WO2014141610A1 - 点灯装置およびそれを用いた照明器具 - Google Patents

点灯装置およびそれを用いた照明器具 Download PDF

Info

Publication number
WO2014141610A1
WO2014141610A1 PCT/JP2014/001070 JP2014001070W WO2014141610A1 WO 2014141610 A1 WO2014141610 A1 WO 2014141610A1 JP 2014001070 W JP2014001070 W JP 2014001070W WO 2014141610 A1 WO2014141610 A1 WO 2014141610A1
Authority
WO
WIPO (PCT)
Prior art keywords
diode
capacitor
switching element
lighting device
voltage
Prior art date
Application number
PCT/JP2014/001070
Other languages
English (en)
French (fr)
Inventor
崇史 藤野
秀明 安倍
後藤 弘通
小笠原 潔
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Publication of WO2014141610A1 publication Critical patent/WO2014141610A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/42Circuits or arrangements for compensating for or adjusting power factor in converters or inverters
    • H02M1/4208Arrangements for improving power factor of AC input
    • H02M1/4258Arrangements for improving power factor of AC input using a single converter stage both for correction of AC input power factor and generation of a regulated and galvanically isolated DC output voltage
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/30Driver circuits
    • H05B45/37Converter circuits
    • H05B45/3725Switched mode power supply [SMPS]
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/30Driver circuits
    • H05B45/37Converter circuits
    • H05B45/3725Switched mode power supply [SMPS]
    • H05B45/385Switched mode power supply [SMPS] using flyback topology
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B20/00Energy efficient lighting technologies, e.g. halogen lamps or gas discharge lamps
    • Y02B20/30Semiconductor lamps, e.g. solid state lamps [SSL] light emitting diodes [LED] or organic LED [OLED]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Definitions

