WO2014162509A1 - Air conditioner control system and air conditioner control method - Google Patents

Air conditioner control system and air conditioner control method Download PDF

Info

Publication number
WO2014162509A1
WO2014162509A1 PCT/JP2013/060049 JP2013060049W WO2014162509A1 WO 2014162509 A1 WO2014162509 A1 WO 2014162509A1 JP 2013060049 W JP2013060049 W JP 2013060049W WO 2014162509 A1 WO2014162509 A1 WO 2014162509A1
Authority
WO
WIPO (PCT)
Prior art keywords
air
air conditioner
temperature
indoor unit
operation content
Prior art date
Application number
PCT/JP2013/060049
Other languages
French (fr)
Japanese (ja)
Inventor
邦彰 鳥山
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2015509762A priority Critical patent/JPWO2014162509A1/en
Priority to PCT/JP2013/060049 priority patent/WO2014162509A1/en
Publication of WO2014162509A1 publication Critical patent/WO2014162509A1/en

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D23/00Control of temperature
    • G05D23/19Control of temperature characterised by the use of electric means
    • G05D23/1919Control of temperature characterised by the use of electric means characterised by the type of controller
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • F24F11/46Improving electric energy efficiency or saving
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/50Control or safety arrangements characterised by user interfaces or communication
    • F24F11/56Remote control
    • F24F11/58Remote control using Internet communication
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • F24F11/63Electronic processing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/80Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air
    • F24F11/86Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling compressors within refrigeration or heat pump circuits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/10Temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2140/00Control inputs relating to system states
    • F24F2140/50Load

