optical fiber portion 3 Optical filter 3a Reflecting surface 4, 6, 103 Lens 5A Optical fiber bundle 7, 8 Prism 7a, 8a Inclined surface 7b, 7c, 8b, 8c Parallel surface 9 Optical isolator 10, 10A, 20A, 20B, 30A, 30B Optical coupling structure 100 Optical coupling module 101 Ferrule 101a Insertion hole 101b Inclined surface 101c Groove 102 Housing 102a Opening 104 Lens holder A Inclination angle B1, B2 Beam L1 Light P Optical path length V Normal W1, W2 Beam waist X axis

Claims (16)

  1.  複数のコア部と前記複数のコア部の外周に形成されたクラッド部とを有するマルチコア光ファイバと、
     前記マルチコア光ファイバとは傾斜して配置されており、前記マルチコア光ファイバの端面に入力するための光を端面から出力する光ファイバと、
     前記光ファイバの端面から出力した前記光を前記マルチコア光ファイバの端面に反射させるための光反射素子と、
     を備え、前記マルチコア光ファイバの端面、前記光ファイバの端面、および前記光反射素子は近接して配置され、前記光は前記光ファイバから出力後に前記光反射素子のみを介して前記マルチコア光ファイバに入力することを特徴とする光結合構造。
    A multi-core optical fiber having a plurality of core portions and a cladding portion formed on the outer periphery of the plurality of core portions;
    The multi-core optical fiber is arranged to be inclined, and an optical fiber that outputs light for inputting to the end face of the multi-core optical fiber from the end face;
    A light reflecting element for reflecting the light output from the end face of the optical fiber to the end face of the multi-core optical fiber;
    The end face of the multi-core optical fiber, the end face of the optical fiber, and the light reflecting element are disposed close to each other, and the light is output from the optical fiber to the multi-core optical fiber only through the light reflecting element. An optical coupling structure characterized by inputting.
  2.  前記マルチコア光ファイバの端面は前記光ファイバとは反対側に傾斜する法線を有するように、前記マルチコア光ファイバの光軸に対して傾斜していることを特徴とする請求項1に記載の光結合構造。 2. The light according to claim 1, wherein an end face of the multi-core optical fiber is inclined with respect to an optical axis of the multi-core optical fiber so as to have a normal line that is inclined in a direction opposite to the optical fiber. Bond structure.
  3.  前記マルチコア光ファイバと前記光ファイバとの傾斜角度が15度~45度であることを特徴とする請求項1または2に記載の光結合構造。 3. The optical coupling structure according to claim 1, wherein an inclination angle between the multi-core optical fiber and the optical fiber is 15 degrees to 45 degrees.
  4.  前記光ファイバの端面から前記マルチコア光ファイバの端面までの前記光の光路長が1mm以下であることを特徴とする請求項1~3のいずれか一つに記載の光結合構造。 The optical coupling structure according to any one of claims 1 to 3, wherein an optical path length of the light from an end face of the optical fiber to an end face of the multi-core optical fiber is 1 mm or less.
  5.  前記マルチコア光ファイバは、フェルールに挿通固定されており、前記光ファイバは前記フェルールに形成された保持部に保持されていることを特徴とする請求項1~4のいずれか一つに記載の光結合構造。 5. The light according to claim 1, wherein the multi-core optical fiber is inserted and fixed in a ferrule, and the optical fiber is held by a holding portion formed in the ferrule. Bond structure.
  6.  前記フェルールは、前記光ファイバが出力する前記光に対して透明な材質からなることを特徴とする請求項5に記載の光結合構造。 The optical coupling structure according to claim 5, wherein the ferrule is made of a material transparent to the light output from the optical fiber.
  7.  前記マルチコア光ファイバは、前記複数のコア部の少なくともいずれか一つに光増幅媒体が添加されたダブルクラッド型のマルチコア増幅光ファイバであり、前記光ファイバが出力する前記光は前記増幅媒体を光励起する励起光であることを特徴とする請求項1~6のいずれか一つに記載の光結合構造。 The multi-core optical fiber is a double-clad multi-core amplification optical fiber in which an optical amplification medium is added to at least one of the plurality of core portions, and the light output from the optical fiber optically pumps the amplification medium. 7. The optical coupling structure according to claim 1, wherein the optical coupling structure is excitation light.
  8.  前記光反射素子を挟んで前記マルチコア増幅光ファイバの端面に対向するように配置され、前記マルチコア増幅光ファイバで光増幅をさせるための信号光を該マルチコア増幅光ファイバに入力できるように構成された第1レンズをさらに備えることを特徴とする請求項7に記載の光結合構造。 The multi-core amplification optical fiber is arranged so as to face the end surface of the multi-core amplification optical fiber with the light reflecting element interposed therebetween, and is configured to be able to input signal light for optical amplification with the multi-core amplification optical fiber to the multi-core amplification optical fiber. The optical coupling structure according to claim 7, further comprising a first lens.