  • the present invention relates to a lighting device for lighting a load to be lit, and a lighting fixture using the same.
  • Document 1 Japanese Patent Application Publication No. 2008-187821 (hereinafter referred to as “Document 1”)).
  • Document 1 describes that the LED DC power supply device includes an LED load that is lit by DC as a load.
  • a switching power supply device having the configuration shown in FIG. 14 is known as an isolated AC-DC converter (Japanese Patent Application Publication No. 2010-124567 (hereinafter referred to as “Document 2”)).
  • the switching power supply apparatus having the configuration shown in FIG. Document 2 describes that the switching power supply having the configuration shown in FIG. 14 has a two-stage configuration including a PFC circuit 62 and an insulation type DC / DC converter 63.
  • Document 2 proposes a switching power supply device 70 having the configuration shown in FIG.
  • the switching power supply device 70 is a one-stage switching converter including an FET 71, a flyback transformer 72, a diode 73, a smoothing capacitor 74, and a control circuit 75.
  • the switching power supply device 70 includes a common mode filter 76 and a rectifier circuit 77.
  • Reference 2 describes that the switching power supply 70 has an insulation function while having a power factor improvement / harmonic suppression function equivalent to the PFC circuit 62 of the switching power supply having the configuration shown in FIG. Yes.
  • the switching power supply device having the configuration shown in FIG. 14 has a two-stage configuration including the PFC circuit 62 and the insulated DC / DC converter 63, it is difficult to reduce the size of the switching power supply device.
  • the switching power supply 70 having the configuration shown in FIG. 15 is a one-stage switching converter including an FET 71, a flyback transformer 72, a diode 73, a smoothing capacitor 74, and a control circuit 75. Therefore, the switching power supply device 70 can be reduced in size as compared with the switching power supply device having the configuration shown in FIG.
  • the inventors of the present application considered using an LED load as the load 80 in the switching power supply 70.
  • the switching power supply 70 when an LED load is used as the load 80, the output voltage of the rectifier circuit 77 is 0 when the frequency of the input voltage of the rectifier circuit 77 is in the range of 50 to 120 [Hz], for example. In the vicinity of [V], the load 80 is not lit, and the light output of the load 80 may flicker. For this reason, in the switching power supply device 70, it is necessary to use an electrolytic capacitor as the capacitor 78 connected between the output terminals of the rectifier circuit 77. Further, in the switching power supply device 70, when an electrolytic capacitor is used as the capacitor 78, there is a concern that the reliability of the switching power supply device 70 may be reduced.
  • the switching power supply device having the configuration shown in FIGS. 14 and 15 is a lighting device. Further, the inventors of the present application considered that the LED DC power supply device described in Document 1 is a lighting fixture.
  • an object of the present invention is to provide a lighting device and a lighting fixture using the same that can improve reliability while achieving downsizing.
  • the lighting device of the present invention includes a first rectifier circuit that full-wave rectifies an AC voltage, and a DC-DC converter that converts the voltage rectified by the first rectifier circuit into a predetermined DC voltage.
  • the DC-DC converter includes a first inductor, a first diode, a first capacitor and a second capacitor, a transformer including a primary winding and a secondary winding, a switching element, and on / off of the switching element.
  • the second rectifier circuit includes a second diode and a third diode.
  • a filter for removing noise generated in the DC-DC converter is provided on the input side of the first rectifier circuit.
  • the secondary winding is provided with a center tap.
  • the first output terminal of the pair of output terminals of the first rectifier circuit is connected to the anode side of the first diode via the first inductor.
  • the cathode side of the first diode is connected to the first main terminal of the switching element via the primary winding.
  • the first main terminal of the switching element is connected to the anode side of the first diode via the first capacitor.
  • a second main terminal of the switching element is connected to a second output terminal of the pair of output terminals of the first rectifier circuit, and the cathode of the first diode via the second capacitor. Connected to the side.
  • a control terminal of the switching element is connected to the control circuit.
  • the first end of the secondary winding is connected to the anode side of the second diode.
  • the cathode side of the second diode is connected to the cathode side of the third diode.
  • the anode side of the third diode is connected to the second end of the secondary winding.
  • the lighting device is configured to be able to electrically connect a load to be lit between the cathode side of each of the second diode and the third diode and the center tap.
  • a gap is provided between the primary winding and the secondary winding. It is preferable that a third capacitor is connected in parallel to the primary winding.
  • the cathode side of each of the second diode and the third diode is connected to a first end of a second inductor, and the second end of the second inductor and the center tap It is preferable that the load is configured to be electrically connected therebetween.
  • the cathode side of each of the second diode and the third diode is connected to the center tap via the second inductor and a fourth capacitor, and the second inductor and the It is preferable that the load can be electrically connected between a connection point of a fourth capacitor and the center tap.
  • control circuit shortens the on-time of the switching element as the voltage across the second capacitor increases, and reduces the switching element's on-time as the voltage across the second capacitor decreases. It is preferable that the on-time is increased.
  • a dimmer for indicating an output voltage of the DC-DC converter is connected to an input side of the filter.
  • the control circuit is preferably configured to control the on-time of the switching element in accordance with the instruction from the dimmer.
  • the lighting fixture of the present invention includes an LED module and the lighting device that lights the LED module as the load.
  • the lighting device of the present invention it is possible to improve the reliability while reducing the size.
  • FIG. 1 is a circuit diagram of a lighting device according to Embodiment 1.
  • FIG. 2A is an explanatory diagram of a voltage waveform of an input voltage and a current waveform of an input current
  • FIG. 2B is an explanatory diagram of a current waveform of an output current. It is a schematic sectional drawing of the lighting fixture of Embodiment 1.
  • FIG. It is a circuit diagram of the lighting device of Embodiment 2. It is explanatory drawing of the current waveform of the output current in the lighting device of Embodiment 2.
  • FIG. 6 is a circuit diagram of a lighting device according to Embodiment 3.
  • FIG. 6 It is explanatory drawing of the current waveform of the output current in the lighting device of Embodiment 3.
  • FIG. 6 is a circuit diagram of a lighting device according to a fourth embodiment. It is explanatory drawing of the voltage waveform of the both-ends voltage of the 2nd capacitor
  • FIG. 10 is a circuit diagram of a lighting device according to a fifth embodiment. Regarding the lighting device of Embodiment 5, FIG. 12A is an explanatory diagram of a voltage waveform of an input voltage, and FIG.
  • FIG. 12B is an explanatory diagram of a current waveform of an output current.
  • FIG. 10 is a correlation diagram between the dimming level of the dimmer and the on-duty ratio of the switching element in the lighting device of the fifth embodiment. It is a circuit diagram of the switching power supply device of a prior art example. It is a circuit diagram of the other switching power supply device of a prior art example.
  • the lighting device 10 of this embodiment is configured to light an LED (Light Emitting Diode) module 20 that is a load to be lit.
  • LED Light Emitting Diode
  • the LED module 20 includes a plurality (three in the illustrated example) of LED elements 21.
  • the connection relationship of the plurality of LED elements 21 is connected in series, but is not limited thereto.
  • the connection relationship of the plurality of LED elements 21 may be, for example, parallel connection or a combination of serial connection and parallel connection.
  • the number of the LED elements 21 is plural, but may be one.
  • the lighting device 10 includes a filter 1, a first rectifier circuit 2, and a DC-DC converter 3.
  • the above-described LED module 20 is electrically connected to the output side of the DC-DC converter 3.
  • the filter 1 includes, for example, a capacitor and a choke coil.
  • the commercial power supply Va is electrically connected to the input side of the filter 1.
  • the lighting device 10 does not include the commercial power supply Va as a constituent requirement.
  • the filter 1 is configured to suppress noise generated in the DC-DC converter 3 from being transmitted to the commercial power supply Va side.
  • the filter 1 is configured to remove noise generated in the DC-DC converter 3.
  • the filter 1 is configured to suppress transmission of noise included in the AC voltage from the commercial power source Va to the DC-DC converter 3 side.
  • the first rectifier circuit 2 is configured to full-wave rectify the AC voltage from the filter 1.
  • the first rectifier circuit 2 is, for example, a diode bridge composed of four diodes.
  • the DC-DC converter 3 is configured to convert the voltage that has been full-wave rectified by the first rectifier circuit 2 into a predetermined DC voltage.
  • a flyback switching power supply circuit can be used.
  • the DC-DC converter 3 includes an inductor (first inductor) L1, a diode (first diode) D1, three capacitors C1 to C3, a transformer T1, a switching element Q1, a control circuit 5, a second And a rectifier circuit 4.
  • the capacitors C1 to C3 are the first to third capacitors.
  • the transformer T1 includes a primary winding N1 and a secondary winding N2.
  • a center tap is provided in the secondary winding N2.
  • MOSFET Metal-Oxide-Semiconductor Field-effect Transistor
  • the control circuit 5 is configured to control on / off of the switching element Q1. Specifically, the control circuit 5 is configured to output a control signal for controlling on / off of the switching element Q1. For example, a PWM (Pulse Width Modulation) signal can be used as the control signal.
  • the switching element Q1 is configured to turn on and off in accordance with a control signal from the control circuit 5.
  • the control circuit 5 is, for example, a microcomputer equipped with an appropriate program.
  • the program is stored in a memory (not shown) provided in advance in the microcomputer.
  • the second rectifier circuit 4 is configured to full-wave rectify the voltage generated in the secondary winding N2 of the transformer T1.
  • the second rectifier circuit 4 includes two diodes D2 and D3.
  • the diode D2 and the diode D3 are the second diode and the third diode.
  • a switch capable of supplying power from the commercial power supply Va to the lighting device 10 is provided in the power supply path between the input side of the filter 1 and the commercial power supply Va.
  • the input side of the first rectifier circuit 2 is electrically connected to the output side of the filter 1.