Definitions

  • the present invention relates to an air conditioner control system and an air conditioner control method capable of realizing energy saving without losing indoor comfort.
  • an air conditioner control system in general, the actual air conditioning load based on the indoor target temperature is made to correspond to the outdoor unit operating load, and the outdoor unit operating capacity is limited to realize energy saving control.
  • This air conditioner control system has a function that considers the future air conditioning load, promotes energy savings that reduce power consumption, and proposes a technology that suppresses the decline in indoor comfort. (For example, refer to Patent Document 1).
  • a control system for an air conditioner described in Patent Document 1 predicts a future air conditioning load from a future outside air temperature based on weather data, determines an operating capacity of the outdoor unit based on the predicted future air conditioning load, and Is set as an upper limit value that is reduced by a predetermined amount. Moreover, the control system of the air conditioner described in Patent Document 1 operates at the actually set upper limit value, and when the room temperature deviates from the preset temperature range, the upper limit value is increased. If it is within the range, the upper limit value is corrected so as to be reduced, and the temperature is kept within a preset temperature range, thereby realizing energy saving control without impairing comfort.
  • JP 2011-106763 A (refer to page 10, FIG. 3 etc.)
  • Patent Document 1 shows a problem regarding comfort when realizing energy-saving control of an air conditioner, and realizes comfort and energy-saving control at the same time.
  • the air conditioning load depends on the outside air temperature
  • only the outside air temperature fluctuation is regarded as the air conditioning load, and control is performed.
  • the load is not considered at all. Therefore, energy saving operation cannot be realized when there is a temperature difference between rooms even in the same building.
  • the present invention has been made to solve the above-described problems. By calculating in detail the air conditioning load (heat load) for each room, the energy saving operation of the entire building can be performed without impairing the comfort of each room. It is an object of the present invention to provide an air conditioner control system and an air conditioner control method that are realized.
  • the control system for an air conditioner is a control system for one or a plurality of air conditioners, and the temperature of an air-conditioning target space that is air-conditioned by an indoor unit that constitutes the air conditioner is set in advance.
  • a correction operation for calculating the heat load of the air-conditioning target space and correcting the operation state of the indoor unit based on the heat load The content is determined, the entire operation of the air conditioner is taken into consideration, and the determined corrected operation content is permitted or denied, and when permitted, the corrected operation of the air conditioner is determined based on the determined corrected operation content. Is to execute.
  • the control method for an air conditioner is a control method for a single air conditioner that detects the temperature of an air-conditioning target space that is air-conditioned by an indoor unit that constitutes the air conditioner.
  • the temperature difference between the temperature of the air-conditioning target space and a preset temperature is compared with a preset threshold value, and when the temperature difference is larger than the threshold value, the heat load of the air-conditioning target space is
  • the mode is shifted to a calculation mode, and in the mode, the correction operation content for correcting the operation state of the indoor unit is determined based on the thermal load, and the correction is determined in consideration of the overall operation of the air conditioner
  • the corrected operation of the air conditioner is executed based on the determined corrected operation content.
  • the priority order of the corrected operation content is stepwise. To It is what determines the operation contents again.
  • a control method for an air conditioner is a control method for a plurality of systems of air conditioners, and detects a temperature of an air-conditioning target space that is air-conditioned by an indoor unit that constitutes the air conditioner.
  • the temperature difference between the temperature of the air-conditioning target space and a preset temperature is compared with a preset threshold value, and when the temperature difference is larger than the threshold value, the heat load of the air-conditioning target space is
  • a management system that shifts to a calculation mode, determines correction operation contents for correcting the operation state of the indoor unit based on the thermal load in the mode, and bundles a controller that controls each air conditioner of each system
  • the determined corrected operation content is permitted or denied, and when permitted by the management system, the determined corrected operation content is Based perform the correction operation of the air conditioner, when the denial, said correcting operation content priority stepwise lowered, is what determines the correct operation content again.
  • the air conditioning load (heat load) is calculated for each air conditioning target space, and the correction operation is executed based on the air conditioning load. Therefore, the useless air-conditioning effect can be suppressed in the entire building, and power consumption can be suppressed without impairing indoor comfort.
  • FIG. 1 is a schematic configuration diagram schematically showing an example of the configuration of an air conditioner control system (hereinafter referred to as system A) according to Embodiment 1 of the present invention.
  • system A an air conditioner control system
  • the system A will be described with reference to FIG.
  • a single air conditioner controlled by the air conditioning controller 40 in the system A is illustrated as an example.
  • the air conditioner controlled by the system A is composed of indoor units installed in a plurality of rooms (air-conditioning target spaces) and outdoor units (one in FIG. 1) connected to these indoor units. . That is, the system A controls one system of air conditioner with one air conditioning controller 40.
  • the system indicates a refrigerant system.
  • FIG. 1 shows an example in which two indoor units are installed in three rooms. Specifically, indoor units 31a and 31b are installed in the room 30a, indoor units 31c and 31d are installed in the room 30b, and indoor units 31e and 31f are installed in the room 30c.
  • the indoor units 31a, 31b, 31c, 31d, 31e, and 31f are connected to one outdoor unit 32.
  • the indoor unit 31 when it is not necessary to separate the indoor units 31a, 31b, 31c, 31d, 31e, and 31f, these may be collectively referred to as the indoor unit 31.
  • the room 30 when it is not necessary to separate the rooms 30a, 30b, and 30c, these may be collectively referred to as the room 30.
  • the indoor unit 31 and the outdoor unit 32 are connected by a refrigerant pipe (not shown).
  • Refrigerant piping connects each component device (compressor, outdoor heat exchanger, expansion device, indoor heat exchanger) of the refrigeration cycle mounted on the indoor unit 31 and the outdoor unit 32.
  • cooling or heating can be performed by circulating a refrigerant
  • FIG. 2 is a functional block diagram showing the functions of the indoor unit controller 6 mounted on the indoor unit 31.
  • the indoor unit 31 has an indoor unit controller 6.
  • the indoor unit controller 6 includes at least a function unit 1, a detection unit 2, an arithmetic processing unit 3, a storage unit 4, and a communication unit 5.
  • the functional unit 1 has a function of controlling the basic operation of the air conditioner, and also has a function of setting the operating state of the indoor unit 31 in an “air conditioning load measurement mode” described later.
  • the detection unit 2 has a function of detecting a suction thermometer for measuring the suction temperature of the indoor unit 31, a remote control room temperature meter held by the remote controller, and a room temperature acquired by the external room temperature meter.
  • a suction thermometer for measuring the suction temperature of the indoor unit 31, a remote control room temperature meter held by the remote controller, and a room temperature acquired by the external room temperature meter.
  • a remote control room temperature meter is abbreviate
  • the remote room temperature meter may be installed at a position where the room temperature of the room 30 can be measured.
  • the room temperature measured by the suction thermometer, the remote controller room temperature meter, and the external room temperature meter is transmitted to the detection unit 2 by wire or wirelessly.
  • the room temperature acquired by the suction thermometer is used will be described as an example.
  • the arithmetic processing unit 3 has a function of performing arithmetic processing on information transmitted from the function unit 1 and transmitting the processed result to the storage unit 4 and the function unit 1.
  • the storage unit 4 has a function of storing the result of the arithmetic processing performed by the arithmetic processing unit 3 and transmitting the stored data to the functional unit 1 when a request for acquiring necessary information is generated from the functional unit 1.
  • the communication unit 5 has a function of transmitting information from the function unit 1 to the other indoor units, the outdoor unit 32, and the air conditioning controller 40, and receiving information transmitted from these units.
  • FIG. 3 shows the set temperature and room temperature of the rooms 30a, 30b, 30c, and 30d at an arbitrary time.
  • FIG. 4 is a flowchart showing a process flow in the “air conditioning load measurement mode” executed by the system A.
  • FIG. 5 is a diagram illustrating a change in room temperature during the “air conditioning load measurement mode”.
  • indoor units 31 constituting one system of air conditioner controlled by the air conditioning controller 40 are installed in the rooms 30a, 30b, 30c, and 30d.
  • indoor units 31 constituting one system of air conditioner controlled by the air conditioning controller 40 are installed in the rooms 30a, 30b, 30c, and 30d.
  • the room 30 when it is not necessary to separate the rooms 30a, 30b, 30c, and 30d, they may be collectively referred to as the room 30 as described above.
  • FIG. 3 shows an example in which the set temperature is set to 24 ° C. in the entire room 30.
  • the room temperature of all the rooms is not necessarily 24 ° C.
  • the room temperature of the room 30a is 21 ° C.
  • the room temperature of the room 30b is 23 ° C.
  • the room temperature of the room 30c is 24 ° C.
  • the room 30d becomes 27 ° C. This is because the heat load varies with room and time.
  • the room temperature in the room 30a, the room temperature is 21 ° C. and 3 ° C. lower than the set temperature, and in the room 30d, the room temperature is 27 ° C. and 3 ° C. higher than the set temperature. It can be said that there are many heat sources in the space, and the room 30d has a higher heat load than the room 30a.
  • the “air conditioning load measurement mode” is executed when the indoor unit 31 is in an operating state. Whether the indoor unit 31 is in an operating state is determined by the indoor unit controller 6. Whether the indoor unit 31 is in an operating state may be determined by the air conditioning controller 40 that has received information from the indoor unit controller 6. Moreover, although the steps described below are described as being performed by the indoor unit controller 6, these steps may also be executed by the air conditioning controller 40 that has received information from the indoor unit controller 6.
  • step S1 When the indoor unit 31 is in the operating state (step S1), the difference between the set temperature and the room temperature is measured by the indoor unit controller 6, and switching to the “air conditioning load measurement mode” is performed according to the magnitude of the difference. (Step S2).
  • the “air conditioning load measurement mode” is switched according to the magnitude of the difference between the set temperature and the room temperature, but the temperature difference at that time can be arbitrarily determined.
  • the indoor unit controller 6 determines that the difference between the set temperature and the room temperature is larger than a preset threshold (for example, there is a temperature difference of 3 ° C. or more) (step S2; large), the indoor unit 31 The operation state is shifted to the “air conditioning load measurement mode” (step S3).
  • the threshold value may be a value defined by the user or, of course, a value set by the indoor unit controller 6 as an optimum value.
  • the indoor unit controller 6 calculates the thermal load as the load frequency from the result of the “air conditioning load measurement mode” (step S4). Then, the indoor unit controller 6 corrects the current operation state and the current operation setting of the indoor unit 31 or the outdoor unit 32, and reduces the difference between the set temperature and the room temperature (step S5).
  • the air conditioning controller 40 or the indoor unit controller 6 performs correction by changing the current operation state of the indoor unit 31 or the outdoor unit 32 and the current operation setting. Adjustment, wind direction, thermo-ON time, set temperature, etc. are corrected.
  • the set temperature here is not displayed on a remote controller or the like that can be confirmed by the user, but is a corrected set temperature that only the air conditioning controller 40 or the indoor unit controller 6 has.
  • correction such as lowering the operating frequency of the compressor and reducing the capacity of the outdoor unit 32 may be performed.
  • Air conditioning load measurement mode will be described in detail with reference to FIG.
  • the indoor unit controller 6 completely stops the operation of the indoor unit 31 that has shifted to the “air conditioning load measurement mode”.
  • the room temperature then approaches the set temperature over time due to the heat source in the space of the room 30.
  • the room temperature gradually increases by stopping the indoor unit 31 in the room 30a.
  • the indoor unit controller 6 calculates the thermal load of the space as the load frequency based on the time to reach the set temperature at this time.
  • FIG. 6 is a diagram illustrating an example of the corrected operation content based on the thermal load (load frequency) calculated by the indoor unit controller 6.
  • FIG. 7 is a flowchart showing a process of determining the corrected operation content by the indoor unit controller 6.
  • eight types of correction operation contents A to H are given as examples.
  • the indoor unit controller 6 determines the correction operation content based on the heat load calculated in the “air conditioning load measurement mode”, and corrects the operation status of the indoor unit 31 or the outdoor unit 32.
  • the thermal load (here, A to H) is defined by a numerical value and is stored as a database in the storage unit 4 of the indoor unit controller 6.
  • the association between the numerical value and the corrected operation content that is, the association can be arbitrarily determined by the user, but is not limited to this. Of course, the indoor unit controller 6 selects the optimum one and sets the corrected operation content. It can also be determined.
  • the correction operation determination process will be described with reference to FIG.
  • the process for determining the correct operation is executed by the air conditioning controller 40 and the indoor unit controller 6.
  • the indoor unit controller 6 first executes the “air conditioning load prediction mode” as described above (step S11). Thereby, the indoor unit controller 6 calculates the load frequency (step S12). Then, after calculating the load frequency, the indoor unit controller 6 determines the correction operation content (step S13). At this time, the indoor unit controller 6 determines the corrected operation content having a high priority, but asks the air conditioning controller 40 for permission or denial before actually operating.
  • the indoor unit controller 6 executes the corrected operation based on the corrected operation content described in FIG. 6 (step S16).
  • the indoor unit controller 6 lowers the priority by one step, determines the corrected operation content, and asks the air conditioning controller 40 to permit or deny it again. (Step S13). This process is executed in a step-down order of priority until the corrected operation content is determined.
  • FIG. 8 is a timing chart showing the continuity of the control system executed by the system A.
  • the room temperature is measured at regular intervals, and the thermal load is calculated at regular intervals.
  • the indoor unit controller 6 shifts to the “air conditioning load side measurement mode” and stops the operation of the indoor unit 31.
  • the indoor unit controller 6 and the air conditioning controller 40 calculate the load frequency and correct the operation state.
  • the difference between the room temperature and the set temperature is measured again at the time set by the user. If the temperature difference is not improved, the “air conditioning load measurement mode” The operation correction content is determined again.
  • the switching to the “air conditioning load measurement mode” is determined by the function unit 1 from the temperature difference between the room temperature detected by the detection unit 2 and the set temperature.
  • the heat load is calculated as the load frequency from the data acquired by the arithmetic processing unit 3 in the “air conditioning load measurement mode”.
  • the storage unit 4 holds a relationship necessary for determining the corrected operation content based on the calculated thermal load.
  • the indoor unit controller 6 transmits the corrected operation content determined via the communication unit 5 to the air conditioning controller 40 and receives permission or denial.
  • the air conditioning controller 40 permits or denies the execution of the correction operation in consideration of the operation of the entire system controlled by the indoor operation controller 6, and transmits the result to the indoor unit controller 6. To do.
  • the outdoor unit 32 is connected to six indoor units 31. Since the outdoor unit 32 is equipped with a compressor, when “A reduce the capacity of the compressor ( ⁇ 5%)” is selected in the correction operation content shown in FIG. Will be affected.
  • the indoor unit controller 6 of the indoor unit 31 existing in the room 30b and the room 30c determines that the capacity of the compressor is lowered, and the compression is performed. If the capacity of the machine is lowered, the room temperature of the room 30a will be further increased.
  • the air conditioning controller 40 determines that the comfort of the room 30a is impaired if the corrected operation content is executed as requested, and denies the request. To do.
  • the difference between the set temperature for each room 30 to be controlled and the room temperature can be reduced, and there is little waste in all the systems (the indoor unit 31 and the outdoor unit 32) controlled by the air conditioning controller 40.
  • Air-conditioning operation control is possible, and energy-saving operation can be realized at the same time without impairing the comfort of each room 30.
  • Embodiment 1 demonstrated the operation control in the case of air_conditionaing
  • FIG. FIG. 9 is a schematic configuration diagram schematically showing an example of the configuration of an air conditioner control system (hereinafter referred to as system B) according to Embodiment 2 of the present invention.
  • system B will be described with reference to FIG.
  • differences from the first embodiment will be mainly described, and the same parts as those in the first embodiment will be denoted by the same reference numerals and the description thereof will be omitted.
  • FIG. 9 shows an example of a single air conditioner controlled by the air conditioning controller 40 in the system B.
  • the air conditioner controlled by the system B includes an indoor unit 31 installed in a plurality of rooms 30 (air-conditioning target spaces), and an outdoor unit 32 (one in FIG. 9) connected to the indoor units 31. It is configured. That is, in the system B, one air conditioner is controlled by one air conditioning controller 40.
  • the difference between the system B and the system A is that the means for acquiring the room temperature uses the external thermometer 20 (external thermometers 20a to 20c) instead of the suction thermometer of the indoor unit 31.
  • the external thermometer may be a remote control thermometer, an external room temperature meter, or any other device that can measure room temperature.
  • the thermal load can be calculated from the difference between the set temperature and room temperature for an arbitrary place in the room.
  • the system B similarly to the system A, the difference between the set temperature for each room 30 to be controlled and the room temperature can be reduced, and the system controlled by the air conditioning controller 40 (indoor unit 31 and outdoor unit 32). Therefore, it is possible to perform an energy-saving operation at the same time without impairing the comfort of each room 30.
  • FIG. 10 is a schematic configuration diagram schematically showing an example of a configuration of an air conditioner control system (hereinafter, referred to as system C) according to Embodiment 3 of the present invention.
  • system C an air conditioner control system
  • the system C will be described based on FIG.
  • differences from the first embodiment or the second embodiment will be mainly described, and the same parts as those in the first and second embodiments will be denoted by the same reference numerals. Shall be omitted.
  • the difference between the system A and the system B of the system C is that it has a management system 50 that bundles a plurality of air conditioning controllers 40.
  • the system C can manage and control a plurality of air conditioners via the air conditioning controller 40 that controls each of the air conditioners.
  • FIG. 10 shows an example in which the four air conditioning controllers 40a to 40d are managed by the management system 50.
  • the indoor unit 31A and the outdoor unit 32A are connected to the air conditioning controller 40a
  • the indoor unit 31B and the outdoor unit 32B are connected to the air conditioning controller 40b
  • the indoor unit 31C and the outdoor unit 32C are connected to the air conditioning controller 40c.
  • An indoor unit 31D and an outdoor unit 32D are connected to the air conditioning controller 40d.
  • the indoor units 31A to 31D are the same as the indoor unit 31 described in the first embodiment
  • the outdoor units 32A to 32D are the same as the outdoor unit 32 described in the first embodiment.
  • the management system 50 is connected to each air conditioning controller 40 via a communication line (for example, a LAN (Local Area Network).
  • the management system 50 is installed in the same building as each air conditioning controller 40, for example. Alternatively, it may be installed in a different building as long as it is within the Ethernet (registered trademark), that is, the management system 50 is remotely connected to each air conditioning controller 40 via the Ethernet (registered trademark). Needless to say, the connection between the management system 50 and each air conditioning controller 40 is not limited to the LAN, and may be connected wirelessly.
  • each of the plurality of air conditioning controllers 40 transmits the correction operation content transmitted from the indoor unit controller 6 described in the first embodiment to the management system 50.
  • the management system 50 manages permission or denial of the correction operation in all the connected systems. That is, in the first embodiment and the second embodiment, whether the correction operation is permitted or denied is determined within the range controlled by the air conditioning controller 40, but in the third embodiment, the management system 50 is connected. Within the specified range, it is determined whether to permit or reject the correction operation.
  • the management system 50 can register or change the heat load and the corrected operation content held in the storage unit 4 of each indoor unit controller 6 via each air conditioning controller 40.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Signal Processing (AREA)
  • Fuzzy Systems (AREA)
  • Mathematical Physics (AREA)
  • Human Computer Interaction (AREA)
  • Thermal Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

When the temperature difference between a predetermined set temperature and the temperature of an air-conditioned space air-conditioned by an indoor unit (31) is greater than a predetermined threshold value, a system (A) calculates the thermal load of the air-conditioned space and, on the basis of the thermal load, determines the content of a correction operation for correcting the operational state of the indoor unit (31). The system permits or denies the determined correction operation content by taking into account the overall operation of the air-conditioning devices, and when the correction operation content is permitted the system executes a correction operation for the air-conditioning devices on the basis of the determined correction operation content.

