WO2014137151A1 - Composite sheet for shielding magnetic field and electromagnetic wave, and antenna module comprising same - Google Patents

Composite sheet for shielding magnetic field and electromagnetic wave, and antenna module comprising same Download PDF

Info

Publication number
WO2014137151A1
WO2014137151A1 PCT/KR2014/001795 KR2014001795W WO2014137151A1 WO 2014137151 A1 WO2014137151 A1 WO 2014137151A1 KR 2014001795 W KR2014001795 W KR 2014001795W WO 2014137151 A1 WO2014137151 A1 WO 2014137151A1
Authority
WO
WIPO (PCT)
Prior art keywords
sheet
magnetic
shielding
nfc
magnetic field
Prior art date
Application number
PCT/KR2014/001795
Other languages
French (fr)
Korean (ko)
Inventor
장길재
이동훈
김기철
Original Assignee
주식회사 아모센스
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 아모센스 filed Critical 주식회사 아모센스
Priority to CN201480012615.4A priority Critical patent/CN105027355B/en
Priority to US14/772,431 priority patent/US9812774B2/en
Priority claimed from KR1020140025828A external-priority patent/KR101703842B1/en
Publication of WO2014137151A1 publication Critical patent/WO2014137151A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/52Means for reducing coupling between antennas; Means for reducing coupling between an antenna and another structure
    • H01Q1/526Electromagnetic shields
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q7/00Loop antennas with a substantially uniform current distribution around the loop and having a directional radiation pattern in a plane perpendicular to the plane of the loop
    • H01Q7/04Screened antennas