  • the first output terminal 2a of the pair of output terminals 2a, 2b of the first rectifier circuit 2 is connected to the first terminal of the inductor L1.
  • the second end of the inductor L1 is connected to the anode side of the diode D1.
  • the cathode side of the diode D1 is connected to the first end of the primary winding N1 of the transformer T1.
  • a second end of the primary winding N1 is connected to a first main terminal (in this embodiment, a drain terminal) of the switching element Q1.
  • a capacitor C3 is connected in parallel to the primary winding N1.
  • the drain terminal of the switching element Q1 is connected to the anode side of the diode D1 via the capacitor C1.
  • a second main terminal (in this embodiment, a source terminal) of the switching element Q1 is connected to the second output terminal 2b of the pair of output terminals 2a and 2b of the first rectifier circuit 2.
  • the source terminal of the switching element Q1 is connected to the cathode side of the diode D1 through the capacitor C2.
  • a control terminal (a gate terminal in the present embodiment) of the switching element Q1 is connected to the control circuit 5.
  • the first end of the secondary winding N2 of the transformer T1 is connected to the anode side of the diode D2.
  • the cathode side of the diode D2 is connected to the cathode side of the diode D3.
  • the anode side of the diode D3 is connected to the second end of the secondary winding N2.
  • the anode side of the LED module 20 is connected to the cathode side of each of the diodes D2 and D3.
  • the cathode side of the LED module 20 is connected to the center tap of the secondary winding N2.
  • the lighting device 10 is configured to electrically connect the LED module 20 between the cathode side of each of the diodes D2 and D3 and the center tap of the secondary winding N2. Thereby, the lighting device 10 can light the LED module 20.
  • the switching element Q1 when the switching element Q1 is in the ON state and the voltage that has been full-wave rectified by the first rectifier circuit 2 is a large voltage (hereinafter referred to as “voltage in a high voltage region”),
  • the voltage in the high voltage region is supplied to the capacitor C2 via the inductor L1 and the diode D1.
  • the voltage across the capacitor C2 is supplied to the primary winding N1 of the transformer T1, and magnetic energy is accumulated in the primary winding N1.
  • the voltage in the high voltage region means a voltage equal to or higher than the forward voltage (forward voltage) of the diode D1.
  • the voltage that is full-wave rectified by the first rectifier circuit 2 is a small voltage (hereinafter referred to as “voltage in the low voltage region”) when the switching element Q 1 is in the on state.
  • the voltage in the low voltage region is supplied to the low potential side of the first rectifier circuit 2 via the inductor L1, the capacitor C1, and the switching element Q1.
  • the switching element Q ⁇ b> 1 when the switching element Q ⁇ b> 1 is in the on state and the voltage that is full-wave rectified by the first rectifier circuit 2 is a voltage in the low voltage region,
  • the output terminals 2a and 2b are short-circuited via the switching element Q1.
  • the high frequency component included in the switching frequency of the switching element Q1 can be released to the ground side through the low potential side of the first rectifier circuit 2. Therefore, in the lighting device 10, it is possible to reduce the high frequency component included in the switching frequency of the switching element Q1, and to improve the power factor.
  • the voltage in the low voltage region means a voltage lower than the forward voltage (forward voltage) of the diode D1.
  • FIG. 2A shows a voltage waveform of the input voltage and a current waveform of the input current in the lighting device 10. Moreover, the solid line in FIG. 2A represents the current waveform of the input current of the lighting device 10. 2A represents the voltage waveform of the input voltage of the lighting device 10.
  • a gap is provided between the primary winding N1 and the secondary winding N2 of the transformer T1.
  • the current flowing through the LED module 20 can be made constant by the leakage inductance of the secondary winding N2 of the transformer T1. Therefore, in the lighting device 10, the current flowing through the LED module 20 can be stabilized, and the flickering of the light output of the LED module 20 can be suppressed. Further, in the lighting device 10, a feedback circuit for making the current flowing through the LED module 20 constant is unnecessary, and the lighting device 10 can be reduced in size.
  • the current flowing through the LED module 20 can be made more constant by appropriately adjusting the frequency or pulse width of the control signal output from the control circuit 5.
  • the switching element Q1 when the switching element Q1 is on, magnetic energy is accumulated in the inductor L1.
  • the switching element Q1 when the switching element Q1 is turned from the on state to the off state, a back electromotive force is generated between both ends of the inductor L1 due to the magnetic energy accumulated in the inductor L1.
  • the voltage that has been full-wave rectified by the first rectifier circuit 2 can be boosted.
  • the inductor L ⁇ b> 1 can boost the voltage that has been full-wave rectified by the first rectifier circuit 2. That is, in the lighting device 10, when the inductor L1 boosts the voltage that is full-wave rectified by the first rectifier circuit 2, the voltage applied to the capacitor C2 increases.
  • the charge energy E accumulated in the capacitor C2 is obtained by the following equation, where C is the capacitance of the capacitor C2 and V is the voltage applied to the capacitor C2.
  • the capacitance C of the capacitor C2 can be reduced by increasing the voltage V applied to the capacitor C2.
  • a film capacitor can be used as the capacitor C2
  • the reliability can be improved as compared with the case where an electrolytic capacitor is used as the capacitor C2.
  • the inductor L1 can boost the voltage that has been full-wave rectified by the first rectifier circuit 2, so that the voltage in the low voltage region can be boosted.
  • an electrolytic capacitor that smoothes the voltage that has been full-wave rectified by the first rectifier circuit 2 between the pair of output terminals 2 a and 2 b of the first rectifier circuit 2 becomes unnecessary.
  • the leakage inductance of the primary winding N1 of the transformer T1 and the capacitor C3 correspond to a parallel resonance circuit.
  • the lighting device 10 of the present embodiment described above includes a first rectifier circuit 2 that performs full-wave rectification of an AC voltage, and a DC-DC converter that converts a voltage that has been full-wave rectified by the first rectifier circuit 2 into a predetermined DC voltage. 3 is provided.
  • the DC-DC converter 3 includes a first inductor L1, a first diode D1, a first capacitor C1 and a second capacitor C2, a transformer T1 including a primary winding N1 and a secondary winding N2, and a switching element Q1.
  • a control circuit 5 for controlling on / off of the switching element Q1 and a second rectifier circuit 4 for full-wave rectifying the voltage generated in the secondary winding N2.
  • the second rectifier circuit 4 includes a second diode D2 and a third diode D3.
  • a filter 1 for removing noise generated in the DC-DC converter 3 is provided on the input side of the first rectifier circuit 2.
  • a center tap is provided in the secondary winding N2.
  • the first output terminal 2a of the pair of output terminals 2a and 2b of the first rectifier circuit 2 is connected to the anode side of the first diode D1 via the first inductor L1.
  • the cathode side of the first diode D1 is connected to the first main terminal of the switching element Q1 via the primary winding N1.
  • the first main terminal of the switching element Q1 is connected to the anode side of the first diode D1 via the first capacitor C1.
  • the second main terminal of the switching element Q1 is connected to the second output terminal 2b of the pair of output terminals 2a and 2b of the first rectifier circuit 2, and the first diode D1 through the second capacitor C2. Is connected to the cathode side.
  • a control terminal of the switching element Q1 is connected to the control circuit 5.
  • the first end of the secondary winding N2 is connected to the anode side of the second diode D2.
  • the cathode side of the second diode D2 is connected to the cathode side of the third diode D3.
  • the anode side of the third diode D3 is connected to the second end of the secondary winding N2.
  • the lighting device 10 may electrically connect a load (LED module 20) to be lit between the cathode side of each of the second diode D2 and the third diode D3 and the center tap of the secondary winding N2. It is configured to be able to.
  • a load LED module 20
  • the lighting device 10 of the present embodiment is configured by the filter 1, the first rectifier circuit 2, and the DC-DC converter 3, compared with the switching power supply device having the configuration shown in FIG. It is possible to reduce the size. Further, in the lighting device 10, for example, a film capacitor can be used as the capacitor C2, and compared with a conventional case where an electrolytic capacitor is connected between the output terminals of the rectifier circuit, the size is reduced. However, it is possible to improve the reliability.
  • the lighting fixture 30 of the present embodiment is configured to be embedded in the ceiling material 40, for example.
  • the lighting fixture 30 includes the LED module 20 described above, the lighting device 10 described above, and a housing 31.
  • the LED module 20 includes the above-described plurality of LED elements 21 and a mounting substrate 22.
  • the mounting substrate 22 for example, a metal base printed wiring board can be adopted.
  • the outer peripheral shape of the mounting substrate 22 is, for example, a circular shape.
  • a plurality of LED elements 21 are mounted on one surface side (the lower surface side in FIG. 3) of the mounting substrate 22.
  • the mounting substrate 22 is electrically connected to the first connector 41b via the pair of first connection lines 25, 25.
  • the housing 31 is formed in a box shape (in this embodiment, a rectangular box shape).
  • a metal for example, iron, aluminum, stainless steel, etc.
  • the casing 31 accommodates the lighting device 10 described above.
  • the casing 31 is disposed on one side of the ceiling material 40 (upper side in FIG. 3).
  • a spacer 32 is interposed between the housing 31 and the ceiling material 40 to maintain a predetermined distance between the housing 31 and the ceiling material 40.
  • a first outlet hole (not shown) for leading out the pair of second connection wires 33 and 33 electrically connected to the lighting device 10 is formed on one side wall (left side wall in FIG. 3) of the housing 31. ) Is formed.
  • one of the pair of second connection lines 33 and 33 is connected to the cathode side of each of the diode D ⁇ b> 2 and the diode D ⁇ b> 3 of the lighting device 10.
  • the other of the pair of second connection lines 33 and 33 is connected to the center tap of the secondary winding N ⁇ b> 2 of the lighting device 10.
  • the lighting device 10 is electrically connected to the second connector 41 a via the pair of second connection lines 33 and 33.
  • the lighting fixture 30 includes a fixture main body 23 and a light diffusing plate 24.
  • the instrument body 23 is formed in, for example, a bottomed cylindrical shape (in the present embodiment, a bottomed cylindrical shape).
  • a metal for example, iron, aluminum, stainless steel, etc.
  • a metal for example, iron, aluminum, stainless steel, etc.
  • a second outlet hole (not shown) for leading out the pair of first connection lines 25, 25 electrically connected to the mounting substrate 22 is formed in the bottom wall 23 a of the instrument body 23.