Description

空気調和機の制御システム及び空気調和機の制御方法Air conditioner control system and air conditioner control method
 本発明は、室内の快適性を失うことなく省エネを実現可能な空気調和機の制御システム及び空気調和機の制御方法に関するものである。 The present invention relates to an air conditioner control system and an air conditioner control method capable of realizing energy saving without losing indoor comfort.
 空気調和機の制御システムにおいては、一般的に、室内の目標温度に基づく実態空調負荷を室外機運転負荷に対応させ、室外機の運転能力に制限を与え、省エネ制御を実現している。このような空気調和機の制御システムに、将来の空調負荷を考慮する機能を併せ持たせ、消費電力を低減する省エネを推進するとともに、室内の快適性の低下を抑制するようにした技術が提案されている(例えば、特許文献1参照)。 In an air conditioner control system, in general, the actual air conditioning load based on the indoor target temperature is made to correspond to the outdoor unit operating load, and the outdoor unit operating capacity is limited to realize energy saving control. This air conditioner control system has a function that considers the future air conditioning load, promotes energy savings that reduce power consumption, and proposes a technology that suppresses the decline in indoor comfort. (For example, refer to Patent Document 1).
 特許文献1に記載の空気調和機の制御システムは、気象データに基づき将来の外気温度から将来の空調負荷を予測し、その予測した将来の空調負荷によって室外機の運転能力を決定し、室外機の運転能力を所定量低減したものを上限値として設定している。また、特許文献1に記載の空気調和機の制御システムは、実際に設定された上限値で運転し、室内温度が予め設定した温度範囲内から逸脱した場合には、上限値を大きくなるように補正し、範囲内であれば上限値を小さくなるように補正し、予め設定した温度範囲内を保ち、快適性を損なうことなく、省エネ制御を実現するようにしている。 A control system for an air conditioner described in Patent Document 1 predicts a future air conditioning load from a future outside air temperature based on weather data, determines an operating capacity of the outdoor unit based on the predicted future air conditioning load, and Is set as an upper limit value that is reduced by a predetermined amount. Moreover, the control system of the air conditioner described in Patent Document 1 operates at the actually set upper limit value, and when the room temperature deviates from the preset temperature range, the upper limit value is increased. If it is within the range, the upper limit value is corrected so as to be reduced, and the temperature is kept within a preset temperature range, thereby realizing energy saving control without impairing comfort.
特開2011-106763号公報(10頁、図3等参照)JP 2011-106763 A (refer to page 10, FIG. 3 etc.)
 特許文献1に記載されている技術は、空気調和機の省エネ制御を実現する際の快適性についての課題を示しており、快適性と省エネ制御を同時に実現するようにしたものである。しかしながら、特許文献1に記載されている技術においては、空調負荷が外気温度に依存するものとして、外気温度の変動のみを空調負荷として捉えて制御を行っており、室内に存在する多種多様な熱負荷を全く考慮していない。そのため、同じ建物内でも部屋により温度差があるような場合においては、省エネ運転を実現することができない。 The technology described in Patent Document 1 shows a problem regarding comfort when realizing energy-saving control of an air conditioner, and realizes comfort and energy-saving control at the same time. However, in the technique described in Patent Document 1, since the air conditioning load depends on the outside air temperature, only the outside air temperature fluctuation is regarded as the air conditioning load, and control is performed. The load is not considered at all. Therefore, energy saving operation cannot be realized when there is a temperature difference between rooms even in the same building.
 本発明は、上記の課題を解決するためになされたもので、室内毎に空調負荷(熱負荷)を詳細に算出することで、室内毎の快適性を損なうことなく、建物全体の省エネ運転を実現するようにした空気調和機の制御システム及び空気調和機の制御方法を提供することを目的としている。 The present invention has been made to solve the above-described problems. By calculating in detail the air conditioning load (heat load) for each room, the energy saving operation of the entire building can be performed without impairing the comfort of each room. It is an object of the present invention to provide an air conditioner control system and an air conditioner control method that are realized.
 本発明に係る空気調和機の制御システムは、1系統又は複数系統の空気調和機の制御システムであって、前記空気調和機を構成している室内機によって空調される空調対象空間の温度と予め設定されている設定温度との温度差が予め設定されている閾値よりも大きいとき、前記空調対象空間の熱負荷を算出し、前記熱負荷に基づいて前記室内機の運転状態を補正する補正運転内容を決定し、前記空気調和機の全体の動作を考慮して、決定した前記補正運転内容を許可又は否認し、許可した際、決定した前記補正運転内容に基づいて前記空気調和機の補正運転を実行するものである。 The control system for an air conditioner according to the present invention is a control system for one or a plurality of air conditioners, and the temperature of an air-conditioning target space that is air-conditioned by an indoor unit that constitutes the air conditioner is set in advance. When the temperature difference from the set temperature is larger than a preset threshold value, a correction operation for calculating the heat load of the air-conditioning target space and correcting the operation state of the indoor unit based on the heat load The content is determined, the entire operation of the air conditioner is taken into consideration, and the determined corrected operation content is permitted or denied, and when permitted, the corrected operation of the air conditioner is determined based on the determined corrected operation content. Is to execute.
 本発明に係る空気調和機の制御方法は、1系統の空気調和機の制御方法であって、前記空気調和機を構成している室内機によって空調される空調対象空間の温度を検知し、検知した前記空調対象空間の温度と予め設定されている設定温度との温度差を予め設定されている閾値と比較し、前記温度差が前記閾値よりも大きいときに、前記空調対象空間の熱負荷を算出するモードに移行し、前記モードにおいて、前記熱負荷に基づいて前記室内機の運転状態を補正する補正運転内容を決定し、前記空気調和機の全体の動作を考慮して、決定した前記補正運転内容を許可又は否認し、許可した際には、決定した前記補正運転内容に基づいて前記空気調和機の補正運転を実行し、否認した際には、前記補正運転内容の優先順位を段階的に下げて、補正運転内容を再度決定するものである。 The control method for an air conditioner according to the present invention is a control method for a single air conditioner that detects the temperature of an air-conditioning target space that is air-conditioned by an indoor unit that constitutes the air conditioner. The temperature difference between the temperature of the air-conditioning target space and a preset temperature is compared with a preset threshold value, and when the temperature difference is larger than the threshold value, the heat load of the air-conditioning target space is The mode is shifted to a calculation mode, and in the mode, the correction operation content for correcting the operation state of the indoor unit is determined based on the thermal load, and the correction is determined in consideration of the overall operation of the air conditioner When the operation content is permitted or denied, when it is permitted, the corrected operation of the air conditioner is executed based on the determined corrected operation content. When the operation content is denied, the priority order of the corrected operation content is stepwise. To It is what determines the operation contents again.
 本発明に係る空気調和機の制御方法は、複数系統の空気調和機の制御方法であって、前記空気調和機を構成している室内機によって空調される空調対象空間の温度を検知し、検知した前記空調対象空間の温度と予め設定されている設定温度との温度差を予め設定されている閾値と比較し、前記温度差が前記閾値よりも大きいときに、前記空調対象空間の熱負荷を算出するモードに移行し、前記モードにおいて、前記熱負荷に基づいて前記室内機の運転状態を補正する補正運転内容を決定し、各系統のそれぞれの空気調和機を制御するコントローラを束ねる管理用システムが全系統の空気調和機の全体の動作を考慮して、決定した前記補正運転内容を許可又は否認し、前記管理用システムにより許可された際には、決定した前記補正運転内容に基づいて前記空気調和機の補正運転を実行し、否認した際には、前記補正運転内容の優先順位を段階的に下げて、補正運転内容を再度決定するものである。 A control method for an air conditioner according to the present invention is a control method for a plurality of systems of air conditioners, and detects a temperature of an air-conditioning target space that is air-conditioned by an indoor unit that constitutes the air conditioner. The temperature difference between the temperature of the air-conditioning target space and a preset temperature is compared with a preset threshold value, and when the temperature difference is larger than the threshold value, the heat load of the air-conditioning target space is A management system that shifts to a calculation mode, determines correction operation contents for correcting the operation state of the indoor unit based on the thermal load in the mode, and bundles a controller that controls each air conditioner of each system In consideration of the overall operation of the air conditioners of all systems, the determined corrected operation content is permitted or denied, and when permitted by the management system, the determined corrected operation content is Based perform the correction operation of the air conditioner, when the denial, said correcting operation content priority stepwise lowered, is what determines the correct operation content again.
 本発明に係る空気調和機の制御システム及び空気調和機の制御方法によれば、空調対象空間毎に空調負荷(熱負荷)を算出し、その空調負荷に基づいて補正運転を実行するようにしたので、建物全体で無駄な空調効果を抑え、室内の快適性を損なうことなく、消費電力を抑えることができる。 According to the air conditioner control system and the air conditioner control method of the present invention, the air conditioning load (heat load) is calculated for each air conditioning target space, and the correction operation is executed based on the air conditioning load. Therefore, the useless air-conditioning effect can be suppressed in the entire building, and power consumption can be suppressed without impairing indoor comfort.
本発明の実施の形態1に係る空気調和機の制御システムの構成の一例を概略的に示す概略構成図である。It is a schematic block diagram which shows roughly an example of a structure of the control system of the air conditioner which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る空気調和機の制御システムの室内機に搭載されている室内機コントローラの持つ機能を示した機能ブロック図である。It is the functional block diagram which showed the function which the indoor unit controller mounted in the indoor unit of the control system of the air conditioner concerning Embodiment 1 of this invention has. 任意の時間における部屋の設定温度及び室温を示したものである。It shows the set temperature and room temperature of the room at an arbitrary time. 本発明の実施の形態1に係る空気調和機の制御システムが実行する「空調負荷計測モード」時の処理の流れを示すフローチャートである。It is a flowchart which shows the flow of the process at the time of "the air-conditioning load measurement mode" which the control system of the air conditioner concerning Embodiment 1 of this invention performs. 本発明の実施の形態1に係る空気調和機の制御システムが実行する「空調負荷計測モード」中の室温変化を示す図である。It is a figure which shows the room temperature change in the "air-conditioning load measurement mode" which the control system of the air conditioner which concerns on Embodiment 1 of this invention performs. 本発明の実施の形態1に係る空気調和機の制御システムの室内機コントローラが算出した熱負荷(負荷度数)による補正運転内容の一例を示す図である。It is a figure which shows an example of the correction | amendment operation | movement content by the thermal load (load frequency) which the indoor unit controller of the control system of the air conditioner which concerns on Embodiment 1 of this invention calculated. 本発明の実施の形態1に係る空気調和機の制御システムの室内機コントローラによる補正運転内容を決定するプロセスを表すフローチャートである。It is a flowchart showing the process which determines the correction | amendment driving | operation content by the indoor unit controller of the control system of the air conditioner which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る空気調和機の制御システムが実行する制御システムの連続性を示したタイミングチャートである。It is the timing chart which showed the continuity of the control system which the control system of the air conditioner which concerns on Embodiment 1 of this invention performs. 本発明の実施の形態2に係る空気調和機の制御システムの構成の一例を概略的に示す概略構成図である。It is a schematic block diagram which shows roughly an example of a structure of the control system of the air conditioner which concerns on Embodiment 2 of this invention. 本発明の実施の形態3に係る空気調和機の制御システムの構成の一例を概略的に示す概略構成図である。It is a schematic block diagram which shows roughly an example of a structure of the control system of the air conditioner which concerns on Embodiment 3 of this invention.
 以下、図面に基づいてこの発明の実施の形態について説明する。なお、図1を含め、以下の図面では各構成を概念的に示したものである。また、図1を含め、以下の図面において、同一の符号を付したものは、同一又はこれに相当するものであり、このことは明細書の全文において共通することとする。さらに、明細書全文に表わされている構成要素の形態は、あくまでも例示であって、これらの記載に限定されるものではない。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. In addition, in the following drawings including FIG. 1, each structure is shown notionally. Further, in the following drawings including FIG. 1, the same reference numerals denote the same or equivalent parts, and this is common throughout the entire specification. Furthermore, the forms of the constituent elements shown in the entire specification are merely examples, and are not limited to these descriptions.