Definitions

  • a magnetic field capable of shielding electromagnetic waves and blocking electromagnetic field effects on a main body and a battery of a mobile terminal device by greatly reducing the loss caused by eddy current by flake processing of an amorphous ribbon sheet, and It relates to an electromagnetic shielding composite sheet and an antenna module having the same.
  • RFID Radio Frequency Identification
  • NFC Near Field Communication
  • Wireless Charger Wireless Charger
  • Interactive Pen Tablet etc.
  • NFC is an electronic tag, a non-contact short-range wireless communication module using the 13.56Mz frequency band and transmits data between terminals at a close distance of 10 cm.
  • NFC is not only mobile payment but also file transfer method, and is widely used in supermarkets or general stores to transmit goods information or travel information for visitors, transportation, and access control lock.
  • the Android Beam which was recently installed by Google, has a near field communication (NFC) -based short-range information transmission / reception function, which enables not only mobile payment but also photos, business cards, files, maps and websites. It provides the ability to forward to another phone.
  • NFC near field communication
  • a radio frequency identification (RFID) wireless environment is widely used.
  • RFID radio frequency identification
  • NFC Near Field Communication
  • a contactless smart card such as a USIM (Universal Subscriber Identity Module) card
  • USIM Universal Subscriber Identity Module
  • the information of the USIM card of the mobile terminal device is read by the RF reader and recorded necessary information by near field communication.
  • a built-in function such as an electronic money function (e.g., an electronic money function) is realized.
  • a contactless (wireless) charging antenna is installed in the battery cover of the portable terminal device.
  • the charging circuit to which the antenna is connected is recently miniaturized and built in the portable terminal device, only the antenna (part) is included in the battery cover Left.
  • the NFC chip installed in the portable terminal device has been developed to operate as an RFID reader to read information recorded in an external RFID tag.
  • an antenna (coil) connected to the NFC chip acts as a primary coil to transmit power, and induction electromotive force is generated from a coil (antenna) installed in an external RFID tag to wirelessly communicate.
  • the induced electromotive force induced in the loop antenna of the helical coil type is determined by Faraday's law and Lenz's law. Therefore, in order to obtain a high voltage signal, the induced electromotive force is interlinked with the secondary coil (antenna coil). The greater the amount of magnetic flux, the better. The amount of magnetic flux increases as the amount of soft magnetic material included in the secondary coil increases, and as the material permeability increases.
  • a magnetic field of 100 kHz to several tens of MHz is generated in the antenna coil provided in the portable terminal when performing a near field communication (NFC) function with an adjacent terminal.
  • NFC near field communication
  • the portable terminal device having such additional functions prevents heat generation due to eddy currents in the components (particularly, the battery) of the portable terminal device due to the magnetic field, and also maximizes the performance of the additional function by focusing the magnetic field.
  • a magnetic shielding sheet is essentially used.
  • a magnetic shielding sheet it is common to use a magnetic material such as an amorphous ribbon, ferrite, or a polymer sheet containing magnetic powder.
  • a magnetic material such as an amorphous ribbon, ferrite, or a polymer sheet containing magnetic powder.
  • the magnetic field focusing effect to improve magnetic shielding and add-on performance is as follows: amorphous magnetic ribbon with high magnetic permeability, ferrite, and polymer sheet containing magnetic powder.
  • Korean Patent No. 10-523313 has a composition selected from the group consisting of Fe-Si-B, Fe-Si-B-Cu-Nb, Fe-Zr-B and Co-Fe-Si-B and includes an amorphous alloy. Absorption for an RFID antenna made of a magnetic sheet, an RFID antenna and a wireless identification device including the same have been proposed.
  • the Korean Patent No. 10-523313 is a kind of polymer sheet made of a sheet by mixing amorphous alloy powder with a resin, and there is a problem in that the permeability, that is, the inductance value of the sheet is lower than 10 ⁇ H.
  • Korean Patent No. 10-623518 discloses first and second magnetic sheet layers made of an alloy powder containing at least one amorphous alloy in order to simplify the manufacturing process of Korean Patent No. 10-523313 and increase the permeability. After stacking the first amorphous alloy ribbon in between, and to increase the relative density of the laminated sheet and at the same time to form a micro crack in the first amorphous alloy ribbon, the laminated multi-layer sheet produced by rolling or pressing by compression molding A magnetic sheet for RFID and an RFID antenna using the same are disclosed.
  • the Korean Patent No. 10-623518 forms a micro crack in the first amorphous alloy ribbon by compression molding the multilayer magnetic sheet layer
  • the micro crack has a limit in lowering the magnetic resistance, and is caused by eddy currents. There is a problem that can not greatly reduce the loss.
  • the portable terminal device is provided with a wireless charging antenna for wireless charging together with the NFC antenna in the battery pack.
  • the power receiving device of the conventional non-contact type charging system has a high permeability and a large permeability on the surface opposite to the primary coil side, that is, the surface of the secondary coil, in order to enhance coupling and improve shielding to improve heat generation and improve heat shielding.
  • the magnetic body (magnetic sheet) of a volume is arrange
  • the antenna for NFC using the 13.56Mz frequency band is implemented using a ferrite sheet with low frequency dependency.
  • the magnetic permeability of the ferrite sheet or the polymer sheet containing the magnetic powder is somewhat lower than that of the amorphous ribbon, and in order to improve the performance of the low magnetic permeability, the thickness becomes thinner than the amorphous ribbon, which is tens of ⁇ m thick thin sheets. It is difficult to cope with the handset trend.
  • the thickness of the shielding sheet in order to exhibit the shielding characteristics without being affected by the permanent magnet, the thickness of the shielding sheet must be very thick to 0.5T or more, thereby maintaining a desired power transmission efficiency, which is a great obstacle to slimming the portable terminal.
  • the voltage induced in the secondary coil of the NFC antenna and the wireless charger is determined by Faraday's law and Lenz's law, it is necessary to bridge the secondary coil to obtain a high voltage signal.
  • the amount of magnetic flux increases as the amount of soft magnetic material included in the secondary coil increases, and as the material permeability increases.
  • NFC near field communication
  • a magnetic field in which a secondary coil is mounted is used to focus radio electromagnetic waves generated by a primary coil of a transmitter to a secondary coil of a receiver. It is necessary that the shield sheet is made of a magnetic material having a high permeability.
  • the present invention has been proposed to solve the above problems of the prior art, and its object is to significantly reduce the loss due to eddy current by flake processing of the amorphous ribbon, such as a main body and a battery of a mobile terminal device.
  • the present invention provides an antenna module including a magnetic sheet and an electromagnetic shielding composite sheet which can increase the communication distance and charging efficiency by increasing the quality factor (Q) of the secondary coil while blocking the influence of the magnetic field.
  • Another object of the present invention is to fill the gap between the fine pieces of the amorphous ribbon by the crushing lamination treatment after the amorphous ribbon to prevent the penetration of moisture by the adhesive filling the fine pieces by wrapping the fine pieces with an adhesive (dielectric) at the same time
  • the present invention provides a composite sheet for shielding magnetic fields and electromagnetic waves, which is capable of preventing eddy currents from being insulated from each other and preventing a drop in shielding performance.
  • Still another object of the present invention is to provide a magnetic sheet and an electromagnetic shielding composite sheet and an antenna module having the same, which prevents an increase in the frequency fluctuation range when the NFC antenna is mounted on the battery pack, thereby reducing the defective rate of the NFC antenna.
  • Another object of the present invention is to provide a conductor sheet having electromagnetic shielding and heat dissipation function on one side, and at the same time serves as a heat shielding layer capable of collecting heat by a plurality of micropores provided in the shielding sheet,
  • the present invention provides a composite sheet for shielding magnetic fields and electromagnetic waves capable of performing both heat dissipation and thermal insulation, and an antenna module having the same.
  • Another object of the present invention is to provide a multi-sheet magnetic field and electromagnetic shielding composite sheet and an antenna module having the same that can be carried out both heat diffusion, heat collection and electromagnetic and magnetic field shielding in a single sheet.
  • Another object of the present invention to provide a magnetic sheet and electromagnetic shielding composite sheet and an antenna module having the same that can be used simultaneously for NFC and wireless charging.
  • the present invention is heat-treated and flake-treated amorphous ribbon sheet separated into a plurality of fine pieces, a protective film adhered to one side of the amorphous ribbon sheet and the other side of the amorphous ribbon sheet
  • a magnetic sheet having an adhesive tape It provides a magnetic sheet and electromagnetic shielding composite sheet comprising a; and the electromagnetic shielding and heat dissipation conductor sheet laminated to the magnetic sheet.
  • the present invention is a magnetic permeability of the first magnetic sheet; And a second magnetic sheet laminated on the first magnetic sheet having a second permeability lower than that of the first magnetic sheet, wherein the first magnetic sheet is divided into a plurality of fine pieces and the plurality of fine pieces It is disposed on the same plane, the protective film and the double-sided tape is laminated on both sides, the gap between the plurality of fine pieces is a magnetic field and electromagnetic shielding composite sheet filled with a part of the adhesive layer included in the protective film and the double-sided tape to provide.
  • the present invention is made of a loop form on the substrate and the NFC antenna for transmitting and receiving NFC (Near field communications) signal; And it provides an antenna module comprising a composite sheet for shielding the magnetic field and electromagnetic waves stacked on the substrate.
  • NFC Near field communications
  • the present invention is a wireless charging secondary coil for receiving a high-frequency power signal for wireless charging and formed in a loop form on the outside of the substrate and the NFC antenna coil for transmitting and receiving high-frequency signals for NFC Dual antenna provided; And it provides an antenna module comprising a composite sheet for shielding the magnetic field and electromagnetic waves stacked on the substrate.
  • the invention consists of a coil portion formed in a spiral pattern on the surface of the substrate and the first to third terminal terminals extending therefrom and between the first terminal terminal and the second terminal terminal; NFC and wireless high-frequency antenna for transmitting and receiving, and receiving a high-frequency signal for wireless transmission transmitted from the transmitter of the wireless charger from between the third terminal terminal and the first or second terminal terminal; And it provides an antenna module comprising a composite sheet for shielding the magnetic field and electromagnetic waves stacked on the substrate.
  • the loss of the eddy current is greatly reduced by the flake processing of the amorphous ribbon, thereby preventing the magnetic field effects on the main body and the battery of the mobile terminal device and the quality of the secondary coil.
  • the coefficient Q By increasing the coefficient Q, the power transmission efficiency is excellent, and the communication distance is increased.
  • the gap between the fine pieces of the amorphous ribbon is filled by the adhesive lamination treatment after the flake treatment of the amorphous ribbon to prevent moisture penetration and at the same time, all surfaces of the fine pieces are surrounded by the adhesive (dielectric). It is possible to prevent the deterioration of the shielding performance by reducing the eddy current by insulating fine pieces from each other. Further, by enclosing all sides of the fine pieces with an adhesive (dielectric), moisture can penetrate, and the amorphous ribbon is oxidized to prevent changes in appearance and deterioration of properties.
  • the frequency fluctuation range can be prevented from increasing, thereby reducing the defective rate of the NFC antenna.
  • a conductive sheet having excellent electrical conductivity and thermal conductivity on one side of the sheet electromagnetic wave shielding is possible and rapid diffusion of locally conducted heat can be achieved, and a plurality of micropores provided in the shielding sheet are conductive.
  • a heat shield layer that can collect heat by blocking the convection of the heat, it can perform both electromagnetic shielding and heat dissipation and heat insulation.
  • the composite sheet of the present invention can perform heat diffusion (dispersion), heat collection (insulation), electromagnetic wave and magnetic field shielding in a single sheet, and can be implemented in an ultra-thin.
  • FIG. 1 is an exploded perspective view showing a magnetic shielding sheet for NFC and wireless charging according to the present invention
  • FIG. 2 is a cross-sectional view showing an example of using one sheet of nanocrystalline ribbon according to the first embodiment
  • FIG. 3 is a cross-sectional view showing an example of using six nano-crystal ribbon sheet according to the second embodiment
  • FIGS. 4 and 5 are cross-sectional views showing the structure of the protective film and double-sided tape used in the present invention, respectively;
  • FIG. 6 is an exploded perspective view showing a magnetic shielding sheet for NFC and wireless charging according to a third embodiment of the present invention.
  • FIG. 7 is a process chart for explaining a process for manufacturing a magnetic shielding sheet for NFC and wireless charging according to the present invention.
  • FIG. 10 is a cross-sectional view showing a state where the flakes of the laminated sheet according to the present invention.
  • 11 and 12 are cross-sectional views showing the lamination process of the flake-laminated sheet according to the invention, respectively;
  • FIG. 13 is a cross-sectional view showing a state in which the laminate after the flake processing of the NFC and wireless charging magnetic shielding sheet according to the first embodiment of the present invention
  • 14A and 14B are enlarged photographs of the humidity test of the magnetic field shielding sheet not subjected to the lamination process after the flake treatment, respectively, and an enlarged photograph after the humidity test of the laminated magnetic field shielding sheet after the flake treatment according to the present invention
  • FIG. 15 is a cross-sectional view showing a thin magnetic sheet used in the magnetic shielding sheet for NFC and wireless charging according to a fourth embodiment of the present invention.
  • 16 is a cross-sectional view showing a composite sheet for shielding electromagnetic fields and electromagnetic waves according to a fifth embodiment of the present invention.
  • FIG. 17 is an exploded perspective view showing the structure of an NFC antenna module according to the present invention.
  • FIG. 18 is an exploded perspective view illustrating that the NFC antenna module of FIG. 17 is assembled to a battery cover and coupled to a portable terminal device;
  • FIG. 19 is a plan view illustrating a dual antenna structure in which an NFC antenna and a wireless charging antenna are formed in one FPCB according to the present invention
  • 20A and 20B are a plan view and an equivalent circuit diagram showing a structure in which an integrated antenna for NFC and wireless charging is implemented using one coil in one FPCB according to the present invention, respectively.
  • FIG. 1 is an exploded perspective view showing an NFC and a wireless charging magnetic shielding sheet according to the present invention
  • Figure 2 is a cross-sectional view showing an example of using a sheet of nano-crystal ribbon according to the first embodiment.
  • the NFC and wireless charging magnetic shielding sheet 10 is a plurality of fine pieces by heat treatment after the ribbon of the amorphous alloy or nanocrystalline alloy after flake treatment
  • the thin magnetic sheet 2 may be, for example, a thin ribbon made of an amorphous alloy or a nanocrystalline alloy.
  • the amorphous alloy may be a Fe-based or Co-based magnetic alloy, it is preferable to use a Fe-based magnetic alloy in consideration of the material cost.
  • the Fe-based magnetic alloy for example, a Fe-Si-B alloy can be used, and it is preferable that Fe is 70-90 atomic%, and the sum of Si and B is 10-30 atomic%.
  • the content of Fe is preferably 70-90 atomic%.
  • the sum of Si and B is in the range of 10-30 atomic%, the amorphous forming ability of the alloy is the best.
  • corrosion resistant elements such as Cr and Co may be added within 20 atomic%, and a small amount of other metal elements may be included as necessary to impart other properties.
  • the Fe-Si-B alloy for example, a crystallization temperature of 508 ° C and a Curie temperature (Tc) of 399 ° C may be used.
  • this crystallization temperature may vary depending on the content of Si and B or other metal elements and their content added in addition to the tertiary alloy component.
  • an Fe-Si-B-Co-based alloy may be used as the Fe-based amorphous alloy.
  • the thin magnetic sheet 2 may be a ribbon of a thin plate made of a Fe-based nanocrystalline magnetic alloy.
  • the Fe-based nanocrystalline magnetic alloy it is preferable to use an alloy that satisfies the following expression (1).
  • A is at least one element selected from Cu and Au
  • D is selected from Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, W, Ni, Co and rare earth elements
  • E represents at least one element selected from Mn, Al, Ga, Ge, In, Sn, and platinum group elements
  • Z represents at least one element selected from C, N, and P
  • c, d, e, f, g and h are relations 0.01 ⁇ c ⁇ 8at%, 0.01 ⁇ d ⁇ 10at%, 0 ⁇ e ⁇ 10at%, 10 ⁇ f ⁇ 25at%, 3 ⁇ g ⁇ 12at%, 15 ⁇ f + g + h ⁇ 35 at%, respectively, and the area ratio of the alloy structure is 20% or more of the microstructure having a particle size of 50nm or less.
  • element A is used to improve the corrosion resistance of the alloy, to prevent coarsening of crystal grains, and to improve magnetic properties such as iron loss and permeability of the alloy. If the content of element A is too small, it is difficult to obtain the effect of suppressing coarsening of crystal grains. On the contrary, when there is too much content of A element, magnetic property will deteriorate. Therefore, it is preferable to make content of element A into the range of 0.01-8 at%.
  • D element is an element effective for uniformizing the grain diameter and reducing the magnetic strain. It is preferable to make content of D element into the range of 0.01-10 at%.
  • the element E is an element effective for improving the soft magnetic properties and the corrosion resistance of the alloy. It is preferable to make content of E element into 10 at% or less.
  • Si and B are elements which form amorphousization of the alloy at the time of magnetic sheet manufacture. It is preferable to make content of Si into the range of 10-25 at%, and it is preferable to make content of B into the range of 3-12 at%.
  • Z element may be included in the alloy as an amorphous compositional element of alloys other than Si and B. In that case, it is preferable to make the total content of Si, B, and Z elements into the range of 15-35 at%.
  • the fine crystal structure is preferably formed to realize a structure in which grains having a particle diameter of 5 to 30 nm exist in the range of 50 to 90% by area ratio in the alloy structure.
  • the Fe-based nanocrystalline magnetic alloy used in the thin magnetic sheet 2 may be a Fe-Si-B-Cu-Nb alloy, in this case, Fe is 73-80 at%, the sum of Si and B It is preferable that the sum of this 15-26 at% and Cu and Nb is 1-5 at%.
  • This composition range of the amorphous alloy produced in the form of a ribbon can be easily precipitated into the crystal grains of the nano phase by the heat treatment described later.
  • the protective film 1 is, for example, polyethylene terephthalate (PET) film, polyimide film, polyester film, polyphenylene sulfate (PPS) film, polypropylene (PP) film, polyterephthalate as shown in FIG.
  • a resin film 11 such as a fluororesin film such as (PTFE) can be used, and is attached to one side of the thin magnetic sheet 2 via the first adhesive layer 12.
  • the protective film 1 can use the thing of 1-100 micrometers, Preferably it is 10-30 micrometers, It is good to have a thickness of 20 micrometers more preferably.
  • the protective film 1 used in the present invention is a release film 4a attached to protect the first adhesive layer 12 on the other surface of the first adhesive layer 12 when attached to one side of the thin magnetic sheet 2. Is removed and attached.
  • the double-sided tape 3 is used as a base material 32 made of a fluororesin-based film such as, for example, a polyethylene terephthalate (PET) film, so that the second and third adhesive layers 31 are formed on both sides thereof. , 33 is used, and the release film 4 is attached to the outer surfaces of the second and third adhesive layers 31 and 33.
  • the release film 4 is integrally formed at the time of manufacture of the double-sided tape 3, and is peeled off and removed when the shielding sheet 10 is attached to the battery cover or the rear cover of the electronic device.
  • the magnetic field shielding sheet for NFC and wireless charging according to the third embodiment shown in FIG. 3 is used in order to bond the plurality of amorphous ribbon sheets 21-26 used as the multilayer thin magnetic sheet 2 to each other.
  • the double-sided tape 3a-3e inserted between -26) removes and uses both the release films 4 and 4b on both sides.
  • the double-sided tape 3,3a-3f is also applicable to the type with a base material as described above, and an inorganic material type formed only of an adhesive layer without a base material.
  • an inorganic material type from the viewpoint of thinning.
  • first to third adhesive layers 12, 31, and 33 for example, an acrylic adhesive may be used, and other types of adhesives may be used.
  • the double-sided tape 3 can use what has thickness of 10, 20, and 30 micrometers, Preferably, it has a thickness of 10 micrometers.
  • the thin magnetic sheet 2 used for the shielding sheet 10 may have a thickness of, for example, 15 to 35 ⁇ m per sheet.
  • the thickness of the thin magnetic sheet 2 is preferably set to 25 to 30 ⁇ m. As the thickness of the amorphous ribbon becomes thinner, cracking of the ribbon may occur even with slight impact during handling after heat treatment.
  • the magnetic shielding sheet 10 is used by attaching the NFC antenna 6 to the shielding sheet 10 using the double-sided tape 30b.
  • the magnetic shielding sheet 10 may be used in combination with the dual antennas 40 and 50 for NFC and wireless charging shown in FIGS. 19 to 20b.
  • the shield sheet 10 is a resonant circuit formed by the secondary coil 43. This will affect the inductance of the furnace.
  • the shielding sheet 10 serves as a magnetic shield to block the effect of, for example, a 300 kHz wireless power signal on the portable terminal 101 from the transmitting device, and simultaneously transmits the wireless power signal to the secondary coil 43 of the receiving device. It serves as an inductor to induce reception with high efficiency.
  • a 13.56 MHz NFC high frequency signal is applied from a primary coil (antenna) installed in the RF reader, the coil of the NFC chip installed in the portable terminal (antenna) Induced electromotive force is generated.
  • the USIM Universal Subscriber Identity Module
  • the information of the USIM card of the mobile terminal device is read by the RF reader and recorded the necessary information by near field communication, for example, electronically.
  • Built-in functions such as money functions (e.g., electronic money functions) are realized.
  • the magnetic shielding sheet 10 When near field communication (NFC) is performed, the magnetic shielding sheet 10 has an effect on the portable terminal device 101 by a high frequency signal for NFC of 13.56 MHz generated from a primary coil (antenna) installed in an RF reader.
  • the NFC antenna 6 serves as an inductor for inducing high frequency signals for NFC to be received with high reception sensitivity.
  • the thin magnetic sheet 2 is separated into a plurality of fine pieces 20 by flake processing, as shown in Figs. 2 and 3, it is preferable that the plurality of fine pieces 20 has a size of several tens of micrometers ⁇ 3mm or less.
  • the magnetic resistance R is reduced more than the decrease in the inductance L value of the magnetic sheet.
  • the quality coefficients of the resonant circuit formed by the NFC antenna coil 6a in NFC communication and the resonant circuit formed by the secondary coil of the receiver during wireless charging ( Q) increases to increase the power transmission efficiency.
  • the thin magnetic sheet 2 is separated into a plurality of fine pieces 20, it is possible to block the heat generation problem of the battery by reducing the loss due to the eddy current.
  • the thin magnetic sheet 2 is flakes as shown in FIG. 10, and then laminated as shown in FIG. 13, and thus the first and second adhesive layers 12 are formed as a gap 20a between the plurality of fine pieces 20. A part of, 31 penetrates, and the plurality of fine pieces 20 are separated by the first and second adhesive layers 12 and 31 serving as dielectrics.
  • the magnetic field shielding sheet 10a for NFC and wireless charging according to the first embodiment of the present invention is formed on one side using one amorphous ribbon sheet 21 as a thin magnetic sheet 2.
  • the protective film 1 is bonded, and the release film 4 is bonded to the other side via the double-sided tape 3.
  • the magnetic field shielding sheet 10b of the present invention as in the second embodiment shown in Figure 3, to improve the quality factor (Q) and power transmission efficiency of the secondary coil 43 of the receiving device thin magnetic sheet ( As 2), many amorphous ribbon sheets 21-26 can be laminated
  • the protective film 1 is adhered to one side of the thin magnetic sheet 2, and the release film 4 is adhered to the other side via the double-sided tape 3f.
  • the wireless charger may employ a permanent magnet in the power transmission transmitter to help align with the receiver to maximize the efficiency of the charger. That is, by providing a circular permanent magnet inside the primary coil (transmitting coil) of the transmitter, it makes an accurate position alignment with the receiver placed on the transmitter, and holds the receiver stationarily.
  • the magnetic shielding sheet for wireless charging is required to shield not only the alternating current (AC) magnetic field generated by the power transmission of 100 to 150KHz (or 300KHz) frequency from the transmitter but also the direct current (DC) magnetic field by the permanent magnet. do.
  • AC alternating current
  • DC direct current
  • the permanent magnet is used as the transmitter of the wireless charger, it is required to determine the amorphous ribbon sheets 21-26 to be laminated in consideration of the number of layers in which the magnetic saturation is performed by the permanent magnet.
  • the Fe-based amorphous alloy has a larger saturation magnetic field than the nanocrystalline alloy. Accordingly, in the case of using a plurality of amorphous ribbon sheets 21-26 made of an Fe-based amorphous alloy, two to eight layers can be laminated and used, for example, a high permeability can be obtained by using three to five layers. It is preferable to lose. In this case, the inductance (ie, permeability) of the laminated sheet is preferably about 13 to 19 mu H.
  • the inductance (ie, permeability) of the laminated sheet is preferably about 13 to 21 mu H.
  • the permanent magnet when the permanent magnet is not used as the transmitter of the wireless charger, it is also possible to use a relatively small number of amorphous ribbon sheets as compared with the case where the permanent magnet is adopted.
  • the inductance (ie, permeability) of the laminated sheet is preferably about 13 to 21 ⁇ H. .
  • the magnetic shielding sheet 10b according to the second embodiment is a thin magnetic sheet 2, for example, a case in which a plurality of amorphous ribbon sheets 21-26 are stacked. As shown, a plurality of adhesive layers or double-sided tapes 3a-3e are inserted between the plurality of amorphous ribbon sheets 21-26.
  • the adhesive layer or the double-sided tape (3a-3e) to the amorphous ribbon sheet filled in the gap (20a) between the fine pieces 20 to maintain the separated position during the flake and laminating process separated) Between 21-26).
  • Magnetic field shielding sheet 10-10b generally forms a rectangular or square quadrangular shape corresponding to a battery cell, in addition to polygonal or circular or ellipse, such as a pentagon, and partially rectangular and circular combinations. It may be formed in a shape, and preferably has a shape corresponding to the shape of the portion where the magnetic field shielding is required.
  • the shielding sheet when the wireless charger includes a permanent magnet in the center of the primary coil, the shielding sheet is magnetized (saturated) by the magnetic field of the permanent magnet.
  • the magnetic shielding sheet 10c of the third embodiment shown it may be formed in an annular shape corresponding to the secondary coil 43 of the receiver.
  • the magnetic field shielding sheet 10c of the third embodiment has a shape of any one of a rectangle, a circle, and an oval in response to the secondary coil 43 of the receiver having a shape of any one of a rectangle, a circle, and an oval.
  • the magnetic field shielding sheet 10c preferably has a width of about 1-2 mm wider than the width of the secondary coil 43.
  • annular thin magnetic sheet 2b having an annular protective film 1a attached to its upper surface is attached to the release film 4 through an annular double-sided tape 30. It may have a structure.
  • the annular magnetic shielding sheet 10c preferably uses a rectangular release film 4 having an area larger than that of the magnetic shielding sheet 10c so as to be easily peeled from the release film 4.
  • an amorphous ribbon made of an amorphous alloy or a nano-crystalline alloy is prepared by rapid quenching and solidification (RSP) by melt spinning (S11), and then first cut into a sheet shape to a predetermined length to facilitate post-treatment after heat treatment.
  • RSP rapid quenching and solidification
  • S11 melt spinning
  • S12 melt spinning
  • a quench solidification method using melt spinning is performed on a Fe-based amorphous ribbon, for example, an ultra-thin amorphous ribbon having a thickness of 30 ⁇ m or less composed of Fe-Si-B or Fe-Si-B-Co alloy (RSP). ),
  • the amorphous ribbon sheet laminated so as to obtain the desired permeability is subjected to a magnetic field heat treatment for 30 minutes to 2 hours in the temperature range of 300 °C to 600 °C (S13).
  • the heat treatment atmosphere does not need to be made in the atmosphere furnace even if the Fe content of the amorphous ribbon is high, since it is made in a temperature range where oxidation does not occur, and the heat treatment may be performed in the air.
  • the heat treatment is performed in an oxidizing atmosphere or a nitrogen atmosphere, the permeability of the amorphous ribbon is not substantially different under the same temperature conditions.
  • the heat treatment temperature is less than 300 °C exhibits a high permeability higher than the desired permeability, there is a problem that takes a long heat treatment time, and if the heat treatment temperature exceeds 600 °C there is a problem that the permeability is significantly lowered by overheating treatment does not exhibit the desired permeability. .
  • the heat treatment temperature is low, the treatment time is long.
  • the heat treatment temperature is high, the treatment time is shortened.
  • the amorphous ribbon is made of a nano-crystalline alloy
  • quench solidification method by melt spinning the ultra-thin amorphous ribbon of less than 30 ⁇ m made of Fe-based amorphous ribbon, for example, Fe-Si-B-Cu-Nb alloy (RSP And a nanocrystalline ribbon sheet on which the nanocrystalline grains are formed by subjecting the amorphous ribbon sheets laminated so as to obtain a desired permeability to a magnetic field heat treatment for 30 minutes to 2 hours at a temperature range of 300 ° C to 700 ° C. S13).
  • the heat treatment atmosphere is more than 70at% of the Fe content, so if the heat treatment is performed in the air, the oxidation is not preferred in terms of visual, it is preferably made in a nitrogen atmosphere. However, even if the heat treatment is performed in an oxidizing atmosphere, the magnetic permeability of the sheet is not substantially different under the same temperature conditions.
  • the heat treatment temperature is less than 300 °C nano-crystal grains are not sufficiently generated, the desired permeability is not obtained, the heat treatment time is long, there is a problem that the heat permeability is significantly lowered by overheating if it exceeds 700 °C there is a problem. If the heat treatment temperature is low, the treatment time is long, and conversely, if the heat treatment temperature is high, the treatment time is preferably shortened.
  • the amorphous ribbon of the present invention uses a thickness having a range of 15 ⁇ 35 ⁇ m, the permeability of the amorphous ribbon increases in proportion to the thickness of the ribbon.
  • the amorphous ribbon becomes brittle when heat treated, so that flakes can be easily formed when the flake treatment is performed in a subsequent process.
  • the heat treated amorphous ribbon sheets 2a; 21-26 are used as one or multiple layers of desired layers, and the protective film 1 is attached to one side and the other side.
  • the flake process is performed in the state which attached the double-sided tape 3; 3f with the release film 4 attached to it (S14).
  • the flake treatment is, for example, as shown in Figs. 8 and 9, a lamination sheet in which the protective film 1, the amorphous ribbon sheets 2a; 21-26, and the double-sided tape 3 and the release film 4 are sequentially laminated.
  • the amorphous ribbon sheets 2a; 21-26 are separated into a plurality of fine pieces 20.
  • the separated plurality of fine pieces 20 are kept separated by the first and second adhesive layers 12 and 31 adhered to both sides.
  • the usable first flake device 110 is, for example, as shown in Figure 8, the metal roller 112 having a plurality of irregularities 116 is formed on the outer surface, and is disposed to face the metal roller 112 It may be composed of a rubber roller 114, the second flake device 120 is, as shown in Figure 9, a metal roller 122, a plurality of spherical ball 126 is mounted on the outer surface, the metal roller 122 It may be composed of a rubber roller 124 is disposed opposite to.
  • the amorphous ribbon sheet 2a is divided into a plurality of fine pieces 20, and fine pieces.
  • a gap 20a is generated between the 20's. 10 shows a flake treatment using one amorphous ribbon sheet 2a.
  • the magnetic field is increased to remove the hysteresis loss, thereby increasing the uniformity of the permeability to the sheet.
  • the amorphous ribbon sheet 2a may block the heat generation problem due to the eddy current generated by the alternating magnetic field as the surface area of the fine piece 20 is reduced by the flake treatment.
  • a gap 20a is present between the fine pieces 20, and when moisture penetrates into the gap 20a, the amorphous ribbon is oxidized so that the appearance of the amorphous ribbon becomes poor and shielding. The performance will drop.
  • the size of the fine pieces 20 may increase, thereby increasing the eddy current loss.
  • the flake-treated laminated sheet 200 may cause a surface unevenness of the sheet during flake processing, it is necessary to stabilize the flake-treated ribbon.
  • the flake-laminated sheet 200 performs a lamination process for flattening, slimming, and stabilizing at the same time filling the adhesive with the gap 20a between the fine pieces 20 (S15).
  • the microflakes 20 can be separated from each other by enclosing all surfaces of the microflakes 20 with an adhesive to reduce eddy currents.
  • the laminate apparatus 400 and 500 for the lamination process is a second pressing roller 210 and the first pressing roller 210 passing through the flake-laminated sheet 200 as shown in FIG.
  • the roll press type consisting of the pressure roller 220 may be applied, and as shown in FIG. 12, the upper pressurized to be vertically movable above the lower pressurizing member 240 and the lower pressurizing member 240.
  • a hydraulic press type consisting of the member 250 can be used.
  • the first adhesive layer 12 of the protective film 1 is pressed while the first adhesive layer 12 is pressed.
  • some of the adhesive of the second adhesive layer 31 is introduced into the gap (20a) between the fine pieces 20 to close the gap (20a) To seal.
  • first adhesive layer 12 and the second adhesive layer 31 may be an adhesive that can be deformed when pressed at room temperature, or a thermoplastic adhesive that is deformed by applying heat may be used.
  • the thicknesses of the first adhesive layer 12 and the second adhesive layer 31 preferably have a thickness of 50% or more relative to the thickness of the amorphous ribbon so as to sufficiently fill the gap 20a between the plurality of fine pieces.
  • an interval between the upper pressing member 250 and the lower pressing member 240 is preferably formed to be 50% or less of the thickness of the laminated sheet 200.
  • the first adhesive layer 12 of the protective film 1 and the second of the double-sided tape 3 are used.
  • a part of the adhesive of the adhesive layer 31 and the adhesive of the adhesive layer or double-sided tape 3a-3e inserted between the laminated amorphous ribbon sheets 21-26 are filled with the gap 20a to separate the fine pieces 20. Let's do it.
  • any device can be used as long as the pressing and flake processing of the laminated sheets 100 and 200 can be performed.
  • the magnetic field shielding sheet 10 As shown in FIG. 13, the thin magnetic sheet 2 using the amorphous ribbon sheet 2a is separated into a plurality of fine pieces 20.
  • the first adhesive layer 12 and the second adhesive layer 31 partially fill the gaps 20a between the fine pieces 20 in a closed state to prevent oxidation and flow of the amorphous ribbon sheet 2a. do.
  • the magnetic field shielding sheet 10 made of the laminate is stamped into the size and shape necessary for the place and use for the electronic device is made into a commercialization (S16).
  • one protective film 1 is attached to one side of the magnetic sheet 2 to flake and laminate treatment.
  • damage to the protective film 1 may occur when the flake processing is performed. Therefore, preferably, another protective film for protecting the protective film 1 is attached to the upper portion of the protective film 1 to proceed with the treatment process, and after the treatment is completed, the surface protective film may be peeled off and removed.
  • the magnetic field shielding sheet 10 and the laminated sheet 200 which were not subjected to the lamination process after the flake treatment according to the present invention obtained above were subjected to a humidity test at a temperature of 85 ° C. and a humidity of 85% for 120 hours.
  • the magnetic shielding sheet according to the present invention may be constructed using the heterogeneous materials shown in FIGS. 15A and 15B.
  • the hybrid magnetic field shielding sheet 35 has a high magnetic permeability of the first magnetic sheet 35a and a low magnetic permeability second magnetic sheet 35b having a lower magnetic permeability than the first magnetic sheet 35a. It can be configured in a hybrid form by inserting the adhesive layer 35c in between.
  • the adhesive layer 35c may be composed of a double-sided tape having an inorganic material adhesive layer or a base material.
  • a thin magnetic sheet 2 is formed by flake treating an amorphous ribbon sheet made of an amorphous alloy or a nanocrystalline alloy as in the first and second embodiments shown in FIGS.
  • the second magnetic sheet 35b may be a polymer sheet made of magnetic powder and resin having high magnetic permeability such as amorphous alloy powder, soft magnetic powder, and sendust.
  • the amorphous alloy powder has a composition selected from the group consisting of, for example, Fe-Si-B, Fe-Si-B-Cu-Nb, Fe-Zr-B, and Co-Fe-Si-B and is amorphous. It is preferable to use an amorphous alloy powder containing at least one alloy.
  • the hybrid magnetic field shielding sheet 35 is composed of the first and second magnetic sheets 35a and 35b bonded by the adhesive layer 35c.
  • the first magnetic sheet 35a applies the magnetic shielding sheet 10-10b of the first and second embodiments using an amorphous ribbon sheet, and applies a ferrite sheet with low frequency dependency as the second magnetic sheet 35b.
  • a second magnetic sheet 35b using a ferrite sheet is used for shielding NFC magnetic fields, and an amorphous ribbon sheet is used for wireless charging. It is also possible to optimize using the first magnetic sheet 35a.
  • the ferrite sheet used as the second magnetic sheet 35b is made of divided ferrite divided into a plurality of pieces, and the upper / lower and side surfaces of each divided ferrite are preferably surrounded by an insulator such as an adhesive layer.
  • the hybrid magnetic field shielding sheet 35 has an amorphous ribbon sheet having a predetermined area in the center as the first magnetic sheet 35a, as shown in FIG. 15B. It is also possible to use the shielding sheet 10-10b used, and combine the annular second magnetic sheet 35b surrounding the first magnetic sheet 35a as a whole with the ferrite sheet outside the first magnetic sheet 35a. It is possible. That is, the second magnetic sheet 35b (ie, ferrite sheet) having a relatively low permeability relative to the first magnetic sheet 35a (ie, the amorphous ribbon sheet) is formed in a loop shape to form the first magnetic sheet 35a ( (Amorphous ribbon sheet).
  • Figure 16 shows a magnetic sheet and electromagnetic shielding composite sheet according to a fourth embodiment of the present invention.
  • the magnetic sheet and the electromagnetic shielding composite sheet 10d of the fourth embodiment are electromagnetic shielding and heat radiation on the upper surface of the protective film 1 or the lower surface of the double-sided tape 3 of the magnetic shielding sheet 10 according to the first embodiment.
  • the conductive sheet 5 made of Cu or Al foil having excellent conductivity and thermal conductivity is bonded to each other using a double-sided tape or an adhesive.
  • FIG. 16 shows that the conductor sheet 5 is formed on the protective film 1 of the magnetic field shielding sheet 10.
  • the adhesive it is preferable to use an acrylic adhesive having a thermal conductivity function.
  • the acrylic adhesive is an adhesive capable of room temperature curing.
  • the adhesive may contain 10 to 30 volume% of Ag and Ni powders based on the total volume% of the adhesive.
  • Ag and Ni powder are conductive metals, which provide thermal conductivity to the adhesive layer, thereby improving heat dissipation.
  • Ag and Ni powders are difficult to exert a heat conduction function when the sum is less than 10 vol%, and when the volume exceeds 30 vol%, the adhesiveness of the adhesive is lowered.
  • the adhesive further includes a binder, an additive, and a curing agent to increase adhesion.
  • the binder may be epoxy
  • the additive may include a diluent and a dispersant.
  • the conductor sheet 5 attached to the magnetic field shielding sheet 10 is suitably made of 5 to 100 ⁇ m, preferably 10 to 20 ⁇ m thick. (The thickness of the copper heat dissipation layer is 10 ⁇ m or less.)
  • the magnetic sheet and electromagnetic shielding composite sheet 10d of the fourth embodiment has the opposite side where the conductor sheet 5 is attached to the double-sided tape 3 and the conductor sheet 5 is not attached, that is, the upper portion of the protective film 1.
  • NFC antenna 6 or dual antenna 40 for NFC and wireless charging are welded to each other through a double-sided tape (bonding sheet), and additional processes such as a hot press process are further performed after attaching coverlays to both sides thereof. It is preferable.
  • the thin film metal layer of Cu, Ni, Ag, Al, Au, Sn, Zn, Mn, Mg, Cr, Tw, Ti or a combination of these metals may be sputtered or vacuum deposited instead of the foil-shaped conductor sheet 5 ( Formed on the upper surface of the protective film 1 of the magnetic shielding sheet 10 or the lower surface of the double-sided tape 3 by any one of vacuum evaporation, chemical vapor deposition, and electroplating. Can be.
  • the method may further include depositing a seed layer made of Ti—Cu by a sputtering method in order to increase the bonding force of the Cu metal layer.
  • the thickness of the Cu metal layer may be set to 10 ⁇ m or more, and the thickness of the seed layer made of Ti—Cu may be set to 0.5 ⁇ m.
  • the composite sheet 10d having the magnetic field and the electromagnetic shielding and heat dissipation function prevents an increase in the frequency fluctuation when the NFC antenna is mounted in the battery pack when electromagnetic waves such as power supply noise are severely generated. It is reduced, and has a heat dissipation function by heat dissipation when the portable terminal device body or the battery generates heat.
  • the composite sheet 10d of the fourth embodiment is used by being attached through the double-sided tape to the back of the battery cover so that the conductor sheet 5 is exposed toward the battery.
  • the magnetic field shielding sheet 10-10c is a thin magnetic sheet 2 as a single or multiple ribbon sheets (21-26) by stacking and flake finely
  • the gap 20a formed between the 20 may have an air trap structure capable of trapping air by holding the gap 20a as shown in FIG. 10 under the control of the pressing force during the laminating process. .
  • the thin magnetic sheet 2 has a protective film 1 and a double-sided tape 3 is attached to both sides, the adhesive layer or double-sided tape (3a-3e) between a plurality of laminated ribbon sheets (21-26) Since the gaps 20a formed between the fine pieces 20 are inserted, they form closed micropores capable of trapping air.
  • the air trapped in the closed micropores does not escape by itself, that is, convection is suppressed to capture heat conducted from the heat generating source serves to suppress heat transfer.
  • the air trapped in the micropores is known to have a low thermal conductivity of 0.025W / mK, so that the magnetic field shielding sheet (10-10b) has an excellent heat insulating action with respect to the Z direction perpendicular to the plane of the sheet Can serve as
  • the magnetic sheet and the electromagnetic shielding composite sheet 10d according to the fourth embodiment is a thermal diffusion sheet for rapidly diffusing heat conducted by the conductor sheet 5 made of Cu or Al foil having excellent thermal conductivity in the XY direction. It can act as a (Heat Spread Sheet).
  • the thermal diffusion sheet diffuses the temperature of the heating element as quickly as possible to prevent the temperature from rising locally. It is necessary to block or delay the transfer of heat to the user through the front display or the back cover by the insulation sheet.
  • the wireless charging receiver rectifies the high-frequency wireless power signal received from the secondary coil, that is, the wireless charging antenna coil 43 into DC, and then converts the voltage to DC- for converting the voltage level required for storing in the battery. It may be provided with a signal processing processor used for the control to increase the reception efficiency of the DC converter or the wireless power signal.
  • the magnetic field and electromagnetic wave shielding composite sheet 10d according to the fourth embodiment is used as a magnetic shielding sheet for wireless charging, for example, when the active element for signal processing is mounted on an extended portion thereof,
  • the conductor sheet 5 diffuses heat generated from the active element in the horizontal direction, and the magnetic shielding sheet 10 blocks or delays heat transfer in the Z direction, that is, insulates it and delivers it to the user who grips it through the rear cover. Can lower the heat.
  • the composite sheet of the present invention has a conductive layer having electromagnetic shielding and heat dissipation functions on one side, and at the same time serves as a heat shielding layer capable of collecting heat by a plurality of micropores provided in the shielding sheet, magnetic fields, electromagnetic waves Both shielding, heat dissipation and thermal insulation can be performed.
  • FIG. 17 is an exploded perspective view illustrating a coupling relationship between a magnetic shielding sheet and an NFC antenna according to the present invention
  • FIG. 18 is an exploded perspective view illustrating that the NFC antenna module of FIG. 17 is assembled to a battery cover and coupled to a portable terminal.
  • the NFC antenna 6 is attached to the upper portion of the protective film 1 of the magnetic shielding sheet 10 by using a double-sided tape 30b.
  • the lower part of the magnetic field shielding sheet 10 removes the release film 4 and attaches the finishing material to the third adhesive layer 33 of the exposed double-sided tape 3.
  • NFC antenna module 103 assembled with the NFC antenna 6 and the magnetic shielding sheet 10 is a portable terminal device 101 using a double-sided tape (30a) on the surface of the NFC antenna 6 as shown in FIG. To the battery cover 15. Thereafter, when the battery cover 15 is coupled to the portable terminal device 101, the magnetic field shielding sheet 10 is used to cover the battery 7.
  • the magnetic field shielding sheet 10 may be assembled by other well-known methods other than being disposed outside the battery.
  • the NFC antenna module 103 may be disposed inside the rear cover.
  • the NFC antenna module 103 may be assembled with the NFC antenna 6 and the magnetic shielding sheet 10a-10d of the second to fourth embodiments in addition to the magnetic shielding sheet 10 of the first embodiment.
  • the NFC antenna 6 may have any well-known structure.
  • NFC antenna 6 is, for example, NFC antenna coil 6a made of any one of a spiral, square, round, oval shape on a flexible printed circuit board (FPCB) 6b made of a synthetic resin such as polyimide (PI) It may be configured as.
  • the NFC antenna coil 6a patterns a conductor such as a copper foil attached to the flexible printed circuit board (FPCB) 6b in the form of a loop so that an induced current flows due to an external magnetic field change, or uses a conductive ink to form a flexible printed circuit board ( Loop-shaped metal patterns can be formed in the FPCB) 6b.
  • the NFC antenna 6 has a pair of terminal terminals 6c and 6d respectively disposed at the protrusions of the flexible printed circuit boards (FPCBs) 6b formed on one side of the NFC antenna coil 6a.
  • FPCBs flexible printed circuit boards
  • the outer line of the NFC antenna coil 6a is directly connected to the first terminal terminal 6c, and the inner line is a terminal connection pattern formed on the rear surface of the substrate 6b through conductive through holes 6e and 6f (not shown). Is connected to the second terminal terminal 6d.
  • the NFC antenna 6 is attached to the magnetic shielding sheet 10 using the double-sided tape (30b), one adhesive sheet that serves as an insulating layer instead of the NFC antenna 6 and the double-sided tape (30b),
  • the NFC antenna coil 6a may be directly formed on the double-sided tape to be assembled into a thin film structure.
  • the flexible printed circuit board (FPCB) 6b on which the NFC antenna coil 6a is formed can be removed, and the thickness can be reduced.
  • the NFC antenna module 103 which is an assembly of the NFC antenna 6 and the magnetic shielding sheet 10
  • the NFC function is not contacted to the portable terminal device ( It is possible to block the influence on the portable terminal device 101 by the alternating magnetic field generated when implemented in a wireless) manner and absorb the electromagnetic waves required to perform the NFC function.
  • the magnetic field shielding sheet 10 of the present invention has a multi-layered magnetic sheet 2, which is flake-processed and separated into a plurality of fine pieces 20, whereby the Q value is increased to increase the high frequency signal transmission and power transmission efficiency.
  • the surface area of the sheet is reduced by the flake treatment, thereby preventing the heat generation problem of the battery (secondary cell) 7 due to the eddy current generated by the alternating magnetic field.
  • NFC near field communications
  • Dual antenna 40 for simultaneously performing the NFC and wireless charging function is preferably implemented using an FPCB having a double-sided substrate structure.
  • the dual antenna of the present invention is not limited thereto and may have a structure of another type.
  • the dual antenna 40 includes, for example, an NFC antenna coil 41 and a wireless charging secondary coil 43 on a substrate 49 using an FPCB.
  • the substrate 49 may use a double-sided adhesive tape, and the NFC antenna coil 41 and the wireless charging secondary coil 43 may be formed on the adhesive substrate using a transfer method. .
  • the NFC antenna coil 41 Since the NFC antenna coil 41 has a higher frequency band than the secondary coil 43 for wireless charging, the NFC antenna coil 41 is formed in a conductive pattern in a rectangular shape having a fine line width along the periphery of the substrate 49, and the secondary coil for wireless charging ( 43) is required to transmit power and uses a lower frequency band than NFC, so that the line width is wider than the line width of the NFC antenna coil 41 inside the NFC antenna coil 41, and is formed in a substantially elliptic conductive pattern.
  • the NFC antenna coil 41 and the secondary charging coil 43 for wireless charging are formed by patterning the copper foil attached to the substrate 49 by etching. Inductance values of the NFC antenna coil 41 and the wireless charging secondary coil 43 serve as the NFC antenna and the wireless charging antenna.
  • the secondary coil 43 for wireless charging is to receive power wirelessly, it is also possible to use a common coil by winding it in the form of a flat inductor and attaching it to a substrate.
  • the dual antenna 40 has a pair of terminal terminals 41a and 41b and 43a and 43b, respectively, on the protrusions of the substrate 49 formed on one side of the NFC antenna coil 41 and the wireless charging secondary coil 43. Is arranged.
  • the outer line of the NFC antenna coil 41 is directly connected to the first terminal terminal 41a, and the inner line is a terminal connection pattern formed on the rear surface of the substrate 49 through conductive through holes 45a and 45b (not shown). Is connected to the second terminal 41b).
  • the outer line of the secondary coil 43 for wireless charging is connected to the third terminal terminal 43a through a terminal connection pattern (not shown) formed on the back surface of the substrate 49 through the conductive through holes 47a and 47b.
  • the inner line is connected to the fourth terminal terminal 43b through a terminal connection pattern (not shown) formed on the rear surface of the substrate 49 through the conductive through holes 47c and 47d.
  • the substrate 49 may have a protective film formed on a surface thereof, for example, to protect an antenna coil pattern such as a photo solder resist (PSR).
  • PSR photo solder resist
  • the shielding sheet employing the hybrid magnetic sheet of Figs. 15A and 15B can be used.
  • the portable terminal device 101 includes a rectifier (not shown) for rectifying the AC voltage generated in the secondary coil 43 for wireless charging into a DC inside the main body, and the rectified DC voltage is a battery (secondary battery). 7).
  • the NFC antenna coil 41 and the secondary charging coil 43 for wireless charging may be used.
  • NFC and wireless charging can be solved together, and the NFC function blocks the effect on the mobile terminal device 101 by the alternating magnetic field generated when the NFC and wireless charging functions are implemented in a non-contact (wireless) manner. It can absorb the electromagnetic waves needed to
  • the NFC antenna coil 41 and the wireless charging secondary coil 43 constituting the dual antenna are exemplified in a structure in which both sides of the substrate are disposed, but the NFC is formed on one side of the substrate.
  • the antenna coil 41 is arrange
  • 20A and 20B are a plan view and an equivalent circuit diagram showing a structure in which an integrated antenna for NFC and wireless charging is implemented using one coil in one FPCB according to the present invention, respectively.
  • the integrated antenna 50 for both NFC and wireless charging is composed of a coil unit 51 formed in a spiral along the outer periphery of the substrate on the rectangular substrate 59, the coil unit Three terminal terminals are connected to 51.
  • the coil unit 51 may be formed by, for example, patterning a copper foil formed on an FPCB substrate, and an outer line of the coil unit 51 is directly connected to the first terminal terminal 53, and an inner line is conductive through. It is connected to the second terminal terminal 55 through a terminal connection pattern (not shown) formed on the back of the hole and the substrate 59, and is located at a predetermined position between the first and second terminal terminals 53 and 55.
  • a lead wire branched out from the coil part 51 is connected to the third terminal terminal 54 through a conductive connection hole and a terminal connection pattern (not shown) formed on the back surface of the substrate 59.
  • the NFC and the wireless charging combined antenna are relatively similar to the equivalent circuit diagram shown in FIG. 20B, because the entire coil unit 51 between the first terminal terminal 53 and the second terminal terminal 55 has a large inductance value.
  • An inductance value is set to serve as a wireless charging antenna in which low-frequency wireless power communication is performed, and the first coil part 51a or the second terminal terminal between the first terminal terminal 53 and the third terminal terminal 54. Since the second coil part 51b between the 55 and the third terminal terminal 54 has a small inductance value, the inductance value is set to serve as an NFC antenna for relatively high frequency NFC communication.
  • the length of the entire coil unit 51 is set to have an inductance value suitable for the wireless charging antenna
  • the third terminal terminal 54 has the inductance of the first coil unit 51a or the second coil unit 51b.
  • the branch position of the third terminal terminal 54 is set so that the value serves as an antenna for NFC.
  • the NFC and the wireless dual-use antenna receives the wireless charging signal according to the wireless power communication from the first terminal terminal 53 and the second terminal terminal 55, the first terminal terminal 53 and the third terminal terminal.
  • the NFC communication is performed by receiving the NFC radio signal from the 54 or the second terminal 55 and the third terminal 54.
  • the amorphous ribbon applied to the shielding sheet was prepared by forming an amorphous ribbon made of Fe 73.5 Cu 1 Nb 3 Si 13.5 B 9 alloy to a thickness of 25 ⁇ m by quenching and solidification (RSP) by melt spinning, and cutting the sheet into 580 ° C., N. 2
  • Amorphous ribbon sheet obtained by atmosphere-free heat treatment for 1 hour is inserted between a 10 ⁇ thick protective film using a PET substrate and a 10 ⁇ thick double-sided tape (excluding a release film) using a PET substrate, and the laminated sheet is Then, the flake and the lamination process were performed using the flake processing apparatus of FIG. 8 and the lamination apparatus of FIG.
  • the double-sided tape inserted between the sheets was formed with an acrylic adhesive layer on both sides of the PET film and used to have a thickness of 12 ⁇ m.
  • a circular flat coil having a inductance of 12.2 ⁇ H and a resistance of 237m ⁇ was used as the secondary coil, that is, the measurement coil, coupled to the shielding sheet.
  • the secondary coil that is, the measurement coil, coupled to the shielding sheet.
  • the measurement coil was connected to the LCR meter, place the rectangular parallelepiped weighing about 500g on the shielding coil and set the LCR meter to 100kHz and 1V under constant pressure. ), Magnetoresistance (Rs), impedance (Z), and the quality factor (Q) of the coil were measured and shown in Table 1 below.
  • the permeability is increased to increase the inductance (Ls) value of the secondary coil, and the electrical conductivity of the ribbon sheet is obtained through the nano-grain microstructure generated in the ribbon sheet by heat treatment.
  • the resistance increased, the magnetoresistance (Rs) value was significantly lower than before the heat treatment, and as a result, the coil's quality factor (Q) value was found to be significantly higher than before the heat treatment.
  • the inductance (Ls) value of the secondary coil is not significantly changed, and the magnetoresistance (Rs) value is Is much lower than without flake treatment, and the Q value of the overall coil is further increased.
  • the inductance (Ls) and Q value of the secondary coil increases, and the magnetoresistance (Rs) value decreases as the transmission to the secondary coil of the wireless charger. It is possible to increase the transmission efficiency of the magnetic flux transmitted from the device.
  • Magnetic field shielding sheet of Examples 5 to 7 was prepared in the same manner as in Examples 1 to 4, and the number of nanocrystalline ribbon sheets laminated only on the sheet was changed to 6 sheets, 9 sheets, and 12 sheets.
  • the magnetic field shielding sheet of 8 differs in that the shape of the magnetic field shielding sheet (number of nanocrystalline ribbon sheets: 6 sheets) of Example 6 is processed into the same annular shape as that of the secondary coil.
  • Comparative Example 1 when no magnetic shielding sheet was used
  • the voltage (V) and the current (mA), and the voltage (V) and current (mA) received by the secondary coil 6 of the receiver Rx are measured and described in Table 2 below, based on which the power transmission is performed. The efficiency was calculated.
  • a shielding sheet using a ferrite sheet should be 0.5 T or more due to the DC magnetic field caused by the permanent magnet, thereby enabling optimal wireless charging operation as the shielding sheet.
  • the magnetic permeability is high, even when the shielding sheet using a conventional ferrite sheet, even within 0.3 T lower than 0.5 T characteristics equivalent to the ferrite or polymer sheet Indicates.
  • Example 8 when the shape of the magnetic field shielding sheet (number of nanocrystalline ribbon sheets: 6 sheets) was produced in the same annular shape as that of the secondary coil, the number of nanocrystalline ribbon sheets used was Example 7 (nanocrystalline grains). Although the number of ribbon sheets: 12 sheets) is 1/2, it can be seen that the power transmission efficiency is almost equivalent to that of the seventh embodiment.
  • the shape of the magnetic shielding sheet was formed in the same annular shape as that of the secondary coil as in Example 8, the number of nanocrystalline ribbon sheets to be used can be reduced to 1/2, so that the manufacturing cost was reduced and the product thickness was reduced. It becomes possible to slim down further.
  • the magnetic field shielding sheet according to Example 8 was set as shown in FIG. 19, and the charging time was measured in 30 minutes from 30 minutes to 4 hours 30 minutes, and the temperature of the nanocrystalline ribbon sheet of the battery and the magnetic field shielding sheet was measured. It is shown in Table 3 below.
  • a secondary battery such as a lithium ion battery 7 may have a safety problem when it exceeds 40 ° C. or more.
  • the temperature of the battery and the shielding sheet does not rise even as time passes, it is found that the temperature is maintained at around 30 ° C to ensure safety Can be.
  • Amorphous ribbons made of Fe 67 B 14 Si 1 Co 18 alloy were manufactured to have a thickness of 25 ⁇ m by quenching and solidification (RSP) by melt spinning, and then cut into sheets to be cut at 487 ° C., 459 ° C., and 450 ° C. for 1 hour.
  • An amorphous ribbon sheet obtained by long heat treatment was obtained. Thereafter, the amorphous ribbon sheet obtained by heat treatment was inserted between a 10 ⁇ m thick protective film using a PET substrate and a 10 ⁇ m thick double-sided tape using a PET substrate (separate release film) to prepare a laminated sheet, and FIG. 8.
  • the flake and the lamination process were performed using the flake processing apparatus of and the lamination apparatus of FIG.
  • the number of amorphous ribbon sheets used in the laminated sheet was used 1 to 9 sheets for each heat treatment temperature, and double-sided tape was inserted between the amorphous ribbon sheets, and the inductance (permeability) and the heat treatment temperature of each amorphous ribbon sheet were measured.
  • the charging efficiency is measured and shown in Table 4 below.
  • the amorphous ribbon sheet was subjected to magnetic field heat treatment at 487 ° C, 459 ° C, and 450 ° C for 1 hour, respectively.
  • the inductance (permeability) of each sheet was reduced to 13 ⁇ H, 15 ⁇ H, and 18 ⁇ H with increasing heat treatment temperature.
  • the filling efficiency for each inductance of each sheet was the highest when the inductance (permeability) heat-treated at 459 ° C was 15 ⁇ H, and the charging efficiency was proportional to each other as the number of amorphous ribbon sheets laminated increased from 1 to 8 sheets. It showed a tendency to increase, and when the four sheets were stacked, the saturation phenomenon was shown, and when more than eight sheets, the charging efficiency tended to decrease.
  • the inductance (permeability) was measured using the amorphous ribbon sheet having a thickness of 15 ⁇ H, and the maximum filling efficiency for each layer of the sheet was measured, and the results are shown in Table 5 below.
  • the maximum charging efficiency is a value obtained by adjusting the time constant value of the receiver based on the inductance value of the receiver of the wireless charger, that is, the secondary coil, to adjust the efficiency to the maximum value.
  • the loss caused by the eddy current is greatly reduced by the flake processing of the amorphous ribbon, thereby preventing the magnetic field effects on the main body and the battery of the portable terminal device and the like, and
  • the power transmission efficiency is excellent by increasing the quality factor (Q).
  • the gap between the fine pieces of the amorphous ribbon is filled by the adhesive lamination treatment after the flake treatment of the amorphous ribbon to prevent moisture penetration and at the same time, all surfaces of the fine pieces are surrounded by the adhesive (dielectric). It is possible to prevent the deterioration of the shielding performance by reducing the eddy current by insulating fine pieces from each other.
  • the wireless charger is applied to the portable terminal, but the present invention can be applied to all portable electronic devices that provide a wireless charging function in a non-contact (wireless) manner.
  • the present invention is applied to a variety of portable electronic devices including a portable terminal to block the influence on the portable terminal device by the alternating current and direct current magnetic field generated when implementing NFC and wireless charging in a non-contact (wireless) method, NFC and wireless charging It can be applied to the composite sheet for magnetic field and electromagnetic shielding to help absorb the required electromagnetic waves.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)

Abstract

The present invention relates to a composite sheet for shielding a magnetic field and an electromagnetic wave, and an antenna module using the same, which can block influence of a magnetic field on a main body and a battery of a mobile terminal device, and the like, and shield an electromagnetic wave at the same time, by significantly reducing a loss due to an eddy current by flaking an amorphous ribbon sheet. The composite sheet according to the present invention comprises: a magnetic sheet; and a conductor sheet for shielding an electromagnetic wave and radiating heat, the conductor sheet being stacked on the magnetic sheet. The magnetic sheet comprises: an amorphous ribbon sheet which is thermally treated, flaked, and then separated into a plurality of minute pieces; a protective film bonded to one side surface of the amorphous ribbon sheet; and an adhesive tape bonded to the other side surface of the amorphous ribbon sheet.