  • the planar size of the mounting substrate 22 is set slightly smaller than the opening size of the instrument body 23.
  • the mounting substrate 22 is disposed inside the bottom wall 23 a of the fixture body 23.
  • the mounting substrate 22 is attached to the bottom wall 23 a of the fixture body 23.
  • an adhesive sheet (not shown) having electrical insulation and thermal conductivity is used.
  • a flange portion 23c extending to the side is provided.
  • a pair of mounting brackets are provided at the lower end portion of the side wall 23b of the instrument body 23 so that the peripheral portion of the embedded hole 40a formed in the ceiling member 40 can be sandwiched between the flange portion 23c. It has been.
  • the lighting fixture 30 can embed the fixture main body 23 in the ceiling member 40 by sandwiching the peripheral portion of the embedded hole 40a of the ceiling member 40 between the pair of mounting brackets and the flange 23c.
  • the light diffusion plate 24 is formed in, for example, a plate shape (in this embodiment, a disc shape).
  • a translucent material for example, acrylic resin, glass, etc.
  • the light diffusing plate 24 is detachably attached to the lower end portion of the side wall 23b of the fixture body 23. Thereby, the light diffusing plate 24 can cover the opening of the instrument body 23 and diffuse the light emitted from each LED element 21.
  • the lighting fixture 30 of the present embodiment described above includes the above-described LED module 20, the fixture main body 23 to which the LED module 20 is attached, and the above-described lighting device 10 that lights the LED module 20. Thereby, in the lighting fixture 30 of this embodiment, it becomes possible to aim at improvement in reliability, achieving size reduction.
  • each structure of the LED module 20 and the lighting fixture 30 is not specifically limited.
  • the basic configuration of the lighting device 11 according to the present embodiment is the same as that of the lighting device 10 according to the first embodiment. As shown in FIG. It is different from the first embodiment in that it is connected to one end.
  • the same components as those in the first embodiment are denoted by the same reference numerals, and description thereof will be omitted as appropriate.
  • the anode side of the LED module 20 is connected to the second end of the inductor L2. Further, in the lighting device 11, the cathode side of the LED module 20 is connected to the center tap of the secondary winding N2. In short, the lighting device 11 is configured such that the LED module 20 can be electrically connected between the second end of the inductor L2 and the center tap of the secondary winding N2. Thereby, the lighting device 11 can light the LED module 20.
  • the lighting device 11 since the inductor L2 smoothes the current flowing through the LED module 20, the ripple component included in the current flowing through the LED module 20 can be reduced. As a result, the lighting device 11 can suppress the output current of the DC-DC converter 3 from becoming zero as compared to the lighting device 10 (see FIG. 5), and the current flowing through the LED module 20 can be reduced to a constant current. Can be realized.
  • the basic configuration of the lighting device 12 of the present embodiment is the same as that of the lighting device 11 of the second embodiment, and as shown in FIG.
  • the second embodiment is different from the second embodiment in that it is connected to the center tap of the secondary winding N2 via C4.
  • the same components as those in the second embodiment are denoted by the same reference numerals, and description thereof will be omitted as appropriate.
  • the anode side of the LED module 20 is connected to the connection point P1 of the inductor L2 and the capacitor C4.
  • the cathode side of the LED module 20 is connected to the center tap of the secondary winding N2.
  • the lighting device 12 is configured such that the LED module 20 can be electrically connected between the connection point P1 of the inductor L2 and the capacitor C4 and the center tap of the secondary winding N2. Thereby, the lighting device 12 can light the LED module 20.
  • the capacitor C4 for example, a film capacitor can be used. Thereby, in the lighting device 12, it becomes possible to remove the high frequency component contained in the electric current which flows into the LED module 20 (refer FIG. 7).
  • the basic configuration of the lighting device 13 of the present embodiment is the same as that of the lighting device 12 of the third embodiment.
  • the control circuit 5 is electrically connected to the high potential side of the capacitor C2.
  • the points are different from the third embodiment.
  • the same components as those in the third embodiment are denoted by the same reference numerals, and description thereof will be omitted as appropriate.
  • the control circuit 5 includes a first detector (not shown) that detects the voltage across the capacitor C2.
  • a first detector for example, an A / D conversion circuit (not shown) provided in advance in the microcomputer corresponding to the control circuit 5 can be used.
  • the first detector is electrically connected to the high potential side of the capacitor C2.
  • control circuit 5 is configured to control the on-time of the switching element Q1 according to the increase / decrease in the voltage across the capacitor C2 detected by the first detector so as to satisfy the following Table 1.
  • the OFF time of the switching element Q1 is set to a certain time.
  • control circuit 5 is configured to shorten the ON time of the switching element Q1 as the voltage across the capacitor C2 detected by the first detector increases. Further, in order to satisfy the following Table 1, the control circuit 5 is configured to increase the ON time of the switching element Q1 as the voltage across the capacitor C2 detected by the first detector decreases.
  • area 0 to area 9 in Table 1 is an area obtained by dividing the voltage range between the maximum value V C2max and the minimum value V C2min of the capacitor C2 by 10 as shown in FIG. Represents. Further, as shown in FIG. 9, “area 6” in Table 1 is set so as to include an average value of the maximum value V C2max and the minimum value V C2min in the voltage across the capacitor C2.
  • the “on-time change rate” in Table 1 is a relative value based on the on-time of the switching element Q1 when the voltage across the capacitor C2 is in the region 6 (hereinafter referred to as “reference on-time”). Represents. Further, “amount of change in on-time” in Table 1 represents an amount by which the on-time of the switching element Q1 is changed with reference to the reference on-time. “ ⁇ ” in Table 1 represents the minimum on-time of the switching element Q1. In the present embodiment, the reference on-time of the switching element Q1 is set to 4 ⁇ , but is not limited to this and may be 4 ⁇ or more.
  • the control circuit 5 shortens the ON time of the switching element Q1 as the voltage across the capacitor C2 increases. Further, as can be seen from FIG. 9 and Table 1, the control circuit 5 increases the ON time of the switching element Q1 as the voltage across the capacitor C2 decreases. Thereby, in the lighting device 13, the current flowing through the LED module 20 can be made constant. Therefore, in the lighting device 13, it is possible to make the current flowing in the LED module 20 more constant than in the lighting device 12 (see FIG. 10).
  • the dimmer 6 is a device for dimming and lighting the LED module 20.
  • a dimmer using a triac (not shown) can be employed as the dimmer 6.
  • the dimmer 6 outputs, for example, a voltage having a voltage waveform as shown in FIG. 12A so that the LED module 20 has a desired light output level (hereinafter referred to as “light control level”). It is configured.
  • a series circuit of the triac of the dimmer 6 and the commercial power supply Va is electrically connected to the input side of the filter 1.
  • the control circuit 5 is electrically connected to the output side of the filter 1.
  • control circuit 5 includes a second detector (not shown) that detects an instruction from the dimmer 6.
  • a second detector for example, a zero cross detection circuit (not shown) provided in advance in the microcomputer corresponding to the control circuit 5 can be used.
  • the second detector can detect an instruction (dimming level) from the dimmer 6 by detecting the phase of the output voltage of the dimmer 6.
  • the second detector is electrically connected to the output side of the filter 1.
  • control circuit 5 is configured to control the dimming level of the LED module 20 in accordance with an instruction from the dimmer 6 detected by the second detector.
  • control circuit 5 is configured to control the on-time of the switching element Q1 in accordance with the instruction from the dimmer 6 detected by the second detector.
  • the OFF time of the switching element Q1 is set to a certain time.
  • the control circuit 5 is configured to control the on-duty ratio of the switching element Q1 according to the dimming level of the dimmer 6 as indicated by the solid line in FIG.
  • L max in FIG. 13 represents the maximum value of the dimming level.
  • L min in FIG. 13 represents the minimum value of the dimming level.
  • the control circuit 5 is configured to control the on-time of the switching element Q1 in accordance with an instruction from the dimmer 6 so as to satisfy the characteristics indicated by the solid line in FIG. Thereby, in the lighting device 14, the output voltage of the DC-DC converter 3 can be changed, and the dimming level of the LED module 20 can be adjusted. 13 represents a target value of the on-duty ratio of the switching element Q1 with respect to the dimming level of the dimmer 6.
  • control circuit 5 shortens the on-time of the switching element Q1 as the voltage across the capacitor C2 detected by the first detector increases, and the on-time of the switching element Q1 as the voltage across the capacitor C2 decreases. It may be configured to lengthen. More specifically, the control circuit 5 increases and decreases the voltage across the capacitor C2 detected by the first detector and the dimmer detected by the second detector so as to satisfy the following Table 2. 6 may be configured to control the on-time of the switching element Q1 according to the phase of the output voltage 6.
  • “area 0 to area 9” in Table 2 is an area obtained by dividing the voltage range between the maximum value V C2max and the minimum value V C2min of the capacitor C2 by 10 as shown in FIG. Represents.
  • “area 6” in Table 2 is set so as to include an average value of the maximum value V C2max and the minimum value V C2min in the voltage across the capacitor C2, as shown in FIG.
  • the “on-time change ratio” in Table 2 represents a relative value based on the reference on-time.
  • “Change amount of on-time” in Table 2 represents an amount by which the on-time of the switching element Q1 is changed with reference to the reference on-time.
  • “ ⁇ ” in Table 2 represents the minimum on-time of the switching element Q1.
  • “ ⁇ ” in Table 2 represents the ON time of the switching element Q1 set by an instruction (dimming level) from the dimmer 6.
  • the reference on-time of the switching element Q1 is set to 4 ⁇ .
  • the lighting device 14 is not limited to this and may be 4 ⁇ or more. It should be noted that “ ⁇ ” in Table 2 can be changed by an instruction from the dimmer 6.
  • the control circuit 5 satisfies the increase and decrease of the voltage across the capacitor C2 detected by the first detector and the phase of the output voltage of the dimmer 6 detected by the second detector so as to satisfy Table 2.
  • the on-time of the switching element Q1 is configured to be controlled. Thereby, in the lighting device 14, it becomes possible to adjust the dimming level of the LED module 20, and to make the current flowing through the LED module 20 constant (see FIG. 12B).