実施の形態1.
 図1は、本発明の実施の形態1に係る空気調和機の制御システム(以下、システムAと称する)の構成の一例を概略的に示す概略構成図である。図1に基づいて、システムAについて説明する。図1では、システムAにおける空調コントローラ40で制御される1系統の空気調和機を例に図示している。システムAで制御される空気調和機は、複数の部屋(空調対象空間)に設置された室内機と、それらの室内機に接続されている室外機(図1では1つ)で構成されている。つまり、システムAは、1つの空調コントローラ40で1系統の空気調和機を制御している。なお、系統とは冷媒系統を示している。
Embodiment 1 FIG.
FIG. 1 is a schematic configuration diagram schematically showing an example of the configuration of an air conditioner control system (hereinafter referred to as system A) according to Embodiment 1 of the present invention. The system A will be described with reference to FIG. In FIG. 1, a single air conditioner controlled by the air conditioning controller 40 in the system A is illustrated as an example. The air conditioner controlled by the system A is composed of indoor units installed in a plurality of rooms (air-conditioning target spaces) and outdoor units (one in FIG. 1) connected to these indoor units. . That is, the system A controls one system of air conditioner with one air conditioning controller 40. The system indicates a refrigerant system.
 図1では、3つの部屋に、それぞれ2つの室内機が設置されている状態を例に示している。具体的には、部屋30aには室内機31a,31bが設置され、部屋30bには室内機31c,31dが設置され、部屋30cには室内機31e,31fが設置された状態を示している。そして、室内機31a,31b,31c,31d,31e,31fは、1つの室外機32に接続されている。以下の説明において、室内機31a,31b,31c,31d,31e,31fを分ける必要がないときは、これらをまとめて室内機31と称する場合がある。また、以下の説明において、部屋30a,30b,30cを分ける必要がないときは、これらをまとめて部屋30と称する場合がある。 FIG. 1 shows an example in which two indoor units are installed in three rooms. Specifically, indoor units 31a and 31b are installed in the room 30a, indoor units 31c and 31d are installed in the room 30b, and indoor units 31e and 31f are installed in the room 30c. The indoor units 31a, 31b, 31c, 31d, 31e, and 31f are connected to one outdoor unit 32. In the following description, when it is not necessary to separate the indoor units 31a, 31b, 31c, 31d, 31e, and 31f, these may be collectively referred to as the indoor unit 31. In the following description, when it is not necessary to separate the rooms 30a, 30b, and 30c, these may be collectively referred to as the room 30.
 なお、室内機31と、室外機32とは、図示省略の冷媒配管で接続されている。冷媒配管は、室内機31、室外機32に搭載されている冷凍サイクルの各要素機器(圧縮機、室外熱交換器、絞り装置、室内熱交換器)を接続している。そして、冷凍サイクルの各容器機器に冷媒を循環させることで冷房又は暖房を行なえるようになっている。 Note that the indoor unit 31 and the outdoor unit 32 are connected by a refrigerant pipe (not shown). Refrigerant piping connects each component device (compressor, outdoor heat exchanger, expansion device, indoor heat exchanger) of the refrigeration cycle mounted on the indoor unit 31 and the outdoor unit 32. And cooling or heating can be performed by circulating a refrigerant | coolant to each container apparatus of a refrigerating cycle.
 まず、室内機31について説明する。図2は、室内機31に搭載されている室内機コントローラ6の持つ機能を示した機能ブロック図である。室内機31は、室内機コントローラ6を有している。室内機コントローラ6には、機能部1、検知部2、演算処理部3、記憶部4、通信部5が少なくとも搭載されている。 First, the indoor unit 31 will be described. FIG. 2 is a functional block diagram showing the functions of the indoor unit controller 6 mounted on the indoor unit 31. The indoor unit 31 has an indoor unit controller 6. The indoor unit controller 6 includes at least a function unit 1, a detection unit 2, an arithmetic processing unit 3, a storage unit 4, and a communication unit 5.
 機能部1は、空気調和機の基本的な動作を制御する機能を有し、また後述する「空調負荷計測モード」において室内機31の運転状態をセットする機能を有する。 The functional unit 1 has a function of controlling the basic operation of the air conditioner, and also has a function of setting the operating state of the indoor unit 31 in an “air conditioning load measurement mode” described later.
 検知部2は、室内機31の吸い込み温度を計測する吸い込み温度計、リモコンが保有するリモコン室温計、外部室温計が取得した室温を検知する機能を有する。
 なお、吸い込み温度計、リモコン室温計、外部室温計については、図示を省略しているが、吸い込み温度計は室内機31に吸い込んだ室内空気の温度が計測できる位置に、リモコン室温計は図示省略のリモコンに、外部室温計は部屋30の室温を計測できる位置に、それぞれ設置されていればよい。そして、吸い込み温度計、リモコン室温計、外部室温計で計測された室温が、有線又は無線により検知部2に送信されるようになっている。実施の形態1では、吸い込み温度計で取得した室温を利用している場合を例に説明する。
The detection unit 2 has a function of detecting a suction thermometer for measuring the suction temperature of the indoor unit 31, a remote control room temperature meter held by the remote controller, and a room temperature acquired by the external room temperature meter.
In addition, although illustration is abbreviate | omitted about a suction thermometer, a remote control room temperature meter, and an external room temperature meter, a remote control room temperature meter is abbreviate | omitted in the position which can measure the temperature of the indoor air suck | inhaled by the indoor unit 31. The remote room temperature meter may be installed at a position where the room temperature of the room 30 can be measured. The room temperature measured by the suction thermometer, the remote controller room temperature meter, and the external room temperature meter is transmitted to the detection unit 2 by wire or wirelessly. In the first embodiment, a case where the room temperature acquired by the suction thermometer is used will be described as an example.
 演算処理部3は、機能部1から送信される情報を演算処理し、処理した結果を記憶部4、機能部1に送信する機能を有する。
 記憶部4は、演算処理部3で演算処理された結果を保存し、機能部1から必要な情報の取得要求が生じた場合には、機能部1へと記憶したデータを送信する機能を有する。
 通信部5は、機能部1からの情報を他室内機、室外機32、空調コントローラ40に送信し、これらか送られる情報を受信する機能を有する。
The arithmetic processing unit 3 has a function of performing arithmetic processing on information transmitted from the function unit 1 and transmitting the processed result to the storage unit 4 and the function unit 1.
The storage unit 4 has a function of storing the result of the arithmetic processing performed by the arithmetic processing unit 3 and transmitting the stored data to the functional unit 1 when a request for acquiring necessary information is generated from the functional unit 1. .
The communication unit 5 has a function of transmitting information from the function unit 1 to the other indoor units, the outdoor unit 32, and the air conditioning controller 40, and receiving information transmitted from these units.
 次に、「空調負荷計測モード」について説明する。図3は、任意の時間における部屋30a,30b,30c,30dの設定温度及び室温を示したものである。図4は、システムAが実行する「空調負荷計測モード」時の処理の流れを示すフローチャートである。図5は、「空調負荷計測モード」中の室温変化を示す図である。なお、図3では、部屋30a,30b,30c,30dには、空調コントローラ40で制御される1系統の空気調和機を構成する室内機31が設置されることを想定している。また、以下の説明において、部屋30a,30b,30c,30dを分ける必要がないときは、上述したように、これらをまとめて部屋30と称する場合がある。 Next, the “air conditioning load measurement mode” will be described. FIG. 3 shows the set temperature and room temperature of the rooms 30a, 30b, 30c, and 30d at an arbitrary time. FIG. 4 is a flowchart showing a process flow in the “air conditioning load measurement mode” executed by the system A. FIG. 5 is a diagram illustrating a change in room temperature during the “air conditioning load measurement mode”. In FIG. 3, it is assumed that indoor units 31 constituting one system of air conditioner controlled by the air conditioning controller 40 are installed in the rooms 30a, 30b, 30c, and 30d. In the following description, when it is not necessary to separate the rooms 30a, 30b, 30c, and 30d, they may be collectively referred to as the room 30 as described above.
 図3では、部屋30の全部において設定温度が24℃に設定されている状態を例に示している。しかしながら、部屋30の全部において設定温度を24℃にしても、すべての部屋の室温が24℃になるとは限らない。具体的には、図3に示すように、設定温度が24℃に設定されたとしても、部屋30aの室温は21℃、部屋30bの室温は23℃、部屋30cの室温が24℃、部屋30dの室温は27℃になってしまう場合が生じる。これは、熱負荷が部屋及び時間により異なるためである。 FIG. 3 shows an example in which the set temperature is set to 24 ° C. in the entire room 30. However, even if the set temperature is set to 24 ° C. in all the rooms 30, the room temperature of all the rooms is not necessarily 24 ° C. Specifically, as shown in FIG. 3, even if the set temperature is set to 24 ° C., the room temperature of the room 30a is 21 ° C., the room temperature of the room 30b is 23 ° C., the room temperature of the room 30c is 24 ° C., and the room 30d. In some cases, the room temperature becomes 27 ° C. This is because the heat load varies with room and time.
 つまり、部屋30aにおいては室温が21℃で設定温度よりも3℃低く、部屋30dにおいては室温が27℃で設定温度よりも3℃高くなっていることから、部屋30aよりも部屋30dの方が空間に熱源が多く存在し、部屋30aよりも部屋30dの方が熱負荷が高い状況にあるといえる。 That is, in the room 30a, the room temperature is 21 ° C. and 3 ° C. lower than the set temperature, and in the room 30d, the room temperature is 27 ° C. and 3 ° C. higher than the set temperature. It can be said that there are many heat sources in the space, and the room 30d has a higher heat load than the room 30a.
 図4に基づいて、「空調負荷計測モード」時の処理の流れについて説明する。「空調負荷計測モード」は、室内機31が運転状態である時に実行される。室内機31が運転状態であるかどうかは室内機コントローラ6によって判断される。なお、室内機31が運転状態であるかどうかは、室内機コントローラ6からの情報を受信した空調コントローラ40が判断してもよい。また、以下で説明するステップについては、室内機コントローラ6が行っているものとして説明するが、これらのステップも室内機コントローラ6からの情報を受信した空調コントローラ40が実行してもよい。 Referring to FIG. 4, the process flow in the “air conditioning load measurement mode” will be described. The “air conditioning load measurement mode” is executed when the indoor unit 31 is in an operating state. Whether the indoor unit 31 is in an operating state is determined by the indoor unit controller 6. Whether the indoor unit 31 is in an operating state may be determined by the air conditioning controller 40 that has received information from the indoor unit controller 6. Moreover, although the steps described below are described as being performed by the indoor unit controller 6, these steps may also be executed by the air conditioning controller 40 that has received information from the indoor unit controller 6.
 室内機31が運転状態である時に(ステップS1)、室内機コントローラ6により設定温度と室温との差が計測され、その差の大きさに応じて「空調負荷計測モード」への切り替えが行われる(ステップS2)。なお、「空調負荷計測モード」は、設定温度と室温との差の大きさに応じて切り替えられるが、そのときの温度差については任意に決定できるものとする。 When the indoor unit 31 is in the operating state (step S1), the difference between the set temperature and the room temperature is measured by the indoor unit controller 6, and switching to the “air conditioning load measurement mode” is performed according to the magnitude of the difference. (Step S2). The “air conditioning load measurement mode” is switched according to the magnitude of the difference between the set temperature and the room temperature, but the temperature difference at that time can be arbitrarily determined.
 室内機コントローラ6は、設定温度と室温との差が予め設定されている閾値よりも大きい(例えば、3℃以上の温度差がある)と判断した場合(ステップS2;大)、室内機31の運転状態を「空調負荷計測モード」へ移行させる(ステップS3)。ここで、閾値とは、ユーザが定義した値でもよく、もちろん室内機コントローラ6が最適な値として設定した値でもよい。室内機コントローラ6は、「空調負荷計測モード」の結果から熱負荷を負荷度数として算出する(ステップS4)。そして、室内機コントローラ6は、室内機31又は室外機32の現在の運転状態、現在の運転設定を補正し、設定温度と室温の差を小さくする(ステップS5)。 When the indoor unit controller 6 determines that the difference between the set temperature and the room temperature is larger than a preset threshold (for example, there is a temperature difference of 3 ° C. or more) (step S2; large), the indoor unit 31 The operation state is shifted to the “air conditioning load measurement mode” (step S3). Here, the threshold value may be a value defined by the user or, of course, a value set by the indoor unit controller 6 as an optimum value. The indoor unit controller 6 calculates the thermal load as the load frequency from the result of the “air conditioning load measurement mode” (step S4). Then, the indoor unit controller 6 corrects the current operation state and the current operation setting of the indoor unit 31 or the outdoor unit 32, and reduces the difference between the set temperature and the room temperature (step S5).