Description

자기장 및 전자파 차폐용 복합시트 및 이를 구비하는 안테나 모듈Composite sheet for magnetic field and electromagnetic shielding and antenna module having same
본 발명은 비정질 리본시트의 플레이크 처리에 의해 와전류(Eddy Current)에 의한 손실을 크게 줄여줌에 의해 휴대 단말기기 등의 본체 및 배터리에 미치는 자기장 영향을 차단함과 동시에 전자파를 차폐시킬 수 있는 자기장 및 전자파 차폐용 복합시트 및 이를 구비하는 안테나 모듈에 관한 것이다.According to the present invention, a magnetic field capable of shielding electromagnetic waves and blocking electromagnetic field effects on a main body and a battery of a mobile terminal device by greatly reducing the loss caused by eddy current by flake processing of an amorphous ribbon sheet, and It relates to an electromagnetic shielding composite sheet and an antenna module having the same.
최근 휴대폰, 타블렛 PC 등을 비롯한 휴대 단말기기에 RFID(Radio Frequency Identification: 무선식별), 근거리 무선통신(NFC), 무선충전기, 대화형 펜 타블렛 등 다양한 기능이 추가되고 있다. Recently, various functions such as RFID (Radio Frequency Identification), Near Field Communication (NFC), Wireless Charger, Interactive Pen Tablet, etc. have been added to portable terminals including mobile phones and tablet PCs.
NFC는 전자태그인 RFID의 하나로 13.56Mz 주파수 대역을 사용하는 비접촉식 근거리 무선통신 모듈로 10cm의 가까운 거리에서 단말기 간 데이터를 전송하는 기술을 말한다. NFC는 모바일 결제뿐만 아니라 파일 전송방식으로 슈퍼마켓이나 일반 상점에서 물품 정보나 방문객을 위한 여행 정보 전송, 교통, 출입통제 잠금장치 등에 광범위하게 활용된다.NFC is an electronic tag, a non-contact short-range wireless communication module using the 13.56Mz frequency band and transmits data between terminals at a close distance of 10 cm. NFC is not only mobile payment but also file transfer method, and is widely used in supermarkets or general stores to transmit goods information or travel information for visitors, transportation, and access control lock.
또한, 최근 구글이 발표한 스마트폰에 구비된 ‘안드로이드 빔’에는 근거리 무선통신(NFC) 기반의 근거리 정보 송수신 기능으로서, 모바일 결제뿐만 아니라 사진·명함·파일·지도·웹사이트 등을 한 전화기에서 다른 전화기로 전달하는 기능을 제공하고 있다.In addition, the Android Beam, which was recently installed by Google, has a near field communication (NFC) -based short-range information transmission / reception function, which enables not only mobile payment but also photos, business cards, files, maps and websites. It provides the ability to forward to another phone.
휴대 단말기기에는 RFID(Radio Frequency Identification: 무선식별)의 무선 환경이 널리 활용되고 있는바, 예를 들어 휴대 단말기기에 근거리무선통신(Near Field Communication: NFC)을 실현하는 NFC 칩을 설치하고, 여기에 USIM(범용 가입자 식별 모듈) 카드와 같은 비접촉식 스마트카드를 장착하여 외부의 RF 리더기에 접근시키면, 근거리무선통신에 의해 휴대 단말기기의 USIM 카드의 정보가 RF 리더기에 의해 판독되고 필요한 정보를 기록함으로써 예를 들어, 전자화폐 기능과 같은 탑재된 기능(예, 전자화폐기능)이 실현된다.In the mobile terminal device, a radio frequency identification (RFID) wireless environment is widely used. For example, an NFC chip for implementing Near Field Communication (NFC) is installed in the mobile terminal device. When a contactless smart card, such as a USIM (Universal Subscriber Identity Module) card, is attached to an external RF reader, the information of the USIM card of the mobile terminal device is read by the RF reader and recorded necessary information by near field communication. For example, a built-in function such as an electronic money function (e.g., an electronic money function) is realized.
이때, NFC 칩과 RF 리더기 사이의 정보교환은, RF 리더기에 설치된 1차 코일(안테나)과 휴대 단말기기에 설치된 NFC 칩의 코일(안테나) 사이의 13.56MHz에서의 유도 기전력에 의해 USIM 카드의 구동을 위한 전력을 공급함으로써 이루어진다.At this time, information exchange between the NFC chip and the RF reader is driven by the induced electromotive force at 13.56 MHz between the primary coil (antenna) installed in the RF reader and the coil (antenna) of the NFC chip installed in the portable terminal. By supplying power for
일반적으로 무접점(무선) 충전용 안테나는 휴대 단말기기의 배터리 커버에 설치되는 바, 최근 안테나가 연결되는 충전회로가 소형화되어 휴대 단말기기 본체에 내장됨에 따라, 배터리 커버에는 단지 안테나(부)만 남게 되었다.In general, a contactless (wireless) charging antenna is installed in the battery cover of the portable terminal device. As the charging circuit to which the antenna is connected is recently miniaturized and built in the portable terminal device, only the antenna (part) is included in the battery cover Left.
아울러 휴대 단말기기에 설치된 NFC 칩은, RFID 리더기로서도 작동하여 외부의 RFID 태그 등에 기록된 정보를 판독할 수 있도록 개발되어 있다. NFC 칩이 RF 리더기로 작동할 경우 NFC 칩에 연결된 안테나(코일)가 1차 코일로 작용하여 전력을 송출하게 되고, 외부에 있는 RFID 태그 등에 설치된 코일(안테나)에서 유도기전력이 발생하여 무선통신이 실현될 수 있도록 한다.In addition, the NFC chip installed in the portable terminal device has been developed to operate as an RFID reader to read information recorded in an external RFID tag. When the NFC chip operates as an RF reader, an antenna (coil) connected to the NFC chip acts as a primary coil to transmit power, and induction electromotive force is generated from a coil (antenna) installed in an external RFID tag to wirelessly communicate. To be realized.
즉, 휴대 단말기기에 RFID 시스템(NFC)을 적용하기 위해서는 유도기전력을 발생시킬 수 있는 나선형 코일 형태의 루프 안테나가 필요하며, NFC용 안테나는 주로 배터리 커버에 설치된다.In other words, in order to apply the RFID system (NFC) to the portable terminal, a spiral coil type loop antenna capable of generating induced electromotive force is required, and an NFC antenna is mainly installed in a battery cover.
이 경우, 나선형 코일 형태의 루프 안테나에 유도되는 유도기전력은 페러데이 법칙(Faraday's law)과 렌쯔 법칙(Lenz's law)에 의하여 결정되므로, 높은 전압 신호를 얻기 위해서는 2차 코일(안테나 코일)과 쇄교하는 자속의 양이 많을수록 유리하다. 자속의 양은 2차 코일에 포함된 연자성 재료의 양이 많을수록, 그리고 재료의 투자율이 높을수록 크게 된다. In this case, the induced electromotive force induced in the loop antenna of the helical coil type is determined by Faraday's law and Lenz's law. Therefore, in order to obtain a high voltage signal, the induced electromotive force is interlinked with the secondary coil (antenna coil). The greater the amount of magnetic flux, the better. The amount of magnetic flux increases as the amount of soft magnetic material included in the secondary coil increases, and as the material permeability increases.
또한, 휴대 단말기기에 구비된 안테나 코일에는 인접한 단말기와 근거리 무선통신(NFC) 기능을 수행할 때 100 kHz ~ 수십 MHz의 자기장이 발생된다. In addition, a magnetic field of 100 kHz to several tens of MHz is generated in the antenna coil provided in the portable terminal when performing a near field communication (NFC) function with an adjacent terminal.
따라서, 이러한 부가 기능을 구비하는 휴대 단말기기에는 상기 자기장으로 인한 휴대 단말기기의 부품(특히, 배터리)에 와전류(Eddy Current)에 의한 발열을 방지하고, 또한 자기장을 집속하여 부가 기능의 성능을 극대화시키기 위하여 자기장 차폐시트가 필수적으로 사용된다.Accordingly, the portable terminal device having such additional functions prevents heat generation due to eddy currents in the components (particularly, the battery) of the portable terminal device due to the magnetic field, and also maximizes the performance of the additional function by focusing the magnetic field. In order to achieve this, a magnetic shielding sheet is essentially used.
이러한 자기장 차폐시트로는 비정질 리본, 페라이트, 자성분말이 포함된 폴리머 시트 등의 자성체를 사용하는 것이 일반적이다. 자기장 차폐 및 부가 기능 성능 향상을 위한 자기장 집속 효과는 자기 투자율이 높은 비정질 리본, 페라이트, 자성분말이 포함된 폴리머 시트 순으로 좋다.As such a magnetic shielding sheet, it is common to use a magnetic material such as an amorphous ribbon, ferrite, or a polymer sheet containing magnetic powder. The magnetic field focusing effect to improve magnetic shielding and add-on performance is as follows: amorphous magnetic ribbon with high magnetic permeability, ferrite, and polymer sheet containing magnetic powder.
한국등록특허 제10-523313호에는 Fe-Si-B, Fe-Si-B-Cu-Nb, Fe-Zr-B 및 Co-Fe-Si-B 로 이루어진 군에서 선택되는 조성을 갖고 비정질 합금을 포함하는 자성시트로 이루어진 RFID 안테나용 압소바, 이를 포함하는 RFID 안테나 및 무선 식별 기기가 제안되어 있다. Korean Patent No. 10-523313 has a composition selected from the group consisting of Fe-Si-B, Fe-Si-B-Cu-Nb, Fe-Zr-B and Co-Fe-Si-B and includes an amorphous alloy. Absorption for an RFID antenna made of a magnetic sheet, an RFID antenna and a wireless identification device including the same have been proposed.
상기 한국등록특허 제10-523313호는 비정질 합금 분말을 수지와 혼합하여 시트로 제작된 폴리머 시트의 일종으로서 투자율, 즉 시트의 인덕턴스 값이 10μH 미만으로 낮은 문제가 있다.The Korean Patent No. 10-523313 is a kind of polymer sheet made of a sheet by mixing amorphous alloy powder with a resin, and there is a problem in that the permeability, that is, the inductance value of the sheet is lower than 10 μH.
더욱이, 한국등록특허 제10-623518호에는 상기 한국등록특허 제10-523313호의 제조공정을 단순화하고 투자율을 높이기 위해 비정질 합금을 1종 이상 포함하는 합금 분말로 제조된 제1 및 제2 자성시트층 사이에 제1비정질 합금리본을 적층한 후, 적층된 시트의 상대밀도를 증가시킴과 동시에 제1비정질 합금리본에 미세 균열을 형성하기 위하여 적층된 다층 시트를 롤링 또는 프레싱에 의해 압축 성형하여 제조된 RFID용 자성시트 및 이를 이용한 RFID 안테나가 개시되어 있다.Furthermore, Korean Patent No. 10-623518 discloses first and second magnetic sheet layers made of an alloy powder containing at least one amorphous alloy in order to simplify the manufacturing process of Korean Patent No. 10-523313 and increase the permeability. After stacking the first amorphous alloy ribbon in between, and to increase the relative density of the laminated sheet and at the same time to form a micro crack in the first amorphous alloy ribbon, the laminated multi-layer sheet produced by rolling or pressing by compression molding A magnetic sheet for RFID and an RFID antenna using the same are disclosed.
상기 한국등록특허 제10-623518호는 적층된 다층 자성시트층을 압축 성형함에 의해 제1비정질 합금리본에 미세 균열을 형성하고 있으나, 이러한 미세 균열은 자기저항을 낮추는 데 한계가 있어, 와전류에 의한 손실을 크게 줄이지 못하는 문제가 있다. Although the Korean Patent No. 10-623518 forms a micro crack in the first amorphous alloy ribbon by compression molding the multilayer magnetic sheet layer, the micro crack has a limit in lowering the magnetic resistance, and is caused by eddy currents. There is a problem that can not greatly reduce the loss.
한편, 휴대 단말기기에는 NFC 안테나와 함께 무선 충전을 위한 무선 충전용 안테나가 배터리 팩에 설치되고 있다.Meanwhile, the portable terminal device is provided with a wireless charging antenna for wireless charging together with the NFC antenna in the battery pack.
이 경우, 무선 충전기의 1차측으로부터 송전 속도가 커지면, 인접한 변압기간의 결합뿐만 아니라, 그 주변 부품에서 발열에 의한 결함이 발생하기 쉽다. 즉, 평면 코일을 사용하는 경우, 평면 코일을 통과하는 자속이 기기 내부의 기판 등에 연결되어, 전자기 유도에 의해 발생하는 와전류에 의해 장치 내부가 발열하게 된다. 그 결과, 큰 전력을 송신할 수 없어 충전 시간이 오래 걸리는 등의 문제가 있었다.In this case, when the power transmission speed increases from the primary side of the wireless charger, not only coupling between adjacent transformers but also defects due to heat generation are likely to occur in the peripheral parts thereof. That is, in the case of using a planar coil, the magnetic flux passing through the planar coil is connected to a substrate or the like inside the device, and the inside of the device generates heat by eddy current generated by electromagnetic induction. As a result, there was a problem that a large power could not be transmitted and charging time was long.
종래의 비접촉형 충전 시스템의 수전 장치는, 송전 효율 향상을 위한 결합 강화, 발열 억제를 위한 실드성 향상을 위해, 1차 코일측과는 반대인 면, 즉 2차 코일의 표면에 고투자율 및 큰 체적의 자성체(자성 시트)를 배치한다. 이러한 배치에 따르면, 1차 코일의 인덕턴스의 변동이 커지고, 자성체와 1차 코일간의 상대 위치 관계에 따라서 공진 회로의 동작 조건이 충분한 효과를 발휘할 수 있는 공진 조건으로부터 어긋나게 되는 문제가 발생한다.The power receiving device of the conventional non-contact type charging system has a high permeability and a large permeability on the surface opposite to the primary coil side, that is, the surface of the secondary coil, in order to enhance coupling and improve shielding to improve heat generation and improve heat shielding. The magnetic body (magnetic sheet) of a volume is arrange | positioned. According to this arrangement, the variation in the inductance of the primary coil increases, and a problem arises in that the operating condition of the resonant circuit deviates from the resonance condition in which the sufficient effect can be exerted according to the relative positional relationship between the magnetic body and the primary coil.
현재 13.56Mz 주파수 대역을 사용하는 NFC용 안테나는 주파수에 대한 의존도가 낮은 페라이트 시트를 사용하여 구현되고 있다.Currently, the antenna for NFC using the 13.56Mz frequency band is implemented using a ferrite sheet with low frequency dependency.
페라이트 시트 또는 자성분말을 함유한 폴리머 시트의 경우 비정질 리본에 비해 자기 투자율이 다소 낮으며, 이러한 낮은 자기 투자율의 성능을 개선하고자 하는 경우 수십 ㎛ 두께의 박판인 비정질 리본에 비해 두께가 두꺼워지므로 얇아지는 단말기 추세에 대응하기 어려운 부분이 있다. The magnetic permeability of the ferrite sheet or the polymer sheet containing the magnetic powder is somewhat lower than that of the amorphous ribbon, and in order to improve the performance of the low magnetic permeability, the thickness becomes thinner than the amorphous ribbon, which is tens of μm thick thin sheets. It is difficult to cope with the handset trend.
또한, 자기 투자율이 높은 비정질 리본의 경우 리본 자체가 금속 박판이므로 두께에 대한 부담은 없으나, 전력전송에 사용되는 100kHz 주파수에 따른 교류 자기장이 비정질 리본에 인가될 때 리본 표면의 와전류 영향으로 응용 기능이 저하되거나 무선 충전 시 효율 저하 및 발열 등의 문제점이 발생한다.In addition, in case of amorphous ribbon with high magnetic permeability, there is no burden on thickness because the ribbon itself is a metal thin plate. Deterioration or problems such as deterioration of efficiency and heat generation during wireless charging.
무선 충전기의 경우 충전기의 효율을 최대한 높이기 위해 전력전송 송신기에 수신부와의 정합(align)을 돕는 영구자석을 채용한 구조가 많은데, 영구자석의 직류 자기장에 의해 얇은 차폐시트는 착자(포화) 현상이 발생하여 성능이 떨어지거나 전력전송 효율이 급격하게 떨어지는 문제가 발생된다. In the case of wireless chargers, in order to maximize the efficiency of the charger, there are many structures in which the permanent magnet is used in the power transmission transmitter to help align with the receiver, and the thin shielding sheet is saturated due to the DC magnetic field of the permanent magnet. Occurs, the performance is degraded or the power transmission efficiency drops sharply.
이에 따라 종래에는 영구자석의 영향을 받지 않고 차폐 특성을 나타내기 위해서는 차폐시트의 두께가 0.5T 이상으로 아주 두꺼워져야 원하는 전력전송 효율을 유지할 수 있기 때문에 휴대 단말기의 슬림화에 큰 걸림돌이 되고 있다.Accordingly, in order to exhibit the shielding characteristics without being affected by the permanent magnet, the thickness of the shielding sheet must be very thick to 0.5T or more, thereby maintaining a desired power transmission efficiency, which is a great obstacle to slimming the portable terminal.
근거리 무선통신(NFC)용 안테나 및 무선 충전기의 2차 코일에 유도되는 전압은 페러데이 법칙(Faraday's law)과 렌쯔 법칙(Lenz's law)에 의하여 결정되므로, 높은 전압 신호를 얻기 위해서는 2차 코일과 쇄교하는 자속의 양이 많을수록 유리하다. 자속의 양은 2차 코일에 포함된 연자성 재료의 양이 많을수록, 그리고 재료의 투자율이 높을수록 크게 된다. 특히, 근거리 무선통신(NFC) 및 무선 충전은 본질적으로 비접촉에 의한 전력 전송이기 때문에 송신장치의 1차 코일에서 만들어지는 무선 전자기파를 수신장치의 2차 코일로 집속시키기 위해서는 2차 코일이 실장되는 자기장 차폐시트가 투자율이 높은 자성재료로 이루어지는 것이 필요하다. Since the voltage induced in the secondary coil of the NFC antenna and the wireless charger is determined by Faraday's law and Lenz's law, it is necessary to bridge the secondary coil to obtain a high voltage signal. The higher the amount of magnetic flux is, the better. The amount of magnetic flux increases as the amount of soft magnetic material included in the secondary coil increases, and as the material permeability increases. In particular, since near field communication (NFC) and wireless charging are inherently non-contact power transmission, a magnetic field in which a secondary coil is mounted is used to focus radio electromagnetic waves generated by a primary coil of a transmitter to a secondary coil of a receiver. It is necessary that the shield sheet is made of a magnetic material having a high permeability.
종래의 NFC 및 무선 충전용 자기장 차폐시트는 박막이면서 차폐에 의한 발열 문제와 무선 충전 효율을 높일 수 있는 해결방안을 제시하지 못하고 있다. 이에 본 발명자는 비정질 리본의 경우 리본이 플레이크가 되어도 인덕턴스(투자율)는 적게 감소하며, 자기저항의 감소가 크게 이루어짐에 따라 2차 코일의 품질계수(Q)가 증가한다는 점을 인식하여 본 발명에 이르게 되었다. Conventional NFC and magnetic field shielding sheet for wireless charging is a thin film does not present a solution to increase the heat generation problem and wireless charging efficiency by shielding. Accordingly, the present inventors recognize that the inductance (permeability) decreases even if the ribbon becomes flake in the case of the amorphous ribbon, and the quality factor (Q) of the secondary coil increases as the decrease in the magnetic resistance increases. It came.
따라서, 본 발명은 상기한 종래기술의 문제점을 해결하고자 제안된 것으로, 그 목적은 비정질 리본의 플레이크 처리에 의해 와전류(Eddy Current)에 의한 손실을 크게 줄여줌에 의해 휴대 단말기기 등의 본체 및 배터리에 미치는 자기장 영향을 차단함과 동시에 2차 코일의 품질계수(Q)를 증가시켜 통신 거리 및 충전효율을 증가시킬 수 있는 자기장 및 전자파 차폐용 복합시트 및 이를 구비하는 안테나 모듈을 제공하는 데 있다.Therefore, the present invention has been proposed to solve the above problems of the prior art, and its object is to significantly reduce the loss due to eddy current by flake processing of the amorphous ribbon, such as a main body and a battery of a mobile terminal device. The present invention provides an antenna module including a magnetic sheet and an electromagnetic shielding composite sheet which can increase the communication distance and charging efficiency by increasing the quality factor (Q) of the secondary coil while blocking the influence of the magnetic field.
본 발명의 다른 목적은 비정질 리본의 플레이크 처리 후 압착 라미네이팅 처리에 의해 비정질 리본의 미세 조각 사이의 틈새를 접착제를 채워서 수분 침투를 방지함과 동시에 미세 조각을 접착제(유전체)로 둘러쌈에 의해 미세 조각을 상호 절연시켜서 와전류 저감을 도모하여 차폐성능이 떨어지는 것을 방지할 수 있는 자기장 및 전자파 차폐용 복합시트를 제공하는 데 있다. Another object of the present invention is to fill the gap between the fine pieces of the amorphous ribbon by the crushing lamination treatment after the amorphous ribbon to prevent the penetration of moisture by the adhesive filling the fine pieces by wrapping the fine pieces with an adhesive (dielectric) at the same time The present invention provides a composite sheet for shielding magnetic fields and electromagnetic waves, which is capable of preventing eddy currents from being insulated from each other and preventing a drop in shielding performance.
본 발명의 또 다른 목적은 NFC 안테나를 배터리 팩에 장착시 주파수 변동폭이 증가하는 것을 방지하여 NFC 안테나의 불량률을 감소시키는 자기장 및 전자파 차폐용 복합시트 및 이를 구비하는 안테나 모듈을 제공하는 데 있다.Still another object of the present invention is to provide a magnetic sheet and an electromagnetic shielding composite sheet and an antenna module having the same, which prevents an increase in the frequency fluctuation range when the NFC antenna is mounted on the battery pack, thereby reducing the defective rate of the NFC antenna.
본 발명의 다른 목적은 일측면에 전자파 차폐 및 방열 기능을 갖는 전도체 시트를 구비함과 동시에 차폐시트 내에 구비된 다수의 미세 기공이 열을 포집할 수 있는 열 차단층으로 역할을 하여, 전자파 차폐와 방열 및 단열 기능을 모두 수행할 수 있는 자기장 및 전자파 차폐용 복합시트 및 이를 구비하는 안테나 모듈을 제공하는 데 있다.Another object of the present invention is to provide a conductor sheet having electromagnetic shielding and heat dissipation function on one side, and at the same time serves as a heat shielding layer capable of collecting heat by a plurality of micropores provided in the shielding sheet, The present invention provides a composite sheet for shielding magnetic fields and electromagnetic waves capable of performing both heat dissipation and thermal insulation, and an antenna module having the same.
본 발명의 다른 목적은 열 확산, 열 포집 및 전자파 및 자기장 차폐를 단일 시트로 모두 수행할 수 있어, 초박형으로 구현할 수 있는 자기장 및 전자파 차폐용 복합시트 및 이를 구비하는 안테나 모듈을 제공하는 데 있다.Another object of the present invention is to provide a multi-sheet magnetic field and electromagnetic shielding composite sheet and an antenna module having the same that can be carried out both heat diffusion, heat collection and electromagnetic and magnetic field shielding in a single sheet.
본 발명의 다른 목적은 NFC 및 무선 충전에 동시에 사용될 수 있는 자기장 및 전자파 차폐용 복합시트 및 이를 구비하는 안테나 모듈을 제공하는 데 있다.Another object of the present invention to provide a magnetic sheet and electromagnetic shielding composite sheet and an antenna module having the same that can be used simultaneously for NFC and wireless charging.
상기한 목적을 달성하기 위하여, 본 발명은 열처리되고 플레이크 처리되어 다수의 미세 조각으로 분리된 비정질 리본시트, 상기 비정질 리본시트의 일측면에 접착된 보호필름 및 상기 비정질 리본시트의 타측면에 접착된 접착테이프를 구비하는 자성시트; 및 상기 자성시트에 적층된 전자파 차폐 및 방열용 전도체 시트;를 포함하는 자기장 및 전자파 차폐용 복합시트를 제공한다.In order to achieve the above object, the present invention is heat-treated and flake-treated amorphous ribbon sheet separated into a plurality of fine pieces, a protective film adhered to one side of the amorphous ribbon sheet and the other side of the amorphous ribbon sheet A magnetic sheet having an adhesive tape; It provides a magnetic sheet and electromagnetic shielding composite sheet comprising a; and the electromagnetic shielding and heat dissipation conductor sheet laminated to the magnetic sheet.
본 발명의 다른 특징에 따르면, 본 발명은 제1투자율의 제1자성시트; 및 상기 제1자성시트의 투자율보다 낮은 제2투자율을 갖고 상기 제1자성시트에 적층되는 제2자성시트를 포함하며, 상기 제1자성시트는 다수의 미세 조각으로 분리되고 상기 다수의 미세 조각은 동일한 평면상에 배치되며, 양면에 보호필름과 양면 테이프가 적층되며, 상기 다수의 미세 조각 사이의 틈새는 상기 보호필름과 양면 테이프에 포함된 접착층의 일부가 충진되는 자기장 및 전자파 차폐용 복합시트를 제공한다.According to another feature of the invention, the present invention is a magnetic permeability of the first magnetic sheet; And a second magnetic sheet laminated on the first magnetic sheet having a second permeability lower than that of the first magnetic sheet, wherein the first magnetic sheet is divided into a plurality of fine pieces and the plurality of fine pieces It is disposed on the same plane, the protective film and the double-sided tape is laminated on both sides, the gap between the plurality of fine pieces is a magnetic field and electromagnetic shielding composite sheet filled with a part of the adhesive layer included in the protective film and the double-sided tape to provide.
본 발명의 또 다른 특징에 따르면, 본 발명은 기판에 루프 형태로 이루어지며 NFC(Near field communications) 신호를 송수신하기 위한 NFC 안테나; 및 상기 기판에 적층되는 자기장 및 전자파 차폐용 복합시트를 포함하는 안테나 모듈을 제공한다.According to another feature of the invention, the present invention is made of a loop form on the substrate and the NFC antenna for transmitting and receiving NFC (Near field communications) signal; And it provides an antenna module comprising a composite sheet for shielding the magnetic field and electromagnetic waves stacked on the substrate.
본 발명의 다른 특징에 따르면, 본 발명은 무선 충전용 고주파 전력신호를 수신하기 위한 무선 충전용 2차 코일과 상기 기판의 외측에 루프 형태로 형성되며 NFC용 고주파 신호를 송수신하기 위한 NFC 안테나 코일을 구비하는 듀얼 안테나; 및 상기 기판에 적층되는 자기장 및 전자파 차폐용 복합시트를 포함하는 안테나 모듈을 제공한다.According to another feature of the invention, the present invention is a wireless charging secondary coil for receiving a high-frequency power signal for wireless charging and formed in a loop form on the outside of the substrate and the NFC antenna coil for transmitting and receiving high-frequency signals for NFC Dual antenna provided; And it provides an antenna module comprising a composite sheet for shielding the magnetic field and electromagnetic waves stacked on the substrate.
본 발명의 또 다른 특징에 따르면, 본 발명은 기판의 표면에 나선형으로 패턴 형성된 하나의 코일부와 이로부터 연장된 제1 내지 제3 터미널 단자로 이루어지며 상기 제1 터미널 단자와 제2 터미널 단자 사이에서 NFC용 고주파 신호를 송수신하고, 상기 제3 터미널 단자와 제1 또는 제2 터미널 단자 사이로부터 무선 충전기의 송신장치로부터 전송된 무선 충전용 고주파 신호를 수신하는 NFC 및 무선 충전 겸용 안테나; 및 상기 기판에 적층되는 자기장 및 전자파 차폐용 복합시트를 포함하는 안테나 모듈을 제공한다.According to another feature of the invention, the invention consists of a coil portion formed in a spiral pattern on the surface of the substrate and the first to third terminal terminals extending therefrom and between the first terminal terminal and the second terminal terminal; NFC and wireless high-frequency antenna for transmitting and receiving, and receiving a high-frequency signal for wireless transmission transmitted from the transmitter of the wireless charger from between the third terminal terminal and the first or second terminal terminal; And it provides an antenna module comprising a composite sheet for shielding the magnetic field and electromagnetic waves stacked on the substrate.
상기한 바와 같이 본 발명에서는 비정질 리본의 플레이크 처리에 의해 와전류(Eddy Current)에 의한 손실을 크게 줄여줌에 의해 휴대 단말기기 등의 본체 및 배터리에 미치는 자기장 영향을 차단함과 동시에 2차 코일의 품질계수(Q)를 증가시켜 전력전송 효율이 우수하며, 통신 거리가 증가하게 된다.As described above, in the present invention, the loss of the eddy current is greatly reduced by the flake processing of the amorphous ribbon, thereby preventing the magnetic field effects on the main body and the battery of the mobile terminal device and the quality of the secondary coil. By increasing the coefficient Q, the power transmission efficiency is excellent, and the communication distance is increased.
또한, 본 발명에서는 비정질 리본의 플레이크 처리 후 압착 라미네이팅 처리에 의해 비정질 리본의 미세 조각 사이의 틈새를 접착제를 채워서 수분 침투를 방지함과 동시에 미세 조각의 모든 면을 접착제(유전체)로 둘러쌈에 의해 미세 조각을 상호 절연시켜서 와전류 저감을 도모하여 차폐성능이 떨어지는 것을 방지할 수 있다. 더욱이, 미세 조각의 모든 면을 접착제(유전체)로 둘러쌈에 의해 수분이 침투하여 비정질 리본이 산화되어 외관의 변화와 특성이 악화되는 것을 방지할 수 있다.In addition, in the present invention, the gap between the fine pieces of the amorphous ribbon is filled by the adhesive lamination treatment after the flake treatment of the amorphous ribbon to prevent moisture penetration and at the same time, all surfaces of the fine pieces are surrounded by the adhesive (dielectric). It is possible to prevent the deterioration of the shielding performance by reducing the eddy current by insulating fine pieces from each other. Further, by enclosing all sides of the fine pieces with an adhesive (dielectric), moisture can penetrate, and the amorphous ribbon is oxidized to prevent changes in appearance and deterioration of properties.
더욱이, 본 발명에서는 NFC 안테나를 배터리 팩에 장착시 주파수 변동폭이 증가하는 것을 방지하여 NFC 안테나의 불량률을 감소시킬 수 있다.Furthermore, in the present invention, when the NFC antenna is mounted on the battery pack, the frequency fluctuation range can be prevented from increasing, thereby reducing the defective rate of the NFC antenna.
본 발명에서는 시트의 일측면에 전기전도도와 열전도도가 모두 우수한 전도체 시트를 구비함에 따라 전자파 차폐가 가능하고 국부적으로 전도되는 열의 빠른 확산이 이루어질 수 있으며, 차폐시트 내에 구비된 다수의 미세 기공은 전도된 열의 대류를 차단하여 열을 포집할 수 있는 열 차단층으로 역할을 함에 따라, 전자파 차폐와 방열 및 단열 기능을 모두 수행할 수 있다.In the present invention, by providing a conductive sheet having excellent electrical conductivity and thermal conductivity on one side of the sheet, electromagnetic wave shielding is possible and rapid diffusion of locally conducted heat can be achieved, and a plurality of micropores provided in the shielding sheet are conductive. By acting as a heat shield layer that can collect heat by blocking the convection of the heat, it can perform both electromagnetic shielding and heat dissipation and heat insulation.
그 결과, 본 발명의 복합시트는 열 확산(분산), 열 포집(단열), 전자파 및 자기장 차폐를 단일 시트로 모두 수행할 수 있고, 초박형으로 구현할 수 있다.As a result, the composite sheet of the present invention can perform heat diffusion (dispersion), heat collection (insulation), electromagnetic wave and magnetic field shielding in a single sheet, and can be implemented in an ultra-thin.
도 1은 본 발명에 따른 NFC 및 무선 충전용 자기장 차폐시트를 나타내는 분해 사시도,1 is an exploded perspective view showing a magnetic shielding sheet for NFC and wireless charging according to the present invention,
도 2는 제1실시예에 따라 1장의 나노 결정립 리본시트를 사용하는 예를 나타내는 단면도,2 is a cross-sectional view showing an example of using one sheet of nanocrystalline ribbon according to the first embodiment;
도 3은 제2실시예에 따라 6장의 나노 결정립 리본시트를 사용하는 예를 나타내는 단면도,3 is a cross-sectional view showing an example of using six nano-crystal ribbon sheet according to the second embodiment,
도 4 및 도 5는 각각 본 발명에 사용되는 보호 필름과 양면 테이프의 구조를 보여주는 단면도,4 and 5 are cross-sectional views showing the structure of the protective film and double-sided tape used in the present invention, respectively;
도 6은 본 발명의 제3실시예에 따른 NFC 및 무선 충전용 자기장 차폐시트를 나타내는 분해 사시도,6 is an exploded perspective view showing a magnetic shielding sheet for NFC and wireless charging according to a third embodiment of the present invention;
도 7은 본 발명에 따른 NFC 및 무선 충전용 자기장 차폐시트를 제조하는 공정을 설명하기 위한 공정도,7 is a process chart for explaining a process for manufacturing a magnetic shielding sheet for NFC and wireless charging according to the present invention;
도 8 및 도 9는 각각 본 발명에 따른 적층시트의 플레이크 공정을 나타내는 단면도,8 and 9 are cross-sectional views showing the flake process of the laminated sheet according to the present invention, respectively;
도 10은 본 발명에 따른 적층시트를 플레이크 처리한 상태를 나타내는 단면도,10 is a cross-sectional view showing a state where the flakes of the laminated sheet according to the present invention;
도 11 및 도 12는 각각 본 발명에 따른 플레이크 처리된 적층시트의 라미네이트 공정을 나타내는 단면도,11 and 12 are cross-sectional views showing the lamination process of the flake-laminated sheet according to the invention, respectively;
도 13은 본 발명의 제1실시예에 따른 NFC 및 무선 충전용 자기장 차폐시트를 플레이크 처리 후 라미네이트한 상태를 나타내는 단면도,13 is a cross-sectional view showing a state in which the laminate after the flake processing of the NFC and wireless charging magnetic shielding sheet according to the first embodiment of the present invention,
도 14a 및 도 14b는 각각 플레이크 처리후 라미네이트 공정을 거치지 않은 자기장 차폐시트의 습도 테스트를 거친 확대 사진과 본 발명에 따른 플레이크 처리 후 라미네이트된 자기장 차폐시트의 습도 테스트를 거친 후 확대 사진,14A and 14B are enlarged photographs of the humidity test of the magnetic field shielding sheet not subjected to the lamination process after the flake treatment, respectively, and an enlarged photograph after the humidity test of the laminated magnetic field shielding sheet after the flake treatment according to the present invention;
도 15는 본 발명의 제4실시예에 따른 NFC 및 무선 충전용 자기장 차폐시트에 사용되는 박판 자성시트를 나타내는 단면도,15 is a cross-sectional view showing a thin magnetic sheet used in the magnetic shielding sheet for NFC and wireless charging according to a fourth embodiment of the present invention;
도 16은 본 발명의 제5실시예에 따른 자기장 및 전자파 차폐용 복합시트를 나타내는 단면도,16 is a cross-sectional view showing a composite sheet for shielding electromagnetic fields and electromagnetic waves according to a fifth embodiment of the present invention;
도 17은 본 발명에 따른 NFC 안테나 모듈의 구조를 나타내는 분해 사시도, 17 is an exploded perspective view showing the structure of an NFC antenna module according to the present invention;
도 18은 도 17의 NFC 안테나 모듈이 배터리 커버에 조립되어 휴대 단말기기에 결합되는 것을 나타내는 분해 사시도,18 is an exploded perspective view illustrating that the NFC antenna module of FIG. 17 is assembled to a battery cover and coupled to a portable terminal device;
도 19는 본 발명에 따른 NFC 안테나와 무선 충전용 안테나가 하나의 FPCB에 형성된 듀얼 안테나 구조를 보여주는 평면도,19 is a plan view illustrating a dual antenna structure in which an NFC antenna and a wireless charging antenna are formed in one FPCB according to the present invention;
도 20a 및 도 20b는 각각 본 발명에 따른 하나의 FPCB에 하나의 코일을 사용하여 NFC 및 무선 충전 겸용 일체형 안테나를 구현한 구조를 보여주는 평면도 및 등가 회로도이다. 20A and 20B are a plan view and an equivalent circuit diagram showing a structure in which an integrated antenna for NFC and wireless charging is implemented using one coil in one FPCB according to the present invention, respectively.
상술한 목적, 특징 및 장점은 첨부된 도면을 참조하여 상세하게 후술되어 있는 상세한 설명을 통하여 더욱 명확해 질 것이며, 그에 따라 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 본 발명의 기술적 사상을 용이하게 실시할 수 있을 것이다. The above objects, features, and advantages will become more apparent from the following detailed description with reference to the accompanying drawings, and as such, those skilled in the art to which the present invention pertains may share the spirit of the present invention. It will be easy to implement.
또한, 본 발명을 설명함에 있어서 본 발명과 관련된 공지 기술에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우에 그 상세한 설명을 생략하기로 한다. In addition, in describing the present invention, when it is determined that the detailed description of the known technology related to the present invention may unnecessarily obscure the gist of the present invention, the detailed description thereof will be omitted.
첨부된 도 1은 본 발명에 따른 NFC 및 무선 충전용 자기장 차폐시트를 나타내는 분해 사시도, 도 2는 제1실시예에 따라 1장의 나노 결정립 리본시트를 사용하는 예를 나타내는 단면도이다.1 is an exploded perspective view showing an NFC and a wireless charging magnetic shielding sheet according to the present invention, Figure 2 is a cross-sectional view showing an example of using a sheet of nano-crystal ribbon according to the first embodiment.
도 1 및 도 2를 참고하면, 본 발명의 바람직한 제1실시예에 따른 NFC 및 무선 충전용 자기장 차폐시트(10)는 비정질 합금 또는 나노결정립 합금의 리본을 열처리한 후 플레이크 처리하여 다수의 미세 조각(細片)(20)으로 분리 및/또는 크랙이 형성된 적어도 1층 이상의 다층 박판 자성시트(2), 상기 박판 자성시트(2)의 상부에 접착되는 보호 필름(1), 상기 박판 자성시트(2)의 하부에 접착되는 양면 테이프(3), 상기 양면 테이프(3)의 하부에 분리 가능하게 접착되는 릴리즈 필름(4)을 포함하고 있다. 1 and 2, the NFC and wireless charging magnetic shielding sheet 10 according to the first embodiment of the present invention is a plurality of fine pieces by heat treatment after the ribbon of the amorphous alloy or nanocrystalline alloy after flake treatment A multilayer thin magnetic sheet 2 of at least one or more layers in which separation and / or cracks are formed by a thin film 20, a protective film 1 adhered to an upper portion of the thin magnetic sheet 2, and the thin magnetic sheet ( And a release film 4 detachably adhered to the lower portion of the double-sided tape 3.
상기 박판 자성시트(2)는 예를 들어, 비정질 합금 또는 나노결정립 합금으로 이루어진 박판의 리본을 사용할 수 있다. The thin magnetic sheet 2 may be, for example, a thin ribbon made of an amorphous alloy or a nanocrystalline alloy.
상기 비정질 합금은 Fe계 또는 Co계 자성 합금을 사용할 수 있으며, 재료비용을 고려할 때 Fe계 자성 합금을 사용하는 것이 바람직하다.The amorphous alloy may be a Fe-based or Co-based magnetic alloy, it is preferable to use a Fe-based magnetic alloy in consideration of the material cost.