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Circuit Arrangement For Electric Light Sources In General (AREA)
  • Led Devices (AREA)
  • Dc-Dc Converters (AREA)

Abstract

 点灯装置は、整流回路、DC-DCコンバータ、フィルタを備える。整流回路の第1出力端は、インダクタ、第1ダイオード、一次巻線を介してスイッチング素子の第1端子に接続され、第1端子は、第1コンデンサを介して第1ダイオードのアノードに接続され、スイッチング素子の第2端子は、整流回路の第2出力端に接続されると共に第2コンデンサを介して第1ダイオードのカソードに接続され、スイッチング素子の制御端子は、制御回路に接続される。二次巻線の第1端は、第2および第3ダイオードを介して二次巻線の第2端に接続される。第2および第3ダイオードのカソードと二次巻線のセンタータップとの間には、負荷を接続する。

Description

点灯装置およびそれを用いた照明器具
 本発明は、点灯対象の負荷を点灯させる点灯装置およびそれを用いた照明器具に関する。
 従来、絶縁型AC-DCコンバータおよびそれを用いたLED用直流電源装置が提案されている(日本国特許出願公開番号2008-187821(以下、「文献1」という))。文献1には、LED用直流電源装置が、負荷として、直流点灯されるLED負荷を備える旨が記載されている。
 また、従来、絶縁型AC-DCコンバータとして、図14に示す構成を備えたスイッチング電源装置が知られている(日本国特許出願公開番号2010-124567(以下、「文献2」という))。
 図14に示す構成を備えたスイッチング電源装置は、コモンモードフィルタ60と、整流回路61と、PFC回路62と、絶縁型DC/DCコンバータ63とを備えている。文献2には、図14に示す構成を備えたスイッチング電源装置が、PFC回路62と絶縁型DC/DCコンバータ63とを備える二段構成となっている旨が記載されている。
 また、文献2には、図15に示す構成を備えたスイッチング電源装置70が提案されている。
 スイッチング電源装置70は、FET71、フライバックトランス72、ダイオード73、平滑コンデンサ74および制御回路75を備える一段のスイッチングコンバータである。また、スイッチング電源装置70は、コモンモードフィルタ76および整流回路77を備えている。文献2には、スイッチング電源装置70が、図14に示す構成を備えたスイッチング電源装置のPFC回路62と同等の力率改善・高調波抑圧機能を備えつつも絶縁機能を備える旨が記載されている。
 ところで、図14に示す構成を備えたスイッチング電源装置は、PFC回路62と絶縁型DC/DCコンバータ63とを備える二段構成となっているため、スイッチング電源装置の小型化が難しい。
 これに対して、図15に示す構成を備えたスイッチング電源装置70は、FET71、フライバックトランス72、ダイオード73、平滑コンデンサ74および制御回路75を備える一段のスイッチングコンバータである。よって、スイッチング電源装置70では、図14に示す構成を備えたスイッチング電源装置に比べて、小型化を図ることが可能となる。
 本願発明者らは、スイッチング電源装置70において、負荷80としてLED負荷を用いることを考えた。
 しかしながら、スイッチング電源装置70では、負荷80としてLED負荷を用いる場合、整流回路77の入力電圧の周波数が、例えば、50~120〔Hz〕の範囲内であるとき、整流回路77の出力電圧が0〔V〕付近で負荷80が不点灯となり、負荷80の光出力にちらつきが発生する可能性がある。このため、スイッチング電源装置70では、整流回路77の出力端間に接続されたコンデンサ78として、電解コンデンサを用いる必要がある。また、スイッチング電源装置70では、コンデンサ78として電解コンデンサを用いると、スイッチング電源装置70の信頼性の低下が懸念される。
 本願発明者らは、図14および図15に示す構成を備えたスイッチング電源装置が、点灯装置であると考えた。また、本願発明者らは、文献1に記載されたLED用直流電源装置が、照明器具であると考えた。
 そこで、本発明の目的は、小型化を図りながらも、信頼性の向上を図ることが可能な点灯装置およびそれを用いた照明器具を提供することにある。
 本発明の点灯装置は、交流電圧を全波整流する第1整流回路と、前記第1整流回路により全波整流された電圧を所定の直流電圧に変換するDC-DCコンバータとを備えている。前記DC-DCコンバータは、第1インダクタと、第1ダイオードと、第1コンデンサおよび第2コンデンサと、一次巻線および二次巻線を具備するトランスと、スイッチング素子と、前記スイッチング素子のオンオフを制御する制御回路と、前記二次巻線で発生した電圧を全波整流する第2整流回路とを備えている。前記第2整流回路は、第2ダイオードおよび第3ダイオードを備えている。前記第1整流回路の入力側には、前記DC-DCコンバータで発生するノイズを除去するフィルタが設けられている。前記二次巻線には、センタータップが設けられている。前記第1整流回路の一対の出力端のうちの第1の出力端は、前記第1インダクタを介して前記第1ダイオードのアノード側に接続されている。前記第1ダイオードのカソード側は、前記一次巻線を介して前記スイッチング素子の第1の主端子に接続されている。前記スイッチング素子の前記第1の主端子は、前記第1コンデンサを介して前記第1ダイオードの前記アノード側に接続されている。前記スイッチング素子の第2の主端子は、前記第1整流回路の前記一対の出力端のうちの第2の出力端に接続されるとともに、前記第2コンデンサを介して前記第1ダイオードの前記カソード側に接続されている。前記スイッチング素子の制御端子は、前記制御回路に接続されている。前記二次巻線の第1端は、前記第2ダイオードのアノード側に接続されている。前記第2ダイオードのカソード側は、前記第3ダイオードのカソード側に接続されている。前記第3ダイオードのアノード側は、前記二次巻線の第2端に接続されている。前記点灯装置は、前記第2ダイオードおよび前記第3ダイオードそれぞれの前記カソード側と、前記センタータップとの間に、点灯対象の負荷を電気的に接続することができるように構成されている。
 本発明の別の特徴において、前記一次巻線と前記二次巻線との間には、ギャップが設けられていることが好ましい。前記一次巻線には、第3コンデンサが並列に接続されていることが好ましい。
 本発明の別の特徴において、前記第2ダイオードおよび前記第3ダイオードそれぞれの前記カソード側は、第2インダクタの第1端に接続され、前記第2インダクタの第2端と、前記センタータップとの間に、前記負荷を電気的に接続することができるように構成されていることが好ましい。
 本発明の別の特徴において、前記第2ダイオードおよび前記第3ダイオードそれぞれの前記カソード側は、前記第2インダクタと第4コンデンサとを介して、前記センタータップに接続され、前記第2インダクタおよび前記第4コンデンサの接続点と、前記センタータップとの間に、前記負荷を電気的に接続することができるように構成されていることが好ましい。
 本発明の別の特徴において、前記制御回路は、前記第2コンデンサの両端電圧が増加するに従って前記スイッチング素子のオン時間を短くし、前記第2コンデンサの前記両端電圧が減少するに従って前記スイッチング素子の前記オン時間を長くするように構成されていることが好ましい。
 本発明の別の特徴において、前記フィルタの入力側には、前記DC-DCコンバータの出力電圧を指示する調光器が接続されていることが好ましい。前記制御回路は、前記調光器からの前記指示に従って前記スイッチング素子の前記オン時間を制御するように構成されていることが好ましい。
 本発明の照明器具は、LEDモジュールと、前記LEDモジュールを前記負荷として点灯させる前記点灯装置とを備えている。
 本発明の点灯装置においては、小型化を図りながらも、信頼性の向上を図ることが可能となる。
 本発明の照明器具においては、小型化を図りながらも、信頼性の向上を図ることが可能となる。
 本発明の好ましい実施形態をさらに詳細に記述する。本発明の他の特徴および利点は、以下の詳細な記述および添付図面に関連して一層良く理解されるものである。
実施形態1の点灯装置の回路図である。 実施形態1の点灯装置に関し、図2Aは入力電圧の電圧波形と入力電流の電流波形との説明図、図2Bは出力電流の電流波形の説明図である。 実施形態1の照明器具の概略断面図である。 実施形態2の点灯装置の回路図である。 実施形態2の点灯装置における出力電流の電流波形の説明図である。 実施形態3の点灯装置の回路図である。 実施形態3の点灯装置における出力電流の電流波形の説明図である。 実施形態4の点灯装置の回路図である。 実施形態4の点灯装置における第2コンデンサの両端電圧の電圧波形の説明図である。 実施形態4の点灯装置における出力電流の電流波形の説明図である。 実施形態5の点灯装置の回路図である。 実施形態5の点灯装置に関し、図12Aは入力電圧の電圧波形の説明図、図12Bは出力電流の電流波形の説明図である。 実施形態5の点灯装置に関し、調光器の調光レベルとスイッチング素子のオンデューティ比との相関図である。 従来例のスイッチング電源装置の回路図である。 従来例の他のスイッチング電源装置の回路図である。
 (実施形態1)
 以下、本実施形態の点灯装置について、図1、図2Aおよび図2Bを参照しながら説明する。
 本実施形態の点灯装置10は、点灯対象の負荷であるLED(Light Emitting Diode)モジュール20を点灯させるように構成されている。
 LEDモジュール20は、複数個(図示例では、3個)のLED素子21を備えている。本実施形態では、複数個のLED素子21の接続関係を、直列接続としているが、これに限らない。複数個のLED素子21の接続関係は、例えば、並列接続であってもよいし、直列接続と並列接続とを組み合わせた接続であってもよい。なお、本実施形態では、LED素子21の個数を複数個としているが、1個であってもよい。
 点灯装置10は、フィルタ1と、第1整流回路2と、DC-DCコンバータ3とを備えている。点灯装置10では、DC-DCコンバータ3の出力側に、上述のLEDモジュール20が電気的に接続される。
 フィルタ1は、例えば、コンデンサとチョークコイルとを含む。点灯装置10では、フィルタ1の入力側に、商用電源Vaが電気的に接続される。なお、点灯装置10では、商用電源Vaを構成要件として含まない。
 フィルタ1は、DC-DCコンバータ3で発生するノイズが商用電源Va側へ伝達するのを抑制するように構成されている。言い換えれば、フィルタ1は、DC-DCコンバータ3で発生するノイズを除去するように構成されている。また、フィルタ1は、商用電源Vaからの交流電圧に含まれるノイズがDC-DCコンバータ3側へ伝達するのを抑制するように構成されている。
 第1整流回路2は、フィルタ1からの交流電圧を全波整流するように構成されている。第1整流回路2は、例えば、4個のダイオードにより構成されたダイオードブリッジである。
 DC-DCコンバータ3は、第1整流回路2により全波整流された電圧を所定の直流電圧に変換するように構成されている。DC-DCコンバータ3としては、例えば、フライバック方式のスイッチング電源回路を用いることができる。DC-DCコンバータ3は、インダクタ(第1インダクタ)L1と、ダイオード(第1ダイオード)D1と、3個のコンデンサC1~C3と、トランスT1と、スイッチング素子Q1と、制御回路5と、第2整流回路4とを備えている。なお、本実施形態では、コンデンサC1~C3が、第1コンデンサ~第3コンデンサである。
 トランスT1は、一次巻線N1と二次巻線N2とを備えている。二次巻線N2には、センタータップが設けられている。
 スイッチング素子Q1としては、例えば、MOSFET(Metal-Oxide-Semiconductor Field-effect Transistor)を用いることができる。
 制御回路5は、スイッチング素子Q1のオンオフを制御するように構成されている。具体的に説明すると、制御回路5は、スイッチング素子Q1のオンオフを制御するための制御信号を出力するように構成されている。制御信号としては、例えば、PWM(Pulse Width Modulation)信号を用いることができる。スイッチング素子Q1は、制御回路5からの制御信号に従ってオンオフするように構成されている。
 制御回路5は、例えば、適宜のプログラムが搭載されたマイクロコンピュータである。プログラムは、例えば、マイクロコンピュータに予め設けられたメモリ(図示せず)に記憶されている。
 第2整流回路4は、トランスT1の二次巻線N2で発生した電圧を全波整流するように構成されている。第2整流回路4は、2個のダイオードD2,D3を備えている。なお、本実施形態では、ダイオードD2およびダイオードD3が、第2ダイオードおよび第3ダイオードである。