  9.  前記マルチコア増幅光ファイバの端面は、前記第1レンズから、該第1レンズの焦点距離よりも遠い位置に配置されていることを特徴とする請求項8に記載の光結合構造。 The optical coupling structure according to claim 8, wherein an end face of the multi-core amplification optical fiber is disposed at a position farther from the first lens than a focal length of the first lens.
  10.  前記マルチコア増幅光ファイバの端面は、前記第1レンズの略焦点距離の位置に配置されていることを特徴とする請求項8に記載の光結合構造。 The optical coupling structure according to claim 8, wherein an end face of the multi-core amplification optical fiber is disposed at a position substantially at a focal length of the first lens.
  11.  前記第1レンズを挟んで前記マルチコア増幅光ファイバの端面に対向するように配置された第1光路変位光学素子をさらに備え、前記第1光路変位光学素子は、該第1光路変位光学素子に入力された複数の前記信号光を、前記レンズを介して前記マルチコア増幅光ファイバに、互いに平行な光軸で入力させることができるように構成されていることを特徴とする請求項8~10のいずれか一つに記載の光結合構造。 The optical system further includes a first optical path displacement optical element disposed to face an end face of the multi-core amplification optical fiber with the first lens interposed therebetween, and the first optical path displacement optical element is input to the first optical path displacement optical element 11. The apparatus according to claim 8, wherein the plurality of signal lights are input to the multi-core amplification optical fiber via the lenses with optical axes parallel to each other. The optical coupling structure according to any one of the above.
  12.  前記第1光路変位光学素子はレンズまたはプリズムであることを特徴とする請求項11に記載の光結合構造。 The optical coupling structure according to claim 11, wherein the first optical path displacement optical element is a lens or a prism.
  13.  前記複数の信号光を前記マルチコア増幅光ファイバに出力する信号光結合用光ファイバと、
     前記信号光結合用光ファイバの端面に対向するように配置された第2レンズと、
     前記第2レンズを挟んで前記信号光結合用光ファイバの端面に対向するように配置された第2光路変位光学素子と、
     をさらに備え、
     前記第2レンズは、前記複数の信号光を前記マルチコア増幅光ファイバに結合させることができるように構成されており、
     前記第2光路変位光学素子は、前記信号光結合用光ファイバから、前記第2レンズを介して入力された前記複数の信号光が、互いに平行な光軸で出力するように構成されていることを特徴とする請求項11または12に記載の光結合構造。
    An optical fiber for signal light coupling that outputs the plurality of signal lights to the multi-core amplification optical fiber;
    A second lens disposed so as to face the end face of the signal light coupling optical fiber;
    A second optical path displacement optical element disposed so as to face the end face of the signal light coupling optical fiber with the second lens interposed therebetween;
    Further comprising
    The second lens is configured to be able to couple the plurality of signal lights to the multi-core amplification optical fiber,
    The second optical path displacement optical element is configured so that the plurality of signal lights input from the signal light coupling optical fiber via the second lens are output with optical axes parallel to each other. The optical coupling structure according to claim 11 or 12.
  14.  前記第2光路変位光学素子はレンズまたはプリズムであることを特徴とする請求項13に記載の光結合構造。 The optical coupling structure according to claim 13, wherein the second optical path displacement optical element is a lens or a prism.
  15.  前記第1および第2光路変位光学素子の間に配置された光アイソレータをさらに備えることを特徴とする請求項13または14に記載の光結合構造。 The optical coupling structure according to claim 13 or 14, further comprising an optical isolator disposed between the first and second optical path displacement optical elements.
  16.  前記光ファイバは、該光ファイバの端面側に配置された分布屈折率型の光ファイバ部を有することを特徴とする請求項1~15のいずれか一つに記載の光結合構造。 The optical coupling structure according to any one of claims 1 to 15, wherein the optical fiber includes a distributed refractive index type optical fiber portion disposed on an end face side of the optical fiber.
PCT/JP2014/059558 2013-04-10 2014-03-31 Optical coupling structure WO2014168040A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015511216A JPWO2014168040A1 (en) 2013-04-10 2014-03-31 Optical coupling structure

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013082454 2013-04-10
JP2013-082454 2013-04-10

Publications (1)

Publication Number Publication Date
WO2014168040A1 true WO2014168040A1 (en) 2014-10-16

Family

ID=51689450

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/059558 WO2014168040A1 (en) 2013-04-10 2014-03-31 Optical coupling structure

Country Status (2)