 空調コントローラ40又は室内機コントローラ6は、室内機31又は室外機32の現在の運転状態、現在の運転設定の変更により補正を行うこととなるが、具体的には、室内機31であれば風量調整、風向、サーモON時間、設定温度等の補正を行う。ここでの設定温度は、ユーザが確認できるリモコン等には表示されず、空調コントローラ40又は室内機コントローラ6のみが持つ補正設定温度であるものとする。室外機32であれば、圧縮機の運転周波数を下げ、室外機32の能力を落とす等の補正を行うことが挙げられる。 The air conditioning controller 40 or the indoor unit controller 6 performs correction by changing the current operation state of the indoor unit 31 or the outdoor unit 32 and the current operation setting. Adjustment, wind direction, thermo-ON time, set temperature, etc. are corrected. The set temperature here is not displayed on a remote controller or the like that can be confirmed by the user, but is a corrected set temperature that only the air conditioning controller 40 or the indoor unit controller 6 has. In the case of the outdoor unit 32, correction such as lowering the operating frequency of the compressor and reducing the capacity of the outdoor unit 32 may be performed.
 「空調負荷計測モード」について図5により詳細に説明する。室内機コントローラ6は、「空調負荷計測モード」へ移行した室内機31の運転を完全に停止する。室内機31の運転を停止すると、その後、室温は部屋30の空間の熱源により時間をかけて設定温度へと近づいていくこととなる。例えば、図3に示す部屋30aのように設定温度よりも3℃低い状況になっている場合において、部屋30aの室内機31を停止することで、室温が徐々に上がり、時間の経過とともに設定温度に近づいてくる。室内機コントローラ6は、このときの設定温度へ到達する時間により空間の熱負荷を負荷度数として算出する。 “Air conditioning load measurement mode” will be described in detail with reference to FIG. The indoor unit controller 6 completely stops the operation of the indoor unit 31 that has shifted to the “air conditioning load measurement mode”. When the operation of the indoor unit 31 is stopped, the room temperature then approaches the set temperature over time due to the heat source in the space of the room 30. For example, in the case where the room temperature is 3 ° C. lower than the set temperature as in the room 30a shown in FIG. 3, the room temperature gradually increases by stopping the indoor unit 31 in the room 30a. Approaching. The indoor unit controller 6 calculates the thermal load of the space as the load frequency based on the time to reach the set temperature at this time.
 例えば、設定温度と室温との温度差が3℃あった場合に(図5に示す設定温度T-ΔT≧3℃)、室温が30分間かけて設定温度に到達したとすると(図5に示す到達時間t=30分)、室内機コントローラ6は、3(℃)×30(分)=90として負荷度数を算出する。つまり、「空調負荷計測モード」とは、現在の室温が、どのくらいの時間をかけて設定温度に近づくかということから負荷度数を算出するモードである。そして、室内機コントローラ6は、この算出した負荷度数に応じて室内機31又は室外機32の補正運転を行う。 For example, if the temperature difference between the set temperature and room temperature is 3 ° C. (set temperature T−ΔT ≧ 3 ° C. shown in FIG. 5), and the room temperature reaches the set temperature over 30 minutes (shown in FIG. 5) Arrival time t = 30 minutes), the indoor unit controller 6 calculates the load frequency as 3 (° C.) × 30 (minutes) = 90. That is, the “air conditioning load measurement mode” is a mode in which the load frequency is calculated from how long the current room temperature approaches the set temperature. And the indoor unit controller 6 performs the correction | amendment driving | operation of the indoor unit 31 or the outdoor unit 32 according to this calculated load frequency.
 次に、補正運転について図6及び図7を参照しながら説明する。図6は、室内機コントローラ6が算出した熱負荷(負荷度数)による補正運転内容の一例を示す図である。図7は、室内機コントローラ6による補正運転内容を決定するプロセスを表すフローチャートである。なお、図6においては、補正運転内容をA~Hまでの8種類を例として挙げている。 Next, the correction operation will be described with reference to FIGS. FIG. 6 is a diagram illustrating an example of the corrected operation content based on the thermal load (load frequency) calculated by the indoor unit controller 6. FIG. 7 is a flowchart showing a process of determining the corrected operation content by the indoor unit controller 6. In FIG. 6, eight types of correction operation contents A to H are given as examples.
 室内機コントローラ6は、「空調負荷計測モード」において算出された熱負荷により補正運転内容を決定し、室内機31または室外機32の運転状況を補正する。熱負荷(ここではA~H)は、数値で定義され、室内機コントローラ6の記憶部4にデータベースとして保持される。この数値と補正運転内容の紐付け、つまり関連付けは、ユーザが任意に決定できるものとするが、これに限定するものではなく、もちろん室内機コントローラ6が最適なものを選択して補正運転内容を決定することもできる。 The indoor unit controller 6 determines the correction operation content based on the heat load calculated in the “air conditioning load measurement mode”, and corrects the operation status of the indoor unit 31 or the outdoor unit 32. The thermal load (here, A to H) is defined by a numerical value and is stored as a database in the storage unit 4 of the indoor unit controller 6. The association between the numerical value and the corrected operation content, that is, the association can be arbitrarily determined by the user, but is not limited to this. Of course, the indoor unit controller 6 selects the optimum one and sets the corrected operation content. It can also be determined.
 例えば、省エネを実現させたい場合には、圧縮機の能力を下げる補正運転内容の優先順位を上げることが考えられる。ただし、同じ室外機32の系統に接続されている室内機コントローラ6の管理する部屋30の設定温度と室温の状態によっては必ずしも順位が高いものが優先されるわけではなく、空調コントローラ40により同一系統につながる室内機コントローラ6の管理する部屋30の状態すべてを考慮して運転状態が決定される。なお、圧縮機に能力を下げる以外には、設定温度変更(補正設定温度変更)、送風機の風量の調整、送風機の送風時間、空調空気の風向などが補正運転内容として考えられる。ただし、図6の内容はあくまでも一例であって、記載の内容に限定されるものではない。 For example, in order to realize energy saving, it is conceivable to raise the priority order of the correction operation contents that reduce the capacity of the compressor. However, depending on the set temperature and room temperature of the room 30 managed by the indoor unit controller 6 connected to the system of the same outdoor unit 32, a higher priority is not necessarily given priority. The operation state is determined in consideration of all the states of the room 30 managed by the indoor unit controller 6 connected to. In addition to lowering the capacity of the compressor, a change in set temperature (correction set temperature change), adjustment of the air volume of the blower, blowing time of the blower, air direction of the conditioned air, and the like can be considered as the details of the correction operation. However, the content of FIG. 6 is an example to the last, and is not limited to the content of description.
 補正運転決定のプロセスについて図7を用いて説明する。なお、補正運転決定のプロセスについては空調コントローラ40及び室内機コントローラ6によって実行される。 The correction operation determination process will be described with reference to FIG. The process for determining the correct operation is executed by the air conditioning controller 40 and the indoor unit controller 6.
 室内機コントローラ6は、上述したようにまず「空調負荷予測モード」を実行する(ステップS11)。これにより、室内機コントローラ6は、負荷度数を算出する(ステップS12)。そして、室内機コントローラ6は、負荷度数を算出し後、補正運転内容を決定する(ステップS13)。このとき、室内機コントローラ6は、優先順位の高いものを補正運転内容として決定するが、実際に運転する前には空調コントローラ40へ許可又は否認を求める。 The indoor unit controller 6 first executes the “air conditioning load prediction mode” as described above (step S11). Thereby, the indoor unit controller 6 calculates the load frequency (step S12). Then, after calculating the load frequency, the indoor unit controller 6 determines the correction operation content (step S13). At this time, the indoor unit controller 6 determines the corrected operation content having a high priority, but asks the air conditioning controller 40 for permission or denial before actually operating.
 空調コントローラ40より補正運転内容が許可されると(ステップS14)、室内機コントローラ6は、図6で説明した補正運転内容に基づき補正運転を実行する(ステップS16)。
 一方、空調コントローラ40より補正運転内容が否認されると(ステップS15)、室内機コントローラ6は、優先順位を1段階下げて、補正運転内容を決定し、空調コントローラ40に再度許可又は否認を求める(ステップS13)。
 このプロセスは、補正運転内容が決定されるまで、優先順位を段階的に下げて実行される。
When the corrected operation content is permitted by the air conditioning controller 40 (step S14), the indoor unit controller 6 executes the corrected operation based on the corrected operation content described in FIG. 6 (step S16).
On the other hand, when the corrected operation content is denied by the air conditioning controller 40 (step S15), the indoor unit controller 6 lowers the priority by one step, determines the corrected operation content, and asks the air conditioning controller 40 to permit or deny it again. (Step S13).
This process is executed in a step-down order of priority until the corrected operation content is determined.
 システムAの動作について図8を用いて説明する。図8は、システムAが実行する制御システムの連続性を示したタイミングチャートである。なお、室温は、一定時間毎に計測され、熱負荷も一定時間毎に算出されている。 The operation of system A will be described with reference to FIG. FIG. 8 is a timing chart showing the continuity of the control system executed by the system A. The room temperature is measured at regular intervals, and the thermal load is calculated at regular intervals.
 設定温度Tに対して室温(T-ΔT)が予め設定されている閾値よりも大きい場合、室内機コントローラ6は、「空調負荷側計測モード」に移行し、室内機31の運転を停止する。
 室内機31を停止した状態下において、室温はta(t2-t1)の時間をかけてΔT分だけ上昇し、設定温度=室温となる。この際に、室内機コントローラ6及び空調コントローラ40は、負荷度数を計算し、運転状態を補正する。
 運転状態を補正した状態で室内機31の運転を再開し、ユーザが設定した時間にて再度室温と設定温度との差を計測し、温度差が改善されていない場合、「空調負荷計測モード」へと移行し、運転補正内容を再度決定する。
When the room temperature (T−ΔT) is larger than the preset threshold value with respect to the set temperature T, the indoor unit controller 6 shifts to the “air conditioning load side measurement mode” and stops the operation of the indoor unit 31.
With the indoor unit 31 stopped, the room temperature increases by ΔT over the time ta (t2-t1), and the set temperature = room temperature. At this time, the indoor unit controller 6 and the air conditioning controller 40 calculate the load frequency and correct the operation state.
When the operation of the indoor unit 31 is resumed with the operation state corrected, the difference between the room temperature and the set temperature is measured again at the time set by the user. If the temperature difference is not improved, the “air conditioning load measurement mode” The operation correction content is determined again.
 以上のように構成されたシステムAでは、まず、検知部2で検知された室温と設定温度との温度差から機能部1により「空調負荷計測モード」への切り替えが判断される。次に、演算処理部3により「空調負荷計測モード」にて取得されたデータから熱負荷が負荷度数として算出される。記憶部4には算出された熱負荷により補正運転内容を決定するために必要な関係が保持されている。次に、室内機コントローラ6は、通信部5を介して決定した補正運転内容を空調コントローラ40に送信し、許可又は否認を受信する。空調コントローラ40は、室内機コントローラ6により送信された補正運転内容を、自身が制御する系全体の動作を考慮して、補正運転実行の許可又は否認を行い、その結果を室内機コントローラ6に送信する。 In the system A configured as described above, first, the switching to the “air conditioning load measurement mode” is determined by the function unit 1 from the temperature difference between the room temperature detected by the detection unit 2 and the set temperature. Next, the heat load is calculated as the load frequency from the data acquired by the arithmetic processing unit 3 in the “air conditioning load measurement mode”. The storage unit 4 holds a relationship necessary for determining the corrected operation content based on the calculated thermal load. Next, the indoor unit controller 6 transmits the corrected operation content determined via the communication unit 5 to the air conditioning controller 40 and receives permission or denial. The air conditioning controller 40 permits or denies the execution of the correction operation in consideration of the operation of the entire system controlled by the indoor operation controller 6, and transmits the result to the indoor unit controller 6. To do.
 「自身が制御する系全体の動作を考慮して」について図1及び図6を参照しながら説明する。
 図1に示すように、室外機32は6つの室内機31につながっている。室外機32には圧縮機が搭載されているので、図6に示す補正運転内容において「A 圧縮機の能力を下げる(-5%)」を選択した場合には、6つの室内機31の全部に影響が及ぶ。
“Considering the operation of the entire system controlled by itself” will be described with reference to FIGS.
As shown in FIG. 1, the outdoor unit 32 is connected to six indoor units 31. Since the outdoor unit 32 is equipped with a compressor, when “A reduce the capacity of the compressor (−5%)” is selected in the correction operation content shown in FIG. Will be affected.