 本実施形態では、フィルタ1の入力側と商用電源Vaとの間の給電路に、商用電源Vaから点灯装置10へ給電可能なスイッチ(図示せず)が設けられている。
 第1整流回路2の入力側は、フィルタ1の出力側と電気的に接続されている。
 第1整流回路2の一対の出力端2a,2bのうちの第1の出力端2aは、インダクタL1の第1端に接続されている。インダクタL1の第2端は、ダイオードD1のアノード側に接続されている。ダイオードD1のカソード側は、トランスT1の一次巻線N1の第1端に接続されている。一次巻線N1の第2端は、スイッチング素子Q1の第1の主端子(本実施形態では、ドレイン端子)に接続されている。一次巻線N1には、コンデンサC3が並列に接続されている。
 スイッチング素子Q1のドレイン端子は、コンデンサC1を介してダイオードD1のアノード側に接続されている。スイッチング素子Q1の第2の主端子(本実施形態では、ソース端子)は、第1整流回路2の一対の出力端2a,2bのうちの第2の出力端2bに接続されている。また、スイッチング素子Q1のソース端子は、コンデンサC2を介してダイオードD1のカソード側に接続されている。スイッチング素子Q1の制御端子(本実施形態では、ゲート端子)は、制御回路5に接続されている。
 トランスT1の二次巻線N2の第1端は、ダイオードD2のアノード側に接続されている。ダイオードD2のカソード側は、ダイオードD3のカソード側に接続されている。ダイオードD3のアノード側は、二次巻線N2の第2端に接続されている。本実施形態では、LEDモジュール20のアノード側を、各ダイオードD2,D3のカソード側に接続している。また、本実施形態では、LEDモジュール20のカソード側を、二次巻線N2のセンタータップに接続している。要するに、点灯装置10は、各ダイオードD2,D3のカソード側と、二次巻線N2のセンタータップとの間に、LEDモジュール20を電気的に接続するように構成されている。これにより、点灯装置10は、LEDモジュール20を点灯させることが可能となる。
 以下、本実施形態の点灯装置10におけるDC-DCコンバータ3の動作について説明する。なお、以下では、上記スイッチにより商用電源Vaから点灯装置10に給電されているものとして説明する。
 DC-DCコンバータ3では、スイッチング素子Q1がオン状態のときで、且つ、第1整流回路2により全波整流された電圧が大きな電圧(以下、「高電圧領域の電圧」という)である場合、高電圧領域の電圧が、インダクタL1とダイオードD1を介して、コンデンサC2に供給される。そして、DC-DCコンバータ3では、コンデンサC2が充電されると、トランスT1の一次巻線N1にコンデンサC2の両端電圧が供給され、一次巻線N1に磁気エネルギーが蓄積される。なお、高電圧領域の電圧とは、ダイオードD1の順電圧(順方向電圧)以上の電圧を意味する。
 また、DC-DCコンバータ3では、スイッチング素子Q1がオン状態のときで、且つ、第1整流回路2により全波整流された電圧が小さな電圧(以下、「低電圧領域の電圧」という)である場合、低電圧領域の電圧が、インダクタL1とコンデンサC1とスイッチング素子Q1を介して、第1整流回路2の低電位側に供給される。言い換えれば、点灯装置10では、スイッチング素子Q1がオン状態のときで、且つ、第1整流回路2により全波整流された電圧が低電圧領域の電圧である場合、第1整流回路2の一対の出力端2a,2b間が、スイッチング素子Q1を介して短絡される。これにより、本実施形態の点灯装置10では、スイッチング素子Q1のスイッチング周波数に含まれる高周波成分を、第1整流回路2の低電位側を介してグランド側へ逃がすことが可能となる。よって、点灯装置10では、スイッチング素子Q1のスイッチング周波数に含まれる高周波成分を低減することが可能となり、力率の改善を図ることが可能となる。なお、低電圧領域の電圧とは、ダイオードD1の順電圧(順方向電圧)未満の電圧を意味する。
 DC-DCコンバータ3では、スイッチング素子Q1がオン状態からオフ状態になると、トランスT1の一次巻線N1に蓄積された磁気エネルギーが、二次巻線N2に伝達する。そして、DC-DCコンバータ3では、各ダイオードD2,D3が、トランスT1の二次巻線N2で発生した電圧を全波整流する。また、DC-DCコンバータ3は、図2Bに示すような出力電流をLEDモジュール20へ出力する。なお、図2Aは、点灯装置10における入力電圧の電圧波形と入力電流の電流波形とを表している。また、図2A中の実線は、点灯装置10の入力電流の電流波形を表している。また、図2A中の一点鎖線は、点灯装置10の入力電圧の電圧波形を表している。
 本実施形態の点灯装置10では、トランスT1の一次巻線N1と二次巻線N2との間に、ギャップが設けられている。これにより、点灯装置10では、トランスT1の二次巻線N2の漏れインダクタンスによって、LEDモジュール20に流れる電流を定電流化することが可能となる。よって、点灯装置10では、LEDモジュール20に流れる電流を安定させることが可能となり、LEDモジュール20の光出力のちらつきを抑制することが可能となる。また、点灯装置10では、LEDモジュール20に流れる電流を定電流化するためのフィードバック回路が不要となり、点灯装置10の小型化を図ることが可能となる。
 また、点灯装置10では、制御回路5から出力される上記制御信号の周波数もしくはパルス幅を適宜調整することによって、LEDモジュール20に流れる電流をより定電流化することが可能となる。
 DC-DCコンバータ3では、スイッチング素子Q1がオン状態のとき、インダクタL1に磁気エネルギーが蓄積される。また、DC-DCコンバータ3では、スイッチング素子Q1がオン状態からオフ状態になると、インダクタL1に蓄積された磁気エネルギーによって、インダクタL1の両端間に逆起電力が発生する。これにより、本実施形態の点灯装置10では、第1整流回路2により全波整流された電圧を昇圧することが可能となる。言い換えれば、点灯装置10では、インダクタL1が、第1整流回路2により全波整流された電圧を昇圧することが可能となる。つまり、点灯装置10では、インダクタL1が、第1整流回路2により全波整流された電圧を昇圧すると、コンデンサC2に印加される電圧が大きくなる。
 ところで、コンデンサC2に蓄積された電荷エネルギーEは、コンデンサC2のキャパシタンスをC、コンデンサC2に印加される電圧をVとすると、次式により求められる。
Figure JPOXMLDOC01-appb-M000001
 本実施形態の点灯装置10では、上述の式(1)から分かるように、コンデンサC2に印加される電圧Vを大きくすることによって、コンデンサC2のキャパシタンスCを小さくすることが可能となる。これにより、点灯装置10では、コンデンサC2として、例えば、フィルムコンデンサを用いることが可能となり、コンデンサC2として電解コンデンサを用いた場合に比べて、信頼性の向上を図ることが可能となる。
 また、点灯装置10では、インダクタL1が、第1整流回路2により全波整流された電圧を昇圧することが可能となるので、低電圧領域の電圧を昇圧することが可能となる。これにより、点灯装置10では、第1整流回路2の一対の出力端2a,2b間に、第1整流回路2により全波整流された電圧を平滑する電解コンデンサが不要となる。
 また、本実施形態の点灯装置10では、トランスT1の一次巻線N1の漏れインダクタンスと、コンデンサC3とが、並列型の共振回路に相当する。これにより、点灯装置10では、制御回路5が、スイッチング素子Q1のオンオフを制御するときに、ソフトスイッチング動作を実現することが可能となり、スイッチング素子Q1のスイッチング損失を低減することが可能となる。よって、本実施形態の点灯装置10では、点灯装置10の電力損失を低減することが可能となり、点灯装置10の高効率化を図ることが可能となる。なお、ソフトスイッチング動作とは、上記共振回路の共振現象を利用して、スイッチング素子Q1に流れる電流もしくはスイッチング素子Q1に印加される電圧がゼロのときに、スイッチング素子Q1がターンオンまたはターンオフする動作を意味する。
 以上説明した本実施形態の点灯装置10は、交流電圧を全波整流する第1整流回路2と、第1整流回路2により全波整流された電圧を所定の直流電圧に変換するDC-DCコンバータ3とを備えている。DC-DCコンバータ3は、第1インダクタL1と、第1ダイオードD1と、第1コンデンサC1および第2コンデンサC2と、一次巻線N1および二次巻線N2を具備するトランスT1と、スイッチング素子Q1と、スイッチング素子Q1のオンオフを制御する制御回路5と、二次巻線N2で発生した電圧を全波整流する第2整流回路4とを備えている。第2整流回路4は、第2ダイオードD2および第3ダイオードD3を備えている。第1整流回路2の入力側には、DC-DCコンバータ3で発生するノイズを除去するフィルタ1が設けられている。二次巻線N2には、センタータップが設けられている。第1整流回路2の一対の出力端2a,2bのうちの第1の出力端2aは、第1インダクタL1を介して第1ダイオードD1のアノード側に接続されている。第1ダイオードD1のカソード側は、一次巻線N1を介してスイッチング素子Q1の第1の主端子に接続されている。スイッチング素子Q1の第1の主端子は、第1コンデンサC1を介して第1ダイオードD1のアノード側に接続されている。スイッチング素子Q1の第2の主端子は、第1整流回路2の一対の出力端2a,2bのうちの第2の出力端2bに接続されるとともに、第2コンデンサC2を介して第1ダイオードD1のカソード側に接続されている。スイッチング素子Q1の制御端子は、制御回路5に接続されている。二次巻線N2の第1端は、第2ダイオードD2のアノード側に接続されている。第2ダイオードD2のカソード側は、第3ダイオードD3のカソード側に接続されている。第3ダイオードD3のアノード側は、二次巻線N2の第2端に接続されている。点灯装置10は、第2ダイオードD2および第3ダイオードD3それぞれのカソード側と、二次巻線N2のセンタータップとの間に、点灯対象の負荷(LEDモジュール20)を電気的に接続することができるように構成されている。
 したがって、本実施形態の点灯装置10は、フィルタ1と、第1整流回路2と、DC-DCコンバータ3とで構成されているので、図14に示す構成を備えたスイッチング電源装置に比べて、小型化を図ることが可能となる。また、点灯装置10では、コンデンサC2として、例えば、フィルムコンデンサを用いることが可能となり、従来のように整流回路の出力端間に電解コンデンサを接続してある場合に比べて、小型化を図りながらも、信頼性の向上を図ることが可能となる。
 以下、本実施形態の点灯装置10を用いた照明器具の一例について、図3に基づいて説明する。
 本実施形態の照明器具30は、例えば、天井材40に埋め込み配置されるように構成されている。照明器具30は、上述のLEDモジュール20と、上述の点灯装置10と、筐体31とを備えている。
 LEDモジュール20は、上述の複数個のLED素子21と、実装基板22とを備えている。
 実装基板22としては、例えば、金属ベースプリント配線板などを採用することができる。本実施形態では、実装基板22の外周形状を、例えば、円形状としている。
 実装基板22の一面側(図3では、下面側)には、複数個のLED素子21が実装されている。実装基板22は、一対の第1接続線25,25を介して、第1コネクタ41bと電気的に接続されている。
 筐体31は、箱状(本実施形態では、矩形箱状)に形成されている。筐体31の材料としては、例えば、金属(例えば、鉄、アルミニウム、ステンレスなど)などを採用することができる。筐体31には、上述の点灯装置10が収納されている。
 照明器具30では、筐体31を、天井材40の一面側(図3では、上面側)に配置してある。また、照明器具30では、筐体31と天井材40との間に、筐体31と天井材40との間を規定の距離に保つためのスペーサ32を介在させてある。
 筐体31の一側壁(図3では、左側壁)には、点灯装置10に電気的に接続された一対の第2接続線33,33を導出するための第1の導出孔(図示せず)が、形成されている。照明器具30では、一対の第2接続線33,33の一方を、点灯装置10のダイオードD2およびダイオードD3それぞれのカソード側に接続してある。また、照明器具30では、一対の第2接続線33,33の他方を、点灯装置10の二次巻線N2のセンタータップに接続してある。また、照明器具30では、点灯装置10が、一対の第2接続線33,33を介して、第2コネクタ41aと電気的に接続されている。
 また、照明器具30は、器具本体23と、光拡散板24とを備えている。
 器具本体23は、例えば、有底筒状(本実施形態では、有底円筒状)に形成されている。器具本体23の材料としては、例えば、金属(例えば、鉄、アルミニウム、ステンレスなど)などを採用することができる。