Fe계 자성 합금은, 예를 들어, Fe-Si-B 합금을 사용할 수 있으며, Fe가 70-90atomic%, Si 및 B의 합이 10-30atomic%인 것이 바람직하다. Fe를 비롯한 금속의 함유량이 높을수록 포화자속밀도가 높아지지만 Fe 원소의 함유량이 과다할 경우 비정질을 형성하기 어려우므로, 본 발명에서는 Fe의 함량이 70-90atomic%인 것이 바람직하다. 또한, Si 및 B의 합이 10-30atomic%의 범위일 때 함금의 비정질 형성능이 가장 우수하다. 이러한 기본 조성에 부식을 방지시키기 위해 Cr, Co 등 내부식성 원소를20 atomic% 이내로 첨가할 수도 있고, 다른 특성을 부여하도록 필요에 따라 다른 금속 원소를 소량 포함할 수 있다.As the Fe-based magnetic alloy, for example, a Fe-Si-B alloy can be used, and it is preferable that Fe is 70-90 atomic%, and the sum of Si and B is 10-30 atomic%. The higher the content of the metal, including Fe, the higher the saturation magnetic flux density, but when the content of the Fe element is too high, it is difficult to form amorphous. In the present invention, the content of Fe is preferably 70-90 atomic%. Further, when the sum of Si and B is in the range of 10-30 atomic%, the amorphous forming ability of the alloy is the best. In order to prevent corrosion in this basic composition, corrosion resistant elements such as Cr and Co may be added within 20 atomic%, and a small amount of other metal elements may be included as necessary to impart other properties.
상기 Fe-Si-B 합금은 예를 들어, 결정화 온도가 508℃이고, 큐리온도(Tc)가 399℃인 것을 사용할 수 있다. 그러나, 이러한 결정화 온도는 Si 및 B의 함량이나, 3원계 합금 성분 이외에 첨가되는 다른 금속 원소 및 그의 함량에 따라 변동될 수 있다.As the Fe-Si-B alloy, for example, a crystallization temperature of 508 ° C and a Curie temperature (Tc) of 399 ° C may be used. However, this crystallization temperature may vary depending on the content of Si and B or other metal elements and their content added in addition to the tertiary alloy component.
본 발명은 Fe계 비정질 합금으로서 필요에 따라 Fe-Si-B-Co계 합금을 사용할 수 있다.In the present invention, an Fe-Si-B-Co-based alloy may be used as the Fe-based amorphous alloy.
한편, 상기 박판 자성시트(2)는 Fe계 나노 결정립 자성 합금으로 이루어진 박판의 리본을 사용할 수 있다. On the other hand, the thin magnetic sheet 2 may be a ribbon of a thin plate made of a Fe-based nanocrystalline magnetic alloy.
Fe계 나노 결정립 자성 합금은, 다음 수학식 1을 만족하는 합금을 사용하는 것이 바람직하다.As the Fe-based nanocrystalline magnetic alloy, it is preferable to use an alloy that satisfies the following expression (1).
수학식 1
Figure PCTKR2014001795-appb-M000001
Equation 1
Figure PCTKR2014001795-appb-M000001
상기 수학식 1에서, A는 Cu 및 Au로부터 선택되는 적어도 1종의 원소를, D는 Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, W, Ni, Co 및 희토류 원소로부터 선택되는 적어도 1종의 원소를, E는 Mn, Al, Ga, Ge, In, Sn 및 백금족 원소로부터 선택되는 적어도 1종의 원소를, Z는 C, N 및 P로부터 선택되는 적어도 1종의 원소를 나타내고, c, d, e, f, g 및 h는 관계식 0.01≤c≤8at%, 0.01≤d≤10at%, 0≤e≤10at%, 10≤f≤25at%, 3≤g≤12at%, 15≤f+g+h≤35at%를 각각 만족하는 수이며, 상기 합금 구조의 면적비로 20% 이상이 입경 50㎚ 이하의 미세구조로 이루어져 있다.In Equation 1, A is at least one element selected from Cu and Au, D is selected from Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, W, Ni, Co and rare earth elements At least one element, E represents at least one element selected from Mn, Al, Ga, Ge, In, Sn, and platinum group elements, Z represents at least one element selected from C, N, and P , c, d, e, f, g and h are relations 0.01≤c≤8at%, 0.01≤d≤10at%, 0≤e≤10at%, 10≤f≤25at%, 3≤g≤12at%, 15 ≤ f + g + h ≤ 35 at%, respectively, and the area ratio of the alloy structure is 20% or more of the microstructure having a particle size of 50nm or less.
상기한 수학식 1에 있어서, A 원소는 합금의 내식성을 높이고, 결정 입자의 조대화를 방지함과 함께, 철손이나 합금의 투자율 등의 자기 특성을 개선하기 위해 사용된다. A 원소의 함유량이 너무 적으면, 결정립의 조대화 억제 효과를 얻기 곤란하다. 반대로, A 원소의 함유량이 지나치게 많으면, 자기 특성이 열화된다. 따라서, A원소의 함유량은 0.01 내지 8at%의 범위로 하는 것이 바람직하다. D 원소는 결정립 직경의 균일화 및 자기 변형의 저감 등에 유효한 원소이다. D 원소의 함유량은 0.01 내지 10at%의 범위로 하는 것이 바람직하다.In the above Equation 1, element A is used to improve the corrosion resistance of the alloy, to prevent coarsening of crystal grains, and to improve magnetic properties such as iron loss and permeability of the alloy. If the content of element A is too small, it is difficult to obtain the effect of suppressing coarsening of crystal grains. On the contrary, when there is too much content of A element, magnetic property will deteriorate. Therefore, it is preferable to make content of element A into the range of 0.01-8 at%. D element is an element effective for uniformizing the grain diameter and reducing the magnetic strain. It is preferable to make content of D element into the range of 0.01-10 at%.
E 원소는 합금의 연자기 특성 및 내식성의 개선에 유효한 원소이다. E 원소의 함유량은 10at% 이하로 하는 것이 바람직하다. Si 및 B는 자성 시트 제조 시에 있어서의 합금의 아몰퍼스화를 조성하는 원소이다. Si의 함유량은 10 내지 25at%의 범위로 하는 것이 바람직하고, B의 함유량은 3 내지 12at%의 범위로 하는 것이 바람직하다. 또한, Si 및 B 이외의 합금의 아몰퍼스화 조성 원소로서 Z 원소를 합금에 포함하고 있어도 된다. 그 경우, Si, B 및 Z 원소의 합계 함유량은 15 내지 35at%의 범위로 하는 것이 바람직하다. 미세 결정 구조는, 입경이 5 내지 30㎚의 결정립이 합금 구조 중에 면적비로 50 내지 90%의 범위로 존재하는 구조를 구현하도록 형성되는 것이 바람직하다.The element E is an element effective for improving the soft magnetic properties and the corrosion resistance of the alloy. It is preferable to make content of E element into 10 at% or less. Si and B are elements which form amorphousization of the alloy at the time of magnetic sheet manufacture. It is preferable to make content of Si into the range of 10-25 at%, and it is preferable to make content of B into the range of 3-12 at%. In addition, Z element may be included in the alloy as an amorphous compositional element of alloys other than Si and B. In that case, it is preferable to make the total content of Si, B, and Z elements into the range of 15-35 at%. The fine crystal structure is preferably formed to realize a structure in which grains having a particle diameter of 5 to 30 nm exist in the range of 50 to 90% by area ratio in the alloy structure.
또한, 상기 박판 자성시트(2)에 사용되는 Fe계 나노 결정립 자성 합금은 Fe-Si-B-Cu-Nb 합금을 사용할 수 있으며, 이 경우, Fe가 73-80 at%, Si 및 B의 합이 15-26 at%, Cu와 Nb의 합이 1-5 at%인 것이 바람직하다. 이러한 조성 범위가 리본 형태로 제작된 비정질 합금이 후술하는 열처리에 의해 나노상의 결정립으로 쉽게 석출될 수 있다.In addition, the Fe-based nanocrystalline magnetic alloy used in the thin magnetic sheet 2 may be a Fe-Si-B-Cu-Nb alloy, in this case, Fe is 73-80 at%, the sum of Si and B It is preferable that the sum of this 15-26 at% and Cu and Nb is 1-5 at%. This composition range of the amorphous alloy produced in the form of a ribbon can be easily precipitated into the crystal grains of the nano phase by the heat treatment described later.
상기 보호 필름(1)은 도 4와 같이 예를 들어, 폴리에틸렌 테레프탈레이트(PET) 필름, 폴리이미드 필름, 폴리에스테르 필름, 폴리페닐린설페이드(PPS) 필름, 폴리프로필렌(PP) 필름, 폴리테레프탈레이트(PTFE)와 같은 불소 수지계 필름 등의 수지 필름(11)을 사용할 수 있으며, 제1접착층(12)을 통하여 박판 자성시트(2)의 일측면에 부착된다.The protective film 1 is, for example, polyethylene terephthalate (PET) film, polyimide film, polyester film, polyphenylene sulfate (PPS) film, polypropylene (PP) film, polyterephthalate as shown in FIG. A resin film 11 such as a fluororesin film such as (PTFE) can be used, and is attached to one side of the thin magnetic sheet 2 via the first adhesive layer 12.
또한, 보호 필름(1)은 1 내지 100㎛, 바람직하게는 10-30㎛ 범위인 것을 사용할 수 있고, 더욱 바람직하게는 20㎛의 두께를 갖는 것이 좋다. In addition, the protective film 1 can use the thing of 1-100 micrometers, Preferably it is 10-30 micrometers, It is good to have a thickness of 20 micrometers more preferably.
본 발명에 사용되는 보호 필름(1)은 박판 자성시트(2)의 일측면에 부착될 때 제1접착층(12)의 타면에 제1접착층(12)을 보호하기 위해 부착된 릴리즈 필름(4a)은 제거하고 부착된다.The protective film 1 used in the present invention is a release film 4a attached to protect the first adhesive layer 12 on the other surface of the first adhesive layer 12 when attached to one side of the thin magnetic sheet 2. Is removed and attached.
또한, 양면 테이프(3)는 도 5에 도시된 바와 같이, 예를 들어, PET(Polyethylene Terephthalate) 필름과 같은 불소 수지계 필름으로 이루어진 기재(32)로 사용하여 양측면에 제2 및 제3 접착층(31,33)이 형성된 것을 사용하며, 제2 및 제3 접착층(31,33)의 외측면에는 릴리즈 필름(4)이 부착되어 있다. 상기 릴리즈 필름(4)은 양면 테이프(3)의 제조시에 일체로 형성되며, 차폐시트(10)를 전자기기의 배터리 커버나 배면 커버에 부착할 때 박리되어 제거된다.In addition, as shown in FIG. 5, the double-sided tape 3 is used as a base material 32 made of a fluororesin-based film such as, for example, a polyethylene terephthalate (PET) film, so that the second and third adhesive layers 31 are formed on both sides thereof. , 33 is used, and the release film 4 is attached to the outer surfaces of the second and third adhesive layers 31 and 33. The release film 4 is integrally formed at the time of manufacture of the double-sided tape 3, and is peeled off and removed when the shielding sheet 10 is attached to the battery cover or the rear cover of the electronic device.
도 3에 도시된 제3실시예에 따른 NFC 및 무선 충전용 자기장 차폐시트는 다층 박판 자성시트(2)로 사용되는 다수의 비정질 리본시트(21-26)를 상호 접합시키기 위해 비정질 리본시트(21-26) 사이에 삽입되는 양면 테이프(3a-3e)는 양측면의 릴리즈 필름(4,4b)을 모두 제거하고 사용한다. The magnetic field shielding sheet for NFC and wireless charging according to the third embodiment shown in FIG. 3 is used in order to bond the plurality of amorphous ribbon sheets 21-26 used as the multilayer thin magnetic sheet 2 to each other. The double-sided tape 3a-3e inserted between -26) removes and uses both the release films 4 and 4b on both sides.
양면 테이프(3,3a-3f)는 위에서 설명한 바와 같은 기재가 있는 타입과, 기재가 없이 접착층만으로 형성되는 무기재 타입도 적용이 가능하다. 비정질 리본시트(21-26) 사이에 삽입되는 양면 테이프(3a-3e)의 경우 무기재 타입을 사용하는 것이 박막화 측면에서 바람직하다.The double- sided tape 3,3a-3f is also applicable to the type with a base material as described above, and an inorganic material type formed only of an adhesive layer without a base material. In the case of the double-sided tape 3a-3e inserted between the amorphous ribbon sheets 21-26, it is preferable to use an inorganic material type from the viewpoint of thinning.
상기 제1 내지 제3 접착층(12,31,33)은 예를 들어, 아크릴계 접착제를 사용할 수 있으며, 다른 종류의 접착제를 사용하는 것도 물론 가능하다.As the first to third adhesive layers 12, 31, and 33, for example, an acrylic adhesive may be used, and other types of adhesives may be used.
양면 테이프(3)는 10, 20, 30㎛의 두께를 갖는 것을 사용할 수 있으며, 바람직하게는 10㎛의 두께를 갖는 것이 좋다.The double-sided tape 3 can use what has thickness of 10, 20, and 30 micrometers, Preferably, it has a thickness of 10 micrometers.
상기 차폐시트(10)에 사용되는 박판 자성시트(2)는 1장당 예를 들어, 15 내지 35㎛의 두께를 갖는 것을 사용할 수 있다. 이 경우, 박판 자성시트(2)의 열처리 후의 핸들링 공정을 고려하면 박판 자성시트(2)의 두께는 25 내지 30㎛로 설정되는 것이 바람직하다. 비정질 리본의 두께가 얇을수록 열처리 후 핸들링시에 약간의 충격에도 리본의 깨짐 현상이 발생할 수 있다.The thin magnetic sheet 2 used for the shielding sheet 10 may have a thickness of, for example, 15 to 35 μm per sheet. In this case, considering the handling process after the heat treatment of the thin magnetic sheet 2, the thickness of the thin magnetic sheet 2 is preferably set to 25 to 30 μm. As the thickness of the amorphous ribbon becomes thinner, cracking of the ribbon may occur even with slight impact during handling after heat treatment.
자기장 차폐시트(10)는 도 17 및 도 18에 도시된 바와 같이, NFC 안테나(6)가 양면 테이프(30b)를 사용하여 차폐시트(10)에 부착되어 사용된다. As shown in FIGS. 17 and 18, the magnetic shielding sheet 10 is used by attaching the NFC antenna 6 to the shielding sheet 10 using the double-sided tape 30b.
또한, 자기장 차폐시트(10)는 도 19 내지 도 20b에 도시된 NFC 및 무선 충전용 듀얼 안테나(40,50)와 결합하여 사용될 수 있다. In addition, the magnetic shielding sheet 10 may be used in combination with the dual antennas 40 and 50 for NFC and wireless charging shown in FIGS. 19 to 20b.
무선 충전시에는, NFC 및 무선 충전용 듀얼 안테나(40)의 2차 코일, 즉 안테나 코일(43)은 공진회로를 형성하고 있으므로, 차폐시트(10)는 2차 코일(43)이 형성하는 공진회로의 인덕턴스에 영향을 미치게 된다. At the time of wireless charging, since the secondary coil of the dual antenna 40 for NFC and wireless charging, that is, the antenna coil 43 forms a resonant circuit, the shield sheet 10 is a resonant circuit formed by the secondary coil 43. This will affect the inductance of the furnace.
차폐시트(10)는 송신장치로부터 예를 들어, 300kHz의 무선 전력신호가 휴대 단말기기(101)에 미치는 영향을 차단하는 자기장 차폐 역할과 동시에 수신장치의 2차 코일(43)로 무선 전력신호가 높은 효율로 수신되도록 유도하는 인덕터로서 역할을 한다.The shielding sheet 10 serves as a magnetic shield to block the effect of, for example, a 300 kHz wireless power signal on the portable terminal 101 from the transmitting device, and simultaneously transmits the wireless power signal to the secondary coil 43 of the receiving device. It serves as an inductor to induce reception with high efficiency.
일반적으로 NFC 칩이 내장된 휴대 단말기기를 외부의 RF 리더기에 접근시키면, RF 리더기에 설치된 1차 코일(안테나)로부터 13.56MHz의 NFC 고주파 신호가 인가됨에 따라 휴대 단말기기에 설치된 NFC 칩의 코일(안테나)에는 유도 기전력이 생성된다. 유도 기전력에 의해 USIM(범용 가입자 식별 모듈) 카드의 구동을 위한 전력을 공급함으로써 근거리무선통신에 의해 휴대 단말기기의 USIM 카드의 정보가 RF 리더기에 의해 판독되고 필요한 정보를 기록함으로써 예를 들어, 전자화폐 기능과 같은 탑재된 기능(예, 전자화폐기능)이 실현된다.In general, when a mobile terminal having a built-in NFC chip approaches an external RF reader, a 13.56 MHz NFC high frequency signal is applied from a primary coil (antenna) installed in the RF reader, the coil of the NFC chip installed in the portable terminal (antenna) Induced electromotive force is generated. By supplying electric power for driving a USIM (Universal Subscriber Identity Module) card by induced electromotive force, the information of the USIM card of the mobile terminal device is read by the RF reader and recorded the necessary information by near field communication, for example, electronically. Built-in functions such as money functions (e.g., electronic money functions) are realized.
근거리무선통신(NFC)이 이루어지는 경우, 상기 자기장 차폐시트(10)는 RF 리더기에 설치된 1차 코일(안테나)로부터 발생된 13.56MHz의 NFC용 고주파 신호에 의해 휴대 단말기기(101)에 미치는 영향을 차단하는 자기장 차폐 역할과 동시에 NFC 안테나(6)에 NFC용 고주파 신호가 높은 수신 감도로 수신되도록 유도하는 인덕터로서 역할을 한다.When near field communication (NFC) is performed, the magnetic shielding sheet 10 has an effect on the portable terminal device 101 by a high frequency signal for NFC of 13.56 MHz generated from a primary coil (antenna) installed in an RF reader. At the same time as the magnetic field shielding to cut off, the NFC antenna 6 serves as an inductor for inducing high frequency signals for NFC to be received with high reception sensitivity.
박판 자성시트(2)는 도 2 및 도 3과 같이 플레이크 처리에 의해 다수의 미세 조각(20)으로 분리되며, 다수의 미세 조각(20)은 수십㎛ ~ 3mm 이하의 크기를 갖는 것이 바람직하다. The thin magnetic sheet 2 is separated into a plurality of fine pieces 20 by flake processing, as shown in Figs. 2 and 3, it is preferable that the plurality of fine pieces 20 has a size of several tens of micrometers ~ 3mm or less.
박판 자성시트(2)는 플레이크 처리가 이루어져서 다수의 미세 조각(20)으로 분리되는 경우, 자성시트의 인덕턴스(L) 값의 감소보다, 자기저항(R)의 감소가 더 크게 이루어진다. 그 결과, 박판 자성시트(2)의 플레이크 처리가 이루어지면, NFC 통신에서 NFC 안테나 코일(6a)이 형성하는 공진회로 및 무선 충전시에 수신장치의 2차 코일이 형성하는 공진회로의 품질계수(Q)가 증가하게 되어 전력전송 효율이 증가하게 된다. When the thin magnetic sheet 2 is flaked and separated into a plurality of fine pieces 20, the magnetic resistance R is reduced more than the decrease in the inductance L value of the magnetic sheet. As a result, when flake processing of the thin magnetic sheet 2 is performed, the quality coefficients of the resonant circuit formed by the NFC antenna coil 6a in NFC communication and the resonant circuit formed by the secondary coil of the receiver during wireless charging ( Q) increases to increase the power transmission efficiency.
또한, 박판 자성시트(2)가 다수의 미세 조각(20)으로 분리되는 경우, 와전류에 의한 손실을 줄여줌에 의해 배터리의 발열 문제를 차단할 수 있게 된다.In addition, when the thin magnetic sheet 2 is separated into a plurality of fine pieces 20, it is possible to block the heat generation problem of the battery by reducing the loss due to the eddy current.
더욱이, 본 발명에서는 박판 자성시트(2)가 도 10과 같이 플레이크된 후, 도 13과 같이 라미네이트 처리됨에 따라 다수의 미세 조각(20) 사이의 틈새(20a)로 제1 및 제2 접착층(12,31)의 일부가 침투되어, 다수의 미세 조각(20)이 유전체 역할을 하는 제1 및 제2 접착층(12,31)에 의해 분리가 이루어지게 된다.Furthermore, in the present invention, the thin magnetic sheet 2 is flakes as shown in FIG. 10, and then laminated as shown in FIG. 13, and thus the first and second adhesive layers 12 are formed as a gap 20a between the plurality of fine pieces 20. A part of, 31 penetrates, and the plurality of fine pieces 20 are separated by the first and second adhesive layers 12 and 31 serving as dielectrics.
그 결과, 단순히 플레이크 처리만 이루어질 경우, 미세 조각(20)의 유동에 따라 미세 조각(20)이 서로 접촉됨에 따라 미세 조각(20)의 크기가 증가하여 와전류 손실이 증가하는 문제가 발생할 수 있으나, 라미네이션 처리에 의해 미세 조각(20)의 전면이 유전체로 둘러싸여지므로 이러한 문제가 차단된다.As a result, when only the flake processing is performed, as the fine pieces 20 are in contact with each other according to the flow of the fine pieces 20, the size of the fine pieces 20 may increase, so that the eddy current loss may increase. This problem is avoided because the entire surface of the fine piece 20 is surrounded by the dielectric by the lamination process.
도 2에 도시된 바와 같이, 본 발명의 제1실시예에 따른 NFC 및 무선 충전용 자기장 차폐시트(10a)는 박판 자성시트(2)로서 1장의 비정질 리본시트(21)를 사용하여 일측면에 보호 필름(1)이 접착되고, 타측면에 양면 테이프(3)를 통하여 릴리즈 필름(4)이 접착되는 구조를 갖는다. As shown in FIG. 2, the magnetic field shielding sheet 10a for NFC and wireless charging according to the first embodiment of the present invention is formed on one side using one amorphous ribbon sheet 21 as a thin magnetic sheet 2. The protective film 1 is bonded, and the release film 4 is bonded to the other side via the double-sided tape 3.
또한, 본 발명의 자기장 차폐시트(10b)는 도 3에 도시된 제2실시예와 같이, 수신장치의 2차 코일(43)의 품질계수(Q)와 전력전송 효율을 높이기 위해 박판 자성시트(2)로서 다수의 비정질 리본시트(21-26)를 적층하여 사용할 수 있다. 박판 자성시트(2)의 일측면에 보호필름(1)이 접착되고, 타측면에 양면 테이프(3f)를 통하여 릴리즈 필름(4)이 접착되어 있다.In addition, the magnetic field shielding sheet 10b of the present invention, as in the second embodiment shown in Figure 3, to improve the quality factor (Q) and power transmission efficiency of the secondary coil 43 of the receiving device thin magnetic sheet ( As 2), many amorphous ribbon sheets 21-26 can be laminated | stacked and used. The protective film 1 is adhered to one side of the thin magnetic sheet 2, and the release film 4 is adhered to the other side via the double-sided tape 3f.
무선 충전기는 충전기의 효율을 최대한 높이기 위해 전력전송 송신장치에 수신장치와의 정합(align)을 돕는 영구자석을 채용할 수 있다. 즉, 송신장치의 1차 코일(송신 코일)의 내부에 원형의 영구자석을 구비함에 따라 구비된 송신장치 위에 놓여지는 수신장치와 정확한 위치 정렬을 이루게 하며 수신장치를 움직이지 않게 잡아준다.The wireless charger may employ a permanent magnet in the power transmission transmitter to help align with the receiver to maximize the efficiency of the charger. That is, by providing a circular permanent magnet inside the primary coil (transmitting coil) of the transmitter, it makes an accurate position alignment with the receiver placed on the transmitter, and holds the receiver stationarily.
따라서, 무선 충전용 자기장 차폐시트는 송신장치로부터 100 내지 150KHz(또는 300KHz) 주파수의 전력 전송에 따라 생성되는 교류(AC) 자기장 뿐 아니라 상기 영구자석에 의한 직류(DC) 자기장도 모두 차폐하는 것이 요구된다.Therefore, the magnetic shielding sheet for wireless charging is required to shield not only the alternating current (AC) magnetic field generated by the power transmission of 100 to 150KHz (or 300KHz) frequency from the transmitter but also the direct current (DC) magnetic field by the permanent magnet. do.
그런데, 상기 직류(DC) 자기장은 교류(AC) 자기장에 의해 자기장 차폐시트(10)에 미치는 영향보다 더 크기 때문에 얇은 차폐시트를 자기 포화시켜서 차폐시트로서의 성능을 떨어트리거나 전력전송 효율을 급격하게 떨어트리는 문제가 발생된다.However, since the direct current (DC) magnetic field is larger than the influence on the magnetic shielding sheet 10 by the alternating current (AC) magnetic field, the thin shielding sheet is self-saturated to degrade the performance as the shielding sheet or rapidly reduce the power transmission efficiency. Dropping problem occurs.
이에 따라, 무선 충전기의 송신장치에 영구자석을 채용한 경우는 영구자석에 의해 자기포화가 이루어지는 층수를 고려하여 적층되는 비정질 리본시트(21-26)를 결정하는 것이 요구된다.Accordingly, in the case where the permanent magnet is used as the transmitter of the wireless charger, it is required to determine the amorphous ribbon sheets 21-26 to be laminated in consideration of the number of layers in which the magnetic saturation is performed by the permanent magnet.
또한, Fe계 비정질 합금은 나노결정립 합금보다 포화 자기장이 크다. 이에 따라 Fe계 비정질 합금으로 이루어진 다수의 비정질 리본시트(21-26)를 사용하는 경우, 2 내지 8층을 적층하여 사용할 수 있으며, 예를 들어, 3 내지 5층을 사용하는 것이 높은 투자율이 얻어져서 바람직하다. 이 경우, 적층시트의 인덕턴스(즉, 투자율)는 약 13 내지 19μH인 것이 바람직하다.In addition, the Fe-based amorphous alloy has a larger saturation magnetic field than the nanocrystalline alloy. Accordingly, in the case of using a plurality of amorphous ribbon sheets 21-26 made of an Fe-based amorphous alloy, two to eight layers can be laminated and used, for example, a high permeability can be obtained by using three to five layers. It is preferable to lose. In this case, the inductance (ie, permeability) of the laminated sheet is preferably about 13 to 19 mu H.
또한, 나노결정립 합금으로 이루어진 다수의 비정질 리본시트(21-26)를 사용하는 경우, 4 내지 12층을 적층하여 사용할 수 있으며, 예를 들어, 7내지 9층을 사용하는 것이 높은 투자율이 얻어져서 바람직하다. 이 경우, 적층시트의 인덕턴스(즉, 투자율)은 약 13 내지 21μH인 것이 바람직하다.In addition, in the case of using a plurality of amorphous ribbon sheets 21-26 made of nanocrystalline alloys, 4 to 12 layers can be laminated and used, for example, using 7 to 9 layers has a high permeability. desirable. In this case, the inductance (ie, permeability) of the laminated sheet is preferably about 13 to 21 mu H.
한편, 무선 충전기의 송신장치에 영구자석을 채용하지 않은 경우는 영구자석을 채용한 경우와 비교하여 상대적으로 적은 수의 비정질 리본시트를 사용하는 것도 가능하다.On the other hand, when the permanent magnet is not used as the transmitter of the wireless charger, it is also possible to use a relatively small number of amorphous ribbon sheets as compared with the case where the permanent magnet is adopted.
이 경우, Fe계 비정질 합금 또는 나노결정립 합금으로 이루어진 비정질 리본시트를 사용하는 경우, 1 내지 4층을 적층하여 사용할 수 있으며, 적층시트의 인덕턴스(즉, 투자율)은 약 13 내지 21μH인 것이 바람직하다.In this case, in the case of using an amorphous ribbon sheet made of an Fe-based amorphous alloy or a nanocrystalline alloy, one to four layers may be laminated and used, and the inductance (ie, permeability) of the laminated sheet is preferably about 13 to 21 μH. .
도 3을 참고하면, 제2실시예에 따른 자기장 차폐시트(10b)는 박판 자성시트(2)로서 다수, 예를 들어, 6층의 비정질 리본시트(21-26)를 적층하여 사용하는 경우를 나타낸 것으로, 다수의 비정질 리본시트(21-26) 사이에 다수의 접착층 또는 양면 테이프(3a-3e)가 삽입되어 있다.Referring to FIG. 3, the magnetic shielding sheet 10b according to the second embodiment is a thin magnetic sheet 2, for example, a case in which a plurality of amorphous ribbon sheets 21-26 are stacked. As shown, a plurality of adhesive layers or double-sided tapes 3a-3e are inserted between the plurality of amorphous ribbon sheets 21-26.
즉, 플레이크 및 라미네이팅 처리시에 분리된 미세 조각(20)이 분리된 위치를 유지하며 미세 조각(20) 사이의 틈새(20a)에 충진되도록 접착층 또는 양면 테이프(3a-3e)를 비정질 리본시트(21-26) 사이에 삽입하여 적층하는 것이 필요하다.That is, the adhesive layer or the double-sided tape (3a-3e) to the amorphous ribbon sheet (filled in the gap (20a) between the fine pieces 20 to maintain the separated position during the flake and laminating process separated) Between 21-26).
본 발명에 따른 자기장 차폐시트(10-10b)는 일반적으로 배터리 셀에 대응하는 직사각형 또는 정사각형의 사각형상을 이루게 되나, 이외에도 오각형 등의 다각형 또는 원형이나 타원, 그리고 부분적으로 직사각 형상과 원형이 조합된 형상으로 이루어질 수 있으며, 바람직하게는 자기장 차폐가 요구되는 부위의 형상에 따라 이에 대응하는 형상을 갖는다.Magnetic field shielding sheet 10-10b according to the present invention generally forms a rectangular or square quadrangular shape corresponding to a battery cell, in addition to polygonal or circular or ellipse, such as a pentagon, and partially rectangular and circular combinations. It may be formed in a shape, and preferably has a shape corresponding to the shape of the portion where the magnetic field shielding is required.
또한, 본 발명에 따른 자기장 차폐시트는 무선 충전기가 송신장치의 1차 코일 중앙부에 영구자석을 포함하는 경우, 영구자석의 자기장에 의해 차폐시트가 착자(포화)되는 현상을 방지하기 위해 도 6에 도시된 제3실시예의 자기장 차폐시트(10c)와 같이, 수신장치의 2차 코일(43)과 대응하는 환형으로 성형되어 이루어질 수 있다.In addition, in the magnetic field shielding sheet according to the present invention, when the wireless charger includes a permanent magnet in the center of the primary coil, the shielding sheet is magnetized (saturated) by the magnetic field of the permanent magnet. Like the magnetic shielding sheet 10c of the third embodiment shown, it may be formed in an annular shape corresponding to the secondary coil 43 of the receiver.
제3실시예의 자기장 차폐시트(10c)는 수신장치의 2차 코일(43)이 사각형, 원형, 타원형 중 어느 하나의 형상으로 이루어질 때 이에 대응하여 사각형, 원형, 타원형 중 어느 하나의 형상으로 이루어진다. 이 경우, 자기장 차폐시트(10c)는 2차 코일(43)의 폭보다 약 1-2mm 더 넓은 폭으로 이루어지는 것이 바람직하다.The magnetic field shielding sheet 10c of the third embodiment has a shape of any one of a rectangle, a circle, and an oval in response to the secondary coil 43 of the receiver having a shape of any one of a rectangle, a circle, and an oval. In this case, the magnetic field shielding sheet 10c preferably has a width of about 1-2 mm wider than the width of the secondary coil 43.
제3실시예의 자기장 차폐시트(10c)는 상부면에 환형의 보호 필름(1a)이 부착된 환형의 박판 자성시트(2b)가 환형의 양면 테이프(30)를 통하여 릴리즈 필름(4)에 부착된 구조를 가질 수 있다.In the magnetic field shielding sheet 10c of the third embodiment, an annular thin magnetic sheet 2b having an annular protective film 1a attached to its upper surface is attached to the release film 4 through an annular double-sided tape 30. It may have a structure.
상기 환형의 자기장 차폐시트(10c)는 릴리즈 필름(4)으로부터 쉽게 박리가 이루어질 수 있도록 자기장 차폐시트(10c)보다 큰 면적을 갖는 사각 형상의 릴리즈 필름(4)을 사용하는 것이 바람직하다.The annular magnetic shielding sheet 10c preferably uses a rectangular release film 4 having an area larger than that of the magnetic shielding sheet 10c so as to be easily peeled from the release film 4.
이하에 본 발명에 따른 자기장 차폐시트의 제조방법을 도 7을 참고하여 설명한다.Hereinafter, a method of manufacturing a magnetic shielding sheet according to the present invention will be described with reference to FIG. 7.
먼저, 비정질 합금 또는 나노 결정립 합금으로 이루어진 비정질 리본을 멜트 스피닝에 의한 급냉응고법(RSP)으로 제조한 후(S11), 열처리 후의 후처리를 용이하게 할 수 있도록 먼저 일정한 길이로 시트 형태로 컷팅하여 얻어진 다수의 비정질 리본시트를 적층한다(S12). First, an amorphous ribbon made of an amorphous alloy or a nano-crystalline alloy is prepared by rapid quenching and solidification (RSP) by melt spinning (S11), and then first cut into a sheet shape to a predetermined length to facilitate post-treatment after heat treatment. A plurality of amorphous ribbon sheets are laminated (S12).
비정질 리본이 비정질 합금인 경우, Fe계 비정질 리본, 예를 들어, Fe-Si-B 또는 Fe-Si-B-Co 합금으로 이루어진 30㎛ 이하의 극박형 비정질 리본을 멜트 스피닝에 의한 급냉응고법(RSP)으로 제조하며, 원하는 투자율을 얻을 수 있도록 적층된 비정질 리본시트를 300℃ 내지 600℃의 온도범위에서 30분 내지 2시간 동안 무자장 열처리를 행한다(S13).In the case where the amorphous ribbon is an amorphous alloy, a quench solidification method using melt spinning is performed on a Fe-based amorphous ribbon, for example, an ultra-thin amorphous ribbon having a thickness of 30 μm or less composed of Fe-Si-B or Fe-Si-B-Co alloy (RSP). ), The amorphous ribbon sheet laminated so as to obtain the desired permeability is subjected to a magnetic field heat treatment for 30 minutes to 2 hours in the temperature range of 300 ℃ to 600 ℃ (S13).
이 경우, 열처리 분위기는 비정질 리본의 Fe 함량이 높을지라도, 산화가 발생되지 않는 온도 범위에서 이루어지므로 분위기 로에서 이루어질 필요는 없고, 대기 중에서 열처리를 진행하여도 무방하다. 또한, 산화 분위기 또는 질소 분위기에서 열처리가 이루어질지라도 동일한 온도 조건이라면 비정질 리본의 투자율은 실질적으로 차이가 없다.In this case, the heat treatment atmosphere does not need to be made in the atmosphere furnace even if the Fe content of the amorphous ribbon is high, since it is made in a temperature range where oxidation does not occur, and the heat treatment may be performed in the air. In addition, even if the heat treatment is performed in an oxidizing atmosphere or a nitrogen atmosphere, the permeability of the amorphous ribbon is not substantially different under the same temperature conditions.
상기한 열처리 온도가 300℃ 미만인 경우 원하는 투자율 보다 높은 투자율을 나타내며 열처리 시간이 길게 소요되는 문제가 있고, 600℃를 초과하는 경우는 과열처리에 의해 투자율이 현저하게 낮아져서 원하는 투자율을 나타내지 못하는 문제가 있다. 일반적으로 열처리 온도가 낮으면 처리시간이 길게 소요되고, 반대로 열처리 온도가 높으면 처리시간은 단축된다. If the heat treatment temperature is less than 300 ℃ exhibits a high permeability higher than the desired permeability, there is a problem that takes a long heat treatment time, and if the heat treatment temperature exceeds 600 ℃ there is a problem that the permeability is significantly lowered by overheating treatment does not exhibit the desired permeability. . In general, when the heat treatment temperature is low, the treatment time is long. On the contrary, when the heat treatment temperature is high, the treatment time is shortened.
또한, 비정질 리본이 나노 결정립 합금으로 이루어진 경우, Fe계 비정질 리본, 예를 들어, Fe-Si-B-Cu-Nb 합금으로 이루어진 30㎛ 이하의 극박형 비정질 리본을 멜트 스피닝에 의한 급냉응고법(RSP)으로 제조하며, 원하는 투자율을 얻을 수 있도록 적층된 비정질 리본시트를 300℃ 내지 700℃의 온도범위에서 30분 내지 2시간 동안 무자장 열처리를 행함으로써 나노 결정립이 형성된 나노 결정립 리본시트를 형성한다(S13).In addition, when the amorphous ribbon is made of a nano-crystalline alloy, quench solidification method by melt spinning the ultra-thin amorphous ribbon of less than 30㎛ made of Fe-based amorphous ribbon, for example, Fe-Si-B-Cu-Nb alloy (RSP And a nanocrystalline ribbon sheet on which the nanocrystalline grains are formed by subjecting the amorphous ribbon sheets laminated so as to obtain a desired permeability to a magnetic field heat treatment for 30 minutes to 2 hours at a temperature range of 300 ° C to 700 ° C. S13).
이 경우 열처리 분위기는 Fe의 함량이 70at% 이상이므로 대기 중에서 열처리가 이루어지면 산화가 이루어져서 시각적인 측면에서 바람직하지 못하며, 따라서 질소 분위기에서 이루어지는 것이 바람직하다. 그러나, 산화 분위기에서 열처리가 이루어질지라도 동일한 온도 조건이라면 시트의 투자율은 실질적으로 차이가 없다.In this case, the heat treatment atmosphere is more than 70at% of the Fe content, so if the heat treatment is performed in the air, the oxidation is not preferred in terms of visual, it is preferably made in a nitrogen atmosphere. However, even if the heat treatment is performed in an oxidizing atmosphere, the magnetic permeability of the sheet is not substantially different under the same temperature conditions.
이 경우, 열처리 온도가 300℃ 미만인 경우 나노 결정립이 충분히 생성되지 않아 원하는 투자율이 얻어지지 않으며 열처리 시간이 길게 소요되는 문제가 있고, 700℃를 초과하는 경우는 과열처리에 의해 투자율이 현저하게 낮아지는 문제가 있다. 열처리 온도가 낮으면 처리시간이 길게 소요되고, 반대로 열처리 온도가 높으면 처리시간은 단축되는 것이 바람직하다. In this case, if the heat treatment temperature is less than 300 ℃ nano-crystal grains are not sufficiently generated, the desired permeability is not obtained, the heat treatment time is long, there is a problem that the heat permeability is significantly lowered by overheating if it exceeds 700 ℃ there is a problem. If the heat treatment temperature is low, the treatment time is long, and conversely, if the heat treatment temperature is high, the treatment time is preferably shortened.
또한, 본 발명의 비정질 리본은 두께가 15 ~ 35㎛ 범위를 갖는 것을 사용하며, 비정질 리본의 투자율은 리본의 두께에 비례하여 증가한다.In addition, the amorphous ribbon of the present invention uses a thickness having a range of 15 ~ 35㎛, the permeability of the amorphous ribbon increases in proportion to the thickness of the ribbon.
더욱이, 상기 비정질 리본은 열처리가 이루어지면 취성이 강하게 되어 후속 공정에서 플레이크 처리를 실시할 때 쉽게 플레이크가 이루어질 수 있게 된다. Moreover, the amorphous ribbon becomes brittle when heat treated, so that flakes can be easily formed when the flake treatment is performed in a subsequent process.
이어서, 열처리가 이루어진 비정질 리본시트(2a;21-26)를 도 2 및 도 3에 도시된 바와 같이, 1장 또는 원하는 층수의 다층으로 사용하여, 일측에 보호 필름(1)을 부착하고, 타측에 릴리즈 필름(4)이 부착된 양면 테이프(3;3f)를 부착한 상태로 플레이크 처리를 실시한다(S14).Subsequently, as shown in FIGS. 2 and 3, the heat treated amorphous ribbon sheets 2a; 21-26 are used as one or multiple layers of desired layers, and the protective film 1 is attached to one side and the other side. The flake process is performed in the state which attached the double-sided tape 3; 3f with the release film 4 attached to it (S14).
상기 플레이크 처리는 예를 들어, 도 8 및 도 9과 같이 보호 필름(1), 비정질 리본시트(2a;21-26) 및 양면 테이프(3)와 릴리즈 필름(4)이 순차적으로 적층된 적층시트(100)를 제1 및 제2 플레이크 장치(110,120)를 통과시킴에 의해 비정질 리본시트(2a;21-26)를 다수의 미세 조각(20)으로 분리시킨다. 이 경우, 분리된 다수의 미세 조각(20)은 양측면에 접착된 제1 및 제2 접착층(12,31)에 의해 분리된 상태를 유지하게 된다.The flake treatment is, for example, as shown in Figs. 8 and 9, a lamination sheet in which the protective film 1, the amorphous ribbon sheets 2a; 21-26, and the double-sided tape 3 and the release film 4 are sequentially laminated. By passing the 100 through the first and second flake devices 110 and 120, the amorphous ribbon sheets 2a; 21-26 are separated into a plurality of fine pieces 20. In this case, the separated plurality of fine pieces 20 are kept separated by the first and second adhesive layers 12 and 31 adhered to both sides.
사용 가능한 제1 플레이크 장치(110)는 예를 들어, 도 8에 도시된 바와 같이, 외면에 복수의 요철(116)이 형성되는 금속롤러(112)와, 금속롤러(112)와 대향하여 배치되는 고무롤러(114)로 구성될 수 있고, 제2 플레이크 장치(120)는 도 9에 도시된 바와 같이, 외면에 복수의 구형 볼(126)이 장착되는 금속롤러(122)와, 금속롤러(122)와 대향하여 배치되는 고무롤러(124)로 구성될 수 있다. The usable first flake device 110 is, for example, as shown in Figure 8, the metal roller 112 having a plurality of irregularities 116 is formed on the outer surface, and is disposed to face the metal roller 112 It may be composed of a rubber roller 114, the second flake device 120 is, as shown in Figure 9, a metal roller 122, a plurality of spherical ball 126 is mounted on the outer surface, the metal roller 122 It may be composed of a rubber roller 124 is disposed opposite to.