 例えば、部屋30a、部屋30b、部屋30cのすべてが設定温度より室温が低い場合(熱負荷低)には、圧縮機の能力を下げることが有効である。その一方、部屋30aだけ設定温度より室温が高い場合(熱負荷高)には、部屋30b、部屋30cに存在する室内機31の室内機コントローラ6が圧縮機の能力を下げる判断をして、圧縮機の能力を下げると部屋30aの室温がさらに高くなってしまう。このような場合、空調コントローラ40は、部屋30b、部屋30cからのリクエストを受けたとしても、そのリクエスト通りに補正運転内容を実行すると部屋30aの快適性が損なわれると判断し、そのリクエストを否認する。 For example, when the room 30a, the room 30b, and the room 30c are all at a room temperature lower than the set temperature (low thermal load), it is effective to reduce the compressor capacity. On the other hand, when the room temperature is higher than the set temperature only in the room 30a (high heat load), the indoor unit controller 6 of the indoor unit 31 existing in the room 30b and the room 30c determines that the capacity of the compressor is lowered, and the compression is performed. If the capacity of the machine is lowered, the room temperature of the room 30a will be further increased. In such a case, even if the air conditioning controller 40 receives a request from the room 30b or 30c, the air conditioning controller 40 determines that the comfort of the room 30a is impaired if the corrected operation content is executed as requested, and denies the request. To do.
 すなわち、「自身が制御する系全体の動作を考慮して」というのは、系全体に影響が及ぶような運転補正内容、図6であればA~Dの圧縮機の能力を下げるような場合が該当する。なお、他の部屋に影響を及ぼさないような補正運転内容(図6であればE~H)は、それぞれの室内機31により実行可能であるため、「自身が制御する系全体の動作を考慮して」の考慮対象には含まなくてもよい。 In other words, “considering the operation of the entire system controlled by itself” means the details of the operation correction that affects the entire system. In the case of FIG. 6, the capacity of the compressors A to D is reduced. Is applicable. It should be noted that correction operation contents that do not affect other rooms (E to H in FIG. 6) can be executed by the respective indoor units 31, so that “the operation of the entire system controlled by itself is considered. It does not have to be included in the object of consideration.
 したがって、システムAによれば、制御する部屋30毎の設定温度と室温との差を小さくすることができ、空調コントローラ40が制御する系(室内機31、室外機32)の全部において無駄の少ない空調運転制御が可能であり、各部屋30の快適性を損なうことなく、同時に省エネ運転を実現することができる。 Therefore, according to the system A, the difference between the set temperature for each room 30 to be controlled and the room temperature can be reduced, and there is little waste in all the systems (the indoor unit 31 and the outdoor unit 32) controlled by the air conditioning controller 40. Air-conditioning operation control is possible, and energy-saving operation can be realized at the same time without impairing the comfort of each room 30.
 なお、実施の形態1では、冷房運転時の場合における運転制御について説明したが、この内容に限定するものではなく、暖房運転時でも同様な運転制御を実行することができる。暖房運転の場合には、図5における室温変化が右肩下がりになる。このように、暖房運転時においても、快適性の向上及び省エネ運転の実現の両立を図ることができる。これは、以下の実施の形態2、3でも同様である。 In addition, although Embodiment 1 demonstrated the operation control in the case of air_conditionaing | cooling operation, it is not limited to this content, The same operation control can be performed also at the time of heating operation. In the case of heating operation, the room temperature change in FIG. In this way, it is possible to achieve both improvement of comfort and realization of energy saving operation even during heating operation. The same applies to the following second and third embodiments.
実施の形態2.
 図9は、本発明の実施の形態2に係る空気調和機の制御システム(以下、システムBと称する)の構成の一例を概略的に示す概略構成図である。図9に基づいて、システムBについて説明する。なお、実施の形態2では、実施の形態1との相違点を中心に説明し、実施の形態1と同一部分には、同一符号を付して説明を省略するものとする。
Embodiment 2. FIG.
FIG. 9 is a schematic configuration diagram schematically showing an example of the configuration of an air conditioner control system (hereinafter referred to as system B) according to Embodiment 2 of the present invention. The system B will be described with reference to FIG. In the second embodiment, differences from the first embodiment will be mainly described, and the same parts as those in the first embodiment will be denoted by the same reference numerals and the description thereof will be omitted.
 図9では、システムBにおける空調コントローラ40で制御される1系統の空気調和機を例に図示している。システムBで制御される空気調和機は、複数の部屋30(空調対象空間)に設置された室内機31と、それらの室内機31に接続されている室外機32(図9では1つ)で構成されている。つまり、システムBは、1つの空調コントローラ40で1系統の空気調和機を制御している。 FIG. 9 shows an example of a single air conditioner controlled by the air conditioning controller 40 in the system B. The air conditioner controlled by the system B includes an indoor unit 31 installed in a plurality of rooms 30 (air-conditioning target spaces), and an outdoor unit 32 (one in FIG. 9) connected to the indoor units 31. It is configured. That is, in the system B, one air conditioner is controlled by one air conditioning controller 40.
 システムBのシステムAとの違いは、室温を取得する手段が室内機31の吸い込み温度計ではなく、外部温度計20(外部温度計20a~20c)を用いていることである。外部温度計としては、リモコン温度計でも、外部室温計でも、その他室温を計測することができるものでどんなものでもよい。外部温度計20を用いることで、室内の任意の場所に対して設定温度と室温との差から熱負荷を算出することができる。 The difference between the system B and the system A is that the means for acquiring the room temperature uses the external thermometer 20 (external thermometers 20a to 20c) instead of the suction thermometer of the indoor unit 31. The external thermometer may be a remote control thermometer, an external room temperature meter, or any other device that can measure room temperature. By using the external thermometer 20, the thermal load can be calculated from the difference between the set temperature and room temperature for an arbitrary place in the room.
 したがって、システムBによれば、システムAと同様に、制御する部屋30毎の設定温度と室温との差を小さくすることができ、空調コントローラ40が制御する系(室内機31、室外機32)の全部において無駄の少ない運転制御が可能であり、各部屋30の快適性を損なうことなく、同時に省エネ運転を実現することができる。 Therefore, according to the system B, similarly to the system A, the difference between the set temperature for each room 30 to be controlled and the room temperature can be reduced, and the system controlled by the air conditioning controller 40 (indoor unit 31 and outdoor unit 32). Therefore, it is possible to perform an energy-saving operation at the same time without impairing the comfort of each room 30.
実施の形態3.
 図10は、本発明の実施の形態3に係る空気調和機の制御システム(以下、システムCと称する)の構成の一例を概略的に示す概略構成図である。図10に基づいて、システムCについて説明する。なお、実施の形態3では、実施の形態1又は実施の形態2との相違点を中心に説明し、実施の形態1及び実施の形態2と同一部分には、同一符号を付して説明を省略するものとする。
Embodiment 3 FIG.
FIG. 10 is a schematic configuration diagram schematically showing an example of a configuration of an air conditioner control system (hereinafter, referred to as system C) according to Embodiment 3 of the present invention. The system C will be described based on FIG. In the third embodiment, differences from the first embodiment or the second embodiment will be mainly described, and the same parts as those in the first and second embodiments will be denoted by the same reference numerals. Shall be omitted.
 システムCのシステムA及びシステムBとの違いは、複数の空調コントローラ40を束ねる管理用システム50を有していることである。つまり、システムCは、複数系統の空気調和機を、それぞれを制御する空調コントローラ40を介して管理、制御実行できるようにしたものである。 The difference between the system A and the system B of the system C is that it has a management system 50 that bundles a plurality of air conditioning controllers 40. In other words, the system C can manage and control a plurality of air conditioners via the air conditioning controller 40 that controls each of the air conditioners.
 なお、図10では、4台の空調コントローラ40a~40dを管理用システム50で管理するようにした状態を例に示している。また、空調コントローラ40aには室内機31A及び室外機32Aが接続され、空調コントローラ40bには室内機31B及び室外機32Bが接続され、空調コントローラ40cには室内機31C及び室外機32Cが接続され、空調コントローラ40dには室内機31D及び室外機32Dが接続されている。室内機31A~31Dは、実施の形態1で説明した室内機31と同様であり、室外機32A~32Dは、実施の形態1で説明した室外機32と同様である。 FIG. 10 shows an example in which the four air conditioning controllers 40a to 40d are managed by the management system 50. The indoor unit 31A and the outdoor unit 32A are connected to the air conditioning controller 40a, the indoor unit 31B and the outdoor unit 32B are connected to the air conditioning controller 40b, and the indoor unit 31C and the outdoor unit 32C are connected to the air conditioning controller 40c. An indoor unit 31D and an outdoor unit 32D are connected to the air conditioning controller 40d. The indoor units 31A to 31D are the same as the indoor unit 31 described in the first embodiment, and the outdoor units 32A to 32D are the same as the outdoor unit 32 described in the first embodiment.
 管理用システム50は、通信線(例えば、LAN(Local Area Network)を介して各空調コントローラ40と接続されている。管理用システム50は、例えば各空調コントローラ40と同じ建物内に設置されていてもよく、イーサネット(登録商標)内であれば異なる建物内に設置されていてもよい。つまり、管理用システム50は、イーサネット(登録商標)を介して遠隔から各空調コントローラ40に接続されていてもよい。なお、管理用システム50と各空調コントローラ40との接続をLANに限定するものではなく、無線で接続してもよいことは言うまでもない。 The management system 50 is connected to each air conditioning controller 40 via a communication line (for example, a LAN (Local Area Network). The management system 50 is installed in the same building as each air conditioning controller 40, for example. Alternatively, it may be installed in a different building as long as it is within the Ethernet (registered trademark), that is, the management system 50 is remotely connected to each air conditioning controller 40 via the Ethernet (registered trademark). Needless to say, the connection between the management system 50 and each air conditioning controller 40 is not limited to the LAN, and may be connected wirelessly.
 システムCにおいては、複数の各空調コントローラ40は、実施の形態1で説明した室内機コントローラ6から送信された補正運転内容を管理用システム50に送信する。管理用システム50は、接続されている系の全部における補正運転の許可又は否認を取り仕切る。すなわち、実施の形態1及び実施の形態2においては、空調コントローラ40が制御する範囲内において補正運転の許可又は否認の判断を行っていたが、実施の形態3では、管理用システム50が接続されている範囲内において補正運転の許可又は否認の判断を行うようにしている。 In the system C, each of the plurality of air conditioning controllers 40 transmits the correction operation content transmitted from the indoor unit controller 6 described in the first embodiment to the management system 50. The management system 50 manages permission or denial of the correction operation in all the connected systems. That is, in the first embodiment and the second embodiment, whether the correction operation is permitted or denied is determined within the range controlled by the air conditioning controller 40, but in the third embodiment, the management system 50 is connected. Within the specified range, it is determined whether to permit or reject the correction operation.
 こうすることにより、複数の空気調和機の系が複数の空調コントローラ40によって制御されている場合であっても、管理用システム50が管理する系全体において、無駄の少ない運転制御が可能であり、各部屋30の快適性を損なうことなく、同時に省エネ運転を実現することができる。なお、管理用システム50は、各空調コントローラ40を介して各室内機コントローラ6の記憶部4に保持されている熱負荷と補正運転内容について登録又は変更することが可能になっている。 In this way, even when a plurality of air conditioner systems are controlled by the plurality of air conditioning controllers 40, operation control with less waste is possible in the entire system managed by the management system 50. Energy-saving operation can be realized at the same time without impairing the comfort of each room 30. In addition, the management system 50 can register or change the heat load and the corrected operation content held in the storage unit 4 of each indoor unit controller 6 via each air conditioning controller 40.
 1 機能部、2 検知部、3 演算処理部、4 記憶部、5 通信部、6 室内機コントローラ、20 外部温度計、20a 外部温度計、20b 外部温度計、20c 外部温度計、30 部屋、30a 部屋、30b 部屋、30c 部屋、30d 部屋、31 室内機、31A 室内機、31B 室内機、31C 室内機、31D 室内機、31a 室内機、31b 室内機、31c 室内機、31d 室内機、31e 室内機、31f 室内機、32 室外機、32A 室外機、32B 室外機、32C 室外機、32D 室外機、40 空調コントローラ、40a 空調コントローラ、40b 空調コントローラ、40c 空調コントローラ、40d 空調コントローラ、50 管理用システム、A 空気調和機の制御システム、B 空気調和機の制御システム、C 空気調和機の制御システム。 1 functional unit, 2 detection unit, 3 computation processing unit, 4 storage unit, 5 communication unit, 6 indoor unit controller, 20 external thermometer, 20a external thermometer, 20b external thermometer, 20c external thermometer, 30 rooms, 30a Room, 30b room, 30c room, 30d room, 31 indoor unit, 31A indoor unit, 31B indoor unit, 31C indoor unit, 31D indoor unit, 31a indoor unit, 31b indoor unit, 31c indoor unit, 31d indoor unit, 31e indoor unit , 31f indoor unit, 32 outdoor unit, 32A outdoor unit, 32B outdoor unit, 32C outdoor unit, 32D outdoor unit, 40 air conditioning controller, 40a air conditioning controller, 40b air conditioning controller, 40c air conditioning controller, 40d air conditioning controller, 50 management system, A Air conditioner control system Control system The control system C air conditioner of B air conditioner.