 器具本体23の底壁23aには、実装基板22に電気的に接続された一対の第1接続線25,25を導出するための第2の導出孔(図示せず)が、形成されている。なお、本実施形態では、実装基板22の平面サイズを、器具本体23の開口サイズよりも若干小さく設定している。
 照明器具30では、器具本体23の底壁23aの内側に、実装基板22が配置されている。また、照明器具30では、器具本体23の底壁23aに、実装基板22が取り付けられている。照明器具30では、実装基板22を器具本体23の底壁23aに取り付ける手段として、例えば、電気絶縁性および熱伝導性を有する接着シート(図示せず)などを用いている。
 器具本体23の側壁23bの下端部には、側方へ延設された鍔部23cが設けられている。また、器具本体23の側壁23bの下端部には、天井材40に予め形成された埋込孔40aの周部を鍔部23cとで挟持可能な一対の取付金具(図示せず)が、設けられている。照明器具30は、天井材40の埋込孔40aの周部を上記一対の取付金具と鍔部23cとで挟持することによって、器具本体23を天井材40に埋め込み配置することが可能となる。
 光拡散板24は、例えば、板状(本実施形態では、円板状)に形成されている。光拡散板24の材料としては、透光性材料(例えば、アクリル樹脂、ガラスなど)を採用することができる。照明器具30では、器具本体23の側壁23bの下端部に、光拡散板24が着脱自在に取り付けられている。これにより、光拡散板24は、器具本体23の開口部を覆い各LED素子21から放射された光を拡散することが可能となる。
 以上説明した本実施形態の照明器具30は、上述のLEDモジュール20と、LEDモジュール20が取り付けられた器具本体23と、LEDモジュール20を点灯させる上述の点灯装置10とを備えている。これにより、本実施形態の照明器具30では、小型化を図りながらも、信頼性の向上を図ることが可能となる。なお、LEDモジュール20や照明器具30の各構成は、特に限定するものではない。
 (実施形態2)
 本実施形態の点灯装置11の基本構成は、実施形態1の点灯装置10と同じであり、図4に示すように、ダイオードD2およびダイオードD3それぞれのカソード側が、インダクタ(第2インダクタ)L2の第1端に接続されている点などが実施形態1と相違する。なお、本実施形態では、実施形態1と同様の構成要素には同一の符号を付して説明を適宜省略する。
 点灯装置11では、LEDモジュール20のアノード側を、インダクタL2の第2端に接続している。また、点灯装置11では、LEDモジュール20のカソード側を、二次巻線N2のセンタータップに接続している。要するに、点灯装置11は、インダクタL2の第2端と、二次巻線N2のセンタータップとの間に、LEDモジュール20を電気的に接続することができるように構成されている。これにより、点灯装置11は、LEDモジュール20を点灯させることが可能となる。
 点灯装置11では、インダクタL2が、LEDモジュール20に流れる電流を平滑化するので、LEDモジュール20に流れる電流に含まれるリップル成分を低減することが可能となる。これにより、点灯装置11では、点灯装置10に比べて、DC-DCコンバータ3の出力電流がゼロになるのを抑制することが可能となり(図5参照)、LEDモジュール20に流れる電流を定電流化することが可能となる。
 なお、本実施形態の点灯装置11を、実施形態1で説明した照明器具30に用いてもよい。
 (実施形態3)
 本実施形態の点灯装置12の基本構成は、実施形態2の点灯装置11と同じであり、図6に示すように、ダイオードD2およびダイオードD3それぞれのカソード側が、インダクタL2とコンデンサ(第4コンデンサ)C4とを介して、二次巻線N2のセンタータップに接続されている点などが実施形態2と相違する。なお、本実施形態では、実施形態2と同様の構成要素には同一の符号を付して説明を適宜省略する。
 点灯装置12では、LEDモジュール20のアノード側を、インダクタL2およびコンデンサC4の接続点P1に接続している。また、点灯装置12では、LEDモジュール20のカソード側を、二次巻線N2のセンタータップに接続している。要するに、点灯装置12は、インダクタL2およびコンデンサC4の接続点P1と、二次巻線N2のセンタータップとの間に、LEDモジュール20を電気的に接続することができるように構成されている。これにより、点灯装置12は、LEDモジュール20を点灯させることが可能となる。
 コンデンサC4としては、例えば、フィルムコンデンサを用いることができる。これにより、点灯装置12では、LEDモジュール20に流れる電流に含まれる高周波成分を除去することが可能となる(図7参照)。
 なお、本実施形態の点灯装置12を、実施形態1で説明した照明器具30に用いてもよい。
 (実施形態4)
 本実施形態の点灯装置13の基本構成は、実施形態3の点灯装置12と同じであり、図8に示すように、制御回路5が、コンデンサC2の高電位側と電気的に接続されている点などが実施形態3と相違する。なお、本実施形態では、実施形態3と同様の構成要素には同一の符号を付して説明を適宜省略する。
 制御回路5は、コンデンサC2の両端電圧を検出する第1検出器(図示せず)を備えている。上記第1検出器としては、例えば、制御回路5に相当する上記マイクロコンピュータに予め設けられたA/D変換回路(図示せず)を用いることができる。点灯装置13では、上記第1検出器が、コンデンサC2の高電位側と電気的に接続されている。
 また、制御回路5は、下記の表1を満たすように、上記第1検出器により検出されたコンデンサC2の両端電圧の増減に従ってスイッチング素子Q1のオン時間を制御するように構成されている。点灯装置13では、スイッチング素子Q1のオフ時間を、一定時間に設定してある。
 制御回路5は、下記の表1を満たすために、上記第1検出器により検出されたコンデンサC2の両端電圧が増加するに従ってスイッチング素子Q1のオン時間を短くするように構成されている。また、制御回路5は、下記の表1を満たすために、上記第1検出器により検出されたコンデンサC2の両端電圧が減少するに従ってスイッチング素子Q1のオン時間を長くするように構成されている。ここにおいて、表1の「領域0~領域9」は、図9に示すように、コンデンサC2の両端電圧の最大値VC2maxと最小値VC2minとの間の電圧範囲を、10分割した領域を表している。また、表1の「領域6」は、図9に示すように、コンデンサC2の両端電圧における最大値VC2maxと最小値VC2minの平均値を含むように設定してある。また、表1の「オン時間の変化割合」は、コンデンサC2の両端電圧が領域6にあるときのスイッチング素子Q1のオン時間(以下、「基準オン時間」という)を基準とした相対的な値を表している。また、表1の「オン時間の変化量」は、基準オン時間を基準として、スイッチング素子Q1のオン時間を変化させる量を表している。また、表1の「α」は、スイッチング素子Q1の最小オン時間を表している。本実施形態では、スイッチング素子Q1の基準オン時間を、4αに設定しているが、これに限らず、4α以上であればよい。
Figure JPOXMLDOC01-appb-T000001
 制御回路5は、図9および表1から分かるように、コンデンサC2の両端電圧が増加するに従ってスイッチング素子Q1のオン時間を短くする。また、制御回路5は、図9および表1から分かるように、コンデンサC2の両端電圧が減少するに従ってスイッチング素子Q1のオン時間を長くする。これにより、点灯装置13では、LEDモジュール20に流れる電流を定電流化することが可能となる。よって、点灯装置13では、点灯装置12に比べて、LEDモジュール20に流れる電流をより定電流化することが可能となる(図10参照)。
 なお、本実施形態の点灯装置13を、実施形態1で説明した照明器具30に用いてもよい。
 (実施形態5)
 本実施形態の点灯装置14の基本構成は、実施形態4の点灯装置13と同じであり、図11に示すように、フィルタ1の入力側に、DC-DCコンバータ3の出力電圧を指示する調光器6が接続されている点などが実施形態4と相違する。なお、本実施形態では、実施形態4と同様の構成要素には同一の符号を付して説明を適宜省略する。
 調光器6は、LEDモジュール20を調光点灯させるための機器である。調光器6としては、例えば、トライアック(図示せず)を用いた調光器を採用することができる。
 また、調光器6は、LEDモジュール20が所望の光出力レベル(以下、「調光レベル」という)となるように、例えば、図12Aに示すような電圧波形を有する電圧を出力するように構成されている。
 フィルタ1の入力側には、調光器6の上記トライアックと商用電源Vaとの直列回路が電気的に接続される。
 制御回路5は、フィルタ1の出力側と電気的に接続されている。
 また、制御回路5は、調光器6からの指示を検出する第2検出器(図示せず)を備えている。上記第2検出器としては、例えば、制御回路5に相当する上記マイクロコンピュータに予め設けられたゼロクロス検出回路(図示せず)を用いることができる。上記第2検出器は、調光器6の出力電圧の位相を検出することによって、調光器6からの指示(調光レベル)を検出することが可能となる。点灯装置14では、上記第2検出器が、フィルタ1の出力側と電気的に接続されている。
 ところで、制御回路5は、上記第2検出器により検出された調光器6からの指示に従って、LEDモジュール20の調光レベルを制御するように構成されている。言い換えれば、制御回路5は、上記第2検出器により検出された調光器6からの指示に従って、スイッチング素子Q1のオン時間を制御するように構成されている。点灯装置14では、スイッチング素子Q1のオフ時間を、一定時間に設定してある。
 制御回路5は、図13中の実線で示すように、調光器6の調光レベルに従ってスイッチング素子Q1のオンデューティ比を制御するように構成されている。なお、図13中のLmaxは、調光レベルの最大値を表している。また、図13中のLminは、調光レベルの最小値を表している。
 制御回路5は、図13中の実線で示す特性を満たすように、調光器6からの指示に従ってスイッチング素子Q1のオン時間を制御するように構成されている。これにより、点灯装置14では、DC-DCコンバータ3の出力電圧を変更することが可能となり、LEDモジュール20の調光レベルを調整することが可能となる。なお、図13中の一点鎖線は、調光器6の調光レベルに対する、スイッチング素子Q1のオンデューティ比の目標値を表している。
 また、制御回路5は、上記第1検出器により検出されたコンデンサC2の両端電圧が増加するに従ってスイッチング素子Q1のオン時間を短くし、コンデンサC2の両端電圧が減少するに従ってスイッチング素子Q1のオン時間を長くするように構成されていてもよい。具体的に説明すると、制御回路5は、下記の表2を満たすように、上記第1検出器により検出されたコンデンサC2の両端電圧の増減と、上記第2検出器により検出された調光器6の出力電圧の位相とに従って、スイッチング素子Q1のオン時間を制御するように構成されていてもよい。ここにおいて、表2の「領域0~領域9」は、図9に示すように、コンデンサC2の両端電圧の最大値VC2maxと最小値VC2minとの間の電圧範囲を、10分割した領域を表している。また、表2の「領域6」は、図9に示すように、コンデンサC2の両端電圧における最大値VC2maxと最小値VC2minの平均値を含むように設定してある。また、表2の「オン時間の変化割合」は、基準オン時間を基準とした相対的な値を表している。また、表2の「オン時間の変化量」は、基準オン時間を基準として、スイッチング素子Q1のオン時間を変化させる量を表している。また、表2の「α」は、スイッチング素子Q1の最小オン時間を表している。また、表2の「β」は、調光器6からの指示(調光レベル)により設定されるスイッチング素子Q1のオン時間を表している。点灯装置14では、スイッチング素子Q1の基準オン時間を、4αに設定しているが、これに限らず、4α以上であればよい。なお、表2の「β」は、調光器6からの指示により変更することが可能である。
Figure JPOXMLDOC01-appb-T000002
 制御回路5は、表2を満たすように、上記第1検出器により検出されたコンデンサC2の両端電圧の増減と、上記第2検出器により検出された調光器6の出力電圧の位相とに従って、スイッチング素子Q1のオン時間を制御するように構成される。これにより、点灯装置14では、LEDモジュール20の調光レベルを調整することが可能となるとともに、LEDモジュール20に流れる電流を定電流化することが可能となる(図12B参照)。
 なお、本実施形態の点灯装置14を、実施形態1で説明した照明器具30に用いてもよい。
 本発明を幾つかの好ましい実施形態によって記述したが、この発明の本来の精神および範囲、即ち請求の範囲を逸脱することなく、当業者によって様々な修正および変形が可能である。