이와 같이, 적층시트(100)를 제1 및 제2 플레이크 장치(110,120)를 통과시키면 도 10에 도시된 바와 같이, 비정질 리본시트(2a)가 다수의 미세 조각(20)으로 분리되면서, 미세 조각(20) 사이에는 틈새(20a)가 발생하게 된다. 도 10은 1장의 비정질 리본시트(2a)를 사용하여 플레이크 처리한 것을 나타낸다.As such, when the laminated sheet 100 passes through the first and second flake devices 110 and 120, as shown in FIG. 10, the amorphous ribbon sheet 2a is divided into a plurality of fine pieces 20, and fine pieces. A gap 20a is generated between the 20's. 10 shows a flake treatment using one amorphous ribbon sheet 2a.
비정질 리본시트(2a)의 다수의 미세 조각(20)은 수십㎛ ~ 3mm 범위의 크기를 갖도록 형성되므로 반자장을 증가시켜서 히스테리시스 로스를 제거함에 따라 시트에 대한 투자율의 균일성을 높이게 된다.Since the plurality of fine pieces 20 of the amorphous ribbon sheet 2a are formed to have a size in the range of several tens of micrometers to 3mm, the magnetic field is increased to remove the hysteresis loss, thereby increasing the uniformity of the permeability to the sheet.
또한, 비정질 리본시트(2a)는 플레이크 처리에 의해 미세 조각(20)의 표면적을 줄여줌에 따라 교류 자기장에 의해 생성되는 와전류(Eddy Current)에 기인한 발열 문제를 차단할 수 있다.In addition, the amorphous ribbon sheet 2a may block the heat generation problem due to the eddy current generated by the alternating magnetic field as the surface area of the fine piece 20 is reduced by the flake treatment.
플레이크 처리된 적층시트(200)는 미세 조각(20) 사이에 틈새(20a)가 존재하게 되며, 이 틈새(20a)로 수분이 침투하게 되면 비정질 리본이 산화되어 비정질 리본의 외관이 좋지 못하게 되고 차폐성능이 떨어지게 된다.In the flake-laminated sheet 200, a gap 20a is present between the fine pieces 20, and when moisture penetrates into the gap 20a, the amorphous ribbon is oxidized so that the appearance of the amorphous ribbon becomes poor and shielding. The performance will drop.
또한, 플레이크 처리만 이루어질 경우, 미세 조각(20)의 유동에 따라 미세 조각(20)이 서로 접촉됨에 따라 미세 조각(20)의 크기가 증가하여 와전류 손실이 증가하는 문제가 발생할 수 있다.In addition, when only the flake processing is performed, as the fine pieces 20 are in contact with each other according to the flow of the fine pieces 20, the size of the fine pieces 20 may increase, thereby increasing the eddy current loss.
더욱이, 상기 플레이크 처리된 적층시트(200)는 플레이크 처리시에 시트의 표면 불균일이 발생할 수 있고, 플레이크 처리된 리본의 안정화가 필요하다.In addition, the flake-treated laminated sheet 200 may cause a surface unevenness of the sheet during flake processing, it is necessary to stabilize the flake-treated ribbon.
따라서, 플레이크 처리된 적층시트(200)는 미세 조각(20) 사이의 틈새(20a)로 접착제를 채움과 동시에 평탄화, 슬림화 및 안정화를 위한 라미네이트 공정을 실시한다(S15). 그 결과, 수분 침투를 방지함과 동시에 미세 조각(20)의 모든 면을 접착제로 둘러쌈에 의해 미세 조각(20)을 상호 분리시켜서 와전류 저감을 도모할 수 있다.Therefore, the flake-laminated sheet 200 performs a lamination process for flattening, slimming, and stabilizing at the same time filling the adhesive with the gap 20a between the fine pieces 20 (S15). As a result, while preventing moisture infiltration, the microflakes 20 can be separated from each other by enclosing all surfaces of the microflakes 20 with an adhesive to reduce eddy currents.
상기 라미네이트 공정을 위한 라미네이트 장치(400,500)는 도 11과 같이 플레이크 처리된 적층시트(200)가 통과하는 제1가압롤러(210) 및 제1가압롤러(210)와 일정 간격을 두고 배치되는 제2가압롤러(220)로 구성되는 롤 프레스 타입이 적용될 수 있고, 도 12에 도시된 바와 같이, 하부 가압부재(240)와 하부 가압부재(240)의 상측에 수직방향으로 이동 가능하게 배치되는 상부 가압부재(250)로 구성되는 유압 프레스 타입이 사용될 수 있다. The laminate apparatus 400 and 500 for the lamination process is a second pressing roller 210 and the first pressing roller 210 passing through the flake-laminated sheet 200 as shown in FIG. The roll press type consisting of the pressure roller 220 may be applied, and as shown in FIG. 12, the upper pressurized to be vertically movable above the lower pressurizing member 240 and the lower pressurizing member 240. A hydraulic press type consisting of the member 250 can be used.
플레이크 처리된 적층시트(200)를 상온 또는 50 내지 80℃의 온도로 열을 가한 후 라미네이트 장치(400,500)를 통과시키면 보호필름(1)의 제1접착층(12)이 가압되면서 제1접착층(12)의 일부 접착제가 틈새(20a)로 유입됨과 아울러 양면 테이프(3)가 가압되면서 제2접착층(31)의 일부 접착제가 미세 조각(20) 사이의 틈새(20a)로 유입되어 틈새(20a)를 밀봉하게 된다.When the flake-laminated sheet 200 is heated to room temperature or 50 to 80 ° C. and then passed through the laminating devices 400 and 500, the first adhesive layer 12 of the protective film 1 is pressed while the first adhesive layer 12 is pressed. In addition to the some of the adhesive is introduced into the gap (20a) and the double-sided tape (3) is pressed, some of the adhesive of the second adhesive layer 31 is introduced into the gap (20a) between the fine pieces 20 to close the gap (20a) To seal.
여기에서, 제1접착층(12)과 제2접착층(31)은 상온에서 가압하면 변형이 가능한 접착제가 사용되거나, 열을 가하면 변형되는 열가소성 접착제가 사용될 수 있다. Here, the first adhesive layer 12 and the second adhesive layer 31 may be an adhesive that can be deformed when pressed at room temperature, or a thermoplastic adhesive that is deformed by applying heat may be used.
그리고, 제1접착층(12)과 제2접착층(31)의 두께는 다수의 미세 조각들 사이의 틈새(20a)를 충분히 채울 수 있도록 비정질 리본의 두께 대비 50% 이상의 두께를 갖는 것이 바람직하다. In addition, the thicknesses of the first adhesive layer 12 and the second adhesive layer 31 preferably have a thickness of 50% or more relative to the thickness of the amorphous ribbon so as to sufficiently fill the gap 20a between the plurality of fine pieces.
또한, 제1접착층(12)과 제2접착층(31)의 접착제가 틈새(20a)로 유입될 수 있도록 제1가압롤러(210)와 제2가압롤러(220) 사이의 간격 및 상부 가압부재가 하강한 상태일 때 상부 가압부재(250)와 하부 가압부재(240) 사이의 간격은 적층시트(200) 두께의 50% 이하로 형성되는 것이 바람직하다. In addition, the gap between the first pressing roller 210 and the second pressing roller 220 and the upper pressing member so that the adhesive of the first adhesive layer 12 and the second adhesive layer 31 can flow into the gap 20a. In the lowered state, an interval between the upper pressing member 250 and the lower pressing member 240 is preferably formed to be 50% or less of the thickness of the laminated sheet 200.
또한, 도 3에 도시된 다층 구조의 비정질 리본시트(21-26)를 자성시트(2)로 사용하는 경우, 보호필름(1)의 제1접착층(12)과 양면 테이프(3)의 제2접착층(31)의 일부의 접착제와, 적층된 비정질 리본시트(21-26) 사이에 삽입된 접착층 또는 양면 테이프(3a-3e)의 접착제가 틈새(20a)로 충진되어 미세 조각(20)을 분리시킨다.In addition, when the amorphous ribbon sheets 21-26 having the multilayer structure shown in FIG. 3 are used as the magnetic sheet 2, the first adhesive layer 12 of the protective film 1 and the second of the double-sided tape 3 are used. A part of the adhesive of the adhesive layer 31 and the adhesive of the adhesive layer or double-sided tape 3a-3e inserted between the laminated amorphous ribbon sheets 21-26 are filled with the gap 20a to separate the fine pieces 20. Let's do it.
본 발명에서는 적층시트(100,200)의 압착과 플레이크 처리가 이루어질 수 있는 것이라면, 어떤 장치도 사용할 수 있다.In the present invention, any device can be used as long as the pressing and flake processing of the laminated sheets 100 and 200 can be performed.
상기 라미네이트 공정이 완료되면, 본 발명에 따른 자기장 차폐시트(10)는 도 13에 도시된 바와 같이, 비정질 리본시트(2a)를 사용한 박판 자성시트(2)가 다수의 미세 조각(20)으로 분리된 상태로 제1접착층(12)과 제2접착층(31)이 각각 부분적으로 미세 조각(20) 사이의 틈새(20a)를 충진하여 비정질 리본시트(2a)의 산화 및 유동을 방지하는 구조를 갖게 된다.When the lamination process is completed, the magnetic field shielding sheet 10 according to the present invention, as shown in FIG. 13, the thin magnetic sheet 2 using the amorphous ribbon sheet 2a is separated into a plurality of fine pieces 20. The first adhesive layer 12 and the second adhesive layer 31 partially fill the gaps 20a between the fine pieces 20 in a closed state to prevent oxidation and flow of the amorphous ribbon sheet 2a. do.
끝으로, 상기 라미네이트가 이루어진 자기장 차폐시트(10)는 전자기기에 사용되는 장소와 용도에 필요한 크기와 형상으로 스탬핑 가공되어 제품화가 이루어진다(S16).Finally, the magnetic field shielding sheet 10 made of the laminate is stamped into the size and shape necessary for the place and use for the electronic device is made into a commercialization (S16).
본 발명에서는 도 3과 같이 박판 자성시트(2)로서 6장의 비정질 리본시트(21-26)를 적층하는 경우, 라미네이팅이 이루어지기 전에 보호 필름(1) 및 릴리즈 필름(4)을 포함하여 212㎛의 두께를 가지며, 라미네이팅이 이루어지면 200㎛로 슬림화가 이루어진다.In the present invention, when laminating six amorphous ribbon sheets 21-26 as the thin magnetic sheet 2 as shown in FIG. 3, 212 μm including the protective film 1 and the release film 4 before lamination is performed. It has a thickness of, and when laminating is made slimmer to 200㎛.
상기 실시예에서는 1개의 보호 필름(1)을 자성시트(2)의 일측에 부착하여 플레이크 및 라미네이트 처리하는 것을 예시하였으나, 플레이크 처리 공정을 거치면 보호 필름(1)의 손상이 발생할 수 있다. 따라서, 바람직하게는 보호 필름(1)의 상부에 보호 필름(1)을 보호하기 위한 다른 보호 필름을 부착하여 처리공정을 진행한 후 처리가 완료된 후 표면의 보호 필름을 박리하여 제거하는 것이 좋다.In the above embodiment, one protective film 1 is attached to one side of the magnetic sheet 2 to flake and laminate treatment. However, damage to the protective film 1 may occur when the flake processing is performed. Therefore, preferably, another protective film for protecting the protective film 1 is attached to the upper portion of the protective film 1 to proceed with the treatment process, and after the treatment is completed, the surface protective film may be peeled off and removed.
(습도 테스트)(Humidity test)
상기에서 얻어진 본 발명에 따른 자기장 차폐시트(10)와 플레이크 처리후 라미네이트 공정을 거치지 않은 적층시트(200)에 대하여 온도 85℃, 습도 85%에서 120시간 습도 테스트를 진행하였다.The magnetic field shielding sheet 10 and the laminated sheet 200 which were not subjected to the lamination process after the flake treatment according to the present invention obtained above were subjected to a humidity test at a temperature of 85 ° C. and a humidity of 85% for 120 hours.
그 결과, 플레이크 처리만 된 적층시트(200)의 경우 도 14a에 도시된 바와 같이, 비정질 리본이 다수의 미세 조각으로 분리된 상태일 때 조각들 사이의 틈새로 수분이 침투하여 비정질 리본이 산화되어 외관이 변화된 것을 알 수 있으며, 라미네이트 공정을 실시한 본 발명에 따른 자기장 차폐시트(10)는 도 14b와 같이 외관이 변화되지 않는 것을 알 수 있다. As a result, in the case of the flake-only laminated sheet 200 as shown in FIG. 14A, when the amorphous ribbon is separated into a plurality of fine pieces, moisture penetrates into the gaps between the pieces to oxidize the amorphous ribbon. It can be seen that the appearance has been changed, the magnetic shielding sheet 10 according to the present invention subjected to the lamination process can be seen that the appearance does not change as shown in Figure 14b.
한편 본 발명에 따른 자기장 차폐시트는 도 15a 및 도 15b에 도시된 이종 재료를 사용하여 구성될 수 있다.Meanwhile, the magnetic shielding sheet according to the present invention may be constructed using the heterogeneous materials shown in FIGS. 15A and 15B.
도 15a에 도시된 바와 같이, 하이브리드형 자기장 차폐시트(35)는 고투자율의 제1자성시트(35a)와 상기 제1자성시트(35a)보다 투자율이 낮은 저 투자율의 제2자성시트(35b) 사이에 접착층(35c)을 삽입하여 조합한 하이브리드 형태로 구성할 수 있다. 접착층(35c)은 무기재 타입의 접착층 또는 기재를 갖는 양면 테이프로 구성될 수 있다.As shown in FIG. 15A, the hybrid magnetic field shielding sheet 35 has a high magnetic permeability of the first magnetic sheet 35a and a low magnetic permeability second magnetic sheet 35b having a lower magnetic permeability than the first magnetic sheet 35a. It can be configured in a hybrid form by inserting the adhesive layer 35c in between. The adhesive layer 35c may be composed of a double-sided tape having an inorganic material adhesive layer or a base material.
상기 제1자성시트(35a)로는 상기한 도 1 내지 도 3에 도시된 제1 및 제2 실시예와 같이, 비정질 합금 또는 나노결정립 합금으로 이루어진 비정질 리본시트를 플레이크 처리하여 박판 자성시트(2)로 사용한 차폐시트(10-10b)를 적용할 수 있다.As the first magnetic sheet 35a, a thin magnetic sheet 2 is formed by flake treating an amorphous ribbon sheet made of an amorphous alloy or a nanocrystalline alloy as in the first and second embodiments shown in FIGS. The shielding sheet (10-10b) used as can be applied.
제2자성시트(35b)는 비정질 합금 분말, 연자성체 분말, 센더스트와 같은 고투자율의 자성분말과 수지로 이루어진 폴리머 시트를 사용할 수 있다. The second magnetic sheet 35b may be a polymer sheet made of magnetic powder and resin having high magnetic permeability such as amorphous alloy powder, soft magnetic powder, and sendust.
이 경우, 비정질 합금 분말은 예를 들어, Fe-Si-B, Fe-Si-B-Cu-Nb, Fe-Zr-B 및 Co-Fe-Si-B로 이루어진 군에서 선택되는 조성을 갖고 비정질인 합금을 1종 이상 포함하는 비정질 합금 분말을 사용하는 것이 바람직하다.In this case, the amorphous alloy powder has a composition selected from the group consisting of, for example, Fe-Si-B, Fe-Si-B-Cu-Nb, Fe-Zr-B, and Co-Fe-Si-B and is amorphous. It is preferable to use an amorphous alloy powder containing at least one alloy.
또한, 휴대 단말기에 NFC와 무선 충전 기능을 동시에 채용하는 경우, 하이브리드형 자기장 차폐시트(35)는 접착층(35c)에 의해 접착된 제1 및 제2 자성시트(35a,35b)로 구성된다. 이 경우 제1자성시트(35a)는 비정질 리본시트를 이용한 제1 및 제2 실시예의 자기장 차폐시트(10-10b)를 적용하고, 제2자성시트(35b)로서 주파수 의존도가 낮은 페라이트 시트를 적용하여 제1 및 제2 자성시트(35a,35b)를 라미네이팅 적층하여 사용함에 의해, NFC용 자기장 차폐에는 페라이트 시트를 사용한 제2자성시트(35b)를 이용하고 무선 충전용으로는 비정질 리본시트를 사용한 제1자성시트(35a)를 이용하여 최적화하는 것도 가능하다. In addition, when the NFC and the wireless charging function is simultaneously employed in the portable terminal, the hybrid magnetic field shielding sheet 35 is composed of the first and second magnetic sheets 35a and 35b bonded by the adhesive layer 35c. In this case, the first magnetic sheet 35a applies the magnetic shielding sheet 10-10b of the first and second embodiments using an amorphous ribbon sheet, and applies a ferrite sheet with low frequency dependency as the second magnetic sheet 35b. By laminating and using the first and second magnetic sheets 35a and 35b, a second magnetic sheet 35b using a ferrite sheet is used for shielding NFC magnetic fields, and an amorphous ribbon sheet is used for wireless charging. It is also possible to optimize using the first magnetic sheet 35a.
이 경우, 상기 제2자성시트(35b)로 이용되는 페라이트 시트는 다수의 조각으로 분할된 분할 페라이트로 이루어지고, 각 분할 페라이트의 상/하부와 측면은 접착층과 같은 절연체로 둘러싸여 있는 것이 바람직하다.In this case, the ferrite sheet used as the second magnetic sheet 35b is made of divided ferrite divided into a plurality of pieces, and the upper / lower and side surfaces of each divided ferrite are preferably surrounded by an insulator such as an adhesive layer.
더욱이, 휴대 단말기에 NFC와 무선 충전 기능을 동시에 채용하는 경우, 하이브리드형 자기장 차폐시트(35)는 도 15b에 도시된 바와 같이, 제1자성시트(35a)로서 중앙부에 일정 면적의 비정질 리본시트를 이용한 차폐시트(10-10b)를 사용하고, 상기 제1자성시트(35a)의 외부에 제1자성시트(35a)를 전체적으로 둘러싸는 환형의 제2자성시트(35b)를 페라이트 시트로 조합하는 것도 가능하다. 즉, 제1자성시트(35a)(즉, 비정질 리본시트)에 비하여 상대적으로 투자율이 작은 제2자성시트(35b)(즉, 페라이트 시트)를 루프 형태로 형성하여 제1자성시트(35a)(비정질 리본시트)의 외곽에 배치한다. Furthermore, when the NFC and the wireless charging function are simultaneously employed in the portable terminal, the hybrid magnetic field shielding sheet 35 has an amorphous ribbon sheet having a predetermined area in the center as the first magnetic sheet 35a, as shown in FIG. 15B. It is also possible to use the shielding sheet 10-10b used, and combine the annular second magnetic sheet 35b surrounding the first magnetic sheet 35a as a whole with the ferrite sheet outside the first magnetic sheet 35a. It is possible. That is, the second magnetic sheet 35b (ie, ferrite sheet) having a relatively low permeability relative to the first magnetic sheet 35a (ie, the amorphous ribbon sheet) is formed in a loop shape to form the first magnetic sheet 35a ( (Amorphous ribbon sheet).
한편, 도 16에는 본 발명의 제4실시예에 따른 자기장 및 전자파 차폐용 복합시트가 도시되어 있다. On the other hand, Figure 16 shows a magnetic sheet and electromagnetic shielding composite sheet according to a fourth embodiment of the present invention.
제4실시예의 자기장 및 전자파 차폐용 복합시트(10d)는 제1실시예에 따른 자기장 차폐시트(10)의 보호필름(1)의 상부면 또는 양면 테이프(3)의 하부면에 전자파 차폐 및 방열 기능을 구비하도록 도전율 및 열전도도가 우수한 Cu 또는 Al 포일(foil)로 이루어진 전도체 시트(5)를 양면 테이프 또는 접착제를 이용하여 접착시킨 구조를 갖는다. 도 16에는 전도체 시트(5)가 자기장 차폐시트(10)의 보호필름(1) 상부에 형성된 것을 나타낸 것이다.The magnetic sheet and the electromagnetic shielding composite sheet 10d of the fourth embodiment are electromagnetic shielding and heat radiation on the upper surface of the protective film 1 or the lower surface of the double-sided tape 3 of the magnetic shielding sheet 10 according to the first embodiment. In order to have a function, the conductive sheet 5 made of Cu or Al foil having excellent conductivity and thermal conductivity is bonded to each other using a double-sided tape or an adhesive. FIG. 16 shows that the conductor sheet 5 is formed on the protective film 1 of the magnetic field shielding sheet 10.
상기 접착제는 열전도 기능을 갖는 아크릴(Acryl)계 접착제를 사용하는 것이 바람직하다. 아크릴계 접착제는 상온 경화 가능한 접착제이다. As the adhesive, it is preferable to use an acrylic adhesive having a thermal conductivity function. The acrylic adhesive is an adhesive capable of room temperature curing.
상기 접착제는 접착제 전체 volume%에 대하여 Ag와 Ni 분말이 10~30 volume% 함유될 수 있다. Ag와 Ni 분말은 전도성 금속으로 접착층에도 열전도 기능을 부여하여 방열 효과를 향상시킨다. The adhesive may contain 10 to 30 volume% of Ag and Ni powders based on the total volume% of the adhesive. Ag and Ni powder are conductive metals, which provide thermal conductivity to the adhesive layer, thereby improving heat dissipation.
Ag와 Ni 분말은 합이 10volume% 미만으로 함유되면 열전도 기능을 발휘하기 어렵고, 30 volume%를 초과하면 접착제의 접착성이 저하된다. Ag and Ni powders are difficult to exert a heat conduction function when the sum is less than 10 vol%, and when the volume exceeds 30 vol%, the adhesiveness of the adhesive is lowered.
이외에도 접착제는 부착력을 높이기 위한 바인더, 첨가제, 경화제를 더 포함한다. 바인더는 에폭시계를 사용할 수 있으며, 첨가제는 희석제, 분산제를 포함할 수 있다. In addition, the adhesive further includes a binder, an additive, and a curing agent to increase adhesion. The binder may be epoxy, and the additive may include a diluent and a dispersant.
자기장 차폐시트(10)에 부착되는 전도체 시트(5)는 5 내지 100㎛, 바람직하게는 10 내지 20㎛ 두께로 이루어지는 것이 적합하다.(구리 방열층의 두께는 10㎛ 이하이다.)The conductor sheet 5 attached to the magnetic field shielding sheet 10 is suitably made of 5 to 100 µm, preferably 10 to 20 µm thick. (The thickness of the copper heat dissipation layer is 10 µm or less.)
제4실시예의 자기장 및 전자파 차폐용 복합시트(10d)는 전도체 시트(5)가 양면 테이프(3)에 부착되고 전도체 시트(5)가 부착되지 않은 반대면, 즉, 보호필름(1)의 상부에 양면 테이프(본딩 시트)를 매개로 NFC 안테나(6) 또는 NFC 및 무선 충전용 듀얼 안테나(40)가 가접되고, 그 양측에 커버레이를 부착한 후 핫 프레스 공정 등의 추가 공정이 더 수행되는 것이 바람직하다.The magnetic sheet and electromagnetic shielding composite sheet 10d of the fourth embodiment has the opposite side where the conductor sheet 5 is attached to the double-sided tape 3 and the conductor sheet 5 is not attached, that is, the upper portion of the protective film 1. NFC antenna 6 or dual antenna 40 for NFC and wireless charging are welded to each other through a double-sided tape (bonding sheet), and additional processes such as a hot press process are further performed after attaching coverlays to both sides thereof. It is preferable.
또한, 상기 포일 형태의 전도체 시트(5) 대신에 Cu, Ni, Ag, Al, Au, Sn, Zn, Mn, Mg, Cr, Tw, Ti 또는 이들 금속의 조합의 박막 금속층을 스퍼터링, 진공증착(vacuum evaporation), 화학기상증착(chemical vapor deposition), 전기도금(electroplating) 중 어느 하나의 방법으로 자기장 차폐시트(10)의 보호필름(1)의 상부면 또는 양면 테이프(3)의 하부면에 형성될 수 있다. In addition, the thin film metal layer of Cu, Ni, Ag, Al, Au, Sn, Zn, Mn, Mg, Cr, Tw, Ti or a combination of these metals may be sputtered or vacuum deposited instead of the foil-shaped conductor sheet 5 ( Formed on the upper surface of the protective film 1 of the magnetic shielding sheet 10 or the lower surface of the double-sided tape 3 by any one of vacuum evaporation, chemical vapor deposition, and electroplating. Can be.
상기 금속층이 Cu로 이루어지는 경우, Cu 금속층의 결합력을 높이기 위해 Ti-Cu로 이루어진 씨드 레이어(seed layer)를 스퍼터링(Spputtering) 방법에 의해 증착하는 공정을 더 포함할 수 있다. Cu 금속층의 두께는 10㎛ 이상, Ti-Cu로 이루어진 씨드 레이어의 두께는 0.5㎛로 설정될 수 있다.When the metal layer is made of Cu, the method may further include depositing a seed layer made of Ti—Cu by a sputtering method in order to increase the bonding force of the Cu metal layer. The thickness of the Cu metal layer may be set to 10 μm or more, and the thickness of the seed layer made of Ti—Cu may be set to 0.5 μm.
상기 자기장과 전자파 차폐 및 방열 기능을 갖는 복합시트(10d)는 예를 들어, 전원 노이즈와 같은 전자파가 심하게 발생되는 경우 NFC 안테나를 배터리 팩에 장착시 주파수 변동폭이 증가하는 것을 방지하여 NFC 안테나의 불량률을 감소시키며, 휴대 단말기기 본체 또는 배터리의 발열시에 열 분산에 의한 방열 기능을 갖게 된다.The composite sheet 10d having the magnetic field and the electromagnetic shielding and heat dissipation function, for example, prevents an increase in the frequency fluctuation when the NFC antenna is mounted in the battery pack when electromagnetic waves such as power supply noise are severely generated. It is reduced, and has a heat dissipation function by heat dissipation when the portable terminal device body or the battery generates heat.
이 경우, 제4실시예의 복합시트(10d)는 전도체 시트(5)가 배터리를 향하여 노출되도록 배터리 커버의 배면에 양면 테이프를 통하여 부착되어 사용된다.In this case, the composite sheet 10d of the fourth embodiment is used by being attached through the double-sided tape to the back of the battery cover so that the conductor sheet 5 is exposed toward the battery.
한편, 본 발명의 제1 내지 제3 실시예에 따른 자기장 차폐시트(10-10c)는 박판 자성시트(2)로서 단일 또는 다수의 리본시트(21-26)를 적층하여 플레이크 처리함에 따라 미세 조각(20) 사이에 형성된 틈새(20a)는 라미네이팅 처리시에 압착력의 제어에 따라, 도 10에 도시된 바와 같이, 틈새(20a)를 유지하여 공기를 트랩할 수 있는 에어 트랩 구조를 구비할 수 있다.On the other hand, the magnetic field shielding sheet 10-10c according to the first to third embodiments of the present invention is a thin magnetic sheet 2 as a single or multiple ribbon sheets (21-26) by stacking and flake finely The gap 20a formed between the 20 may have an air trap structure capable of trapping air by holding the gap 20a as shown in FIG. 10 under the control of the pressing force during the laminating process. .
즉, 상기 박판 자성시트(2)는 양측면에 보호필름(1)과 양면 테이프(3)가 부착되고, 적층된 다수의 리본시트(21-26) 사이에는 접착층 또는 양면 테이프(3a-3e)가 삽입되어 있기 때문에 미세 조각(20) 사이에 형성된 틈새(20a)는 공기를 트랩핑할 수 있는 폐쇄된 미세 기공을 이루게 된다.That is, the thin magnetic sheet 2 has a protective film 1 and a double-sided tape 3 is attached to both sides, the adhesive layer or double-sided tape (3a-3e) between a plurality of laminated ribbon sheets (21-26) Since the gaps 20a formed between the fine pieces 20 are inserted, they form closed micropores capable of trapping air.
상기 폐쇄된 미세 기공에 트랩된 공기는 스스로 빠져나가지 못하여, 즉 대류가 억제되어 발열원으로부터 전도된 열을 포집하여 열전달을 억제하는 역할을 한다. 이 경우, 미세 기공에 트랩된 공기는 0.025W/mK의 낮은 열전도율을 갖는 것으로 알려져 있어, 상기 자기장 차폐시트(10-10b)는 시트의 평면에 수직인 Z 방향에 대하여 우수한 단열 작용을 갖는 단열 시트로서 역할을 할 수 있다. The air trapped in the closed micropores does not escape by itself, that is, convection is suppressed to capture heat conducted from the heat generating source serves to suppress heat transfer. In this case, the air trapped in the micropores is known to have a low thermal conductivity of 0.025W / mK, so that the magnetic field shielding sheet (10-10b) has an excellent heat insulating action with respect to the Z direction perpendicular to the plane of the sheet Can serve as
또한, 제4실시예에 따른 자기장 및 전자파 차폐용 복합시트(10d)는 열전도도가 우수한 Cu 또는 Al 포일(foil)로 이루어진 전도체 시트(5)가 전도된 열을 빠르게 X-Y방향으로 확산시키는 열확산 시트(Heat Spread Sheet)로서 역할을 할 수 있다.In addition, the magnetic sheet and the electromagnetic shielding composite sheet 10d according to the fourth embodiment is a thermal diffusion sheet for rapidly diffusing heat conducted by the conductor sheet 5 made of Cu or Al foil having excellent thermal conductivity in the XY direction. It can act as a (Heat Spread Sheet).
일반적으로, 휴대 단말기기 등과 같이 닫혀진 공간 내에 다수의 신호처리장치용 집적회로(IC)와 같이 발열체를 구비하는 경우, 열확산 시트에 의해 가능한 빠르게 발열체의 온도를 확산시켜서 국부적으로 온도가 상승하는 것을 막고, 단열시트에 의해 열이 전면의 디스플레이 또는 배면의 커버를 통하여 사용자에게 전달되는 것을 차단 또는 지연시키는 것이 필요하다.In general, when a heating element is provided in a closed space, such as a portable terminal device, such as a plurality of integrated circuits (ICs) for signal processing apparatus, the thermal diffusion sheet diffuses the temperature of the heating element as quickly as possible to prevent the temperature from rising locally. It is necessary to block or delay the transfer of heat to the user through the front display or the back cover by the insulation sheet.
예를 들어, 무선 충전 수신장치에는 2차 코일, 즉 무선 충전용 안테나 코일(43)로부터 수신된 고주파 무선 전력신호를 DC로 정류한 후, 배터리에 저장하는 데 필요한 전압레벨의 컨버팅을 위해 DC-DC 컨버터나 무선 전력신호의 수신효율을 높이기 위한 제어에 사용되는 신호처리용 프로세서를 구비할 수 있다.For example, the wireless charging receiver rectifies the high-frequency wireless power signal received from the secondary coil, that is, the wireless charging antenna coil 43 into DC, and then converts the voltage to DC- for converting the voltage level required for storing in the battery. It may be provided with a signal processing processor used for the control to increase the reception efficiency of the DC converter or the wireless power signal.
따라서, 제4실시예에 따른 자기장 및 전자파 차폐용 복합시트(10d)는 예를 들어, 무선 충전용 자기장 차폐시트로 사용될 때, 이를 연장하여 연장된 부분에 상기한 신호처리용 능동소자가 실장되면, 전도체 시트(5)가 상기한 능동소자로부터 발생되는 열을 수평방향으로 확산시키고 자기장 차폐시트(10)가 Z방향의 열전달을 차단 또는 지연, 즉 단열시켜서 배면커버를 통하여 이를 쥐고 있는 사용자에게 전달되는 열을 낮출 수 있다.Therefore, when the magnetic field and electromagnetic wave shielding composite sheet 10d according to the fourth embodiment is used as a magnetic shielding sheet for wireless charging, for example, when the active element for signal processing is mounted on an extended portion thereof, The conductor sheet 5 diffuses heat generated from the active element in the horizontal direction, and the magnetic shielding sheet 10 blocks or delays heat transfer in the Z direction, that is, insulates it and delivers it to the user who grips it through the rear cover. Can lower the heat.
본 발명의 복합시트는 일측면에 전자파 차폐 및 방열 기능을 갖는 전도층을 구비함과 동시에 차폐시트 내에 구비된 다수의 미세 기공이 열을 포집할 수 있는 열 차단층으로 역할을 하여, 자기장, 전자파 차폐와 방열 및 단열 기능을 모두 수행할 수 있게 된다.The composite sheet of the present invention has a conductive layer having electromagnetic shielding and heat dissipation functions on one side, and at the same time serves as a heat shielding layer capable of collecting heat by a plurality of micropores provided in the shielding sheet, magnetic fields, electromagnetic waves Both shielding, heat dissipation and thermal insulation can be performed.
한편 상기한 본 발명에 따른 자기장 차폐시트가 NFC 안테나에 적용된 NFC 안테나 모듈과 휴대 단말기기에 부착되는 구조를 도 17 및 도 18을 참고하여 이하에 설명한다.Meanwhile, a structure in which the magnetic shielding sheet according to the present invention is attached to the NFC antenna module and the portable terminal applied to the NFC antenna will be described below with reference to FIGS. 17 and 18.
도 17은 본 발명에 따른 자기장 차폐시트와 NFC 안테나 사이의 결합관계를 나타내는 분해 사시도, 도 18은 도 17의 NFC 안테나 모듈이 배터리 커버에 조립되어 휴대 단말기기에 결합되는 것을 나타내는 분해 사시도이다.17 is an exploded perspective view illustrating a coupling relationship between a magnetic shielding sheet and an NFC antenna according to the present invention, and FIG. 18 is an exploded perspective view illustrating that the NFC antenna module of FIG. 17 is assembled to a battery cover and coupled to a portable terminal.
도 17을 참고하면, 본 발명에 따른 자기장 차폐시트가 NFC 안테나에 적용될 때, 자기장 차폐시트(10)의 보호필름(1) 상부에는 양면 테이프(30b)를 사용하여 NFC 안테나(6)가 부착되며, 자기장 차폐시트(10)의 하부는 릴리즈 필름(4)을 제거하고 노출된 양면 테이프(3)의 제3접착층(33)에 마감재를 부착시킨다.Referring to FIG. 17, when the magnetic shielding sheet according to the present invention is applied to an NFC antenna, the NFC antenna 6 is attached to the upper portion of the protective film 1 of the magnetic shielding sheet 10 by using a double-sided tape 30b. The lower part of the magnetic field shielding sheet 10 removes the release film 4 and attaches the finishing material to the third adhesive layer 33 of the exposed double-sided tape 3.
또한, 상기 안테나 조립방법 대신에 자기장 차폐시트(10)의 릴리즈 필름(4)을 제거하고 양면 테이프(3)에 NFC 안테나(6)를 부착하는 것도 가능하다.In addition, instead of the antenna assembly method, it is also possible to remove the release film 4 of the magnetic shielding sheet 10 and attach the NFC antenna 6 to the double-sided tape 3.
상기한 NFC 안테나(6)와 자기장 차폐시트(10)가 조립된 NFC 안테나 모듈(103)은 도 18과 같이 NFC 안테나(6)의 표면에 양면 테이프(30a)를 사용하여 휴대 단말기기(101)의 배터리 커버(15)에 부착시킨다. 그 후, 배터리 커버(15)를 휴대 단말기기(101)에 결합시키면 자기장 차폐시트(10)는 배터리(7)를 커버하는 형태로 사용된다. NFC antenna module 103 assembled with the NFC antenna 6 and the magnetic shielding sheet 10 is a portable terminal device 101 using a double-sided tape (30a) on the surface of the NFC antenna 6 as shown in FIG. To the battery cover 15. Thereafter, when the battery cover 15 is coupled to the portable terminal device 101, the magnetic field shielding sheet 10 is used to cover the battery 7.
상기한 자기장 차폐시트(10)의 조립 위치는 배터리 외부에 배치되는 것 이외에 주지된 다른 방법으로 배치되는 것도 물론 가능하다. The magnetic field shielding sheet 10 may be assembled by other well-known methods other than being disposed outside the battery.
또한, 휴대 단말기기(101)가 배터리 커버 대신에 배면 커버를 본체에 조립하여 사용하는 경우, 상기 NFC 안테나 모듈(103)은 배면커버의 내측에 배치될 수 있다.In addition, when the portable terminal device 101 uses the rear cover instead of the battery cover in the main body, the NFC antenna module 103 may be disposed inside the rear cover.
더욱이, 상기한 NFC 안테나 모듈(103)은 NFC 안테나(6)가 제1실시예의 자기장 차폐시트(10) 이외에 제2 내지 제4 실시예의 자기장 차폐시트(10a-10d)와 조립될 수 있다.In addition, the NFC antenna module 103 may be assembled with the NFC antenna 6 and the magnetic shielding sheet 10a-10d of the second to fourth embodiments in addition to the magnetic shielding sheet 10 of the first embodiment.
도 17을 참고하면, 상기한 NFC 안테나(6)는 주지된 어떤 구조를 갖는 것도 사용 가능하다. NFC 안테나(6)는 예를 들어, 폴리이미드(PI)와 같은 합성수지로 이루어진 연성회로기판(FPCB)(6b)에 나선형, 사각형, 원형, 타원형 중 어느 하나의 형상으로 이루어진 NFC 안테나 코일(6a)로 구성될 수도 있다. NFC 안테나 코일(6a)은 외부 자기장 변화에 의하여 유도 전류가 흐르도록 연성회로기판(FPCB)(6b)에 부착된 동박과 같은 전도체를 루프 형태로 패턴닝하거나 또는 전도성 잉크를 사용하여 연성회로기판(FPCB)(6b)에 루프 형상의 금속 패턴을 형성할 수 있다.Referring to FIG. 17, the NFC antenna 6 may have any well-known structure. NFC antenna 6 is, for example, NFC antenna coil 6a made of any one of a spiral, square, round, oval shape on a flexible printed circuit board (FPCB) 6b made of a synthetic resin such as polyimide (PI) It may be configured as. The NFC antenna coil 6a patterns a conductor such as a copper foil attached to the flexible printed circuit board (FPCB) 6b in the form of a loop so that an induced current flows due to an external magnetic field change, or uses a conductive ink to form a flexible printed circuit board ( Loop-shaped metal patterns can be formed in the FPCB) 6b.
상기 NFC 안테나(6)는 NFC 안테나 코일(6a)의 일측에 연장 형성된 연성회로기판(FPCB)(6b)의 돌출부에 각각 한쌍의 터미널 단자(6c,6d)가 배치되어 있다.The NFC antenna 6 has a pair of terminal terminals 6c and 6d respectively disposed at the protrusions of the flexible printed circuit boards (FPCBs) 6b formed on one side of the NFC antenna coil 6a.
상기 NFC 안테나 코일(6a)의 외측 라인은 제1터미널 단자(6c)에 직접 연결되고, 내측라인은 도전성 스루홀(6e,6f)을 통하여 기판(6b)의 배면에 형성된 단자 연결용 패턴(도시되지 않음)을 통하여 제2터미널 단자(6d)에 연결된다.The outer line of the NFC antenna coil 6a is directly connected to the first terminal terminal 6c, and the inner line is a terminal connection pattern formed on the rear surface of the substrate 6b through conductive through holes 6e and 6f (not shown). Is connected to the second terminal terminal 6d.
또한, 상기 NFC 안테나(6)는 양면 테이프(30b)를 사용하여 자기장 차폐시트(10)에 부착되는데, NFC 안테나(6)와 양면 테이프(30b) 대신에 절연층 역할을 하는 하나의 접착시트, 예를 들어, 양면 테이프에 직접 NFC 안테나 코일(6a)을 전사방식으로 형성함에 의해 박막 구조로 조립될 수 있다. 그 결과, NFC 안테나 코일(6a)이 형성되는 연성회로기판(FPCB)(6b)을 제거할 수 있어 박막화를 도모할 수 있다.In addition, the NFC antenna 6 is attached to the magnetic shielding sheet 10 using the double-sided tape (30b), one adhesive sheet that serves as an insulating layer instead of the NFC antenna 6 and the double-sided tape (30b), For example, the NFC antenna coil 6a may be directly formed on the double-sided tape to be assembled into a thin film structure. As a result, the flexible printed circuit board (FPCB) 6b on which the NFC antenna coil 6a is formed can be removed, and the thickness can be reduced.
상기와 같이, NFC 안테나(6)와 자기장 차폐시트(10)의 조립체인 NFC 안테나 모듈(103)은 휴대 단말기기(101)의 배터리 커버(15)에 구비되는 경우 휴대 단말기기에 NFC 기능을 비접촉(무선) 방식으로 구현할 때 발생되는 교류 자기장에 의해 휴대 단말기기(101)에 미치는 영향을 차단하며 NFC 기능을 수행하는 데 필요한 전자파를 흡수할 수 있게 된다.As described above, when the NFC antenna module 103, which is an assembly of the NFC antenna 6 and the magnetic shielding sheet 10, is provided in the battery cover 15 of the portable terminal device 101, the NFC function is not contacted to the portable terminal device ( It is possible to block the influence on the portable terminal device 101 by the alternating magnetic field generated when implemented in a wireless) manner and absorb the electromagnetic waves required to perform the NFC function.
즉, 본 발명의 자기장 차폐시트(10)는 플레이크 처리되어 다수의 미세 조각(20)으로 분리된 다층의 자성시트(2)를 구비함에 의해, Q값이 상승하여 고주파 신호 전송 및 전력전송 효율이 증가하며, 동시에 플레이크 처리에 의해 시트의 표면적을 줄여줌에 따라 교류 자기장에 의해 생성되는 와전류(Eddy Current)에 기인한 배터리(2차 전지)(7)의 발열 문제를 차단할 수 있다. That is, the magnetic field shielding sheet 10 of the present invention has a multi-layered magnetic sheet 2, which is flake-processed and separated into a plurality of fine pieces 20, whereby the Q value is increased to increase the high frequency signal transmission and power transmission efficiency. As a result, the surface area of the sheet is reduced by the flake treatment, thereby preventing the heat generation problem of the battery (secondary cell) 7 due to the eddy current generated by the alternating magnetic field.
한편, 도 19는 NFC(Near field communications) 안테나와 무선 충전용 안테나가 FPCB를 사용하여 일체로 형성된 듀얼 안테나 구조를 보여주는 평면도이다.19 is a plan view illustrating a dual antenna structure in which a near field communications (NFC) antenna and a wireless charging antenna are integrally formed using an FPCB.