Country Link
JP (1) JPWO2014168040A1 (en)
WO (1) WO2014168040A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016173472A (en) * 2015-03-17 2016-09-29 日本電信電話株式会社 Optical transmission device and optical transmission method
WO2022137632A1 (en) * 2020-12-23 2022-06-30 株式会社フジクラ Optical connection component and connector assembly

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62127810A (en) * 1985-11-29 1987-06-10 Furukawa Electric Co Ltd:The Inputting/outputting method for optical signal to multicore optical fiber
JPH10268158A (en) * 1997-03-27 1998-10-09 Matsushita Electric Ind Co Ltd Optical branching filter and optical coupling part
US20020168139A1 (en) * 2001-03-30 2002-11-14 Clarkson William Andrew Optical fiber terminations, optical couplers and optical coupling methods
JP2003279792A (en) * 2002-03-20 2003-10-02 Sumitomo Electric Ind Ltd Optical module
JP2003279808A (en) * 2002-03-25 2003-10-02 Matsushita Electric Ind Co Ltd Optical transmission/reception module
JP2006284767A (en) * 2005-03-31 2006-10-19 Kyocera Corp Optical module
JP2007272001A (en) * 2006-03-31 2007-10-18 Kyocera Corp Multi-stage optical multiplexer/demultiplexer
JP2012098556A (en) * 2010-11-02 2012-05-24 Fujikura Ltd Optical coupling unit and light source device
WO2012173271A1 (en) * 2011-06-16 2012-12-20 古河電気工業株式会社 Optical coupling structure and optical fiber amplifier

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62127810A (en) * 1985-11-29 1987-06-10 Furukawa Electric Co Ltd:The Inputting/outputting method for optical signal to multicore optical fiber
JPH10268158A (en) * 1997-03-27 1998-10-09 Matsushita Electric Ind Co Ltd Optical branching filter and optical coupling part
US20020168139A1 (en) * 2001-03-30 2002-11-14 Clarkson William Andrew Optical fiber terminations, optical couplers and optical coupling methods
JP2003279792A (en) * 2002-03-20 2003-10-02 Sumitomo Electric Ind Ltd Optical module
JP2003279808A (en) * 2002-03-25 2003-10-02 Matsushita Electric Ind Co Ltd Optical transmission/reception module
JP2006284767A (en) * 2005-03-31 2006-10-19 Kyocera Corp Optical module
JP2007272001A (en) * 2006-03-31 2007-10-18 Kyocera Corp Multi-stage optical multiplexer/demultiplexer
JP2012098556A (en) * 2010-11-02 2012-05-24 Fujikura Ltd Optical coupling unit and light source device
WO2012173271A1 (en) * 2011-06-16 2012-12-20 古河電気工業株式会社 Optical coupling structure and optical fiber amplifier

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016173472A (en) * 2015-03-17 2016-09-29 日本電信電話株式会社 Optical transmission device and optical transmission method
WO2022137632A1 (en) * 2020-12-23 2022-06-30 株式会社フジクラ Optical connection component and connector assembly
JPWO2022137632A1 (en) * 2020-12-23 2022-06-30

Also Published As

Publication number Publication date
JPWO2014168040A1 (en) 2017-02-16

Similar Documents

Publication Publication Date Title
US8611003B2 (en) Double clad fiber laser device
Kopp et al. Chiral fibers: microformed optical waveguides for polarization control, sensing, coupling, amplification, and switching
US5757993A (en) Method and optical system for passing light between an optical fiber and grin lens
JP5876612B2 (en) Fiber optic coupler for combining a signal beam with a non-circular light beam
US20090251770A1 (en) Cladding pumped fibre laser with a high degree of pump isolation
CN101283491A (en) Optical coupler devices, methods of their production and use
JPWO2011115275A1 (en) Optical fiber amplifier and fiber laser apparatus using the same
WO2013181183A1 (en) High power spatial filter
US7801186B2 (en) Light source
JP3353755B2 (en) Optical fiber amplifier
JP2021163814A (en) Optical fiber amplifier and optical communication system
JP2019216161A (en) Optical fiber amplifier
WO2014168040A1 (en) Optical coupling structure
JP2001230476A (en) Light amplifier
JP5368360B2 (en) Pulsed fiber laser equipment
JP2007214431A (en) Optical fiber laser
JP2015179761A (en) fiber laser device
CN111045152A (en) Optical fiber coupler
JP2015012152A (en) Multi-core fiber connection component
JP6540310B2 (en) Fiber optic terminal
JP4276990B2 (en) Optical fiber collimator and optical fiber component using the same
WO2020027253A1 (en) Optical coupler
US20020176644A1 (en) Polarization combiner/splitter
JP2001147341A (en) Optical circuit module
JP2010177469A (en) Optical fiber laser and optical fiber amplifier

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14782106

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015511216

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14782106

Country of ref document: EP

Kind code of ref document: A1