Claims (10)

  1.  1系統又は複数系統の空気調和機の制御システムであって、
     前記空気調和機を構成している室内機によって空調される空調対象空間の温度と予め設定されている設定温度との温度差が予め設定されている閾値よりも大きいとき、前記空調対象空間の熱負荷を算出し、
     前記熱負荷に基づいて前記室内機の運転状態を補正する補正運転内容を決定し、
     前記空気調和機の全体の動作を考慮して、決定した前記補正運転内容を許可又は否認し、
     許可した際、決定した前記補正運転内容に基づいて前記空気調和機の補正運転を実行する
     ことを特徴とする空気調和機の制御システム。
    A control system for one or more air conditioners,
    When the temperature difference between the temperature of the air-conditioning target space that is air-conditioned by the indoor unit that constitutes the air conditioner and a preset temperature that is set in advance is greater than a preset threshold value, the heat of the air-conditioning target space Calculate the load,
    Determine the correction operation content for correcting the operation state of the indoor unit based on the thermal load,
    Considering the overall operation of the air conditioner, permit or deny the determined correction operation content,
    When permitted, the correction operation of the air conditioner is executed based on the determined content of the correction operation. An air conditioner control system, comprising:
  2.  前記空調対象空間の熱負荷は、
     前記空気調和機を構成している室内機を停止させ、前記室内機の停止時から前記設定温度に到達するまでに要する時間に基づいて算出される
     ことを特徴とする請求項1に記載の空気調和機の制御システム。
    The heat load of the air conditioning target space is
    The air according to claim 1, wherein the air conditioner is calculated based on a time required to stop the indoor unit constituting the air conditioner and to reach the set temperature after the indoor unit is stopped. Harmonic machine control system.
  3.  算出された前記空調対象空間の熱負荷は、
     予め定められた数値として定義される
     ことを特徴とする請求項2に記載の空気調和機の制御システム。
    The calculated heat load of the air conditioning target space is
    The air conditioner control system according to claim 2, wherein the control system is defined as a predetermined numerical value.
  4.  前記補正運転内容は、
     数値として定義された前記空調対象空間の熱負荷と予め関連付けられて保持されている
     ことを特徴とする請求項3に記載の空気調和機の制御システム。
    The details of the corrected operation are:
    The air conditioner control system according to claim 3, wherein the air conditioner control system is stored in association with a thermal load of the air-conditioning target space defined as a numerical value.
  5.  前記補正運転内容には、
     優先順位が付けられている
     ことを特徴とする請求項4に記載の空気調和機の制御システム。
    In the corrected operation content,
    5. The air conditioner control system according to claim 4, wherein priority is given.
  6.  決定した前記補正運転内容を否認した際、
     前記補正運転内容の優先順位を段階的に下げて、補正運転内容を決定する
     ことを特徴とする請求項5に記載の空気調和機の制御システム。
    When denying the determined corrected operation details,
    The control system for an air conditioner according to claim 5, wherein the priority of the corrected operation content is lowered step by step to determine the corrected operation content.
  7.  前記空調対象空間の温度は、
     前記室内機の吸い込み温度を計測する吸い込み温度計、リモコンが保有するリモコン室温計、または、外部室温計が取得した温度により検知される
     ことを特徴とする請求項1~6のいずれか一項に記載の空気調和機の制御システム。
    The temperature of the air-conditioning target space is
    The detection according to any one of claims 1 to 6, wherein the temperature is detected by a temperature obtained by a suction thermometer that measures a suction temperature of the indoor unit, a remote control room temperature meter held by a remote controller, or an external room temperature meter. The air conditioner control system described.
  8.  前記複数系統の空気調和機を制御するものであって、
     各系統のそれぞれの空気調和機を制御するコントローラを束ねる管理用システムを備え、
     前記管理用システムが、
     全系統の空気調和機の全体の動作を考慮して、前記コントローラから送られる前記補正運転内容の許可又は否認を行う
     ことを特徴とする請求項1~7のいずれか一項に記載の空気調和機の制御システム。
    Controlling the plurality of air conditioners,
    It has a management system that bundles controllers that control each air conditioner of each system,
    The management system is
    The air conditioning according to any one of claims 1 to 7, wherein the correction operation content sent from the controller is permitted or denied in consideration of the entire operation of the air conditioners of all systems. Machine control system.
  9.  1系統の空気調和機の制御方法であって、
     前記空気調和機を構成している室内機によって空調される空調対象空間の温度を検知し、
     検知した前記空調対象空間の温度と予め設定されている設定温度との温度差を予め設定されている閾値と比較し、
     前記温度差が前記閾値よりも大きいときに、前記空調対象空間の熱負荷を算出するモードに移行し、
     前記モードにおいて、前記熱負荷に基づいて前記室内機の運転状態を補正する補正運転内容を決定し、
     前記空気調和機の全体の動作を考慮して、決定した前記補正運転内容を許可又は否認し、
     許可した際には、決定した前記補正運転内容に基づいて前記空気調和機の補正運転を実行し、
     否認した際には、前記補正運転内容の優先順位を段階的に下げて、補正運転内容を再度決定する
     ことを特徴とする空気調和機の制御方法。
    A control method for a single air conditioner,
    Detecting the temperature of the air-conditioning target space that is air-conditioned by the indoor units constituting the air conditioner,
    A temperature difference between the detected temperature of the air-conditioning target space and a preset temperature is compared with a preset threshold;
    When the temperature difference is larger than the threshold value, the mode shifts to a mode for calculating the heat load of the air-conditioning target space,
    In the mode, determining a correction operation content for correcting the operation state of the indoor unit based on the thermal load,
    Considering the overall operation of the air conditioner, permit or deny the determined correction operation content,
    When permitted, execute the correction operation of the air conditioner based on the determined correction operation content,
    When rejected, the priority order of the corrected operation content is lowered step by step, and the corrected operation content is determined again.
  10.  複数系統の空気調和機の制御方法であって、
     前記空気調和機を構成している室内機によって空調される空調対象空間の温度を検知し、
     検知した前記空調対象空間の温度と予め設定されている設定温度との温度差を予め設定されている閾値と比較し、
     前記温度差が前記閾値よりも大きいときに、前記空調対象空間の熱負荷を算出するモードに移行し、
     前記モードにおいて、前記熱負荷に基づいて前記室内機の運転状態を補正する補正運転内容を決定し、
     各系統のそれぞれの空気調和機を制御するコントローラを束ねる管理用システムが全系統の空気調和機の全体の動作を考慮して、決定した前記補正運転内容を許可又は否認し、
     前記管理用システムにより許可された際には、決定した前記補正運転内容に基づいて前記空気調和機の補正運転を実行し、
     否認した際には、前記補正運転内容の優先順位を段階的に下げて、補正運転内容を再度決定する
     ことを特徴とする空気調和機の制御方法。
    A control method for a plurality of air conditioners,
    Detecting the temperature of the air-conditioning target space that is air-conditioned by the indoor units constituting the air conditioner,
    A temperature difference between the detected temperature of the air-conditioning target space and a preset temperature is compared with a preset threshold;
    When the temperature difference is larger than the threshold value, the mode shifts to a mode for calculating the heat load of the air-conditioning target space,
    In the mode, determining a correction operation content for correcting the operation state of the indoor unit based on the thermal load,
    The management system that bundles the controllers that control each air conditioner of each system considers the overall operation of the air conditioners of all systems, and permits or denies the determined correction operation content,
    When permitted by the management system, execute the correction operation of the air conditioner based on the determined correction operation content,
    When rejected, the priority order of the corrected operation content is lowered step by step, and the corrected operation content is determined again.
PCT/JP2013/060049 2013-04-02 2013-04-02 Air conditioner control system and air conditioner control method WO2014162509A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2015509762A JPWO2014162509A1 (en) 2013-04-02 2013-04-02 Air conditioner control system and air conditioner control method
PCT/JP2013/060049 WO2014162509A1 (en) 2013-04-02 2013-04-02 Air conditioner control system and air conditioner control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/060049 WO2014162509A1 (en) 2013-04-02 2013-04-02 Air conditioner control system and air conditioner control method