NFC와 무선 충전 기능을 동시에 수행하기 위한 듀얼 안테나(40)는 양면 기판 구조를 갖는 FPCB를 사용하여 구현되는 것이 바람직하다. 그러나, 본 발명의 듀얼 안테나는 이에 제한되지 않고 다른 형태의 구조를 가질 수 있다. Dual antenna 40 for simultaneously performing the NFC and wireless charging function is preferably implemented using an FPCB having a double-sided substrate structure. However, the dual antenna of the present invention is not limited thereto and may have a structure of another type.
도 19를 참고하면, 듀얼 안테나(40)는 예를 들어, FPCB를 사용하는 기판(49) 위에 NFC 안테나 코일(41)과 무선 충전용 2차 코일(43)이 함께 형성되어 있다. 이 경우, 상기 기판(49)은 예를 들어, 양면 접착 테이프를 사용할 수 있으며, NFC 안테나 코일(41)과 무선 충전용 2차 코일(43)은 전사방식을 사용하여 접착기판에 형성될 수 있다.Referring to FIG. 19, the dual antenna 40 includes, for example, an NFC antenna coil 41 and a wireless charging secondary coil 43 on a substrate 49 using an FPCB. In this case, for example, the substrate 49 may use a double-sided adhesive tape, and the NFC antenna coil 41 and the wireless charging secondary coil 43 may be formed on the adhesive substrate using a transfer method. .
NFC 안테나 코일(41)은 무선 충전용 2차 코일(43) 보다 주파수 대역이 높기 때문에 기판(49)의 외곽을 따라 미세한 선폭의 직사각 형상으로 도전성 패턴으로 형성되어 있고, 무선 충전용 2차 코일(43)은 전력 전송이 요구되며 NFC 보다 낮은 주파수 대역을 사용하므로 NFC 안테나 코일(41)의 내측에 NFC 안테나 코일(41)의 선폭보다 넓은 선폭으로 이루어지며 대략 타원 형상의 도전성 패턴으로 형성되어 있다. 상기 NFC 안테나 코일(41) 및 무선 충전용 2차 코일(43)은 기판(49)에 부착된 동박을 에칭에 의해 패터닝하는 방법으로 형성된다. 상기 NFC 안테나 코일(41) 및 무선 충전용 2차 코일(43)은 NFC용 안테나 및 무선 충전용 안테나 역할을 하도록 인덕턴스 값이 설정된다. Since the NFC antenna coil 41 has a higher frequency band than the secondary coil 43 for wireless charging, the NFC antenna coil 41 is formed in a conductive pattern in a rectangular shape having a fine line width along the periphery of the substrate 49, and the secondary coil for wireless charging ( 43) is required to transmit power and uses a lower frequency band than NFC, so that the line width is wider than the line width of the NFC antenna coil 41 inside the NFC antenna coil 41, and is formed in a substantially elliptic conductive pattern. The NFC antenna coil 41 and the secondary charging coil 43 for wireless charging are formed by patterning the copper foil attached to the substrate 49 by etching. Inductance values of the NFC antenna coil 41 and the wireless charging secondary coil 43 serve as the NFC antenna and the wireless charging antenna.
이 경우, 무선 충전용 2차 코일(43)은 무선으로 전력을 수신하는 것이므로 일반 코일을 평면 인덕터 형태로 권선하여 기판에 부착시켜 사용하는 것도 가능하다.In this case, since the secondary coil 43 for wireless charging is to receive power wirelessly, it is also possible to use a common coil by winding it in the form of a flat inductor and attaching it to a substrate.
상기 듀얼 안테나(40)는 NFC 안테나 코일(41)과 무선 충전용 2차 코일(43)의 일측에 연장 형성된 기판(49)의 돌출부에 각각 한쌍의 터미널 단자(41a,41b)(43a,43b)가 배치되어 있다.The dual antenna 40 has a pair of terminal terminals 41a and 41b and 43a and 43b, respectively, on the protrusions of the substrate 49 formed on one side of the NFC antenna coil 41 and the wireless charging secondary coil 43. Is arranged.
상기 NFC 안테나 코일(41)의 외측 라인은 제1터미널 단자(41a)에 직접 연결되고, 내측라인은 도전성 스루홀(45a,45b)을 통하여 기판(49)의 배면에 형성된 단자 연결용 패턴(도시되지 않음)을 통하여 제2터미널 단자(41b)에 연결된다.The outer line of the NFC antenna coil 41 is directly connected to the first terminal terminal 41a, and the inner line is a terminal connection pattern formed on the rear surface of the substrate 49 through conductive through holes 45a and 45b (not shown). Is connected to the second terminal 41b).
유사하게 무선 충전용 2차 코일(43)의 외측라인은 도전성 스루홀(47a,47b)을 통하여 기판(49)의 배면에 형성된 단자 연결용 패턴(도시되지 않음)을 통하여 제3터미널 단자(43a)에 연결되고, 내측라인은 도전성 스루홀(47c,47d)을 통하여 기판(49)의 배면에 형성된 단자 연결용 패턴(도시되지 않음)을 통하여 제4터미널 단자(43b)에 연결된다.Similarly, the outer line of the secondary coil 43 for wireless charging is connected to the third terminal terminal 43a through a terminal connection pattern (not shown) formed on the back surface of the substrate 49 through the conductive through holes 47a and 47b. ), And the inner line is connected to the fourth terminal terminal 43b through a terminal connection pattern (not shown) formed on the rear surface of the substrate 49 through the conductive through holes 47c and 47d.
상기 기판(49)은 표면에 예를 들어, PSR(Photo Solder Resist)과 같은 안테나 코일 패턴을 보호하기 위한 보호막이 형성되는 것이 바람직하다.The substrate 49 may have a protective film formed on a surface thereof, for example, to protect an antenna coil pattern such as a photo solder resist (PSR).
NFC와 무선 충전 기능을 동시에 채용하는 경우, 상기한 바와 같이, 도 15a 및 도 15b의 하이브리드형 자성시트를 채용한 차폐시트를 사용할 수 있다.In the case of simultaneously employing the NFC and the wireless charging function, as described above, the shielding sheet employing the hybrid magnetic sheet of Figs. 15A and 15B can be used.
한편, 휴대 단말기기(101)에는 본체 내부에 무선 충전용 2차 코일(43)에 발생한 교류 전압을 직류로 정류하는 정류기(도시되지 않음)를 포함하며, 정류된 직류 전압은 배터리(2차 전지)(7)에 충전된다.On the other hand, the portable terminal device 101 includes a rectifier (not shown) for rectifying the AC voltage generated in the secondary coil 43 for wireless charging into a DC inside the main body, and the rectified DC voltage is a battery (secondary battery). 7).
도 19에 도시된 듀얼 안테나(40)는 자기장 차폐시트(10-10d)와 결합하여 휴대 단말기기(101)에 적용되는 경우, NFC 안테나 코일(41)과 무선 충전용 2차 코일(43)을 동시에 구비함에 따라 NFC 및 무선 충전을 함께 해결할 수 있고, NFC 및 무선 충전기능을 비접촉(무선) 방식으로 구현할 때 발생되는 교류 자기장에 의해 휴대 단말기기(101)에 미치는 영향을 차단하며 NFC 기능을 수행하는 데 필요한 전자파를 흡수할 수 있게 된다.When the dual antenna 40 illustrated in FIG. 19 is applied to the portable terminal device 101 in combination with the magnetic field shielding sheet 10-10d, the NFC antenna coil 41 and the secondary charging coil 43 for wireless charging may be used. At the same time, NFC and wireless charging can be solved together, and the NFC function blocks the effect on the mobile terminal device 101 by the alternating magnetic field generated when the NFC and wireless charging functions are implemented in a non-contact (wireless) manner. It can absorb the electromagnetic waves needed to
한편, 상기한 실시예 설명에서는 듀얼 안테나를 구성하는 NFC 안테나 코일(41)과 무선 충전용 2차 코일(43)이 기판의 일측 평면에 모두 배치되어 있는 구조를 예시하였으나, 기판의 일측면에 NFC 안테나 코일(41)이 배치되고, 타측면에 무선 충전용 2차 코일(43)이 배치되도록 구성하는 것도 가능하다.Meanwhile, in the above-described embodiment, the NFC antenna coil 41 and the wireless charging secondary coil 43 constituting the dual antenna are exemplified in a structure in which both sides of the substrate are disposed, but the NFC is formed on one side of the substrate. The antenna coil 41 is arrange | positioned, and it is also possible to comprise so that the secondary coil 43 for a wireless charging may be arrange | positioned on the other side.
도 20a 및 도 20b는 각각 본 발명에 따른 하나의 FPCB에 하나의 코일을 사용하여 NFC 및 무선 충전 겸용 일체형 안테나를 구현한 구조를 보여주는 평면도 및 등가 회로도이다. 20A and 20B are a plan view and an equivalent circuit diagram showing a structure in which an integrated antenna for NFC and wireless charging is implemented using one coil in one FPCB according to the present invention, respectively.
상기 NFC 및 무선 충전 겸용 일체형 안테나(50)는, 도 20a에 도시된 바와 같이, 사각형상의 기판(59)에 기판의 외곽을 따라 나선형으로 이루어진 하나의 코일부(51)로 구성되어 있으며, 코일부(51)에는 3개의 터미널 단자가 연결된다.The integrated antenna 50 for both NFC and wireless charging, as shown in Figure 20a, is composed of a coil unit 51 formed in a spiral along the outer periphery of the substrate on the rectangular substrate 59, the coil unit Three terminal terminals are connected to 51.
상기 코일부(51)는 예를 들어, FPCB 기판에 형성된 동박을 패터닝하여 형성될 수 있으며, 코일부(51)의 외측 라인은 제1터미널 단자(53)에 직접 연결되고, 내측라인은 도전성 스루홀과 기판(59)의 배면에 형성된 단자 연결용 패턴(도시되지 않음)을 통하여 제2터미널 단자(55)에 연결되며, 제1 및 제2 터미널 단자(53,55) 사이의 소정의 위치에 코일부(51)로부터 분기하여 인출된 리드선이 도전성 스루홀과 기판(59)의 배면에 형성된 단자 연결용 패턴(도시되지 않음)을 통하여 제3 터미널 단자(54)에 연결되어 있다.The coil unit 51 may be formed by, for example, patterning a copper foil formed on an FPCB substrate, and an outer line of the coil unit 51 is directly connected to the first terminal terminal 53, and an inner line is conductive through. It is connected to the second terminal terminal 55 through a terminal connection pattern (not shown) formed on the back of the hole and the substrate 59, and is located at a predetermined position between the first and second terminal terminals 53 and 55. A lead wire branched out from the coil part 51 is connected to the third terminal terminal 54 through a conductive connection hole and a terminal connection pattern (not shown) formed on the back surface of the substrate 59.
상기 NFC 및 무선 충전 겸용 안테나는 도 20b에 도시된 등가 회로도와 같이, 제1 터미널 단자(53)와 제2 터미널 단자(55) 사이의 전체 코일부(51)는 인턱턴스 값이 크기 때문에 상대적으로 낮은 주파수의 무선 전력통신이 이루어지는 무선 충전용 안테나 역할을 하도록 인덕턴스 값이 설정되고, 제1 터미널 단자(53)와 제3 터미널 단자(54) 사이의 제1코일부(51a) 또는 제2 터미널 단자(55)와 제3 터미널 단자(54) 사이의 제2코일부(51b)는 인턱턴스 값이 작기 때문에 상대적으로 높은 주파수의 NFC 통신이 이루어지는 NFC용 안테나 역할을 하도록 인덕턴스 값이 설정된다. The NFC and the wireless charging combined antenna are relatively similar to the equivalent circuit diagram shown in FIG. 20B, because the entire coil unit 51 between the first terminal terminal 53 and the second terminal terminal 55 has a large inductance value. An inductance value is set to serve as a wireless charging antenna in which low-frequency wireless power communication is performed, and the first coil part 51a or the second terminal terminal between the first terminal terminal 53 and the third terminal terminal 54. Since the second coil part 51b between the 55 and the third terminal terminal 54 has a small inductance value, the inductance value is set to serve as an NFC antenna for relatively high frequency NFC communication.
즉, 전체 코일부(51)의 길이는 무선 충전용 안테나에 맞는 인덕턴스 값을 갖도록 설정되고, 제3 터미널 단자(54)는 제1코일부(51a) 또는 제2코일부(51b)의 인턱턴스 값이 NFC용 안테나 역할을 하도록 제3 터미널 단자(54)의 분기 위치가 설정된다.That is, the length of the entire coil unit 51 is set to have an inductance value suitable for the wireless charging antenna, and the third terminal terminal 54 has the inductance of the first coil unit 51a or the second coil unit 51b. The branch position of the third terminal terminal 54 is set so that the value serves as an antenna for NFC.
그 결과, NFC 및 무선 충전 겸용 안테나는 제1 터미널 단자(53)와 제2 터미널 단자(55)로부터 무선 전력통신에 따른 무선 충전신호를 수신하며, 제1 터미널 단자(53)와 제3 터미널 단자(54) 또는 제2 터미널 단자(55)와 제3 터미널 단자(54)로부터 NFC용 무선 신호를 수신하여 NFC 통신이 이루어지게 된다.As a result, the NFC and the wireless dual-use antenna receives the wireless charging signal according to the wireless power communication from the first terminal terminal 53 and the second terminal terminal 55, the first terminal terminal 53 and the third terminal terminal The NFC communication is performed by receiving the NFC radio signal from the 54 or the second terminal 55 and the third terminal 54.
이하에서는 본 발명을 실시예를 통하여 보다 구체적으로 설명한다. 그러나, 아래의 실시예는 본 발명의 예시에 불과할 뿐, 본 발명의 범위가 이에 한정되는 것은 아니다.Hereinafter, the present invention will be described in more detail with reference to Examples. However, the following examples are merely examples of the present invention, and the scope of the present invention is not limited thereto.
(실시예 1-4, 비교예 1-3)(Example 1-4, Comparative Example 1-3)
(자기장 차폐시트의 전기적 특성)(Electrical characteristics of magnetic shielding sheet)
자기장 차폐시트를 사용하지 않은 경우(비교예 1), 열처리하지 않은 1장의 비정질 리본시트를 사용한 자기장 차폐시트(비교예 2), 열처리된 1장의 나노 결정립 리본시트를 사용한 자기장 차폐시트(비교예 3), 열처리된 1장의 나노 결정립 리본시트를 사용하며, 플레이크 처리한 자기장 차폐시트(실시예 1), 열처리된 2장의 나노 결정립 리본시트를 사용하며, 플레이크 처리한 자기장 차폐시트(실시예 2), 열처리된 3장의 나노 결정립 리본시트를 사용하며, 플레이크 처리한 자기장 차폐시트(실시예 3), 열처리된 4장의 나노 결정립 리본시트를 사용하며, 플레이크 처리한 자기장 차폐시트(실시예 4)를 각각 제조하였다. When a magnetic shielding sheet was not used (Comparative Example 1), a magnetic shielding sheet using one non-heat treated amorphous ribbon sheet (Comparative Example 2), and a magnetic shielding sheet using a heat treated one nanocrystalline ribbon sheet (Comparative Example 3) ), Using a heat treated one nanocrystalline ribbon sheet, flake-treated magnetic shielding sheet (Example 1), using a heat treated two nanocrystalline ribbon sheet, a flake-treated magnetic shielding sheet (Example 2), Using three heat-treated nanocrystalline ribbon sheets, a flake-treated magnetic shielding sheet (Example 3), using a heat-treated four nanocrystalline ribbon sheets, to prepare a flake-treated magnetic shielding sheet (Example 4), respectively It was.
차폐시트에 적용된 비정질 리본은 Fe73.5Cu1Nb3Si13.5B9 합금으로 이루어진 비정질 리본을 멜트 스피닝에 의한 급냉응고법(RSP)으로 25㎛ 두께로 제조한 후, 시트 형태로 컷팅하여 580℃, N2 분위기, 1시간 무자장 열처리하여 얻어진 비정질 리본 시트를, PET 기재를 사용하는 10㎛ 두께의 보호필름과 PET 기재를 사용하는 10㎛ 두께의 양면 테이프(릴리즈 필름 별도) 사이에 삽입하여 적층시트를 준비하고, 도 8의 플레이크 처리장치와 도 11의 라미네이트 장치를 사용하여 플레이크와 라미네이트 처리를 실시하였다. 2장 이상의 나노 결정립 리본시트를 적층할 때 시트 사이에 삽입된 양면 테이프는 PET 필름의 양면에 아크릴계 접착제층이 형성된 것으로 12㎛의 두께를 갖는 것을 사용하였다. The amorphous ribbon applied to the shielding sheet was prepared by forming an amorphous ribbon made of Fe 73.5 Cu 1 Nb 3 Si 13.5 B 9 alloy to a thickness of 25 μm by quenching and solidification (RSP) by melt spinning, and cutting the sheet into 580 ° C., N. 2 Amorphous ribbon sheet obtained by atmosphere-free heat treatment for 1 hour is inserted between a 10 탆 thick protective film using a PET substrate and a 10 탆 thick double-sided tape (excluding a release film) using a PET substrate, and the laminated sheet is Then, the flake and the lamination process were performed using the flake processing apparatus of FIG. 8 and the lamination apparatus of FIG. When stacking two or more nanocrystalline ribbon sheets, the double-sided tape inserted between the sheets was formed with an acrylic adhesive layer on both sides of the PET film and used to have a thickness of 12 μm.
제작된 차폐시트를 무선 충전기에 사용할 때 2차 코일에 미치는 영향을 알아보기 위해 차폐시트에 결합된 2차 코일, 즉 측정 코일로서 12.2μH의 인덕턴스와 237mΩ의 저항을 가지는 원형의 평면 코일을 사용하였다. LCR 미터에 측정 코일을 연결한 후, 차폐시트 위에 위치시키고 약 500g의 무게를 가지는 직육면체를 측정 코일 위에 올려놓아 일정한 압력을 가한 상태에서 LCR 미터의 셋팅값을 100kHz, 1V로 설정한 후 인덕턴스(Ls), 자기저항(Rs), 임피던스(Z), 코일의 품질계수(Q)를 측정하여 하기 표 1에 나타내었다.In order to investigate the effect of the fabricated shielding sheet on the secondary coil, a circular flat coil having a inductance of 12.2μH and a resistance of 237mΩ was used as the secondary coil, that is, the measurement coil, coupled to the shielding sheet. . After connecting the measurement coil to the LCR meter, place the rectangular parallelepiped weighing about 500g on the shielding coil and set the LCR meter to 100kHz and 1V under constant pressure. ), Magnetoresistance (Rs), impedance (Z), and the quality factor (Q) of the coil were measured and shown in Table 1 below.
표 1
사용된 리본 리본 수 Ls(μH) Rs(mΩ) Z(Ω) Q
비교예 1(No Sheet) 0 12.08 245 7.59 30.9
비교예 2(비 열처리 리본) 1 EA 17.91 1020 11.3 11.03
비교예 3(열처리된 리본) 1 EA 21.74 605 13.67 22.53
실시예 1(열처리 및 플레이크 처리) 1 EA 21.52 442 13.52 30.5
실시예 2(열처리 및 플레이크 처리) 2 EA 21.54 355 13.54 38
실시예 3(열처리 및 플레이크 처리) 3 EA 21.56 327 13.55 41.4
실시예 4(열처리 및 플레이크 처리) 4 EA 21.7 308 13.64 44.2
Table 1
Used ribbon Ribbon number Ls (μH) Rs (mΩ) Z Q
Comparative Example 1 (No Sheet) 0 12.08 245 7.59 30.9
Comparative Example 2 (non-heat treated ribbon) 1 EA 17.91 1020 11.3 11.03
Comparative Example 3 (Heat Treated Ribbon) 1 EA 21.74 605 13.67 22.53
Example 1 (heat treatment and flake treatment) 1 EA 21.52 442 13.52 30.5
Example 2 (heat treatment and flake treatment) 2 EA 21.54 355 13.54 38
Example 3 (heat treatment and flake treatment) 3 EA 21.56 327 13.55 41.4
Example 4 (heat treatment and flake treatment) 4 EA 21.7 308 13.64 44.2
상기 표 1로부터 알 수 있는 바와 같이, 열처리가 이루어지지 않은 리본을 사용한 차폐시트(비교예 2)의 경우, 투자율이 낮아 2차 코일의 인덕턴스(Ls) 값은 작고, 리본의 전기 저항이 낮아 자기저항(Rs) 값은 커서 코일의 품질계수인 Q값이 현저히 낮은 것으로 나타났다.As can be seen from Table 1, in the case of the shielding sheet (Comparative Example 2) using a ribbon that is not heat-treated, the magnetic permeability is low, the inductance (Ls) value of the secondary coil is small, the electrical resistance of the ribbon is low The resistance (Rs) value is large, and the Q value, which is a quality factor of the coil, is significantly lower.
열처리가 이루어진 리본시트를 사용한 차폐시트(비교예 3)의 경우, 투자율이 높아져 2차 코일의 인덕턴스(Ls) 값은 커지고, 열처리에 의해 리본시트에 생성된 나노 결정립 미세조직을 통해 리본시트의 전기 저항이 커져서 자기저항(Rs) 값이 열처리 전에 비해 크게 낮아졌으며, 그로 인해 코일의 품질계수(Q) 값이 열처리 전에 비해 크게 상승한 것으로 나타났다.In the case of the shielding sheet using the ribbon sheet subjected to heat treatment (Comparative Example 3), the permeability is increased to increase the inductance (Ls) value of the secondary coil, and the electrical conductivity of the ribbon sheet is obtained through the nano-grain microstructure generated in the ribbon sheet by heat treatment. As the resistance increased, the magnetoresistance (Rs) value was significantly lower than before the heat treatment, and as a result, the coil's quality factor (Q) value was found to be significantly higher than before the heat treatment.
또한, 열처리가 이루어진 리본시트를 사용함과 동시에 리본시트를 플레이크(Flake)한 차폐시트(실시예 1)의 경우, 2차 코일의 인덕턴스(Ls) 값은 크게 변화되지 않고, 자기저항(Rs) 값은 플레이크 처리를 하지 않았을 때보다 훨씬 낮게 나타나, 전체적인 코일의 Q값은 더욱 상승한 것을 알 수 있다.In addition, in the case of the shielding sheet (Example 1) in which the ribbon sheet is flaked while using the ribbon sheet subjected to heat treatment, the inductance (Ls) value of the secondary coil is not significantly changed, and the magnetoresistance (Rs) value is Is much lower than without flake treatment, and the Q value of the overall coil is further increased.
더욱이, 실시예 1과 비교하여 리본시트의 적층 수를 높이면 높일수록 코일의 품질계수(Q) 값은 크게 상승하는 것으로 나타났다.In addition, the higher the laminated number of the ribbon sheet compared to Example 1, the higher the quality factor (Q) value of the coil was found to increase significantly.
상기와 같이, 본 발명에 따른 차폐시트를 무선 충전기에 사용하면, 2차 코일의 인덕턴스(Ls)와 Q 값이 높아지고, 자기저항(Rs) 값은 감소함에 따라 무선 충전기의 2차 코일에 대한 송신장치로부터 전송된 자속의 전송효율 증대를 도모할 수 있게 된다.As described above, when the shielding sheet according to the present invention is used in the wireless charger, the inductance (Ls) and Q value of the secondary coil increases, and the magnetoresistance (Rs) value decreases as the transmission to the secondary coil of the wireless charger. It is possible to increase the transmission efficiency of the magnetic flux transmitted from the device.
(실시예 5-8, 비교예 1)(Example 5-8, Comparative Example 1)
(자기장 차폐시트의 전력전송 효율)(Power transmission efficiency of magnetic shielding sheet)
실시예 5 내지 7의 자기장 차폐시트는 실시예 1 내지 4와 동일한 방법으로 사각형상으로 제조되었고, 단지 시트에 적층되는 나노 결정립 리본시트의 수가 6장, 9장, 12장으로 변경되었으며, 실시예 8의 자기장 차폐시트는 실시예 6의 자기장 차폐시트(나노 결정립 리본시트의 수: 6장)의 형상을 2차 코일의 형상과 동일한 환형으로 가공한 점에서 차이가 있다.Magnetic field shielding sheet of Examples 5 to 7 was prepared in the same manner as in Examples 1 to 4, and the number of nanocrystalline ribbon sheets laminated only on the sheet was changed to 6 sheets, 9 sheets, and 12 sheets. The magnetic field shielding sheet of 8 differs in that the shape of the magnetic field shielding sheet (number of nanocrystalline ribbon sheets: 6 sheets) of Example 6 is processed into the same annular shape as that of the secondary coil.
비교예 1(자기장 차폐시트를 사용하지 않은 경우), 실시예 5 내지 8의 자기장 차폐시트에 대하여 각각 도 19에 도시된 바와 같이, 무선 충전기의 송신장치(8)의 상부에 0.5mm 두께의 간지(9)를 놓고, 리튬 이온 배터리(7)에 자기장 차폐시트(10)와 2차 코일(6)이 조립된 수신장치를 올려놓은 상태에서 송신장치(Tx)(8)의 1차 코일에 인가되는 전압(V)과 전류(mA), 수신장치(Rx)의 2차 코일(6)에 수신되는 전압(V)과 전류(mA)를 측정하여 하기 표 2에 기재하고, 이에 기초하여 전력전송 효율을 계산하였다.Comparative Example 1 (when no magnetic shielding sheet was used) and the magnetic shielding sheets of Examples 5 to 8, respectively, as shown in FIG. 19, a 0.5 mm thick sheet of paper was placed on top of the transmitter 8 of the wireless charger. (9), and applied to the primary coil of the transmitter (Tx) 8 with the receiver on which the magnetic shielding sheet 10 and the secondary coil 6 assembled on the lithium ion battery 7 mounted. The voltage (V) and the current (mA), and the voltage (V) and current (mA) received by the secondary coil 6 of the receiver Rx are measured and described in Table 2 below, based on which the power transmission is performed. The efficiency was calculated.
표 2
사용된 리본 Tx Rx 효율(%)
V mA V mA
비교예 1(No Sheet) 19 188 4.87 520 70.895857
실시예 5(사각형 리본 6장) 19 205 4.87 521 65.141720
실시예 6(사각형 리본 9장) 19 194 4.87 521 68.835323
실시예 7(사각형 리본 12장) 19 190 4.87 521 70.284488
실시예 8(코일 형상 리본 6장) 19 192 4.87 521 69.552357
TABLE 2
Used ribbon Tx Rx efficiency(%)
V mA V mA
Comparative Example 1 (No Sheet) 19 188 4.87 520 70.895857
Example 5 (six square ribbons) 19 205 4.87 521 65.141720
Example 6 (nine pieces of square ribbons) 19 194 4.87 521 68.835323
Example 7 (12 square ribbons) 19 190 4.87 521 70.284488
Example 8 (six pieces of coil shape ribbons) 19 192 4.87 521 69.552357
종래에는 무선 충전기의 송신장치에 영구자석이 들어가 있는 경우, 영구자석에 의한 DC 자기장으로 인해 페라이트 시트를 사용하는 차폐시트의 두께는 0.5 T 이상이 되어야 차폐시트로서 최적의 무선 충전 동작이 가능하다.Conventionally, when a permanent magnet is included in a transmitter of a wireless charger, a shielding sheet using a ferrite sheet should be 0.5 T or more due to the DC magnetic field caused by the permanent magnet, thereby enabling optimal wireless charging operation as the shielding sheet.
상기 표 2를 참고하면, 실시예 5 내지 7과 같이, 차폐시트, 즉 나노 결정립 리본시트의 형상이 사각형으로 이루어진 경우, 어떤 차폐시트도 사용하지 않는 비교예 1의 수신장치와 거의 동일한 전력전송 효율을 가지기 위해서는 나노 결정립 리본시트가 12장 정도 적층되어야 하는 것을 알 수 있다.Referring to Table 2, as in Examples 5 to 7, when the shielding sheet, that is, the shape of the nano-crystal ribbon sheet is made of a square, the power transmission efficiency almost the same as the receiver of Comparative Example 1 does not use any shielding sheet It can be seen that in order to have a nano-grain ribbon sheet should be laminated about 12 sheets.
또한, 본 발명의 실시예 7과 같이 12장의 나노 결정립 리본시트를 사용하는 경우 자기 투자율이 높아, 종래 페라이트 시트를 사용하는 차폐시트일 때 0.5 T 보다 낮은 0.3 T 이내에서도 페라이트나 폴리머 시트와 동등한 특성을 나타낸다.In addition, in the case of using the 12 nanocrystalline ribbon sheet as in Example 7 of the present invention, the magnetic permeability is high, even when the shielding sheet using a conventional ferrite sheet, even within 0.3 T lower than 0.5 T characteristics equivalent to the ferrite or polymer sheet Indicates.
더욱이, 실시예 8과 같이 자기장 차폐시트(나노 결정립 리본시트의 수: 6장)의 형상을 2차 코일의 형상과 동일한 환형으로 제작한 경우 사용되는 나노 결정립 리본시트의 수가 실시예 7(나노 결정립 리본시트의 수: 12장)의 1/2임에도 불구하고 실시예 7과 거의 동등한 전력전송 효율을 나타내는 것을 알 수 있다.Furthermore, as in Example 8, when the shape of the magnetic field shielding sheet (number of nanocrystalline ribbon sheets: 6 sheets) was produced in the same annular shape as that of the secondary coil, the number of nanocrystalline ribbon sheets used was Example 7 (nanocrystalline grains). Although the number of ribbon sheets: 12 sheets) is 1/2, it can be seen that the power transmission efficiency is almost equivalent to that of the seventh embodiment.
그 결과 실시예 8과 같이 자기장 차폐시트의 형상을 2차 코일의 형상과 동일한 환형으로 제작한 경우, 사용되는 나노 결정립 리본시트의 수를 1/2로 줄일 수 있어, 제조원가를 낮추고, 제품의 두께를 더욱더 슬림화하는 것이 가능하게 된다.As a result, when the shape of the magnetic shielding sheet was formed in the same annular shape as that of the secondary coil as in Example 8, the number of nanocrystalline ribbon sheets to be used can be reduced to 1/2, so that the manufacturing cost was reduced and the product thickness was reduced. It becomes possible to slim down further.
이러한 결과는 수신장치의 2차 코일의 형상과 이에 대응하여 자기장 차폐시트의 형상을 다른 형상으로 변경하여도 거의 동일한 결과를 나타내고 있다.This result shows almost the same result even when the shape of the secondary coil of the receiving device and the corresponding shape of the magnetic shielding sheet are changed to other shapes.
(온도 특성)(Temperature characteristic)
상기 실시예 8에 따른 자기장 차폐시트를 도 19와 같이 설정하고, 충전시간이 30분에서 4시간 30분까지 30분 단위로 배터리와 자기장 차폐시트의 나노 결정립 리본시트에 대한 온도를 측정하고 그 결과를 하기 표 3에 나타내었다.The magnetic field shielding sheet according to Example 8 was set as shown in FIG. 19, and the charging time was measured in 30 minutes from 30 minutes to 4 hours 30 minutes, and the temperature of the nanocrystalline ribbon sheet of the battery and the magnetic field shielding sheet was measured. It is shown in Table 3 below.
표 3
충전 동작시간 배터리 온도(℃) 리본시트 온도(℃)
0.5시간 29.5 30
1.0시간 30 30
1.5시간 30.5 30.5
2.0시간 30.5 30.5
2.5시간 30.5 31
3.0시간 30.5 31
3.5시간 30.5 31
4.0시간 30.5 31
4.5시간 30.5 31
TABLE 3
Charging operation time Battery temperature (℃) Ribbon sheet temperature (℃)
0.5 hours 29.5 30
1.0 hours 30 30
1.5 hours 30.5 30.5
2.0 hours 30.5 30.5
2.5 hours 30.5 31
3.0 hours 30.5 31
3.5 hours 30.5 31
4.0 hours 30.5 31
4.5 hours 30.5 31
일반적으로 무선 충전이 이루어질 때 리튬 이온 배터리(7)와 같은 2차 전지는 40℃ 이상을 넘기면 안전성에 문제가 발생할 수 있다. In general, when a wireless charging is performed, a secondary battery such as a lithium ion battery 7 may have a safety problem when it exceeds 40 ° C. or more.
본 발명의 차폐시트를 무선 충전기에 적용하는 경우 상기 표 3에 기재된 바와 같이, 배터리 및 차폐시트의 온도는 시간이 경과할지라도 상승하지 않고, 30℃ 전후를 유지하고 있어 안전성을 확보하고 있는 것을 알 수 있다.When applying the shielding sheet of the present invention to the wireless charger, as shown in Table 3, the temperature of the battery and the shielding sheet does not rise even as time passes, it is found that the temperature is maintained at around 30 ° C to ensure safety Can be.
(실시예 9)(Example 9)
Fe67B14Si1Co18 합금으로 이루어진 비정질 리본을 멜트 스피닝에 의한 급냉응고법(RSP)으로 25㎛ 두께로 제조한 후, 시트 형태로 컷팅하여 각각 487℃, 459℃, 450℃에서 1시간 무자장 열처리하여 얻어진 비정질 리본시트를 얻었다. 그 후, 열처리하여 얻어진 비정질 리본시트를 PET 기재를 사용하는 10㎛ 두께의 보호필름과 PET 기재를 사용하는 10㎛ 두께의 양면 테이프(릴리즈 필름 별도) 사이에 삽입하여 적층시트를 준비하고, 도 8의 플레이크 처리장치와 도 11의 라미네이트 장치를 사용하여 플레이크와 라미네이트 처리를 실시하였다. Amorphous ribbons made of Fe 67 B 14 Si 1 Co 18 alloy were manufactured to have a thickness of 25 μm by quenching and solidification (RSP) by melt spinning, and then cut into sheets to be cut at 487 ° C., 459 ° C., and 450 ° C. for 1 hour. An amorphous ribbon sheet obtained by long heat treatment was obtained. Thereafter, the amorphous ribbon sheet obtained by heat treatment was inserted between a 10 μm thick protective film using a PET substrate and a 10 μm thick double-sided tape using a PET substrate (separate release film) to prepare a laminated sheet, and FIG. 8. The flake and the lamination process were performed using the flake processing apparatus of and the lamination apparatus of FIG.
이 때, 적층시트에 사용된 비정질 리본시트의 수를 열처리 온도별로 각각 1장 내지 9장 사용하고, 비정질 리본시트 사이에는 양면 테이프를 삽입하였으며, 각 비정질 리본시트의 열처리 온도별로 인덕턴스(투자율)와 충전 효율을 측정하여 하기 표 4에 나타내었다. At this time, the number of amorphous ribbon sheets used in the laminated sheet was used 1 to 9 sheets for each heat treatment temperature, and double-sided tape was inserted between the amorphous ribbon sheets, and the inductance (permeability) and the heat treatment temperature of each amorphous ribbon sheet were measured. The charging efficiency is measured and shown in Table 4 below.
표 4
인덕턴스(투자율) 충전 효율(%)
1장 2장 3장 4장 5장 6장 7장 8장 9장
13μH 56 61 65.6 65.8 67.1 68.4 68.9 69.1 동작불가
15μH 59.2 65.8 68 68.4 68.6 69.1 69.1 69.3 68.9
18μH 57 63.6 66.3 68 68.2 68.9 69.1 69.1 68.9
Table 4
Inductance (permeability) Charge efficiency (%)
1 page Chapter Two Chapter three Chapter four Chapter five Chapter 6 Chapter seven Chapter eight Chapter nine
13 μH 56 61 65.6 65.8 67.1 68.4 68.9 69.1 Operation
15 μH 59.2 65.8 68 68.4 68.6 69.1 69.1 69.3 68.9
18 μH 57 63.6 66.3 68 68.2 68.9 69.1 69.1 68.9
비정질 리본시트를 각각 487℃, 459℃, 450℃에서 1시간 무자장 열처리한 결과, 각 시트의 인덕턴스(투자율)는 13μH, 15μH, 18μH로 열처리 온도의 증가에 따라 감소하는 결과가 얻어졌다.The amorphous ribbon sheet was subjected to magnetic field heat treatment at 487 ° C, 459 ° C, and 450 ° C for 1 hour, respectively. As a result, the inductance (permeability) of each sheet was reduced to 13 μH, 15 μH, and 18 μH with increasing heat treatment temperature.
각 시트의 인턱턴스별 충전 효율은 459℃에서 열처리한 인덕턴스(투자율)가 15μH인 경우가 가장 높게 나타났으며, 적층되는 비정질 리본시트의 수가 1장에서 8장까지 증가함에 따라 충전 효율도 이에 비례하여 증가하는 경향을 나타냈으며, 대략 4장을 적층한 경우 포화되는 현상을 나타내었고, 8장을 초과하는 경우 충전 효율은 감소하는 경향을 나타내었다.The filling efficiency for each inductance of each sheet was the highest when the inductance (permeability) heat-treated at 459 ° C was 15 μH, and the charging efficiency was proportional to each other as the number of amorphous ribbon sheets laminated increased from 1 to 8 sheets. It showed a tendency to increase, and when the four sheets were stacked, the saturation phenomenon was shown, and when more than eight sheets, the charging efficiency tended to decrease.
(실시예 10)(Example 10)
상기 인덕턴스(투자율)가 15μH인 비정질 리본시트를 사용하여 적층되는 시트의 층수별 최대 충전 효율을 측정하여 그 결과를 하기 표 5에 나타내었다.The inductance (permeability) was measured using the amorphous ribbon sheet having a thickness of 15 μH, and the maximum filling efficiency for each layer of the sheet was measured, and the results are shown in Table 5 below.
상기 최대 충전 효율은 무선 충전기의 수신장치, 즉 2차 코일의 인덕턴스 값을 기준으로 수신장치의 시정수 값을 조정하여 효율을 최대치로 조정한 상태에서 얻어진 값이다.The maximum charging efficiency is a value obtained by adjusting the time constant value of the receiver based on the inductance value of the receiver of the wireless charger, that is, the secondary coil, to adjust the efficiency to the maximum value.
표 5
투자율 최대 충전 효율(%)
1장 2장 3장 4장
15μH 61.3 68.7 71.1 71.9
Table 5
Permeability Max Charging Efficiency (%)
1 page Chapter Two Chapter three Chapter four
15 μH 61.3 68.7 71.1 71.9
표 5를 참고하면, 적층되는 비정질 리본시트의 수에 따라 효율이 증가하였고, 4장일 때 최대 충전 효율은 71.9%로 가장 높게 나타났다.Referring to Table 5, the efficiency increased with the number of amorphous ribbon sheets stacked, and the maximum filling efficiency was the highest at 71.9% when 4 sheets were stacked.
상기한 바와 같이, 본 발명에서는 비정질 리본의 플레이크 처리에 의해 와전류(Eddy Current)에 의한 손실을 크게 줄여줌에 의해 휴대 단말기기 등의 본체 및 배터리에 미치는 자기장 영향을 차단함과 동시에 2차 코일의 품질계수(Q)를 증가시켜 전력전송 효율이 우수하다.As described above, in the present invention, the loss caused by the eddy current is greatly reduced by the flake processing of the amorphous ribbon, thereby preventing the magnetic field effects on the main body and the battery of the portable terminal device and the like, and The power transmission efficiency is excellent by increasing the quality factor (Q).
또한, 본 발명에서는 비정질 리본의 플레이크 처리 후 압착 라미네이팅 처리에 의해 비정질 리본의 미세 조각 사이의 틈새를 접착제를 채워서 수분 침투를 방지함과 동시에 미세 조각의 모든 면을 접착제(유전체)로 둘러쌈에 의해 미세 조각을 상호 절연시켜서 와전류 저감을 도모하여 차폐성능이 떨어지는 것을 방지할 수 있다.In addition, in the present invention, the gap between the fine pieces of the amorphous ribbon is filled by the adhesive lamination treatment after the flake treatment of the amorphous ribbon to prevent moisture penetration and at the same time, all surfaces of the fine pieces are surrounded by the adhesive (dielectric). It is possible to prevent the deterioration of the shielding performance by reducing the eddy current by insulating fine pieces from each other.
상기한 실시예 설명에서는 휴대 단말기기에 무선 충전기가 적용된 것을 예시하였으나, 이와 동일하게 비접촉(무선) 방식으로 무선 충전 기능을 제공하는 모든 포터블 전자기기에 본 발명을 적용할 수 있다.In the above-described embodiment, the wireless charger is applied to the portable terminal, but the present invention can be applied to all portable electronic devices that provide a wireless charging function in a non-contact (wireless) manner.
상기 실시예 설명에서는 자기장 차폐시트가 NFC 및 무선 충전 겸용에 적용되는 것을 예시하여 설명하였으나, NFC 또는 무선 충전 단독으로 사용하는 것도 가능하다. 또한, 자기장 차폐시트 이외에 자기장 및 전자파 차폐용 복합시트가 NFC 및 무선 충전용으로 적용되는 것도 물론 가능하다.In the above description of the embodiment has been described by illustrating that the magnetic field shielding sheet is applied to both NFC and wireless charging, it is also possible to use NFC or wireless charging alone. In addition, it is also possible to apply a magnetic field and electromagnetic shielding composite sheet in addition to the magnetic shielding sheet for NFC and wireless charging.
이상에서는 본 발명을 특정의 바람직한 실시예를 예를 들어 도시하고 설명하였으나, 본 발명은 상기한 실시예에 한정되지 아니하며 본 발명의 정신을 벗어나지 않는 범위내에서 당해 발명이 속하는 기술분야에서 통상의 지식을 가진 자에 의해 다양한 변경과 수정이 가능할 것이다.In the above, the present invention has been illustrated and described with reference to specific preferred embodiments, but the present invention is not limited to the above-described embodiments, and the present invention is not limited to the spirit of the present invention. Various changes and modifications will be possible by those who have the same.
본 발명은 휴대 단말기를 포함한 각종 포터블 전자기기에 적용되어 비접촉(무선) 방식으로 NFC 및 무선 충전을 구현할 때 발생되는 교류 및 직류 자기장에 의해 휴대 단말기기 등에 미치는 영향을 차단하며, NFC 및 무선 충전에 필요한 전자파를 흡수하는 것을 도와주는 자기장 및 전자파 차폐용 복합시트에 적용될 수 있다.The present invention is applied to a variety of portable electronic devices including a portable terminal to block the influence on the portable terminal device by the alternating current and direct current magnetic field generated when implementing NFC and wireless charging in a non-contact (wireless) method, NFC and wireless charging It can be applied to the composite sheet for magnetic field and electromagnetic shielding to help absorb the required electromagnetic waves.