Claims (7)

  1.  交流電圧を全波整流する第1整流回路と、前記第1整流回路により全波整流された電圧を所定の直流電圧に変換するDC-DCコンバータとを備え、
     前記DC-DCコンバータは、第1インダクタと、第1ダイオードと、第1コンデンサおよび第2コンデンサと、一次巻線および二次巻線を具備するトランスと、スイッチング素子と、前記スイッチング素子のオンオフを制御する制御回路と、前記二次巻線で発生した電圧を全波整流する第2整流回路とを備え、
     前記第2整流回路は、第2ダイオードおよび第3ダイオードを備え、
     前記第1整流回路の入力側には、前記DC-DCコンバータで発生するノイズを除去するフィルタが設けられ、
     前記二次巻線には、センタータップが設けられ、
     前記第1整流回路の一対の出力端のうちの第1の出力端は、前記第1インダクタを介して前記第1ダイオードのアノード側に接続され、前記第1ダイオードのカソード側は、前記一次巻線を介して前記スイッチング素子の第1の主端子に接続され、前記スイッチング素子の前記第1の主端子は、前記第1コンデンサを介して前記第1ダイオードの前記アノード側に接続され、
     前記スイッチング素子の第2の主端子は、前記第1整流回路の前記一対の出力端のうちの第2の出力端に接続されるとともに、前記第2コンデンサを介して前記第1ダイオードの前記カソード側に接続され、
     前記スイッチング素子の制御端子は、前記制御回路に接続され、
     前記二次巻線の第1端は、前記第2ダイオードのアノード側に接続され、前記第2ダイオードのカソード側は、前記第3ダイオードのカソード側に接続され、前記第3ダイオードのアノード側は、前記二次巻線の第2端に接続され、
     前記第2ダイオードおよび前記第3ダイオードそれぞれの前記カソード側と、前記センタータップとの間に、点灯対象の負荷を電気的に接続することができるように構成されている
     ことを特徴とする点灯装置。
  2.  前記一次巻線と前記二次巻線との間には、ギャップが設けられ、
     前記一次巻線には、第3コンデンサが並列に接続されている
     ことを特徴とする請求項1記載の点灯装置。
  3.  前記第2ダイオードおよび前記第3ダイオードそれぞれの前記カソード側は、第2インダクタの第1端に接続され、
     前記第2インダクタの第2端と、前記センタータップとの間に、前記負荷を電気的に接続することができるように構成されている
     ことを特徴とする請求項1または請求項2記載の点灯装置。
  4.  前記第2ダイオードおよび前記第3ダイオードそれぞれの前記カソード側は、前記第2インダクタと第4コンデンサとを介して、前記センタータップに接続され、
     前記第2インダクタおよび前記第4コンデンサの接続点と、前記センタータップとの間に、前記負荷を電気的に接続することができるように構成されている
     ことを特徴とする請求項3記載の点灯装置。
  5.  前記制御回路は、前記第2コンデンサの両端電圧が増加するに従って前記スイッチング素子のオン時間を短くし、前記第2コンデンサの前記両端電圧が減少するに従って前記スイッチング素子の前記オン時間を長くするように構成されている
     ことを特徴とする請求項4記載の点灯装置。
  6.  前記フィルタの入力側には、前記DC-DCコンバータの出力電圧を指示する調光器が接続され、
     前記制御回路は、前記調光器からの前記指示に従って前記スイッチング素子の前記オン時間を制御するように構成されている
     ことを特徴とする請求項4または請求項5記載の点灯装置。
  7.  LEDモジュールと、前記LEDモジュールが取り付けられた器具本体と、前記LEDモジュールを前記負荷として点灯させる請求項1ないし請求項6のいずれか1項に記載の点灯装置とを備えている
     ことを特徴とする照明器具。
PCT/JP2014/001070 2013-03-11 2014-02-27 点灯装置およびそれを用いた照明器具 WO2014141610A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-048233 2013-03-11
JP2013048233A JP2014175217A (ja) 2013-03-11 2013-03-11 点灯装置およびそれを用いた照明器具

Publications (1)

Publication Number Publication Date
WO2014141610A1 true WO2014141610A1 (ja) 2014-09-18

Family

ID=51536293

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/001070 WO2014141610A1 (ja) 2013-03-11 2014-02-27 点灯装置およびそれを用いた照明器具

Country Status (3)

Country Link
JP (1) JP2014175217A (ja)
TW (1) TW201448669A (ja)
WO (1) WO2014141610A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008104274A (ja) * 2006-10-18 2008-05-01 Matsushita Electric Works Ltd スイッチング電源装置
JP2008259387A (ja) * 2007-04-09 2008-10-23 Tdk Corp Dc/dcコンバータ
JP2009044944A (ja) * 2007-08-13 2009-02-26 Hitachi Kokusai Electric Inc スイッチング電源装置
JP2009273341A (ja) * 2008-05-01 2009-11-19 Noboru Abe 電源回路

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008104274A (ja) * 2006-10-18 2008-05-01 Matsushita Electric Works Ltd スイッチング電源装置
JP2008259387A (ja) * 2007-04-09 2008-10-23 Tdk Corp Dc/dcコンバータ
JP2009044944A (ja) * 2007-08-13 2009-02-26 Hitachi Kokusai Electric Inc スイッチング電源装置
JP2009273341A (ja) * 2008-05-01 2009-11-19 Noboru Abe 電源回路

Also Published As

Publication number Publication date
TW201448669A (zh) 2014-12-16
JP2014175217A (ja) 2014-09-22

Similar Documents

Publication Publication Date Title
JP5884049B2 (ja) 点灯装置およびそれを備えた照明器具
JP5884050B2 (ja) 点灯装置およびそれを備えた照明器具
JP2002231471A (ja) Led点灯装置及び照明装置
JP2009134945A (ja) Led点灯装置及びled照明器具
US8653755B2 (en) Lighting apparatus and illuminating fixture with the same
JP2013118131A (ja) 点灯装置およびそれを備えた照明器具
WO2016037287A1 (en) High-power single-stage led driver with bipolar ripple cancellation
JP6173658B2 (ja) 電源装置および照明装置
US9131570B2 (en) Lighting device and luminaire
JP2014023225A (ja) 電源装置、固体発光素子点灯装置および照明装置
JP2012029363A (ja) 電源回路
JP5140203B2 (ja) Led点灯装置
JP5152501B2 (ja) 負荷制御装置および電気機器
JP2014239629A (ja) 点灯装置およびそれを用いた照明器具
JP6527741B2 (ja) Led点灯装置
WO2014141610A1 (ja) 点灯装置およびそれを用いた照明器具
JP2013030416A (ja) 発光素子点灯装置及びそれを用いた照明器具
JP5193379B2 (ja) Led点灯装置及びled照明器具
JP2016081713A (ja) 点灯装置及び照明器具
JP2019164922A (ja) 点灯装置、および非常用照明器具
JP5140202B2 (ja) Led点灯装置
JP7006465B2 (ja) 点灯装置、照明器具
JP6778899B2 (ja) 点灯装置及び照明器具
JP5193378B2 (ja) Led点灯装置及びled照明器具
JP2021022486A (ja) 点灯装置、光源ユニット及び照明器具

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14763138

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14763138

Country of ref document: EP

Kind code of ref document: A1