Publications (1)

Publication Number Publication Date
WO2014162509A1 true WO2014162509A1 (en) 2014-10-09

Family

ID=51657842

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/060049 WO2014162509A1 (en) 2013-04-02 2013-04-02 Air conditioner control system and air conditioner control method

Country Status (2)

Country Link
JP (1) JPWO2014162509A1 (en)
WO (1) WO2014162509A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016208301A (en) * 2015-04-23 2016-12-08 株式会社デンソーウェーブ Temperature correction device
US20180202676A1 (en) * 2017-01-17 2018-07-19 Panasonic Intellectual Property Management Co., Ltd. Air conditioner control device and air conditioner control method
JP2019194508A (en) * 2018-05-01 2019-11-07 株式会社東芝 Comfort index calculation device, program and comfort index calculation method
WO2020012641A1 (en) * 2018-07-13 2020-01-16 三菱電機株式会社 Controller and air-conditioning system

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0763394A (en) * 1993-08-31 1995-03-07 Toshiba Corp Air conditioner
JPH0960943A (en) * 1995-08-28 1997-03-04 Toshiba Corp Air conditioner
JPH09303847A (en) * 1996-05-09 1997-11-28 Yamatake Honeywell Co Ltd Wireless air conditioning control system
JP2008075993A (en) * 2006-09-22 2008-04-03 Matsushita Electric Works Ltd Air-conditioning control system and air-conditioning control device
JP2008209029A (en) * 2007-02-23 2008-09-11 Mitsubishi Heavy Ind Ltd Air conditioner and automatic heating operation control method
JP2010261617A (en) * 2009-04-30 2010-11-18 Mitsubishi Electric Corp Air conditioning system

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009115359A (en) * 2007-11-05 2009-05-28 Daikin Ind Ltd Air-conditioning control device, air conditioning device, and air-conditioning control method
JP5391785B2 (en) * 2009-04-02 2014-01-15 ダイキン工業株式会社 Air conditioning system
JP5449049B2 (en) * 2010-06-17 2014-03-19 東芝キヤリア株式会社 Air conditioning system
JP5802075B2 (en) * 2011-07-29 2015-10-28 アズビル株式会社 Set value automatic change device and method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0763394A (en) * 1993-08-31 1995-03-07 Toshiba Corp Air conditioner
JPH0960943A (en) * 1995-08-28 1997-03-04 Toshiba Corp Air conditioner
JPH09303847A (en) * 1996-05-09 1997-11-28 Yamatake Honeywell Co Ltd Wireless air conditioning control system
JP2008075993A (en) * 2006-09-22 2008-04-03 Matsushita Electric Works Ltd Air-conditioning control system and air-conditioning control device
JP2008209029A (en) * 2007-02-23 2008-09-11 Mitsubishi Heavy Ind Ltd Air conditioner and automatic heating operation control method
JP2010261617A (en) * 2009-04-30 2010-11-18 Mitsubishi Electric Corp Air conditioning system

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016208301A (en) * 2015-04-23 2016-12-08 株式会社デンソーウェーブ Temperature correction device
US20180202676A1 (en) * 2017-01-17 2018-07-19 Panasonic Intellectual Property Management Co., Ltd. Air conditioner control device and air conditioner control method
US10823441B2 (en) * 2017-01-17 2020-11-03 Panasonic Intellectual Property Management Co., Ltd. Air conditioner control device and air conditioner control method
JP2019194508A (en) * 2018-05-01 2019-11-07 株式会社東芝 Comfort index calculation device, program and comfort index calculation method
WO2020012641A1 (en) * 2018-07-13 2020-01-16 三菱電機株式会社 Controller and air-conditioning system
JPWO2020012641A1 (en) * 2018-07-13 2020-12-17 三菱電機株式会社 Controller and air conditioning system
JP7105886B2 (en) 2018-07-13 2022-07-25 三菱電機株式会社 Controller and air conditioning system
US11725841B2 (en) 2018-07-13 2023-08-15 Mitsubishi Electric Corporation Controller and air conditioning system based on user information, user registration information and positional information of temperature detected by sensor terminal near user

Also Published As

Publication number Publication date
JPWO2014162509A1 (en) 2017-02-16

Similar Documents

Publication Publication Date Title
US10088211B2 (en) Air-conditioning apparatus
JP5452659B2 (en) Air conditioner
WO2018220803A1 (en) Air conditioning system
US7871014B2 (en) System for controlling demand of multi-air-conditioner
WO2016158938A1 (en) Air conditioner
JP2007218499A (en) Air conditioner
WO2015079502A1 (en) Control device for air conditioner
WO2014162509A1 (en) Air conditioner control system and air conditioner control method
JP7170740B2 (en) Information processing device and air conditioning system equipped with the same
JP6681896B2 (en) Refrigeration system
US20150285530A1 (en) Air conditioning apparatus
JP5389618B2 (en) Air conditioner control system
JP2013092281A (en) Device and method for controlling air conditioning
JP2011214751A (en) Air-conditioning controller
JP2012233620A (en) Air conditioning apparatus, air conditioning method, and program
JP5980425B2 (en) Control device for air conditioner and control method for air conditioner
JPWO2015193950A1 (en) Air conditioning system
JP5526716B2 (en) Air conditioning system
JP6279242B2 (en) Air conditioning system and control method of air conditioning system
JP2008241149A (en) Air conditioning control system
JP6239983B2 (en) Air conditioning system and air conditioning control method
WO2021014500A1 (en) Air conditioning device, control device, information processing device, and information processing method
JP2012237479A (en) Demand control system for air conditioner
WO2018053728A1 (en) Control method for multi-split air-conditioning system
US20220026126A1 (en) Air conditioning device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13881095

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015509762

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13881095

Country of ref document: EP

Kind code of ref document: A1