Claims (16)

  1. 열처리되고 플레이크 처리되어 다수의 미세 조각으로 분리된 비정질 리본시트, 상기 비정질 리본시트의 일측면에 접착된 보호필름 및 상기 비정질 리본시트의 타측면에 접착된 접착테이프를 구비하는 자성시트; 및A magnetic sheet having an amorphous ribbon sheet heat-treated and flakes separated into a plurality of fine pieces, a protective film adhered to one side of the amorphous ribbon sheet, and an adhesive tape adhered to the other side of the amorphous ribbon sheet; And
    상기 자성시트에 적층된 전자파 차폐 및 방열용 전도체 시트;를 포함하는 자기장 및 전자파 차폐용 복합시트.Magnetic sheet and electromagnetic shielding composite sheet comprising a; electromagnetic shielding and heat dissipation conductor sheet laminated on the magnetic sheet.
  2. 제1항에 있어서, The method of claim 1,
    상기 자성시트의 다수의 미세 조각 사이의 틈새는 상기 보호필름 및 접착 테이프의 접착제의 일부가 충진되어 있는 자기장 및 전자파 차폐용 복합시트. The gap between the plurality of fine pieces of the magnetic sheet is a composite sheet for shielding magnetic fields and electromagnetic waves is filled with a portion of the adhesive of the protective film and the adhesive tape.
  3. 제1항에 있어서, 다수의 상기 자성시트가 적층되어 있는 자기장 및 전자파 차폐용 복합시트.The composite sheet for magnetic field and electromagnetic shielding according to claim 1, wherein a plurality of the magnetic sheets are stacked.
  4. 제1항에 있어서, The method of claim 1,
    상기 전도체 시트는 상기 자성시트에 아크릴계 접착제 또는 양면 테이프에 의해 접착되며, 상기 아크릴계 접착제는 10 내지 30volume%의 Ag 또는 Ni 분말을 함유하는 자기장 및 전자파 차폐용 복합시트.The conductive sheet is bonded to the magnetic sheet by an acrylic adhesive or double-sided tape, the acrylic adhesive is a magnetic sheet and electromagnetic shielding composite sheet containing 10 to 30volume% Ag or Ni powder.
  5. 제1항에 있어서, 상기 전도체 시트는 금속 박막 또는 진공증착이나 전기도금에 의해 형성되는 금속막으로 이루어지는 자기장 및 전자파 차폐용 복합시트.The composite sheet for magnetic field and electromagnetic shielding according to claim 1, wherein the conductor sheet is made of a metal thin film or a metal film formed by vacuum deposition or electroplating.
  6. 제1투자율의 제1자성시트; 및A first magnetic sheet of first permeability; And
    상기 제1자성시트의 투자율보다 낮은 제2투자율을 갖고 상기 제1자성시트에 적층되는 제2자성시트를 포함하며,It includes a second magnetic sheet laminated on the first magnetic sheet having a second magnetic permeability lower than the magnetic permeability of the first magnetic sheet,
    상기 제1자성시트는 다수의 미세 조각으로 분리되고 상기 다수의 미세 조각은 동일한 평면상에 배치되며, 양면에 보호필름과 양면 테이프가 적층되며, The first magnetic sheet is separated into a plurality of fine pieces and the plurality of fine pieces are disposed on the same plane, the protective film and the double-sided tape is laminated on both sides,
    상기 다수의 미세 조각 사이의 틈새는 상기 보호필름과 양면 테이프에 포함된 접착층의 일부가 충진되는 자기장 및 전자파 차폐용 복합시트.The gap between the plurality of fine pieces is a magnetic sheet and electromagnetic shielding composite sheet is filled with a portion of the adhesive layer included in the protective film and the double-sided tape.
  7. 제6항에 있어서, The method of claim 6,
    상기 제1자성시트는 비정질 리본시트를 사용하며,The first magnetic sheet uses an amorphous ribbon sheet,
    상기 제2자성시트는 자성분말과 수지로 이루어진 폴리머 시트를 사용하는 자기장 및 전자파 차폐용 복합시트.The second magnetic sheet is a magnetic sheet and electromagnetic shielding composite sheet using a polymer sheet made of magnetic powder and resin.
  8. 제6항에 있어서, The method of claim 6,
    상기 제1자성시트는 비정질 리본시트로 이루어지고, 상기 제2자성시트는 페라이트 시트로 이루어지는 자기장 및 전자파 차폐용 복합시트.The first magnetic sheet is composed of an amorphous ribbon sheet, the second magnetic sheet is a magnetic sheet and electromagnetic shielding composite sheet made of a ferrite sheet.
  9. 제8항에 있어서, The method of claim 8,
    상기 제1자성시트는 중앙부에 일정 면적으로 배치되고,The first magnetic sheet is disposed in a central area in a predetermined area,
    상기 제2자성시트는 제1자성시트를 둘러싸는 환형으로 이루어지는 자기장 및 전자파 차폐용 복합시트.The second magnetic sheet is a composite sheet for shielding magnetic fields and electromagnetic waves consisting of an annular enclosing the first magnetic sheet.
  10. 제6항에 있어서, The method of claim 6,
    상기 제1자성시트의 외측면에 전도성 금속 박막으로 형성되어 전자파 차폐 및 방열 기능을 갖는 전도체 시트를 더 포함하는 자기장 및 전자파 차폐용 복합시트.The composite sheet for magnetic field and electromagnetic shielding further comprises a conductive sheet formed of a conductive metal thin film on the outer surface of the first magnetic sheet having an electromagnetic shielding and heat radiation.
  11. 제6항에 있어서, The method of claim 6,
    상기 차폐시트는 무선 충전기의 수신장치에 적용되며, The shielding sheet is applied to the receiver of the wireless charger,
    상기 자성시트가 300℃ 내지 600℃의 온도에서 30분 ~ 2시간 동안 무자장 열처리가 이루어진 Fe계 비정질 합금 또는 300℃ 내지 700℃의 온도에서 30분 ~ 2시간 동안 무자장 열처리가 이루어진 나노 결정립 합금으로 이루어지는 자기장 및 전자파 차폐용 복합시트.The magnetic sheet is a Fe-based amorphous alloy having a magnetic field heat treatment for 30 minutes to 2 hours at a temperature of 300 ℃ to 600 ℃ or a nano-crystalline alloy heat treated for 30 minutes to 2 hours at a temperature of 300 ℃ to 700 ℃ Composite sheet for shielding magnetic fields and electromagnetic waves.
  12. 기판에 루프 형태로 이루어지며 NFC(Near Field Communication) 신호를 송수신하기 위한 NFC 안테나; 및NFC antenna is made in the form of a loop on the substrate for transmitting and receiving NFC (Near Field Communication) signal; And
    상기 기판에 적층되며, 제1항 내지 제11항 중 어느 한 항에 따른 자기장 및 전자파 차폐용 복합시트를 포함하는 안테나 모듈.The antenna module laminated on the substrate, comprising a composite sheet for shielding the magnetic field and electromagnetic waves according to any one of claims 1 to 11.
  13. 기판의 내측에 루프 형태로 형성되며 무선 충전기의 송신장치로부터 전송된 무선 충전용 고주파 전력신호를 수신하기 위한 무선 충전용 2차 코일과 상기 기판의 외측에 루프 형태로 형성되며 NFC용 고주파 신호를 송수신하기 위한 NFC 안테나 코일을 구비하는 듀얼 안테나; 및It is formed in a loop form on the inside of the substrate and is formed in a loop form on the outside of the substrate and a wireless charging secondary coil for receiving a wireless charging high frequency power signal transmitted from a transmitter of a wireless charger and transmits and receives a high frequency signal for NFC. Dual antenna having an NFC antenna coil for; And
    상기 기판에 적층되며, 제1항 내지 제11항 중 어느 한 항에 따른 자기장 및 전자파 차폐용 복합시트를 포함하는 안테나 모듈.The antenna module stacked on the substrate, comprising a composite sheet for shielding the magnetic field and electromagnetic waves according to any one of claims 1 to 11.
  14. 제13항에 있어서, The method of claim 13,
    상기 복합시트는 연장 형성되고, 연장 형성된 영역에 수신된 고주파 전력신호를 직류로 변환한 후 직류 레벨변환에 필요한 DC-DC 컨버터회로가 실장되는 안테나 모듈.The composite sheet is extended, the antenna module is mounted with a DC-DC converter circuit for converting the high-frequency power signal received in the extended area to a direct current, and then required for the DC level conversion.
  15. 제13항에 있어서, The method of claim 13,
    상기 복합시트는 1 내지 12층의 비정질 리본시트를 사용하는 안테나 모듈.The composite sheet is an antenna module using an amorphous ribbon sheet of 1 to 12 layers.
  16. 기판의 표면에 나선형으로 패턴 형성된 하나의 코일부와 이로부터 연장된 제1 내지 제3 터미널 단자로 이루어지며 상기 제1 터미널 단자와 제2 터미널 단자 사이에서 NFC용 고주파 신호를 송수신하고, 상기 제3 터미널 단자와 제1 또는 제2 터미널 단자 사이로부터 무선 충전기의 송신장치로부터 전송된 무선 충전용 고주파 신호를 수신하는 NFC 및 무선 충전 겸용 안테나; 및Comprising one coil portion formed in a spiral pattern on the surface of the substrate and the first to third terminal terminals extending therefrom, and transmits and receives a high frequency signal for NFC between the first terminal terminal and the second terminal terminal, the third NFC and wireless charging combined antenna for receiving a high frequency signal for wireless charging transmitted from the transmitter of the wireless charger from between the terminal terminal and the first or second terminal terminal; And
    상기 기판에 적층되며, 제1항 내지 제11항 중 어느 한 항에 따른 자기장 및 전자파 차폐용 복합시트를 포함하는 안테나 모듈.The antenna module laminated on the substrate, comprising a composite sheet for shielding the magnetic field and electromagnetic waves according to any one of claims 1 to 11.
PCT/KR2014/001795 2013-03-05 2014-03-05 Composite sheet for shielding magnetic field and electromagnetic wave, and antenna module comprising same WO2014137151A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201480012615.4A CN105027355B (en) 2013-03-05 2014-03-05 Magnetic field and electromagnetic wave shielding composite plate and there is its Anneta module
US14/772,431 US9812774B2 (en) 2013-03-05 2014-03-05 Composite sheet for shielding magnetic field and electromagnetic wave, and antenna module comprising same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20130023470 2013-03-05
KR10-2013-0023470 2013-03-05
KR10-2014-0025828 2014-03-05
KR1020140025828A KR101703842B1 (en) 2013-03-05 2014-03-05 Composite Sheet for Shielding Magnetic Field and Electromagnetic Wave and Antenna Module Using the Same

Publications (1)

Publication Number Publication Date
WO2014137151A1 true WO2014137151A1 (en) 2014-09-12

Family

ID=51491607

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2014/001795 WO2014137151A1 (en) 2013-03-05 2014-03-05 Composite sheet for shielding magnetic field and electromagnetic wave, and antenna module comprising same

Country Status (1)

Country Link
WO (1) WO2014137151A1 (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105870577A (en) * 2015-02-10 2016-08-17 三星电机株式会社 Near field communication antenna and terminal including the same
CN106257975A (en) * 2015-06-18 2016-12-28 三星电机株式会社 For shielding sheet and the wireless charging device of electromagnetic wave
CN106515126A (en) * 2016-11-08 2017-03-22 广东小天才科技有限公司 Magnetic laminated structure, preparation method thereof and input device
CN106561072A (en) * 2015-10-02 2017-04-12 三星电机株式会社 Cover And Portable Terminal Including The Same
KR20170043276A (en) * 2015-10-13 2017-04-21 삼성전기주식회사 Magnetic shileding sheet and wireless power transmitting apparatus including the same
CN106797699A (en) * 2014-10-02 2017-05-31 罗杰斯公司 Magnetic dielectric substrate, circuit material and the component with it
CN107079610A (en) * 2014-09-29 2017-08-18 Lg伊诺特有限公司 Composite magnetic sheet and the wireless charging module including the composite magnetic sheet
CN107112811A (en) * 2015-01-05 2017-08-29 阿莫善斯有限公司 Magnetic field shielding piece and the wireless power transmission module including it
CN107836062A (en) * 2015-07-07 2018-03-23 阿莫绿色技术有限公司 Fin and the wireless power transmission module including the fin
CN107852846A (en) * 2015-07-20 2018-03-27 阿莫善斯有限公司 Magnetic shielding unit
CN108292804A (en) * 2015-10-05 2018-07-17 阿莫善斯有限公司 Multifunctional composite mould block and portable device including it
CN108353520A (en) * 2015-09-04 2018-07-31 阿莫善斯有限公司 Magnetic resonance mode wireless power transmission magnetic shielding unit including its wireless power delivery module and electronic device
CN110661079A (en) * 2019-10-10 2020-01-07 Oppo(重庆)智能科技有限公司 Shell assembly and electronic device
CN112772011A (en) * 2018-10-03 2021-05-07 东洋油墨Sc控股株式会社 Electromagnetic wave shielding sheet and electronic component mounting substrate
US20210241956A1 (en) * 2018-09-19 2021-08-05 Amosense Co., Ltd. Magnetic field shielding sheet, method for manufacturing magnetic field shielding sheet, and antenna module using same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009085660A2 (en) * 2007-12-29 2009-07-09 3M Innovative Properties Company Magnetic shielding gasket and method of filling a gap in an emi shielded system
KR20090089277A (en) * 2009-07-29 2009-08-21 주식회사 에이엠오 Electromagnetic wave absorber compring magnetically soft body layer having function of dilectirc layer
KR101163574B1 (en) * 2012-03-13 2012-07-06 주식회사 나노맥 Electromagnetic waves absorber for both radio frequency identification and wireless charging, wireless antenna for both radio frequency identification and wireless charging including the same, and manufacturing method thereof
KR20130000743A (en) * 2011-06-24 2013-01-03 이은정 Method for making microwave shielding sheet using amorphous metal and microwave shielding sheet using the same
KR20130007954A (en) * 2011-07-11 2013-01-21 삼성전자주식회사 Inputting device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009085660A2 (en) * 2007-12-29 2009-07-09 3M Innovative Properties Company Magnetic shielding gasket and method of filling a gap in an emi shielded system
KR20090089277A (en) * 2009-07-29 2009-08-21 주식회사 에이엠오 Electromagnetic wave absorber compring magnetically soft body layer having function of dilectirc layer
KR20130000743A (en) * 2011-06-24 2013-01-03 이은정 Method for making microwave shielding sheet using amorphous metal and microwave shielding sheet using the same
KR20130007954A (en) * 2011-07-11 2013-01-21 삼성전자주식회사 Inputting device
KR101163574B1 (en) * 2012-03-13 2012-07-06 주식회사 나노맥 Electromagnetic waves absorber for both radio frequency identification and wireless charging, wireless antenna for both radio frequency identification and wireless charging including the same, and manufacturing method thereof

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107079610B (en) * 2014-09-29 2019-09-03 Lg伊诺特有限公司 Composite magnetic sheet and wireless charging module including the composite magnetic sheet
CN107079610A (en) * 2014-09-29 2017-08-18 Lg伊诺特有限公司 Composite magnetic sheet and the wireless charging module including the composite magnetic sheet
CN107079610B9 (en) * 2014-09-29 2019-12-06 Lg伊诺特有限公司 Composite magnetic sheet and wireless charging module comprising same
CN106797699A (en) * 2014-10-02 2017-05-31 罗杰斯公司 Magnetic dielectric substrate, circuit material and the component with it
CN107112811A (en) * 2015-01-05 2017-08-29 阿莫善斯有限公司 Magnetic field shielding piece and the wireless power transmission module including it
US10477743B2 (en) 2015-01-05 2019-11-12 Amosense Co., Ltd Magnetic field shielding sheet and wireless power transmitting module including same
CN107112811B (en) * 2015-01-05 2020-05-01 阿莫善斯有限公司 Magnetic field shielding piece and wireless power transmission module comprising same
CN105870577A (en) * 2015-02-10 2016-08-17 三星电机株式会社 Near field communication antenna and terminal including the same
CN106257975A (en) * 2015-06-18 2016-12-28 三星电机株式会社 For shielding sheet and the wireless charging device of electromagnetic wave
CN107836062A (en) * 2015-07-07 2018-03-23 阿莫绿色技术有限公司 Fin and the wireless power transmission module including the fin
US10673269B2 (en) 2015-07-20 2020-06-02 Amosense Co., Ltd. Magnetic field shielding unit
CN107852846A (en) * 2015-07-20 2018-03-27 阿莫善斯有限公司 Magnetic shielding unit
CN108353520B (en) * 2015-09-04 2020-02-07 阿莫善斯有限公司 Magnetic field shielding unit, wireless power transmission module comprising same and electronic device
CN108353520A (en) * 2015-09-04 2018-07-31 阿莫善斯有限公司 Magnetic resonance mode wireless power transmission magnetic shielding unit including its wireless power delivery module and electronic device
CN106561072A (en) * 2015-10-02 2017-04-12 三星电机株式会社 Cover And Portable Terminal Including The Same
CN106561072B (en) * 2015-10-02 2020-03-10 株式会社Wits Cover and portable terminal including the same
CN108292804A (en) * 2015-10-05 2018-07-17 阿莫善斯有限公司 Multifunctional composite mould block and portable device including it
KR20170043276A (en) * 2015-10-13 2017-04-21 삼성전기주식회사 Magnetic shileding sheet and wireless power transmitting apparatus including the same
KR102405414B1 (en) * 2015-10-13 2022-06-07 주식회사 위츠 Magnetic shileding sheet and wireless power transmitting apparatus including the same
CN106515126A (en) * 2016-11-08 2017-03-22 广东小天才科技有限公司 Magnetic laminated structure, preparation method thereof and input device
US20210241956A1 (en) * 2018-09-19 2021-08-05 Amosense Co., Ltd. Magnetic field shielding sheet, method for manufacturing magnetic field shielding sheet, and antenna module using same
US11594356B2 (en) * 2018-09-19 2023-02-28 Amosense Co., Ltd. Magnetic field shielding sheet, method for manufacturing magnetic field shielding sheet, and antenna module using same
CN112772011A (en) * 2018-10-03 2021-05-07 东洋油墨Sc控股株式会社 Electromagnetic wave shielding sheet and electronic component mounting substrate
CN112772011B (en) * 2018-10-03 2022-03-08 东洋油墨Sc控股株式会社 Electromagnetic wave shielding sheet and electronic component mounting substrate
CN110661079A (en) * 2019-10-10 2020-01-07 Oppo(重庆)智能科技有限公司 Shell assembly and electronic device

Similar Documents

Publication Publication Date Title
WO2014137151A1 (en) Composite sheet for shielding magnetic field and electromagnetic wave, and antenna module comprising same
WO2013095036A1 (en) Magnetic field shielding sheet for a wireless charger, method for manufacturing same, and receiving apparatus for a wireless charger using the sheet
WO2017090977A1 (en) Magnetic field shielding unit and multi-functional complex module including same
WO2013115616A1 (en) Magnetic field shielding sheet for digitizer, manufacturing method thereof, and portable terminal device using same
KR101707883B1 (en) Hybrid Type Magnetic Field Shield Sheet and Antenna Module Using the Same
WO2013183913A1 (en) Magnetic field shielding sheet for digitizer, method for manufacturing same, and portable terminal device using same
WO2017007196A1 (en) Heat radiation sheet and wireless power transmission module including same
KR101197684B1 (en) Magnetic Sheet, RF Identification Antenna Having Radiation Pattern Incorporated into Magnetic Sheet, and Method for Producing the Same
WO2014104816A1 (en) Electromagnetic wave absorbing sheet, method for manufacturing same, and electronic device comprising same
WO2017061772A1 (en) Multifunctional hybrid module and portable device comprising same
WO2018048281A1 (en) Magnetic sheet and wireless power receiving device comprising same
WO2017039420A1 (en) Magnetic shielding unit for wireless power transmission in magnetic resonance mode, and wireless power transmission module and electronic device comprising same
US11108276B2 (en) High-performance shielding sheet and preparation method thereof and coil module comprising the same
WO2016056736A1 (en) Near field communication antenna and smart phone having antenna
WO2017069581A1 (en) Vehicle antenna module
WO2018147649A1 (en) Magnetic sheet and wireless power reception device comprising same
WO2017014467A1 (en) Combination antenna module and portable electronic device including same
KR20140003636A (en) Magnetic sheet, and non-contact power receiving device, electronic instrument, and non-contact charging device employing same
WO2016186444A1 (en) Shield unit for wireless charging and wireless power transmission module comprising same
WO2017014464A1 (en) Combination antenna module and portable electronic device including same
WO2020060035A1 (en) Magnetic field shielding sheet, method for manufacturing magnetic field shielding sheet, and antenna module using same
US10587049B2 (en) Magnetic isolator, method of making the same, and device containing the same
US11915857B2 (en) Magnetic shielding sheet and wireless power transfer module including the same
WO2018117431A1 (en) Antenna module
WO2019231142A1 (en) Magnetic sheet and wireless power module comprising same

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480012615.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14760554

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 14772431

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 14760554

Country of ref document: EP

Kind code of ref document: A1